Apple River Flowage Lake Management Plan

Polk County, Wisconsin
November 2013

Prepared By
Polk County Land and Water Resources Department 100 Polk County Plaza, Suite 120
Balsam Lake, WI 54810
Funded By
Apple River Flowage Protection and Rehabilitation District
Wisconsin Department of Natural Resources Lake Planning Grant

We would like to thank the following persons for their contributions to this project:
Derrick Carlson
Norval Doddridge
John Dressen
Peter Henry
AngieJ ohnson
DougJ ohnson
Debi Lein
Dave Myers
Jeri Peterson
Roland Peterson
Dale Richardson
Billie J o Schleusner
Dave Schleusner
Bob Strobush
Gale Tappe
J ordan Petchenik
Alex Smith
Pamela Toshner

Table of Contents
Purpose of the Study. 5
Executive Summary 7
Introduction to the Flowage 12
Flowage Characteristics 13
Designated Waters 14
Habitat Areas 15
Fishery 16
Lake Classification 17
Lake Types 18
Impaired Waters 19
Water Quality in Impoundments 20
Previous Lake Studies. 21
Lake District Resident Survey 24
Lake Level and Precipitation Monitoring. 32
Chemical and Physical Data: Sampling Procedure 34
Lake Mixing and Stratification: Background Information 35
Phosphorus 37
Nitrogen 39
Total Nitrogen to Total Phosphorus Ratio 42
Chloride 43
Sulfate 44
Calcium and Magnesium 45
Total Suspended Solids 46
Dissolved Oxygen 47
Temperature 49
Conductivity (Specific Conductance) 50
pH 52
Secchi Depth 54
Chlorophyll a 56
Trophic State Index 57
Phytoplankton 60
Zooplankton 64
Lake Sediments. 67
Land Use and Water Quality 74
Shoreline Inventory 76
Tributaries 78
Land Use and Nutrient Loading in the Apple River Flowage Watershed 80
Land Use and Nutrient Loading in the Apple River Flowage Subwatersheds. 82
Areas Providing Water Quality Benefits to the Apple River Flowage 89
Watershed and Reservoir Modeling. 90
Nutrient Budget Summary: Apple River North Basin 93
Nutrient Budget Summary: Apple River South Basin 95
Pontoon Classrooms. 97
Shoreline Restoration Workshop 98
Polk County Ordinances 99
Lake Management Plan 103
Works Cited 119

Appendices

Appendix A: Lake District Resident Survey and Results

Appendix B: Chemical Data: In-lake and Tributary
Appendix C: Physical Data: In-lake and Tributary
Appendix D: Phytoplankton Data
Appendix E: Zooplankton Data
Appendix F: Lake Sediment Data
Appendix G: Modeling Data
Appendix H: Meeting Agendas and Materials
Appendix I: Presentations

Purpose of the Study

Lakes are a product of the landscape they are situated in and of the actions that take place on the land which surrounds them. Due to this fact, lakes situated within feet of others can differ profoundly in the uses they support.

Factors such as lake size, lake depth, water sources to a lake, and geology all cause inherent differences in lake quality.

Additionally, humans, by changing the landscape, can bring about changes in a lake. This arises because rain and melting snow may eventually end up in lakes and streams through surface runoff or groundwater infiltration. Rain and melting snow entering a lake is not inherently problematic. However, water has the ability to carry nutrients, bacteria, sediments, and chemicals into a lake. These inputs can impact aquatic organisms such as insects, fish, and wildlife and-especially in the case of the nutrient phosphorus-fuel problematic algae blooms.

The landscape can be divided into watersheds and subwatersheds, which define the land area that drains into a particular lake, flowage, stream, or river. Watersheds that preserve native vegetation and minimize impervious surfaces (cement, concrete, and other materials that water can't permeate) are less likely to cause negative impacts on lakes, rivers, and streams.

Lake studies often examine the underlying factors that impact a lake's health, such as lake size, depth, water sources, and the land use in a lake's watershed. Many forms of data can be collected and analyzed to gauge a lake's health including: physical data (oxygen, temperature, etc.), chemical data (including nutrients such a phosphorus and nitrogen), biological data (algae and zooplankton), and land use within a lake's watershed.

Lakes can be classified based on their nutrient status and clarity levels. Three categories commonly used are: oligotrophic, mesotrophic, and eutrophic.
\checkmark Oligotrophic lakes are generally clear, deep, and free of weeds and large algae blooms.
\checkmark Mesotrophic lakes lie between oligotrophic and eutrophic lakes. They usually have good fisheries and occasional algae blooms.
\checkmark Eutrophic lakes are generally high in nutrients and support a large number of plant and animal populations. They are usually very productive and subject to frequent algae blooms. Lakes can also be hypereutrophic. Hypereutrophic lakes are characterized by dense algae and plant communities and can experience heavy algal blooms throughout the summer.

Lake studies often identify strengths, opportunities, challenges, and threats to a lake's health. These studies can identify practices already being implemented by watershed residents to improve water quality and areas providing benefits to a lake's ecosystem. Additionally, these studies often quantify practices or areas on the landscape that have the potential to negatively impact the health of a lake.

The end product of a lake study is a Lake Management Plan which identifies goals, objectives, and action items to either maintain or improve the health of a lake. These goals should be realistic based on inherent lake characteristics (lake size, depth, etc.) and should align with watershed residents' goals.

Included in this document are the data and conclusions drawn from a 2012 lake study completed by the Polk County Land and Water Resources Department. This study collected and analyzed the following data to aid in the creation of a Lake Management Plan for the Apple River Flowage:
\checkmark Lake resident opinions
\checkmark Lake level and precipitation data
\checkmark In lake physical and chemical data
\checkmark Algae and zooplankton data
\checkmark Lake sediment chemistry
\checkmark Shoreline land use results
\checkmark Tributary monitoring results
\checkmark Watershed and subwatershed land use

This study also included a number of educational opportunities for members of the Apple River Flowage District including:
\checkmark A pontoon classroom
\checkmark A shoreline restoration workshop
\checkmark A series of five meetings to review the data collected and develop a Lake Management Plan

Whenever possible, past lake studies completed on the Apple River Flowage are used as a baseline comparison for this study. A summary of previous lake studies can be found on page 21.

Executive Summary

Lake information

The Apple River Flowage is located in southeastern Polk County, Wisconsin in the Town of Lincoln and within the Amery city limits. The Apple River Flowage is a 604 acre impoundment with a mean depth of six feet and a maximum depth of eighteen feet.

There are two inflows to the Apple River Flowage: the Beaver Brook Inlet and the Apple River Inlet. The Beaver Brook Inlet originates in Barron County and flows through the J oel Flowage to the Apple River Flowage; and the Apple River Inlet originates from Staples Lake and flows through White Ash Lake to the Apple River Flowage. The Apple River Flowage has one outlet which is located at the Amery Dam and flows to the Black Brook Flowage.

The Apple River Flowage and many of its tributaries (Beaver Brook Inlet originating at the J oel Flowage, Apple River Inlet, and the Apple River Outlet) are designated as Areas of Special Natural Resource Interest through their identification as Natural Heritage Inventory Waters.

The drainage basin: lake area ratio (DB: LA) compares the size of a lake's watershed to the size of a lake. If a lake has a relatively large DB: LA then surface water inflow (containing nutrients and sediments) occurs from a large area of land relative to the area of the lake. The DB: LA ratio for the Apple River Flowage is approximately 175:1, which is quite large.

The total phosphorus criterion for the Apple River Flowage (classified as a drainage lake that does not stratify) is $0.040 \mathrm{mg} / \mathrm{L}$. In 2011, the Apple River Flowage was proposed for the 303(d) list of Impaired Waters for the pollutant total phosphorus and the resulting impairment of excess algae growth. As of J anuary 2013, the Flowage had not yet been formally listed.

Survey results

Ninety-two members of the Apple River Flowage Protection and Rehabilitation District completed a survey regarding the flowage (41\% response rate). In this survey concerns for the flowage were ranked. Invasive species ranked as the $1^{\text {st }}$ concern for the flowage, followed by aquatic plants in $2^{\text {nd }}$, and algae blooms in $3^{\text {rd }}$.

Around a quarter of respondents described the water quality of the Apple River Flowage as either poor (36\%) or fair (32\%). Fewer respondents described the water quality as good (14\%) and zero respondents described it as excellent. The majority of respondents felt that in the time since they have owned their property, the water quality has degraded. Zero respondents perceived that water quality has improved.

In general, more respondents felt that algae often or always negatively impact their enjoyment of the flowage as compared to never or rarely.

A third of respondents described the current amount of shoreline vegetation on the Apple River Flowage as just right (33\%). Generally, more respondents felt there was too much shoreline vegetation as compared to not enough.

Although a combined 74% of respondents felt that shoreline buffers, rain gardens, and native plants are very important or somewhat important to water quality; nearly half (47\%) of respondents are not interested in installing a shoreline buffer or rain garden on their property.

Respondents are making educated decisions when applying fertilizer to their property. Two thirds of respondents do not use fertilizer on their property (64\%) and one third use zero phosphorus fertilizer (33\%). Very few respondents use fertilizer but are unsure of its phosphorus content (5\%), and zero respondents use fertilizer on their property that contains phosphorus.

Survey respondents were asked to choose all of the management practices they felt should be used to maintain or improve the water quality of the Apple River Flowage from a list of options. Over half of respondents felt that enhanced efforts to monitor for new populations of aquatic invasive species should be used to maintain or improve the water quality of the flowage (60\%). Other management practices supported by many respondents include information and education opportunities (46\%) and cost-sharing assistance for the installation of farmland conservation practices (41\%).

Lake level and precipitation data

Seasonal precipitation totaled eighteen inches north of the 46 bridge and thirteen inches south of the 46 bridge. Shortly following precipitation events, water levels did increase in the flowage. The flowage is created by a dam within the city limits of Amery. Currently, the dam is used to maintain water levels on the flowage. Overall, water levels remained fairly constant over the sampling season.

Sampling procedure

Physical and chemical data were collected in-lake at two sites (Site 1, north and Site 2, south) on the Apple River Flowage from May 8 ${ }^{\text {th, }} 2012$ through September 17th, 2012. Spring turnover samples were taken on April 3rd, 2012. Fall turnover samples were taken on October 15 th, 2012.

Turnover

Turnover events in lakes occur two times a year in Wisconsin. At spring and fall turnover, the temperature and density of the water is constant from the top to the bottom. This uniformity in density allows a lake to completely mix. As a result, oxygen is brought to the bottom of a lake, and nutrients are re-suspended from the sediments.

As the sun's rays warm the surface waters in the spring, the water becomes less dense and remains at the surface. Warmer water is mixed deeper into the water column through wind and wave action. However, these forces can only mix water to a depth of approximately
twenty to thirty feet. The Apple River Flowage, with a maximum depth of eighteen feet, remained well mixed over the sampling season.

In stratified lakes, warmer surface waters are prevented from mixing with cooler bottom waters. As a result, nutrients can actually become trapped in the bottom waters of a lake that stratifies. Additionally, because mixing is one of the main ways oxygen is distributed throughout a lake, lakes that stratify have the potential to have very low levels of oxygen in the bottom waters. The Apple River Flowage did not stratify in 2012.

Chemical data

The total phosphorus criterion for the Apple River Flowage is $0.040 \mathrm{mg} / \mathrm{L}$. In 2012, the summer index period (July $15^{\text {th }}-$ September 15 ${ }^{\text {th }}$) average total phosphorus was 0.0895 mg / L at site one (north) and $0.0680 \mathrm{mg} / \mathrm{L}$ at site two (south). The total phosphorus criterion was exceeded at site one in 2012.

Nitrate/ nitrite and ammonium are all inorganic forms of nitrogen which can be used by aquatic plants and algae. Inorganic nitrogen concentrations above $0.3 \mathrm{mg} / \mathrm{L}$ can support summer algae blooms in lakes. Average growing season (excludes turnover) inorganic nitrogen was $0.02 \mathrm{mg} / \mathrm{L}$ at site one (north) and $0.03 \mathrm{mg} / \mathrm{L}$ at site two (south). Inorganic nitrogen concentrations at both sites were well below the healthy limit.

The total nitrogen to total phosphorus ratio (TN: TP) is a calculation that depicts which nutrients limit algae growth in a lake. The total nitrogen to total phosphorus ratio for both sites (north and south) indicate a nitrogen limited state during the growing season, which is fairly uncommon in Wisconsin.

Physical data

A water quality standard for dissolved oxygen in warm water lakes and streams is set at 5 mg / L. This standard is based on the minimum amount of oxygen required by fish for survival and growth. Oxygen levels remained above $5 \mathrm{mg} / \mathrm{L}$ near the surface but dropped below this threshold in the bottom waters.

Secchi depth serves as a general indicator of water quality. The average growing season secchi depth was 5.5 feet at site one (north) and 4.5 feet at site two (south).

Chlorophyll a (an indicator of algae) seems to have the greatest impact on water clarity when levels exceed $0.03 \mathrm{mg} / \mathrm{L}$. Lakes which appear clear generally have chlorophyll a levels less than $0.015 \mathrm{mg} / \mathrm{L}$. With the exception of site two (south) on August 7h, 2012, chlorophyll a levels on the flowage were below $0.015 \mathrm{mg} / \mathrm{L}$.

Trophic state index

Trophic State Index (TSI) data indicates that in 2012 the Apple River Flowage was mildly eutrophic to eutrophic. Eutrophic lakes are generally high in nutrients and support a large number of plant and animal populations. They are usually very productive and subject to frequent algae blooms.

Phytoplankton or Algae

At both sites the dominant algae division in May and J une was Cryptophyta, or cryptomonads. By J uly, the algae community at both sites was dominated nearly equally by cryptomonads and Chlorophyta, or green algae. In August, the algae community at site one was dominated by cryptomonads and the algae community at site two was dominated by Cyanophyta, or blue green algae. In September, the algae community at site one shifted back to being green algae dominated and the algae community at site two shifted back to being dominated by cryptomonads.

Blue green algae were only present in August at site one and only present in August and September at site two. Their concentrations at these sampling dates were very low and well below the risk threshold for toxin production.

Zooplankton

The Apple River Flowage zooplankton were dominated by rotifers, which is characteristic of flowing waters. Some cladocera are present but almost no copepods, which is somewhat unusual even for a flowing system. Abundance appears to fluctuate with the likely drivers being water retention time (higher flows reducing populations) and temperature (increasing productivity).

Shoreline survey

The shoreline inventory shows that the greatest land use at the ordinary high water mark is natural (93\%), followed by rip rap (5\%), and lawn (2\%). A characterization of the shoreline buffer composition (area upland thirty-five feet from the ordinary high water mark) shows that the greatest land use is natural (82\%), followed by lawn (17\%), and hard surfaces (1\%).

Tributary monitoring

The Apple River Inlet is contributing the greatest amount of phosphorus to the Apple River Flowage (8,442 pounds on an annual basis). The Beaver Brook Inlet is contributing 2,580 pounds of phosphorus on an annual basis. Total phosphorus concentrations were elevated on the East branch of the Beaver Brook Inlet ($0.2472 \mathrm{mg} / \mathrm{L}$).

Site	Total Phosphorus $(\mathrm{mg} / \mathrm{L})$	Discharge (L/s)	Instantaneous Load (mg/s)	Annual Load $(\mathrm{lb} / \mathrm{yr})$
Fox Creek	0.0518	974.610	50.485	$3,512.284$
Apple River Inlet	0.0648	$1,872.570$	121.343	$8,441.935$
Apple River Outlet	0.0636	$3,652.740$	232.314	$16,162.362$
Beaver Brook Inlet	0.0836	443.520	37.078	$2,579.577$
Beaver Brook West	0.0586	125.496	7.354	511.631
Beaver Brook East	0.2472	60.048	14.844	$1,032.704$

Watershed land use and phosphorus loading

The area of land that drains towards a lake is called a watershed. Since the Apple River Flowage Watershed is so extensive in size and drains from many area lakes and rivers, a management area was established for the Apple River Flowage. Areas of land already included in lake management areas for other Polk County lakes (ie. Bone Lake, Balsam Lake, Blake Lake, White Ash Lake, etc.) were excluded from the management area.

The resulting management area is 37,125 acres in size. The largest land uses in the management area are row crop (32\%) and forest (31\%), with row crop contributing the greatest phosphorus load to the Flowage (74\%).

Implementation plan

The following goals of the Implementation Plan for the Apple River Flowage were created through collaborative efforts and take into account current and past water quality data, a 2012 sociological survey regarding the needs of the Apple River Flowage Protection and Rehabilitation District members, and a series of four meetings by the Apple River Flowage Water Quality Committee.

Goal 1: Reduce excessive watershed nutrient inputs to the flowage to improve water quality
Goal 2: Minimize the release of nutrients from within the Apple River Flowage to improve water quality

Goal 3: Protect, maintain, and enhance fish and wildlife habitat
Goal:4 Maintain and enhance the natural beauty of the Apple River Flowage
Goal 5: Evaluate the progress of lake management efforts through monitoring and data collection

Goal 6: Provide information and education opportunities to residents and users
Goal 7: Develop partnerships with a diversity of people and organizations
Goal 8: Implement the Aquatic Plant Management Plan

Introduction to the Flowage

The Apple River Flowage (WBIC 2624200) is located in southeastern Polk County, Wisconsin in the Town of Lincoln and within the Amery city limits (Polk/T.33N.-R.16W./ Sec.21,22,28,33 \& T.33N.R.16W./ Sec 9,10,15,16,22 \&T.33, 34N.R.16W./ Sec 3,4,5,9,32,33).

The Apple River Flowage is located in the Upper Apple River Watershed which is part of the St. Croix River Basin. The Upper Apple River Watershed drains to the Apple River Flowage, which ultimately drains to the St. Croix River.

The Upper Apple River Watershed is the largest watershed in Polk County, totaling approximately 125,074 acres in size. Close to half of the watershed land use is forest and nearly a third is agriculture.

There are two inflows to the Apple River Flowage, the Beaver Brook Inlet and the Apple River Inlet. The Beaver Brook Inlet originates in Barron County and flows through the J oel Flowage to the Apple River Flowage; and the Apple River Inlet originates from Staples Lake and flows through White Ash Lake to the Apple River Flowage. The Apple River Flowage has one outlet which is located at the Amery Dam and flows to the Black Brook Flowage.

Although the soils of the Apple River watershed are mixed, the majority of the soils are Type B, or loamy to sandy soils.

There are two ramp public access sites and one carry in public access site on the flowage. One ramp site is located within the city of Amery on Birch Street and the second ramp site is located north of Amery at the end of River Shore Lane. The carry in site is adjacent to North Park, the city park. North Park and Michael Park/Riverfront Park (also known as Bobber Park) are both situated on the Apple River, providing public access and use opportunities. Both parks have public fishing piers and picnic table areas.

Harvesting for aquatic plants began on the flowage in early August 2012.

Flowage Characteristics

Information from: (Wisconsin Department of Natural Resources, 2012).

Apple River Flowage (WBIC: 2616100)

Area: 604 Acres
Maximum depth: 18 feet
Mean depth: 6 feet
Bottom: 40\% sand, 10\% gravel, 0\% rock, and 50\% muck
Hydrologic lake type: drainage
Total shoreline: 19.8 miles
Invasive species: Curly leaf pondweed
Self Help Monitoring Data has been collected on the Apple River Flowage at the deep hole annually since 1986. Secchi depth has been recorded since 1986 and chlorophyll and total phosphorus have been recorded since 1994. The Self Help Monitoring Data show that the Apple River Flowage is eutrophic.

Designated Waters

Information from: (Wisconsin Department of Natural Resources, 2012).

A designated water is a waterbody with special designations that affect permit requirements.
The Apple River Flowage and many of its tributaries (Beaver Brook inlet originating at the J oel Flowage, the Apple River inlet, and the Apple River Outlet) are designated as Areas of Special Natural Resource Interest through their identification as Natural Heritage Inventory Waters. The Natural Heritage Inventory Program identifies waters or portions of waters inhabited by any endangered, threatened, special concern species, or unique ecological community indentified in the Natural heritage Inventory.

Habitat Areas

Information directly from: (Harmony Environmental and Endangered Resource Services, LLC, September 2011).

Naturally occurring native plants are extremely beneficial to the Apple River Flowage. They provide a diversity of habitats, help maintain water quality, sustain fish populations, and support common lakeshore wildlife such as loons and frogs.

Aquatic plants can improve water quality by absorbing phosphorus, nitrogen, and other nutrients from the water that could otherwise fuel nuisance algal growth. Some plants can even filter and break down pollutants. Plant roots and underground stems help to prevent re-suspension of nutrient-rich bottom sediments. In the flowage, this is particularly important.

Stands of emergent plants (whose stems protrude above the water surface) and floating plants help to blunt wave action and prevent erosion of the shoreline. The rush, reed, and rice populations around the flowage are particularly important for reducing erosion along the shoreline, but these populations are also vulnerable to nutrient loading and resultant algae growth. Dense wild rice is found near the Apple River Inlet north and west of the State Highway 46 Bridge, and scattered growth occurs in other areas.

Habitat created by aquatic plants provides food and shelter for both young and adult fish. Invertebrates living on or beneath plants are a primary food source for many species of fish. Other fish, such as bluegills, graze directly on the plants themselves. Plant beds in shallow water provide important spawning habitat for many fish species.

Plants offer food, shelter, and nesting material for waterfow. Birds eat both the invertebrates that live on plants and the plants themselves.

A draft sensitive area study was completed by the Department of Natural Resources in the late 1990's/ early 2000's and is included in the 2003 DNR/Polk County Apple River Flowage Aquatic Plant Survey Report. The sensitive area study is not included in DNR records, and it is not clear if results will be used for permitting in the flowage.

The Natural Heritage Inventory map of Polk County indicates occurrences of aquatic listed species in the sections where the flowage is located. A species list is available to the public only by town and range. The Apple River Flowage is located in the town of Lincoln (T33N, R16W). The Natural Heritage Inventory indicated two species of special concern in the Town of Lincoln: banded killifish (SC/N; no laws regulating use, possession, or harvesting) and bald eagle (SC/P; fully protected).

Fishery

The Apple River Flowage fishery is comprised of muskie, northern pike, largemouth and smallmouth bass, and pan fish. Pan fish include blue gills, crappies, pumpkin seeds, and yellow perch. Muskies are in small numbers, but good sized muskies are harvested from the flowage. The flowage is an excellent largemouth bass fishery with quality fish harvested in good numbers (Harmony Environmental and Endangered Resource Services, LLC, September 2011).

The most recent fish survey on the Apple River Flowage occurred in May 2011. A shocking survey was completed in mid May targeting pan fish such as bass, blue gills, and crappie and a netting survey was completed in late May targeting muskie and walleye (Aaron Cole, Northern Region Fisheries Biologist, personal communication, 2013).

Lake Classification

Lake classification in Polk County is a relatively simple model that considers:
\checkmark lake surface area
\checkmark maximum depth
\checkmark laketype
\checkmark watershed area
\checkmark shoreline irregularity
\checkmark existing level of shoreline development

These parameters are then used to classify lakes as class one, class two, or class three lakes.

Class one lakes are large and highly developed.
Class two lakes are less developed and more sensitive to development pressure.
Class three lakes are usually small, have little or no development, and are very sensitive to development pressure.

(Polk County Shoreland Protection Zoning Ordinance, Effective April 1, 2010).
The Apple River Flowage is classified as a class one lake (Polk County, Wisconsin Shoreland Property Owner Handbook A Guide to the Polk County Shoreland Protection Zoning Ordinance in Developing and Caring for Waterfront Property, October 2002).

Lake Types

Lakes are commonly classified into four main types based on water source and type of outflow: seepage lakes, groundwater drainage lakes, drainage lakes, and impoundments.

The Apple River Flowage is a six mile impoundment that was created in 1888 by a dam located in the City of Amery (Office of Inland Lake Renewal Wisconsin Department of Natural Resources, 1979). An impoundment is a man-made lake that is formed when the flow of a stream or river is impeded. The restriction on the natural flow of water often results in the collection of soil and nutrients in impoundments. By definition all impoundments have outlet flows and are thus categorized as drainage lakes. The Wisconsin DNR has classified the Apple River Flowage as a drainage lake.

3. DRAINAGE LAKE-a lake fed by streams, groundwater, precipitation and runoff and drained by a stream.

4. IMPOUNDMENT-a manmade lake created by damming a stream. An impoundment is also drained by a stream.

Figure from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004)
The drainage basin: lake area ratio (DB: LA) compares the size of a lake's watershed to the size of a lake. If a lake has a relatively large DB: LA then surface water inflow (containing nutrients and sediments) occurs from a large area of land relative to the area of the lake (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

The DB: LA for the Apple River Flowage is approximately 175:1, which can be compared with a ratio of $2.5: 1$ for Pike Lake and a ratio of 1.3:1 for North Twin Lake (Harmony Environmental and Endangered Resource Services, LLC, September 2011). The DB: LA ratio for the Apple River Flowage is quite large, which indicates that the flowage receives nutrients and sediments from an extensive land base. Additionally, since the flowage is fairly shallow, the effects of nutrients and sediments are intensified.

The residence time is the average amount of time water remains in a body of water. In general, impoundments are characterized by short residence times. The residence time for the Apple River Flowage is estimated at around twelve days (Harmony Environmental and Endangered Resource Services, LLC, September 2011). However, 2012 flow data was used to determine an outlet discharge of 255.87 acre feet/ day, which divided into the acre feet of water for the Flowage (3624 acre feet) gives a residence time of 14.2 days.

Impaired Waters

Wisconsin lakes, rivers, and streams are managed to determine if their conditions are meeting state and federal water quality standards. Water samples are collected through monitoring studies and results are compared to guidelines designed to evaluate conditions as compared to set standards. General assessments can place waters in four different categories: poor, fair, good, and excellent. The results of assessments can be used to determine which actions will ensure that water quality standards are being met (antidegradation, maintenance, or restoration).

If a waterbody does not meet water quality standards it is placed on Wisconsin's Impaired Waters List under the Federal Clean Water Act, Section 303(d). Every two years the State of Wisconsin is required to submit list updates to the United States Environmental Protection Agency for approval.

Waterbodies can be listed as impaired based on pollutants such as total phosphorus, total suspended solids, and metals.

In 2011, the Apple River Flowage was proposed for the 303(d) list of Impaired Waters for the pollutant total phosphorus and the resulting impairment of excess algae growth. As of November 2013, the Flowage had not yet been formally listed.

The total phosphorus criterion for a body of water varies depending on lake type and whether or not a body of water stratifies. Currently, the Apple River Flowage is classified as a drainage lake which does not stratify, with a total phosphorus criterion of $0.040 \mathrm{mg} / \mathrm{L}$.

However, if the Apple River Flowage is classified as a stream based on a residence time of less than fourteen days the total phosphorus criteria would be $0.075 \mathrm{mg} / \mathrm{L}$.

Water Quality in Impoundments

Impoundments are distinct from naturally formed lakes in terms of water quality. As a result, impoundments should not be expected to have the water quality of nearby lakes.

In general as compared to natural lakes, impoundments are characterized as having:
\checkmark higher nutrient concentrations
\checkmark lower water clarity
\checkmark poorer water quality

FIGURE 4. Total phosphorus concentrations for Wisconsin's natural lakes and impoundments.
(Adapted from Lillie and Mason, 1983.)
Figure from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004)

Previous Lake Studies

Past studies that include the Apple River Flowage are:
\checkmark Office of Inland Lake Renewal Feasibility Study and Management Alternatives (1979)
\checkmark Polk County Land and Water Resources Department Apple River Association Development and I\&E Project (2003)
\checkmark Harmony Environmental and Endangered Resources Services Aquatic Plant Management Plan (2011)

Office of Inland Lake Renewal Feasibility Study and Management Alternatives

The most recent water quality study completed for the Apple River Flowage was conducted by the Office of Inland Lake Renewal in 1979.

This study included surveys of:
\checkmark Soil loss
\checkmark Barnyard and feedlot locations
\checkmark In-lake sediment volume and accumulation rates
\checkmark Flow, nutrient, and sediment data at the Beaver Brook Inlet, Apple River Inlet, and Amery Dam Outlet
\checkmark In-lake physical and chemical data
\checkmark In-lake aquatic plant species and abundance
This study suggested that although high flow precipitation events may produce sediment erosion in the Beaver Brook basin, the problems are not serious. Additionally, the study suggested that feedlot runoff is not a major problem. The study suggested that considerable sediment has accumulated in the flowage since 1954. Sediment accumulation over the 19541977 timeframe has ranged from 16-25 inches across four sample sites.

Nutrients levels were found to be relatively low for an impoundment, although they were sufficient to fuel aquatic plant and algae growth. However, chlorophyll a values indicated that no algae blooms occurred.

Aquatic vegetation was found at 94% of the points sampled in J une and 96% of the points sampled in August. The study also concluded that in recent years coontail and northern water milfoil have replaced more desirable species.

The management alternatives for the flowage suggested by this study include:

1. Sediment removal through dredging
2. Aquatic plant control through herbicides or harvesting
3. No action

Polk County Land and Water Resources Department Apple River Association Development and I\&E Project

The primary focus of this project was to increase public education and protect the water quality of the Apple River by creating the Apple River Association. The Association was established in 2001. This project also sponsored the mailing of a sociological survey in 2001 which was mailed to 1,958 landowners in the Apple River Watershed. Four hundred four surveys were returned for a response rate of 21%.

The top three concerns for the Apple River that emerged from this survey were pollution, development, and aquatic plants.

Over a third of respondents described the current water quality of the Apple River as average (36\%). Combined more respondents described the current water quality of the Apple River as below average (29\%) as compared to above average (11\%). Survey participants were also asked to describe the change in water quality since they have lived on or near the river. Approximately a third of respondents described no noticeable change (34\%). Combined, more respondents described a degradation in water quality (39\%) as compared to an improvement (10%).

How would you describe the current water quality of the Apple River?

How would you describe the change in water quality since you have lived on/near the Apple River?

Harmony Environmental and Endangered Resources Services Aquatic Plant Management Plan

The most recent Aquatic Plant Management Plan for the Apple River Flowage was completed in 2011 by Harmony Environmental and Ecological Integrity Services.

In J uly 2010, an aquatic plant inventory was completed for the Apple River Flowage by Endangered Resource Services. This survey documented aquatic vegetation at 88% of the points sampled.

In J une 2010, a bed mapping survey for curly leaf pondweed was completed by Endangered Resource Services. This survey documented curly leaf pondweed at 69% of the sample locations. Additionally, this survey classified areas of curly leaf pondweed by beds and areas of high density. The survey mapped thirteen beds totaling 345 acres and an additional 27 acres that were considered areas of high density.

To be considered a curly leaf bed two criteria had to be met: greater than 50% of the plants in an area had to be curly leaf pondweed and the curly leaf pondweed needed to have canopied at the surface or close enough to the surface to likely cause interference with normal boating traffic. Areas with high amounts of curly leaf pondweed that did not meet the density requirements, or were not canopied out, were considered high density curly leaf pondweed areas. These high density areas have the potential to form beds in the future.

The goals developed for the Apple River Flowage Aquatic Plant Management Plan include:
\checkmark Improve water quality on the Apple River Flowage and downstream on the Apple River
\checkmark Prevent the introduction of aquatic invasive species
\checkmark Maintain navigation for fishing, boating, and access to lake residences
\checkmark Maintain native aquatic plant functions
\checkmark Minimize environmental impacts of aquatic plant management

Lake District Resident Survey

A Wisconsin Department of Natural Resources approved sociological survey was mailed to two hundred twenty five residences of the Apple River Flowage Protection and Rehabilitation District in lateJ une 2012. The survey was designed to gather information from residents concerning property ownership and use, land use, flowage use, concerns for the flowage, water quality, algae, shoreline vegetation, management practices for improvement of the flowage, wetlands, and website use.

Ninety two surveys were returned (41\% response rate) and data was entered and analyzed. Ninety one percent of respondents own shoreline property on the Apple River Flowage; whereas the remaining 9% do not ($\mathrm{n}=92$). Respondents who did not own waterfront property were directed to skip questions to quantify shoreline habitat.

Property Ownership and Use

Respondents have owned property on or near the flowage for an average of 19 years (97\%). The majority of residents use their property as a year round residence (59\%) and close to a quarter of respondents use their property as a weekend, vacation, and/ or holiday residence (21\%). Fewer respondents use their property as a seasonal residents (continued occupancy for months at a time) (5\%) and as a rental property (3\%). Survey participants were also given the opportunity to specify how their property is used. A number of respondents own lots that do not currently have buildings (8\%).

On average, respondents occupy their property for 237 days per year. At any given time an average of three people occupy each property.

Land Use

Survey respondents were asked to classify the amount of open space (lawns or mowed areas), shrub/ grass/ sedge community, woods, and impervious surfaces (buildings, driveways, sidewalks, patios, gravel paths and driveways) on their property to gauge land use in the area directly surrounding the Apple River Flowage. According to respondent classification an average of 44% of properties are occupied by open space, 24% by woods, 19% by impervious surfaces, and 13% by the shrub/ grass/ sedge community.

Please use estimated percentages to describe the amount of each land use on your property.

Respondents owning waterfront property were also asked to describe the first 35 feet of their shoreline (the area located directly adjacent to the flowage). The majority (66\%) classified the first 35 feet of their shoreline as a mix of native flowers, grasses, shrubs, and trees. Nineteen percent classified the first 35 feet of their shoreline as mostly mowed grass, 8% as mostly native flowers and grasses, and 7% as a mix of native flowers, grasses, and shrubs.

Which best describes the first 35 feet of your shoreline (the area located directly adjacent to the lake)?

Flowage Use

Survey participants use the Apple River Flowage for a variety of recreational activities. Seventy one percent of respondents partake in fishing (any season); 52\% partake in motorized water activities (PWC, boating, water skiing, tubing, jet skiing); 39\% partake in non-motorized water activities (birding, canoeing, hiking, running); and 22\% partake in swimming. Winter specific recreational activities were less frequent on the flowage. Eighteen percent of respondents partake in non-motorized winter activities (skiing, snowshoeing, ice skating) and 10\% partake in motorized winter activities (ATV, snowmobile). Eight percent of survey participants do not participate in any of the activities described in the survey.

Respondents keep a total of 32 paddleboats/ rowboats, 37 canoes/ kayaks, 2 sailboats, 2 jet skis, 21 motorboats/ pontoons ($1-20 \mathrm{HP}$), 34 motorboats/ pontoons ($21-50 \mathrm{HP}$), and 10 motorboats/ pontoons (50+HP).

Concerns for the Apple River Flowage

Survey respondents were asked to rank their top three concerns for the Apple River Flowage. To analyze this data each concern that was ranked first received 3 points, each concern that was ranked second received 2 points, and each concern that was ranked third received 1 point. Total points were then added to determine the ranking of concerns for the flowage. Invasive species ranked as the $1^{\text {st }}$ concern, followed by aquatic plants, and algae blooms.

Concerns for the Apple River Flowage	Rank	Points
Invasive species (Eurasian water milfoil, zebra mussels, curly leaf, purple	$1^{\text {st }}$	113
loosestrife)	$2^{\text {nd }}$	87
Aquatic plants (not including algae)	$3^{\text {rd }}$	63
Algae blooms	$4^{\text {th }}$	60
Pollution (chemical inputs, septic systems, agriculture, erosion, storm water runoff)	$5^{\text {th }}$	50
Property values and/ or taxes	$6^{\text {th }}$	39
Water clarity (visibility)	$7^{\text {th }}$	29
Quality of fisheries	$8^{\text {th }}$	28
Quality of life	$9^{\text {th }}$	24
Water levels (loss of lake volume)	$10^{\text {th }}$	13
Development (population density, loss of wildlife habitat)	$11^{\text {th }}$	10
Water recreation safety (boat traffic, no wake zone)		10
Other, please describe (geese, muskrats, sediment buildup, navigation)		2

Water Quality

Around a quarter of respondents described the water quality of the Apple River Flowage as either poor (36\%) or fair (32\%). Fewer respondents described the water quality as good (14\%) and zero respondents described it as excellent. The remaining respondents were unsure how to describe the water quality of the flowage (18\%).

How would you describe the current water quality of the Apple River Flowage?

Survey participants were asked how the water quality has changed in the flowage in the time they have owned their property. Forty percent of respondents perceive that water quality has somewhat degraded and 30% perceive that water quality has severely degraded. Zero respondents perceive that water quality has either somewhat improved or greatly improved. Nineteen percent of respondents perceive that water quality has remained unchanged and 11% are unsure how water quality has changed.

How has the water quality changed in the Apple River Flowage in the time you've owned your property?

Algae

Over a quarter of respondents feel that algae always negatively impacts their enjoyment of the flowage (28%) and nearly a third of respondents feel that algae often negatively impacts their enjoyment of the flowage (31\%). Approximately a quarter of respondents feel that algae sometimes negatively impact their enjoyment of the flowage (26\%). Fewer respondents feel that algae rarely (7\%) or never (8\%) negatively impacts their enjoyment of the flowage.

How often does algae negatively impact your enjoyment of the Apple River Flowage?

Shoreline Vegetation

Survey participants were asked how they would describe the current amount of shoreline vegetation on the Apple River Flowage. Around a third of respondents described the amount of shoreline vegetation as either too much (29\%) or just right (33\%). A mere 10% of respondents described the amount of shoreline vegetation as not enough. The remaining 28% of respondents were unsure how to describe the current amount of shoreline vegetation.

How would you describe the current amount of shoreline vegetation on the Apple River Flowage?

Overall respondents recognize the importance of shoreline buffers, rain gardens, and native plants to the water quality of the flowage. Nearly half of respondents described shoreline buffers, rain gardens, and native plants as very important to the water quality of the flowage (47\%) and over a quarter described shoreline buffers, rain gardens, and native plants as somewhat important to the water quality of the flowage (27\%). Very few respondents described shoreline buffers, rain gardens, and native plants as not at all important (2\%) and not too important (6%). The remaining 18% of respondents were unsure how to describe the importance of shoreline buffers, rain gardens, and native plants.

The results from this question suggest a possible educational need regarding the importance of shoreline buffers, rain gardens, and native plants to water quality.

Although a combined 74\% of respondents felt that shoreline buffers, rain gardens, and native plants are very important or somewhat important to water quality, nearly half (47\%) of respondents are not interested in installing a shoreline buffer or rain garden on their property. In contrast, 28% of respondents have already installed a shoreline buffer or rain garden and 12% are interested in installing a shoreline buffer or rain garden. The remainder of respondents (15%) were unsure of their interest in installing a shoreline buffer or rain garden.

Respondents are making educated decisions when applying fertilizer to their property. Nearly two thirds of respondents do not use fertilizer on their property (64\%) and one third use zero phosphorus fertilizer (33\%). Very few respondents use fertilizer but are unsure of its phosphorus content (5\%), and zero respondents use fertilizer on their property that contains phosphorus.

Management Practices for Improvement

Survey respondents were asked to choose all of the management practices they felt should be used to maintain or improve the water quality of the Apple River Flowage from a list of seven options. Over half of respondents felt that enhanced efforts to monitor for new populations of aquatic invasive species should be used to maintain or improve the water quality of the flowage (60%).

Other management practices supported by many respondents include information and education opportunities (46%) and cost-sharing assistance for the installation of farmland conservation practices (41\%).

Management practices to improve water quality	Percent
Enhanced efforts to monitor for new populations of aquatic invasive species	60%
Information and education opportunities	46%
Cost-sharing assistance for the installation of farmland conservation practices (nutrient management plans, contour strips, conservation tillage)	41%
Collection of sediment cores to provide information concerning historical lake conditions	38%
Establishment of slow-no-wake zones to protect aquatic plants and fisheries habitat	35%
Cost-sharing assistance for the installation of shoreline buffers and rain gardens	27%

Wetlands

Overall survey participants feel wetlands in the Apple River Flowage Watershed are important to the water quality of the flowage. Very few respondents described wetlands as not at all important (3\%) or not too important (1\%). Over half of respondents described wetlands as very important to the water quality of the flowage (52\%) and close to a quarter described wetlands as somewhat important (21\%). The remaining 22% of respondents were unsure how to describe the importance of wetlands to water quality on the flowage ($n=89$). The results from this question suggest a possible educational need regarding the importance of wetlands to water quality.

Website Use

The Apple River Flowage Protection and Rehabilitation District maintains a website available at http:// arprd.org. Over half of respondents never visit the website (59\%) and an additional 20% of respondents rarely visit the website. Seventeen percent of respondents sometimes visit the website and 3\% of respondents often visit the website.

Comparison of results to the 2001 survey

Although the 2001 survey was mailed to a much larger sample size (Apple River Watershed residents) as compared to the 2012 survey (Apple River Flowage Protection and Rehabilitation members) and was used to assess the Apple River rather than the Apple River Flowage, it may still be useful to analyze sharp differences or similarities across the two surveys.

On both the Apple River survey in 2001 and the Apple River Flowage survey in 2012, survey responses for current water quality were clustered towards average and below average, or poor and fair. Additionally, changes in water quality for both surveys indicate responses that are clustered towards degradation as opposed to improvement.

Concerns cited by survey respondents for the Apple River in 2001 differ substantially from concerns for the Apple River Flowage in 2012. Top concerns in the 2001 survey were pollution followed by development and aquatic plants (weeds) ${ }^{1}$. In the 2012 survey for the Apple River Flowage the top concerns were invasive species, followed by aquatic plants, and algae.

Although aquatic plants rank high as concerns in both surveys, pollution and development were of greater concern for the Apple River in 2001, and invasive species and algae were of greater concern for the Apple River Flowage in 2012.

[^0]
Lake Level and Precipitation Monitoring

Lake water-level fluctuations are important to lake managers, lakeshore property owners, developers, and persons using lakes for recreation. Lake level fluctuations can have significant effects on lake water quality and usability. Although lake levels naturally change from year to year, extreme high or low levels can present problems such as restricted water access, flooding, shoreline and structure damage, and changes in riparian (near shore) vegetation.

Records of lake water elevations can be very useful in understanding changes that may occur in lakes. While some lakes respond almost immediately to precipitation, other lakes do not reflect changes in precipitation until months later.

Volunteers monitored lake level and precipitation data for the Apple River Flowage in two locations: north and south of the 46 bridge. LWRD provided training to volunteers regarding data collection and installed staff and rain gauges at both sites. Staff gauges were set at an arbitrary height; therefore, lake levels are not comparable across the two sites at a specific point in time. However, the relative changes in lake level across the two sites are comparable.

Monitoring north of the 46 bridge began on May 4 ${ }^{\text {th }}, 2012$ and
 monitoring south of the 46 bridge began on May $6^{\text {th }}, 2012$. Both sites were monitored through September 30th, 2012.

Seasonal precipitation totaled 18 inches north of the 46 bridge and 13 inches south of the 46 bridge. Shortly following precipitation events, water levels did increase in the flowage.

The flowage is created by a dam within the city limits of Amery. Currently, the dam is used to maintain water levels on the flowage. Water levels in the flowage changed by sixty-fourtenths of a foot north of the 46 bridge and sixty-two-tenths of a foot south of the bridge. Largely these changes are due to increased water levels after rainfall events. Overall, water levels remained fairly constant over the sampling season.

Lake Level and Precipitation North of 46 Bridge

Date
—Lake level ——Precipitation

Lake Level and Precipitation South of 46 Bridge

Date

Chemical and Physical Data: Sampling Procedure

Chemical and physical data were collected in-lake at two sites (Site 1, North and Site 2, South) on the Apple River Flowage from May 8 ${ }^{\text {th }}, 2012$ through September 17th, 2012. Spring turnover samples were taken on April 3rd, 2012. Fall turnover samples were taken on October 15 th, 2012.

Two meter integrated samples were collected from the water column once a month during the growing season and at spring and fall turnover. Samples were analyzed at the Water and Environmental Analysis Lab (WEAL) at UW-Stevens Point for two types of phosphorus (total phosphorus and soluble reactive phosphorus), three types of nitrogen (nitrate/ nitrite, ammonium, and total Kjeldahl nitrogen), chlorophyll a, chloride, and total suspended solids. Metals were analyzed for growing season samples and included: arsenic, calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, lead, zinc, and sulfate. In addition to these parameters, total hardness, calcium, sulfate, and sodium were analyzed at both turnover events.

Lake profile monitoring-which included dissolved oxygen, temperature, conductivity, pH , and secchi depth-was conducted bi-monthly during the growing season. Dissolved oxygen, temperature, and conductivity readings were recorded at every meter within the water column using a YSI 85 multi-parameter probe. pH readings were recorded at every meter within the water column using a YSI 60 pH meter. During the second sampling set in J uly, both YSI meters stopped working. Beginning with the August $6^{\text {th }}$ sample, lake profile monitoring data was collected using an HI 9828 multi-parameter probe.

Secchi depth was recorded using a secchi disk, which is an eight inch diameter round disk with alternating black and white quadrants. To record secchi depth, the secchi disk was lowered into the flowage on the shady side of a boat until it just disappeared from sight. This depth was measured in feet and recorded as the secchi depth.

In most instances in this report, data is presented as an average over the growing season, which refers to data collected from May through September and excludes April and October turnover data. In some instances, data is averaged over the summer index period, which refers to data collected from J uly $15^{\text {th }}$ through September $15^{\text {th }}$.

Lake Mixing and Stratification: Background Information Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

Water quality is greatly affected by the degree to which the water in a lake mixes. Within a lake, mixing is most directly impacted by the temperature-density relationship of water. When comparing why certain lakes mix differently than others, lake area, depth, shape, and position in the landscape become important factors to consider.

Water reaches its greatest density at $3.9^{\circ} \mathrm{C}\left(39^{\circ} \mathrm{F}\right)$ and becomes less dense as temperatures increase and decrease. Compared to other liquids, the temperature-density relationship of water is unusual: liquid water is denser than water in its solid form (ice). As a result, ice floats on liquid water.

When ice melts in the early spring, the temperature and density of the water will be constant from the top to the bottom of the lake. This uniformity in density allows a lake to completely mix. As a result, oxygen is brought to the bottom of a lake, and nutrients are re-suspended from the sediments. This event is termed spring turnover.

In spring 2012, ice out on the Apple River Flowage occurred approximately one month earlier than what is typical in Polk County. Since the grant start date was April 1st, spring turnover samples were not taken until April 3rd. However, due to early ice out, the spring turnover samples were likely taken after spring turnover occurred.

As the sun's rays warm the surface waters in the spring, the water becomes less dense and remains at the surface. Warmer water is mixed deeper into the water column through wind and wave action. However, these forces can only mix water to a depth of approximately twenty to thirty feet. Generally, in a shallow lake, the water may remain mixed all summer. However, a deeper lake usually experiences layering called stratification.

During the summer, lakes have the potential to divide into three distinct zones: the epilimnion, thermocline or metalimnion, and the hypolimnion. The epilimnion describes the warmer surface layer of a lake; whereas the hypolimnion describes the cooler bottom area of a lake. The thermocline, or metalimnion, describes the transition area between the warmer surface layer and the cooler bottom layer.

As surface waters cool in the fall, they become more dense and sink until the water temperature evens out from top to bottom. This process is called fall turnover and allows for a second mixing event to occur. Occasionally, algae blooms can occur at fall overturn when nutrients from the hypolimnion are made available throughout the water column.

The variations in density arising from different water temperatures can prevent warmer water from mixing with cooler water. As a result, nutrients released from the sediments can become trapped in the hypolimnion of a lake that stratifies. Additionally, because mixing is
one of the main ways oxygen is distributed throughout a lake, lakes that don't mix have the potential to have very low levels of oxygen in the hypolimnion.

The absence of oxygen in the hypolimnion can have adverse effects on fisheries. Species of cold water fishes, such as trout, require the cooler waters that result from stratification. Cold water holds more oxygen as compared to warm water. As a result, the cooler waters of the hypolimnion can provide a refuge for cold water fisheries in the summer as long as oxygen is present. Respiration by plants, animals, and bacteria is the primary means by which oxygen is removed from the hypolimnion. A large algae bloom can cause oxygen depletion in the hypolimnion as algae die, sink, and decay.

In the winter, stratification remains constant because ice cover prevents mixing by wind action.

Phosphorus

Phosphorus is an element present in lakes which is necessary for plant and algae growth. It occurs naturally in soil, rocks, and the atmosphere and can make its way into lakes through groundwater and soil erosion induced from construction site runoff or other human induced disturbances. Additional sources of phosphorus input into a lake can include fertilizer runoff from urban and agricultural settings and manure.

Phosphorus does not readily dissolve in water, instead it forms insoluble precipitates (particles) with calcium, iron, and aluminum. If oxygen is available in the hypolimnion, iron forms sediment particles that store phosphorus in the sediments. However, when lakes lose oxygen in the winter or when the hypolimnion becomes anoxic in the summer, these particles dissolve in the water. Strong wind action or turnover events can then re-distribute phosphorus throughout the water column.

While phosphorus is necessary for plant and animal growth, excessive amounts lead to an overabundance of growth which can decrease water clarity and lead to nutrient pollution in lakes. Phosphorus is present in lakes in several forms. This study measured two forms of phosphorus: total phosphorus and soluble reactive phosphorus.

Total phosphorus (TP) is a measure of all the phosphorus in a sample of water. In many cases total phosphorus is the preferred indicator of a lake's nutrient status because it remains more stable than other forms over an annual cycle.

Soluble reactive phosphorus (SRP) includes forms of phosphorus that are dissolved in the water and are readily available for uptake by algae and aquatic macrophytes (plants).

In lakes, a "healthy" limit of phosphorus is set at $0.02 \mathrm{mg} / \mathrm{L}$ total phosphorus and 0.01 mg / L soluble reactive phosphorus to prevent nuisance algae blooms. If a value is above the healthy limit it is more likely that a lake could support nuisance algae blooms. In impoundments, the limit is set at $0.03 \mathrm{mg} / \mathrm{L}$ total phosphorus. If a value is above the healthy limit it is more likely that a lake could support nuisance algae blooms.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

The growing season average total phosphorus was $0.0788 \mathrm{mg} / \mathrm{L}$ at site one and 0.0800 mg / L at site two.

The summer index period average total phosphorus was $0.0895 \mathrm{mg} / \mathrm{L}$ at site one and $0.0680 \mathrm{mg} / \mathrm{L}$ at site two. The total phosphorus criterion was exceeded at site one in 2012.

The growing season average (excludes turnover) soluble reactive phosphorus was 0.0444 mg / L at site one $0.0376 \mathrm{mg} / \mathrm{L}$ at site two.

2012 Total Phosphorus (mg/L)

- Site 1Δ Site 2

2012 Soluble Reactive Phosphorus (mg/L)

- Site 1Δ Site 2

Nitrogen

Nitrogen, like phosphorus, is an element necessary for plant growth. Nitrogen sources in a lake can vary widely. Although nitrogen does not occur naturally in soil minerals, it is a major component of all plant and animal matter. The decomposition of plant and animal matter releases ammonia, which is converted to nitrate in the presence of oxygen. This reaction accelerates when water temperatures increase. Nitrogen can also be introduced to a lake through rainfall, in the form of nitrate and ammonium, and through groundwater in the form of nitrate.

In most instances, the amount of nitrogen in a lake corresponds to land use. Nitrogen can enter a lake from surface runoff or groundwater sources as a result of fertilization of lawns and agricultural fields, animal waste, or human waste from septic systems or sewage treatment plants. During spring and fall turnover events, nitrogen is recycled back into the water column, which can cause spikes in ammonia levels. Under low oxygen circumstances, nitrogen can be lost from a lake system through a process called denitrification. Under these conditions nitrate is converted to nitrogen gas. Additionally, nitrogen can be lost through permanent sedimentation.

Figure from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

Nitrogen comprises the majority (78\%) of the gases in the Earth's atmosphere. As with other gases, nitrogen is more soluble in cooler water as compared to warmer water. Nitrogen gas is not readily available to most aquatic plants, with the exception of blue green algae.

Similar to phosphorus, nitrogen is divided into many components. In this study nitrate/ nitrite $\left(\mathrm{NO}_{3}\right.$ and $\left.\mathrm{NO}_{2}\right)$, ammonium $\left(\mathrm{NH}_{4}\right)$, and total Kjeldahl nitrogen (TKN) were analyzed.

Nitrate/nitrite and ammonium are all inorganic forms of nitrogen which can be used by aquatic plants and algae. Inorganic nitrogen concentrations above $0.3 \mathrm{mg} / \mathrm{L}$ can support summer algae blooms in lakes.

Total Kjeldahl nitrogen (TKN) is a measure of organic nitrogen plus ammonium. By subtracting the ammonium concentration from TKN, the organic nitrogen concentration found in plants and algal material can be found.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

Average growing season (excludes turnover) inorganic nitrogen was $0.02 \mathrm{mg} / \mathrm{L}$ at site one and $0.03 \mathrm{mg} / \mathrm{L}$ at site two. Inorganic nitrogen concentrations at both sites were below the healthy limit which can support summer algae blooms in lakes. However, these healthy limit values are based on lakes versus impoundments.

Average growing season (excludes turnover) organic nitrogen was $0.566 \mathrm{mg} / \mathrm{L}$ at site one and $0.706 \mathrm{mg} / \mathrm{L}$ at site two.

At site one, nitrate/ nitrite concentrations were below the limit of detection ($0.1 \mathrm{mg} / \mathrm{L}$) at all samples dates with the exception of spring and fall turnover. Additionally, at site one ammonium concentrations were below the limit of detection ($0.01 \mathrm{mg} / \mathrm{L}$) on May $8^{\text {th }}$. As a result, inorganic nitrogen concentrations were below the limit of detection on May $8^{\text {th }}$ at site one.

At site two, nitrate/ nitrite concentrations were below the limit of detection at all sample dates with the exception of spring turnover.

2012 Inorganic Nitrogen (mg/L)

excludes samples where inroganic nitrogen was below the limit of detection

2012 Organic Nitrogen (mg/L)

- Site 1Δ Site 2

Total Nitrogen to Total Phosphorus Ratio

The total nitrogen to total phosphorus ratio (TN: TP) is a calculation that depicts which nutrient limits algae growth in a lake.

Lakes are considered nitrogen limited, or sensitive to the amount of nitrogen inputs, when TN: TP ratios are less than 10. Only about 10\% of Wisconsin lakes are limited by nitrogen. In contrast, lakes are considered phosphorus limited, or sensitive to the amount of phosphorus inputs into a lake, when the TN: TP ratio is above 15. Lakes with values between 10 and 15 are considered transitional. In transitional lakes it is impossible to determine which nutrient, either nitrogen or phosphorus, is limiting algae growth.

Total nitrogen is found by adding $\mathrm{NO}_{3}+\mathrm{NO}_{2}+\mathrm{TKN}$. As previously mentioned, nitrate/ nitrite concentrations were below the limit of detection on all sample dates at site one, with the exception of spring and fall turnover, and on all sample dates at site two with the exception of spring turnover. As a result, total nitrogen is largely reflective of TKN.

The total nitrogen to total phosphorus ratio for both sites indicate a nitrogen limited state during the growing season. During spring turnover at both sites and during fall turnover at site two, the ratio indicates a transitional state. During fall turnover at site one, the ratio indicates a phosphorus limited state.

2012 Total Nitrogen : Total Phosphorus

- Site 1Δ Site 2

Chloride

Although chloride does not directly negatively impact plants, algae, or aquatic organisms, elevated levels of chloride in a lake can indicate possible water pollution.

With the exception of limestone deposits, chloride is uncommon in Wisconsin soils, rocks, and minerals. Background levels of chloride are generally found in small quantities in nearly every Wisconsin lake and can be introduced to waterways through rainwater.

The watershed for the Apple River Flowage is located in an area where chloride concentrations can be expected to range from greater than three up to ten mg / L.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig,

CHLORIDE CONCENTRATIONS (mg/l)

FIGURE 7. Generalized distribution gradients of chloride in the surface waters of Wisconsin Jakes. (Adapled from Lillie and Mason, 1983.) 2004).

Chloride concentrations range from $4.2 \mathrm{mg} / \mathrm{L}$ up to $6.7 \mathrm{mg} / \mathrm{L}$ at site one and from $4.3 \mathrm{mg} / \mathrm{L}$ up to $7.3 \mathrm{mg} / \mathrm{L}$ at site two. Average growing season (excludes turnover) chloride concentrations were $5.1 \mathrm{mg} / \mathrm{L}$ at site one and $5.2 \mathrm{mg} / \mathrm{L}$ at site two.

Sulfate

Sulfate concentrations in lakes are most directly related to the types of minerals found in the watershed and to acid rain. Sulfur compounds released into the atmosphere by coal burning facilities can enter lakes via rainfall. In general, sulfate concentrations are higher in the southeastern portion of the state where mineral sources of sulfate and acid rain are more common.

In Polk County, sulfate concentrations are generally less than $10 \mathrm{mg} / \mathrm{L}$.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

Sulfate concentrations ranged from $2.6 \mathrm{mg} / \mathrm{L}$ up to $6.4 \mathrm{mg} / \mathrm{L}$ at site one and from $2.6 \mathrm{mg} / \mathrm{L}$ up to $7.5 \mathrm{mg} / \mathrm{L}$ at site two

Average growing season sulfate concentrations were $5.0 \mathrm{mg} / \mathrm{L}$ at site one and $5.5 \mathrm{mg} / \mathrm{L}$ at site two.

FIGURE 8. Generalized distribution gradients of sulfate in the surface waters of Wisconsin lakes. (Adopted from Lillie and Mason, 1983.)

Calcium and Magnesium

Calcium and magnesium concentrations in Wisconsin lakes are closely related to the bedrock geology of the landscape, with highest concentrations found in areas with limestone and dolomite deposits. In Polk County, calcium concentrations typically range from 10-20 mg / L and magnesium concentrations are typically less than $10 \mathrm{mg} / \mathrm{L}$ (Lillie, 1983). Calcium concentrations were elevated as compared to the average for Polk County lakes and magnesium concentrations were at the maximum range for Polk County lakes.

Figure from: (Lillie, 1983).

	Site 1	Site 2
Average Calcium (mg/L)	$\mathbf{3 0 . 7}$	$\mathbf{2 9 . 9}$
Minimum Calcium $(\mathrm{mg} / \mathrm{L})$	26.6	24.0
Maximum Calcium $(\mathrm{mg} / \mathrm{L})$	34.4	34.4

	Site 1	Site 2
Average Magnesium (mg/L)	$\mathbf{1 0 . 9}$	$\mathbf{1 1 . 1}$
Minimum Magnesium (mg/L)	8.6	8.7
Maximum Magnesium $(\mathrm{mg} / \mathrm{L})$	12.9	12.6

Total Suspended Solids

Total suspended solids (TSS) quantify the amount of inorganic matter that is floating in the water column. Wind, waves, boats, and even some fish species can stir up sediments from the lake bottom re-suspending them in the water column. Fine sediments, especially clay, can remain suspended in the water column for weeks. These particles scatter light and decrease water transparency.

Total suspended solids were below the limit of detection ($2 \mathrm{mg} / \mathrm{L}$) at site one on J une $5^{\text {th }}$ and September $6^{\text {th }}$.

2012 Total Suspended Solids
excludes samples where total suspended solids were below the limit of detection

- Site 1Δ Site 2

Dissolved Oxygen

Oxygen is required by all aquatic organisms for survival. The amount of oxygen dissolved in water depends on water temperature, the amount of wind mixing that brings water into contact with the atmosphere, the biological activity that consumes or produces oxygen within a lake, and the composition of groundwater and surface water entering a lake.

In a process called photosynthesis, plants use carbon dioxide, water, and the sun's energy to produce simple sugars and oxygen. Chlorophyll, the pigment in plants that captures the light energy necessary for photosynthesis, is the site where oxygen is produced. Since photosynthesis requires light, the oxygen producing process only occurs during the daylight hours and only at depths where sunlight can penetrate.

Plants and animals also use oxygen in a process called respiration. During respiration, sugar and oxygen are used by plants and animals to produce carbon dioxide and water.

Temperature ${ }^{\mathbf{o} \mathbf{C}}$	Temperature ${ }_{\mathbf{o}} \mathbf{~}$	Oxygen solubility $(\mathbf{m g} / \mathbf{L})$
0	32	15
5	41	13
10	50	11
15	59	10
20	68	9
25	77	8

Cold water is able to hold more oxygen as compared to warm water. However, although temperatures are coolest in the deepest part of a lake, these waters often do not contain the most oxygen. This arises because in the deepest parts of lakes, oxygen producing photosynthesis is not occurring, mixing is unable to introduce oxygen, and the only reaction occurring is oxygen consuming respiration. Therefore, it is not uncommon for oxygen depletion to occur in the hypolimnion.

During the sunlight hours, when photosynthesis is occurring, dissolved oxygen levels at a lake's surface may exceed the oxygen solubility values. Conversely, at night or early in the morning (when photosynthesis is not occurring), the dissolved oxygen values can be expected to be lower.

A water quality standard for dissolved oxygen in warm water lakes and streams is set at 5 mg / L. This standard is based on the minimum amount of oxygen required by fish for survival and growth. For cold water lakes supporting trout, the standard is set even higher at $7 \mathrm{mg} / \mathrm{L}$.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

The upper waters of the Apple River Flowage remained well oxygenated throughout the majority of the summer. Near bottom, dissolved oxygen levels were lowest in J une and J uly
at site one and lowest in J uly and August at site 2. At site one, where water depths were 2.5 meters, the first meter of the water column remained well oxygenated. At site two, where water depths were 2 meters, oxygen levels dropped substantially by the first meter. This likely arose from the increased abundance of plants at this site.

2012 Site 1 Dissolved Oxygen (mg/L)

2012 Site 2 Dissolved Oxygen (mg/L)

Temperature

The Apple River Flowage reached its warmest surface temperature ($26.8^{\circ} \mathrm{C}$ at site one and $28.6^{\circ} \mathrm{C}$ at site two) on J uly $24^{\text {th }}$. By examining the temperature profile it is clear that in 2012 the Apple River Flowage did not stratify, or develop density dependent differences that create distinct layers in the water column.

2012 Site 1 Temperature (${ }^{\circ} \mathrm{C}$)

2012 Site 2 Temperature (${ }^{\circ} \mathrm{C}$)

Conductivity (Specific Conductance)

Conductivity is the measure of the ability of water to conduct an electrical current and serves as an indicator of the concentration of total dissolved inorganic chemicals in the water. Since conductivity is temperature related, reported values are normalized at $25^{\circ} \mathrm{C}$ and termed specific conductance. Specific conductance increases as the concentration of dissolved minerals in a lake increase.

Specific conductance values are typically two times the water hardness. Hardness is the quantity of cations with more than one positive charge, primarily calcium and magnesium. Soluble minerals, especially limestone, in a lakes watershed impact the value for hardness. A categorization of hardness indicates that the Apple River Flowage is moderately hard (between 61-120 mg/ L).

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

In general, conductivity values fell between 200-250 $\mu \mathrm{S} / \mathrm{cm}$ at both sites on the Apple River Flowage. Conductivity values were the highest on J uly 24 ${ }^{\text {th }}, 2012$ and the lowest at fall turnover (October 15 th, 2012).

2012 Site 1 Specific Conductance ($\mu \mathrm{S} / \mathrm{cm}$)

2012 Site 2 Specific Conductance ($\mu \mathrm{S} / \mathrm{cm}$)

Specific Conductance ($\mu \mathrm{S} / \mathrm{cm}$)

pH

An indicator of acidity, pH is the negative logarithm of the hydrogen ion ($\mathrm{H}+$) concentration. Lower pH waters have more hydrogen ions and are more acidic, and high pH waters have less hydrogen ions and are less acidic.

A pH value of seven is considered neutral. Values less than seven indicate acidic conditions; whereas, values greater than seven indicate alkaline conditions. A single pH unit change represents a tenfold change in the concentration of hydrogen ions. As a result, a lake with a pH value of eight is ten times less acidic than a lake with a pH value of seven.

Across Wisconsin lakes, pH values can range from 4.5 (acid bog lakes) to 8.4 (hard water, marl lakes).

Through the removal of CO_{2} from the water column, photosynthesis has the effect of increasing pH . As a result, pH generally increases during the day and decreases at night. Under conditions such as high temperature, high nutrients, and dense algae blooms, pH levels can increase.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

April, May, and J une data were collected using a YSI 60 pH meter; whereas, J uly, August, and September data were collected with a HI 9828 multi-parameter probe.

In general, at any given sampling date, the pH was greater at the surface of the flowage as compared to the bottom of the flowage. In general, pH was the lowest in May and J une and the greatest in August and September.

2012 Site 1 pH

Secchi Depth

The depth to which light can penetrate into lakes is affected by suspended particles, dissolved pigments, and absorbance by water. Often, the ability of light to penetrate the water column is determined by the abundance of algae or other photosynthetic organisms in a lake.

One method of measuring light penetration is with a secchi disk. A secchi disk is an eight inch diameter round disk with alternating black and white quadrants that is used to provide a rough estimate of water clarity. The depth at which the secchi disk isjust visible is
 defined as the secchi depth. A greater secchi depth indicates greater water clarity.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

The average growing season secchi depth was greater at site one (5.5 feet) as compared to site two (4.5 feet). A similar trend is evident when averaging the secchi depths over the summer index period. Average summer index period secchi depth was greater at site one (5.3 feet) as compared to site two (4.5 feet). Water depth at site one was approximately two feet greater that water depth at site two. Additionally, plants were much more abundant at site two. The plant community at site two was dominated by curly leaf pondweed in the spring and coon tail in the summer. In many instances, secchi depth at site two was limited by the plant canopy versus the clarity of the water.

2012 Secchi Depth (ft)

- Site 1Δ Site 2

The Wisconsin Department of Natural Resources provides historic secchi depth averages for the months of J uly and August only. This data exists for the Apple River Flowage deep hole from 1986 through the present year. Site one north and site two south are distinct from the deep hole site.

Past secch averages in feet (Judy and August onfy!

Chlorophyll a

Chlorophyll a is a pigment in plants and algae that is necessary for photosynthesis and is an indicator of water quality in a lake. Chlorophyll a gives a general indication of the amount of algae growth in a lake, with greater values for chlorophyll a indicating greater amounts of algae. However, since chlorophyll a is present in sources other than algae- such as decaying plants- it does not serve as a direct indicator of algae biomass.

Chlorophyll a seems to have the greatest impact on water clarity when levels exceed 0.03 mg / L. Lakes which appear clear generally have chlorophyll a levels less than $0.015 \mathrm{mg} / \mathrm{L}$.

Information summarized from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).

With the exception of site two on August 7th, 2012, chlorophyll a levels on the flowage were below $0.015 \mathrm{mg} / \mathrm{L}$.

The growing season average chlorophyll a was $0.0064 \mathrm{mg} / \mathrm{L}$ at site one and $0.0155 \mathrm{mg} / \mathrm{L}$ at site two. The summer index average chlorophyll a was $0.0075 \mathrm{mg} / \mathrm{L}$ at site one and 0.037 mg / L at site two. However, since the September chlorophyll a sample for site two was dropped at the lab, the summer index average at site two represents only one sample date.

2012 Chlorophyll a(mg/L)

- Site 1Δ Site 2

Trophic State Index

Lakes are divided into three categories based on their trophic states: oligotrophic, eutrophic, and mesotrophic. These categories reflect a lake's nutrient and clarity level and serve as an indicator of water quality. Each category is designed to serve as an overall interpretation of a lake's primary productivity.

Oligotrophic lakes are generally clear, deep, and free of weeds and large algae blooms. These types of lakes are often poor in nutrients and are therefore unable to support large populations of fish. However, oligotrophic lakes can develop a food chain capable of supporting a desirable population of large game fish.

Eutrophic lakes are generally high in nutrients and support a large number of plant and animal populations. They are usually very productive and subject to frequent algae blooms. Eutrophic lakes often support large fish populations, but are susceptible to oxygen depletion.

Mesotrophic lakes lie between oligotrophic and eutrophic lakes. They usually have good fisheries and occasional algae blooms.

All lakes experience a natural aging process which causes a change from an oligotrophic to a eutrophic state. Human influences which introduce nutrients into a lake (agriculture, lawn fertilizers, and septic systems) can accelerate the process by which lakes age and become eutrophic.

Figure from: (Byron Shaw, Christine Mechenich, and Lowell Klessig, 2004).
A common method of determining a lake's trophic state is to compare total phosphorus concentration (important for algae growth), chlorophyll a concentration (an indicator of the amount of algae present), and secchi disk readings (an indicator of water clarity). Although many factors influence these relationships, the link between phosphorus concentration, chlorophyll a concentration, and secchi disk readings is the basis of comparison for the Trophic State Index (TSI).

TSI is determined using a mathematic formula and ranges from 0 to 110. Lakes with the lowest numbers are oligotrophic and lakes with the highest values are eutrophic.

Three equations for summer index period TSI were examined for site one and site two on the Apple River Flowage. Phosphorus and chlorophyll a data were averaged from August 7th and September $6^{\text {th }}$. On September $6^{\text {th }}$, the sample for chlorophyll a was dropped by the Water and Environmental Analysis Lab. As a result, TSI chlorophyll is calculated using the single sample collected on August 7th. Secchi depth data were averaged from J uly 24 ${ }^{\text {th }}$, August 7th, August 22nd, and September 6 ${ }^{\text {th }}$.

TSI $(\mathrm{P})=14.42 * \mathrm{Ln}[\mathrm{TP}]+4.15$ (where TP is in $\mu \mathrm{g} / \mathrm{L}$)
TSI $(\mathrm{C})=30.6+9.81 \mathrm{Ln}$ [Chlor-a] (where the chlorophyll a is in $\mu \mathrm{g} / \mathrm{L}$)
TSI $(S)=60-14.41 * \operatorname{Ln}$ [Secchi] (where the secchi depth is in meters)

Apple River Flowage Site 1

Average summer index period TSI (total phosphorus) $=68.96$
Average summer index period TSI (chlorophyll a) $=50.37$
Average summer index period TSI (secchi depth) $=53.09$
Average summer index period TSI $=57.47=$ mildly eutrophic

Apple River Flowage Site 2

Average summer index period TSI (total phosphorus) $=65.00$
Average summer index period TSI (chlorophyll a) $=66.02$
Average summer index period TSI (secchi depth) $=55.45$
Average summer index period TSI = 62.16 = eutrophic

TSI	General Description
<30	Oligotrophic; clear water, high dissolved oxygen throughout the year/lake
$30-40$	Oligotrophic; clear water, possible periods of oxygen depletion in the lower depths of the lake
$40-50$	Mesotrophic; moderately clear water, increasing chance of anoxia near the bottom of the lake in summer, fully acceptable for all recreation/ aesthetic uses
$50-60$	Mildly eutrophic; decreased water clarity, anoxic near the bottom, may have macrophyte problem; warm-water fisheries only
$60-70$	Eutrophic; blue-green algae dominance, scums possible, prolific aquatic plant growth. Full body recreation may be decreased
$70-80$	Hypereutrophic; heavy algal blooms possible throughout the summer, dense algae and macrophytes
>80	Algal scums, summer fish kills, few aquatic plants due to algal shading, rough fish dominate

Monitoring the TSI of a lake gives stakeholders a method by which to gauge lake productivity over time. Fortunately, complete TSI secchi data exists for the Apple River Flowage Deep Hole from 1986 through 2012. Additionally, complete TSI phosphorus and chlorophyll a data exists for the Apple River Flowage Deep Hole from 1994-2012.

The majority of the historic TSI data for chlorophyll a and total phosphorus fall between 50 and 70; whereas, the majority of TSI data for secchi fall between 40 and 60.

Trophic State Index Graph

[^1]Past Summer (July-August) Trophic State Index (TSI) averages.

$$
\text { * = Secchi } \quad \text { E Chiorophyll } \quad \Delta=\text { Total Phosphorus }
$$

Phytoplankton

Algae, also called phytoplankton, are microscopic plants that convert sunlight and nutrients into biomass. They can live on bottom sediments and substrate, in the water column, and on plants and leaves. Algae are the primary producers in an aquatic ecosystem and can vary in form (filamentous, colonial, unicellular, etc). Zooplankton, are small aquatic organisms that feed on algae. The size and shape of algae determine which types of zooplankton-if any-can consume them.

Algae have short life cycles. As a result, changes in water quality are often reflected by changes in the algal community within a few days or weeks. The number and types of algae in a waterbody can provide useful information for environmental monitoring programs, impairment assessments, and the identification of best management strategies.

The types of algae in a lake will change over the course of a year. Typically, there is less algae in winter and spring because of ice cover and cold temperatures. As a lake warms up and sunlight increases, algae communities begin to increase. Their short life span quickly cycles the nutrients in a lake and affects nutrient dynamics.

The types of algae present in a lake are influenced by environmental factors like climate, phosphorus, nitrogen, silica and other nutrient content, carbon dioxide, grazing, substrate, and other factors in the lake. When high levels of nutrients are available, blue green algae often become predominant.

Chlorophyll a is a pigment in plants and algae that is necessary for photosynthesis. Chlorophyll a gives a general indication of the amount of algae growth in the water column; however, it is not directly correlated with algae biomass. To obtain accurate algae data, composite samples from a two meter water column were collected monthly, preserved with glutaraldehyde, placed on ice, and sent to the State Lab of Hygiene for identification and enumeration of algae species.

Algae were identified to genus, and a relative concentration and natural unit count was made to describe the algae community throughout the growing season. This method of sampling also allows the identification of any species of concern which might be present.

There are 12 divisions of algae found in typical lakes of Wisconsin. Six divisions were found in the Apple River Flowage.
$\left.\begin{array}{lll}\hline \text { Algal Division } & \text { Common Name } & \text { Characteristics } \\ \hline \text { Bacillariophyta } & \text { Diatoms } & \begin{array}{l}\text { Have a siliceous frustule that makes up the } \\ \text { external covering. Sensitive to chloride, pH, } \\ \text { color, and total phosphorus (TP) in water. As TP } \\ \text { increases, see a decrease in diatoms. Generally } \\ \text { larger in size. Tend to be highly present in spring } \\ \text { and late spring. Can be benthic or planktonic. }\end{array} \\ \text { Chlorophyta } & \text { Green algae } & \begin{array}{l}\text { Have a true starch and provide high nutritional } \\ \text { value to consumers. Can be filamentous and } \\ \text { intermingle with macrophytes. }\end{array} \\ \text { Chrysophyta } & \text { Golden brown algae } & \begin{array}{l}\text { Organisms which bear two unequal flagella. A } \\ \text { genus of single-celled algae in which the cells are } \\ \text { ovoid. Contain chlorophyll a, c1 and c2, generally } \\ \text { masked by abundant accessory pigment, } \\ \text { fucoxanthin, imparting distinctive golden color to } \\ \text { cells. }\end{array} \\ & & \begin{array}{l}\text { Have a true starch. Planktonic. Bloom forming, } \\ \text { are not known to produce any toxins and are used }\end{array} \\ \text { Cryptophyta } & \text { Cryptomonads feed small zooplankton. Cryptomonads }\end{array}\right\}$

At both sites the dominant algae division in May and June was Cryptophyta, or cryptomonads. By J uly, the algae community at both sites was dominated nearly equally by cryptomonads and Chlorophyta, or green algae. In August, the algae community at site one was dominated by cryptomonads and the algae community at site two was dominated by Cyanophyta, or blue green algae. In September, the algae community at site one shifted back to being green algae dominated and the algae community at site two shifted back to being dominated by cryptomonads.

Across the entire sampling season Euglenophyta, or euglenoids, made up less than 1% of the algae community at both sites.

2012 Apple River Flowage Site 1 Algae Division (\% of community)

2012 Apple River Flowage Site 2 Algae Community (\% of community)

Blue green algae have been around for billions of years and typically bloom during the summer months. However, blue-green algae blooms become more frequent as a result of increased nutrient concentrations.

In addition to the negative aesthetics posed by algae, blue green algae are of specific concern because of their ability to produce toxins, that when ingested or inhaled, can cause short and long term health effects. Effects range from tingling, burning, numbness, drowsiness, and dermatitis to liver or respiratory failure possibly leading to death.

It is not know which environmental conditions cause the production of cyanotoxins, but scientists have found that when blue green algae is present at concentrations over 100,000 cells $/ \mathrm{mL}$ toxin production is more likely to occur.

Federal guidelines for cyanobacterial cell densities and chlorophyll a concentrations do not exist. The Wisconsin Harmful Algal Bloom (HAB) Surveillance Program uses guidelines of the World Health Organization to determine risks from cyanobacteria:

Cyanobacterial cell density (cells/mL)	Chlorophyll $\boldsymbol{a}(\mathbf{m g} / \mathbf{L})$	Risk
Less than 20,000	Less than 0.01	Low
20,000 to 100,000	0.01 to 0.05	Moderate
Greater than 100,000	Greater than 0.05	High

Blue green algae were only present in August at site one and only present in August and September at site two. Their concentrations at these sampling dates were very low and well below the risk threshold for toxin production.

2012 Apple River Flowage Site 1 Algae Division (cells/mL)

2012 Apple River Flowage Site 2 Algae Division (cells/mL)

[^2]
Zooplankton

Zooplankton are small aquatic animals that feed on algae and are eaten by fish. They are divided into three main components: rotifers, copepods, and cladocerans.

Rotifers eat algae, other zooplankton, and sometimes each other. Due to their small size, rotifers are not capable of significantly reducing algal biomass although they are able to shift the algae community to favor larger species.

Copepods feed on algae and other plankton. They are eaten by larger plankton and are preyed heavily upon by pan fish, minnows, and the fry of larger fish.

Cladocerans are filter feeders that play an important part in the food web. Species of cladocerans (particularly Daphnia) are well known for their ability to reduce algal biomass and help maintain clear water in lake ecosystems.

Zooplankton are often overlooked as a component of aquatic systems, but their role in a lake is extremely important. Lake systems are valued primarily for water clarity, fishing, or other recreation, all of which are strongly linked to water quality and ecosystem health. Zooplankton are the primary link between the "bottom up" processes and "top down" processes of the lake ecosystem.
"Bottom up" processes include factors such as increased nutrients, which can cause noxious algal blooms. Zooplankton have the ability to mediate algae blooms by heavy grazing. Conversely, shifts in algal composition, which can be caused by increased nutrients, can change the composition of the zooplankton community. If the composition shifts to favor smaller species of zooplankton, for example, algal blooms can be intensified, planktivorous fish can become stressed, and the development of fry can be negatively impacted.
"Top down" processes include factors such as increased fish predation. Increases in planktivorous fishes (pan fish) can dramatically reduce zooplankton populations and lead to algal blooms. In some lakes, biomanipulation is utilized to manage this effect and improve water clarity. Piscivorous fish (fish that eat other fish) are used to reduce planktivorous fish. This in turn increases zooplankton populations and ultimately reduces algae populations.

Changes in the aquatic plant community and shoreland habitat can impact zooplankton populations. This occurs especially in shallow lakes where zooplankton are more likely to have the ability to migrate horizontally to avoid predation from fish and other invertebrates. In general, a diverse shoreland habitat (substrate, plant species, and woody debris) will support a diverse zooplankton community.

Composite samples from a two meter water column were collected monthly, preserved with denatured ethanol, placed on ice, and sent to the Northland College for identification and enumeration of zooplankton species. This analysis shows the abundance of the major zooplankton groups-cladocera, copepoda, and rotifer-in the Apple River Flowage.

Composite samples from a two meter water column were collected monthly, preserved with denatured ethanol, placed on ice, and sent to the Northland College for identification and enumeration of zooplankton species. This analysis shows the abundance of the major zooplankton groups: cladocera, copepoda, and rotifer in the Apple River Flowage.

The Apple River Flowage zooplankton were dominated by rotifers, which is characteristic of flowing waters. Some cladocera are present but almost no copepods, which is somewhat unusual even for a flowing system. Abundance appears to fluctuate with the likely drivers being water retention time (higher flows reducing populations) and temperature (increasing productivity) (Lafroncois, 2013).

2012 Apple River Flowage Site 1 Abundance (n/l) of Major Zooplankton Groups

2012 Apple River Flowage Site 2 Abundance (\mathbf{n} / \mathbf{l}) of Major Zooplankton Groups

Lake Sediments

On August 22nd, 2012 a Petite Ponar ${ }^{\circledR}$ Grab Sampler was used to sample the surface sediments at site one and site two on the Apple River Flowage. Samples were analyzed by the University of Wisconsin-Madison Soil Testing Laboratories for total nitrogen, phosphorus, potassium, calcium magnesium, sulfur, zinc, boron, manganese, iron, copper, aluminum, and sodium.

In shallow lakes and reservoirs there is intense interaction of the water sediment interface; understanding the sediment water-interactions is therefore crucial to understanding the nutrient dynamics of shallow lakes such as the Apple River Flowage (Scheffer, 1998). This is the reason for the following analysis, which could have many implications for management actions.

	Total Nitrogen	Phosphorus	Potassium	Calcium	Magnesium	Sulfur
Site 1 N	8,600	1,500	1,400	16,200	3,300	4,100
Site 2 S	8,300	1,800	1,300	20,500	2,900	6,000

	Zinc	Boron	Manganese	Iron	Copper	Aluminum	Sodium
Site 1 N	54.44	8.12	769.57	$53,359.20$	21.12	$11,092.40$	127.20
Site 2 S	49.31	6.83	$1,310.96$	$32,024.30$	21.78	$11,899.20$	157.90

Copper is an essential trace element that tends to accumulate in sediments and can be toxic to aquatic life at elevated concentrations (United States Environmental Protection Agency, June 2008).

A study completed by MacDonald et al. (2000) developed consensus based numerical sediment quality guidelines for metals in freshwater ecosystems. This study provides guidelines for metals in freshwater ecosystems that reflect threshold effect concentrations (TECs, i.e., below which harmful effects are unlikely to be observed) and probable effect concentrations (PECs, i.e., above which harmful effects are likely to be observed). The consensus based TEC for copper is $31.6 \mathrm{mg} / \mathrm{kg}$ and the consensus based PEC for copper is $149 \mathrm{mg} / \mathrm{kg}$.

Sediment copper concentrations were $21.12 \mathrm{mg} / \mathrm{kg}$ at site one and $21.78 \mathrm{mg} / \mathrm{kg}$ at site two. These concentrations are well below the consensus based TEC for copper, or the concentration below which harmful effects are unlikely to be observed.

Zinc is an additional essential trace element that can be toxic to aquatic life at elevated concentrations. The consensus based TEC for zinc is $121 \mathrm{mg} / \mathrm{kg}$ and the consensus based probable effect concentration for zinc is $315 \mathrm{mg} / \mathrm{kg}$.

Sediment zinc concentrations were $54.44 \mathrm{mg} / \mathrm{kg}$ at site one and $49.31 \mathrm{mg} / \mathrm{kg}$ at site two. These concentrations are well below the consensus based TEC for zinc, or the concentration below which harmful effects are unlikely to be observed.

Nitrogen occurs in lakes and reservoirs in many different forms: dissolved nitrogen (N_{2}), a large number of organic compounds, ammonia ($\mathrm{NH}_{4}{ }^{+}$), nitrite $\left(\mathrm{NO}_{2}{ }^{-}\right)$, and nitrate $\left(\mathrm{NO}_{3}\right)$. Sources of nitrogen include precipitation, nitrogen fixation in the water and sediment (in eutrophic lakes and reservoirs this can account for $>80 \%$ of the N input), and inputs from the watershed. Losses occur by outflow, reduction of nitrate to nitrogen gas (which escapes to the atmosphere), and permanent sedimentation loss of organic and inorganic nitrogen compounds (Wetzel, 2001).

Ammonia is a common end product of the decomposition of organic matter. In the sediment of healthy lakes, a large portion of $\mathrm{NH}_{4}+$ is adsorbed on sediment particles. However, as the lake or reservoir becomes anoxic the ability of sediment to adsorb ammonia is greatly reduced. In this situation a large release of $\mathrm{NH}_{4}{ }^{+}$occurs. Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$is also reduced to nitrite $\left(\mathrm{NO}_{2}-\right.$) in the anaerobic sediments of eutrophic lakes and reservoirs.

However, rooted aquatic macrophytes are capable of absorbing large amounts of nitrogen from the sediment and can immobilize it by storing it in their root and foliage, in some cases to the point of reducing NO_{3}-N below detectable limits (Wetzel, 2001). This illustrates the importance of a healthy aquatic plant community. Healthy aquatic plant communities can be a primary storage site for nitrogen and their senescing tissues become a very important component of nutrient burial and assimilation into the sediment. The total nitrogen content was analyzed on the Apple River Flowage, so the different nitrogen species, are not known.

In contrast to nitrogen, which has many forms in lakes, the most significant form of inorganic phosphorus is orthophosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$. Because of the fundamental importance of phosphorus as a nutrient, a lot of emphasis has been placed on its evaluation in lake and reservoir systems. Four operational categories are commonly evaluated: (1) soluble reactive phosphorus, (2) soluble unreactive phosphorus, (3) particulate reactive phosphorus, and (4) particulate unreactive phosphorus (Wetzel, 2001). Often times, analysis is done for total phosphorus (TP).

A substantial part of the available phosphorus in shallow lakes and reservoirs, such as the Apple River Flowage, is in the sediment. Release of phosphorus from the sediment into the water depends on the composition of the sediment and the concentration of the phosphorus in the water column; but varies strongly on the conditions at the sediment water interface (Scheffer, 1998) (Kaiserli, A., Voutsa, D., and Samara, C., 2002) (Gonsiorczyk, T., Casper, P., and Koschel, R., 1998).

Phosphorus in the sediments of lakes is often phosphorus precipitated with clays, aluminum, and iron compounds. Work on Wisconsin lake sediments and the Great Lakes, indicate that phosphorus in the sediments was predominately apatites (phosphate minerals), organic phosphorus, and orthophosphate bonded to iron compounds. However, as the oxygen content near the sediment declines there is a release of phosphorus, iron, and manganese to the water column (Wetzel, 2001).

The concentrations of phosphorus in the water tend to correlate well with the ratio between phosphorus and iron concentrations ($\mathrm{P}: \mathrm{Fe}$) in the sediment. It has been found where the P:Fe ratio is lower than 1: 10, the correlation with lake water becomes weak (Scheffer, 1998). The ratio in the north basin is approximately $1: 36$ while the ratio in the south basin is $1: 18$ indicating a strong correlation between the sediment phosphorus pool and the water column phosphorus concentration. The mobilization of recently deposited phosphorus seems to be the driving force of phosphorus release in eutrophic lakes and reservoirs (Gonsiorczyk, T., Casper, P., and Koschel, R., 1998). However, there is a limited amount of knowledge of the mechanisms behind internal loading in shallow waters (Sondergaard, M., J ensen, J.P., J eppesen, E., 2001).

Water samples analyzed from the water column interface do indeed show an increase in phosphorus during the open water season (especially the north basin), indicating an internal release of phosphorus (sites were shallow enough that the entire water column was able to be sampled with a composite sampler).

2012 Total Phosphorus (mg/L)

- Site 1Δ Site 2

2012 Soluble Reactive Phosphorus (mg/L)

- Site 1Δ Site 2

This internal phosphorus loading may delay the recovery of a lake once the external phosphorus loading sources are reduced; therefore it is important that the fraction of available phosphorus (iron and manganese bound) is evaluated for predicting internal phosphorus loading. The major factors controlling phosphorus release are dissolved oxygen, nitrates, sulfates, and pH (Kaiserli, A., Voutsa, D., and Samara, C., 2002). The University of Wisconsin Soil and Plant Analysis Lab uses the Bray-Kurtz method which analyzes plant available phosphorus, this fraction is considered to be the potentially mobile pool of phosphorus and is available to algae. However the residence time of the water in the Apple River Flowage is so short this should become less of a factor especially as native rooted aquatic macrophytes become more prevalent in the Apple River Flowage.

Concentrations of nutrient binding elements, such as iron, depend greatly on the redox potential of the sediment. A redox reaction is the flow of electrons between an oxidized and
reduced state (for example iron moving from Fe^{3+} to Fe^{2+} and vice versa) the state of these elements is very important for the ability to bind to nutrients, particularly phosphorus.

There are many similarities in the behavior of iron and manganese, so they can be discussed together, although much more is known about the cycling of iron. There is also a very strong interaction between iron and sulfur. The fluxes of iron and magnesium reflect the variations in physical chemistry at the sediment water interface (Wetzel, 2001).

Iron is a very important micronutrient in aquatic systems. It is essential for aquatic organisms in many ways including: electron transport in oxidation-reduction systems of photosynthesis and respiration, it can be responsible for enzyme activation, and an oxygen carrier in nitrogen fixation.

Iron exists in solution in two different forms; either ferrous (Fe^{2+}) or ferric (Fe^{3+}). The amounts of iron in solution in lakes and the rate of oxidation of Fe^{2+} to Fe^{3+} in oxygenated water are dependent on pH , reduction potential, and temperature. Ferrous iron tends to be more soluble than ferric. Under anaerobic conditions with low redox potential, in productive lakes and reservoirs such as the flowage, bacteria often reduce sulfate to sulfide which decreases the concentration of Fe^{2+} through the formation of insoluble FeS (iron sulfide). This, iron sulfide formation can reduce the abundance of Fe compounds that can complex to phosphorus and promote release of phosphorus from the sediment (Wetzel, 2001). If enough FeS precipitates you can remove enough iron to get iron poor water making phosphorus more available for algae uptake. This is sometimes called the Sulfur Trap.

Sulfur Trap for Iron

anoxic sediments

HS- diffuses upward when reaches Fe^{+}:

FeS is insoluble
and precipitates out of solution

Iron bonds (complexes) with many organic compounds (e.g. detritus), which greatly alters its solubility and availability to organisms. Under anoxic conditions in the surface sediment and overlying water these complexes are reduced and phosphorus is released, with the
release rate from sediments doubling g if the sediments are disturbed (though activities such as power boating for example) (Wetzel). Aquatic plants become especially important in productive waters such as the Apple River Flowage. Oxygen loss from the roots oxidized iron and the iron deposition can result in appreciable retention of iron and consequently phosphorus in the vegetated sediments (Wetzel, 2001) (Sondergaard, M., J ensen, J.P., Jeppesen, E., 2001).

Manganese is responsible for many cellular activities in organisms (i.e. electron transport reactions) and enzyme activation. Manganese (Mn) occurs in several states. Mn^{3+} is unstable under normal conditions in water and Mn^{4+} is insoluble at most pH values that would be found in natural lakes. As with ferrous iron, Mn^{2+} occurs at low redox potentials and pH . Manganese also reacts relatively rapidly with other anions and precipitates to the sediment. Unlike iron, whose concentrations can be controlled by precipitation of FeS, manganese is usually under-saturated so MnS (manganous sulfide) is usually not precipitated. Even so, MnS is much more soluble and formation of MnS has little effect on the Mn^{2+} concentrations (Wetzel, 2001).

Sulfur is utilized by all living organisms in both inorganic and organic forms. Sources of sulfur compounds to natural waters include solubilization from rock, fertilizers, precipitation, and dry deposition. Most (about 90\%) of the total sulfur content in lake basins is found in the organic matter of mineral soil. Therefore much of the loading of sulfur compounds to lakes and reservoirs is in the form of sulfate and soluble organic sulfur compounds (Wetzel, 2001).

The cycling of sulfur entails the different sulfur chemical species under various conditions, the biotic influences, and sulfur transport within the lake or reservoir. The predominant form of sulfur in water is sulfate; nearly all assimilation of sulfur is as sulfate.

Sulfur that reacts with metals to form metal sulfides are extremely insoluble, so when Fe^{+2} is released from the sediment, it reacts vigorously with S to form FeS. Because the FeS is so insoluble the iron is not available to bind with phosphorus (Wetzel, 2001).

All data collected and modeling indicates that the internal loading component of the nutrient budget is present and could be significant. The senescence (dying back) of Potamogeton crispus (CLP) contributes, but likely the main release mechanism is the release of phosphorus bound to iron because of changes in redox potential at the sediment water interface due to shading by Ceratophyllum demersum (coontail) and a variety of duckweeds and sediment re-suspension.

Establishment of a robust, rooted aquatic macrophyte community could reduce the internal load if the macrophyte community extended deep enough. Radial oxygen loss from plant root tissues can maintain iron-bound phosphorus in the surrounding sediment. The epiphytic and epipelic algae associated within macrophyte stands utilize phosphorus from the water column, released from the sediment, and excreted by the macrophytes themselves. In addition, plants and algae that can use bicarbonate as a carbon source for photosynthesis
can create free calcium ions (Ca) that can co-precipitate phosphorus with calcite. This can be an important self-cleaning mechanism in eutrophic lakes and reservoirs that can lead to the permanent burial of P within the sediments (Gonsiorczyk, T., Casper, P., and Koschel, R., 1998).

Because of the importance of the sediment phosphorus pool in almost all lakes and reservoirs further study of sediment release is warranted. In situ sediment release rates could be measured with benthic flux chambers over a series of years in several locations to accurately calculate actual phosphorus release from the sediment, this process can also be done in a lab using sediment cores. In addition, sediment cores should be considered. Species of phosphorus can be fractioned using sequential extractions (Engstrom, D.R., and Wright, H.E., 1984), and water column phosphorus can be reconstructed along with aquatic macrophyte community, soft algae (pigments), and chironomid (dissolved oxygen) reconstructions.

Land Use and Water Quality

Information summarized from: (D.D. MacDonald, C.G. Ingersoll, and T.A. Berger, 2000) and (Lynn Markham and Ross Dudzik, 2012).

The health of our water resources depends largely on the decisions that landowners make on their properties. When waterfront lots are developed, a shift from native plants and trees to impervious surfaces and lawn often occurs. Impervious surfaces are defined as hard, man-made surfaces that make it impossible for rain to infiltrate into the ground. Examples of impervious surfaces include rooftops, paved driveways, and concrete patios.

By making it impossible for rainwater to infiltrate into the soil, impervious surfaces increase the amount of rainwater that washes over the soil surface and feeds directly into lakes and streams. This rainwater runoff can carry pollutants such as sediment, lawn fertilizers, and car oils directly into a lake. Native vegetation can slow the speed of rainwater, giving it time to soak into the soil where it is filtered by soil microbes. Median surface runoff estimates from wooded areas are an order of magnitude less than those from lawn areas.

In extreme precipitation events erosion and gullies can result, causing loss of property as soil is carried to the lake. The signs of erosion are unattractive and can cause decreases in property values. Additionally, sediment can have negative impacts on aquatic life. For example, fish eggs will die when covered with sediment, and sediment influxes to a lake can cause decreases in water clarity making it difficult for predator fish species to locate food.

Increases in impervious surfaces can also cause other negative impacts to fisheries. A study of 164 Wisconsin lakes conducted in 2008 found that the amount of impervious surfaces surrounding lakes can cause shifts in fisheries species assemblages. Certain species such as smallmouth and rock bass, blackchin and blacknose shiners, and mottled sculpin become less common with increasing amounts of impervious surfaces. Many of the smaller species affected are an essential food source for common game fish species such as walleye, northern pike, and smallmouth bass.

Increases in impervious surfaces and lawns cause a loss of habitat for birds and other wildlife. Over ninety percent of all lake life is born, raised, and fed in the area where land and water meet. Overdeveloped shorelines remove critical habitat which species such as loons, frogs, songbirds, ducks, otters, and mink depend on. Impervious surfaces and lawns can be thought of as biological desserts which lack food and shelter for birds and wildlife. Additionally, nuisance species such as Canada geese favor lawns over taller native grasses and flowers. Lawns provide geese with a ready food source (grass) and a sense of security from predators (open views).

Additionally, fish species depend on the area where land and water meet for spawning. The removal of coarse woody habitat, or trees and braches that fall into a lake, causes decreases in fisheries habitat.

Lawns in and of themselves are not particularly harmful and can provide an area for families to recreate. However, problems arise when lawns are not properly maintained, over-fertilized, located in areas important to wildlife habitat, or located on steep slopes.

Common lawn species, such as Kentucky bluegrass, are often dependent on chemical fertilizers and require mowing. Excess chemical fertilizers are washed directly into the adjacent water during precipitation events. The phosphorus and other nutrients in fertilizers, which produce lush vegetative growth on land, are the same nutrients which fuel algae blooms and decrease water clarity in a lake. Additionally, since common lawn species have very shallow root systems, when lawns are located on steep slopes, the impacts of erosion can be intensified.

Avoiding establishing lawns on steep slopes and at the water land-interface can provide direct positive impacts on lake water quality. The creation of a buffer zone of native grasses, wildflowers, shrubs, and trees where the land meets the water can provide numerous benefits for water quality and restore valuable bird and wildlife habitat.

In Polk County, all new constructions on lakeshore properties require that a shoreland protection area be in place. A shoreland protection area is required to be 35 feet in depth as measured from the ordinary high water mark, which is defined as the point on the bank or shore up to which the water leaves a distinct mark (erosion, change in vegetation, etc.).

These rules are in place largely to protect water quality and also provide benefits in terms of natural beauty, and bird and wildlife viewing opportunities. Additionally, shoreline protection areas allow for a 30 foot maximum viewing corridor (or 30\% of the width of the lot, whichever is less), which can be established as lawn (Polk County, Wisconsin Shoreland Property Owner Handbook A Guide to the Polk County Shoreland Protection Zoning Ordinance in Developing and Caring for Waterfront Property, October 2002) and (Polk County Shoreland Protection Zoning Ordinance, Effective April 1, 2010).

Shoreline Inventory

On Monday, September $10^{\text {th }}$ five resident volunteers were trained by Polk County Land and Water Resources Department staff to conduct a shoreline inventory for the Apple River Flowage. The shoreline inventory followed the protocol first developed for Bone Lake by Harmony Environmental (Harmony Environmental, Polk County Land and Water Resources Department, and Ecological Integrity Services, 2009).

Prior to the inventory, the linear feet of shoreline and the area of the shoreline buffer at each parcel were estimated using the Polk County Interactive GIS Map available online at: http://polkcowi.wgxtreme.com/.

Land use for each parcel was categorized for the shoreline (linear feet at the ordinary high water mark) and for the shoreline buffer area (area upland thirty-five feet from the ordinary high water mark). Additionally, the presence or absence of coarse woody habitat was determined at each parcel.

The shoreline (linear feet) was categorized as:

\checkmark	Rip rap	\checkmark	Sand
\checkmark	Structure	\checkmark	Natural
\checkmark	Lawn		

The shoreline buffer area (square feet) was categorized as:

\checkmark	Hard surface	\checkmark	Bare soil
\checkmark	Landscaping	\checkmark	Natural
\checkmark	Lawn		

A total of 19.42 linear miles of shoreline and 0.13 square miles of buffer areas were categorized by volunteers beginning on September 10 ${ }^{\text {th }}$ through September 21 ${ }^{\text {st }}, 2012$.

A characterization of the Apple River Flowage shoreline (linear area directly adjacent to the water) shows that the greatest land use is natural (93\%), followed by rip rap (5\%), lawn (2%), structure (0.15%), and sand (0.12%).

A characterization of the Apple River Flowage shoreline buffer area (area 35 feet upwards from the water) shows that the greatest land use is natural (82\%), followed by lawn (17\%), hard surface (1\%), bare soil (0.05\%) and landscaping (0.01\%).

In comparison to the shoreline inventory, the shoreline buffer inventory showed a greater proportion of lawn. The large amount of natural area preserved along the shoreline and within the buffer area should be maintained for the extensive water quality benefits these areas provide.

Coarse woody habitat was present at 107 parcels on the Apple River Flowage.

2012 Shoreline Land Use

2012 Shoreland Buffer Land Use

Tributaries

Data was collected on six of the tributaries of the Apple River Flowage: Beaver Brook (two sites, east and west), Beaver Brook Inlet, Fox Creek, Apple River Inlet, and Apple River Outlet. Fox Creek ultimately enters the flowage through the Apple River Inlet; and Beaver Brook east and west ultimately enter the flowage through the Beaver Brook Inlet.

Flow data was collected bi-weekly at each tributary with a March McBirney Flo-Mate ${ }^{\text {TM }}$ velocity flowmeter. At each foot interval across each of the tributaries, depth (ft) and velocity (m / s) were measured. Grab samples were collected once monthly on each tributary. Samples were analyzed at WEAL for total suspended solids, nitrate/ nitrite, ammonium, total Kjeldahl nitrogen, total phosphorus, soluble reactive phosphorus, and chloride.

The phosphorus data collected is specific to date and location and can be used to theoretically determine how much phosphorus is entering the flowage through tributaries. Values for phosphorus influxes are established by multiplying the phosphorus concentration at a specific location by the volume of water that moves through a specific location, or the discharge in cubic feet per second. To determine the average instantaneous load of phosphorus (in mg / s), the average phosphorus concentration is multiplied by the average seasonal discharge. Units are then converted and expressed as lb/yr.

The analysis of this data allows for areas of highest phosphorus loading to be identified. Once areas of highest phosphorus loading are identified, the land use and geology of these areas can be investigated for their total phosphorus contribution and best management recommendations can be made.

The Apple River Inlet is contributing the greatest amount of phosphorus to the Apple River Flowage (8,442 pounds on an annual basis). The Beaver Brook Inlet is contributing 2,580 pounds of phosphorus on an annual basis. Phosphorus leaving the Apple River Flowage via the Outlet totals 16,162 pounds on an annual basis.

Total phosphorus concentrations were elevated on the East branch of the Beaver Brook Inlet ($0.2472 \mathrm{mg} / \mathrm{L}$) .

Site	Total Phosphorus $(\mathbf{m g} / \mathbf{L})$	Discharge $(\mathbf{L} / \mathbf{s})$	Instantaneous Load (mg/s)	Annual Load $\mathbf{(l b / \mathbf { l }} \mathbf{)}$
Fox Creek	0.0518	974.610	50.485	$3,512.284$
Apple River Inlet	0.0648	$1,872.570$	121.343	$8,441.935$
Apple River Outlet	0.0636	$3,652.740$	232.314	$16,162.362$
Beaver Brook Main Stem	0.0836	443.520	37.078	$2,579.577$
Beaver Brook West	0.0586	125.496	7.354	511.631
Beaver Brook East	0.2472	60.048	14.844	$1,032.704$

Land Use and Nutrient Loading in the Apple River Flowage Watershed

The area of land that drains towards a lake is called a watershed. Since the Apple River Flowage Watershed is so extensive in size and drains from many area lakes and rivers, a management area was established for the Apple River Flowage. Areas of land already included in lake management areas for other Polk County lakes (ie. Bone Lake, Balsam Lake, Blake Lake, White Ash Lake, etc.) were excluded from the management area.

The resulting management area is 37,125 acres in size. The largest land uses in the management area are row crop (32\%) and forest (31\%), with row crop contributing the greatest phosphorus load to the Flowage (74\%).

The Wisconsin Lakes Modeling Suite (WiLMS) was used to model current conditions for the Apple River Flowage, verify monitoring, and estimate land use nutrient loading for the watershed. Phosphorus is the key parameter in the modeling scenarios used in WiLMS because it is the limiting nutrient for algae growth in most waterbodies.

Land Use	Total Acres	Percent Acres	Total Load (lb P/year)	Percent Load (lb P/year)
Flowage	633	2%	169	1%
Forest	11594	31%	926	7%
Grass	1182	3%	315	2%
Gravel Pits	242	1%	0	0%
Mixed Ag	1139	3%	810	6%
Pasture/ Grass	1766	5%	471	3%
Row Crop	11718	32%	10430	74%
Rural	2472	7%	220	2%
Residential				
Wastewater	37	0%	15	0%
treatment		1%	121	1%
Water	502	13%	429	3%
Wetland	1802	1%	0	0%
Unmapped	503	1%	260	2%
City/Village	494	0%	18	0%
Miscellaneous	40			0

Land Use and Nutrient Loading in the Apple River Flowage Subwatersheds

Fox Creek Subwatershed

The Fox Creek Subwatershed is 5,136 acres in size.

The largest land use in the Fox Creek Watershed is row crop (42\%) followed by forest (26\%).

The largest contributor of phosphorus is row crop (84\%).

Land Use	Total Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
Forest	1356	26%	108	5%
Gravel Pit	17	0%	0	0%
Mixed Ag	54	1%	37	2%
Pasture/ Grass	425	8%	114	5%
Row Crop	2175	42%	1936	84%
Rural Residential	270	5%	24	1%
Water	66	1%	18	1%
Wetland	773	15%	68	3%

Apple River Flowage Inlet Subwatershed

The Apple River Flowage Inlet Watershed is 7,965 acres in size.

The largest land use in the Apple River Flowage Inlet Subwatershed is forest (40\%), followed by row crop (20\%), and wetland (19\%).

The largest contributor of phosphorus is row crop (63\%).

Land Use	Total Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
Campground	26	0%	11	0%
Commercial	27	0%	37	2%
Forest	3175	40%	255	11%
Grass	725	9%	194	9%
Mixed Ag	110	1%	79	4%
Row Crop	1584	20%	1410	63%
Rural Residential	595	7%	53	2%
Water	215	3%	57	3%
Wetland	1508	19%	134	6%

Site 1 North Subwatershed

The Site 1 North Subwatershed is 5130 acres in size.

The largest land use in the Site 1 North Subwatershed is row crop (33\%), followed by forest (28\%).

The largest contributor of phosphorus is row crop (74\%).

Land Use	Total Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
Church	4	0%	2	0%
Flowage	334	7%	90	4%
Forest	1439	28%	114	6%
Grass	364	7%	97	5%
Gravel Pits	225	4%	0	0%
Mixed Ag	254	5%	180	9%
Row Crop	1718	33%	1529	74%
Rural	476	9%	42	2%
Residential		1%	0	0%
Water	53	5%	24	1%
Wetland	261			

Beaver Brook East Subwatershed

The Beaver Brook East
Subwatershed is 11,134 acres in size.

The largest land uses in the Beaver Brook East Subwatershed are forest (30\%) and row crop (30\%).

The largest contributor of phosphorus is row crop (70\%).

Land Use	Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
Unmapped	503	5%	0	0%
City/Village	308	3%	136	3%
Commercial	15	0%	20	0%
Forest	3351	30%	268	6%
Junk Yard	6	0%	2	0%
Mixed Ag	526	5%	374	9%
Pasture/ Grass	1016	9%	271	6%
Row Crop	3395	30%	3023	70%
Rural Residential	453	4%	40	1%
Wastewater Treatment	37	0%	15	0%
Water	98	1%	26	1%
Wetland	1427	13%	128	3%

Beaver Brook West Subwatershed

The Beaver Brook West Subwatershed is 1,345 acres in size.

The largest land use in the Beaver Brook West Subwatershed is row crop (70\%).

The largest contributor of phosphorus is row crop (94\%).

Land Use	Total Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
Forest	93	7%	7	1%
Grass	28	2%	7	1%
Mixed Ag	21	2%	15	2%
Row Crop	936	70%	834	94%
Rural Res	89	7%	9	1%
Water	8	1%	2	0%
Wetland	171	13%	15	2%

Beaver Brook Main Stem Subwatershed

The Beaver Brook Main Stem Subwatershed is 4,630 acres in size.

The largest land use in the Beaver Brook Main Stem Subwatershed is row crop (37\%), followed by forest (32\%).

The largest contributor of phosphorus is row crop (79\%).

Land Use	Total Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
Church	4	0%	2	0%
City Dump	16	0%	2	0%
Forest	1461	32%	117	6%
Mixed Ag	145	3%	103	5%
Pasture/ Grass	325	7%	86	4%
Row Crop	1730	37%	1540	79%
Rural Residential	348	8%	31	2%
Water	62	1%	18	1%
Wetland	538	12%	48	2%

Site 2 South Subwatershed

The Site 2 South Subwatershed is 1,785 acres in size.

The largest land use in the Site 2 South Subwatershed is forest (40\%), followed by the flowage itself (17\%), and rural residential (14\%).

The largest contributor of phosphorus is row crop (37\%), followed by the flowage itself (18%), the city of Amery (13\%), and forest (13%).

Land Use	Total Acres	Percent Acres	Total loading (lb P/year)	Percent Loading (lb P/year)
City	122	7%	55	13%
Commercial	6	0%	9	2%
Flowage	299	17%	79	18%
Forest	719	40%	57	13%
Grass	65	4%	18	4%
Mixed Ag	29	2%	20	5%
Row Crop	178	10%	158	37%
Rural Residential	242	14%	22	5%
Wetland	124	7%	11	3%

Areas Providing Water Quality Benefits to the Apple River Flowage

Natural areas such as forests and wetlands allow for more infiltration of precipitation when compared with row cropped fields and developed residential sites containing lawns, rooftops, sidewalks, and driveways. This occurs because dense vegetation lessens the impact of raindrops on the soil surface, thereby reducing erosion and allowing for greater infiltration of water. Additionally, wetlands provide extensive benefits through their ability to filter nutrients and allow sediments to settle out before reaching lakes and rivers.

Forests make up the second largest land use in the Apple River Flowage Watershed Management Area (31\%) and wetlands make up the third largest land use (13\%). The wetlands and forests of the Apple River Flowage Watershed Management Area should be considered sensitive areas and preserved for the benefits they provide to the flowage.

Watershed and Reservoir Modeling

The Wisconsin Lake Modeling Suite (WiLMS) was used to model current conditions and nutrient reductions for the north and south basins of the Apple River Flowage, verify monitoring, and estimate in-lake nutrient loading. Phosphorous is the key parameter in the modeling scenarios used in WiLMS because it is the limiting nutrient for algal growth in most lakes and reservoirs.

Based on average evaporation, precipitation, and runoff coefficients for Polk County soils and land use, the annual non-point source load was calculated to be 5,443.6 pounds of phosphorous for north basin. The measured load from Fox Creek and the Apple River entering the north basin was 8441.9 pounds of phosphorus or 80.1% of the external load. For the south basin the non-point source load was calculated to be 821.0 pounds of phosphorus per year and the outflow of the north basin into the south basin was calculated to be 7,712 pounds of phosphorus or 71.9% of the load. The measured load from Beaver Brook entering the south basin was 2,574.0 pounds of phosphorus per year.

Sub-watersheds were also modeled to estimate the total loading per acre as was reported in the Land Use and Nutrient Loading in the Apple River Flowage Subwatersheds section of this report.

Because the Apple River Flowage is a large, flowing system methods employed to model the internal loading from bottom sediments did not prove useful. The areal phosphorus loading was manipulated to come close to an actual number for the impact internal loading has on the Apple River Flowage. Areal loading is the amount of phosphorus entering the lake in milligrams per meter squared of lake surface area per year. Doing this, the north basin was calculated to have an internal load of 2,637 pounds of phosphorus per year; while the south basin was calculated to have an internal load of 2,690 pounds of phosphorus per year. Both of those calculations amount to about 25% of the total load which is reasonable for a system such as the flowage. Consideration of additional studies quantifying internal loading from bottom sediment is strongly encouraged.

The Nurnberg total phosphorus model takes internal loading into account:

$$
\left(P=\frac{L_{\text {Ext }}}{q_{s}}(1-R)+\frac{L_{\text {Int }}}{q_{s}} ; \text { where } R=\frac{15}{18+q_{s}}\right)^{2}
$$

This model predicts that the mixed lake total phosphorus concentration would be $59 \mu \mathrm{~g} / \mathrm{l}$ in the north basin and $52 \mu \mathrm{~g} / \mathrm{l}$ in the south basin. These estimates are low compared to the actual measured total phosphorus in both basins. There are obvious ecological and biogeochemical processes that affect measurable nutrient levels in lakes (such as sediment

[^3]REDOX potential) that simply can't be modeled and need to be measured and studied before assumptions can be made about the impact of sediments and internal loading on the nutrient cycle.

The model that was used to more accurately estimate the mixed lake water column total phosphorus concentration was the Canfield-Bachmann 1981 Artificial Lake Model which is calculated by:

$$
\mathrm{P}=\frac{0.8 L}{z(0.0942 L / z)^{0.639}+p} .{ }^{3}
$$

The model was calibrated with available data for both the north and south basins.
The model estimated the north basin water column total phosphorus concentration as 74.74 $\mu \mathrm{g} / \mathrm{l}$, which was close to the actual annual measured average of $78.8 \mu \mathrm{~g} / \mathrm{l}$. A 15% reduction in the external areal load to the basin reduces phosphorus to $68.26 \mu \mathrm{~g} / \mathrm{l}$, a 25% reduction reduces phosphorus to $63.72 \mu \mathrm{~g} / \mathrm{l}$, a 32% reduction reduces phosphorus to $60.42 \mu \mathrm{~g} / \mathrm{l}$, and a 40% reduction reduces phosphorus to $56.54 \mu \mathrm{~g} / \mathrm{l}$.

The model also estimated the south basin water column total phosphorus concentration to be $74.74 \mu \mathrm{~g} / \mathrm{l}$, which also close to the actual annual measured average of $80.0 \mu \mathrm{~g} / \mathrm{l}$. A 15% reduction in the external areal load to the lake reduces phosphorus to $68.60 \mu \mathrm{~g} / \mathrm{l}$, a $25 \% \%$ reduction reduces phosphorus to $64.72 \mu \mathrm{~g} / \mathrm{l}$, a 32% reduction reduces phosphorus to 61.77 $\mu \mathrm{g} / \mathrm{l}$, and a 40% reduction reduces phosphorus to $58.31 \mu \mathrm{~g} / \mathrm{l}$.

Using the available in situ and modeled data it is possible to predict reductions in chlorophyll a concentrations and total primary productivity within the water column by using the equation

$$
[\overline{c h l . a}]=0.55\left\{[P]_{i} /\left(1+\sqrt{T_{w}}\right\}^{0.76}\right.
$$

for estimating the annual average chlorophyll a concentrations and

$$
\sum C\left(g m^{-2} y r^{-1}\right)=\left[\frac{\left\{[P]_{i} /\left(1+\sqrt{T_{w}}\right\}^{0.76}\right.}{0.3+0.011\left\{[P]_{i} /\left(1+\sqrt{T_{w}}\right\}^{0.76}\right.}\right] 4
$$

to correlate the relationship of total primary productivity with chlorophyll a. This equation is based on average chlorophyll concentrations and light extinction resulting from turbidity and dissolved organic substances (Wetzel, 2001).

[^4]Using these equations it was predicted that the north basin would have an annual chlorophyll a concentration of $46.24 \mu \mathrm{~g} / \mathrm{l}$ under current conditions, $40.87 \mu \mathrm{~g} / \mathrm{l}$ with a 15% external load reduction, $37.16 \mu \mathrm{~g} / \mathrm{l}$ with a 25% reduction, $34.49 \mu \mathrm{~g} / \mathrm{l}$ with a 32% reduction, and $31.36 \mu \mathrm{~g} / \mathrm{l}$ with a 40% reduction. All numbers are much higher than the $6.4 \mu \mathrm{~g} / \mathrm{l}$ average measured in 2012; however, the model does predict a decline in chlorophyll a at all levels watershed nutrient reduction.

Similar results were found in primary productivity with the model predicting 462.91 C (gm^{-} $\left.{ }^{2} \mathrm{yr}^{-1}\right)$ under current conditions, $446.99 \mathrm{C}\left(\mathrm{gm}^{\left.-2 \mathrm{yr}^{-1}\right)}\right.$ with a 15% reduction, $434.11 \mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ with a 25% reduction, $423.69 \mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ with a 32% reduction and $410.02 \mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ with a 40% reduction in phosphorus.

The same equations showed that under current conditions the south basin would have an annual chlorophyll a concentration of $56.13 \mu \mathrm{~g} / \mathrm{l}$ under current conditions. With a 15% external load reduction the south basin would have a chlorophyll concentration of 49.61 $\mu \mathrm{g} / \mathrm{l}, 45.11 \mu \mathrm{~g} / \mathrm{l}$ with a 25% external load reduction, $41.87 \mu \mathrm{~g} / \mathrm{l}$ with a 32% reduction, and $38.07 \mu \mathrm{~g} / \mathrm{l}$ with a 40% reduction. These values are still higher than the $15.5 \mu \mathrm{~g} / \mathrm{l}$ measured in 2012, but still show a 12% reduction in chlorophyll a even at the lowest reduction level.

Total primary productivity went from $486.35 \mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ under current conditions to 471.73 $\mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ with a 15% reduction, $459.85 \mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ with a 25% reduction, $450.20 \mathrm{C}\left(\mathrm{gm}^{-}\right.$ $\left.{ }^{2} \mathrm{yr}^{-1}\right)$ with a 32% reduction and $437.43 \mathrm{C}\left(\mathrm{gm}^{-2} \mathrm{yr}^{-1}\right)$ with a 40% reduction in phosphorus.

Models are generally an over simplification of natural phenomenon; however, they can be useful to guide lake and reservoir management because they can be used to predict many different scenarios. The models employed do show reductions in water column total phosphorus concentrations, chlorophyll a concentrations, and total primary productivity.

However, to enhance current understanding of these lakes' ecosystems and guide future management decisions a clear understanding of the Apple River Flowage current and past ecosystem functions needs to be achieved. Current aquatic macrophyte surveys should be coupled with continuous water column monitoring. Additionally, a detailed study of in situ sediment nutrient release and REDOX conditions should be seriously considered to adequately quantify internal loading and paleolimnological techniques should be employed to understand past water quality and ecosystem change and refine goals as needed.

Nutrient Budget Summary: Apple River North Basin

Modeling was used to estimate an annual phosphorus budget for both the North and South Basins of the Apple River Flowage for external (watershed) and internal (in-lake) sources of phosphorus.

Non-point source load estimated from WiLMS: 6,614 pounds phosphorus/year
Divided by land use:
\checkmark Row crop: 4,875 pounds
\checkmark Forest: 477 pounds
\checkmark Mixed agriculture: 297 pounds
\checkmark Grass: 290 pounds
\checkmark Wetland: 227 pounds
\checkmark Rural residential: 119 pounds
\checkmark Pasture/ grass: 114 pounds
\checkmark Precipitation to flowage surface: 90 pounds
\checkmark Water: 75 pounds
\checkmark Commercial: 37 pounds
\checkmark Campground: 11 pounds
\checkmark Church: 2 pounds

Tributary load calculated using field collected phosphorus data: 8,442 pounds phosphorus/year
\checkmark Fox Creek: 3,512 pounds
\checkmark Apple River Inlet: 8,442 pounds

Internal load (load from sediments/dead or decaying matter): $\mathbf{2 , 6 3 7}$ pounds phosphorus/year

Modeling was used to predict changes in water quality that would result from a $15 \%, 25 \%$, 32%, and 40% reduction in external sources of phosphorus to the North Basin.

Modeling predicts that current water column phosphorus (with no reductions in internal or external loading) would be $0.07474 \mathrm{mg} / \mathrm{L}$ with a TSI(Phosphorus) of 66.3 , which is close to the actual measured growing season average of $0.07888 \mathrm{mg} / \mathrm{L}$ with a TSI(Phosphorus) of 67.1.

Water column and TSI Phosphorus were estimated for each reduction.

Reduction	Water column phosphorus (mg/L)	TSI (Phosphorus)
$\mathbf{1 5 \%}$	0.06826	65.0
$\mathbf{2 5 \%}$	0.06372	64.0
$\mathbf{3 2 \%}$	0.06042	63.3
$\mathbf{4 0 \%}$	0.05654	62.3
$\mathbf{8 0 \%}$	0.03990	57.3

Nutrient Budget Summary: Apple River South Basin

Modeling was used to estimate an annual phosphorus budget for both the North and South Basins of the Apple River Flowage for external (watershed) and internal (in-lake) sources of phosphorus.

Non-point source load estimated from WiLMS: 7,567 pounds phosphorus/year
Divided by land use:
\checkmark Row crop: 5,555 pounds
\checkmark Mixed agriculture: 513 pounds
\checkmark Forest: 449 pounds
\checkmark Pasture/ grass: 356 pounds
\checkmark Wetland: 202 pounds
\checkmark City/Village: 193 pounds
\checkmark Rural residential: 101 pounds
\checkmark Precipitation to flowage surface: 79
pounds
\checkmark Water: 46 pounds
\checkmark Commercial: 29 pounds
\checkmark Grass: 24 pounds
\checkmark Wastewater: 15 pounds
\checkmark Church: 2 pounds
\checkmark Junkyard: 2 pounds

Tributary load calculated using field collected phosphorus data: 2,580 pounds phosphorus/year
\checkmark Beaver Brook Main Stem: 2,580 pounds
\checkmark Beaver Brook West: 512 pounds
\checkmark Beaver Brook East: 1,033 pounds

Internal load (load from sediments/dead or decaying matter): $\mathbf{2 , 6 9 0}$ pounds phosphorus/year

Point source load from North Basin: 7,712 pounds phosphorus/year
Tributary load leaving the South Basin using field collected phosphorus data: 16,162 pounds phosphorus/year

Modeling was used to predict changes in water quality that would result from a 15\%, 25\%, 32%, and 40% reduction in external sources of phosphorus to the South Basin.

Modeling predicts that current water column phosphorus (with no reductions in internal or external loading) would be $0.07474 \mathrm{mg} / \mathrm{L}$ with a TSI(Phosphorus) of 66.3, which is close to the actual measured growing season average of $0.0800 \mathrm{mg} / \mathrm{L}$ with a TSI(Phosphorus) of 67.3.

Water column and TSI Phosphorus were estimated for each reduction.

Reduction	Water column phosphorus (mg/L)	TSI (Phosphorus)
$\mathbf{1 5 \%}$	0.06860	65.1
$\mathbf{2 5 \%}$	0.06472	64.2
$\mathbf{3 2 \%}$	0.06177	63.6
$\mathbf{4 0 \%}$	0.05831	62.7
$\mathbf{7 5 \%}$	0.03988	57.3

Pontoon Classrooms

On September 12 ${ }^{\text {th }}, 2012$ a pontoon classroom was held for members of the Apple River Flowage Protection and Rehabilitation District. The classroom was attended by five members.

At the pontoon classrooms, participants were given the chance to collect physical and chemical data, zooplankton samples, and algae samples. Data was explained and participants had the opportunity to see zooplankton and filter chlorophyll a samples. Plants were collected with a rake and shown to participants during a conversation regarding the benefits of aquatic plants and how to identify invasive species. Participants were given the chance to ask any questions they had regarding water quality. Tributary sampling was also discussed.

The pontoon classroom was promoted through the District newsletter and District Annual Meeting.

Shoreline Restoration Workshop

On October 10 ${ }^{\text {th }}, 2013$ a shoreline restoration workshop was held for members of the Apple River Flowage Protection and Rehabilitation District at the Amery Public Library. The workshop began at 1 pm and lasted until 2:30 pm. Eight attendees gained valuable information regarding shoreline restoration, rain gardens, and additional options for managing erosion. Attendees were also offered numerous educational handouts including native plant lists for Polk County, rain garden designs, and grids to design their own project. Four additional residents were unable to attend the workshop. Materials were sent to these residents through email. Additionally, one resident requested a site visit which was provided by LWRD staff.

The workshop was promoted at the District Annual Meeting and through the sociological survey. Those expressing interest were sent an event postcard prior to the workshop.

Polk County Ordinances

Comprehensive Land Use Planning

The Polk County Comprehensive Land Use Plan was adopted in 2009. The plan includes an analysis of population, economy, housing, transportation, recreation, and land use trends. It also reports the physical features of Polk County. The purpose of the land use plan is to provide general guidance to achieve the desired future development of the county and direction for development decisions. The lakes classification outlines restriction on development according to lake features. Plan information is available online at http:// www.co.polk.wi.us/landinfo/PlanningCompPlan.asp

Town, City and Village Comprehensive Plans are available at:
http://www.co.polk.wi.us/landinfo/PlanningCompPlans.asp

Smart growth is a state mandated planning requirement to guide land use decisions and facilitate communication between municipalities. Wisconsin's Comprehensive Planning Law (Statute 66.1001, Wis. Stats.) was passed as part of the 1999 Budget Act. The law requires that if a local government engages in zoning, subdivision regulations, or official mapping, those local land use regulations must be consistent with that unit of local government's comprehensive plan beginning on J anuary 1, 2010. The law defines a comprehensive plan as having at least the following nine elements:

```
\checkmark ~ I s s u e s ~ a n d ~ o p p o r t u n i t i e s
\checkmark ~ H o u s i n g
\checkmark ~ T r a n s p o r t a t i o n
\checkmark Utilities and community facilities
\checkmark ~ A g r i c u l t u r a l , ~ n a t u r a l , ~ a n d ~ c u l t u r a l ~ r e s o u r c e s ~
\checkmark ~ E c o n o m i c ~ d e v e l o p m e n t
\checkmark ~ I n t e r g o v e r n m e n t a l ~ c o o p e r a t i o n
\checkmark ~ L a n d ~ u s e
\checkmark ~ I m p l e m e n t a t i o n ~
\checkmark Polk County added "Energy and Sustainability"
```


Polk County Comprehensive Land Use Ordinance

The Polk County Comprehensive Land Use Ordinance, more commonly known as the Zoning Ordinance, is currently being updated due to the passage of the Comprehensive Plan. 17 of Polk County's 24 Towns have adopted county zoning, including: the Towns of Alden, Apple River, Beaver, Black Brook, Clam Falls, Clayton, Clear Lake, Eureka, Georgetown, J ohnstown, Lincoln, Lorain, Luck, McKinley, Milltown, Osceola, and West Sweden. The Towns of Farmington, Garfield, and St Croix Falls have adopted Town Zoning and the Towns of Balsam Lake, Bone Lake, Laketown, and Sterling have no town or county
zoning other than the state-mandated shoreland zoning. Land use regulations in the zoning ordinance include building height requirements, lot sizes, permitted uses, and setbacks among other provisions. The current Comprehensive Zoning Ordinance is available at: http:// www.co.polk.wi.us/landinfo/pdfs/ Ordinances/ ComprehensiveLandUse.pdf

Shoreland Protection Zoning Ordinance

The State of Wisconsin's Administrative Rule NR115 dictates that counties must regulate lands within 1,000 feet of a lake, pond or flowage and 300 feet of a river or stream. The Shoreland Protection Zoning Ordinance is also currently being rewritten due to the Comprehensive Plan and the State of Wisconsin passing a new version of NR 115 in 2010. Polk County passed an update of the current Shoreland Ordinance in 2002 and again in 2008. These updates put in place standards for impervious surfaces, a phosphorus fertilizer ban for shoreland property, and lakes classification and setback standards. The current ordinance is available online at:
http:// www.co.polk.wi.us/landinfo/pdfs/ Ordinances/ ShorelandOrdinance.pdf
Updates to the Shoreland Protection Ordinance and the Comprehensive Land Use Ordinance will be completed in 2013. The old and new version of the ordinances will be available at: http:// www.co.polk.wi.us/landinfo/ ordinances.asp

Subdivision Ordinance

The subdivision ordinance, adopted in 1996 and updated in 2005, requires a recorded certified survey map for any parcel less than 19 acres. The ordinance requires most new plats to incorporate storm water management practices with no net increase in runoff from development. The ordinance is available online at:
http:// www.co.polk.wi.us/landinfo/PDFs/ Ordinances/ Subdivision\%20Ordinance\%202005-0701.pdf

Animal Waste

The Polk County Manure and Water Quality Management Ordinance was revised in J anuary 2000. A policy manual established minimum standards and specifications for animal waste storage facilities, feedlots, degraded pastures, and active livestock operations greater than 300 animal units for livestock producers regulated by the ordinances. The Land and Water Resource Department's objective was to have countywide compliance with the ordinance by 2006. The ordinance is available online at:
http://www.co.polk.wi.us/landwater/ MANUR21A.htm.

Storm Water and Erosion Control

The ordinance, passed in December 2005, establishes planning and permitting requirements for erosion control on disturbed sites greater than 3,000 square feet, where more than 400 cubic yards of material is cut or filled, or where channels are used for 300 feet more of utility installation (with some exceptions). Storm water plans and implementation of best management practices are required for subdivisions, survey plats, and roads where more than $1 / 2$ acre of impervious surface will result. The Polk County Land and Water Resources Department administers the ordinance. The ordinance is a local mechanism to implement the Wisconsin Non-agricultural Runoff Performance Standards found in NR 151.

WI Non-Agricultural Performance Standards (NR 151)

Construction Sites >1 acre - must control 80% of sediment load from sites
Storm water management plans (>1 acre)
Total Suspended Solids
Peak Discharge Rate
Infiltration
Buffers around water
Developed urban areas (>1000 persons/ square mile)
Public education
Yard waste management
Nutrient management
Reduction of suspended solids

Amended Illegal Transport of Aquatic Plants and Invasive Animals

The purpose of this ordinance, passed in J une 2011, is to prevent the spread of aquatic invasive species in Polk County and surrounding water bodies by prohibiting the transport of boats, trailer, personal watercraft, and equipment if aquatic invasive plants or invasive animals are attached.

Polk County Land and Water Resources Management Plan

The Polk County Land and Water Resources Management Plan describes the strategy the Land and Water Resources Department (LWRD) will employ from 2010-2018 to address agriculture and non-agriculture runoff management, stormwater discharge, shoreline management, soil conservation, invasive species and other environmental degradation that affects the natural resources of Polk County. The plan specifies how the LWRD will implement NR 151 (Runoff Management). It involves identifying critical sites, offering costshare and other programs, identifying BMP's monitoring and evaluating projects for
compliance, conducting enforcement activities, tracking progress, and providing information and education.

Polk County has local shoreland protection, zoning, subdivision, animal waste, and nonmetallic mining ordinances. Enforcing these rules and assisting other agencies with programs are part of LWRD's ongoing activities. Other activities to implement the NR 151 Standards include information and education strategies, write nutrient management plans, provide technical assistance to landowners and lakeshore owners, perform lake studies, collaborate with other agencies, work on a rivers classification system, set up demonstration sites of proper BMP's, control invasive species, and revise ordinances to offer better protection of resources.

WI Agricultural Performance Standards (NR 151)

For farmers who grow agricultural crops

\checkmark Meet "T" on cropped fields
\checkmark Starting in 2005 for high priority areas such as impaired or exceptional waters, and 2008 for all other areas, follow a nutrient management plan designed to limit entry of nutrients into waters of the state

For farmers who raise, feed, or house livestock
\checkmark No direct runoff from feedlots or stored manure into state waters
\checkmark No unlimited livestock access to waters of the state where high concentrations of animals prevent the maintenance of adequate or self sustaining sod cover
\checkmark Starting in 2005 for high priority areas, and 2008 for all other areas, follow a nutrient management plan when applying or contracting to apply manure to limit entry of nutrients into waters of the state

For farmers who have or plan to build a manure storage structure
\checkmark Maintain a structure to prevent overflow, leakage, and structural failure
\checkmark Repair or upgrade a failing or leaking structure that poses an imminent health threat or violates groundwater standards
\checkmark Close a structure according to accepted standards
\checkmark Meet technical standards for a newly constructed or substantially-altered structure

For farmers with land in a water quality management area (defined as 300 feet from a stream, or 1,000 feet from a lake or areas susceptible to groundwater contamination)
\checkmark Do not stack manure in unconfined piles
\checkmark Divert clean water away from feedlots, manure storage areas, and barnyards located within this area

Lake Management Plan

Lake Management Plans help protect water bodies by encouraging partnerships between concerned citizens, lakeshore residents, watershed residents, agency staff, and diverse organizations. Lake Management Plans identify concerns of importance and set realistic goals, objectives, and action items to address identified concerns. Additionally, Lake Management Plans identify roles and responsibilities for meeting each goal and provide a timeline for implementation.

Lake Management Plans are living documents that are under constant review and adjustment depending on the condition of a lake, available funding, level of volunteer commitments, and the needs of lake stakeholders.

The implementation plan presented below was created through collaborative efforts and takes current and past water quality data, a 2012 sociological survey regarding the needs of The Apple River Flowage Protection and Rehabilitation members, and a series of four meetings by the Apple River Flowage Water Quality Committee.

Vision

We envision the Apple River Flowage as a healthy body of water with appropriate nutrient levels which supports human recreational uses and a diverse population of fish, wildlife, and native plants.

Guiding Principles

Lake management decisions are driven by what is best for the resource based on information that includes the ever evolving nature of lake management.

Communication regarding lake management needs to be easy to understand, concise, and frequent.

Goal 1: Reduce excessive watershed nutrient inputs to the flowage to improve water quality

Watershed nutrient inputs come from the land mass that drains to the Apple River Flowage. The watershed for the Apple River Flowage is 175 times larger than the flowage itself. As a comparison, the watershed for Pike Lake is 2.5 times larger than the lake itself and the watershed for North Twin Lake is 1.3 times larger than the lake itself.

The watershed management area for this study is 37,125 acres in size and spans from Balsam Lake, to Turtle Lake, Clayton, and Amery.

Means to accomplish this goal:

1. Reduce phosphorus loading from watershed sources by at least 15% (2,128 pounds) *A 15\% reduction in phosphorus loading would remove the Apple River Flowage from the federal 303(d) list of Impaired Waters if it was classified as a stream

The long term goal will be to meet the State of Wisconsin standard for total phosphorus for nonstratified drainage lakes of $0.040 \mathrm{mg} / \mathrm{L}$. To meet this goal, phosphorus loading from watershed sources would have to be reduced by 80% in the north basin and 75\% in the south basin. The progress towards achieving this goal will be assessed following full plan implementation.

Priority projects: installation of agricultural best management practices in the Beaver Brook East and Fox Creek Subwatersheds; installation of shoreline buffers and rain gardens on more urbanized shoreline properties; and installation of stormwater practices in the City of Amery
2. Engage watershed residents and users in reducing nutrients and sediments to improve water quality

- Identify and contact residents and users to explain options for reducing nutrients and sediments
- Recognize residents and users that have taken steps to reduce watershed nutrient inputs and improve nutrient management
- Partner with the City of Amery to install stormwater practices

3. Support installation of best management practices, or practices which reduce runoff to the flowage

- Provide technical assistance and cost sharing (incentives) for the installation of best management practices including but not limited to:
- Shoreline buffers
- Rain gardens
- Nutrient management
- Soil testing on farm fields
- Evaluation of septic systems
- Water diversions
- Sediment ponds
- Stormwater practices
- Stream and creek buffers
- Shoreline erosion practices
- Consider purchase of highly erodible/ ecologically sensitive land if option arises, with priority given to willing landowners owning shoreline on the Apple River Flowage and its tributaries (Apple River, Fox Creek, and Beaver Brook)

Goal 2: Minimize the release of nutrients from within the Apple River Flowage to improve water quality

Nutrients are trapped in lake sediments and plants. If these nutrients are released back into the water column (through sediment disturbance or plant die back) they are made available to further increase plant or algae growth. This process is called internal loading.

Means to accomplish this goal:

1. Engage watershed residents and users in reducing internal loading

- Identify and contact residents and users to explain options for reducing internal loading

2. Support practices that reduce internal loading

- Support harvesting of curly-leaf pondweed, which removes nutrients from the flowage
- Educate the public on the importance of slow-no-wake zones using kiosks, signs, and newsletters
- Determine costs and permits necessary to install aerators in stagnant bays
- Work with the County to develop a plan to install culverts on the 46 bridge when the bridge is redone

Goal 3: Protect, maintain, and enhance fish and wildlife habitat

Means to accomplish this goal:

1. Maintain desirable levels of game fish in the flowage

- Work with fish biologist to determine locations for fish sticks and other habitat improvements
- Communicate with WDNR and Tribes to make informed decisions and encourage assessment and management of fish
- Continue work to maintain desirable levels of game fish
- Install five fish structures to increase woody habitat based on expert recommendations
- Consider monetarily supporting fish stocking based on expert recommendations
- Develop a plan to take into account the potential for higher boat traffic associated with increased game fish (ie. boat wash, increased slow-no-wake)

2. Increase understanding of options for attracting desirable birds, waterfowl, and wildlife to property

- Identify and contact residents and users with educational information

3. Enhance wildlife habitat

- Provide technical assistance and incentives to encourage restoration of at least 25 shoreline buffer zones, prioritizing properties in urbanized areas

Goal:4 Maintain and enhance the natural beauty of the Apple River Flowage

Means to accomplish this goal:

1. Promote the preservation and restoration of natural vegetation along the Apple River Flowage shoreline

- Provide technical assistance and incentives to encourage restoration of at least 25 shoreline buffer zones, prioritizing properties in urbanized areas

2. Maintain undeveloped natural areas where feasible

- Consider conservation easements to preserve undeveloped lands
- Consider property acquisition to preserve undeveloped, priority, or degraded lands

3. Enhance natural beauty of developed areas

- Organize an annual clean-up date to remove old docks and garbage

4. Create areas for public use

- Research costs, necessary permits, and locations for the installation of a public fishing pier
- Research costs, necessary permits, and locations for the creation of public parks with walking trails

Goal 5: Evaluate the progress of lake management efforts through monitoring and data collection

Means to accomplish this goal:

1. Continue current data collection efforts

- Ensure that a Citizen Lake Monitoring volunteer system is in place for each year

2. Expand data collection efforts

- Implement tributary sampling to track reductions in watershed nutrients
- Consider sediment cores to gather historical data (100-200 years)
- Implement a study to assess the impacts of harvesting
- Consider a study to determine phosphorus release from curly-leaf pondweed die off
- Determine feasibility of dredging and drawdown to address sediments *Note a drawdown typically reduces sediment by $1 / 3$
- Work with the City to develop a plan if the dam fails or requires maintenance *If a drawdown needs to occur it could be used as an opportunity to reduce sediment or manage aquatic invasive species
- Work with the City to implement monitoring strategies to reassess the residence time for the Apple River Flowage
- Repeat the 2012 water quality study in five years

Goal 6: Provide information and education opportunities to residents and users

Means to accomplish this goal:

1. Utilize various methods of communication:

- Website
- Social media such as Facebook and QR codes
- Emails
- Geo-caching
- Newsletters
- Press releases
- Regularly scheduled workshops
- Demonstration sites for best management practices

2. Topics to communicate:

- Water quality
- Opportunities for technical assistance and cost sharing of projects
- District projects
- District events
- Recognition of partners

Goal 7: Develop partnerships with a diversity of people and organizations

Means to accomplish this goal:

1. Develop a relationship with a diversity of groups

- City of Amery
- Apple River Association
- WDNR
- Tribe
- Polk County LWRD
- Polk County Association of Lakes and Rivers
- Lake Districts and organizations within the Upper Apple River Watershed
- Watershed residents
- Amery School District
- Youth groups
- Sportsman's Clubs
- Polk County Parks Department
- St. Croix Basin Team

2. Attend 3 area meetings held by partners
3. Invite partners to Apple River Flowage District Meetings
4. Consider the formation of a Watershed Council
5. Create and maintain a directory of key contacts
6. Partner with the St. Croix Basin Team to advance the goals of the St. Croix TMDL Implementation Plan

Goal 8: Implement the Aquatic Plant Management Plan

Means to accomplish this goal:

1. Improve water quality on the Apple River Flowage and downstream on the Apple River
2. Prevent the introduction of aquatic invasive species
3. Maintain navigation for fishing, boating, and access to lake residences
4. Maintain native aquatic plant functions
5. Minimize environmental impacts of aquatic plant management

Goal 1: Reduce excessive watershed nutrient inputs to the flowage to improve water quality

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Identify and contact residents and users to explain options for reducing nutrients and sediments	2013, ongoing			ARPRD Board LWRD	
Recognize residents and users that have taken steps to reduce watershed nutrient inputs and improve nutrient management	As projects are implemented		ARPRD Board		
Partner with the City of Amery to install stormwater practices	3-5 years			ARPRD Board City of Amery	WDNR Urban Nonpoint Source and Stormwater Management Grant
Provide technical assistance and cost sharing (incentives) for the installation of best management practices including but not limited to: shoreline buffers, rain gardens, nutrient management, soil testing on farm fields, evaluation of septic systems, water diversions, sediment ponds, stormwater practices, stream and creek buffers, and shoreline erosion practices	2015 or if funding available			ARPRD Board LWDN Consultant	Protection Grant*
Consider purchase of highly erodible/ ecologically sensitive land if option arises	If available funding			ARPRD Board	WDNR Lake Protection Grant*

[^5]Goal 2: Minimize the release of nutrients from within the Apple River Flowage to improve water quality

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Identify and contact residents and users to explain options for reducing internal loading	2013, ongoing			ARPRD Board	
Support harvesting of curly-leaf pondweed, which removes nutrients from the flowage	Ongoing			ARPRD Board	
Educate the public on the importance of slow-no-wake zones using kiosks, signs, and newsletters	As needed			ARPRD Board	
Determine costs and permits necessary to install aerators in stagnant bays	2013			ARPRD Board Amery Economic Development	
Work with the County to develop a plan to install culverts on the 46 bridge when the bridge is redone	Ongoing			ARPRD Board Polk County	

Goal 3: Protect, maintain, and enhance fish and wildlife habitat

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Work with fish biologist to determine locations for fish sticks and other habitat improvements	Ongoing			WDNR Tribe	
Communicate with WDNR and Tribes to make informed decisions and encourage assessment and management of fish	Ongoing		ARPRD Board WDNR Tribe		
Continue work to maintain desirable levels of game fish	Ongoing		ARPRD Board		
Install five fish structures to increase woody habitat based on expert recommendations	TBD			ARPRD Board WDNR	
Consider monetarily supporting fish stocking based on expert recommendations	TBD		ARPRD Board		
Develop a plan to take into account the potential for higher boat traffic associated with increased game fish (ie. boat wash, increased slow-no-wake)	As needed			ARPRD Board	
Identify and contact residents and users with educational information	2013, ongoing			ARPRD Board	
Provide technical assistance and incentives to encourage restoration of at least 25 shoreline buffer zones, prioritizing properties in urbanized areas	2015			ARPRD Board LWRD Consultant	WDNR Lake Protection Grant*

[^6]Goal 4: Maintain and enhance the natural beauty of the Apple River Flowage

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Provide technical assistance and incentives to encourage restoration of at least 25 shoreline buffer zones, prioritizing properties in urbanized areas	2015 or if funding available			ARPRD Board LWRD Consultant	WDNR Lake Protection Grant*
Consider conservation easements to preserve undeveloped lands	If available funding			ARPRD Board	WDNR Lake Protection Grant*
Consider property acquisition to preserve undeveloped, priority, or degraded lands	If available funding			ARPRD Board	WDNR Lake Protection Grant*
Organize an annual clean-up date to remove old docks and garbage	2013, ongoing		ARPRD Board Apple River Association		
Research costs, necessary permits, and locations for the installation of a public fishing pier	TBD		ARPRD Board City of Amery		
Research costs, necessary permits, and locations for the creation of public parks with walking trails	TBD			ARPRD Board City of Amery Town of Lincoln	

[^7]Goal 5: Evaluate the progress of lake management efforts through monitoring and data collection

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Ensure that a Citizen Lake Monitoring volunteer system is in place for each year	2013, ongoing	\$100/year	20-40	ARPRD Board Volunteer	WDNR Citizen Lake Monitoring Network
Implement tributary sampling to track reductions in watershed nutrients	Inlet/ outlet every year or as practices implemented	\$81/sample		ARPRD Board Volunteer LWRD Consultant Tribe	WDNR Lake Planning Grant or Protection Grant* WAV program
Consider sediment cores to gather historical data (100-200 years)	5-10 years	\$12-30,000		ARPRD Board LWRD Consultant	WDNR Lake Planning Grant
Implement a study to assess the impacts of harvesting	2014			ARPRD Board LWRD Consultant Tribe	WDNR AIS Grant or Planning Grant
Consider a study to determine phosphorus release from curly-leaf pondweed die off	2014			ARPRD Board LWRD Consultant Tribe	WDNR AIS Grant or Planning Grant
Determine feasibility of dredging and drawdown to address sediments	5-10 years			ARPRD Board LWRD Consultant	
Work with the City to develop a plan if the dam fails or requires maintenance	Ongoing			ARPRD Board City of Amery	
Repeat the 2012 water quality study in five years	5 years			ARPRD Board LWRD Consultant	WDNR Lake Planning Grant

[^8]Goal 6: Provide information and education opportunities to residents and users

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Website	Ongoing			ARPD Board	
Social media such as Facebook and QR codes	2014, ongoing			Task Force	
Emails	Ongoing			ARPD Board	
Geo-caching	3-5 years			Task Force	
Newsletters	Ongoing		ARPD Board LWRD		
Press releases	Ongoing		ARPD Board LWRD		
Regularly scheduled workshops	3-5 years		ARPD Board LWRD Area partners		
Demonstration sites for best management practices	Ongoing		ARPD Board LWRD Area partners		

Apple River Flowage Lake Management Plan and Study Results | 118

Goal 7: Develop partnerships with a diversity of people and organizations

Action	Timeline	\$ Estimate	Volunteer Hours	Partners	Funding Sources
Develop a relationship with a diversity of groups	Ongoing	\$25 PCALR membership		ARPD Board Area partners	
Attend 3 area meetings held by partners	Ongoing			ARPD Board Area partners	
Invite partners to Apple River Flowage District Meetings	2013, ongoing		ARPD Board Area partners		
Consider the formation of a Watershed Council	$3-5$ years			ARPD Board Area partners	McKnight Joyce Foundation WDNR
Create and maintain a directory of key contacts	2013, ongoing		ARPD Board		
Partner with the St. Croix Basin Team to advance the goals of the St. Croix TMDL Implementation Plan	Ongoing			ARPD Board	

Works Cited

Byron Shaw, Christine Mechenich, and Lowell Klessig. (2004). Understanding Lake Data (G3582). UW-Extension.

Carlson, R. E. (March 1977. Volume 22(2)). A Trophic State Index for lakes. Limnology and Oceanography , 361-369.

Carrol L. Henderson, Carolyn J. Dindorf, and Fred J. Rozumalski. (n.d.). Lakescaping For Wildlife and Water Quality. St. Paul: Minnesota's Bookstore, part of the State of Minnesota Department of Administration Print Communication Division.
D.D. MacDonald, C.G. Ingersoll, and T.A. Berger. (2000). Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contaminiation and Toxicology, 39, 20-31.

Dodson, S. (2005). Introduction to Limnology. New York: McGraw-Hill.
Engstrom, D.R., and Wright, H.E. (1984). Chemical Stratigraphy of Lake Sediments as a Record of Environmental. (E. a. Haworth, Ed.) Leicester: Leicester University Press.

Gonsiorczyk, T., Casper, P., and Koschel, R. (1998). Phosphorus-Binding Forms in the Sediment of an Oligotrophic and an Eutrophic Hardwater Lake of the Baltic Lake District (Germany). Wat. Sci. Tech., 37(3), 51-58.

Harmony Environmental and Endangered Resource Services, LLC. (September 2011). Aquatic Plant Management Plan Apple River Flowage Polk County, Wisconsin .

Harmony Environmental, Polk County Land and Water Resources Department, and Ecological Integrity Services. (2009). Bone Lake Comprehensive Lake Management Plan.

Kaiserli, A., Voutsa, D., and Samara, C. (2002). Phosphorus Fractionation in Lake Sediments--Lakes Vovi and Koronia, N. Greece. Chemosphere, 46, 1147-1155.

Lafroncois, T. (2013). Zooplankton of the Apple River Flowage, Big Lake, Church Pine Lake, Long Lake and Wind Lake of Polk County, WI, 2012.

Lillie, R. A. (1983). Limnological Characteristics of Wisconsin lakes. Madison: Department of Natural Resources.

Lynn Markham and Ross Dudzik. (2012). Impervious Surfaces How They Impact Fish, Wildlife and Waterfront Property Values. University of Wisconsin Department of Natural Resources, University of Wisconsin Extension, and University of Wisconsin Extension Center for Land Use Education.

Office of Inland Lake Renewal Wisconsin Department of Natural Resources. (1979). Apple River Flowage Polk County Results Feasibility Study Results; Management Alternatives.

Polk County Land and Water Resources Department. (December 2003). Apple River Association Development and I\&E Project.

Polk County Shoreland Protection Zoning Ordinance. (Effective April 1, 2010).
Polk County, Wisconsin Shoreland Property Owner Handbook A Guide to the Polk County Shoreland Protection Zoning Ordinance in Developing and Caring for Waterfront Property. (October 2002).

Scheffer, M. (1998). Ecology of Shallow Lakes. London: Chapman \& Hall.
Sondergaard, M., J ensen, J .P., J eppesen, E. (2001). Retention and internal loading of phosphorus in Shallow, Eutrophic Lakes. The Scientific World, 1, 427-442.

United States Environmental Protection Agency. (J une 2008). Copper Facts.
Wetzel, R. G. (2001). Limnology Lake and River Ecosystems Third Edition. San Diego, California: Academic Press.

Wisconsin Department of Natural Resources. (2012). Apple River Flowage.
Wisconsin Department of Natural Resources. (2013, February). Imparied Waters.

Appendix A

Lake District Resident Survey and Results

2012 Apple River Flowage Watershed Survey

The Land and Water Resources Department (LWRD) and the Apple River Flowage P\&R District received a WDNR lake planning grant to conduct a water quality and biological assessment on Apple River Flowage in 2012. Following is a survey designed to gather information about the flowage and its intended use to direct future water quality management decisions. The survey should take approximately 5-10 minutes to complete. Your responses will remain confidential. Final results will be compiled and made available to the public. If you have questions, feel free to contact Katelin Holm, Information and Education Coordinator/Water Quality Specialist at LWRD, 485-8637, katelin.holm@co.polk.wi.us. Surveys should be returned by July 15th, 2012 to:

LWRD
100 Polk County Plaza- Suite 120
Balsam Lake, WI 54810

The results of this survey will help guide lake management decisions. Thank you again for your participation!

1. How many years have you owned property on or near the Apple River Flowage? Note: If you own more than one property, please answer all questions for the property you have owned the longest.
\qquad years
2. Which of the following best describes how you use your property? Please check one.
\qquad Year-round residence
\qquad Seasonal residence-continued occupancy for months at a time
___Weekend, vacation, and/or holiday residence
___ Rental property
___Other (please specify) \qquad
3. How many days in a typical year is your property used by you or others? Just provide your best estimate.
\qquad days per year
4. On the average day that your property is occupied, how many people occupy the property?
\qquad people
5. Land use generally falls into one of the following four categories: open space, shrub/grass/sedge community, woods, and impervious (hard) surfaces. Please use estimated percentages to describe the amount of each land use on your property. (The total should equal 100%.) We realize this may be challenging but please just provide your best estimate.
\qquad \% Open space (lawns or mowed areas)
__ Shrub/grass/sedge community
_ $\%$ Woods
___ Impervious surfaces (buildings, driveways, sidewalks, patios, gravel paths and driveways)
6. Do you own shoreline property on the Apple River Flowage?
___No, please skip to question 8
\qquad Yes
7. From the list below, which best describes the first 35 feet of your shoreline (the area located directly adjacent to the lake)? If you do not own shoreline property, please skip this question.
___ Mostly mowed grass
Mostly native flowers and grasses
___ A mix of native flowers, grasses, and shrubs
___A mix of native flowers, grasses, shrubs, and trees
8. On an average year, which activities do you and/or your family participate in on the Apple River Flowage? Please check all that apply.
____Fishing (any season)
___Swimming, snorkeling, or scuba diving
___ Non-motorized water activities (birding, canoeing, hiking, running)
Motorized water activities (PWC, boating, water skiing, tubing, jet skiing)
___ Non-motorized winter activities (skiing, snowshoeing, ice skating) Motorized winter activities (ATV, snowmobile)
___Other, please describe \qquad
9. How many of the following watercraft are kept on your property for use on the Apple River Flowage?

If none, please write 0 .
\qquad Jet skis
___ Motorboats/pontoons between 1-20 HP
Motorboats/pontoons between 21-50 HP
___ Motorboats/pontoons more than 50 HP
___ Canoes and kayaks
___ Paddleboats/rowboats
___ Other, please describe \qquad
10. From the list below, please rank your top three concerns for the Apple River Flowage.
(Please list your top three concerns in order of importance, with $1^{\text {st }}$ being most important).

A. Pollution (chemical inputs, septic systems, agriculture, erosion, storm water runoff)
B. Development (population density, loss of wildlife habitat)
C. Quality of life
D. Property values and/or taxes
E. Water recreation safety (boat traffic, no wake zone)
F. Water clarity (visibility)
G. Aquatic plants (not including algae)
H. Algae blooms
I. Invasive species (Eurasian water milfoil, zebra mussels, curly leaf pondweed, purple loosestrife)
J. Quality of fisheries
K. Water levels (loss of lake volume)
L. Other, please describe \qquad
11. How would you describe the current water quality of the Apple River Flowage?
__Poor
Fair
__Good
___Excellent Unsure
\qquad
12. How has the water quality changed in the Apple River Flowage in the time you've owned your property?
___Severely degraded
Somewhat degraded
Remained unchanged

Somewhat improved
___Greatly improved
___Unsure
13. How often does algae negatively impact your enjoyment of the Apple River Flowage?
\qquad Never
__Often
_Rarely
___Always

_Sometimes

14. How would you describe the current amount of shoreline vegetation on the Apple River Flowage?
\qquad Too much \qquad Not enough
\qquad Just right
___ Unsure
15. How would you describe the importance of wetlands in the Apple River Flowage watershed to the water quality of the Apple River Flowage? Note: A watershed is the land area that drains to a particular lake or river.
___Not at all important
___Somewhat important
Not too important
___Very important
\qquad Unsure
16. How would you describe the importance of shoreline buffers, rain gardens, and native plants to the water quality of the Apple River Flowage?
___Not at all important
Not too important
___Unsure
\qquad

都
\qquad Very important
17. How would you describe your current use of fertilizer on your property?
___I do not use any fertilizer on my property
I use zero phosphorus fertilizer on my property
I use fertilizer on my property but I'm unsure of its phosphorus content
I use fertilizer on my property that contains phosphorus
18. From the list below, please check all of the management practices you feel should be used to maintain or improve the water quality of the Apple River Flowage. Note: Cost sharing assistance refers to a process where the landowner is responsible for a portion of the cost of a particular project and their contribution is matched by another source (state dollars, grant dollars, district dollars).
\qquad Cost-sharing assistance for the installation of shoreline buffers and rain gardens
\qquad Cost-sharing assistance for the installation of farmland conservation practices (for example nutrient management plans, contour strips, conservation tillage, etc)
\qquad Information and education opportunities Establishment of slow-no-wake zones to protect aquatic plants and fisheries habitat
___ Practices to enhance fisheries, such as the introduction of coarse woody habitat ___ Collection of sediment cores to provide information concerning historical changes in lake condition
___ Enhanced efforts to monitor for new populations of aquatic invasive species
\qquad Other, please describe \qquad
19. How often do you visit the Apple River Flowage P\&R District website (http://arprd.org/)?
\qquad Never
__Sometimes
_Rarely
___Often
20. Are you interested in installing a shoreline buffer or rain garden on your property?
\qquad No
___Already installed Unsure, please contact me with additional information
\qquad Yes

If you answered yes or unsure and would like more information about this opportunity please list your contact information below. This information will be kept separate from your responses to ensure confidentiality.
21. Please provide your age. I am \qquad years old.

Thank you for your participation in this survey! Please feel free to use the space below for comments.

Surveys mailed: $\mathbf{2 2 5}$
Surveys returned: 92
Response rate: 41\%

1. How many years have you owned property on or near the Apple River Flowage? Note: If you own more than one property, please answer all questions for the property you have owned the longest.
89 respondents, 97\% Average years: 19
2. Which of the following best describes how you use your property? Please check one.

92 respondents, $\mathbf{1 0 0 \%}$
\qquad Year-round residence 54 respondents, 59\%
___Seasonal residence-continued occupancy for months at a time 5 respondents, 5% Weekend, vacation, and/or holiday residence 19 respondents, $\mathbf{2 1 \%}$
Rental property $\mathbf{3}$ respondents, $\mathbf{3 \%}$ Other (please specify) \qquad 11 respondents, 12\%

Bought land for investment

Family visits year round
Hunting land - no residence. I visit approximately once per month.
Land, build in future
Land, no building yet
Lot owned
No use, no livable buildings. Property for sale.
Only go up 1-2 times a year
Recreational lot
Resort
Year round non residence
3. How many days in a typical year is your property used by you or others? Just provide your best estimate. 90 respondents, $\mathbf{9 8 \%} \quad$ Average days per year: 237
4. On the average day that your property is occupied, how many people occupy the property?

92 respondents, 100\% Average people: 3
5. Land use generally falls into one of the following four categories: open space, shrub/grass/sedge community, woods, and impervious (hard) surfaces. Please use estimated percentages to describe the amount of each land use on your property. (The total should equal 100\%.) We realize this may be challenging but please just provide your best estimate.
87 respondents, 95\%
\qquad \% Open space (lawns or mowed areas) Average: 44\%
\% Shrub/grass/sedge community Average: 13\%
\% Woods Average: 24\%
\qquad \% Impervious surfaces (buildings, driveways, sidewalks, patios, gravel paths and driveways)
6. Do you own shoreline property on the Apple River Flowage?

92 respondents, $\mathbf{1 0 0 \%}$
\qquad No, please skip to question $8 \mathbf{8}$ respondents, $\mathbf{9 \%}$
\qquad Yes 84 respondents, 91%
7. From the list below, which best describes the first 35 feet of your shoreline (the area located directly adjacent to the lake)? If you do not own shoreline property, please skip this question.
82 respondents, $\mathbf{8 9 \%}$
Mostly mowed grass 16 respondents, $\mathbf{2 0 \%}$
___ Mostly native flowers and grasses $\mathbf{7}$ respondents, $\mathbf{9 \%}$
___ A mix of native flowers, grasses, and shrubs 6 respondents, 7\%
___ A mix of native flowers, grasses, shrubs, and trees 57 respondents, 70\%
8. On an average year, which activities do you and/or your family participate in on the Apple River Flowage? Please check all that apply.
87 respondents, 95\%
Fishing (any season) 62 respondents, $\mathbf{7 1 \%}$
Swimming, snorkeling, or scuba diving 19 respondents, 22\%
Non-motorized water activities (birding, canoeing, hiking, running) 34 respondents, $\mathbf{3 9 \%}$
Motorized water activities (PWC, boating, water skiing, tubing, jet skiing) $\mathbf{4 5}$ respondents, $\mathbf{5 2 \%}$ Non-motorized winter activities (skiing, snowshoeing, ice skating) 16 respondents, $\mathbf{1 8 \%}$ Motorized winter activities (ATV, snowmobile) 9 respondents, $\mathbf{1 0 \%}$
\qquad 11 respondents, $\mathbf{1 3 \%}$

Don't use land
None
None
None
None of the above, too many weeds
None, too many cattails
None, property for sale
Photography of wild birds and animals
Simply observing the beauty of the river
Watching the river
Watching waterfowl and other natural activity. General beauty of the flowage and shoreline.
9. How many of the following watercraft are kept on your property for use on the Apple River Flowage? If none, please write 0 .
87 respondents, 95\%
\qquad Jet skis 2
___ Motorboats/pontoons between 1-20 HP
21
Motorboats/pontoons between 21-50 HP
34
\qquad
Motorboats/pontoons more than 50 HP
\qquad Canoes and kayaks 37
Paddleboats/rowboats32

Other, please describe \qquad 7
Achilles hard floor inflatable
Mini pontoon with electric trolling motor
None
None
None
Sail
Sail
10. From the list below, please rank your top three concerns for the Apple River Flowage.
(Please list your top three concerns in order of importance, with $1^{\text {st }}$ being most important).
89 respondents, 97%
$1^{\text {st }}$ Invasive species
$2^{\text {nd }}$ Aquatic plants (not including algae)
$3^{\text {rd }}$ Algae

Pollution (chemical inputs, septic systems, agriculture, erosion, storm water runoff) $\mathbf{6 0}$ points
Development (population density, loss of wildlife habitat) 13 points
Quality of life 28 points
Property values and/or taxes 50 points
Water recreation safety (boat traffic, no wake zone) 10 points
Water clarity (visibility) 39 points
Aquatic plants (not including algae) 87 points
Algae blooms 63 points
Invasive species (Eurasian water milfoil, zebra mussels, curly leaf pondweed, purple loosestrife) $\mathbf{1 1 3}$
points
Quality of fisheries 29 points
Water levels (loss of lake volume) 24 points
Other, please describe \qquad 10 points
Rank of 3: Goose poop/damage, muskrat and beaver damage, high nutrient level that cause excessive weed growth
Rank of 3: Too many geese, can't even walk in yard
Rank of 1: Boat navigation without river weeds, on water access to all areas
Rank of 3: Sediment build up
11. How would you describe the current water quality of the Apple River Flowage?

87 respondents, 95\%
___ Poor 31 respondents, $\mathbf{3 6 \%}$
___Fair 28 respondents, 32\%
__Unsure 16 respondents, $\mathbf{1 8 \%}$
___Good 12 respondents, 14%
___ Excellent 0 respondents, 0\%
12. How has the water quality changed in the Apple River Flowage in the time you've owned your property?
89 respondents, 97\%
___Severely degraded
27 respondents, 30\%
Somewhat degraded
36 respondents, 40\%
Remained unchanged
17 respondents, 19\%
Somewhat improved 0 respondents, $\mathbf{0 \%}$
\qquad
Greatly improved 0 respondents, $\mathbf{0 \%}$
\qquad Unsure
10 respondents, $\mathbf{1 1 \%}$
13. How often does algae negatively impact your enjoyment of the Apple River Flowage?

87 respondents, 95%
\qquad Never 7 respondents, $\mathbf{8 \%}$
___Rarely 6 respondents, 7%
___Sometimes 23 respondents, $\mathbf{2 6 \%}$
__Often 27 respondents, $\mathbf{3 1 \%}$
___Always 24 respondents, $\mathbf{2 8 \%}$
14. How would you describe the current amount of shoreline vegetation on the Apple River Flowage?

87 respondents, 95\%
\qquad Too much 25 respondents, 29\%
\qquad Just right 29 respondents, $\mathbf{3 3 \%}$
\qquad Not enough 9 respondents, $\mathbf{1 0 \%}$
\qquad Unsure

24 respondents, 28\%
15. How would you describe the importance of wetlands in the Apple River Flowage watershed to the water quality of the Apple River Flowage? Note: A watershed is the land area that drains to a particular lake or river.
89 respondents, 97%
\qquad Not at all important $\mathbf{3}$ respondents, $\mathbf{3 \%}$
___ Not too important 1 respondents, $\mathbf{1 \%}$
Unsure 20 respondents, 22\%

___Somewhat important 19 respondents, 21\%

Very important 46 respondents, 52\%
16. How would you describe the importance of shoreline buffers, rain gardens, and native plants to the water quality of the Apple River Flowage?
88 respondents, $\mathbf{9 6 \%}$
___ Not at all importan
2 respondents, 2\%
\qquad Not too important 5 respondents, $\mathbf{6 \%}$
Unsure 16 respondents, $\mathbf{1 8 \%}$
__Somewhat important 24 respondents, 27\%
___ Very important 41 respondents, $\mathbf{4 7 \%}$
17. How would you describe your current use of fertilizer on your property?

88 respondents, 96%
\qquad I do not use any fertilizer on my property
56 respondents, 64\%
\qquad I use zero phosphorus fertilizer on my property

29 respondents, 33\%
___I use fertilizer on my property but I'm unsure of its phosphorus content
4 respondents, 5\%
\qquad I use fertilizer on my property that contains phosphorus
18. From the list below, please check all of the management practices you feel should be used to maintain or improve the water quality of the Apple River Flowage. Note: Cost sharing assistance refers to a process where the landowner is responsible for a portion of the cost of a particular project and their contribution is matched by another source (state dollars, grant dollars, district dollars).
78 respondents, 85\%
\qquad Cost-sharing assistance for the installation of shoreline buffers and rain gardens
21 respondents, 27\%
\qquad Cost-sharing assistance for the installation of farmland conservation practices (for example nutrient management plans, contour strips, conservation tillage, etc) $\mathbf{3 2}$ respondents, $\mathbf{4 1 \%}$ Information and education opportunities 36 respondents, 46\%
\qquad Establishment of slow-no-wake zones to protect aquatic plants and fisheries habitat

27 respondents, 35\%
\qquad Practices to enhance fisheries, such as the introduction of coarse woody habitat
23 respondents, 29\%
\qquad Collection of sediment cores to provide information concerning historical changes in lake condition 30 respondents, $\mathbf{3 8 \%}$
\qquad Enhanced efforts to monitor for new populations of aquatic invasive species 47 respondents, $\mathbf{6 0 \%}$ Other, please describe

9 respondents, $\mathbf{1 2 \%}$
Consider EPA approved nontoxic to human/fish weed killers
Harvesting of weeds
Weed harvester impact study
Weed removal
Weeds need to be removed! Not just cut. Cutting does nothing to stop the spread of weeds.
None of the above
Professional guides and fishing tours should also put monies towards river cleaning efforts not just landowners-perhaps boat launch access fees
Take whatever measures are necessary to eradicate the muskrats. They are destroying the shoreline.
To prevent further shoreline loss
19. How often do you visit the Apple River Flowage P\&R District website (http://arprd.org/)?

90 respondents, 98%
___Never 53 respondents, $\mathbf{5 9 \%}$
___Rarely 18 respondents, 20%
__Sometimes 15 respondents, $\mathbf{1 7 \%}$
___Often $\mathbf{3}$ respondents, $\mathbf{3 \%}$
20. Are you interested in installing a shoreline buffer or rain garden on your property?

89 respondents, 97%
__No 42 respondents, $\mathbf{4 7 \%}$
___Already installed 25 respondents, $\mathbf{2 8 \%}$
Unsure, please contact me with additional information
13 respondents, $\mathbf{1 5 \%}$
___Yes 11 respondents, $\mathbf{1 2 \%}$
21. Please provide your age. I am \qquad years old.
88 respondents, 96% Average age: 63 years

Thank you for your participation in this survey! Please feel free to use the space below for comments.
Area farms on the river need buffers. Farm on 120th Ave (Amery) has had cows standing in the river for years. Chemical treatments worked the best. Why not dredge the channels? Water level too low!

Because of the thick green slime we have not put our dock in or got our runabout out of storage. Also have not bought a fishing license this year for the two of us because of river.

This is a river damed up to crest a shallow flowage offering very good fishing. The weeds are what makes this possible. You are never going to change this. People should be made aware of this before buying and building.

Can we please use the weed harvester beyond just the channel? I believe most people would also be more than happy to pay for this service for their own frontage.

After 37 years on the river, we made progress for the first time 10 years ago with spraying to control the weeds. We need to harvest and spray to stop the phosphorus build up. Also the DNR and the county dropped the ball when removing the country dam - too much silt was allowed to flow down stream and still is.

Flowage should be "quiet" waters - no jet skis or high powered boats.
I want to see good things happen to Apple River, but am selling my property and can't invest.
In the 45 years the Apple River has lost quality. This really was notable after the DNA draw down. Establishment of the Apple River Association helped but it was not effective. Think we may be on the right track - or maybe too late!

Keep up the good work!
Must take action to prevent use offertilizers.
Review harvesting guidelines with the amount of vegetation in the flowage, it could hardly be over harvested.

The Apple River PRD is a joke. It has not made the river a better body of water but has allowed it to become what it is. When I first moved here, I could fish from shore and catch fish. Now I can't cast past the weeds and that's from a 20 ' dock!

The river is a mess. We pay for improvement in river quality but fail to see any action.

Appendix B

Chemical Data: In-lake and Tributary

protror

qb）$+\infty$ poddap ardunos																					
szo＇o	$6 \cdot 9$	200 0	900	S	8ع ${ }^{\circ}$	9＇Z	でて	990	920＇0	カ＇ャを	910＇0	\square	9	\＆ャo＇0	020＇0	29°	to 0	9．9	$1 \cdot 0>$	乡ınos z әu！	8－で－L6ち
$800{ }^{\circ}$	t＇9	200 0	E0＇0	9	L20＇0	－＇z	と	ZZO\％	6100	0 －ε	sto 0	9	乙＞	عで○	L90＇0	99°	100	$9 \cdot 9$	¢0＞		L－Zし－L6t
													ε	SE0＇0	－ヤ0＇0	960	80＇0	6.	8.		9－Zし－L6t
													Or	て810	00z＇0	09 0	90°	t¢	レ＇		9－で－L6t
													2＞	St0 0	ZS00	LZ＇0	200	L＇6	8.0	Wวts ulew	t－2L－L6t
													Z＞	†¢0＇0	6s0＇0	99＇0	ع0＇0	$9 \cdot 9$	100		ع－ZL－L6t
													Z＞	9600	850＇0	87°	200	$0^{\circ} \mathrm{s}$	10		て－で－26t
													†	$8 \varepsilon 0^{\circ} 0$	oso＇o	990	0ヶ0	$9 \cdot 9$	10	YəəノО $\times 1$	L－Zし－L6t
																				ขข！	\＃qe7
${ }_{2}^{2002}$		${ }_{\text {L }}^{2002}$	${ }_{\square}^{\text {LiOOz }}$	${ }_{4}^{2002}$	$\begin{aligned} & 2002 \\ & { }_{200} \end{aligned}$		$\begin{aligned} & 20020 \\ & \forall d x \end{aligned}$	$\begin{aligned} & \begin{array}{l} 1000 \\ \text { vid } \end{array} \end{aligned}$	${ }_{\substack{2002}}^{\text {Vol }}$	$\underset{\substack{2002 \\ \forall d \mathrm{da}}}{ }$	$\underset{\substack{200 z}}{\substack{\text { bol }}}$	H0080，	$00+52$	－ 10 Oost	fdoosp	$\stackrel{9}{\text { EHN－OOSt }}$	${ }_{\text {Hent }}^{\substack{\text { Hehn } \\ \text { Oost }}}$	310005			роцғ2W
des－zl	dos－zı	des－zı	das－zı	das－zı	das－zt	dos－zl	das－zt	dos－zl	dos－zl	dos－zl	das－zl	das－tz	100－6	des－zı	des－ız	des－ız	des－zt	destr	des－th		ZKjeu才 әऐе口
des－zl	des－zı	des－zı	des－zı	das－zı	des－zı	das－zı	des－zı	das－zı	das－zt	des－zı	des－zr	des－6ı	200＋	des－ı	das－0z	des－0z	des－ル	des－	des－ध		redad əleg
uz	${ }^{\text {ºS }}$	qd	d	EN	UN	8W	$\boldsymbol{\gamma}$	əコ	n 5	E	S							$\begin{aligned} & \text { 웅 } \\ & \text { 흉 } \end{aligned}$		GELON SSヨ7N	6u $\forall 1$ ¢ 7 ר

		くでて	＇Z	L9 ${ }^{\circ}$	D6．9	SL＇9	L＇9	09＊0	て＇0	$10^{\circ} 0$	SEO＊0	910\％	918で	SOt ${ }^{\text {d }}$	0ヤレ	LSC	S1．8	प\＃О	
																			て－で－89s
		961	O「て	88°	28 \downarrow		$\varepsilon \cdot L$	E6\％	1＊0＞	200	$\angle 90^{\circ} 0$	0200	86ちでで	LZ6．$¢$ ¢	カャレ	792	$69^{\circ} \mathrm{L}$	૫łnos 乙 əl！s	
																			L－てレ－89¢
																		อ甲，	\＃qe7
		20002	g 0¢ı	$\begin{aligned} & \hline \text { LOOZ } \\ & \forall \mathrm{dg} \\ & \hline \end{aligned}$	$\begin{aligned} & \angle 002 \\ & \forall d \mathrm{~d} \\ & \hline \end{aligned}$	$\begin{aligned} & 2002 \\ & \forall d \exists \end{aligned}$	ヨ1009ヶt	9 EHN－OOSt	－ 8 ON OOSt	\bigcirc EHN－OOSt	－d 00st	\＃d 00st	L002 8 dj	L＇002 $\forall \mathrm{da}$	90z£z	g0Lsz	a H 00sp		роЧ1əW
		＾0N－9	＾0N－Z	10N－St	＾0N－St	10N－SL	$100 \rightarrow 2$	100－61	$\stackrel{10 \square 力 2}{ }$	คо－६z	$100-61$	மО－६Z	${ }^{10} \mathrm{~N}$－St	＾0N－Sl	100－92	100－sz	$100-\mathrm{sz}$		Kןeu＊əıeव
		＾0N－9	＾0N－ZL	＾0N－SL	＾0N－St	＾0N－st	10－¢Z	100－81	100－¢	மo－zz	$100-81$	100－zz	＾0N－St	＾0N－St	100－92	190－sz	$100-\mathrm{sz}$		Iedeld əleg
		응				訔			$\begin{aligned} & \text { zo } \\ & \text { N } \\ & \text { T } \\ & \text { oun } \end{aligned}$					$\begin{aligned} & \text { To } \\ & \frac{2}{2} \\ & \frac{5}{3} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{x} \\ & \stackrel{0}{5} \\ & \underset{y}{5} \end{aligned}$	םヨ1ON SSヨาNก 1 ¢	¢u v

[^9] Purchase Order \＃： Date Received in Lab： ：əu！ 1 키dues
 REPORT IDENTIFICATION：
WATER \＆ENVIRONMENTAL ANALYSIS LAB－DATA REPORT FORM

Appendix C

Physical Data: In-lake and Tributary

Date	Depth (m)	DO (mg/l)	Conduct (ms/s)	SpCond (ms/s)	$\begin{aligned} & \text { Temp } \\ & (\mathrm{oC}) \\ & \hline \end{aligned}$	Salinity (ppt)	pH	ORP	Secchi (ft)
4/3/2012	0	9.84	152	212	10.10	0.10	9.14		4
	1	9.77	152	212	10.10	0.10	9.15		
	2	9.61	152	212	10.10	0.10	9.11		
	2.5	9.72	152	212	10.10	0.10	9.09		
5/8/2012	0	7.49	165	201	15.70	0.10	8.71		6.5
	1	7.16	166	201	15.70	0.10	8.33		
	2	6.65	167	203	15.60	0.10	8.02		
	2.5	3.87	180	225	14.60	0.10	7.91		
5/22/2012	0	6.96	202	224	20.00	0.10	8.22		5
	1	5.98	200	225	19.20	0.10	7.66		
	2	4.70	195	225	18.20	0.10	7.30		
	2.5	3.76	197	228	17.90	0.10	7.03		
6/5/2012	0	6.01	211	220	22.90	0.10	7.96		5.5
	1	5.77	207	223	21.20	0.10	7.94		
	2	2.59	201	227	18.90	0.10	6.90		
	2.5	0.08	209	244	17.70	0.10	6.03		
6/19/2012	0	4.86	208	222	21.60	0.10	8.05		6
	1	4.65	211	226	21.50	0.10	6.82		
	2	4.36	214	229	21.30	0.10	5.62		
	2.5	1.39	215	243	18.90	0.10	5.22		
7/11/2012									5.5
7/24/2012	0	7.25	246	254	26.75	0.12	8.57	147.0	5
	1	6.81	247	255	26.70	0.12	8.55	146.5	
	2	0.54	251	251	25.04	0.12	7.46	179.7	
	2.5	0.00	254	251	24.44	0.12	7.25	187.2	
8/7/2012	0	6.60	233	233	24.88	0.11	8.94	101.8	6
	1	6.24	235	233	24.73	0.11	8.88	109.8	
	2	2.09	238	229	23.19	0.11	8.48	28.8	
	2.5	3.21	240	228	22.56	0.11	8.65	-75.3	
8/22/2012	0	8.57	240	223	21.23	0.11	9.58	-11.1	6
	1	8.40	240	223	21.18	0.11	9.62	-87.4	
	2	5.70	243	218	19.73	0.12	9.30	-92.8	
	2.5	4.17	246	220	19.51	0.12	9.21	-92.2	
9/6/2012	0	9.12	249	242	23.37	0.12	9.36	-75.6	4
	1	9.01	251	243	23.32	0.12	9.31	-75.1	
	2	8.39	248	235	22.15	0.12	9.47	-69.3	
	2.5	4.34	253	237	21.68	0.12	9.07	-69.1	
9/17/2012	0	8.52	247	210	17.23	0.12	9.32	-62.9	5
	1	8.02	247	211	17.26	0.12	9.32	-68.6	
	2	8.36	248	211	17.24	0.12	9.29	-71.1	
	2.5	7.38	250	213	17.24	0.12	9.24	-81.1	
10/15/2012	0	12.93	238	160	7.69	0.11			7.0
	1	12.12	238	160	7.58	0.11			
	2	11.98	240	160	7.49	0.11			
	2.5	11.81	241	161	7.47	0.12			

Apple River Flowage: Site $2, ~ 45.19 .057,92.21 .281$									

Fox Creek Inlet

Date	Feet	Depth	Flow
$5 / 8 / 12$	0	0.2	0.01
	1	0.9	0.01
	2	1.0	0.01
	3	0.9	0.14
	4	0.9	0.27
	5	1.1	0.47
	6	1.1	0.36
	7	1.9	0.69
	8	1.7	0.78
	9	2.0	0.66
	10	2.1	0.60
	11	2.1	0.67
	12	2.2	0.48
	13	2.4	0.46
	14	2.4	0.60
	15	2.3	0.56
	16	2.4	0.67
	17	2.4	0.67
	18	2.4	0.75
	19	2.0	0.34
	1.9	0.58	
	20	1.8	0.31
	2		
	1	2.1	0.1

	11	1.9	0.74
	12	1.8	0.49
	13	1.9	0.47
	14	1.9	0.67
	15	1.8	0.73
	16	1.6	0.87
	17	1.4	0.82
	18	1.6	0.68
	19	1.4	0.44
	20	1.3	0.39
	21	1.2	0.16
	22	1.1	0.06
	23	0.7	0.00
	24	0.6	0.00
6/19/12	0	0.7	0.24
	1	0.9	0.20
	2	1.3	0.42
	3	1.7	0.42
	4	1.8	0.59
	5	2.1	0.35
	6	2.4	0.52
	7	2.6	0.78
	8	2.6	0.73
	9	2.6	0.69
	10	2.5	0.43
	11	2.4	0.57
	12	2.6	0.53
	13	2.4	0.45
	14	2.4	0.63
	15	2.4	0.68
	16	2.3	0.80
	17	2.0	0.74
	18	2.1	0.72
	19	2.0	0.53
	20	1.9	0.33
	21	1.8	0.45
	22	1.5	0.27
	23	1.3	0.27
	24	1.3	0.15
	25	0.3	0.08
	26	0.0	0.00
7/11/12	0	0.7	0.07
	1	1.0	0.12
	2	1.1	0.18
	3	1.5	0.19
	4	1.8	0.15
	5	2.0	0.20
	6	2.2	0.12
	7	2.5	0.26
	8	2.2	0.20
	9	2.5	0.32
	10	2.5	0.24
	11	2.3	0.29
	12	2.4	0.30
	13	2.4	0.27
	14	2.3	0.28
	15	2.2	0.27
	16	2.2	0.07
	17	2.1	0.23

	18	2.0	0.17
	19	2.0	0.24
	20	1.9	0.23
	21	1.8	0.11
	22	1.7	0.11
	23	1.4	0.16
	24	1.3	0.15
	25	1.0	0.05
	26	0.5	0.05
	27	0.2	0.00
7/24/12	0	0.5	0.04
	1	0.8	0.05
	2	1.1	0.13
	3	1.5	0.14
	4	1.9	0.13
	5	1.9	0.14
	6	2.0	0.16
	7	2.1	0.22
	8	2.2	0.23
	9	2.1	0.17
	10	2.3	0.15
	11	2.4	0.08
	12	2.4	0.12
	13	2.4	0.16
	14	2.4	0.22
	15	2.6	0.31
	16	2.6	0.20
	17	2.7	0.16
	18	2.6	0.22
	19	2.7	0.07
	20	2.7	0.28
	21	2.4	0.21
	22	2.1	0.17
	23	1.7	0.19
	24	1.3	0.18
	25	1.3	0.12
	26	1.0	0.09
8/7/12	0	0.4	0.01
	1	0.4	0.01
	2	0.5	0.01
	3	1.3	0.08
	4	1.7	0.11
	5	1.8	0.08
	6	1.9	0.11
	7	1.9	0.10
	8	2.1	0.04
	9	2.0	0.10
	10	2.2	0.09
	11	2.3	0.05
	12	2.3	0.09
	13	2.4	0.11
	14	2.4	0.12
	15	2.5	0.08
	16	2.4	0.21
	17	2.6	0.10
	18	2.5	0.18
	19	2.6	0.04
	20	2.6	0.01
	21	1.4	0.20

	22	2.1	0.13
	23	1.3	0.17
	24	1.6	0.15
	25	1.2	0.10
	26	0.9	0.11
	27	0.9	0.10
	28	0.6	0.05
8/22/12	0	0.2	0.00
	1	0.4	0.02
	2	1.0	0.05
	3	1.4	0.08
	4	1.4	0.06
	5	1.6	0.05
	6	1.5	0.09
	7	1.7	0.12
	8	1.9	0.08
	9	1.9	0.09
	10	1.9	0.07
	11	2.0	0.07
	12	2.1	0.12
	13	2.2	0.15
	14	1.7	0.17
	15	2.2	0.17
	16	2.1	0.11
	17	2.2	0.21
	18	2.3	0.04
	19	2.4	0.11
	20	1.2	0.19
	21	2.1	0.07
	22	1.2	0.14
	23	1.1	0.12
	24	0.9	0.11
	25	0.5	0.08
	26	0.7	0.05
9/6/12	0	0.2	0.00
	1	0.8	0.01
	2	1.1	0.07
	3	1.2	0.08
	4	1.3	0.11
	5	1.4	0.16
	6	1.4	0.17
	7	1.6	0.16
	8	1.5	0.13
	9	1.7	0.13
	10	1.6	0.18
	11	1.7	0.13
	12	1.7	0.17
	13	1.8	0.25
	14	1.8	0.17
	15	1.9	0.22
	16	1.9	0.14
	17	1.9	0.09
	18	2.0	0.16
	19	0.8	0.15
	20	1.7	0.09
	21	1.0	0.12
	22	0.7	0.09
	23	0.5	0.04
	24	0.3	0.03

Apple River Inlet

Date	Feet	Depth	Flow		28	1.1	0.50		12	1.2	0.66		34	1.5	0.58
5/8/12	0	1.2	0.27		29	1.1	0.52		13	1.3	0.68		35	1.5	0.49
	1	1.7	0.30		30	1.1	0.44		14	1.4	0.68		36	1.4	0.45
	2	2.0	0.30		31	1.1	0.37		15	1.5	0.71		37	1.2	0.44
	3	2.2	0.35		32	1.1	0.64		16	1.5	0.66		38	1.3	0.30
	4	2.5	0.40		33	1.0	0.30		17	1.6	0.68		39	1.2	0.25
	5	2.7	0.49		34	0.8	0.26		18	1.6	0.73		40	1.0	0.15
	6	3.0	0.49		35	0.8	0.08		19	1.7	0.70		41	0.9	0.12
	7	3.4	0.50		36	0.6	0.00		20	1.7	0.73		42	0.8	0.10
	8	3.3	0.52		37	0.5	0.00		21	1.8	0.82		43	0.3	0.01
	9	3.5	0.62		38	0.4	0.00		22	1.8	0.81		44	0.3	0.06
	10	3.6	0.65		39	0.4	0.00		23	1.9	0.75		45	0.2	0.01
	11	3.6	0.60		40	0.5	0.00		24	1.9	0.78		46	0.2	0.00
	12	3.7	0.60		41	0.5	0.00		25	1.9	0.83	7/24/12	0	0.1	0.00
	13	3.6	0.62		42	0.3	0.00		26	1.9	0.80		1	0.2	0.00
	14	3.7	0.63		43	0.2	0.00		27	2.0	0.87		2	0.3	0.00
	15	3.6	0.52	6/5/12	0	0.2	0.01		28	2.0	0.94		3	0.4	0.03
	16	3.4	0.58		1	0.3	0.00		29	1.9	0.94		4	0.5	0.01
	17	3.3	0.58		2	0.4	0.04		30	2.0	0.94		5	0.5	0.01
	18	3.1	0.64		3	0.4	0.01		31	2.0	0.94		6	0.6	0.04
	19	3.1	0.60		4	0.5	0.00		32	2.1	0.94		7	0.6	0.16
	20	3.0	0.64		5	0.4	0.01		33	1.9	0.90		8	0.6	0.21
	21	2.9	0.60		6	0.5	0.02		34	2.2	0.78		9	0.6	0.23
	22	2.8	0.57		7	0.6	0.06		35	2.1	0.87		10	0.6	0.27
	23	2.6	0.52		8	0.6	0.10		36	2.1	0.72		11	0.8	0.28
	24	2.4	0.53		9	0.6	0.17		37	2.1	0.73		12	0.9	0.28
	25	2.3	0.42		10	0.8	0.16		38	1.9	0.72		13	0.9	0.30
	26	2.1	0.43		11	0.8	0.28		39	1.9	0.62		14	1.0	0.31
	27	2.1	0.39		12	0.9	0.30		40	1.9	0.55		15	1.0	0.29
	28	2.2	0.42		13	0.9	0.70		41	1.8	0.55		16	1.1	0.32
	29	2.4	0.38		14	1.0	0.44		42	1.7	0.42		17	1.2	0.29
	30	2.2	0.36		15	1.1	0.49		43	1.4	0.25		18	1.2	0.34
	31	2.0	0.26		16	1.2	0.51		44	1.3	0.23		19	1.3	0.33
	32	2.2	0.15		17	1.3	0.52		45	1.2	0.12		20	1.4	0.38
	33	2.2	0.37		18	1.3	0.59		46	0.1	0.14		21	1.3	0.29
	34	2.0	0.45		19	1.4	0.64		47	0.7	0.19		22	1.4	0.44
	35	1.9	0.57		20	1.4	0.65		48	0.7	0.23		23	1.4	0.42
	36	1.4	0.53		21	1.4	0.68		49	0.7	0.08		24	1.5	0.45
	37	1.3	0.47		22	1.4	0.79		50	0.7	0.01		25	1.5	0.45
	38	1.4	0.52		23	1.5	0.85		51	0.3	0.01		26	1.5	0.44
	39	1.3	0.45		24	1.5	0.71		52	0.2	0.00		27	1.6	0.46
	40	1.1	0.38		25	1.5	0.79	7/11/12	0	0.2	0.00		28	1.6	0.54
	41	1.1	0.38		26	1.6	0.97		1	0.2	0.01		29	1.6	0.45
	42	0.7	0.32		27	1.5	0.76		2	0.3	0.01		30	1.5	0.52
	43	0.9	0.13		28	1.5	0.91		3	0.4	0.01		31	1.6	0.47
	44	0.8	0.17		29	1.7	0.88		4	0.4	0.02		32	1.6	0.56
	45	0.6	0.19		30	1.7	0.92		5	0.4	0.01		33	1.7	0.44
5/22/12	0	0.2	0.04		31	1.6	0.87		6	0.4	0.00		34	1.7	0.52
	1	0.3	0.06		32	1.7	0.84		7	0.5	0.01		35	1.7	0.49
	2	0.5	0.05		33	1.6	0.80		8	0.5	0.02		36	1.6	0.50
	3	0.6	0.22		34	1.6	0.86		9	0.5	0.03		37	1.6	0.44
	4	0.8	0.22		35	1.6	0.74		10	0.6	0.06		38	1.4	0.40
	5	1.0	0.18		36	1.6	0.66		11	0.6	0.11		39	1.7	0.33
	6	1.1	0.26		37	1.5	0.54		12	0.8	0.17		40	1.4	0.33
	7	1.2	0.34		38	1.4	0.45		13	0.8	0.19		41	1.3	0.35
	8	1.2	0.59		39	1.2	0.47		14	0.9	0.25		42	1.4	0.25
	9	1.3	0.65		40	1.2	0.29		15	1.0	0.25		43	1.1	0.08
	10	1.4	0.63		41	0.9	0.19		16	1.0	0.31		44	1.0	0.07
	11	1.4	0.70		42	0.9	0.13		17	1.1	0.34		45	0.9	0.05
	12	1.4	0.88		43	0.8	0.08		18	1.1	0.39		46	0.9	0.04
	13	1.5	0.77		44	0.5	0.05		19	1.1	0.42		47	0.6	0.04
	14	1.6	0.77		45	0.4	0.01		20	1.4	0.42		48	0.5	0.01
	15	1.6	0.93		46	0.2	0.04		21	1.3	0.55		49	0.6	0.07
	16	1.6	1.01	6/19/12	0	0.4	0.00		22	1.4	0.58		50	0.5	0.07
	17	1.5	0.86		1	0.6	0.00		23	1.4	0.60		51	0.3	0.01
	18	1.5	0.71		2	0.6	0.02		24	1.3	0.53		52	0.1	0.00
	19	1.4	0.66		3	0.7	0.02		25	1.4	0.52	8/7/12	0	0.2	0.00
	20	1.5	0.66		4	0.9	0.03		26	1.4	0.63		1	0.3	0.02
	21	1.5	0.59		5	0.9	0.23		27	1.4	0.46		2	0.4	0.01
	22	1.0	0.77		6	0.9	0.53		28	1.4	0.64		3	0.4	0.01
	23	1.0	0.80		7	1.0	0.56		29	1.5	0.63		4	0.4	0.01
	24	1.0	0.75		8	1.0	0.57		30	1.5	0.62		5	0.5	0.03
	25	1.0	0.68		9	1.0	0.60		31	1.5	0.64		6	0.5	0.08
	26	1.6	0.75		10	1.1	0.58		32	1.5	0.72		7	0.6	0.12
	27	1.6	0.68		11	1.1	0.65		33	1.5	0.62		8	0.6	0.12

9	0.7	0.12		44	0.7	0.04		30	1.2	0.57	16	0.9	0.30
10	0.7	0.12		45	0.5	0.00		31	1.4	0.51	17	1.0	0.27
11	0.7	0.14		46	0.3	0.00		32	1.4	0.50	18	1.0	0.38
12	0.8	0.17		47	0.3	0.00		33	1.4	0.51	19	1.0	0.44
13	0.9	0.17		48	0.2	0.00		34	1.4	0.45	20	1.0	0.26
14	0.9	0.22	8/22/12	0	0.1	0.00		35	1.4	0.35	21	1.1	0.48
15	1.0	0.17		1	0.2	0.00		36	1.1	0.37	22	1.1	0.46
16	1.0	0.25		2	0.3	0.00		37	1.1	0.24	23	1.1	0.38
17	1.1	0.27		3	0.3	0.00		38	1.1	0.25	24	1.1	0.48
18	1.2	0.31		4	0.3	0.00		39	1.0	0.22	25	1.2	0.44
19	1.2	0.36		5	0.3	0.01		40	1.0	0.14	26	1.3	0.38
20	1.2	0.31		6	0.5	0.03		41	0.9	0.09	27	1.2	0.54
21	1.2	0.37		7	0.5	0.06		42	0.8	0.07	28	1.3	0.56
22	1.3	0.40		8	0.5	0.04		43	0.7	0.04	29	1.2	0.59
23	1.4	0.43		9	0.6	0.03		44	0.5	0.03	30	1.3	0.41
24	1.4	0.40		10	0.6	0.08		45	0.3	0.00	31	1.4	0.61
25	1.4	0.46		11	0.7	0.10		46	0.3	0.00	32	1.4	0.47
26	1.5	0.52		12	0.8	0.09		47	0.3	0.04	33	1.4	0.46
27	1.5	0.50		13	0.8	0.14		48	0.2	0.01	34	1.4	0.53
28	1.5	0.49		14	0.9	0.13	9/6/12	0	0.1	0.00	35	1.0	0.43
29	1.5	0.55		15	0.9	0.16		1	0.2	0.01	36	1.2	0.37
30	1.5	0.49		16	1.0	0.24		2	0.2	0.00	37	0.9	0.27
31	1.5	0.46		17	1.0	0.26		3	0.2	0.00	38	0.9	0.34
32	1.6	0.46		18	1.1	0.31		4	0.2	0.00	39	0.6	0.20
33	1.6	0.44		19	1.1	0.34		5	0.3	0.01	40	0.8	0.10
34	1.5	0.39		20	1.0	0.28		6	0.4	0.01	41	0.7	0.08
35	1.5	0.44		21	1.1	0.35		7	0.4	0.02	42	0.7	0.03
36	1.4	0.38		22	1.2	0.42		8	0.5	0.00	43	0.5	0.01
37	1.3	0.25		23	1.2	0.43		9	0.5	0.02	44	0.4	0.00
38	1.2	0.30		24	1.3	0.35		10	0.6	0.07	45	0.2	0.00
39	1.0	0.35		25	1.4	0.46		11	0.6	0.08	46	0.2	0.02
40	1.1	0.23		26	1.4	0.47		12	0.7	0.11	47	0.2	0.01
41	1.0	0.11		27	1.4	0.38		13	0.7	0.15			
42	0.9	0.09		28	1.3	0.50		14	0.8	0.23			
43	0.8	0.07		29	1.3	0.51		15	0.8	0.23			

	19	1.0	0.79	4	0.4	0.25		82	1.4	0.37		62	1.1	0.14
	20	1.0	0.69	5	0.4	0.23		83	1.4	0.38		63	1.1	0.16
	21	1.0	0.78	6	0.5	0.15		84	1.4	0.42		64	1.1	0.21
	22	1.0	0.78	7	0.5	0.06		85	1.4	0.43		65	1.2	0.16
	23	1.0	0.93	8	0.5	0.11		86	1.4	0.30		66	1.2	0.18
	24	1.0	0.95	9	0.5	0.13		87	1.3	0.33		67	1.2	0.21
	25	1.0	0.76	10	0.5	0.27		88	1.3	0.29		68	1.3	0.24
	26	1.0	0.69	11	0.5	0.15		89	1.3	0.27		69	1.4	0.24
	27	1.0	0.82	12	0.4	0.20		90	1.1	0.29		70	1.4	0.23
	28	1.1	0.91	13	0.4	0.31		91	1.0	0.32		71	1.4	0.25
	29	1.0	0.99	14	0.5	0.24		92	1.0	0.27		72	1.6	0.27
	30	1.0	0.95	15	0.4	0.22		93	0.9	0.23		73	1.5	0.27
	31	1.1	0.92	16	0.4	0.19		94	0.8	0.17		74	1.6	0.30
	32	1.1	0.90	17	0.5	0.36		95	0.6	0.27		75	1.6	0.26
	33	1.0	0.90	18	0.5	0.38		96	0.4	0.24		76	1.6	0.23
	34	1.0	0.93	19	0.5	0.51		97	0.2	0.05		77	1.6	0.21
	35	1.0	0.91	20	0.5	0.48	7/24/12	0	0.5	0.32		78	1.6	0.23
	36	1.0	0.78	21	0.5	0.47		,	0.6	0.16		79	1.7	0.28
	37	1.0	0.83	22	0.5	0.50		2	0.6	0.14		80	1.7	0.31
	38	1.0	0.82	23	0.5	0.48		3	0.6	0.09		81	1.7	0.28
	39	0.9	0.82	24	0.5	0.55		4	0.6	0.02		82	1.7	0.24
	40	1.0	0.73	25	0.5	0.56		5	0.7	0.05		83	1.8	0.23
	41	1.0	0.68	26	0.5	0.46		6	0.6	0.01		84	1.7	0.30
	42	1.0	0.83	27	0.5	0.53		7	0.7	0.07		85	1.7	0.35
	43	1.0	0.85	28	0.5	0.52		8	0.7	0.02		86	1.7	0.37
	44	0.9	0.74	29	0.5	0.51		9	0.7	0.05		87	1.7	0.36
	45	0.9	0.71	30	0.5	0.56		10	0.7	0.06		88	1.7	0.31
	46	1.0	0.78	31	0.5	0.68		11	0.7	0.05		89	1.6	0.30
	47	1.0	0.72	32	0.5	0.60		12	0.7	0.10		90	1.5	0.26
	48	1.0	0.74	33	0.4	0.64		13	0.8	0.14		91	1.5	0.23
	49	1.0	0.79	34	0.4	0.62		14	0.7	0.18		92	1.3	0.29
	50	1.0	0.80	35	0.5	0.58		15	0.8	0.03		93	1.3	0.27
	51	1.0	0.62	36	0.5	0.54		16	0.7	0.12		94	1.1	0.29
	52	0.9	0.68	37	0.5	0.55		17	0.7	0.25		95	1.0	0.27
	53	1.0	0.66	38	0.5	0.53		18	0.6	0.18		96	0.7	0.20
	54	1.1	0.61	39	0.5	0.51		19	0.6	0.29	8/7/12	0	0.7	0.22
	55	1.1	0.61	40	0.4	0.39		20	0.7	0.30		1	0.7	0.20
	56	1.1	0.59	41	0.4	0.40		21	0.7	0.29		2	0.8	0.10
	57	1.2	0.68	42	0.4	0.46		22	0.6	0.26		3	0.9	0.10
	58	1.2	0.57	43	0.4	0.43		23	0.7	0.20		4	0.9	0.05
	59	1.2	0.58	44	0.4	0.41		24	0.7	0.37		5	0.9	0.02
	60	1.2	0.58	45	0.4	0.40		25	0.8	0.35		6	0.9	0.09
	61	1.4	0.53	46	0.4	0.33		26	0.7	0.29		7	0.9	0.04
	62	1.5	0.60	47	0.4	0.38		27	0.7	0.49		8	1.0	0.08
	63	1.5	0.63	48	0.4	0.36		28	0.7	0.49		9	0.9	0.06
	64	1.5	0.55	49	0.4	0.41		29	0.7	0.51		10	0.9	0.07
	65	1.6	0.62	50	0.4	0.36		30	0.7	0.50		11	0.9	0.08
	66	1.6	0.58	51	0.4	0.20		31	0.7	0.53		12	0.9	0.01
	67	1.6	0.59	52	0.4	0.23		32	0.7	0.50		13	1.0	0.05
	68	1.7	0.53	53	0.4	0.34		33	0.7	0.51		14	0.9	0.10
	69	1.7	0.55	54	0.4	0.32		34	0.7	0.44		15	0.9	0.18
	70	1.9	0.55	55	0.5	0.26		35	0.7	0.44		16	0.9	0.13
	71	1.9	0.53	56	0.5	0.28		36	0.7	0.40		17	0.9	0.18
	72	1.9	0.51	57	0.5	0.24		37	0.7	0.36		18	0.9	0.15
	73	1.9	0.53	58	0.6	0.30		38	0.7	0.42		19	0.9	0.15
	74	2.0	0.58	59	0.6	0.22		39	0.6	0.41		20	1.0	0.18
	75	2.1	0.58	60	0.7	0.10		40	0.6	0.38		21	1.0	0.15
	76	2.1	0.57	61	0.7	0.26		41	0.6	0.34		22	0.9	0.13
	77	2.1	0.58	62	0.8	0.20		42	0.6	0.34		23	1.0	0.13
	78	2.0	0.56	63	0.9	0.27		43	0.6	0.31		24	1.0	0.22
	79	2.0	0.56	64	0.9	0.28		44	0.6	0.34		25	1.0	0.24
	80	2.0	0.56	65	0.9	0.28		45	0.6	0.35		26	1.0	0.25
	81	2.0	0.52	66	1.0	0.29		46	0.6	0.37		27	1.0	0.33
	82	2.0	0.61	67	1.0	0.30		47	0.6	0.39		28	1.0	0.40
	83	1.9	0.52	68	1.0	0.31		48	0.7	0.37		29	1.0	0.39
	84	1.8	0.51	69	1.1	0.28		49	0.7	0.35		30	1.0	0.32
	85	1.7	0.54	70	1.2	0.26		50	0.7	0.35		31	1.0	0.42
	86	1.6	0.52	71	1.2	0.20		51	0.7	0.27		32	1.0	0.37
	87	1.7	0.48	72	1.2	0.20		52	0.7	0.25		33	0.9	0.34
	88	1.7	0.57	73	1.2	0.31		53	0.7	0.25		34	1.0	0.29
	89	1.6	0.62	74	1.1	0.36		54	0.7	0.24		35	0.9	0.27
	90	1.4	0.54	75	1.1	0.35		55	0.7	0.21		36	0.9	0.21
	91	1.2	0.52	76	1.3	0.30		56	0.7	0.17		37	0.9	0.28
	92	1.1	0.20	77	1.3	0.32		57	0.7	0.25		38	0.9	0.27
7/11/12	0	0.2	0.09	78	1.3	0.33		58	0.7	0.26		39	0.9	0.21
	1	0.3	0.37	79	1.4	0.36		59	0.8	0.23		40	0.9	0.21
	2	0.3	0.38	80	1.5	0.36		60	0.9	0.22		41	0.9	0.22
	3	0.4	0.37	81	1.5	0.40		61	0.9	0.15		42	0.9	0.19

	43	0.9	0.26	9	0.7	0.08		71	1.5	0.13
	44	0.9	0.26	10	0.7	0.12		72	1.5	0.12
	45	0.9	0.23	11	0.7	0.10		73	1.5	0.15
	46	0.9	0.27	12	0.7	0.09		74	1.6	0.16
	47	0.9	0.29	13	0.7	0.08		75	1.7	0.15
	48	0.9	0.24	14	0.7	0.12		76	1.7	0.15
	49	0.9	0.15	15	0.7	0.08		77	1.8	0.17
	50	0.9	0.11	16	0.7	0.07		78	1.8	0.17
	51	0.9	0.10	17	0.7	0.07		79	1.9	0.18
	52	0.9	0.10	18	0.8	0.16		80	1.9	0.22
	53	0.9	0.13	19	0.8	0.19		81	1.8	0.32
	54	1.0	0.16	20	0.7	0.23		82	1.8	0.25
	55	1.0	0.17	21	0.7	0.20		83	1.7	0.30
	56	1.0	0.17	22	0.8	0.13		84	1.6	0.32
	57	1.0	0.16	23	0.8	0.15		85	1.6	0.24
	58	1.0	0.17	24	0.8	0.15		86	1.6	0.24
	59	1.0	0.07	25	0.8	0.18		87	1.4	0.22
	60	1.0	0.07	26	0.7	0.22		88	1.3	0.34
	61	1.2	0.07	27	0.8	0.26		89	1.4	0.35
	62	1.2	0.02	28	0.7	0.43		90	1.3	0.25
	63	1.3	0.11	29	0.8	0.45		91	1.2	0.13
	64	1.3	0.14	30	0.8	0.35		92	1.0	0.24
	65	1.3	0.18	31	0.8	0.30		93	0.9	0.32
	66	1.4	0.15	32	0.8	0.43		94	0.7	0.12
	67	1.5	0.20	33	0.8	0.41		95	0.7	0.04
	68	1.5	0.16	34	0.8	0.39	9/6/12	0	0.2	0.45
	69	1.5	0.15	35	0.8	0.31		1	0.3	0.43
	70	1.5	0.18	36	0.7	0.29		2	0.4	0.41
	71	1.6	0.17	37	0.7	0.24		3	0.4	0.46
	72	1.7	0.14	38	0.7	0.20		4	0.4	0.52
	73	1.8	0.14	39	0.7	0.23		5	0.5	0.60
	74	1.8	0.15	40	0.7	0.27		6	0.5	0.66
	75	1.9	0.14	41	0.7	0.24		7	0.5	0.53
	76	1.9	0.15	42	0.7	0.22		8	0.6	0.52
	77	1.9	0.17	43	0.7	0.21		9	0.5	0.25
	78	2.0	0.23	44	0.7	0.23		10	0.5	0.50
	79	2.0	0.23	45	0.7	0.22		11	0.5	0.09
	80	1.9	0.22	46	0.7	0.22		12	0.5	0.01
	81	1.9	0.29	47	0.7	0.20		13	0.5	0.08
	82	1.9	0.26	48	0.7	0.22		14	0.5	0.61
	83	1.9	0.30	49	0.7	0.18		15	0.5	0.63
	84	1.9	0.33	50	0.7	0.18		16	0.5	0.67
	85	1.9	0.37	51	0.7	0.15		17	0.5	0.63
	86	1.9	0.37	52	0.6	0.16		18	0.5	0.45
	87	1.8	0.36	53	0.7	0.13		19	0.6	0.57
	88	1.8	0.33	54	0.8	0.14		20	0.6	0.66
	89	1.8	0.29	55	0.7	0.10		21	0.6	0.68
	90	1.7	0.29	56	0.9	0.10		22	0.6	0.59
	91	1.5	0.33	57	0.9	0.04		23	0.6	0.48
	92	1.5	0.35	58	0.9	0.08		24	0.5	0.26
	93	1.3	0.38	59	1.0	0.07		25	0.5	0.40
	94	1.1	0.29	60	0.7	0.03		26	0.4	0.08
	95	0.9	0.10	61	1.1	0.03		27	0.5	0.01
8/22/12	0	0.5	0.05	62	1.1	0.03		28	0.5	0.00
	1	0.6	0.24	63	1.2	0.06		29	0.5	0.01
	2	0.5	0.22	64	1.2	0.05		30	0.5	0.05
	3	0.6	0.05	65	1.3	0.07		31	0.5	0.46
	4	0.7	0.11	66	1.4	0.09		32	0.5	0.72
	5	0.7	0.08	67	1.4	0.15		33	0.5	0.66
	6	0.7	0.15	68	1.4	0.13		34	0.5	0.76
	7	0.7	0.10	69	1.5	0.11		35	0.6	0.66
	8	0.7	0.10	70	1.5	0.13		36	0.5	0.67

Main Stem

Date	Feet	Depth	Flow
5/8/12	0	0.1	0.00
	1	0.6	0.01
	2	1.1	0.20
	3	1.7	0.39
	4	2.2	0.31
	5	2.6	0.23
	6	2.6	0.28
	7	2.5	0.43
	8	2.4	0.50
	9	2.3	0.42
	10	2.2	0.48
	11	2.2	0.58
	12	2.2	0.63
	13	2.0	0.62
	14	1.9	0.62
	15	1.7	0.58
	16	1.6	0.55
	17	1.7	0.52
	18	1.7	0.49
	19	1.7	0.45
	20	1.6	0.30
	21	1.9	0.21
	22	0.7	0.14
	23	1.2	0.04
5/22/12	0	0.7	0.03
	1	0.6	0.13
	2	1.7	0.11
	3	1.6	0.11
	4	1.9	0.16
	5	1.8	0.17
	6	1.7	0.22
	7	1.6	0.23
	8	1.5	0.26
	9	1.5	0.22
	10	1.5	0.28
	11	1.5	0.30
	12	1.5	0.30
	13	1.6	0.29
	14	1.5	0.29
	15	1.4	0.22
	16	1.2	0.17
	17	1.1	0.14
	18	1.0	0.08
	19	0.5	0.03
6/5/12	0	0.3	0.00
	1	0.4	0.01
	2	1.0	0.09

	12	1.2	0.15
	13	1.2	0.15
	14	1.1	0.15
	15	1.1	0.14
	16	0.8	0.12
	17	0.8	0.11
	18	0.7	0.05
	19	0.4	0.01
8/22/12	0	0.5	0.01
	1	0.8	0.02
	2	1.3	0.06
	3	1.4	0.06
	4	1.3	0.07
	5	1.3	0.10
	6	1.3	0.08
	7	1.3	0.11
	8	1.4	0.09
	9	1.2	0.14
	10	1.2	0.16
	11	1.2	0.16
	12	1.2	0.11
	13	1.1	0.14
	14	1.1	0.12
	15	0.9	0.10
	16	0.8	0.10
	17	0.8	0.08
	18	0.7	0.03
	19	0.2	0.00
9/6/12	0	0.5	0.00
	1	0.3	0.04
	2	1.6	0.04
	3	1.5	0.05
	4	1.3	0.06
	5	1.3	0.05
	6	1.3	0.08
	7	1.3	0.09
	8	1.3	0.10
	9	1.2	0.12
	10	1.2	0.13
	11	1.2	0.12
	12	1.2	0.13
	13	1.1	0.13
	14	1.1	0.10
	15	0.9	0.10
	16	0.8	0.08
	17	0.8	0.07
	18	0.7	0.04
	19	0.3	0.01

Beaver Brook West

Date			Flo w	
$5 / 8 / 12$	0	1.1	0.14	
	1	1.2	0.26	
	2	1.5	0.58	
	3	1.4	0.76	
	4	1.5	0.75	
	5	1.5	0.76	
	6	1.6	0.56	
	7	1.6	0.48	
	8	1.5	0.27	
$5 / 22 / 12$	0	0.5	0.17	
	1	0.6	0.20	
	2	0.9	0.29	
	3	0.8	0.34	
	4	1.0	0.34	
	5	1.0	0.44	
	6	1.0	0.36	
	7	0.9	0.39	
	8	0.6	0.31	
	9	0.6	0.18	
	10	0.5	0.12	
	11	0.5	0.01	
$6 / 5 / 12$	0	0.2	0.09	
	1	0.3	0.17	
	2	0.7	0.11	
	3	0.7	0.03	
	4	0.8	0.32	

	5	0.9	0.42
	6	1.0	0.49
	7	1.1	0.43
	8	1.0	0.48
	9	0.8	0.48
	10	1.0	0.42
	11	1.0	0.28
	12	0.6	0.31
	13	0.7	0.19
	14	0.7	0.11
	15	0.4	0.01
$6 / 19 / 12$	0	0.2	0.12
	1	0.2	0.18
	2	0.8	0.08
	3	0.8	0.30
	4	0.9	0.42
	5	1.0	0.44
	6	1.0	0.38
	7	1.1	0.40
	8	1.0	0.40
	9	1.0	0.35
	10	0.9	0.29
	11	0.8	0.27
	12	0.8	0.23
	13	0.7	0.16
	14	0.7	0.06
15	0.3	0.01	
$7 / 11 / 12$	0	0.2	0.00

	1	0.3	0.03
	2	0.4	0.09
	3	0.3	0.13
	4	0.4	0.13
	5	0.6	0.42
	6	0.7	0.27
	7	0.8	0.32
	8	0.8	0.41
	9	0.8	0.39
	10	0.7	0.24
	11	0.6	0.20
	12	0.2	0.00
	13	0.4	0.00
$7 / 24 / 12$	0	0.1	0.00
	1	0.2	0.00
	2	0.2	0.08
	3	0.5	0.01
	4	0.5	0.09
	5	0.6	0.38
	6	0.6	0.31
	7	0.6	0.28
	8	0.5	0.02
	9	0.3	0.00
	10	0.3	0.00
	11	0.2	0.00
$8 / 7 / 12$	0	0.1	0.01
	1	0.2	0.00
	2	0.3	0.14

	3	0.4	0.06
	4	0.5	0.14
	5	0.4	0.29
	6	0.4	0.21
	7	0.5	0.16
	8	0.3	0.02
	9	0.2	0.03
$8 / 22 / 12$	0	0.1	0.01
	1	0.1	0.05
	2	0.2	0.09
	3	0.3	0.05
	4	0.2	0.15
	5	0.2	0.26
	6	0.3	0.21
	7	0.3	0.01
	8	0.2	0.00
$9 / 6 / 12$	0	0.1	0.01
	1	0.1	0.04
	2	0.2	0.00
	3	0.3	0.06
	4	0.4	0.12
	5	0.4	0.15
	6	0.4	0.10
7	0.2	0.17	
	8	0.2	0.00

Beaver Brook East

Date	Fee t	$\begin{aligned} & \text { Dept } \\ & \mathrm{h} \\ & \hline \end{aligned}$	Flo W
5/8/12	0	0.7	0.25
	1	0.8	0.37
	2	0.9	0.38
	3	1.0	0.34
	4	1.0	0.43
	5	1.0	0.39
	6	1.0	0.34
	7	1.0	0.34
	8	1.0	0.35
	9	1.0	0.33
	10	0.8	0.30
	11	0.8	0.28
	12	0.5	0.22
5/22/1			
2	0	0.2	0.01
	1	0.3	0.07
	2	0.5	0.07
	3	0.5	0.11
	4	0.6	0.09
	5	0.6	0.08
	6	0.6	0.07
	7	0.4	0.08
	8	0.4	0.08
	9	0.4	0.08
	10	0.4	0.06
	11	0.3	0.03
6/5/12	0	0.2	0.00
	1	0.5	0.08
	2	0.5	0.14
	3	0.6	0.19
	4	0.5	0.18
	5	0.5	0.19
	6	0.5	0.19

$\left.\begin{array}{rrrr} & 7 & 0.4 & 0.04 \\ & 8 & 0.4 & 0.06 \\ & 9 & 0.3 & 0.04 \\ & 10 & 0.3 & 0.19 \\ & 11 & 0.2 & 0.13 \\ & 12 & 0.3 & 0.04 \\ 6 / 19 / 1 & & & 0.2\end{array}\right) 0.20$

	11	0.0	0.00
	12	0.05	0.02
	13	0.2	0.16
	14	0.1	0.01
	15	0.1	0.01
$7 / 24 / 1$			
2	0	0.2	0.00
	1	0.2	0.01
	2	0.5	0.16
	3	0.6	0.15
	4	0.6	0.13
	5	0.4	0.08
	6	0.5	0.01
	7	0.2	0.02
	8	0.2	0.02
	9	0.1	0.00
	10	0.1	0.00
	11	0.1	0.01
	12	0.2	0.12
	13	0.1	0.29
	14	0.1	0.10
	15	0.2	0.06
	16	0.1	0.02
$8 / 7 / 12$	0	0.3	0.01
	1	0.3	0.06
	2	0.3	0.07
	3	0.5	0.09
	4	0.5	0.05
	5	0.4	0.01
	6	0.3	0.08
	7	0.3	0.06
	8	0.3	0.03
	9	0.3	0.00
	10	0.2	0.01
$8 / 22 / 1$	0	0.3	0.03

2			
	1	0.1	0.04
	2	0.4	0.09
	3	0.5	0.09
	4	0.5	0.12
	5	0.2	0.07
	6	0.3	0.03
	7	0.1	0.00
	8	0.1	0.01
	9	0.1	0.00
	10	0.0	0.00
	11	0.0	0.00
	12	0.1	0.06
	13	0.1	0.04
	14	0.0	0.00
	15	0.1	0.06
16	0.1	0.03	
$9 / 6 / 12$	0	0.3	0.02
	1	0.1	0.00
	2	0.2	0.03
	3	0.5	0.05
	4	0.4	0.12
	5	0.2	0.01
6	0.0	0.00	
7	0.1	0.01	
	8	0.0	0.00
9	0.1	0.01	
	10	0.0	0.00
11	0.0	0.00	
12	0.1	0.04	
13	0.1	0.03	
14	0.1	0.06	
15	0.0	0.00	

Appendix D

Phytoplankton Data
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000355

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 05/08/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12
Sample Location: APPLE RIVER FLOWAGE - SITE 1 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABTMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810
ID\#:
Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	55.	CELLS/ML	2.2%
FRAGILARIA SP.	BACILLARIOPHYTA	380.	CELLS/ML	15.0%
PLACONEIS SP.	BACILLARIOPHYTA	16.	CELLS/ML	0.6%
STEPHANODISCUS SP.	BACILLARIOPHYTA	24.	CELLS/ML	0.9%
SYNEDRA SP.	BACILLARIOPHYTA	8.	CELLS/ML	0.3%
ANKISTRODESMUS SP.	CHLOROPHYTA	24.	CELLS/ML	0.9%
QUADRIGULA SP.	CHLOROPHYTA	63.	CELLS/ML	2.5%
SCENEDESMUS SP.	CHLOROPHYTA	32.	CELLS/ML	1.3%
DINOBRYON SP.	CHRYSOPHYTA	16.	CELLS/ML	0.6%
CRYPTOMONAS SP.	CRYPTOPHYTA	158.	CELLS/ML	6.2%
KOMMA CAUDATA	CRYPTOPHYTA	1759.	CELLS/ML	69.4%

Environmental Toxicology

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000355

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
NELAP LAB ID: E37658 EPA LAB WI00007
WI DATCP ID: 105-415

WSLH Sample: FX000357

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 05/08/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12;
Sample Location: APPLE RIVER FLOWAGE - SITE 2 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABLMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810

ID\#:

Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:

Taxa	Division	Result	Unit	Percentage
FRAGILARIA SP.	BACILLARIOPHYTA	1663.	CELLS/ML	27.4%
NAVICULOID DIATOMS	BACILLARIOPHYTA	20.	CELLS/ML	0.3%
SYNEDRA SP.	BACILLARIOPHYTA	20.	CELLS/ML	0.3%
ANKISTRODESMUS SP.	CHLOROPHYTA	40.	CELLS/ML	0.7%
CRYPTOMONAS SP.	CRYPTOPHYTA	521.	CELLS/ML	8.6%
KOMMA CAUDATA	CRYPTOPHYTA	3807.	CELLS/ML	62.7%

Environmental Toxicology

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000357

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000354

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 06/05/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12
Sample Location: APPLE RIVER FLOWAGE - SITE 1 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABLMEXUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810
ID\#:
Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	98.	CELLS/ML	6.3%
CAVINULA SP.	BACILLARIOPHYTA	28.	CELLS/ML	1.8%
FRAGILARIA SP.	BACILLARIOPHYTA	196.	CELLS/ML	12.5%
STEPHANODISCUS SP.	BACILLARIOPHYTA	19.	CELLS/ML	1.2%
ANKISTRODESMUS SP.	CHLOROPHYTA	51.	CELLS/ML	3.3%
CHODATELLA SP.	CHLOROPHYTA	9.	CELLS/ML	0.6%
CLOSTERIUM SP.	CHLOROPHYTA	19.	CELLS/ML	1.2%
COELASTRUM SP.	CHLOROPHYTA	84.	CELLS/ML	5.4%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	5.	CELLS/ML	0.3%
GOLENKINIA SP.	CHLOROPHYTA	5.	CELLS/ML	0.3%
SCENEDESMUS SP.	CHLOROPHYTA	19.	CELLS/ML	1.2%
CRYPTOMONAS SP.	CRYPTOPHYTA	350.	CELLS/ML	22.4%
KOMMA CAUDATA	CRYPTOPHYTA	681.	CELLS/ML	43.5%

Environmental Toxicology

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000354

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000358

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 06/05/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12;
Sample Location: APPLE RIVER FLOWAGE - SITE 2 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABTMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810
ID\#:
Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/18/2013
Sample Reason:

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	68.	CELLS/ML	4.9%
CAVINULA SP.	BACILLARIOPHYTA	102.	CELLS/ML	7.3%
CYCLOTELLA SP.	BACILLARIOPHYTA	9.	CELLS/ML	0.6%
FRAGILARIA SP.	BACILLARIOPHYTA	106.	CELLS/ML	7.6%
MERIDION SP.	BACILLARIOPHYTA	26.	CELLS/ML	1.9%
NAVICULOID DIATOMS	BACILLARIOPHYTA	30.	CELLS/ML	2.2%
ANKISTRODESMUS SP.	CHLOROPHYTA	47.	CELLS/ML	3.4%
GOLENKINIA SP.	CHLOROPHYTA	4.	CELLS/ML	0.3%
PANDORINA SP.	CHLOROPHYTA	51.	CELLS/ML	3.7%
SCENEDESMUS SP.	CHLOROPHYTA	17.	CELLS/ML	1.2%
CRYPTOMONAS SP.	CRYPTOPHYTA	345.	CELLS/ML	24.8%
KOMMA CAUDATA	CRYPTOPHYTA	588.	CELLS/ML	42.2%

Environmental Toxicology

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000358

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

WSLH Sample: FX000353

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 07/11/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12
Sample Location: APPLE RIVER FLOWAGE - SITE 1 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABLMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810

ID\#:

Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000353

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	96.	CELLS/ML	1.7%
FRAGILARIA SP.	BACILLARIOPHYTA	149.	CELLS/ML	2.7%
STEPHANODISCUS SP.	BACILLARIOPHYTA	21.	CELLS/ML	0.4%
ANKISTRODESMUS SP.	CHLOROPHYTA	85.	CELLS/ML	1.5%
CLOSTERIUM SP.	CHLOROPHYTA	21.	CELLS/ML	0.4%
COELASTRUM SP.	CHLOROPHYTA	1607.	CELLS/ML	29.3%
DICTYOSPHAERIUM SP.	CHLOROPHYTA	202.	CELLS/ML	3.7%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	43.	CELLS/ML	0.8%
PANDORINA SP.	CHLOROPHYTA	170.	CELLS/ML	3.1%
PEDIASTRUM SP.	CHLOROPHYTA	11.	CELLS/ML	0.2%
SCENEDESMUS SP.	CHLOROPHYTA	426.	CELLS/ML	7.8%
CRYPTOMONAS SP.	CRYPTOPHYTA	1767.	CELLS/ML	32.2%
KOMMA CAUDATA	CRYPTOPHYTA	852.	CELLS/ML	15.5%
PHACUS SP.	EUGLENOPHYTA	11.	CELLS/ML	0.2%
TRACHELOMONAS SP.	EUGLENOPHYTA	32.	CELLS/ML	0.6%

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:
Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000359

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 07/11/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12;
Sample Location: APPLE RIVER FLOWAGE - SITE 2 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABLMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810

ID\#:

Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/18/2013
Sample Reason:
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	39.	CELLS/ML	0.7%
CAVINULA SP.	BACILLARIOPHYTA	576.	CELLS/ML	10.0%
FRAGILARIA SP.	BACILLARIOPHYTA	275.	CELLS/ML	4.8%
NAVICULOID DIATOMS	BACILLARIOPHYTA	26.	CELLS/ML	0.5%
STEPHANODISCUS SP.	BACILLARIOPHYTA	13.	CELLS/ML	0.2%
ANKISTRODESMUS SP.	CHLOROPHYTA	210.	CELLS/ML	3.7%
CLOSTERIUM SP.	CHLOROPHYTA	13.	CELLS/ML	0.2%
COELASTRUM SP.	CHLOROPHYTA	157.	CELLS/ML	2.7%
DICTYOSPHAERIUM SP.	CHLOROPHYTA	511.	CELLS/ML	8.9%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	197.	CELLS/ML	3.4%
PANDORINA SP.	CHLOROPHYTA	131.	CELLS/ML	2.3%
SCENEDESMUS SP.	CHLOROPHYTA	1310.	CELLS/ML	22.8%
STAURASTRUM SP.	CHLOROPHYTA	13.	CELLS/ML	0.2%
CRYPTOMONAS SP.	CRYPTOPHYTA	1900.	CELLS/ML	33.0%
KOMMA CAUDATA	CRYPTOPHYTA	380.	CELLS/ML	6.6%

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:
Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

Field \#:
Collection Start: 08/07/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12
Sample Location: APPLE RIVER FLOWAGE - SITE 1 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES PGEPABLMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810

ID\#:

Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

Environmental Toxicology

WSLH Sample: FX000352

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	170.	CELLS/ML	2.9%
FRAGILARIA SP.	BACILLARIOPHYTA	375.	CELLS/ML	6.5%
SYNEDRA SP.	BACILLARIOPHYTA	11.	CELLS/ML	0.2%
ACTINASTRUM SP.	CHLOROPHYTA	91.	CELLS/ML	1.6%
ANKISTRODESMUS SP.	CHLOROPHYTA	68.	CELLS/ML	1.2%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	34.	CELLS/ML	0.6%
GOLENKINIA SP.	CHLOROPHYTA	23.	CELLS/ML	0.4%
SCENEDESMUS SP.	CHLOROPHYTA	409.	CELLS/ML	7.1%
DINOBRYON SP.	CHRYSOPHYTA	136.	CELLS/ML	2.4%
CRYPTOMONAS SP.	CRYPTOPHYTA	1374.	CELLS/ML	23.8%
KOMMA CAUDATA	CRYPTOPHYTA	1238.	CELLS/ML	21.4%
APHANIZOMENON ISSATSCHENKOI	CYANOPHYTA	1658.	CELLS/ML	28.7%
MERISMOPEDIA SP.	CYANOPHYTA	182.	CELLS/ML	3.1%
PHACUS SP.	EUGLENOPHYTA	11.	CELLS/ML	0.2%

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:
Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND $=$ None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

Laboratory Report

D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

Field \#:
Collection Start: 08/07/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12;
Sample Location: APPLE RIVER FLOWAGE - SITE 2 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABLMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810

ID\#:

Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/18/2013
Sample Reason:
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division

Environmental Toxicology

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000360

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	26.	CELLS/ML	0.3%
CAVINULA SP.	BACILLARIOPHYTA	145.	CELLS/ML	1.6%
CYCLOTELLA SP.	BACILLARIOPHYTA	17.	CELLS/ML	0.2%
FRAGILARIA SP.	BACILLARIOPHYTA	324.	CELLS/ML	3.5%
MERIDION SP.	BACILLARIOPHYTA	9.	CELLS/ML	0.1%
STEPHANODISCUS SP.	BACILLARIOPHYTA	9.	CELLS/ML	0.1%
ANKISTRODESMUS SP.	CHLOROPHYTA	77.	CELLS/ML	0.8%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	77.	CELLS/ML	0.8%
GOLENKINIA SP.	CHLOROPHYTA	17.	CELLS/ML	0.2%
SCENEDESMUS SP.	CHLOROPHYTA	409.	CELLS/ML	4.5%
DINOBRYON SP.	CHRYSOPHYTA	162.	CELLS/ML	1.8%
CRYPTOMONAS SP.	CRYPTOPHYTA	579.	CELLS/ML	6.3%
KOMMA CAUDATA	CRYPTOPHYTA	945.	CELLS/ML	10.3%
OSCILLATORIA SP.	CYANOPHYTA	3159.	CELLS/ML	34.5%
PLANKTOTHRIX SP.	CYANOPHYTA	2419.	CELLS/ML	26.4%
PSEUDANABAENA SP.	CYANOPHYTA	775.	CELLS/ML	8.5%

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:
Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000351

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 09/06/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: LPL-1474-12
Sample Location: APPLE RIVER FLOWAGE - SITE 1 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABTMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810
ID\#:
Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:

Taxa	Division	Result	Unit	Percentage
CYCLOTELLA SP.	BACILLARIOPHYTA	102.	CELLS/ML	1.0%
FRAGILARIA SP.	BACILLARIOPHYTA	613.	CELLS/ML	5.7%
SYNEDRA SP.	BACILLARIOPHYTA	34.	CELLS/ML	0.3%
ANKISTRODESMUS SP.	CHLOROPHYTA	409.	CELLS/ML	3.8%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	341.	CELLS/ML	3.2%
GOLENKINIA SP.	CHLOROPHYTA	6234.	CELLS/ML	58.3%
SCENEDESMUS SP.	CHLOROPHYTA	273.	CELLS/ML	2.6%
DINOBRYON SP.	CHRYSOPHYTA	1703.	CELLS/ML	15.9%
CRYPTOMONAS SP.	CRYPTOPHYTA	409.	CELLS/ML	3.8%
KOMMA CAUDATA	CRYPTOPHYTA	579.	CELLS/ML	5.4%

Environmental Toxicology

WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000351

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:

Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

WSLH Sample: FX000356

POLK COUNTY LAND \& WATER RESOU 100 POLK COUNTY PLAZA, SUITE 1

BALSAM LAKE WI 54810

Field \#:
Collection Start: 09/06/2012
Collection End:
Collected By: J. WILLIAMSON
County:
Sample Source: SURFACE WATER
Sample Depth: 2 Meters
Sample Information: ; LPL-1474-12
Sample Location: APPLE RIVER FLOWAGE - SITE 2 NORTH
Sample Description: COMPOSITE SAMPLER
Analyses and Results:

Bill To

Customer ID: 336949
POLK COUNTY LAND \& WATER RESOURCES
PGEPABLMEOUNTY PLAZA, SUITE 120
BALSAM LAKE WI 54810

ID\#:

Waterbody/Outfall ID: 2614000
Point/Well:
Account \#: PP001
Project No:
Date Received: 10/02/2012
Date Reported: 03/14/2013
Sample Reason:
D.F. Kurtycz, M.D., Medical Director • Charles D. Brokopp, Dr.P.H., Director

Environmental Health Division
Environmental Toxicology
WDNR LAB ID: 113133790 NELAP LAB ID: E37658 EPA LAB WI00007 WI DATCP ID: 105-415

WSLH Sample: FX000356

Taxa	Division	Result	Unit	Percentage
AULACOSEIRA SP.	BACILLARIOPHYTA	576.	CELLS/ML	11.8%
CAVINULA SP.	BACILLARIOPHYTA	26.	CELLS/ML	0.5%
FRAGILARIA SP.	BACILLARIOPHYTA	354.	CELLS/ML	7.2%
MERIDION SP.	BACILLARIOPHYTA	39.	CELLS/ML	0.8%
NAVICULOID DIATOMS	BACILLARIOPHYTA	223.	CELLS/ML	4.6%
STEPHANODISCUS SP.	BACILLARIOPHYTA	26.	CELLS/ML	0.5%
ANKISTRODESMUS SP.	CHLOROPHYTA	105.	CELLS/ML	2.1%
DYSMORPHOCOCCUS SP.	CHLOROPHYTA	52.	CELLS/ML	1.1%
GOLENKINIA SP.	CHLOROPHYTA	210.	CELLS/ML	4.3%
OOCYSTIS SP.	CHLOROPHYTA	39.	CELLS/ML	0.8%
SCENEDESMUS SP.	CHLOROPHYTA	314.	CELLS/ML	6.4%
DINOBRYON SP.	CHRYSOPHYTA	197.	CELLS/ML	4.0%
CRYPTOMONAS SP.	CRYPTOPHYTA	393.	CELLS/ML	8.0%
KOMMA CAUDATA	CRYPTOPHYTA	2018.	CELLS/ML	41.3%
PSEUDANABAENA SP.	CYANOPHYTA	275.	CELLS/ML	5.6%
PHACUS SP.	EUGLENOPHYTA	26.	CELLS/ML	0.5%
TRACHELOMONAS SP.	EUGLENOPHYTA	13.	CELLS/ML	0.3%

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes see http://www.slh.wisc.edu/nelap/

List of Abbreviations:
Natural Unit = Unicell, Colony or Filament Equals 1 Unit
LOD = Level of detection
LOQ = Level of quantification
ND = None detected. Results are less than the LOD

Responsible Party: \qquad Steve Geis, Chemist Supervisor

If there are questions about this report, please contact Dawn Perkins at 608-224-6230.
The results in this report apply only to the sample specifically listed above. This report is not to be reproduced except in full.

Appendix E

Zooplankton Data

Taxa abundance

Site	Apple North 1	Apple North 1	Apple North 1	Apple North 1	Apple North 1	Apple South 2					
Date	5-May-12	8-Jun-12	11-Jul-12	7-Aug-12	6-Sep-12	8-May-12	5-Jun-12	5-Jun-12	11-Jul-12	7-Aug-12	6-Sep-12
								Replicate			
Site Code	AppN	AppN	AppN	AppN	AppN	AppS	AppS	AppS	AppS	AppS	AppS
Taxa richness	14	15	18	18	13	15	16	16	14	13	18
\#/I -->											
total n (\#/I)	289.3041106	203.41692	675.042944	163.486932	421.901828	231.6693073	470.8725759	629.0857613	316.426371	357.3250176	156.894717
Rotifera	231.6693073	171.774288	442.996932	118.65987	413.1122065	121.4851246	267.4556231	387.9990025	85.38489375	232.4765175	108.112326
Copepoda	22.60188364	0	68.559049	26.36886	4.394810708	56.5047091	97.94149578	120.5433794	150.6792243	107.6280173	5.273772
Cladocera	32.20768419	9.040752	163.486963	13.18443	0	39.55329637	30.13584485	45.20376728	60.27168971	4.305120694	9.229101
testate protozoa	2.825235455	20.341692	0	0	4.394810708	14.12617728	75.33961214	75.33961214	0	12.91536208	34.279518
\#/I -->											
ROTIFERA											
Anuraeopsis fissa											2.636886
Ascomorpha sp.				2.636886							
Asplanchna herricki			15.821319		61.52734991	25.4271191	11.30094182	45.20376728			
Aplanchna priodonta	39.55329637	13.561128			17.57924283						36.916404
Brachionus quadridentatus											2.636886
Collotheca sp.			5.273773								5.273772
Colurella sp.	2.825235455		5.273773								
Conochilus unicornis	121.4851246				4.394810708		3.766980607	3.766980607			2.636886
Euchlanis sp.		2.260188									
Kellicottia longispina					4.394810708						
Keratella cochlearis cochlearis	31.07759001	36.163008	10.547546	2.636886	79.10659274	25.4271191	18.83490303	33.90282546	35.15848566	30.13584485	2.636886
Keratella cochlearis hispida			295.331288	52.73772							
Keratella cochlearis robusta						42.37853183					
Keratella cochlearis tecta			5.273773	29.005746	136.2391319					68.8819311	21.095088
Keratella earlinae		24.862068									
Lecane luna									5.022640809		
Monostyla bulla									15.06792243		
Monostyla lunaris				2.636886						4.305120694	
Notholca squamula		2.260188									
Notholca acuminata var extensa		6.780564				5.65047091					
Notomata sp.				5.273772							
Polyarthra sp.		18.081504		2.636886							10.547544
Polyarthra dolichoptera	5.65047091	40.683384	10.547546		74.71178204	2.825235455	94.17451517	116.7763988	5.022640809	43.05120694	
Polyarthra major							7.533961214	18.83490303			
Polyarthra remata	28.25235455		94.927914				22.60188364	26.36886425			
Polyarthra vulgaris	2.825235455			5.273772		14.12617728	94.17451517	135.6113018	25.11320405	77.49217248	5.273772
Pompholyx sulcata					17.57924283		3.766980607				
Synchaeta sp.											10.547544
Trichocerca cylindrica				13.18443	8.789621416					4.305120694	
Trichocerca pusilla				2.636886	4.394810708						5.273772
Trichocerca multicrinis					4.394810708						
Trichotria tetractis		2.260188									
Trocosphaera sp.		24.862068									
unidentified rotifer						5.65047091	11.30094182	7.533961214		4.305120694	2.636886
COPEPODA											
cyclopoid nauplius	16.95141273		21.095092	18.458202	4.394810708	48.02900274	86.64055396	109.2424376	95.43017537	94.71265526	5.273772

cyclopoid copepodid	5.65047091		21.095092	2.636886			7.533961214	3.766980607	45.20376728	8.610241387	
calanoid nauplius							3.766980607	3.766980607			
Acanthocyclops sp.			5.273773								
Diacyclops spp.			5.273773			5.65047091		3.766980607	10.04528162	4.305120694	
Microcyclops sp.			15.821319	5.273772							
Paracyclops chiltoni						2.825235455					
CLADOCERA											
Bosmina coregoni				2.636886		5.65047091					
Bosmina leideri			52.73773	2.636886							
Bosmina longirostris	19.77664819	2.260188	26.368865	5.273772		16.95141273	15.06792243	30.13584485			
Ceriodaphnia sp.	5.65047091								10.04528162		
Ceriodaphnia lacustris							3.766980607				
Ceriodaphnia laticaudata							11.30094182	11.30094182			
Ceriodaphnia pulchella			26.368865								
Chydorus sp.		6.780564									
Chydorus faviformis			26.368865						20.09056324		
Chydorus sphaericus						14.12617728		3.766980607		4.305120694	
Diaphanosoma sp.	1.130094182		31.642638	2.636886					5.022640809		
Daphnia ambigua											2.636886
Acroperus harpae									10.04528162		
Camptocercus sp.											5.273772
Paralona pigra	5.65047091					2.825235455					
Sida sp.											1.318443
Simocephalus mirabilis									15.06792243		
OSTRACODA											
Candonidae				5.273772							
Juvenile ostracod		2.260188							20.09056324		
TESTATE PROTIST											
Centropyxis aerophila		4.520376									
Cyclopyxis arcelloides		15.821316									5.273772
Difflugia oblonga	2.825235455									8.610241387	29.005746
Trinema sp.					4.394810708	14.12617728	75.33961214	75.33961214			
unidentifiable protist										4.305120694	

Genera Abundance

Site	Apple North 1	Apple North 1	Apple North 1	Apple North 1	Apple North 1	Apple South 2					
Date	5-May-12	8-Jun-12	11-Jul-12	7-Aug-12	6-Sep-12	8-May-12	5-Jun-12	5-Jun-12	11-Jul-12	7-Aug-12	6-Sep-12
								Replicate			
Site Code	AppN	AppN	AppN	AppN	AppN	AppS	AppS	AppS	AppS	AppS	AppS
Taxa richness	14	15	18	18	13	15	16	16	14	13	18
total n (\#/I)	289.3041106	203.41692	675.042944	163.486932	421.901828	231.6693073	470.8725759	629.0857613	316.426371	357.3250176	156.894717
Rotifera	231.6693073	171.774288	442.996932	118.65987	413.1122065	121.4851246	267.4556231	387.9990025	85.38489375	232.4765175	108.112326
Copepoda	22.60188364		68.559049	26.36886	4.394810708	56.5047091	97.94149578	120.5433794	150.6792243	107.6280173	5.273772
Cladocera	32.20768419	9.040752	163.486963	13.18443		39.55329637	30.13584485	45.20376728	60.27168971	4.305120694	9.229101
testate protozoa	2.825235455	20.341692			4.394810708	14.12617728	75.33961214	75.33961214	0	12.91536208	34.279518
ROTIFERA											
Anuraeopsis											2.636886
Ascomorpha				2.636886							

Asplanchna	39.55329637	13.561128	15.821319	0	79.10659274	25.4271191	11.30094182	45.20376728	0	0	36.916404
Brachionus											2.636886
Collotheca			5.273773								5.273772
Colurella	2.825235455		5.273773								
Conochilus	121.4851246				4.394810708		3.766980607	3.766980607			2.636886
Euchlanis		2.260188									
Kellicottia					4.394810708						
Keratella	31.07759001	61.025076	311.152607	84.380352	215.3457247	67.80565092	18.83490303	33.90282546	35.15848566	99.01777595	23.731974
Lecane									5.022640809		
Monostyla				2.636886					15.06792243	4.305120694	
Notholca		9.040752				5.65047091					
Notomata				5.273772							
Polyarthra	36.72806092	58.764888	105.47546	7.910658	74.71178204	16.95141273	218.4848752	297.5914679	30.13584485	120.5433794	15.821316
Pompholyx					17.57924283		3.766980607				
Synchaeta											10.547544
Trichocerca				15.821316	17.57924283					4.305120694	5.273772
Trichotria		2.260188									
Trocosphaera		24.862068									
unidentified rotifer						5.65047091	11.30094182	7.533961214		4.305120694	2.636886
COPEPODA											
cyclopoid nauplius	16.95141273		21.095092	18.458202	4.394810708	48.02900274	86.64055396	109.2424376	95.43017537	94.71265526	5.273772
cyclopoid copepodid	5.65047091		21.095092	2.636886			7.533961214	3.766980607	45.20376728	8.610241387	
calanoid nauplius							3.766980607	3.766980607			
Acanthocyclops			5.273773								
Diacyclops			5.273773			5.65047091		3.766980607	10.04528162	4.305120694	
Mesocyclops											
Microcyclops			15.821319	5.273772							
Paracyclops						2.825235455					
CLADOCERA											
Acroperus									10.04528162		
Bosmina	19.77664819	2.260188	79.106595	10.547544		22.60188364	15.06792243	30.13584485			
Camptocercus											5.273772
Ceriodaphnia	5.65047091		26.368865				15.06792243	11.30094182	10.04528162		
Chydorus		6.780564	26.368865			14.12617728		3.766980607	20.09056324	4.305120694	
Daphnia											2.636886
Diaphanosoma	1.130094182		31.642638	2.636886					5.022640809		
Paralona	5.65047091					2.825235455					
Sida											1.318443
Simocephalus									15.06792243		
OSTRACODA		2.260188		5.273772					20.09056324		
TESTATE PROTIST											
Centropyxis		4.520376									
Cyclopyxis		15.821316									5.273772
Difflugia	2.825235455									8.610241387	29.005746
Trinema					4.394810708	14.12617728	75.33961214	75.33961214			
unidentifiable protist										4.305120694	

Zooplankton of the Apple River Flowage, Big Lake, Church Pine Lake, Long Lake and Wind Lake of Polk County, WI, 2012.

Toben Lafrançois
Northland College
Dept. Natural Resources
1411 Ellis Avenue \#CB126
Ashland, WI 54806

May 2013

Bosmina coregoni from Long Lake, Polk Co., WI, 2012. Lateral field of view $=0.75 \mathrm{~mm}$. Photo T. Lafrançois.

Suggested citation: Lafrançois, T. 2013. Zooplankton of the Apple River Flowage, Big Lake, Church Pine Lake, Long Lake and Wind Lake of Polk County, WI, 2012. Final report to Polk County Land \& Water Resources Department, Polk Co. WI.

Thirty five samples from lakes in Polk County were examined for zooplankton species abundances, including Wind Lake, Church Pine Lake, Big Lake, Long Lake, and two sites in the Apple River Flowage. Data and preliminary analyses have been sent with this report as an attachment in Microsoft Excel.

Methods

Laboratory methods used a dual counting technique for different size fractions modified from Chick et al. 2006 and Chick et al. 2010. Samples were processed and counted at the Applied Research and Environmental Laboratory (ARELab) of Northland College, Ashland WI and at the Great Lakes Inventory and Monitoring Network of the National Park Service who generously provided microscope access during construction at the Northland College lab. Zooplankton samples were condensed on a $20 \mu \mathrm{~m}$ filter, transferred to 40 mL centrifuge tubes and diluted to between 20 and 40 ml depending on sample density. This volume was rigorously agitated, sub-sampled with a 1 mL Hensen-Stempel pipette, and transferred to a 1 mL Sedgwick Rafter counting slide. Organisms of all size fractions were counted on a compound microscope at magnifications of 40x to 100x. Counts were tallied row by row ($1 / 20 \mathrm{ml}$ increments) on the Sedgwick Rafter cell until stable variance in taxa diversity was achieved (Colwell \& Coddington 1994). The larger organisms (primarily copepods and cladocerans) were then counted for the entire cell and checked against the entire sample.

Stable variance in taxonomic diversity and total number for these samples was achieved when at least 50 individuals of smaller species were counted (with volume counted between 0.6 and 2 ml out of $20-40 \mathrm{ml}$). The abundance of larger individuals varied greatly so best professional judgment was used to count based not on number but subsample volume of 1 to 2 ml out of $20-40 \mathrm{ml}$. Standard identification keys were used from Thorp \& Covich (2010) to allow cross study comparison. Zooplankton counts were converted from numbers per subsample to number per liter (n / l). Three replicate samples were counted, randomly chosen from three different lakes (after a sample was randomly chosen, that lake was eliminated from the next random draw). This was done because variance can be different between systems. Lab replicates are shown on Figures 1-8, below simply as additional points. The biggest difference between replicates was in taxonomic diversity of Wind Lake, with three species between lab replicates. None of the replicates show differences in variance greater than differences between groups. Sample counting was constrained by budget but the numbers here are statistically robust but indicate that diversity would be best captured with more intensive counting (adding 1-2 rafter cells per sample).

Results and Discussion

Ninety one taxa were identified from the six sampling sites of the five lakes (Table 1). The majority of this diversity is from phylum Rotifera, followed by the crustacean Cladocera and then Copepoda. Testate protists should be considered an index of protist presence since most of that group is destroyed in ETOH preservative or is too small to be caught in the net. Ostracods are benthic and should be considered incidental catch not definitive of that community. The categories 'unidentifiable X ' were specimens individually un-identifiable and are not a single taxa across samples or even within a sample.

No male calanoid copepods were found during counting which presents a problem taxonomically. Calanoids were identifiable to family (Diaptomidae) and sometimes genus or species but without males it is impossible to confirm. Species names in parentheses were assigned only with at least some evidence and should be taken as preliminary estimates of diversity and species presence. Cyclopoid copepod genera Microcyclops and Cryptocyclops are difficult to distinguish. All of the specimens where full identification was possible keyed to Microcyclops, but it is possible that Cryptocyclops is present.

Other cyclopoid copepods represent a very difficult problem. Species in brackets indicate species identified with very high certainty according to Thorp \& Covich (2010), with clearly seen $5^{\text {th }}$ legs and other definitive characters. However, these species- Thermocyclops crassus and Metacyclops sp.- are found primarily in southeast Asia, being introduced species in North America.

Metacyclops is known in North America, including the southern United States. Previous reports from Minnesota are likely to be in error (Reid 1991). This does not preclude its presence however. Thermocyclops crassus is primarily Asiatic in distribution and its presence in Wisconsin would be surprising (Chaicharoen and others, 2011). There are three possible explanations- taxonomic error by the identifier, problems with the new taxonomic keys, or the actual presence of introduced species. It was not possible to get good digital pictures of the identifying characters due to equipment limitations, but the taxonomic features in these cases were very clear and are made with confidence. Whether these species are actually present or the taxonomic keys need revision is a question requiring further research. Their actual presence is not out of the question if recent immigrants have brought fishing gear from their country of origin or even if anglers from other parts of North America have utilized these lakes (particularly from Louisiana, USA or other southern regions). It is also possible that lack of comprehensive taxonomic study of Wisconsin freshwaters simply has missed these species in the past.

Table 1. The following species were identified from this survey. Species in parenthesis are preliminary identifications based on incomplete evidence. Species in brackets represent problematic taxa (see discussion).

ROTIFERA	Kellicottia longispina	Polyarthra dolichoptera
Anuraeopsis fissa	Keratella crassa	Polyarthra euryptera
Ascomorpha sp.	Keratella cochlearis cochlearis	Polyarthra major
Asplanchna brightwelli	Keratella cochlearis hispida	Polyarthra remata
Asplanchna herricki	Keratella cochlearis robusta	Polyarthra vulgaris
Asplanchna priodonta	Keratella cochlearis tecta	Pompholyx sulcata
Brachionus quadridentatus	Keratella earlinae	Proales sp.
Collotheca sp.	Lecane luna	Synchaeta sp.
Colurella sp.	Monostyla bulla	Trichocerca cylindrica
Conochilus unicornis	Monostyla closterocerca	Trichocerca pusilla
Euchlanis sp.	Monostyla lunaris	Trichocerca lata
Filinia longiseta	Monostyla quadridentata	Trichocerca multicrinis
Filinia terminalis	Notholca squamula	Trichotria tetractis
Gastropus sp.	Notholca acuminata var extensa	Trocosphaera sp.
Hexarthra mira	Notomata sp.	unidentified rotifer
Kellicottia bostoniensis	Polyarthra sp.	
COPEPODA	Diacyclops spp.	(Arctodiaptomus arapahoensis)
cyclopoid nauplius	Mesocyclops sp.	Heterocope septeptrionalis
cyclopoid copepodid	[Metacyclops sp.]	(Limnocalanus sp.)
calanoid nauplius	Microcyclops sp.	(Osphrantium sp.)
calanoid copepodid	Paracyclops chiltoni	(Senecella calanoides)
Acanthocyclops sp.	[Thermocyclops crassus]	
Cyclops sp.	Diaptomidae	
CLADOCERA	Ceriodaphnia pulchella	Daphnia pulex
Bosmina coregoni	Chydorus sp.	Daphnia retrocurva
Bosmina leideri	Chydorus faviformis	Leptodora kindtii
Bosmina longirostris	Chydorus sphaericus	Acroperus harpae
Bosmina longispina	Diaphanosoma sp.	Camptocercus sp.
Ceriodaphnia sp.	Daphnia ambigua	Paralona pigra
Ceriodaphnia lacustris	Daphnia mendotae	Sida sp.
Ceriodaphnia laticaudata	Daphnia parvula	Simocephalus mirabilis
OSTRACODA	TESTATE PROTIST	
Cypridopsinae	Arcella gibbosa	Difflugia lobostoma
Candonidae	Centropyxis aerophila	Trinema sp.
Juvenile ostracod	Cyclopyxis arcelloides	unidentifiable protist
	Difflugia oblonga	

Basic patterns in taxa diversity and abundance of the primary groups show that the Apple River Flowage, both north and south sites, supports the greatest abundance of zooplankton but also the greatest variation (Fig. 1). Big Lake (early season) and Church Pine (late season) had the lowest total zooplankton abundance of all sites. Taxonomic diversity was similar across all sampling sites (Fig. 2).

Figure 1. Total zooplankton abundance from six sampling sites in Polk Co., WI, 2012.

Figure 2. Total zooplankton taxonomic diversity (unmodified number of lowest identifiable taxa) from six sampling sites in Polk Co., WI, 2012.

The Apple River Flowage zooplankton were dominated by rotifers (Figs. 3 and 4), which is characteristic of flowing waters. Some cladocera are present but almost no copepods, which is somewhat unusual even for a flowing system. Abundance appears to fluctuate with the likely drivers being water retention time (higher flows reducing populations) and temperature (increasing productivity).

The Big Lake zooplankton community is dominated by rotifers, with an explosion in later summer (Fig. 5). Very low numbers of cladocera strongly suggest large populations of planktivorous fishes. The inverse relationship between cladoceran and rotifer populations appearing in the graphical representation are indicative of release from competition and predation on rotifers by elimination of larger crustaceans. Low numbers of crustacean plankton are an index of low algal grazing capacity.

Figure 3. Zooplankton abundance (number per liter) from Apple River Flowage site 1 (north), Polk County, WI, 2012.

Figure 4. Zooplankton abundance (number per liter) from Apple River Flowage site 2 (south), Polk County, WI, 2012.

Figure 5. Zooplankton abundance (number per liter) from Big Lake, Polk County, WI, 2012.

Figure 6. Zooplankton abundance (number per liter) from Long Lake, Polk County, WI, 2012.

Long lake shows a basic pattern similar to Big Lake, dominated by rotifers with (slightly) more crustacean plankton, but still lower than would be regionally expected (Lafrançois 2008, EOR 2009). The population explosion of cladocerans in late summer is primarily due to two groups (Fig. 6). One, the chydoridae and particularly Paralona pigra, generally indicative of the presence of macrophytes and shallower waters. Large numbers of Bosmina coregoni are also responsible for this trend, ironically they are often characteristic of clearer open waters, although they can be littoral as well. The concurrent drop in copepod abundance to near zero suggests that release from predation could also be a factor.

Wind Lake is again much like Big Lake and Long Lake in rotifer dominance and fewer crustaceans (Fig. 7). In particular, cladoceran numbers are very low relative to similar systems. Unlike Long lake, all groups increase in population in late summer, indicating increased productivity without any competitive interference. Overall patterns show a lake with high planktivorous fish populations and low grazing capacity. The patterns in Church Pine Lake (Fig. 8) are very similar with a much more dramatic population crash in mid-summer. It is unclear from the zooplankton data alone what may have caused this change.

Figure 7. Zooplankton abundance (number per liter) from Wind Lake, Polk County, WI, 2012.

Figure 8. Zooplankton abundance (number per liter) from Church Pine Lake, Polk County, WI, 2012.

Conclusion and recommendations

In general the lakes in this study can be sorted into two groups. The Apple River Flowage sites show influence of flowing waters and other drivers typical of such systems, while Long, Big, Wind, and Church Pine Lakes show a similar pattern of very low cladoceran populations indicative of high planktivorous fish populations and low grazing capacity.

The data included as an attachment with this report can be analyzed more robustly to untangle some of the drivers of these lake ecosystems. Recommendations include:

- Statistically analyzing data against physical and water quality parameters using trend analysis and ordination techniques would help untangle the ecological significance of the zooplankton community data.
- Closely examining trends at the species level, particularly for Long Lake, where interesting dynamics are taking place in the zooplankton community that could shed light on ecosystem processes.
- More complete taxonomic investigation of the cyclopoid copepods in particular, but also the calanoid copepods, will help address the question of introduced species and/or problems with standard taxonomic keys.

Works Cited

Chaicharoen, R., L. Sanoamuang, M. Holynska. 2011. A review of the Genus Thermocyclops (Crustacea: Copepoda: Cyclopoida) in Cambodia. Zool. Stud. 50(6): 780-803.

Chick, J.H., H. Havel, J. Jack, K. Medley \& A. Levchuk (2006) Analysis of EMAP Great Rivers zooplankton data: update and preliminary results. Great River Ecosystems Reference Conditions Workshop. Cincinnati, OH.

Chick, J.H., A.P. Levchuk, K.A. Medley \& J.H. Havel. 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnol. Oceanogr.: Methods 8, 79-87.

Colwell, R.K. \& J.A. Coddington (1994) Estimating terrestrial biodiversity through extrapolation. Phil. Trans. Royal Soc. London. Series B 345, 101-118.

Emmons \& Olivier Resources, Inc. (EOR), 2009. Interim Report on the Carnelian-Marine-St. Croix Watershed District Multi-Lake TMDL. Prepared for the Carnelian-Marine-St. Croix Watershed District, Washington Conservation District, and Minnesota Pollution Control Agency. 30 September 2009.

Lafrançois, T. 2009. Zooplankton of Wild Goose and Ward Lakes, Polk Co. WI, 2008. Final report to Polk County Land and Water Resources Dept., March 2009.

Reid, J. 1991. The genus Metacyclops (Copepoda: Cyclopoida) present in North America: M. cushae, new species from Louisiana. J. Crust. Biol. 11(4): 639-646.

Thorp, J.H. \& A.P. Covich (eds.) (2010) Ecology and classification of North American freshwater invertebrates. Academic Press (Elsevier) 1021 pp.

Appendix F

Lake Sediment Data

| Lab No. $\quad 7311 \quad$ Acct. No. 559447 |
| :--- | :--- | :--- |

Client- Kaitlin Holm/Polk Cty Land \& Water

Re: 2 soil samples submitted September 5, 2012

Results emailed: September 19, 2012

Results reported on a 'dry weight' basis. Unit: $1,000 \mathrm{ppb}=\mathrm{ppm}=\mathrm{mg} / \mathrm{kg}=\mathrm{mg} / \mathrm{liter} .1 \%=10,000 \mathrm{ppm}$.
The UW Soil \& Plant Analysis Lab Standard Operation Procedures of ICP-OES/MS are available from the following links: http://uwlab.soils.wisc.edu/files/procedures/ICPOES.pdf http://uwlab.soils.wisc.edu/files/procedures/ICPMS.pdf http://uwlab.soils.wisc.edu/files/procedures/soil_icp.pdf http://uwlab.soils.wisc.edu/files/procedures/plant_icp.pdf http://uwlab.soils.wisc.edu/files/procedures/animal_icp.pdf
ELEMENTAL ANALYSIS PACKAGE 1- TOTAL MINERALS

Sample	P	K	Ca	Mg	S	Zn	B	Mn	Fe	Cu	AI	Na
ID	\%	\%	\%	\%	\%	ppm						
ARF 8/22/12												
1.Site 1 N	0.15	0.14	1.62	0.33	0.41	54.44	8.12	769.57	53359.2	21.12	11092.4	127.2
2.Site 2 S	0.18	0.13	2.05	0.29	0.60	49.31	6.83	1310.96	32024.3	21.78	11899.2	157.9

$\left.\begin{array}{cc}\begin{array}{c}\text { Sample } \\ \text { ID }\end{array} & \begin{array}{c}\text { Total N } \\ \text { (\%) }\end{array} \\ A R F \overline{8 / 22 / 12}\end{array}\right)$

Samples Analyzed By:
UW Soil \& Plant Analysis Lab 8452 Mineral Point Road Verona, WI 53593 (608) 262-4364

County Account No. Polk 559447 Date Received Date Processed 9/5/2012 9/19/2012

Slope	Acres	Plow Depth Irrigated	
0%	0	$7 "$	No

Soil Name unknown (group O)

Field Name
ARF Site 1 North
Previous Crop
no crop

SOIL TEST REPORT
Results also available on-line at http://uwlab.soils.wisc.edu/reports lab number: 7311 access code: bfvwb

Polk County Land and Water Resources Dept - Kaitlin Holm
100 Polk County Plaza--Ste 120
Balsam Lake, WI 54810

This Report is for:
Kaitlin Holm - Polk County Land \& W
100 Polk Cty Plaza - Ste 120
Balsam Lake, WI 54810

SUGGESTED N APPLICATION RATES FOR CORN (GRAIN) AT DIFFERENT N:CORN PRICE RATIOS										
\qquad Previous Crop Medium/Low Yield Potential Soils	0.05		N:Corn Price0.10		(\$/lb					
			0.15	0.20						
	Rate ${ }^{1}$	Range			Rate ${ }^{1}$	Range	Rate ${ }^{1}$	Range	Rate ${ }^{1}$	Range
	lb N/a (Total to Apply) ${ }^{2}$									
Corn, Forage legumes, Leguminous vegetables, Green manures ${ }^{3}$	125	110-140	110	100-115	100	95-110	95	85-100		
Soybean, Small grains ${ }^{4}$	110	90-125	85	70-95	70	60-80	60	50-70		

${ }^{1}$ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within $\$ 1 / \mathrm{a}$ of the MRTN .
${ }^{2}$ These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.
${ }^{3}$ Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N
credits for leguminous vegetables on sand and loamy sand soils.
${ }^{4}$ Subtract N credits for animal manures and 2 nd year forage legumes.
Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.
2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.
3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to $20 \mathrm{lb} \mathrm{N} / \mathrm{a}$ in starter fertilizer may be applied in this situation.
4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.
5) If there is a likelihood of residual N , then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.
6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Recommended rates are the total amount of nutrients to apply (N-P-K), including starter fertilizer.
This soil is not suited for growing alfalfa, or other crops where large amounts of potassium are removed (corn silage, forage legumes).
Because of the low potassium buffering capacity of this soil, retest every 2 years.
Starter fertilizer (e.g. $10+20+20 \mathrm{lbs} \mathrm{N}_{+} \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}_{2} \mathrm{O} / \mathrm{a}$) is advisable for row crops on soils slow to warm in the spring.
Year 1: If corn is harvested for silage instead of grain add extra $30 \mathrm{lbs} \mathrm{P}_{2} \mathrm{O}_{5}$ per acre and $90 \mathrm{lbs} \mathrm{K}_{2} \mathrm{O}$ per acre to next crop.
If alfalfa will be maintained for more than three years, increase recommended $\mathrm{K}_{2} \mathrm{O}$ by 20% each year.
N.R.=Not required for calculation of lime requirement when soil pH is 6.6 or higher.

TEST INTERPRETATION																
Cropping Sequence		Very Low		Low			Optimum			High		Very High			Excessive	
Corn, grain		PPPPPPPPP KKKKKKKKKKKKKKKKKKKKKKK														
Soybean, grain		PPPPPPPPPPPPPPPPPPPPPPPPPPP KKKKKKKKKKKKK														
Alfalfa, seeding		PPPPPP KKKKKKKKKKKKKKKKK														
Alfalfa, established		PPPPPP KKKKKKKKKKKKKKKKK														
Rotation pH							XXXXXXXXXXXXXXXXXXX			XXXXXXXXXXXXXXXXXXXXXXXX						
LABORATORY ANALYSIS																
$\begin{array}{\|c\|c} \hline \text { Sample } \\ \text { Identification } \end{array}$	Soil pH	$\underset{\%}{\mathrm{O}, \mathrm{M}}$	Phosphorus ppm	$\begin{gathered} \text { Potassium } \\ \text { ppm } \end{gathered}$	$\underset{\text { Req (T/a) }}{60-69 \text { Lime }}$	$\begin{aligned} & \text { Calcium } \\ & \text { ppm } \end{aligned}$	$\begin{aligned} & \text { Magnesium } \\ & \text { ppm } \end{aligned}$	$\begin{aligned} & \text { Est. CEC } \\ & (\text { cmol } / \mathrm{kg}) \end{aligned}$	$\begin{aligned} & \text { Boron } \\ & \text { ppo } \end{aligned}$	$\begin{gathered} \text { Manganese } \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { pinc } \\ \text { ppo } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Sulfate-Sulfur } \\ \mathrm{ppm} \end{array}$	Sulfur Avail. Index	$\begin{aligned} & \text { Texture } \\ & \text { Code } \end{aligned}$	$\begin{array}{\|c} \substack{\text { Sample } \\ \text { Density }} \end{array}$	$\underset{\substack{\text { Buffer } \\ \text { pH }}}{\text { dre }}$
1	6.9	19.6	7	56	0	3795	471	10		53				2	0.45	N.R.
$\substack{\text { Adjusted } \\ \text { Averages }}$		19.6	7	56	3795		471	10	53							
SECONDARY \& MICRONUTRIENT RECOMMENDATIONS																
Interpreta	ns ----	--------	--->			Ca-H	Mg-OPT			Mn-OPT						

Response to added Ca is unlikely.

Interpretations
Ca-H Mg-OPT
Mn-OPT
Soil Mg is optimum. Maintain level with dolomitic lime.
For forage legumes, incorporate 25-50 lbs S/a before seeding or topdress $15-25 \mathrm{lbs} \mathrm{S} / \mathrm{a}$ on established stands. For corn, small grains, vegetables and fruit crops apply $10-25 \mathrm{lbs} \mathrm{S} / \mathrm{a}$. Higher rates should last 2 or more years.
Year 1,2,3,4: Response to Mn is unlikely.

Samples Analyzed By:
UW Soil \& Plant Analysis Lab 8452 Mineral Point Road Verona, WI 53593 (608) 262-4364

County Account No. Polk 559447 Date Received Date Processed 9/5/2012 9/19/2012

Slope	Acres	Plow Depth Irrigated	
0%	0	$7 "$	No

Soil Name unknown (group O)

Field Name

ARF Site 2 South
Previous Crop
no crop

SUGGESTED N APPLICATION RATES FOR CORN (GRAIN) AT DIFFERENT N:CORN PRICE RATIOS								
\square Previous Crop Medium/Low Yield Potential Soils	0.05		$\mathrm{N}:$ Corn Price Ratio ($\$ / \mathrm{lb} \mathrm{N}: \$ / \mathrm{bu}$)0.10				0.20	
	Rate ${ }^{1}$	Range						
	lb N/a (Total to Apply) ${ }^{2}$							
Corn, Forage legumes, Leguminous vegetables, Green manures ${ }^{3}$	125	110-140	110	100-115	100	95-110	95	85-100
Soybean, Small grains ${ }^{4}$	110	90-125	85	70-95	70	60-80	60	50-70

${ }^{1}$ Rate is the N rate that provides the maximum return to N (MRTN). Range is the range of profitable N rates that provide an economic return to N within $\$ 1 / \mathrm{a}$ of the MRTN .
${ }^{2}$ These rates are for total N applied including N in starter fertilizer and N used in herbicide applications.
${ }^{3}$ Subtract N credits for forage legumes, leguminous vegetables, green manures and animal manures. This includes 1st, 2nd and 3rd year credits where applicable. Do not subtract N
credits for leguminous vegetables on sand and loamy sand soils.
${ }^{4}$ Subtract N credits for animal manures and 2nd year forage legumes.
Guidelines for choosing an appropriate N application rate for corn (grain)

1) If there is more than 50% residue cover at planting, use the upper end of the range.
2) For small grains grown on medium and fine textured soils, the mid to low end of the profitable range is the most appropriate.
3) If 100% of the N will come from organic sources, use the top end of the range. In addition, up to $20 \mathrm{lb} \mathrm{N} / \mathrm{a}$ in starter fertilizer may be applied in this situation.
4) For medium and fine textured soils with 10% or more organic matter, use the low end of the range; for medium and fine textured soils with less than 2% organic matter, use the high end of the range.
5) If there is a likelihood of residual N , then use the low end of the range or use the high end of the range and subtract preplant nitrate test (PPNT) credits.
6) For corn following small grains on medium and fine textured soils, the middle to low end of the range is most appropriate.

For more information on the new N application rate guidelines for corn see http://uwlab.soils.wisc.edu/pubs/MRTN/

ADDITIONAL INFORMATION

Recommended rates are the total amount of nutrients to apply ($\mathrm{N}-\mathrm{P}-\mathrm{K}$), including starter fertilizer.
This soil is not suited for growing alfalfa, or other crops where large amounts of potassium are removed (corn silage, forage legumes).
Because of the low potassium buffering capacity of this soil, retest every 2 years.
Starter fertilizer (e.g. $10+20+20 \mathrm{lbs} \mathrm{N}_{+} \mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{K}_{2} \mathrm{O} / \mathrm{a}$) is advisable for row crops on soils slow to warm in the spring.
Year 1: If corn is harvested for silage instead of grain add extra $30 \mathrm{lbs} \mathrm{P}_{2} \mathrm{O}_{5}$ per acre and $90 \mathrm{lbs} \mathrm{K}_{2} \mathrm{O}$ per acre to next crop.
If alfalfa will be maintained for more than three years, increase recommended $\mathrm{K}_{2} \mathrm{O}$ by 20% each year.
N.R.=Not required for calculation of lime requirement when soil pH is 6.6 or higher.

Response to added Ca is unlikely.

Interpretations ------------------------>
Ca-H Mg-OPT
Mn-L
SAI-H
Soil Mg is optimum. Maintain level with dolomitic lime.
Response to sulfur unlikely.
Year 1: Band $3 \mathrm{lbs} \mathrm{Mn} / \mathrm{a}$ as sulfate or foliarly apply 1 or $0.15 \mathrm{lb} \mathrm{Mn} / \mathrm{a}$ as sulfate or chelate forms, respectively.
Year 2: Band $5 \mathrm{lbs} \mathrm{Mn} / \mathrm{a}$ as sulfate or foliarly apply 1.25 or $0.2 \mathrm{lb} \mathrm{Mn} / \mathrm{a}$ as sulfate or chelate forms, respectively.
Year 3,4: Response to Mn is unlikely.

Appendix G

Modeling Data

Date: 3/27/2013 Scenario: Apple River Flowage North Current Conditions

Lake Id: Apple River Flowage North Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 4517.8 acre
Total Unit Runoff: 8 in.
Annual Runoff Volume: 3011.9 acre-ft
Lake Surface Area <As>: 334 acre
Lake Volume <V>: 2004 acre-ft
Lake Mean Depth <z>: 6.0 ft
Precipitation - Evaporation: 3.3 in.
Hydraulic Loading: 51021.8 acre-ft/year
Areal Water Load <qs>: $152.8 \mathrm{ft} / \mathrm{year}$
Lake Flushing Rate <p>: 25.46 1/year
Water Residence Time: 0.04 year
Observed spring overturn total phosphorus (SPO): $53 \mathrm{mg} / \mathrm{m} \wedge 3$
Observed growing season mean phosphorus (GSM): $79 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

POINT SOURCE DATA
Point Sources Water Load Low Most Likely High Loading \% (m^3/year) (kg/year) (kg/year) (kg/year)
$=$
SEPTIC TANK DATA

Description	Low	Most Likely	High	
Loading \%				
Septic Tank Output (kg/capita-year) $\#$ capita-years $\%$ Phosphorus Retained by Soil	150	0.3	0.5	0.8

| Septic Tank Loading (kg/year) | | 0.90 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 0.2 | | |

Wisconsin Internal Load Estimator

Date: 3/27/2013 Scenario: 6
Method 1 - A Complete Total Phosphorus Mass Budget
Method 1 - A Complete Total Phosphorus Mass Budget $58.3 \mathrm{mg} / \mathrm{m} \wedge 3$
Phosphorus Inflow Concentration: $76.0 \mathrm{mg} / \mathrm{m} \wedge 3$
Areal External Loading: $3538.1 \mathrm{mg} / \mathrm{m} \wedge 2$-year
Predicted Phosphorus Retention Coefficient: 0.23
Observed Phosphorus Retention Coefficient: 0.23
Internal Load: -5 Lb -2 kg
Method 2 - From Growing Season In Situ Phososphorus Increases
Start of Anoxia
Average Hypolimnetic Phosphorus Concentration: $0 \mathrm{mg} / \mathrm{m} \wedge 3$
Hypolimnetic Volume: 0.0 acre-ft
Anoxia Sediment Area: 0.0 acres
Just Prior To The End of Stratification
Average Hypolimnetic Phosphorus Concentration: $0 \mathrm{mg} / \mathrm{m} \wedge 3$
Hypolimnetic Volume: 0.0 acre-ft
Anoxia Sediment Area: 0.0 acres
Time Period of Stratification: 30 days
Sediment Phosphorus Release Rate: $0 \mathrm{mg} / \mathrm{m} \wedge 2$-day 0 lb/acre-day
Internal Load: 0 Lb 0 kg

Method 3 - From In Situ Phososphorus Increases In The Fall

Start of Anoxia

Average Hypolimnetic Phosphorus Concentration: $0 \mathrm{mg} / \mathrm{m} \wedge 3$
Hypolimnetic Volume: 0.0 acre-ft
Anoxia Sediment Area: 0.0 acres
Just Prior To The End of Stratification
Average Water Column Phosphorus Concentration: $50 \mathrm{mg} / \mathrm{m} \wedge 3$
Lake Volume: 2004.0 acre-ft
Anoxia Sediment Area Just Before Turnover: 0.0 acres
Time Period Between Observations: 30 days
Sediment Phosphorus Release Rate: $0 \mathrm{mg} / \mathrm{m} \wedge 2-d a y \quad 0 \mathrm{lb} / \mathrm{acre}$-day
Internal Load: 272 Lb 124 kg
Method 4 - From Phososphorus Release Rate and Anoxic Area
Start of Anoxia Anoxic Sediment Area: 0.0 acre
End of Anoxia Anoxic Sediment Area: 0.0 acre
Phosphorus Release Rate As Calculated In Method 2: $0 \mathrm{mg} / \mathrm{m} \wedge 2$-day
Phosphorus Release Rate As Calculated In Method 3: $0 \mathrm{mg} / \mathrm{m} \wedge 2$-day Average of Methods 2 and 3 Release Rates: $0.0 \mathrm{mg} / \mathrm{m} \wedge 2$-day
Period of Anoxia: 30 days

-39 -49	N/A	N/A	N/A
Rechow, 1977 water load>50m/year			
N/A N/A			35
Walker, 1977 General	6	64	
1121			29
Vollenweider, 1982 Combined OECD	7	47	
-19 -29	5	48	
Dillon-Rigler-Kirchner			26
-5 -9			
Vollenweider, 1982 Shallow Lake/Res.	5	39	23
-27 -41			
Larsen-Mercier, 1976	6	63	35
1019	6	58	
Nurnberg, 1984 Oxic			32
-21 -27			
Lake Phosphorus Model	Confidence	Confidence	Parameter
Back Model			
	Lower	Upper	Fit?
Calculation Type			
	Bound	Bound	
(kg/year)	22	84	Tw
Walker, 1987 Reservoir			
0 GSM	20		
Canfield-Bachmann, 1981 Natural Lake		181	FIT
1 GSM			
Canfield-Bachmann, 1981 Artificial Lake	- 17	158	FIT
1 GSM	19		
Rechow, 1979 General		78	FIT
0 GSM	26		
Rechow, 1977 Anoxic		96	FIT
0 GSM	15		
Rechow, 1977 water load<50m/year		59	FIT
0 GSM			
Rechow, 1977 water load>50m/year	N/A	N/A	N/A
N/A N/A	21	106	
Walker, 1977 General			FIT
0 SPO	15	81	
Vollenweider, 1982 Combined OECD			FIT
0 ANN	19	69	
Dillon-Rigler-Kirchner			P L
0 SPO	13		
Vollenweider, 1982 Shallow Lake/Res.		66	FIT
0 ANN	25		
Larsen-Mercier, 1976		88	P Pin p
0 SPO	20		
Nurnberg, 1984 Oxic		92	L
0 ANN			

Expanded Trophic Response Module

Date: 3/27/2013 Scenario: 2
Total Phosphorus: $57.8 \mathrm{mg} / \mathrm{m} \wedge 3$ Growing Season Chorophyll a: $\quad 6.4 \mathrm{mg} / \mathrm{m} \wedge 3$ Secchi Disk Depth: 1.7 m Carlson TSI Equations:
TSI (Total Phosphorus): 63 TSI (Chlorphyll a): 49 TSI (Secchi Disk

Depth): 52
Water and Nutrient Outflow Module
Date: 3/27/2013 Scenario: 4
Average Annual Surface Total Phosphorus: $58.3 \mathrm{mg} / \mathrm{m} \wedge 3$
Annual Discharge: 5.10E+004 AF => 6.29E+007 m^3
Annual Outflow Loading: $\quad 7728.7$ LB => 3505.7 kg

Date: 3/27/2013 Scenario: Apple River Flowage South Current Conditions

Lake Id: Apple River Flowage South Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 1485.3 acre
Total Unit Runoff: 8 in.
Annual Runoff Volume: 990.2 acre-ft
Lake Surface Area <As>: 299.39 acre
Lake Volume <V>: 1796.34 acre-ft
Lake Mean Depth <z>: 6.0 ft
Precipitation - Evaporation: 3.3 in. Hydraulic Loading: 63315.7 acre-ft/year
Areal Water Load <qs>: $211.5 \mathrm{ft} / \mathrm{year}$
Lake Flushing Rate <p>: 35.25 1/year
Water Residence Time: 0.03 year
Observed spring overturn total phosphorus (SPO): $72 \mathrm{mg} / \mathrm{m} \wedge 3$
Observed growing season mean phosphorus (GSM): $80 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

POINT SOURCE DATA
Point Sources Water Load Low Most Likely High Loading \% (m^3/year) (kg/year) (kg/year) (kg/year)
$=$
SEPTIC TANK DATA

Description	Low	Most Likely	High	
Loading \%				
Septic Tank Output (kg/capita-year) $\#$ capita-years $\%$ Phosphorus Retained by Soil	150	0.3	0.5	0.8

| Septic Tank Loading (kg/year) | | | 0.90 | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 0.2 | | | | |

Wisconsin Internal Load Estimator

Date: 3/27/2013 Scenario: 7
Method 1 - A Complete Total Phosphorus Mass Budget
Method 1 - A Complete Total Phosphorus Mass Budget $77 \mathrm{mg} / \mathrm{m} \wedge 3$
Phosphorus Inflow Concentration: $62.5 \mathrm{mg} / \mathrm{m} \wedge 3$
Areal External Loading: $4026.4 \mathrm{mg} / \mathrm{m}^{\wedge} 2$-year
Predicted Phosphorus Retention Coefficient: 0.18
Observed Phosphorus Retention Coefficient: -0.23
Internal Load: 4459 Lb 2023 kg
Method 2 - From Growing Season In Situ Phososphorus Increases
Start of Anoxia
Average Hypolimnetic Phosphorus Concentration: $0 \mathrm{mg} / \mathrm{m} \wedge 3$
Hypolimnetic Volume: 0.0 acre-ft
Anoxia Sediment Area: 0.0 acres
Just Prior To The End of Stratification
Average Hypolimnetic Phosphorus Concentration: $0 \mathrm{mg} / \mathrm{m} \wedge 3$
Hypolimnetic Volume: 0.0 acre-ft
Anoxia Sediment Area: 0.0 acres
Time Period of Stratification: 30 days
Sediment Phosphorus Release Rate: $0 \mathrm{mg} / \mathrm{m} \wedge 2$-day 0 lb/acre-day
Internal Load: 0 Lb 0 kg

Method 3 - From In Situ Phososphorus Increases In The Fall

Start of Anoxia

Average Hypolimnetic Phosphorus Concentration: $0 \mathrm{mg} / \mathrm{m} \wedge 3$
Hypolimnetic Volume: 0.0 acre-ft
Anoxia Sediment Area: 0.0 acres
Just Prior To The End of Stratification
Average Water Column Phosphorus Concentration: $67 \mathrm{mg} / \mathrm{m} \wedge 3$
Lake Volume: 1796.3 acre-ft
Anoxia Sediment Area Just Before Turnover: 0.0 acres
Time Period Between Observations: 30 days
Sediment Phosphorus Release Rate: $0 \mathrm{mg} / \mathrm{m} \wedge 2-d a y \quad 0 \mathrm{lb} / a c r e-d a y$
Internal Load: 327 Lb 148 kg
Method 4 - From Phososphorus Release Rate and Anoxic Area
Start of Anoxia Anoxic Sediment Area: 0.0 acre
End of Anoxia Anoxic Sediment Area: 0.0 acre
Phosphorus Release Rate As Calculated In Method 2: $0 \mathrm{mg} / \mathrm{m} \wedge 2$-day
Phosphorus Release Rate As Calculated In Method 3: $0 \mathrm{mg} / \mathrm{m} \wedge 2$-day
Average of Methods 2 and 3 Release Rates: $0.0 \mathrm{mg} / \mathrm{m} \wedge 2$-day
Period of Anoxia: 14 days

N/A N/A			
Rechow, 1977 water load>50m/year	1	52	5
-28 -35			
Walker, 1977 General	1	54	6
-18 -25			
Vollenweider, 1982 Combined OECD	2	40	6
-36 -47			
Dillon-Rigler-Kirchner	1	43	5
-29 -40			
Vollenweider, 1982 Shallow Lake/Res.	1	34	5
-42 -55			
Larsen-Mercier, 1976	1	53	6
-19 -26			
Nurnberg, 1984 0xic	1	51	5
-29 -36			
Lake Phosphorus Model	Confidence	Confidence	Parameter
Back Model			
	Lower	Upper	Fit?
Calculation Type			
	Bound	Bound	
(kg/year)			
Walker, 1987 Reservoir	18	86	Tw
0 GSM			
Canfield-Bachmann, 1981 Natural Lake	17	156	FIT
1 GSM			
Canfield-Bachmann, 1981 Artificial Lake	15	138	FIT
1 GSM			
Rechow, 1979 General	15	76	FIT
0 GSM			
Rechow, 1977 Anoxic	19	90	FIT
0 GSM			
Rechow, 1977 water load<50m/year	N/A	N/A	N/A
N/A N/A			
Rechow, 1977 water load>50m/year	21	81	FIT
0 GSM			
Walker, 1977 General	15	97	FIT
0 SPO			
Vollenweider, 1982 Combined OECD	11	74	FIT
0 ANN			
Dillon-Rigler-Kirchner	15	70	P L
0 SPO			
Vollenweider, 1982 Shallow Lake/Res.	9	62	FIT
0 ANN			
Larsen-Mercier, 1976	19	86	P Pin p
0 SPO			
Nurnberg, 1984 Oxic	15	90	L
0 ANN			

Water and Nutrient Outflow Module

Date: 3/27/2013 Scenario: 5
Average Annual Surface Total Phosphorus: $77 \mathrm{mg} / \mathrm{m} \wedge 3$ Annual Discharge: 6.33E+004 AF => $7.81 \mathrm{E}+007 \mathrm{~m} \wedge 3$ Annual Outflow Loading: 12674.5 LB => 5749.1 kg

Expanded Trophic Response Module

Date: 3/27/2013 Scenario: 3

Total Phosphorus:
Growing Season
Chorophyll a:
Secchi Disk Depth: 1.4 m
Carlson TSI Equations:
TSI (Total Phosphorus): 67 TSI (Chlorphyll a): 54 TSI (Secchi Disk

Date: 7/1/2013 Scenario: 71

Lake Id: Fox Creek
Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 5053.4 acre Total Unit Runoff: 8 in.
Annual Runoff Volume: 3368.9 acre-ft
Lake Surface Area <As>: 65.78 acre
Lake Volume <V>: 65.78 acre-ft
Lake Mean Depth <z>: 1.0 ft
Precipitation - Evaporation: 3.3 in.
Hydraulic Loading: 3387.0 acre-ft/year
Areal Water Load <qs>: $51.5 \mathrm{ft} / \mathrm{year}$
Lake Flushing Rate <p>: 51.49 1/year
Water Residence Time: 0.02 year
Observed spring overturn total phosphorus (SPO): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
Observed growing season mean phosphorus (GSM): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

NON-POINT SOURCE DATA						
Likely High	(ac)	1---- L	Loading (kg	ha-year) ----\|		
l----- Loading (kg/year) ----ل\|						
Row Crop AG	2175.31	0.50	$0 \quad 1.00$	3.00	83.9	
440880	2641					
Mixed AG	53.72	0.30	$0 \quad 0.80$	1.40	1.7	
717	30					
Pasture/Grass	425.43	0.10	$0 \quad 0.30$	0.50	4.9	
17 52	86					
HD Urban (1/8 Ac)	0.0	1.00	01.50	2.00	0.0	
0 0	0					
MD Urban (1/4 Ac)	0.0	0.30	$0 \quad 0.50$	0.80	0.0	
0 0	0					
Rural Res (>1 Ac)	269.91	0.05	$5 \quad 0.10$	0.25	1.0	
511	27					
Wetlands	772.54	0.10	$0 \quad 0.10$	0.10	3.0	
3131	31					
Forest	1356.49	0.05	$5 \quad 0.09$	0.18	4.7	
27 49	99					
Lake Surface	65.8	0.10	$0 \quad 0.30$	1.00	0.8	
38	27					

POINT SOURCE DATA
Point Sources $\begin{gathered}\text { Water Load } \\ \left(\mathrm{m}^{\wedge} 3 / \text { year }\right)\end{gathered} \begin{gathered}\text { Low } \\ (\mathrm{kg} / \text { year })\end{gathered} \begin{gathered}\text { Most Likely } \\ (\mathrm{kg} / \text { year) }\end{gathered} \begin{gathered}\text { High } \\ (\mathrm{kg} / \text { year })\end{gathered}$ Loading \%
(m^3/year) (kg/year) (kg/year) (kg/year)
$=$
SEPTIC TANK DATA
Description Low Most Likely High

Septic Tank Output (kg/capita-year
\# capita-years
\% Phosphorus Retained by Soil
Septic Tank Loading (kg/year)

0.0	0.3	0.5	0.8
	98	90	80
	0.00	0.00	0.00

0.0

TOTALS DATA				
Description	Low	Most Likely	High	Loading \%
Total Loading (lb)	1170.1	2312.6	6485.0	100.0
Total Loading (kg)	530.8	1049.0	2941.6	100.0
Areal Loading (lb/ac-year)	17.79	35.16	98.59	0.0
Areal Loading (mg/m^2-year)	1993.79	3940.51	11050.15	0.0
Total PS Loading (lb)	0.0	0.0	0.0	0.0
Total PS Loading (kg)	0.0	0.0	0.0	0.0
Total NPS Loading (lb)	1164.2	2295.0	6426.3	100.0
Total NPS Loading (kg)	528.1	1041.0	2915.0	100.0

Date: 7/1/2013 Scenario: Apple River Inlet Current Conditions Lake Id: Apple Rever Inlet Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 7750.1 acre Total Unit Runoff: 8 in.
Annual Runoff Volume: 5166.7 acre-ft
Lake Surface Area <As>: 215 acre
Lake Volume <V>: 645 acre-ft
Lake Mean Depth <z>: 3.0 ft
Precipitation - Evaporation: 3.3 in.
Hydraulic Loading: 5225.9 acre-ft/year
Areal Water Load <qs>: $24.3 \mathrm{ft} / \mathrm{year}$
Lake Flushing Rate <p>: 8.10 1/year
Water Residence Time: 0.12 year
Observed spring overturn total phosphorus (SPO): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
Observed growing season mean phosphorus (GSM): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

0.0

TOTALS DATA Description	LOW	Most Likely	High	Loading \%
Total Loading (lb)	1154.1	2234.4	5737.8	100.0
Total Loading (kg)	523.5	1013.5	2602.7	100.0
Areal Loading (lb/ac-year)	5.37	10.39	26.69	0.0
Areal Loading (mg/m^2-year)	601.65	1164.85	2991.32	0.0
Total PS Loading (lb)	0.0	0.0	0.0	0.0
Total PS Loading (kg)	0.0	0.0	0.0	0.0
Total NPS Loading (lb)	1134.9	2176.8	5546.0	100.0
Total NPS Loading (kg)	514.8	987.4	2515.7	100.0

Date: 7/1/2013 Scenario: Beaver Brook Main Stem Current Conditions

Lake Id: Beaver Brook Main Stem Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 4567.9 acre
Total Unit Runoff: 8 in.
Annual Runoff Volume: 3045.3 acre-ft
Lake Surface Area <As>: 62.03 acre
Lake Volume <V>: 99.25 acre-ft
Lake Mean Depth <z>: 1.6 ft
Precipitation - Evaporation: 3.3 in.
Hydraulic Loading: 3062.3 acre-ft/year
Areal Water Load <qs>: $49.4 \mathrm{ft} / \mathrm{year}$
Lake Flushing Rate <p>: 30.85 1/year
Water Residence Time: 0.03 year
Observed spring overturn total phosphorus (SPO): $0.0 \mathrm{mg} / \mathrm{m}^{\wedge} 3$
Observed growing season mean phosphorus (GSM): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

POINT SOURCE DATA
Point Sources Water Load Low Most Likely High Loading \% (m^3/year) (kg/year) (kg/year) (kg/year)
$=$
SEPTIC TANK DATA

Description	Low	Most Likely	High	
Loading \%				
Septic Tank Output (kg/capita-year) $\#$ capita-years $\%$ Phosphorus Retained by Soil	0.0	0.3	0.5	0.8

Septic Tank Loading (kg/year)	0.00			0.00	0.00
TOTALS DATA					
Description	Low	Most Likely	High	Loading	\%
Total Loading (lb)	976.3	1950.8	5380.8	100.0	
Total Loading (kg)	442.8	884.9	2440.7	100.0	
Areal Loading (lb/ac-year)	15.74	31.45	86.75	0.0	
Areal Loading (mg/m^2-year)	1764.07	3524.95	9722.95	0.0	
Total PS Loading (lb)	0.0	0.0	0.0	0.0	
Total PS Loading (kg)	0.0	0.0	0.0	0.0	
Total NPS Loading (lb)	970.7	1934.1	5325.5	100.0	
Total NPS Loading (kg)	440.3	877.3	2415.6	100.0	

Date: 7/1/2013 Scenario: Beaver Brook West Current Conditions
Lake Id: Beaver Brook West
Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 1336.9 acre
Total Unit Runoff: 8 in.
Annual Runoff Volume: 891.3 acre-ft
Lake Surface Area <As>: 8.3 acre
Lake Volume <V>: 8.3 acre-ft
Lake Mean Depth <z>: 1.0 ft
Precipitation - Evaporation: 3.3 in.
Hydraulic Loading: 893.5 acre-ft/year
Areal Water Load <qs>: 107.7 ft year
Lake Flushing Rate <p>: 107.66 1/year
Water Residence Time: 0.01 year
Observed spring overturn total phosphorus (SPO): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
Observed growing season mean phosphorus (GSM): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

$=$
SEPTIC TANK DATA
Description Low Most Likely High

Septic Tank Output (kg/capita-year
\# capita-years
\% Phosphorus Retained by Soil
Septic Tank Loading (kg/year)

0.0	0.3	0.5	0.8
	98	90	80
	0.00	0.00	0.00

0.0

TOTALS DATA				
Description	Low	Most Likely	High	Loading \%
Total Loading (lb)	449.6	890.0	2600.4	100.0
Total Loading (kg)	203.9	403.7	1179.6	100.0
Areal Loading (lb/ac-year)	54.17	107.23	313.31	0.0
Areal Loading (mg/m^2-year)	6071.37	12018.74	35117.37	0.0
Total PS Loading (lb)	0.0	0.0	0.0	0.0
Total PS Loading (kg)	0.0	0.0	0.0	0.0
Total NPS Loading (lb)	448.8	887.8	2593.0	100.0
Total NPS Loading (kg)	203.6	402.7	1176.2	100.0

Date: 7/1/2013 Scenario: Beaver Brook East Current Conditions Lake Id: Beaver Brook East Watershed Id: 1
Hydrologic and Morphometric Data
Tributary Drainage Area: 10532.9 acre
Total Unit Runoff: 8.00 in.
Annual Runoff Volume: 7021.9 acre-ft
Lake Surface Area <As>: 97.7 acre
Lake Volume <V>: 97.7 acre-ft
Lake Mean Depth <z>: 1.0 ft
Precipitation - Evaporation: 3.3 in.
Hydraulic Loading: 7048.8 acre-ft/year
Areal Water Load <qs>: $72.1 \mathrm{ft} / \mathrm{year}$
Lake Flushing Rate <p>: 72.15 1/year
Water Residence Time: 0.01 year
Observed spring overturn total phosphorus (SPO): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
Observed growing season mean phosphorus (GSM): $0.0 \mathrm{mg} / \mathrm{m} \wedge 3$
\% NPS Change: 0\%
\% PS Change: 0\%

$=$
SEPTIC TANK DATA

Description	Low	Most Likely	High	
Loading \%				
Septic Tank Output (kg/capita-year)		0.30	0.50	0.80
\# capita-years	0.0			
\% Phosphorus Retained by Soil		98.0	90.0	80.0
Septic Tank Loading (kg/year)	0.00	0.00	0.00	

0.0

TOTALS DATA				
Description	Low	Most Likely	High	Loading \%
Total Loading (lb)	2158.7	4315.7	11328.3	100.0
Total Loading (kg)	979.2	1957.6	5138.5	100.0
Areal Loading (lb/ac-year)	22.10	44.17	115.95	
Areal Loading (mg/m^2-year)	2476.62	4951.16	12996.41	
Total PS Loading (lb)	0.0	0.0	0.0	0.0
Total PS Loading (kg)	0.0	0.0	0.0	0.0
Total NPS Loading (lb)	2150.0	4289.5	11241.2	100.0
Total NPS Loading (kg)	975.2	1945.7	5099.0	100.0

Appendix H

Meeting Agendas and Materials

Apple River Flowage Lake Management Plan Water Quality Committee Meeting 1

Wednesday, February $20^{\text {th }}, 2013$
7-9 pm
Amery City Hall

Agenda

7:00 Introductions - roles and responsibilities (LWRD)
7:10 Schedule future meetings - bring your calendar
March
April
May
June
7:20 What is a lake management plan? (LWRD)
Review grant requirements (LWRD)
What do you want the plan to accomplish? (Committee)
What questions do you hope to have answered? (Committee)
7:40 Identify concerns
Survey results (LWRD)
Brainstorm concerns (Committee)
8:10 Initial study results - what did we learn about the flowage? (LWRD)
8:40 Additional concerns following the presentation? (Committee)
Prioritize concerns/issues for further discussion (Committee)
Any additions to: what do you want the plan to accomplish or what questions do you hope to have answered?

9:00 Adjourn

General Meeting Agenda

Background information for selected issues
Discuss potential goals and objectives
Discuss available tools and activities

Katelin Holm, (715) 485-8637, katelin.holm@co.polk.wi.us
J eremy Williamson, (715) 485-8639, jeremyw@co.polk.wi.us

Lake Management Plan Development Rules and Roles

Overall Objective

Develop a Lake Management Plan for the Apple River Flowage
A management plan outlines strategies that everyone can live with and may guide new activities and grant funded projects

Ground Rules

RESPECT
CIVILITY
FOLLOW AGENDA TO STAY ON TRACK
It is important to listen to what others are saying
Don't interrupt when others are speaking
Everyone will have an opportunity for input

Water Quality Committee Role

Attend every meeting or make provisions for input outside of missed meeting
Share your knowledge of the lakes
Share your concerns about the lakes
Help develop lake management strategies
Review background information
Review draft documents
Decide when draft document is ready to forward to board for approval

Advisor Role

Bring information to assist in decision-making
Help committee understand natural systems
Help committee understand constraints of rules and regulations

Consultant Role

Guide meeting topics and flow
Keep discussion on track (may need to interrupt to keep discussion focused)
Establish procedure for discussion (suggestions appreciated, but only outside of meetings)
Bring background information
Ensure that public input is adequate for plan approval - provide public opportunity to comment
Write goals, objectives, and action items for the plan
Write draft and final plan documents

District Role

Participate as part of the committee
Review draft lake plan
Approve draft lake plan to forward to the WI DNR or disapprove draft plan and return to committee with elements that are not acceptable and suggestions for modifications

Purpose of the Study

Lakes are a product of the landscape they are situated in and of the actions that take place on the land which surrounds them. Due to this fact, lakes situated within feet of others can differ profoundly in the uses they support. Factors such as lake size, lake depth, water sources to a lake, and geology all cause inherent differences in lake quality.

Additionally, humans, by changing the landscape, can bring about changes in a lake. This arises because rain and melting snow eventually end up in lakes and streams through surface runoff or groundwater infiltration. Rain and melting snow entering a lake is not inherently problematic. However, water has the ability to carry nutrients, bacteria, sediment, and chemicals into a lake. These inputs can impact aquatic organisms such as insects, fish, and wildlife and-especially in the case of the nutrient phosphorus-fuel problematic algae blooms.

The landscape can be divided into watersheds and subwatersheds, which define the land area that drains into a particular lake, stream, or river. Watersheds that preserve native vegetation and forestland and minimize impervious surfaces (cement, concrete, and other materials that water can't permeate) are less likely to cause negative impacts on lakes, rivers, and streams.

Lake studies often examine the underlying factors that impact a lake's health (such as lake size, depth, and water sources) and the land use in a lakes watershed. Many forms of data can be collected and analyzed to gauge a lake's health including: physical data (oxygen, temperature, etc.), chemical data (including nutrients such a phosphorus and nitrogen), biological data (algae and zooplankton), and land use within a lake's watershed. By compiling this data, lakes can be classified based on their nutrient status and clarity levels.

Three categories commonly used are: oligotrophic, mesotrophic, and eutrophic.
\checkmark Oligotrophic lakes are generally clear, deep, and free of weeds and large algae blooms.
\checkmark Mesotrophic lakes lie between oligotrophic and eutrophic lakes. They usually have good fisheries and occasional algae blooms.
\checkmark Eutrophic lakes are generally high in nutrients and support a large number of plant and animal populations. They are usually very productive and subject to frequent algae blooms.

OLIGOTROPHIC

- Clear water, low productivity
- Very desirable fishery of large game fish

MESOTROPHIC

- Increased production
- Accumulated organic matter
- Occasional algal bloom
- Good fishery

EUTROPHIC

- Very productive
- May experience oxygen depletion
- Rough fish common

Lake studies often identify strengths, opportunities, challenges, and threats to a lake's health. These studies can identify practices already being implemented by lake residents to improve water quality and areas providing benefits to a lake's ecosystem. Additionally, these studies often quantify practices or areas on the landscape that have the potential to negatively impact the health of a lake.

The end product of a lake study is a Lake Management Plan, which identifies goals, objectives, and action items to either maintain or improve the health of a lake. These goals should be realistically based on inherent lake characteristics (lake size, depth, etc.) and should align with lake resident's goals.

Included is a summary of the data and conclusions drawn from a 2012 lake study completed by the Polk County Land and Water Resources Department. This study collected and analyzed the following data to aid in the creation of a Lake Management Plan for the Apple River Flowage:
\checkmark Lake resident opinions
\checkmark Lake level and precipitation data
\checkmark In lake physical and chemical data
\checkmark Algae and zooplankton data
\checkmark Lake sediment chemistry
\checkmark Shoreline land use results
\checkmark Tributary monitoring results
\checkmark Watershed and subwatershed land use

This study also included a number of opportunities for members of the Apple River Flowage Protection and Rehabilitation District including:
\checkmark Pontoon classrooms
\checkmark A shoreline restoration workshop (upcoming)
\checkmark A series of five meetings to review the data collected and develop a Lake Management Plan

Summary

Lake information

The Apple River Flowage is located in southeastern Polk County, Wisconsin in the Town of Lincoln and within the Amery city limits. The Apple River Flowage is a 604 acre impoundment with a mean depth of six feet and a maximum depth of eighteen feet.

There are two inflows to the Apple River Flowage: the Beaver Brook Inlet and the Apple River Inlet. The Beaver Brook Inlet originates in Barron County and flows through the J oel Flowage to the Apple River Flowage; and the Apple River Inlet originates from Staples Lake and flows through White Ash Lake to the Apple River Flowage. The Apple River Flowage has one outlet which is located at the Amery Dam and flows to the Black Brook Flowage.

The Apple River Flowage and many of its tributaries (Beaver Brook Inlet originating at the J oel Flowage, Apple River Inlet, and the Apple River Outlet) are designated as Areas of Special Natural Resource Interest through their identification as Natural Heritage Inventory Waters.

The drainage basin: lake area ratio (DB: LA)
 compares the size of a lake's watershed to the size of a lake. If a lake has a relatively large DB: LA then surface water inflow (containing nutrients and sediments) occurs from a large area of land relative to the area of the lake. The DB: LA ratio for the Apple River Flowage is approximately 175:1, which is quite large.

The total phosphorus criterion for the Apple River Flowage (classified as a stream based on a residence time of less than fourteen days) is $0.075 \mathrm{mg} / \mathrm{L}$. In 2011, the Apple River Flowage was proposed for the 303(d) list of Impaired Waters for the pollutant total phosphorus and the resulting impairment of excess algae growth. As of J anuary 2013, the Flowage had not yet been formally listed.

Survey results

Ninety-two members of the Apple River Flowage Protection and Rehabilitation District completed a survey regarding the flowage (41\% response rate). In this survey invasive
species ranked as the $1^{\text {st }}$ concern for the flowage, followed by aquatic plants in $2^{\text {nd }}$, and algae blooms in $3^{\text {rd }}$.

Around a quarter of respondents described the water quality of the Apple River Flowage as either poor (36\%) or fair (32\%). Fewer respondents described the water quality as good (14\%) and zero respondents described it as excellent. The majority of respondents felt that in the time since they have owned their property, the water quality has degraded. Zero respondents perceived that water quality has improved.

In general, more respondents feel that algae often or always negatively impacts their enjoyment of the flowage as compared to never or rarely.

A third of respondents described the current amount of shoreline vegetation on the Apple River Flowage as just right (33\%). Generally, more respondents felt there was too much shoreline vegetation as compared to not enough.

Although a combined 74% of respondents felt that shoreline buffers, rain gardens, and native plants are very important or somewhat important to water quality, nearly half (47\%) of respondents are not interested in installing a shoreline buffer or rain garden on their property.

Respondents are making educated decisions when applying fertilizer to their property. Two thirds of respondents do not use fertilizer on their property (64\%) and one third use zero phosphorus fertilizer (33\%). Very few respondents use fertilizer but are unsure of its phosphorus content (5\%), and zero respondents use fertilizer on their property that contains phosphorus.

Survey respondents were asked to choose all of the management practices they felt should be used to maintain or improve the water quality of the Apple River Flowage from a list of options. Over half of respondents felt that enhanced efforts to monitor for new populations of aquatic invasive species should be used to maintain or improve the water quality of the flowage (60%). Other management practices supported by many respondents include information and education opportunities (46\%) and cost-sharing assistance for the installation of farmland conservation practices (41\%).

Lake level and precipitation data

Seasonal precipitation totaled eighteen inches north of the 46 bridge and thirteen inches south of the 46 bridge. Shortly following precipitation events, water levels did increase in the flowage. The flowage is created by a dam within the city limits of Amery. Currently, the dam is used to maintain water levels on the flowage. Overall, water levels remained fairly constant over the sampling season.

Sampling procedure

Physical and chemical data were collected in-lake at two sites (Site 1, north and Site 2, south) on the Apple River Flowage from May 8 ${ }^{\text {th, }} 2012$ through September 17th, 2012.

Spring turnover samples were taken on April 3rd, 2012. Fall turnover samples were taken on October 15 th, 2012.

Turnover

Turnover events in lakes occur two times a year in Wisconsin. At spring and fall turnover, the temperature and density of the water is constant from the top to the bottom. This uniformity in density allows a lake to completely mix. As a result, oxygen is brought to the bottom of a lake, and nutrients are re-suspended from the sediments.

As the sun's rays warm the surface waters in the spring, the water becomes less dense and remains at the surface. Warmer water is mixed deeper into the water column through wind and wave action. However, these forces can only mix water to a depth of approximately twenty to thirty feet. The Apple River Flowage, with a maximum depth of eighteen feet, remained well mixed over the sampling season.

In stratified lakes, warmer surface waters are prevented from mixing with cooler bottom waters. As a result, nutrients can actually become trapped in the bottom waters of a lake that stratifies. Additionally, because mixing is one of the main ways oxygen is distributed throughout a lake, lakes that stratify have the potential to have very low levels of oxygen in the bottom waters. The Apple River Flowage did not stratify in 2012.

Chemical data

The total phosphorus criterion for the Apple River Flowage is $0.075 \mathrm{mg} / \mathrm{L}$. In 2012, the summer index period (J uly $15^{\text {th }}-$ September $15^{\text {th }}$) average total phosphorus was 0.0895 mg / L at site one (north) and $0.0680 \mathrm{mg} / \mathrm{L}$ at site two (south). The total phosphorus criterion was exceeded at both sites in 2012.

Nitrate/ nitrite and ammonium are all inorganic forms of nitrogen which can be used by aquatic plants and algae. Inorganic nitrogen concentrations above $0.3 \mathrm{mg} / \mathrm{L}$ can support summer algae blooms in lakes. Average growing season (excludes turnover) inorganic nitrogen was $0.02 \mathrm{mg} / \mathrm{L}$ at site one (north) and $0.03 \mathrm{mg} / \mathrm{L}$ at site two (south). Inorganic nitrogen concentrations at site one (north) are below the healthy limit which can support summer algae blooms in lakes and concentrations at site two (south) are at the healthy limit.

The total nitrogen to total phosphorus ratio (TN: TP) is a calculation that depicts which nutrients limit algae growth in a lake. The total nitrogen to total phosphorus ratio for both sites (north and south) indicate a nitrogen limited state during the growing season, which is fairly uncommon in Wisconsin.

Physical data

A water quality standard for dissolved oxygen in warm water lakes and streams is set at 5 mg / L. This standard is based on the minimum amount of oxygen required by fish for survival and growth. Oxygen levels remained above $5 \mathrm{mg} / \mathrm{L}$ near the surface but dropped below this threshold in the bottom waters.

Secchi depth serves as a general indicator of water quality. The average growing season secchi depth was 5.5 feet at site one (north) and 4.5 feet at site two (south).

Chlorophyll a (an indicator of algae) seems to have the greatest impact on water clarity when levels exceed $0.03 \mathrm{mg} / \mathrm{L}$. Lakes which appear clear generally have chlorophyll a levels less than $0.015 \mathrm{mg} / \mathrm{L}$. With the exception of site two (south) on August 7th, 2012, chlorophyll a levels on the flowage were below $0.015 \mathrm{mg} / \mathrm{L}$.

Trophic state index

Trophic State Index (TSI) data indicates that in 2012 the Apple River Flowage was mildly eutrophic to eutrophic. Eutrophic lakes are generally high in nutrients and support a large number of plant and animal populations. They are usually very productive and subject to frequent algae blooms.

Shoreline survey

The shoreline inventory shows that the greatest land use at the ordinary high water mark is natural (93\%), followed by rip rap (5\%), and lawn (2\%). A characterization of the shoreline buffer composition (area upland thirty-five feet from the ordinary high water mark) shows that the greatest land use is natural (82\%), followed by lawn (17\%), and hard surfaces (1\%).

Tributary monitoring

The Apple River Inlet is contributing the greatest amount of phosphorus to the Apple River Flowage (8,442 pounds on an annual basis). The Beaver Brook Inlet is contributing 2,580 pounds of phosphorus on an annual basis. Total phosphorus concentrations were elevated on the East branch of the Beaver Brook Inlet ($0.2472 \mathrm{mg} / \mathrm{L}$).

The values for the Apple River Flowage Outlet are highlighted in red to serve as a reminder that these values represent the amount of phosphorus leaving the flowage via the outlet.

Site	Total Phosphorus $(\mathbf{m g} / \mathbf{L})$	Discharge $(\mathbf{L} / \mathbf{s})$	Instantaneou \mathbf{s} Load $(\mathbf{m g} / \mathbf{s})$	Annual Load $(\mathbf{l b} / \mathbf{y r})$
Fox Creek	0.0518	974.610	50.485	$3,512.284$
Apple River Inlet	0.0648	$1,872.570$	121.343	$8,441.935$
Apple River Outlet	0.0636	$3,652.740$	232.314	$16,162.362$
Beaver Brook Inlet	0.0836	443.520	37.078	$2,579.577$
Beaver Brook West	0.0586	125.496	7.354	511.631
Beaver Brook East	0.2472	60.048	14.844	$1,032.704$

Apple River Flowage Lake Management Plan
 Water Quality Committee Meeting 1 Minutes
 Wednesday, February 20 ${ }^{\text {th }}$, 2013, Amery City Hall, 7-9 pm

Overview

Scheduled next meeting, reviewed grant requirements and purpose of lake management plans, public survey results, water quality study results, identified concerns and questions

Next meeting

Wednesday, March 27 ${ }^{\text {th }}$, Amery City Hall, 7-9 pm

Identified committee concerns

- How do we solve the "mildly eutrophic" issue?
- High phosphorus-how can it be reduced in the Apple River Flowage?
- Basic knowledge about phosphorus-how it gets into the water, what it does, where it goes
- What education needs to be done?
- Under-informed about plant types and very basic and specific things in regard to biology, water quality, sediment, etc. - education
- How to deal with organic matter that seems to be excessive in most areas
- How to do sediment cores in various areas to really understand our situation
- What is possible for a shallow impoundment? What should/ can we shoot for?
- Focus on specific areas or tributary of concern
- How to make water movement possible in bays that are not open-dead?
- Harvester results
- How to keep a balance chemically and with sediment when harvesting?
- How well harvesting helps in the long run?
- Keep water on river as clear as it was after harvesting

Questions to be answered at future meetings? What do you want the plan to accomplish?

- Used to be a nice body of water; 1979 onward for 8-10 years
- After the drawdown, gradually filled in
- Downstream of the Flowage-High phosphorus levels? Where is it coming from?
- Watershed-who's involved?
- Water quality pretty good; excess nutrients but many assets
- Lots of plants-not a lot of algae
- Fish/birds
- Many positive comments after harvesting
- Reduce the negative, focus on the positive
- Briefly discussed dredging and drawdown as two options to address sediments

Katelin Holm, (715) 485-8637, katelin.holm@co.polk.wi.us
J eremy Williamson, (715) 485-8639, jeremyw@co.polk.wi.us

Apple River Flowage Lake Management Plan
 Water Quality Committee Meeting 2
 Wednesday, March $27^{\text {th }}, 2013$
 7-9 pm
 Amery City Hall

Agenda

7:00 Introductions
Pick April meeting date
7:10 Initial study results continued (nutrient budget, algae)
7:40 Explore options for lake management
8:00 Review and discuss draft plan vision, guiding principle, goals, and objectives
9:00 Adjourn

Katelin Holm, (715) 485-8637, katelin.holm@co.polk.wi.us
J eremy Williamson, (715) 485-8639, jeremyw@co.polk.wi.us

Enclosed are two documents for review for Wednesday's meeting:

1. A document providing examples of plan vision statements, guiding principles, goals, objectives, and actions. This is by no means a comprehensive list and may include options that are not priorities for the Apple River Flowage and may be lacking options that are priorities for the Flowage. The purpose of this document is solely to provide examples from other Lake Management Plans.
2. A document called Choosing Management Strategies for Lakes which was initially prepared for Portage County lakes. This document provides additional information on the wide range of management strategies available for lakes.

Vision an overall statement for what you want the waterbody to look like
The Apple River Flowage provides a healthy environment for people, wildlife, and plants

The Apple River Flowage is a clear waterbody, with moderate nutrient levels and diverse fish, wildlife, and plants

Guiding Principle provides guidance on how the lake management plan will be implemented

An understanding of data drives lake management decisions
Lake management decisions are driven by what is best for the resource
Communication regarding lake management is easy to understand, concise, and frequent

Lake residents and users are provided information to understand the ever evolving nature of lake management, the complexity of issues, the status of projects and activities, the costs and benefits of actions, and the opportunity and techniques to reduce or prevent any negative consequences of lake use and lakeside living

Financial decisions are made in cooperation with District members

Goals broad statements of direction
Objectives measurable steps towards goals
Actions activities to accomplish objectives

Goals and Objectives

Maintain and improve current water quality and in-lake nutrient levels
Reduce nutrient pollution to the flowage
Reduce runoff of nutrients and sediment from the watershed
Objectives may include:

- Engage residential owners in reducing runoff
- Reduce phosphorus loading from residential sources by X\% or X pounds
- Support installation of residential best management practices/practices that reduce runoff to the flowage
- Engage agricultural producers in reducing runoff
- Reduce phosphorus loading from agricultural sources by X\% or X pounds
- Support installation of agricultural best management practices/ practices that reduce runoff to the flowage

Actions may include: providing technical assistance for property owners, cost sharing installation of best management practices, considering purchase of highly erodible/ecologically sensitive land if option arises, free evaluation of septic systems, stormwater practices in the City of Amery, education initiative

Encourage lake processes that minimize the release of nutrients from within the flowage

Objectives may include:

- Engage stakeholders in reducing internal loading
- Reduce internal loading by X\%
- Support practices that reduce internal loading
- Conduct further studies to better understand internal loading

Actions may include: study to determine phosphorus release from CLP die off, slow-no wake to minimize disturbance of sediments, continue harvesting, conduct a study on results of harvesting, study to determine feasibility of dredging and drawdown to address sediments, education initiative

Protect, maintain, and enhance the fishery

Protect, maintain, and enhance fish and wildlife habitat

Objectives may include:

- Maintain desirable levels of game fish in the flowage
- Assess and improve fish habitat
- Balance fish populations to encourage zooplankton
- Increase understanding of options for attracting wildlife to property
- Protect existing natural areas with native vegetation
- Enhance shoreline vegetation

Actions may include: fish stocking, installation of fish sticks, communication with $D N R$, cost sharing shoreline buffers, purchase of ecologically sensitive land, conservation easements to preserve undeveloped lands, establishment of slow-no wake zones, enforcement of current slow-no wake requirements, education initiative

Maintain and enhance the natural beauty of the flowage

Promote the preservation and restoration of natural vegetation along the shoreline

Objectives may include:

- Maintain undeveloped natural areas where feasible
- Enhance natural beauty of developed areas
- Create areas for public use

Actions may include: incentives to encourage restoration/maintenance of buffers, conservation easements, installation of public fishing piers, creation of public parks with walking trails

Continue to collect in-lake water quality data

Measure lake management progress by collecting in-lake water quality data
Evaluate the progress of lake management efforts through monitoring
Objectives may include:

- Continue current data collection efforts
- Expand data collection efforts to include...provide a list
- Consider additional studies to quantify/ update a nutrient budget

Actions may include: citizen lake monitoring data collection (secchi, chlorophyll a, total phosphorus), tributary sampling, track installation and effectiveness of watershed practices, quantify internal loading, study on impacts of harvesting, study on CLP die off

Increase information and education opportunities
Provide education regarding lake management
Expand education efforts emphasizing the following topics: ...provide a list
Objectives and actions may include a list of avenues and methods to communicate information

For example:
Newsletter
Publish x times per year
Seek assistance from agency stafffor appropriate articles

Manage native and invasive aquatic plants according to the goals, objectives, and actions outlined in the Aquatic Plant Management Plan

Implement the goals of the Aquatic Plant Management Plan

Improve water quality on the Apple River Flowage and downstream on the Apple River

Prevent the introduction of aquatic invasive species
Maintain navigation for fishing, boating, and access to lake residences
Maintain native aquatic plant functions
Minimize environmental impacts of aquatic plant management

Choosing Management Strategies for Lakes

A diversity of management strategies exist for lake protection. A review of water quality data, an understanding of lake users' perceptions, and the identification of concerns for a lake can guide which management strategies should be implemented for a particular body of water.

Each lake is unique in its physical characteristics (depth, size, location in the landscape), chemical characteristics (phosphorus, nitrogen, pH), assemblage of living and non-living organisms (fish, birds, wildlife, plants, sediments), and human uses (swimming, boating, fishing, scenic beauty). Additionally, lake users represent a diversity of perceptions and values related to concerns for a specific lake. Ultimately, for management strategies to be effective they must take into account scientific data and be supported by the majority of lake users. Management strategies must also align with current state and local regulations and ordinances and take into account availability of funding and volunteers. As a result, it is unlikely that two lakes will choose to pursue identical management strategies.

Despite the uniqueness of lakes and the people that represent them, management strategies do exist that will benefit all lakes. When considering management strategies to adopt, start with this list of best management practices that will benefit all lakes:

| Nutrients (phosphorus and nitrogen) are a major source of lake water quality problems, so: |
| :--- | :--- |
| Eliminate applications of lawn fertilizers. If fertilizing, use zero phosphorus fertilizers. In |
| Polk County it is illegal to apply lawn fertilizers within 300 feet of a river/ stream and 1,000 |
| feet of a lake/pond/ flowage |
| Choose phosphorus free detergents and cleaning products |
| Clean up and properly dispose of pet waste |
| Don't burn leaves near the lake or rake yard waste into the lake |
| Use natural vegetation, rain gardens, or landscaping to keep runoff from directly entering |
| If you are a farmer, request help from the Polk County Land and Water Resources
 Department to develop water quality-based best management practices for farmland that
 may impact the lake through surface runoff or groundwater inputs |
| J oin other landowners and lake users to establish a water quality monitoring program for
 your lake. WDNR provides Citizen Lake Monitoring training and data analysis at no cost |

Fish and other aquatic life depend on natural vegetation near and on the lake shore, so: Maintain a natural vegetation buffer-including grasses/forbs, shrubs, and trees-of at least 35 feet from the lake
Don't remove aquatic plants, logs, or brush in front of your property unless absolutely necessary for lake access and recreational activities. Native aquatic plants help stop harmful aquatic invasive plants from becoming established. Follow state aquatic plant removal regulations and obtain permits when needed
Learn to identify aquatic invasive plant species, watch for them near your property and public landings, and help stop their spread. Check with WDNR for aquatic invasive plant removal rules

* Check Wisconsin Department of Natural Resources regulations: http:// dnr.wi.gov/topic/Waterways/

Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

```
Septic systems contribute nutrients and other chemicals to groundwater and lakes, even if
    they are working properly, so:
    Locate your drain field as far from the lake shore as possible
    Pump your septic tank at least once every three years
    Consider installing an alternative or additional wastewater treatment system that can
    remove nitrogen and phosphorus, or explore community or other group wastewater
    treatment options
    Use household chemicals sparingly, try to choose less harmful products, and be mindful
    that chemicals put into a septic system could end up in the lake or your drinking water
```

The following management strategies should be implemented if they are applicable for your particular body of water.

Does your lake have areas less than 8 feet deep? These areas:	
May have these problems	and may benefit from
Sediment disturbance from boat motors	No-wake speeds or electric motors only Sodiments in place
Wind disturbance of sediments	Mtrategies to improve recreational access High density of aquatic plants Tools from the phosphorus management toolbox Shallow lakes may suffer from a lack of dissolved oxygen in winter

Does your lake have a high percentage of its areas more than 18 feet deep? Deep lakes:

 May have these problems and may benefit from- Few aquatic plants
- Biomass dominated by algae
- Lack of oxygen near bottom
- Release of phosphorus from sediments during low oxygen conditions
The two storied fisheries of deep lakes, which include trout and walleye in cool, deep waters as well as panfish and bass in shallow waters, require management to stay in balance

Is your lake a deep bowl protected from the wind? Lakes in deep bowls:	
May have these problems	and may benefit from
Runoff from steep shoreline areas	Houses being set back from steep slopes
	Meandering, not direct, access to the lake
	Vegetative buffers to prevent erosion along slopes
	Shoreline buffers to intercept erosion and runoff
	Additional tools from the runoff management
	toolbox
Lack of mixing and oxygenation	Monitoring dissolved oxygen concentrations
	Using mechanical aeration when necessary

[^10]Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Does your lake have wetlands along its shore? Lakes with adjacent wetlands:	
May have these problems	and may benefit from

Compared to lakes without wetlands, these lakes may have more water quality fluctuations and more diverse wildlife habitat

Does your lake experience natural water level fluctuations? Such lakes:	
May have these problems	and may benefit from
Aquatic invasive plant species that become established on bare sediments or in shallower, warmer water	Looking for and removing aquatic invasive plants during low water periods. Check with WDNR for aquatic invasive plant removal rules
Damage to unique habitats by human use during low water periods	Establishingbarriers to prevent vehicle access to the dry lake bed during low water periods
Sensitivity to changes in groundwater recharge	Use of swales, rain gardens, and other management tools to encourage infiltration of rainwater and snowmelt
A large area less than 8 feet deep during some parts of the year	- No-wake speeds or electric motor only zoning
Winter fish kills	Adding oxygen when necessary by mechanical aeration or by plowing snow off the lake surface to encourage plant growth
Flooding of septic systems during high water periods	As great a septic system setback from the lake as possible Use of mound systems
Shoreline erosion during high water periods	Maintaining native vegetation and unmowed/ uncropped buffer strips near the water's edge
Removal of woody material, leading to loss of potential habitat for fish during periods of high water	Leaving fallen trees, logs, or branches in place or adding them to the exposed lake bed during low water periods

Does your lake have dissolved oxygen concentrations of less than $5 \mathrm{ppm}(\mathrm{mg} / \mathrm{l})$ in the upper one third of the water column during winter? These lakes:
May have these problems and may benefit from
Winter fish kills

- Monitoring dissolved oxygen concentrations
- Adding oxygen when necessary by mechanical aeration or by plowing off the lake surface to encourage plant growth

[^11]Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Does your lake have water hardness of more than 150 ppm as CaCO3? If so, marl may					
form. Marl lakes:		$	$	May have these problems	and may benefit from
:---	:---	:---			
High density of aquatic plants in shallow sediments	Strategies to improve recreational access				
Decreased water clarity caused by resuspension of marl by wind and boats	Slowno wake zones at water depths of less than 8 feet (municipal rules may apply)				
Gradual filling with marl	Dredging to deepen parts of the lake				
These lakes usually have good water clarity because marl formation removes phosphorus					
that would otherwise be used by algae					

Does your lake have water hardness of less than 90 ppm as CaCO3? These lakes:
May have these problems and may benefit from
Low calcium concentrations, leading σ Tools from the phosphorus management toolbox to greater response by algae to phosphorus additions

Does your lake have water hardness of less than 25 ppm as CaCO3? These lakes:
May have these problems and may benefit from

Higher mercury, aluminum, and σ Efforts at personal, regional, and national scales to zinc solubility when rainfall is acidic reduce electricity use and fossil fuel consumption
These lakes usually are less productive than other lakes, but often have the most diverse aquatic macrophyte communities

Do the inorganic forms of nitrogen in your lake exceed $0.3 \mathrm{mg} / \mathrm{l}(\mathrm{as} \mathrm{N})$ in spring? Lakes with these high nitrogen loads	
May have these problems	and may benefit from
Excessive near shore aquatic plants	Eliminating nitrogen fertilizer applications by
and attached algae and toxicity to	farmers and homeowners or limiting applications some aquatic animals
	based on soil tests
	Alternative or additional wastewater treatment systems designed to remove nitrogen

> | What is the total phosphorus concentration in your lake between July $15^{\text {th }}$ and September |
| :--- |
| $15^{\text {th }}$ (average of at least three surface somples)? |
| Consult the following table to compare this value to the proposed criteria values for your |
| lake type. |
| Stratified, two story fishery lakes, $15 \mu \mathrm{~g} / \mathrm{L}$ |
| Stratified seepage lakes, $20 \mu \mathrm{~g} / \mathrm{L}$ |
| Stratified drainage lakes, $30 \mu \mathrm{~g} / \mathrm{L}$ |
| Non stratified drainage and seepage lakes, $40 \mu \mathrm{~g} / \mathrm{L}$ |
| Apple River Flowage, stream with residence time less than 14 days, $75 \mathrm{mg} / \mathrm{L}$ |

\& Check Wisconsin Department of Natural Resources regulations: http:// dnr.wi.gov/ topic/Waterways/
Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Has your lake reached its criteria value for total phosphorus? Such lakes:

May have these problems

- Excessive weeds and algae, including some that are toxic to animals
- Winter fish kills
- Poor aesthetics-green, turbid, smelly water

and may benefit from

© Reducing phosphorus concentrations by implementing tools from the phosphorus toolbox

- Conducting an in-depth study of lake management and rehabilitation alternatives to control internal and external nutrient loading
- Establishing a water quality monitoring program

Phosphorus Management Toolbox

Implement one or more of the following tools to lower total phosphorus concentrations, or to keep concentrations from increasing:

Eliminate phosphorus fertilizer use on your lawn or farm fields, or limit it based on soil test results. In Polk County it is illegal to apply lawn fertilizers within 300 feet of a river/ stream and 1,000 feet of a lake/ pond/ flowage
Don't burn leaves near the lake or rake yard waste into the lake
Implement agricultural best land management practices based on water quality
Install and maintain vegetative buffers, rain gardens, and filter strips that cause
stormwater to infiltrate and limit runoff to the lake
Choose phosphorus free automatic dishwater detergent and other "green" household cleaning products if your wastewater re-enters the soil through a septic system

- Install alternative or additional wastewater treatment systems designed to remove phosphorus, or consider options for connection to a community or other group wastewater treatment system, especially in areas where groundwater discharges to the lake.
- Check the runoff management toolbox and protection tools in the lake management toolbox for more community-based action and solutions.

Is your lake currently free of aquatic invasive species? Such lakes will benefit from: Protecting and maintaining native plant and animal communities
Knowing how to identify invasive species and actively monitoring for them
Using signs, newsletters, or more active methods to educate boaters and anglers and to encourage them to clean boats and trailers before launch

Does your lake already have aquatic invasive species? Such lakes will benefit from:

- Using the tools from the box above

Encouraging boaters and anglers to clean boats and trailers after use to prevent the spread of the invasive species to other lakes

- Developing and following an aquatic plant management plan that contains and controls the invasive species
* Check Wisconsin Department of Natural Resources regulations: http:// dnr.wi.gov/topic/Waterways/

Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Are there signs that your lake's ecosystem is out of its natural balance? Such lakes:	
May have these problems	and may benefit from
Geese on shoreline	Maintaining a natural vegetation buffer onshore
	Avoiding mowing or cropping to the water's edge
Eroding shoreline	Vegetative buffers to prevent erosion on slopes
	Shoreline buffers to intercept erosion and runoff
	Other shoreline stabilization methods such as
	rocks
	Maintaining in-lake aquatic plants to act as baffles
	and reduce the influence of waves
	Creating meanders rather than direct paths to the
	lake
Nuisance-level aquatic plant growth	Creating an aquatic plant management plan

Is your lake's fishery dependent on stocking? Such lakes:	
May have these problems	and may benefit from

Are motorized watercraft used on your lake? Such lakes:

May have these problems	and may benefit from
Conflicts between use	Placing limits on motorized watercraft use by time or day, no-wake zones, and/ or motor type Spatial/local boating ordinances to protect critical habitat
- Lake sediment disturbances in shallow water during high-use periods - Disturbance of plant beds and littoral vegetation - Decreased water clarity	- Selecting a boat launch area and parking lot appropriate to the lake's carrying capacity and meeting WDNR standards for access - Using no-wake speeds or zoning for electric motors only - Protecting shallow water vegetation and natural materials that keep sediments in place
Increase risk of invasive species introduction	Using signs or more active methods to educate boaters and anglers and to encourage them to clean boats and trailers before launch - Monitoring areas near boat landings to identify and control aquatic invasive species that do get established

[^12]Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Does your lake have a public park or boat landing? Such lakes: and may benefit from	
May have these problems Increased nutrient runoff linked to vegetation disturbances	Enhancing infiltration using native vegetation, including unmowed buffer strips
Water runoff from roofs, parking areas, and other paved, compacted, or impervious areas	Directing runoff from these areas into a vegetated strip or rain garden away from the lake
Septic systems that experience heavy use	Constructing these systems with as great a setback as feasible, on the soils that have the greatest capacity to adsorb nitrogen and phosphorus, and regularly inspecting, monitoring, and maintaining
	them
	Installing additional or alternative wastewater treatment systems that remove nitrogen and
	phosphorus, or exploring community or other group wastewater treatment options
	Installing water and energy-conserving plumbing
fixtures and devises	

Does your lake currently have residential development on it, or is residential development likely in the future? Such lakes:	
May have these problems	and may benefit from
Nitrogen and phosphorus loading from fertilized lawns	Eliminating fertilizer applications or limiting them based on soil test results Using natural buffers that include native vegetation between the lawn and lake Minimizing amount of manicured lawn Using tools from the runoff toolbox
Nutrient loading from septic systems	Using greater system setbacks from the lake whenever possible Encouraging or requiring the use of alternative or additional wastewater treatment systems that remove nutrients whenever systems are installed or replaced, or exploring community or other group wastewater treatment options
Destruction of shoreline vegetation and habitat	\checkmark Providing education for new landowners on keeping vegetated shorelines intact Restoring natural shoreline buffers and protecting critical habitat areas
Runoff that carries nutrients to the lake	Using tools from the runoff toolbox Using protection tools from the lake management toolbox

[^13]* Check Wisconsin Department of Natural Resources regulations: http://dnr.wi.gov/topic/Waterways/

Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Does your lake have agricultural land uses near the shore or in the watershed? Such lakes:	
May have these problems	and may benefit from
- Sediment and nutrient runoff	Crops that require little nitrogen input
inputs of nitrate or pesticides	Development and implementation of livestock
through groundwater	grazing and manure spreading and storage plants
- Increases in algae	and practices that protect water quality
- Decreases in dissolved oxygen	Vegetative filter strips along lakes, streams, and
- Other water quality impacts	wetlands to limit runoff inputs and channelized
	flow to the lake
	Public support for county efforts to educate
	farmers and develop nutrient management plans
	based on water quality goals
	Public support for farmers who implement
	practices to protect water quality

Runoff Management Toolbox for Lake Watersheds

Implement one or more of the following tools to minimize the amount of surface

 runoff that carries nutrients and sediments to lakes:Implement road and building construction practices that meet Polk County erosion standards
Implement agricultural best management practices to minimize runoff
Use the local zoning ordinance to limit impervious surfaces that create runoff
Install and maintain vegetative buffers and filter strips that cause stormwater to infiltrate and to limit runoff to the lake
Use stormwater management practices, which may include rain gardens, streets without curb and gutter, and retention basins

Protection Tools in the Lake Management Toolbox

Implement one or more of the following tools to manage land to protect lakes:
Use legal tools, including:
© Zoning that limits potentially damaging land uses and implements the overall density provided for in the land use plan
Overlay zoning that identifies special protections beyond those in the basic zoning ordinance, including shoreland setbacks, impervious surface limits, shoreland buffers, and mitigation measures
Zoning standards adjusted for specific lakes or groups of lakes with similar physical characteristics
Subdivision ordinances

Use voluntary tools, including:

Purchase of development rights that permanently protect landscapes while retaining private ownership
Conservation easements to restrict development or uses of land
Purchase of land by state and local governments or not-for-profit organizations
Conservation design which modifies subdivision ordinances to require protection of open space

[^14]Strategies are adapted from the publication: Choosing Management Strategies for Portage County Lakes by Byron Shaw, Nancy Turyk, Jen McNelly, Buzz Sorge, and Chris Mechenich.

Apple River Flowage Lake Management Plan
 Water Quality Committee Meeting 2 Minutes Wednesday, March $27^{\text {th }}$, 2013, Amery City Hall, 7-9 pm

Overview

Scheduled next meeting; presentations on watershed modeling and options for lake management; reviewed and discussed draft plan vision, guiding principles, goals, and objectives

Next meeting

Saturday, April 20th
10 AM - 12 PM
Amery City Hall
Plan vision, guiding principles, goals and objectives drafted at the meeting:

Vision

The Apple River Flowage is a healthy waterbody with moderate nutrient levels, which supports human recreational uses and diverse fish, wildlife, and plants.

Guiding Principles

Lake management decisions are driven by what is best for the resource based on information that includes the ever evolving nature of lake management.

Communication regarding lake management is easy to understand, concise, and frequent.

Goals and objectives

I. Reduce watershed nutrient pollution to the Apple River Flowage to improve water quality

Include a definition of who's in the watershed

A. Identify the residents and users in the watershed
B. Engage watershed residents and users in reducing nutrients, sediment, and pollutants to improve water quality.
C. Reduce phosphorus loading from watershed sources by at least X\% (X pounds)
D. Support installation of best management practices, or practices that reduce runoff to the flowage

II. Minimize the release of nutrients from within the Apple River Flowage

 Include a definition of internal loadingA. Engage watershed residents and users in reducing internal loading
B. Support practices that reduce internal loading
C. Conduct further studies to better understand internal loading

III. Protect, maintain, and enhance fish and wildlife habitat

A. Enhance native shoreline vegetation
B. Maintain desirable levels of game fish in the flowage
C. Assess and improve fish habitat
D. Increase understanding of options for attracting desirable birds, waterfowl, and wildlife to property
E. Protect existing natural areas with native vegetation
IV. Maintain and enhance the natural beauty of the Apple River Flowage
A. Promote the preservation and restoration of natural vegetation along the shoreline
B. Maintain undeveloped natural areas where feasible
C. Enhance natural beauty of developed areas
D. Create areas for public use

Apple River Flowage Lake Management Plan
 Water Quality Committee Meeting 3

Saturday, April 2o ${ }^{\text {th }}, 2013$
10 am-12 pm
Amery City Hall

Agenda

10:00 Introductions
Pick May meeting date
10:10 Initial study results continued: algae data
10:20 Review and discuss draft plan goals and objectives (5-7, in italics)
Refine draft plan goals and objectives 1-4 (if necessary)
Review and discuss draft action items (in italics)
12:00 Adjourn

Katelin Holm, (715) 485-8637, katelin.holm@co.polk.wi.us
Jeremy Williamson, (715) 485-8639, jeremyw@co.polk.wi.us

Enclosed are two documents for review for Saturday's meeting:

1. The first document is what we have come up with as a group so far for: vision, guiding principles, goals, objectives, and action items. Please review for any edits/additions/revisions prior to Saturday's meeting.
2. The second document is a draft of what LWRD has prepared so far for the Lake Management Plan. Keep in mind it may still have grammatical errors and there are still sections of the report that need to be added. This report is long and much of the information was already presented at previous meetings. Feel free to review as you like.

Apple River Flowage Lake Management Plan
 Water Quality Committee Meeting 4

Tuesday, May 21 ${ }^{\text {st }}, 2013$
7-9 pm
Amery City Hall

Agenda

7:00 Comment on and finalize vision, guiding principles, goals, objectives, and actions
7:30 Complete Implementation Plan

Please review the following documents for changes/ comments. At the meeting we will work to fill in the blanks of the Implementation Plan table. In preparation for the meeting, start thinking about when various projects should be started and who might be the responsible parties.

Katelin Holm, (715) 485-8637, katelin.holm@co.polk.wi.us
Jeremy Williamson, (715) 485-8639, jeremyw@co.polk.wi.us

Appendix I

Presentations

Apple River Flowage Water Quality and Biological Assessment

This project will be funded through a WDNR Lake Planning Grant. The grant award of \$19,391 makes up 67\% of the total project costs. The remaining 33% of the project costs are made up through volunteer hours, equipment use, and a District match of $\$ 3,000$.

Project activities:

- Physical and chemical data
o In lake (2 sites)
o Tributary sampling (6 sites)
- Lake sediment dredge sampling
- Lake level and precipitation monitoring
- Phytoplankton (algae) monitoring
- Zooplankton monitoring
- Shoreline assessment
- Mapping and watershed delineation
- Sociological survey
- Educational programs
o Shoreline restoration workshop
o Pontoon classroom
o Series of 5 meetings

- Final plan generation: Lake Management Plan

Project activities requiring volunteers:

- Lake level and precipitation monitoring: This project will require two volunteers who are able to record lake level and any precipitation events on a daily basis. Ideally, this data will be collected at two sites: one North of Hwy 46 and one South of Hwy 46. LWRD will install a staff gauge (photo on right) in the water in front of volunteer's properties, provide a rain gauge for measuring precipitation, and provide data sheets for recording.
- Sociological survey: Volunteers are needed to review and distribute the survey.
- Shoreline assessment: This project will take place in late summer/early fall and will involve assessing the shoreline from the water. Volunteers will determine the land use (lawn, natural area, structure, riprap, etc.) of the shoreline (ft) and the first 35 feet of shoreline $\left(f t^{2}\right)$.
- Educational programs: These events will take place later in the season. For now the only tasks are to determine the best time to hold educational programs and to generate interest in the programs. The series of five meetings will work towards generating the final Lake Management Plan. Ideally, these meetings would be
 attended by members of a water quality committee.

Biweekly data collection

- Physical/chemical data -2 sites
- Tributary flow -6 sites

Monthly data collection

- Chemistry
- Flowage
- Tributary
- Metals
- Zooplankton
- Algae
- Chlorophyll a

Sociological survey

- Mailed end of June
- 89/225 returned
-40% response rate
- Purpose
- Public input for final plan
- Identify interest in shoreline restoration workshop

Lake level and precipitation

- Volunteers
- Dale Richardson
- Norval Doddridge
- Purpose
- Track/understand lake level changes

Education opportunities

- Pontoon classroom
- Shoreline restoration workshop

End products

- Meeting with water quality committee - Set goals, objectives, and action items
- Final plan
- Necessary for future grants
- Roadmap for decision making

Property Ownership

- Owned 19 years
- 59% full time residence
- 21% weekend, vacation, holiday

Concerns for the Apple River Flowage	Rank	Points
Invasive species (Eurasian water milfoil, zebra mussels, curly leaf, purple loosestrife)	$1{ }^{\text {st }}$	113
Aquatic plants (not including algae)	$2^{\text {nd }}$	87
Algae blooms	$3{ }^{\text {rd }}$	63
Pollution (chemical inputs, septic systems, agriculture, erosion, storm water runoff)	$4^{\text {th }}$	60
Property values and/or taxes	$5^{\text {th }}$	50
Water clarity (visibility)	$6^{\text {th }}$	39
Quality of fisheries	$7^{\text {th }}$	29
Quality of life	$8^{\text {th }}$	28
Water levels (loss of lake volume)	$9^{\text {th }}$	24
Development (population density, loss of wildlife habitat)	$10^{\text {th }}$	13
Water recreation safety (boat traffic, no wake zone)	$11^{\text {th }}$	10
Other, describe (geese/ muskrats, sediment, navigation)	$12^{\text {th }}$	10

Importance of buffers, rain gardens, and native plants

- 74% very/ somewhat important
- 8% not at all/not too important
- 18% unsure
- However...
- 47% not interested
- 28% installed
- 12% interested
- 15% unsure

Fertilizer use

- 64% do not use fertilizer
- 33\% use zero phosphorus fertlizer
- 5% unsure
- 0\% use phosphorus fertilizer

Management practices to improve water quality Percent Enhanced efforts to monitor for new populations of aquatic invasive species 60% Information and education opportunities 46% Cost-sharing assistance for the installation of farmland conservation practices (nutrient management plans, contour strips, conservation tillage) Collection of sediment cores to provide information concerning historical lake conditions 41% Establishment of slow-no-wake zones to protect aquatic plants and fisheries habitat 35% Cost-sharing assistance for the installation of shoreline buffers and rain gardens 27%	

Watershed Modeling

Sediment Chemistry

- P:Fe ratio 1:10-15
- Indicates internal loading
- Site 1 P:Fe ratio is $1: 35$
- Site 2 P:Fe ratio is $1: 18$

Next Steps

- Complete watershed and subwatershed modeling
- Develop a nutrient budget for both basins
- Delineate areas that are a benefit for water quality

Mitigation options to discuss

- Shoreland Buffers
- Rain Gardens
- Sediment Ponds Near Inlets
- Stormwater practices in City of Amery, Turtle Lake
- Nutrient management
- No till
- Other agriculture BMPs
- Land acquisition

Watershed Modeling = North Flowage

Watershed Mod Canfield Bachmann 1881 Artificial Lak	ng - South Flowage Model: $P=\frac{0.8 L}{7(0.09421 / 7)^{0.639}+n}$
Condition	P concentration ($\mu \mathrm{g} / \mathrm{l}$)
Current	74.74
15\% external load reduction	68.60
25\% external load reduction	64.72
40\% external load reduction	58.31
32% external load reduction	61.77
Actual current condition: $80.0 \mu \mathrm{~g} / \mathrm{l}$	

Goals

- Goal 1: Reduce excessive watershed nutrient inputs to the flowage to improve water quality
- Goal 2: Minimize the release of nutrients from within the Apple River Flowage to improve water quality
- Goal 3: Protect, maintain, and enhance fish and wildlife habitat

Goals continuedloo

- Goal:4 Maintain and enhance the natural beauty of the Apple River Flowage
- Goal 5: Evaluate the progress of lake management efforts through monitoring and data collection

Sediment Chemistry

- P:Fe ratio 1:10-15
- Indicates internal loading
- Site 1 P:Fe ratio is 1:35
- Site 2 P:Fe ratio is $1: 18$

Actual current condition: $78.8 \mu \mathrm{~g} / \mathrm{l}$

Watershed Modeling - South Flowage

Canfield Bachmann 1881 Artificial Lake Model: $\quad P=\frac{0.8 L}{z(0.0942 L / z)^{0.639}+p}$

Condition	P concentration ($\mu \mathrm{g} / \mathrm{l})$
Current	74.74
15\% external load reduction	68.60
25% external load reduction	64.72
40% external load reduction	58.31
32% external load reduction	61.77

Actual current condition: $80.0 \mu \mathrm{~g} / \mathrm{l}$

Design

Involve landowner as much as possible Clump plants together Use native plants RESEARCH THIS!
Use reputable greenhouse/seed provider
Use plenty of shrubs and trees

Rain Gardens

- Increases the amount of water filtering into ground
- Recharges groundwater
- Provides wildlife habitat
- Enhances beauty of yard and neighborhood
- Protects against flooding and drainage problems
- Protects lakes from damaging
flows and reduces erosion

- Reduces the need for costly
municipal stormwater treatment structures

Where Should the Rain Garden Go?

- At least 10 feet from house
- Flat area
- Below down spouts
- Not over septic system or sewer lateral
- Not where yard is wet
- Not directly under a large tree
- Not high traffic area

How Big should the Rain Garden Be?

- How deep?
- What type of soil?
- How much roof and lawn drain to it?

Design

- Water should flow evenly across the entire length
- Length should be perpendicular to slope and downspouts
- Rain gardens should have a maximum length of 15 ft (esp. on 8% slope or more)

Plant Selection

- Native
- Soil
- Sun/Shade
- Incorporate plenty of grasses, sedges and, rushes (allows for normal growth patterns)
- Height of plant
- Bloom time
- Color

Example Plant List: Well Drained Soils

New England aster Aster novae-angliae
Spotted Joe-Pye weed Eupatorium maculatum
Sneezeweed Helenium autumnale
Torrey's rush Juncus torreyi
Prairie blazing star Liatris pycnostachya
Cardinal flower Lobelia cardinalis
Great blue lobelia Lobelia siphilitica
Wild bergamot Monarda fistulosa
Mountain mint Pycanthemum virginianum
Green bulrush scirpus atrovirens
Stiff goldenrod Solidago rigida
Culver's root Veronicastrum virginicum
Golden Alexander Zizia aurea

Example Plant List: Clay Soils

Sweet flag Acorus calamus
Swamp milkweed Asclepias incarnata Water plantain Alisma subcordatum Bottle brush sedge Carex comosa Fox sedge Carex vulpinoidea Wild blue flag iris Iris virginica shrevei Wild blue flag iris Iris virginic
Torrey's rush Juncus torreyi
Cardinal flower Lobelia cardinalis
False dragon's head Physostegia virginiana
False dragon's head Physosteg
Arrowhead Sagittaria latifolia
Green bulrush Scirpus atrovirens
River bulrush Scirpus fluviatilis
Soft-stemmed bulrush Scirpus validus

Example Plant List: Shady Areas

Caterpiller Sedge Carex crinita Cardinal Flower* Lobelia cardinalis Ostrich Fern* Matteuccia struthiopteris Virginia Bluebells Mertensia virginica Sensitive Fern Onoclea sensibilis Black Chokeberry Aronia melanocarpa Red Osier Dogwood Cornus serecia Low Bush Honeysuckle Diervilla lonicera Pussy Willow Salix caprea Blue Arctic Willow Salix purpurea Nanna

Special Case: Shoreland Area

- Should not replace native shoreland vegetation
- Should help protect riparian veg. from excessive flow and debris

Questions?

Jeremy Williamson
Water Quality Specialist
(715) 485-8639
jeremyw@co.polk.wi.us

Questions?

[^0]: ${ }^{1}$ Responses for the 2001 survey were re-ranked such that each concern that was ranked first received 3 points, each concern that was ranked 2nd received 2 points, and each concern that was ranked third received 1 point. Total points were then added to determine the ranking of concerns. Points for pollution totaled 688, points for development totaled 475, and points for aquatic plants (weeds) totaled 458.

[^1]: Monitoring Station: Apple River Flowage - Deep Hole, Polk County

[^2]: \square Bacillariophyta \quad Chlorophyta \square Chrysophyta \square Cryptophyta \square Cyanophyta $■$ Euglenophyta

[^3]: ${ }^{2} \mathrm{P}$ is the predicted mixed lake total phosphorus concentration, $\mathrm{L}_{\text {ext }}$ is external areal loading, $\mathrm{L}_{\text {int }}$ is areal internal loading, qs is areal water loading or surface overflow rate, z is the lakes mean depth, and R is the Fraction of inflow total phosphorus retained in the lake.

[^4]: ${ }^{3} \mathrm{P}$ is the predicted mixed lake total phosphorus concentration, L is areal loading, z is the lakes mean depth, and p is the lakes flushing rate.
 ${ }^{4}[\overline{c h l .} a]$ is the average annual concentration of chlorophyll $a,[\mathrm{P}]_{i}$ is the average inflow concentration of total phosphorus, T_{w} is the lake hydraulic retention time, and $\sum C\left(\mathrm{gm}^{-2} y r^{-1}\right)$ is the sum of grams of carbon per meter squared of lake area per year produced during photosynthesis.

[^5]: * Covenants and Operation and Maintenance Plans are required for activities implemented with WDNR Lake Protection Grants.

[^6]: * Covenants and Operation and Maintenance Plans are required for activities implemented with WDNR Lake Protection Grants.

[^7]: * Covenants and Operation and Maintenance Plans are required for activities implemented with WDNR Lake Protection Grants.

[^8]: * Covenants and Operation and Maintenance Plans are required for activities implemented with WDNR Lake Protection Grants.

[^9]: ：əэ！0＾ul $7 \forall \exists M$

[^10]: @ Check Wisconsin Department of Natural Resources regulations: http://dnr.wi.gov/ topic/ Waterways/

[^11]: * Check Wisconsin Department of Natural Resources regulations: http://dnr.wi.gov/topic/Waterways/

[^12]: @ Check Wisconsin Department of Natural Resources regulations: http:// dnr.wi.gov/topic/Waterways/

[^13]: Does your lake's watershed have off-lake residential development, or is such development likely in the future? Such lakes may benefit from:
 Using tools from the runoff management toolbox
 Using protection tools from the lake management toolbox

[^14]: @ Check Wisconsin Department of Natural Resources regulations: http:// dnr.wi.gov/topic/Waterways/

