

Univalence and completeness of Segal objects

Raffael Stenzel

School of Mathematics University of Leeds

CT 2019, Edinburgh

Outline

Introduction

Univalence

Rezk completeness

Comparison of univalence and completeness

Univalent and Rezk completion

Outlook

Definition (sort of)

A type theoretic model category $\mathbb M$ is a model category such that its associated category $\mathbb C:=\mathbb M^f$ of fibrant objects is a type theoretic fibration category.

Definition (sort of)

A type theoretic model category \mathbb{M} is a model category such that its associated category $\mathbb{C} := \mathbb{M}^f$ of fibrant objects is a type theoretic fibration category.

→ Fibrations are closed under dependent products along fibrations.

Definition (sort of)

A type theoretic model category \mathbb{M} is a model category such that its associated category $\mathbb{C}:=\mathbb{M}^f$ of fibrant objects is a type theoretic fibration category.

→ Fibrations are closed under dependent products along fibrations.

Example

The Quillen model structure (S, Kan).

Definition (sort of)

A type theoretic model category $\mathbb M$ is a model category such that its associated category $\mathbb C:=\mathbb M^f$ of fibrant objects is a type theoretic fibration category.

→ Fibrations are closed under dependent products along fibrations.

Example

The Quillen model structure (**S**, Kan).

Recall

1. Complete Segal spaces are Reedy fibrant simplicial objects in (S, Kan) satisfying the Segal conditions and the completeness condition.

Definition (sort of)

A type theoretic model category \mathbb{M} is a model category such that its associated category $\mathbb{C}:=\mathbb{M}^f$ of fibrant objects is a type theoretic fibration category.

→ Fibrations are closed under dependent products along fibrations.

Example

The Quillen model structure (**S**, Kan).

Recall

- 2. There is a model structure ($s\mathbf{S}$, CS) whose fibrant objects are the complete Segal spaces.
 - \rightsquigarrow Classical model for $(\infty, 1)$ -category theory.

Univalence and	Rezk	Completeness
Introduction		

Fix a type theoretic model category $\mathbb M$ with associated category $\mathbb C$ of fibrant objects.

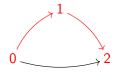
Univalence and Rezk Completeness Lintroduction

Fix a type theoretic model category $\mathbb M$ with associated category $\mathbb C$ of fibrant objects.

Let $\iota_n: I_n \hookrightarrow \Delta^n$ be the *n*-th spine inclusion.

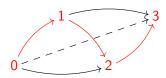
Fix a type theoretic model category $\mathbb M$ with associated category $\mathbb C$ of fibrant objects.

Let $\iota_n : I_n \hookrightarrow \Delta^n$ be the *n*-th spine inclusion.



Fix a type theoretic model category $\mathbb M$ with associated category $\mathbb C$ of fibrant objects.

Let $\iota_n : I_n \hookrightarrow \Delta^n$ be the *n*-th spine inclusion.



Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} .

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} .

$$\begin{array}{c|c}
\Delta^{op} & \xrightarrow{X} & \mathbb{M} \\
y^{op} & & \swarrow X := \operatorname{Ran}_{y^{op}} X \\
(S)^{op} & & & \end{array}$$

$$A \setminus X := \lim_{(\Delta^n/A) \in S} X_n$$

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} .

$$\begin{array}{c|c}
\Delta^{op} & \xrightarrow{X} & \mathbb{M} \\
\downarrow^{y^{op}} & & \searrow \\
X := \operatorname{Ran}_{y^{op}} X \\
(S)^{op} & & & \end{array}$$

$$A \setminus X := \lim_{(\Delta^n/A) \in S} X_n$$

Definition

The *n-th Segal map* associated to a simplicial object X in \mathbb{M} is the map

$$\iota_n \setminus X : \Delta^n \setminus X \to I_n \setminus X$$
.

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} .

$$\begin{array}{c|c}
\Delta^{op} & \xrightarrow{X} & \mathbb{M} \\
\downarrow^{y^{op}} & & & \backslash X := \operatorname{Ran}_{y^{op}} X \\
(\mathbf{S})^{op} & & & & \\
\end{array}$$

$$A \setminus X := \lim_{(\Delta^n/A) \in S} X_n$$

Definition

The *n-th Segal map* associated to a simplicial object X in \mathbb{M} is the map

$$\xi_n\colon X_n\to (X_{1/X_0})^n_S.$$

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} .

1. X is sufficiently fibrant if both the 2-Segal map

$$\xi_2 \colon X_2 \to X_1 \times_{X_0} X_1$$

and the boundary map

$$(d_1,d_0)\colon X_1\to X_0\times X_0$$

are fibrations in \mathbb{C} .

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} .

1. X is sufficiently fibrant if both the 2-Segal map

$$\xi_2 \colon X_2 \to X_1 \times_{X_0} X_1$$

and the boundary map

$$(d_1,d_0)\colon X_1\to X_0\times X_0$$

are fibrations in \mathbb{C} .

 Let X be sufficiently fibrant. We say that X is a Segal object (strict Segal object) if the associated Segal maps

$$\xi_n \colon X_n \to (X_{1/X_0})^n_S$$

are homotopy equivalences (isomorphisms) in \mathbb{C} .

Univalence and Rezk Completeness Univalence

Univalence of Segal objects

Let X be a Segal object in \mathbb{C} .

Univalence of Segal objects

Let X be a Segal object in \mathbb{C} .

$$\mathrm{Equiv}(X) \twoheadrightarrow X_1 \stackrel{(d_1,d_0)}{\twoheadrightarrow} X_0 \times X_0$$

Univalence of Segal objects

Let X be a Segal object in \mathbb{C} .

$$\mathrm{Equiv}(X) \twoheadrightarrow X_1 \stackrel{(d_1,d_0)}{\twoheadrightarrow} X_0 \times X_0$$

$$\vdash \sum_{x:X} \sum_{y:X} \sum_{f:X_1(x,y)} \operatorname{Linv}(x,y,f) \times \operatorname{Rinv}(x,y,f)$$

Univalence of Segal objects

Let X be a Segal object in \mathbb{C} .

$$\mathrm{Equiv}(X) \twoheadrightarrow X_1 \stackrel{(d_1,d_0)}{\twoheadrightarrow} X_0 \times X_0$$

$$\vdash \sum_{x:X} \sum_{y:X} \sum_{f:X_1(x,y)} \mathrm{Linv}(x,y,f) \times \mathrm{Rinv}(x,y,f)$$

for

$$\begin{split} \operatorname{Linv}(x,y,f) &:= \sum_{g: X_1(y,x)} \sum_{\sigma: X_2(f,g)} d_1 \sigma =_{X_1(x,x)} s_0 x, \\ \operatorname{Rinv}(x,y,f) &:= \sum_{g: X_1(y,x)} \sum_{\sigma: X_2(f,g)} d_1 \sigma =_{X_1(y,y)} s_0 y. \end{split}$$

 $h:X_1(v,x) \sigma:X_2(h,f)$

Univalence and Rezk Completeness Univalence

Definition

X is univalent if $\mathrm{Equiv}(X)$ is a path object for the base X_0 .

Univalence and Rezk Completeness
Univalence

Definition

X is *univalent* if $\mathrm{Equiv}(X)$ is a path object for the base X_0 .

Let p: E woheadrightarrow B be a fibration in \mathbb{C} .

X is univalent if $\mathrm{Equiv}(X)$ is a path object for the base X_0 .

Let $p: E \rightarrow B$ be a fibration in \mathbb{C} .

► $\operatorname{Fun}(p) \xrightarrow{(s,t)} B \times B$ yields an internal category object in \mathbb{C} .

X is univalent if Equiv(X) is a path object for the base X_0 .

Let $p: E \rightarrow B$ be a fibration in \mathbb{C} .

- ► $\operatorname{Fun}(p) \xrightarrow{(s,t)} B \times B$ yields an internal category object in \mathbb{C} .
- ► There is a nerve construction

$$N: \operatorname{ICat}(\mathbb{C}) \to s\mathbb{C}$$

whose image consists exactly of the objects in $s\mathbb{C}$ whose Segal objects are isomorphisms.

 $\rightsquigarrow N\operatorname{Fun}(p)$ is a strict Segal object.

X is univalent if $\mathrm{Equiv}(X)$ is a path object for the base X_0 .

Let $p: E \rightarrow B$ be a fibration in \mathbb{C} .

- ► Fun(p) $\xrightarrow{(s,t)} B \times B$ yields an internal category object in \mathbb{C} .
- ► There is a nerve construction

$$N: \operatorname{ICat}(\mathbb{C}) \to s\mathbb{C}$$

whose image consists exactly of the objects in $s\mathbb{C}$ whose Segal objects are isomorphisms.

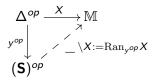
 $\rightsquigarrow N\operatorname{Fun}(p)$ is a strict Segal object.

Proposition

Let $p: E \to B$ be a fibration in \mathbb{C} . Then p is a univalent fibration in \mathbb{C} if and only if the Segal object $N\operatorname{Fun}(p)$ is univalent.

Rezk Completeness

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} . Recall the Kan extension



Rezk Completeness

Let $X \in s\mathbb{C}$ be a simplicial object in \mathbb{C} . Recall the Kan extension

$$\begin{array}{c|c}
\Delta^{op} & \xrightarrow{X} & \mathbb{M} \\
y^{op} & & \swarrow X := \operatorname{Ran}_{y^{op}} X \\
(S)^{op} & & \end{array}$$

Definition

A Reedy fibrant Segal object X is *complete* if the functor

$$_ \setminus X \colon (S, QCat)^{op} \to M$$

is a right Quillen functor.

A map $\mathcal{C} o \mathcal{D}$ between quasi-categories is a quasi-fibration if and only if it has the right lifting property against

- 1. all inner horn inclusions $\{h_i^n \colon \Lambda_i^n \to \Delta^n\}$, and
- 2. the endpoint inclusion $\Delta^0 \to J$.

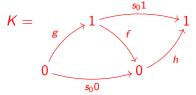
A map $\mathcal{C} \to \mathcal{D}$ between quasi-categories is a quasi-fibration if and only if it has the right lifting property against

- 1. all inner horn inclusions $\{h_i^n \colon \Lambda_i^n \to \Delta^n\}$, and
- 2. the endpoint inclusion $\Delta^0 \rightarrow J$.

$$J = N(0) \stackrel{\cong}{\longrightarrow} 1$$

A map $\mathcal{C} \to \mathcal{D}$ between quasi-categories is a quasi-fibration if and only if it has the right lifting property against

- 1. all inner horn inclusions $\{h_i^n \colon \Lambda_i^n \to \Delta^n\}$, and
- 2. the endpoint inclusion $\Delta^0 \to \mbox{\it K}.$



Univalence and Rezk Completeness Rezk completeness

The functor $_ \setminus X \colon (\mathbf{S})^{op} \to \mathbb{M}$ takes

Univalence and Rezk Completeness

Rezk completeness

The functor $_ \setminus X \colon (\mathbf{S})^{op} \to \mathbb{M}$ takes

▶ boundary inclusions (and hence all monomorphisms) in S to fibrations in M if and only if X is Reedy fibrant;

The functor $_ \setminus X \colon (\mathbf{S})^{op} \to \mathbb{M}$ takes

- ▶ boundary inclusions (and hence all monomorphisms) in S to fibrations in M if and only if X is Reedy fibrant;
- furthermore inner horn inclusions (and hence all mid anodyne morphisms) in S to acyclic fibrations if and only if X is a Reedy fibrant Segal object;

The functor $_ \setminus X \colon (\mathbf{S})^{op} \to \mathbb{M}$ takes

- ▶ boundary inclusions (and hence all monomorphisms) in S to fibrations in M if and only if X is Reedy fibrant;
- furthermore inner horn inclusions (and hence all mid anodyne morphisms) in S to acyclic fibrations if and only if X is a Reedy fibrant Segal object;
- ▶ furthermore $\Delta^0 \to K$ to an acyclic fibration if and only if X is a Reedy fibrant complete Segal object.

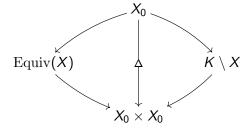
The functor $_ \setminus X \colon (\mathbf{S})^{op} \to \mathbb{M}$ takes

- ▶ boundary inclusions (and hence all monomorphisms) in S to fibrations in M if and only if X is Reedy fibrant;
- furthermore inner horn inclusions (and hence all mid anodyne morphisms) in S to acyclic fibrations if and only if X is a Reedy fibrant Segal object;
- ▶ furthermore $\Delta^0 \to K$ to an acyclic fibration if and only if X is a Reedy fibrant complete Segal object.

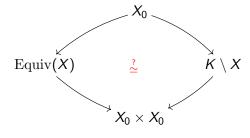
Definition

A Reedy fibrant Segal object X is complete if the object $K \setminus X$ is a path object for X_0 .

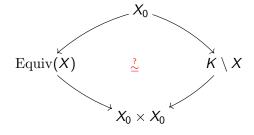
For every Segal object $X \in s\mathbb{C}$, we have



For every Segal object $X \in s\mathbb{C}$, we have

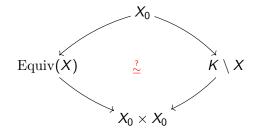


For every Segal object $X \in s\mathbb{C}$, we have



$$\operatorname{Equiv}(X) \simeq \operatorname{Equiv}(\mathbb{R}X) \simeq K \setminus \mathbb{R}X$$

For every Segal object $X \in s\mathbb{C}$, we have

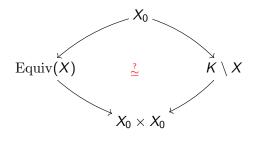


$$\operatorname{Equiv}(X) \simeq \operatorname{Equiv}(\mathbb{R}X) \simeq K \setminus \mathbb{R}X$$

Theorem

Let X be a Segal object in \mathbb{C} . Then X is univalent if and only if its Reedy fibrant replacement $\mathbb{R}X$ is complete.

For every Segal object $X \in s\mathbb{C}$, we have



$$\operatorname{Equiv}(X) \simeq \operatorname{Equiv}(\mathbb{R}X) \simeq K \setminus \mathbb{R}X$$

Corollary

Let Xp be a fibration in \mathbb{C} . Then p is a univalent fibration if and only if the Segal object $\mathbb{R}N(\operatorname{Fun}(p))$ is complete.

Univalent and Rezk completion

Let $\mathbb M$ be a type theoretic model category with an (h-epi,h-mono)-factorization (e.g. $\mathbb M$ combinatorial).

Let $\mathbb M$ be a type theoretic model category with an (h-epi,h-mono)-factorization (e.g. $\mathbb M$ combinatorial).

 $\leadsto \mathbb{M}$ comes with an (-1)-truncation $A \to (A)_{-1}$.

Let $\mathbb M$ be a type theoretic model category with an (h-epi,h-mono)-factorization (e.g. $\mathbb M$ combinatorial).

 \rightsquigarrow M comes with an (-1)-truncation $A \rightarrow (A)_{-1}$.

 $\leadsto \mathbb{M}$ comes with a class of (-1)-connected cofibrations.

Let \mathbb{M} be a type theoretic model category with an (h-epi,h-mono)-factorization (e.g. \mathbb{M} combinatorial).

 \rightsquigarrow M comes with an (-1)-truncation $A \rightarrow (A)_{-1}$.

 \leadsto $\mathbb M$ comes with a class of (-1)-connected cofibrations.

Let $\pi \colon \tilde{U} \twoheadrightarrow U$ be a univalent fibration.

Let $\mathbb M$ be a type theoretic model category with an (h-epi,h-mono)-factorization (e.g. $\mathbb M$ combinatorial).

 \rightsquigarrow \mathbb{M} comes with an (-1)-truncation $A \rightarrow (A)_{-1}$.

 \rightsquigarrow \mathbb{M} comes with a class of (-1)-connected cofibrations.

Let $\pi : \tilde{U} \twoheadrightarrow U$ be a univalent fibration.

Definition

We say that $p \colon E \twoheadrightarrow B$ is *small* if it arises as the homotopy pullback of π along some map $B \to U$.

Definition

Let p: E woheadrightarrow B be a small fibration in \mathbb{C} . We say that a homotopy cartesian square

$$\begin{array}{c|c}
E \longrightarrow u(E) \\
\downarrow p & \downarrow u(p) \\
\& B \longrightarrow u(B)
\end{array}$$

is a *univalent completion* of p if the fibration $u(p) \in \mathbb{C}$ is small and univalent, and the map $\iota \colon B \to u(B)$ is a (-1)-connected cofibration.

For every fibration p: E woheadrightarrow B in $\mathbb C$ there is a univalent completion

$$\begin{array}{c|c}
E \longrightarrow u(E) \\
\downarrow \downarrow \\
B \longrightarrow \iota \\
U(B).
\end{array}$$

For every fibration $p \colon E \twoheadrightarrow B$ in $\mathbb C$ there is a univalent completion

$$\begin{array}{c|c}
E \longrightarrow u(E) \\
\downarrow p & \downarrow u(p) \\
\sharp & & \sharp \\
B \longrightarrow_{\iota} u(B).
\end{array}$$

Proof.

$$\begin{bmatrix}
E \longrightarrow \tilde{U} \\
\downarrow \downarrow \\
B \longrightarrow U
\end{bmatrix}$$

For every fibration $p \colon E \twoheadrightarrow B$ in $\mathbb C$ there is a univalent completion

$$\begin{array}{c|c}
E \longrightarrow u(E) \\
\downarrow p & \downarrow u(p) \\
\& B \longrightarrow_{\iota} u(B).
\end{array}$$

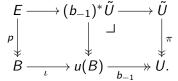
Proof.

$$\begin{bmatrix}
E \longrightarrow (b_{-1})^* \tilde{U} \longrightarrow \tilde{U} \\
\downarrow^p \downarrow & \downarrow^\pi \\
B \longrightarrow \iota U(B) \longrightarrow U.
\end{bmatrix}$$

For every fibration p: E woheadrightarrow B in $\mathbb C$ there is a univalent completion

$$\begin{array}{c|c}
E \longrightarrow u(E) \\
\downarrow p & \downarrow u(p) \\
\& B \longrightarrow_{\iota} u(B).
\end{array}$$

Proof.

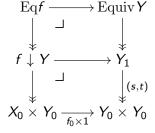


Univalence and Rezk Completeness Univalent and Rezk completion

Rezk completion

Rezk completion

Given a map $f: X \to Y$ of Segal objects in \mathbb{C} , consider



Definition

Let $f: X \to Y$ be a map between Segal objects in M. We say that

- 1. f is fully faithful if the natural map $X_1 \to (f_0 \times f_0)^* Y_1$ over $X_0 \times X_0$ is a weak equivalence.
- 2. f is essentially surjective if the fibration $(Eqf)_{-1} \twoheadrightarrow Y_0$ is acyclic.
- 3. *f* is a *DK-equivalence* if it is fully faithful and essentially surjective.

Theorem

For every fibration p: E woheadrightarrow B, the univalent completion

$$\begin{array}{c|c}
E \longrightarrow u(E) \\
\downarrow p & \downarrow u(p) \\
B \longrightarrow u(B)
\end{array}$$

induces a DK-equivalence

$$\mathbb{R}N(\iota)\colon \mathbb{R}N(p)\to \mathbb{R}N(u(p))$$

from the Segal object $\mathbb{R}N(p)$ to the complete Segal object $\mathbb{R}N(u(p))$ in \mathbb{C} .

Outlook

Outlook

▶ Discuss Rezk completion in the sense of Ahrens, Kapulkin and Shulman.

Outlook

- Discuss Rezk completion in the sense of Ahrens, Kapulkin and Shulman.
- ► This suggests that univalent fibrations might be the fibrant objects in some fibration category?

Thank you!

- B. van den Berg and I. Moerdijk, *Univalent completion*, Mathematische Annalen **371** (2018), no. 3-4, 1337—1350.
- A. Joyal and M. Tierney, *Quasi-categories vs Segal spaces*, Categories in Algebra, Geometry and Mathematical Physics, American Mathematical Society, 2006, pp. 277–326.
- C. Rezk, A model for the homotopy theory of homotopy theories, Transactions of the American Mathematical Society (1999), 973–1007.
- M. Shulman, *Univalence for inverse diagrams and homotopy canonicity*, Mathematical Structures in Computer Science **25** (2015), no. 5 (Special Issue), 1203–1277.