J. Exp. Zool. India Vol. 19, No. 1, pp. 505-513, 2016

www.connectjournals.com/jez

# *IN-SILICO* PHYLOGENETIC TOOLS EMPLOYED ON SOME MEMBERS OF FIVE MAJOR FAMILIES OF MONOGENEA *VIZ.*, MONOCOTYLIDAE, ANCYLODISCOIDIDAE, ANCYROCEPHALIDAE, CICHLIDOGYRIDAE AND POLYSTOMATIDAE FOR INVESTIGATING THEIR RELATEDNESS AND GLOBAL DIVERSITY DISTRIBUTION

Fozail Ahmad, Dharmendra Singh, P. V. Arya\* and H. S. Singh<sup>1</sup>

Department of Zoology, Dyal Singh College (University of Delhi), New Delhi - 110 003, India. <sup>1</sup>Department of Zoology, Ch.C. S. University, Meerut - 250 004, India. \*e-mail: zoology.dsc@gmail.com

#### (Accepted 20 October 2015)

ABSTRACT : The global diversity and the relatedness among the members of the same group remain a key attraction for evolutionary diversity. Members of parasitic Class Monogenea is extensively investigated during recent past. Present paper is an attempt to explore the concept of relatedness and global diversity evolution in five major families of this class using various *in-silico* tools. Study involve investigations on 227 species using 28S rRNA data and its geomapping co relations.

Key words : Geomapping, phylogeny, evolution, Monogenea.

#### **INTRODUCTION**

Enumerating the present time diversity of lower organisms and comprehending how they diversified in ancient time, are the points of milestones in evolutionary biology, ecology and conservation biology (Pariselle et al, 2011). The estimation of past parasitic biodiversity and present diversification is remained in its initial stage (Dobson et al, 2008). Efforts with multiple approaches have been carried out to present a convincing answer to these questions. Being an ideal taxon for investigation of past diversifications and present diversity, monogeneans have been extensively studied for number of important reasons (Poulin, 2002). Monogenea form a diverse group with thousands of species (Cribb, 2002). They don't show diversifications in numbers only but are the group among flatworms to have undergone an adaptive radiation, ecological adaptation, parasitism, multiple host relationship, adaptation from being external to internal parasite on the same host and morphological versatility (de León et al, 2010; Karvonen et al, 2012 and Vanhove et al, 2013). Apart from these features, host switching is a common phenomena in monogeneans at all the branches of its phylogeny making analysis easier to explore for a link between ecological characteristics of host and diversity of parasites, and to control for the phylogenetic history of their associations (Bakke et al, 2002; Badrane et al, 2001 and Reeves et al, 2015). As a whole it is quite difficult to estimate species and parasitic diversity, still there is a chance with good range of possibility of analyzing into families and subfamilies (Gerasev, 2004).

For all (approximately 4000) species, a total of 35 families have been classified followed by 250 genus designated in the literature and at various databases (Türkay Öztürk1 et al, 2014). Out of these families, Gyrodactylidae, Monocotylidae, Ancyrocephalidae, Capsilidae, Cichlidogyridae, Polystomatidae and Diplectanidae are among constantly studied and providing a novel hypothesis of evolutionary relatedness of their member species (Williams, 1991). Each of them possesses distinct features in terms of morphology, physiology, host specification, coevolution and ecological patterns (Mladineo et al, 2013). Families like Ancylodiscoididae and Polystomatidae and members of Dactylogyrids are afforded with the members of fresh water bodies, making a geographic linking among those of other fresh water species across the globe (Vanhove et al, 2014). Incorporation of information into family analysis have been paid attention due to encompassing a range of diversity richness in monogeneans with a vital understanding over all aspects of parasitism, making evolutionary study more interesting and easier at the secondary stage of analyses (Cribb et al, 2002 and Fozail et al, 2015a-c).

Geographical study on monogeneans does not exactly show their origin and hence it needs to be strengthened further, since their distribution merely demonstrates a clue to the root of diversification (Badets *et al*, 2009 and Fozail *et al*, 2015a-c). Together with molecular phylogeny and zoogeographical tracking as a combinatorial approach to the ancient history may provide an insight to common origin and diversification of this taxon (Poisot *et al*, 2011). Phylogeny itself is not capable of resolving this problem, however a molecular pattern among members of the group can be established in order to understand parasitic diversity with all due consideration of features mentioned above (Telford, 2006).

In present study, we intend to present the prevalence of major families in different geographical zones and their evolutionary relatedness using molecular data in order to understand their possible pattern of occurrence/ diversification/relatedness.

## MATERIALS AND METHODS

# Selection of families

Selection of families (Table 1) is based upon diversity of family and the previous phylogenetic analyses being performed by us and genomic data of species exists in NCBI (National Center for Biotechnology Information).

| S1. | Family            | Total<br>genus | Total<br>species | rRNA<br>type |
|-----|-------------------|----------------|------------------|--------------|
| 1.  | Ancylodiscoididae | 6              | 27               | 28S          |
| 2.  | Ancyrocephalidae  | 12             | 72               | 285          |
| 3.  | Cichlidogyridae   | 1              | 23               | 28S          |
| 4.  | Monocotylidae     | 12             | 39               | 28S          |
| 5.  | Polystomatidae    | 15             | 44               | 28S          |

Table 1 : Summary about families selected for the study.

#### **Molecular Phylogenetic Analysis**

Initially nucleotide sequences of all species for all families were retrieved from NCBI. The sequences for separate family were aligned using Multiple Sequence Alignment (MSA) program with clustalW. Subsequently, each MSA was subjected to MEGA6 for inferring phylogenetic tree. The average pathway method was used to calculate the branch length depicted in the number of variations all over the sequences. Resultantly, the most parsimonious tree was chosen by the close-neighborinterchange algorithm by keeping bootstrap value of 1000 replication.

# Geomapping and Cladistic Comparison of families

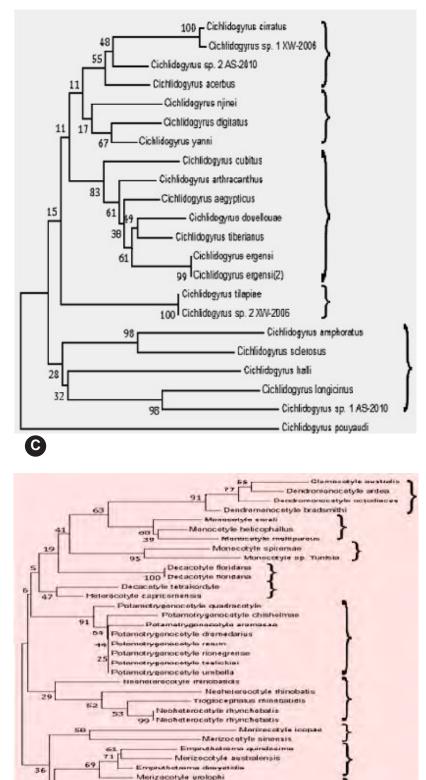
Geomapping of each family was done on physical world map. Later on occupied positions by species on the map were connected to infer their geographical pattern and parasitic diversity. Phylogenetic tree for each species were represented with clades/cluster so as to determine intra genus relationship and to strengthen geographical occurrence.

# RESULTS

#### **Construction of Phylogenetic Tree**

After MSA sequences were processed for tree

construction, five trees were constructed using MEGA6 for each family (fig. 1). Number of species for each family in the phylogenetic tree varied due to unavailability of molecular (rDNA) data in NCBI. Later on trees were grouped into clades/cluster. Number of clades in each tree differed because number of species was not equal for all families. Possible error was minimised by focusing onto the geographical distribution of members into families and not clades (later section). Bootstrap values exhibited significant variations over branches and rendered to be 70% as standard value to significance.


The family Ancylodiscoididae (fig. 1 A) gave a total of nine cluster wherein, many sister clades were present. Evolutionarily, species followed distinctive root of diversity as shown by branch length of its phylogenetic tree. Although, members of this family are less in number, approximately 27, but formation of nine clades signifies that parasitic diversity has deep root so far as evolution is concerned. They have been evolving at a much faster rate than the members of other families in the study.

The family Ancyrocephalidae (fig. 1 B) with highest number of species formed highest number of clades that has been coincided with its length of phylogenetic tree. Family Cichlidogyridae (fig. 1 C) with 23 species had five clades that followed a conserved root of evolution. Family Polystomatidae and Monocotylidae (fig. 1 D & E) with 44 and 39 species respectively had showed equal number of clades, following almost adequate pattern of evolution.

#### **Clade versus Geomapping**

Family distribution was not bound to a specific location except certain families. Ancyrocephalidae with highest number of species and clades found to be distributed in all sub-continents. This family was more related with Australian zones and less propagated in other zones. Phylogenetic patterns, although, did not reveal that which group of species was more prevalent still smaller number of clades reflected rapid pace of variability among members of this family. China in parallel to Australia displayed a thorough distribution along with Indo-west Pacific Ocean (fig. 2). Members of Ancyrocephalidae were distributed over all geographic zones including Africa, Europe, and North & South America (fig. 2). This was pretty agreeable to the pattern of formation of cluster in the phylogenetic tree but it had deviated from the number and geographical distribution that most of the species should not have been found in confined in the specific locations rather it should have been equally dispersed. Therefore, it has been confirmed that reason behind high number of cluster in the phylogenetic tree is





Calicotyte uneloph

Calcotyle knowen

Calcotyle inpenior

Calicotyle stossichi

ctyocotyte coelta Calicotyte affinis

13

D

Calicotyle sp CWA1

Calicotyle

Fig. 1 continued...

Calculyle sp. EMP-2009

towards tracing of ancestral lineage and ancient history as well. Moreover, confinement in a particular location would decrease down the variability factor due to environmental and ecological constancy. Here number of clades did not matter efficaciously but prevalence did for Ancylodiscoididae. Most African and South African countries afforded the family Cichlidogyridae with least number of species in the study. According to the number of clades in its phylogenetic tree, distribution was shown to be normal. Out of 23 members only three from non African regions, showing a lesser variability among genus and good compatibility in molecular pattern of species. Reason behind lesser number of species in the family could be hypothesized by ecological and environmental features of a particular place. Besides this limited dispersion and geographical separation could have been one of the reasons leading to minor variability among members. Family Monocotylidae had a better coincidence between number of clades and geographical spots, it contained 11 clusters and distributed in all regions except China and Europe. Australian and American zones afforded more species than any other part. Out of these geographies, maximum members were confined to Australian regions representing a higher frequency of conservation as a group among all others. Although, clusters had varied a bit from dispersion but it totally depends upon number of species in a clade. Apart from Australian zones, North & South America regions also kept significant number of Monocotylidae along with North Atlantic Ocean. Even after confining in a specific location, species represent wide molecular pattern, signifying that all of the individuals in that particular region would show great variability in their nucleic acid composition. It has been supported by the distribution of families Monocotylidae and Ancyrocephalidae itself as both of them have been found in specific zones but molecularly represent higher diversity as far as evolutionary relatedness is

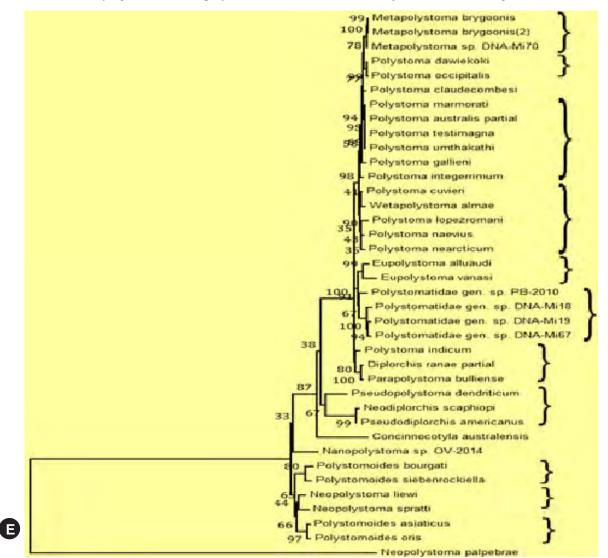



Fig. 1 : Phylogenetic tree representing of five different families-

**A.** Ancylodiscoididae : In all 27 species from 6 different genus studied; **B.** Ancyrocephalidae : In all 72 species from 12 different genus studied; **C.** Cichlidogyridae : In all 23 species from 1 genus studied; **D.** Polystomatidae : In all 44 species from 15 different genus studied & **E.** Monocotylidae : In all 39 species from 12 different genus studied.

concerned. Ecological and environmental elements would have definitely caused such anomalies in individuals. Therefore, it is not limited to Monogeneans only but other member from different class would face the same environmental attributes. Family Polystomatidae represented the best coincidence between number of clades and geographical patterns. Eleven clusters with 44 species were given to this family and their distribution came out to be equal in all regions of the world. No subcontinent was left unoccupied from Polystomatidae. Resultantly, such expression strengthen the fact about molecular conservation and parallel evolution and show that even after being exposed to various environmental and ecological conditions, individual were not much affected to the extent of totally different route of diversity and evolution. On the other hand they possess the magnificent tendency to conserve their molecular composition for a longer period of time.

# DISCUSSION AND CONCLUSION

Among all family Ancyrocephalidae showed the greater prevalence followed by family Polystomatidae (fig. 2), confirming that these two families are the most diversified among others in the study. It was supported by cladistic analyses wherein species were clustered with two or three members. This finding coincides well with evolutionary relatedness among species of the same families that more the clades more the distribution/ diversification. Other families did not represent similar pattern of diversification as they showed conserved or confined origin to a specific location. Ancylodiscoididae

| Table 2 : Summary | of 227 | species | studied. |
|-------------------|--------|---------|----------|
|-------------------|--------|---------|----------|

| Family : Ancylodiscoididae |                                  |                |  |
|----------------------------|----------------------------------|----------------|--|
| SI.                        | Species                          | Location       |  |
| 1.                         | Hamatopeduncularia arii          | India          |  |
| 2.                         | Hamatopeduncularia thalassini    | India          |  |
| 3.                         | Hamatopeduncularia elongata      | India          |  |
| 4.                         | Cleidodiscus pricei              | Lake Norman    |  |
| 5.                         | Notopterodiscoides notopterus    | India          |  |
| 6.                         | Pseudancylodiscoides sp. HSY3    | India          |  |
| 7.                         | Pseudancylodiscoides sp. HSY4    | India          |  |
| 8.                         | Quadriacanthus kobiensis         | India          |  |
| 9.                         | Thaparocleidus asoti             | India          |  |
| 10.                        | Thaparocleidus caecus            | Southeast Asia |  |
| 11.                        | Thaparocleidus cochleavagina     | India          |  |
| 12.                        | Thaparocleidus combesi           | India          |  |
| 13.                        | Thaparocleidus infundibulovagina | India          |  |
| 14.                        | Thaparocleidus magnicirrus       | India          |  |
| 15.                        | Thaparocleidus mutabilis         | India          |  |
| 16.                        | Thaparocleidus obscura           | India          |  |
| 17.                        | Thaparocleidus omegavagina       | India          |  |
| 18.                        | Thaparocleidus siluri            | India          |  |
| 19.                        | Thaparocleidus varicus           | India          |  |
| 20.                        | Thaparocleidus vistulensis       | India          |  |
| 21.                        | Thaparocleidus sp. 1 HS-2010     | India          |  |
| 22.                        | Thaparocleidus sp. 1 XW-2007     | India          |  |
| 23.                        | Thaparocleidus sp. 2 HS-2010     | India          |  |
| 24.                        | Thaparocleidus sp. 2 XW-2007     | India          |  |
| 25.                        | Thaparocleidus sp. HSS-2011      | India          |  |
| 26.                        | Thaparocleidus sp. NY1           | India          |  |
| 27.                        | Thaparocleidus sp. NY2           | India          |  |
| 28.                        | Hamatopeduncu laria arii         | India          |  |
| 29.                        | Hamatopeduncularia thalassini    | India          |  |
|                            | Family: Ancyrocephalida          | ie             |  |
| 30.                        | Actinocleidus recurvatus         | Canada         |  |
| 31.                        | Ancyrocephalus mogurndae         | China          |  |
| 32.                        | Ancyrocephalus paradoxus         | Kurish Gulf    |  |
| 33.                        | Ancyrocephalus percae            | Germany        |  |
| 34.                        | Bravohollisia tecta              | Hainan         |  |
| 35.                        | Bravohollisia gussevi            | Sungai Buloh   |  |
| 36.                        | Bravohollisia sp. Malaysia       | Malaysia       |  |
| 37.                        | Bravohollisia maculates          | China          |  |
| 38.                        | Bravohollisia rosetta            | Sungai Buloh   |  |
| 39.                        | Bravohollisia sp. 1 XW-2006      | Malaysia       |  |
| 40.                        | Enterogyrus coronatus            | Senegal        |  |
| 41.                        | Enterogyrus sp. 1 AS-2010        | Senegal        |  |
| 42.                        | Enterogyrus sp. 2 AS-2010        | Senegal        |  |
| 43.                        | Euryhaliotrema annulocirrus      | I-W P. Ocean   |  |
| 43.                        | Euryhaliotrema mehen             | I-W P. Ocean   |  |
| 44                         | Euryhaliotrema aspistis          | I-W P. Ocean   |  |
|                            |                                  |                |  |
| 46.                        | Euryhaliotrema berenguelae       | I-W P. Ocean   |  |
| 47.                        | Euryhaliotrema johni             | I-W P. Ocean   |  |
| 48.                        | Euryhaliotrema microphallus      | I-W P. Ocean   |  |
| 49.                        | Euryhaliotrema pirulum           | I-W P. Ocean   |  |
| 50.                        | Euryhaliotrema triangulovagina   | I-W P. Ocean   |  |
| 51.                        | Euryhaliotrema sp. LSJ-2011      | I-W P. Ocean   |  |

| Table 2                 | continued                                           |              |  |
|-------------------------|-----------------------------------------------------|--------------|--|
| 52.                     | Haliotrema angelopterum                             | I-W Islands  |  |
| 53.                     | Haliotrema aurigae                                  | S W Parite   |  |
| 54.                     | Haliotrema bihamulatum                              | China        |  |
| 55.                     | Haliotrema chrysotaeniae                            | Brazil       |  |
| 56.                     | Haliotrema cromileptis                              | Australia    |  |
| 57.                     | Haliotrema ctenochaeti                              | China        |  |
| 58.                     | Haliotrema digyroides                               | China        |  |
| 59.                     | Haliotrema epinepheli                               | Australia    |  |
| 60.                     | Haliotrema fleti                                    | Australia    |  |
| 61.                     | Haliotrema geminatohamula                           | Australia    |  |
| 62.                     | Haliotrema grossecurvitubus                         | China        |  |
| 63.                     | Haliotrema johnstoni                                | Australia    |  |
| 64.                     | Haliotrema kurodai                                  | Australia    |  |
| 65.                     | Haliotrema leporinus                                | South China  |  |
| 67.                     | Haliotrema macasarensis                             | China        |  |
| 68.                     | Haliotrema macracantha                              | N. Caledonia |  |
| <u>69.</u>              | Haliotrema nanaoensis                               | Australia    |  |
| 70.                     | Haliotrema platycephali                             | Australia    |  |
| 70.                     | Haliotrema pratasensis                              | South China  |  |
| 71.                     | Haliotrema scyphovagina                             | I-W P. Ocean |  |
| 72.                     | Haliotrema scyphovagina<br>Haliotrema shenzhenensis | South China  |  |
| 73.                     | -                                                   | Red Sea      |  |
|                         | Haliotrema spirotubiforum                           |              |  |
| 75.                     | Haliotrema subancistroides                          | Red Sea      |  |
| 76.                     | Haliotrema sp. 1 TY-2005                            | Red Sea      |  |
| 77.                     | Haliotrema sp. 2 TY-2005                            | Red Sea      |  |
| 78.                     | Haliotrema sp. WXY-2005                             | Australia    |  |
| 79.                     | Haliotrema sp. WXY-2007                             | Australia    |  |
| 80.                     | Haliotrema sp. ZHDDa                                | Australia    |  |
| 81.                     | Lethrinitrema zhanjiangense                         | S. China Sea |  |
| 82.                     | Ligophorus acuminatus                               | Spain        |  |
| 83.                     | Ligophorus angustus                                 | Spain        |  |
| 84.                     | Ligophorus cephalic                                 | Spain        |  |
| 85.                     | Ligophorus confuses                                 | Spain        |  |
| 86.                     | Ligophorus heteronchus                              | Spain        |  |
| 87.                     | Ligophorus imitansn                                 | Spain        |  |
| 88.                     | Ligophorus leporinus                                | China        |  |
| 89.                     | Ligophorus llewellyni                               | Sea of Azov  |  |
| 90.                     | Ligophorus macrocolpos                              | Spain        |  |
| 91.                     | Ligophorus mediterraneus                            | Spain        |  |
| 92.                     | Ligophorus minimus                                  | Spain        |  |
| 93.                     | Ligophorus pilengas                                 | Sea of Azov  |  |
| 94.                     | Ligophorus szidati                                  | Sea of Azov  |  |
| 95.                     | Ligophorus vanbenedenii                             | Sea of Azov  |  |
| 96.                     | Metahaliotrema geminatohamula                       | S. Brazil    |  |
| 97.                     | Metahaliotrema Mizellei                             | China        |  |
| 98.                     | Onchobdella atramae                                 | Africa       |  |
| 99.                     | Pseudohaliotrema Sphincteroporus                    | Australia    |  |
| 100.                    | Scutogyrus longicornis                              | Africa       |  |
| 101.                    | Scutogyrus minus                                    | Africa       |  |
| Family: Cichlidogyridae |                                                     |              |  |
| 102.                    | Cichlidogyrus amphoratus                            | Africa       |  |
| 103.                    | Cichlidogyrus falcifer                              | Africa       |  |
| 104.                    | Cichlidogyrus sclerosus                             | Uganda       |  |
| 105.                    | Cichlidogyrus sp. 1 AS-2010                         |              |  |
|                         |                                                     |              |  |

Table 2 continued...

Table 2 continued...

Table 2 continued...

|              | continuea                                                 |              |
|--------------|-----------------------------------------------------------|--------------|
| 106.         | Cichlidogyrus sp. 1 XW-2006                               |              |
| 07.          | Cichlidogyrus sp. 2 AS-2010                               |              |
| 08.          | Cichlidogyrus sp. 2 XW-2006                               |              |
| 109.         | Cichlidogyrus amphoratus                                  | Africa       |
| 110.         | Cichlidogyrus acerbus                                     | Africa       |
| 111.         | Cichlidogyrus aegypticus                                  | Africa       |
| 112.         | Cichlidogyrus digitatus                                   | Africa       |
| 113.         | Cichlidogyrus acerbus                                     | Africa       |
| 114.         | Cichlidogyrus aegypticus                                  | Africa       |
| 115.         | Cichlidogyrus arthracanthus                               | Africa       |
| 116.         | Cichlidogyrus arthracanthus                               | Africa       |
| 117.         | Cichlidogyrus cubitus                                     | Benin        |
| 118.         | Cichlidogyrus ergensi                                     | Benin        |
| 119.         | Cichlidogyrus cubitus                                     | Benin        |
| 120.         | Cichlidogyrus njinei                                      | Cameroon     |
| 121.         | Cichlidogyrus cirratus                                    | Israel       |
| 122.         | Cichlidogyrus cirratus                                    | Israel       |
| 123.         | Cichlidogyrus tiberianus                                  | Israel       |
| 124.         | Cichlidogyrus pouyaudi                                    | Kogon River  |
| 125.         | Cichlidogyrus yanni                                       | Kogon        |
| 126.         | Cichlidogyrus douellouae                                  | Mékrou Rive  |
| 127.         | Cichlidogyrus halli                                       | Phongolo     |
| 128.         | Cichlidogyrus tilapiae                                    | South Africa |
| 129.         | Cichlidogyrus longicirrus                                 | Ghana        |
|              | Family: Monocotylid                                       |              |
| 130.         | Caliocotyle affinis                                       | N. A. Ocean  |
| 131.         | Caliocotyle japonica                                      | Japan        |
| 132.         | Caliocotyle kroyeri                                       | Mexico       |
| 133.         | Caliocotyle palombi                                       | N. A. Ocean  |
| 134.         | Caliocotyle stossichi                                     | Mexico       |
| 135.         | Caliocotyle urolophi                                      | Australia    |
| 136.         | Caliocotyle sp. CWA1                                      |              |
| 137.         | Caliocotyle sp. EMP                                       |              |
| 138.         | Clemacotyle australis                                     | Australia    |
| 139.         | Decacotyle floridana                                      | Mexico       |
| 140.         | Decacotyle tetrakordyle                                   | Australia    |
| 141.         | Dendrcocotyle ardea                                       | Australia    |
| 142.         | Dendrcocotyle bradsmithi                                  | Australia    |
| 143.         | Dendrcocotyle octodiscus                                  | N. A. Ocean  |
| 144.         | Dictyocotyle coeliaca                                     | N. A Ocean   |
| 145.         | Empruthotrema dasyatidis                                  | Queensland   |
| 146.         | Empruthotrema quindecima                                  | Australia    |
| 140.         | Heterocotyle capricornensis                               | Australia    |
| 147.         | Merizocotyle australensis                                 | Australia    |
| 148.         | Merizocotyle icopae                                       | Australia    |
| 149.<br>150. | Merizocotyle sinensis                                     | Taiwan       |
| 150.<br>151. | Merizocotyle sinensis<br>Merizocotyle urolophi            | Tasmania     |
|              |                                                           |              |
| 152.         | Monocotyle corali                                         | Australia    |
| 153.         | Monocotyle helicophallus                                  | Australia    |
| 154.         | Monocotyle multiparous                                    | Australia    |
| 155.         | Monocotyle spiremae                                       | Australia    |
| 156.         | Monocotyle sp. Tunisia                                    | Tunisia      |
|              |                                                           | Australia    |
| 157.<br>158. | Neoheterocotyle hinobatidis<br>Neoheterocotyle rhinobatis | Australia    |

# Table 2 continued...

| <i>Ladie</i> 2 | continued                        |                    |
|----------------|----------------------------------|--------------------|
| 159.           | Neoheterocotyle rhynchobatis     | Australia          |
| 160.           | Potamotrygonocotyle aramasae     | Brazil             |
| 161.           | Potamotrygonocotyle chisholmae   | River basin (USA)  |
| 162.           | Potamotrygonocotyle dromedarius  | Brazil             |
| 163.           | Potamotrygonocotyle quadracotyle | Brazil             |
| 164.           | Potamotrygonocotyle rarum        | Brazil             |
| 165.           | Potamotrygonocotyle rionegrense  | Brazil             |
| 166.           | Potamotrygonocotyle tsalickisi   | River basin (USA)  |
| 167.           | Potamotrygonocotyle umbella      | Brazil             |
| 168.           | Trogocephalus rhinobatidis       | Australia          |
|                | Family: Polystomatid             | ae                 |
| 169.           | Diplorchis ranae                 |                    |
| 170.           | Madapolystoma sp. DNA-Mi18       |                    |
| 171.           | Madapolystoma sp. DNA-Mi19       |                    |
| 172.           | Madapolystoma sp. DNA-Mi67       |                    |
| 173.           | Metapolystoma sp. DNA-Mi70       |                    |
| 174.           | Nanopolystoma sp. OV-2014        |                    |
| 175.           | Neodiplorchis scaphiopi          |                    |
| 176.           | Polystomoides oris               |                    |
| 177.           | Polystomatidae gen. sp. PB-2010  |                    |
| 178.           | Diplorchis ranae                 |                    |
| 179.           | Polystomoides asiaticus          | Africa             |
| 180.           | Polystoma claudecombesi          | Africa             |
| 181.           | Polystoma dawiekoki              | Africa             |
| 182.           | Concinnocotyla australensis      | Australia          |
| 183.           | Neopolystoma palpebrae           | Australia          |
| 184.           | Concinnocotyla australensis      | Australia          |
| 185.           | Polystoma integerrimum           | Europe             |
| 186.           | Polystoma indicum                | India              |
| 187.           | Polystoma occipitalis            | Ivory Cost         |
| 188.           | Pseudopolystoma dendriticum      | Japan              |
| 189.           | Metapolystoma cachani            | Madagascar         |
| 190.           | Metapolystoma brygoonis          | Malagasy           |
| 191.           | Diplorchis ranae                 | Africa             |
| 192.           | Madapolystoma sp. DNA-Mi18       | Africa             |
| 193.           | Madapolystoma sp. DNA-Mi19       | Africa             |
| 194.           | Madapolystoma sp. DNA-Mi67       | Australia          |
| 195.           | Metapolystoma sp. DNA-Mi70       | Australia          |
| 196.           | Nanopolystoma sp. OV-2014        | Australia          |
| 197.           | Neodiplorchis scaphiopi          | Europe             |
| 198.           | Polystomoides oris               | India              |
| 199.           | Neopolystoma spratti             | Malaysia           |
| 200.           | Neopolystoma liewi               | Malaysia           |
| 201.           | Polystomoides siebenrockiella    | Malaysia           |
| 202.           | Polystoma naevius                | Mexico             |
| 203.           | Polystoma gallieni               | Morocco            |
| 204.           | Polystomoides bourgati           | Nigeria            |
| 205.           | Parapolystoma bulliense          | Northern Queenland |
| 206.           | Neopolystoma orbiculare          | Palaearctic region |
| 207.           | Polystoma cuvieri                | Paraguay           |
| 208.           | Polystoma lopezromani            | Paraguay           |
| 200.           | Eupolystoma vanasi               | South Africa       |
| 210.           | Polystoma australis              | South Africa       |
| 210.           | Polystoma marmorati              | South Africa       |
|                |                                  |                    |

Table 2 continued...

Table 2 continued...

# Fozail Ahmad et al

#### Table 2 continued...

| 212. | Polystoma testimagna        | South Africa  |
|------|-----------------------------|---------------|
| 213. | Polystoma umthakathi        | South Africa  |
| 214. | Eupolystoma alluaudi        | Togo          |
| 215. | Wetapolystoma almae         | Tropical Peru |
| 216. | Pseudodiplorchis americanus | USA           |
| 217. | Polystoma nearcticum        | USA           |
| 218. | Neopolystoma spratti        | Malaysia      |
| 219. | Neopolystoma liewi          | Malaysia      |

| 220. | Polystomoides siebenrockiella | Malaysia           |
|------|-------------------------------|--------------------|
| 221. | Polystoma naevius             | Mexico             |
| 222. | Polystoma gallieni            | Morocco            |
| 223. | Polystomoides bourgati        | Nigeria            |
| 224. | Parapolystoma bulliense       | NorthernQueenland  |
| 225. | Neopolystoma orbiculare       | Palaearctic region |
| 226. | Polystoma cuvieri             | Paraguay           |
| 227. | Polystoma lopezromani         | Paraguay           |

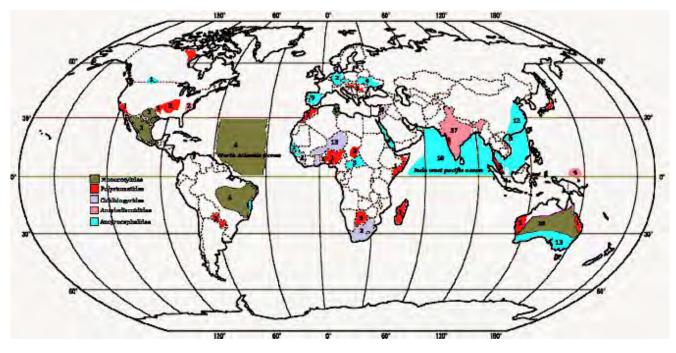



Fig. 2: Geomapping of species from five major families (numbers representing number of species in the respective region).

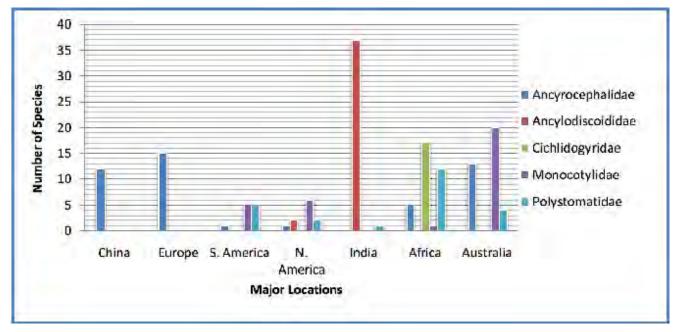



Fig. 3 : Families showing zoogeographical distribution of selected five families in major zones of the world.

512

and Cichlidogyridae represented significant level of conservation being confirmed by both geomapping and clustering as well. Another aspect of this conservatory point could be accounted as the robustness of the species, genus or families as they possessed the potential to confront the changing environmental and ecological conditions. This finding provides a range of enumerations that how species went prevalent into specific geographical zones of the world and what was the amount of change that caused their migration to other corner of the globe. Monogeneans have versatile nature to switch from one place to another and rapidly change morphology and become adapted, suggesting that families are specific to their member species and allow evolving when exposed to suitable environmental conditions.

# ACKNOWLEDGEMENT

Authors are thankful to the authorities of UGC for financial support (F. No.: 41-34/2012 (SR)) and Head of the institution for providing necessary facilities. Acknowledgement is also due to all workers whose submissions from genomic database (NCBI) is retrieved and utilised in present investigation.

#### REFERENCES

- Badets M and Verneau O (2009) Origin and evolution of alternative developmental strategies in amphibious sarcopterygian parasites (Platyhelminthes, Monogenea, Polystomatidae). Org. Divers. Evol. 9, 155-164. doi:10.1016/j.ode.2009.02.003.
- Badrane H and Tordo N (2001) Host Switching in Lyssavirus History from the Chiroptera to the Carnivora Orders. J. Virol. **75**, 8096-8104. doi:10.1128/JVI.75.17.8096-8104.2001.
- Bakke T A, Harris P D and Cable J (2002) Host specificity dynamics: observations on gyrodactylid monogeneans. *Int. J. Parasitol.* 32, 281-308.
- Cribb T (2002) Diversity in the Monogenea and Digenea: does lifestyle matter? *Int. J. Parasitol.* **32**, 321-328. doi:10.1016/S0020-7519(01)00333-2.
- Cribb T H, Chisholm L A and Bray R A (2002) Diversity in the Monogenea and Digenea: does lifestyle matter? *Int. J. Parasitol.* 32, 321-328.
- De León G P-P and Nadler S A (2010) What We Don't Recognize Can Hurt Us: A Plea for Awareness About Cryptic Species. J. Parasitol. 96, 453-464. doi:10.1645/GE-2260.1
- Dobson A, Lafferty K D, Kuris A M, Hechinger R F and Jetz W (2008) Homage to Linnaeus: How many parasites? How many hosts? *Proc. Natl. Acad. Sci.* **105**, 11482-11489. doi:10.1073/ pnas.0803232105.
- Fozail Ahmad, Singh D and Arya P V (2015a) *In silico* phylogenetic studies on some members of parasitic genus *Gyrodactylus* (monogenea: gyrodactylidae) for assessment of evolutionary relatedness inferred from 28S ribosomal RNA and geomapping the sample. *Int. J. Recent Sci. Res.* **6**.

- Fozail Ahmad, Singh D and Arya P V (2015b) Comparative evaluation of speciation and zoogeographical distribution for *Lamellodiscus* (monogenea: diplectanidae) using 18S rRNA. *Int. J. Innov. Sci. Res.* 4, 235-241.
- Fozail Ahmad, Singh D and Arya P V (2015c) A combination study in some memebrs of Monocotylidae (Monogena) in molecular phylogeny employing 28SrRNA along with geographical distribution. *Int. J. Sci. Res.* **4**, 2319-7064.
- Gerasev P I (2004) Phylogenetic analyses of the family Tetraonchidae (Platyhelminthes: Monogenea). *Parazitologiia* **38**, 426-437.
- Karvonen A and Seehausen O (2012) The Role of Parasitism in Adaptive Radiations—When Might Parasites Promote and When Might They Constrain Ecological Speciation? *Int. J. Ecol.* 2012, 1-20. doi:10.1155/2012/280169.
- Mladineo I, Šegviæ-Bubiæ T, Staniæ R and Desdevises Y (2013) Morphological Plasticity and Phylogeny in a Monogenean Parasite Transferring between Wild and Reared Fish Populations. *PLoS ONE* **8**, e62011. doi:10.1371/journal.pone.0062011.
- Pariselle A, Boeger WA, Snoeks J, Bilong Bilong C F, Morand S and Vanhove M P M (2011) The Monogenean Parasite Fauna of Cichlids: A Potential Tool for Host Biogeography. *Int. J. Evol. Biol.* 2011, 1-15. doi:10.4061/2011/471480.
- Poisot T, Verneau O and Desdevises Y (2011) Morphological and Molecular Evolution Are Not Linked in *Lamellodiscus* (Plathyhelminthes, Monogenea). *PLoS ONE* 6, e26252. doi:10.1371/journal.pone.0026252.
- Poulin R (2002) The evolution of monogenean diversity. Int. J. Parasitol. 32, 245–254.
- Reeves A B, Smith M M, Meixell B W, Fleskes J P and Ramey A M (2015) Genetic Diversity and Host Specificity Varies across Three Genera of Blood Parasites in Ducks of the Pacific Americas Flyway. *PLOS ONE* **10**, e0116661. doi:10.1371/ journal.pone.0116661.
- Telford M J (2006) Animal phylogeny. *Curr. Biol.* **16**, R981-R985. doi:10.1016/j.cub.2006.10.048.
- Türkay Öztürk1 and Ahmet Özer N D (2014)Monogenean Fish Parasites Their Host Preferences and Seasonal Distributions in the Lower Kýzýlýrmak Delta (Turkey). *Turk. J. Fish. Aquat. Sci.* **14**, 367–378. doi:10.4194/1303-2712-v14\_2\_07.
- Vanhove M P M, Economou A N, Zogaris S, Giakoumi S, Zanella D, Volckaert F A M and Huyse T (2014) The *Gyrodactylus* (Monogenea, Gyrodactylidae) parasite fauna of freshwater sand gobies (Teleostei, Gobioidei) in their centre of endemism, with description of seven new species. *Parasitol. Res.* **113**, 653-668. doi:10.1007/s00436-013-3693-8.
- Vanhove M, Tessens B, Schoelinck C, Jondelius U, Littlewood T, Artois T and Huyse T (2013) Problematic barcoding in flatworms: A case-study on monogeneans and rhabdocoels (Platyhelminthes). *ZooKeys* 365, 355–379. doi:10.3897/ zookeys.365.5776.
- Williams, A., 1991. Monogeneans of the families Microcotylidae Taschenberg, 1879 and Heteraxinidae Price, 1962 from Western Australia, including the description of *Polylabris sandarsae* n. sp. (Microcotylidae). *Syst. Parasitol.* **18**, 17-43. doi:10.1007/ BF00012221.