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Abstract. This paper pr oves that it is impossible to justify a corre la­
tio n between rep roducti on of a training set and generali zation err or off
of the training set using only a pr iori reasoning. As a resu lt , the use
in the real world of any genera lizer that fits a hypothesis functi on to a
training set (e.g., the use of back-propagation ) is implicitl y pr edic ated
on an ass umpt ion abo ut the physical universe. This pap er shows how
this ass umpt ion can be expressed in te rms of a non-Euclidean inn er
product between two vectors, one represent ing the physical universe
and one representing the generalizer. In deriving this result , a novel
formalism for address ing mac hine learni ng is developed . T his new for­
malism can be viewed as an exte nsion of the conventional "Bayesian"
formalism, to (among other things). allow one to address the case in
which one 's assumed "priors" are not exactly correct . The most im­
por tant feature of this new formalism is that it uses an ext remely low­
level event space, consis ting of triples of {target function , hypothesis
fun cti on , train ing set }. Partly as a resu lt of this feature, most other
form alisms that have been constructed to address machine learn ing
(e.g., PAC , the Bayesian formalism , and th e "sta tist ical mechanics"
formalism ) are sp ecial cases of the form alism presented in this paper.
Consequent ly such formalisms are capable of addressing only a subset
of the issues addressed in this pap er. In fact , the formalism of this
paper can be used to address all generalization issues of which the
author is aware: over-t ra in ing , the need to restrict the number of free
parameters in the hypothesis funct ion , th e problems associated wit h a
"non-representa tive" training set , whether and when cross-validat ion
work s, whether and when stacked genera lizat ion work s, whether and
when a particu lar regu lari zer will work , and so forth. A summary of
som e of the more important resu lt s of this pap er conce rn ing these and
related topics can be found in the conclusion .
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1. Introduction

1.1 This paper's context

T his pap er concerns the pr oblem of inductive inference, somet imes also
known as (supervised) machine learni ng. For most purposes t his problem
can be formulat ed as follows. We have an input space X and an outpu t
space Y. There is an unknown function from X to Y that will be referr ed
to as the target fun ction . (This function is someti mes called the "parent"
or "generat ing" funct ion .) One is given a set of m samples of the target
funct ion (t he training set ), perhap s made wit h observa t ional noise. One is
then given a value from the input space as a question. T he problem is to
use the training set to guess what output spac e value on the target function
corresponds to the given question. Such a guessed function from questions
to outputs is known as a hypothesis funct ion . An algorithm that pro duces
a hypoth esis funct ion as a guess for a target function , basing the guess only
on the tr aining set of m (X x Y ) vecto rs read off of that target funct ion, is
called a generalizer.

Some examples of generalizers are back-pr opagated neural net s [1], Hol­
land 's classifier system [2], and some implementations of Rissanen 's minimum
description length principle [3, 4] (which, along with all ot her schemes that
attempt to exploit Occam's razor , is analyzed in [5]). Other important ex­
amples are memory-based reasoning schemes [6], regularization theory [7, 8],
and similar schemes for overt surface fit ti ng of a hypothesis function to the
training set [9-13]. Conventional classifiers that work via Bayes' t heorem ,
information theory, clustering analysis, or the like (e.g., ID3 [14], Bayesian
classifiers like Schlimmer 's Stagger system described in [15], or the sys tems
described in [16]) also serve as examples of generalizers . However , such clas­
sifiers usually can guess a parti cular output value only if that value occur s
in the tr aining set . This pap er assumes no such restrict ion on the guessing.

If for any training set eof m pair s {Xi ,Yi } the generalizer always guesses
Yi when presented with the quest ion Xi, we say that the generalizer reproduces
the train ing set .' (Some researchers refer to the pro blem of reproducing the
tr aining set as the problem of "learn ing," to dist inguish it from the problem of
generalizing for quest ions out side the tr aining set. ) For the sake of simplicity,
in this pap er I will usually assume noiseless data. For such a situation the
t raining set should be reproduced exactly. It is trivial to ensure such exact
reproduction of the training set : simply build a look-up tab le. (Difficult ies
arise only when one insists that the look-up table be imp lemented in an odd
way, e.g., as a feed-forward neur al net .) T herefore the only questions of
interest are those outside the training set .

The pro blem before us is to reach rigorous and meaningful conclusions
concern ing ind uct ive inference. Recently there has been a lot of resear ch
that attempts to do this while using reasoning that is as close to a priori
as possible [15, 17-25]. An arche typal example of such an analysis (related

1It is implicitly assumed in such a statement that t here are no two pairs in 0 with the
same inpu t values Xi but different out put values Y i . See [I1J for more details.
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to the reasoning used in [17, 19, 20, 23, 24]) is the "coin-tossing proof"
of inductive inference. It can be summarized as follows (a more det ailed
pr esentation is mad e later in this pap er) .

First consider a simple Bernoulli pro blem . Randomly toss a coin with
a well-defined prob abili ty of heads. Do this m times. Assume head s comes
up s times . What is the probability that the next toss will come up head s?
To answer this quest ion , denote the t rue prob ab ility of head s by E , and the
dat a {of m tosses s were head s} by D . Then the condit ional probab ility
distribution P (D I E ) equals Cr;' x ES x (1 - E )m-s. This probabi lity is
maximized for E = s[m. Therefore a maximum likelihood analysis would
say the probab ility of head s is sfm. We could instead do a full Bayesian
analysis, assuming (for example) a un iform distribution of pr ior probab iliti es
of possible E values , and then calculate the expe ctation value of E , JdE{ Ex
P(E I D)}. In cont rast to the maximum likelihood an alysis, this Bayesian
analysis says that the best guess for the probab ility of heads is (s+ 1)/(m+ 2)
(Lap lace's law of succession). In either analysis, if s is close to m and m grows
large, then our belief is high that on the next toss we will get heads.

Now consider the following scenario. We have two fun ctions, f and h,
both going from X to Y . We randomly sample X according to some well­
defined distribut ion and call it "heads" if, for the randomly sampled X value,
f and h are in agreement; we call it "tails" if they disagree. Do this m times,
getting head s s times. Perform the exact same analysis as in the coin-tossing
prob lem to est imate the probability that on the next "toss" we will get head s.
Then if s is close to m and m is large, we should expect that for all future
questions from X , including those that have not been seen be fore, it is likely
that h and f will agree. T herefore it would appear that if a hyp othesis
funct ion agrees wit h most of the elements of a randomly chosen training
set , t hen it is likely to agree on future samples of the target functi on that
generated the tr aining set.

The coin-toss ing argument makes a supe rficially convincing case for in­
du ctive inference. However , it is at least as easy to make a counte r-case,
against inductive inference. This is done by noting that , for any arbit rary
behavior off of a tr aining set, I can always design a sur face fitter generalizer
t hat will create a hypothesis functi on with that behavior. Moreover , if I so
cho ose I can have that hypothesis fun ction reproduce the training set per­
fect ly (and st ill obey the "arbitrary behavior" off of the t rain ing set ). The
impli cat ion is that the be hav ior of a hypothesis funct ion across a training set
is complete ly independent of its behavior off of the tr aining set, in apparent
cont ra diction to the coin-tossing argument .

1.2 P recise issues ad d ressed by this paper

T his pap er starts by examining the question of whether there can in principle
be any applicability of an a priori reasoning scheme (like the coin-tossing
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argument ) to the real world , or whether any such appare nt applicability can
only be mathematical "sleight of hand." z

More precisely, this paper first investigates the following issue:

1. How should one const ruct a formalism so that any "sleight of hand" is
overt? As part of the answer to this quest ion , note that no theory of
generalization can have any real-world applicability whatsoever un less it
takes into account the probability distribution of target func tions in the
real world. "Sleights of hand" very often involve imp licit and unjusti­
fied assumpt ions about that dist ribu tion . To avoid such assumptions,
the formalism should require that the target function distribution be
delineated explicit ly. Also, unlike the convent iona l Bayesian approach ,
the form alism should acknowledge that, whatever the target function
distri bu tion really is, it will almost certainly differ (at least slight ly)
from what we assume it to be.

The pr imary point of this paper is to present the form alism developed in
response to issue (1). To illustrate the use of that formalism , this pap er also
investigates the following (and related) issues:

2. Can one prove inductive inference from first principles? Assume we
have a certain level of agreement between a training set and a hyp oth­
esis funct ion (e.g ., the level of agreement could be 100%, meani ng we
have exact repr oduction of the training set) . Can this level of agree­
ment , by its elf , with no a pri ori information concern ing the distri bu ti on
of real-world target funct ions , give us any information concern ing the
erro r between the hypothesis function and the target funct ion for ques­
tions outside the t raining set, as suggest ed by the coin-tossing analysis?

3. Given a level of agreement be tween a hypothesis fun ct ion and a training
set , does it matter , as sugges ted in [23] and [26], whether the hypothesis
fun ct ion is guessed randomly, wit hout any regard to the t raining set ,
or constructed wit h the t raining set explicitly in mind?

4. Given the (negat ive) answer to (2) , what assumptions about the real­
world dist ribution of target functions are implicit in techniques like
back-propagat ion that work by trying to minimize error on the training
set ?

5. If we pretend t hat we know beforehand the "distribut ion of real-world
tar get functions" alluded to in (2) and (4) , how should we generalize?

20 ne example of such a sleight of hand is confusing th e prior dist ribution of input­
output funct ions in th e real world with t he prior dist ribut ion of feed-forward neural nets
(as in [17] and any at tempts to apply studies like [18] to the real world ). Ano ther sleight
of han d is limiting the space of allowed target func t ions in some "reasonable way." Yet
another is allowing quest ions to run over the t raining set . (Afte r all, t he only non-t rivial
issue in the noise-free case-the only issue of interest- is how to guess for questions outs ide
the training set ; allowing quest ions to run over th e training set is, at best , obfuscatory.)
See append ix D for a discussion of such sleights of hand in the PAC formalism .
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6. Is there a mathemati cal basis for the often-voiced view that one can
"over-train" a neur al net , that training a neur al net to the point that
it perfect ly rep roduces the training set often reduces generalization
accuracy? Can one est imate if over-training is occurring and perha ps
mod ify the generalizer being used to mit igate such over-training?

7. Much resear ch has gone into designing various "informat ion criteria"
(e.g ., AIC [25]), "descript ion-length criteria" (e.g ., [3, 4]), PAC-fram e­
work criteria (e.g., [18]) and the like to address the utili ty of restricting
the numb er of degrees of freedom of the hypothesis fun ction . All this
work notwit hst anding, it is t rivial to construct generalizat ion problems
by hand in which adding ext ra degrees of freedom actually imp roves
generalizat ion accuracy. This raises the following questi on: Under what
circumstances will it matter if one has "too many degrees of freedom"
in the hypothesis funct ion being used to fit the trainin g set?

8. Researchers often speak of the difficult ies encounte red if the prov ided
tr ainin g set is not "representative" of the full t arget funct ion . How can
these difficulties be given a mathematical expression?

9. There are a number of non-param etric stat ist ics techn iques that are
designed to choose which of several candidate generalizers one should
use to generalize from a provided training set . An archetypal example of
such a "meta-generalization" techn ique is cross-validation . Under what
circumstances will a par ticular met a-generalizer result in diminished
generalization error?

10. How do the answers to these quest ions vary if we cha nge the provided
information? For example, do the predicted generalization errors when
we are prov ided with a hypothesis function and a t raining set differ from
when we are not given the actua l training set bu t only the knowledge
of how often it agrees with the hyp othesis fun ction?

1.3 Synopsis of t h is paper

In short , wit h it s answer to issue (1), t his pap er present s a fram ework in
which all machine -learning issues of which I am aware can be addressed, in a
rigorous, direct , and overt fashion. Most of the previous schemes at tempting
to address machine learning in a rigorous manner (e.g., PAC [15, 18- 21], the
work in [5], the Bayesian formalism [35- 37, 42], and the "stat ist ical mechan­
ics" formalism [17, 22, 43, 44]) are spec ial cases of the formalism present ed in
thi s pap er. Such schemes only address a subset of the issues that can be ad­
dr essed with the form alism presented in this paper. Moreover , such schemes
can be expressed in terms of the formalism presented in this pap er , whereas
the reverse is not true. In particular , the "Bayesian" approach to machine
learning requires one's assumptions concerning "priors" to be exac tly correct.
In cont ras t , the form alism presented in this pap er concent rates on the rela­
tionship between {generalizat ion erro r} and {t he level of agreement between
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one's assumed pr iors (contained in one's generalizer) and the "true" priors
of the physical uni verse}. Exact agreement (which pr esumabl y never occurs
in our universe) is simply a sp ecial case.

Sect ion 2 of this paper ad dresses issue (1), that is, it pr esents the form al­
ism used in this pap er to investi gate machine learning. This formalism can
be viewed as an extension of t he convent ional Bayesian formalism . (Unlike
the formalism presented in this paper , t he convent ional Bayesian formalism
fails to disti nguish target functions from hypothesis fun ct ions, and therefore
by construction is incap able of ad dress ing many of the issues addressed in
this paper. ) Sect ion 2 then addresses issues (2) and (3) . Section 3 addresses
issues (4) , (6), (7), and (8) . It is in this sect ion that the rule is derived
relating generalization err or to the inner product between one' s generalizer
(i.e., one's assumpt ions about the universe) and the actual universe. Secti on
4 addresses issue (5) and shows that any generalization method, if it gen­
eralizes well, must make ass umptions , either implicitly or explicitly, abo ut
the physical universe. Sect ion 5 addresses issue (9) and is the most subtle
and sophist ica ted of the sect ions making up this paper. It is shown in this
sect ion that , formally speaking, generalizat ion and met a-generalization are
essent ially ident ical. An immediate consequence is that any phenomenon
that occurs when one generalizes has a parallel when one meta-generalizes,
an d vice versa. Issue (10) is addressed throu ghout the pap er. A cursory
summary of some of the results of this pap er concerning all of these (and
related ) issues can be found in the conclusion.

It should be not ed that this paper does not pr esent and investi gate any
novel machine-learning algorit hm , alt hough a number of such algorit hms ari s­
ing from the formal equivalence between meta-generalizati on and generaliza­
t ion are suggested in section 5. This paper is primarily concerne d wit h laying
out a machi ne-learning formalism and thereby disentangling some theoreti­
cal machine-learning issues. Detailed at tempts to exploit the form alism to
aid real-world generalization are beyond the scope of this (a lready lengthy)
paper ."

2. Preliminaries

T his sect ion reso lves the first , second , and third issues present ed at t he end
of the introduction. To address these issues , and in particular to avoid any
possibility of "sleight of hand ," it is necessary to take ext reme care in setting

3rt should be noted th at this limitation of scope is sha red by essent ially all ot her th eo­
ret ical machine-learn ing resear ch in t he literature t hat does not direct ly make assumpt ions
abou t the real universe (e.g., PAC , t he stat istical mechani cal formalism , and t he analysis
of various linear models). Esse ntially none of t his previous research even suggests novel
machin e-learning algorit hms (as is done in t his pap er in sect ion 5), let alone empirically
investigates t he real-world ut ility of such an algorit hm. In point of fact , as a genera l
rule any of t his previous machine-learning resear ch t hat at first glance appears to have
real-world ram ificati ons will, on closer inspection , be foun d to have none (e.g., [18J; see
[41]).
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up the mat hemat ics." In particular , spec ial care is necessary in defining the
event space over which probabilit ies are defined. Although many resear chers
do not define their event space, it is only after that space is defined that we
can conduct a rigorous pro bab ility-based analysis.

2.1 The event space

For simplicity of the an alysis, assume the two spaces X and Y ar e discrete,
with cardina lities n and r , resp ectively." We also have two sets, F and H ,
both of which consist of all the functions that take X to Y . The elements of
t he first set are meant to repr esent the possible target functions. A generic
element of F (e.g., an argument in a summand) will usually be written as
f , whereas a part icular target fun ct ion will usually be indicated by f . The
elements of the second set H are meant to repr esent the possible hyp othesis
fun ctions. A generic element of H will usually be writ ten as h , whereas a
particular hyp othesis fun ction will usually be indicated by h . Throughout
this paper I will ofte n view functions from X to Y as sets of n pairs {Xj ,Yj} .

Our event space (or uni verse of discourse, or Borel field) is writ ten as U
and consists of the set of possible triples {t,h,B} , where f E F , h E H , and B
is a set of m pairs (Xi, Y(Xi)) (1 ::; i ::; m), consisting of m values chosen from
X along with m corresponding Y values. For full generality, I assume that
the elements of B are ordered ; symm et ry un der permutation of the elements
of B can always be imposed afterward , if so desired . (Whether or not B is
an ordered set is relevant when we sum over tr aining sets as, for exa mple, in
appendix B.)

In this pap er , it will rarely be necessary to spec ify whet her the event space
encomp asses B's wit h different num bers of elements, whether it encompasses
B's with duplicat e input-output pairs (" repeats") , and 130 forth . The context
should make it clear in those rare instan ces when such a specificat ion is being
assumed. (In general, when such a specificat ion is not made, the reader
should assume that no rep eats are allowed and that training sets are all of
one par ticular size.) Not e that whenever such issues are relevant , they can
be form alized in a number of different ways . For exa mple, to have no repeats
one could have an event space that includes B's with repeats and assign a
probability of 0 to all such B's; alte rnat ively one could simply restri ct the
event space to B's that have no repeats.

II!- this pap er I assume that m > 0 (i.e. , B is non- emp ty) . For simplicity,
it is also assumed that P(j, h, B)-the joint probab ility of t he t arget funct ion

4Such care shows that th e "coin-tossing" argument as it stands is flawed, for example.
See appendix B afte r reading through th is section.

5T his assumpt ion has the imm ediate consequence th at , for the most part , no asymptotic
arguments eit her for or against a par ti cular scheme can be made (infinity is not defined
for discret e spaces). T his restriction is har dly a shortcoming since, even for cont inuous
input and output spaces, asymptot ic behavior is never what we are directl y int ereste d in
(since tr aining sets are always finite), and therefore arguments concern ing such beh avior
can be ext remely misleading. (T his is especially true in the many instances in which tho se
arguments are made without any concern for bounding the erro r that comes from applying
th eir resul t s to th e finit e case.)
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I, the hyp othesis function h, and the tr aining set B- equ als zero unl ess the
set B is contained in the set t , that is, unl ess Y(Xi) = f (xi) for all pairs
{Xi ,Y(Xi)} in B. In other words, I assume no noise. As mentioned earlier , the
assumption of no noise mean s that the problem of how to guess in response
to a question q is only non-trivial if q is outside B. Whenever th e no-repeats
assumpt ion is in effect , this in turn implies that we want m < n.

In this pap er any function from X to Y can serve as a target function.
However , there might be cases in which we wish to limit target functions to
a subset of all functions from X to Y . To do this we would set to zero the
probability of any triple containing an f from outside the set of allowed target
functi ons. (This scheme for addressing so-called "concept classes" allows us
to avoid having to worry about whether F is a prop er subset of all functi ons
from X to Y .) Similar considerations apply for any limitations one might
wish to impose on the set of possible hypothesis functions.

In this event space, how h depend s on B is set by the conditio nal probabil­
ity distribution P(h I B) = P(h , B) / P (B) = [L:{f}P(f ,h,B)]/ L:{h,f}P (f ,h , B)].
Due to our assumpt ion of no noise, this equation can be rewritten as
[L:{n 8}P (f, h,B)J![L:{f:J8,h}P(f, h, B) ]. If h is det ermined independ ently of B,
P(h I B) is ind epend ent of B; altern at ively, if h is fixed by B (as in a gen­
eralizer) , then this inst ead is reflect ed in P( h I B). With a deterministic
genera lizer h is fixed uniquely by B, whi ch mean s that , for B fixed , P(h I B)
is a delta fun ction over H. For a stochas tic genera lizer , P(h I B) depend s on
B but , for a given B, it has support extending over mor e than one h.

Insofar as h is suppose d to be a guess mad e by the researcher- eith er
via a random pr ocess or via a generalizer using B-we must imp ose special
requirements on distributions concern ing H. In part icular, ot her than the
samples of f and B, t he researcher can have no kn owledge of f when guess ing
a hypothesis fun cti on. This means that P(h I I, B) must be ind epend ent of
f.6 In appendix A it is shown that this requirement is equivalent to set t ing
P(h I I, B) = P(h I B) , which in turn is equivalent t o set t ing P(f I h, B)
P(f I B) .7

6It should be no ted t ha t t his requi rement is more of a tautology t ha n an "assump­
tion ," given th at we are doing superv ised machine learning. (Indeed , t his requirement is
impli citl y mad e in every th eoretical t rea t ment of machine learning of which I am aware. )
Con sider cha nging th e tar get function while keeping the training data the same. Since th e
genera lizer sees only th e tr aining data (by definiti on) , such a cha nge in t he target fun ction
provides no change in t he inform ation at our disposal t hat tells us how th e genera lizer is
likely to guess . To pu t it anot her way, any algor it hm run on a comp ut er-and a gener­
alizer in particular- must have it s output depend solely on its input . And in supervised
machine learning, th at out put is th e hyp othesis func tion, and th at inpu t is t he tra ining
data , O.

7In our phy sical universe t he probabili ty of a given target function can vary wit h t he
training set (in fact it has to since P(J, h , 0) is zero unless f and 0 are mut ually consistent. )
On th e other hand, th e hypothesis function h chosen by us eit her is also det ermined (at
least in part) by 0, or is random. In eit her case, specifying the hyp othesis functi on we
guess in addition to spec ifying 0 does not help t he universe determine what target function
genera te d O. This is an intuitive ju stifi cation of t he result tha t P(J I h ,O) = P(J I 0).
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In cont rast to distributions concern ing H , the probability distribution
concern ing target functi ons, P (j ) = [L {h,IIC f} {P(j , h , 8n ], is completely out­
side the researcher 's control. P (j ) is set by the physical universe; it is the
pr obabili ty distribut ion of target functi ons that humans encount er when try­
ing to ap ply inductive inference (see appe ndix E). As such, it is the ultimat e
arbite r of what is good generalization . In t his pap er no a priori restrictions
are mad e on such distributions over F.

To relate P(j, h ,8) to the real world we need a way to measure the real­
world "cost" associated with a par ti cular choice of h . This is usually done
wit h an error funct ion , which can be viewed as measuring the level of agree­
ment between a hyp othesis functi on and a target fun ct ion. (Note that , al­
though such a measure is conventionally referred to as a funct ion , st rictly
speaking it is a fun ctional. ) Although the error is generically written as
a funct ion of all three elements of U, {j ,h,8}, it som etimes does not de­
pend on all of those elements. For example, if we assum e that quest ions
are generat ed at random , with repeat s allowed , accord ing to a pr e-set distri­
bution 7l"(x E X) , t hen an appropria te erro r function might be Er(j, h,8) =

L x7l" (x)[1-8(j (x),h(x))], where 8 is the Kronecker delta funct ion . Given an
error function, P(j, h , 8) can be used to determine the prob abi lity distribu­
tion of erro r values, which (by hyp othesis) is what gets measured in the real
world .f

Oft en when investigating machine learning one makes an explicit assump­
ti on concern ing how the target function is sampled to pr oduce a tr aining
set. Such an assumption often goes han d in hand with a part icular choice
of erro r functi on . For examp le, we could ass ume that the X values of the
elements of 8 are chosen randomly, wit h repeats allowed , according to a
pr e-set distribution 7l"(x E X ), that is, we could assume that whenever
both 8 C f and 8' C I , and both training sets have the same cardinal­
ity, then P (8 I J) / P (8' IJ) = TIi[7l" (Xi)J! TIi[7l" (xDl (where 8 is the set of pair s
{Xi,Yi} and 8' is the set of pairs { x;,y;} ). If one also assumes no noise, th en
P (8 I J) = a un less 8 C f. In general, the distribution P (8 I J) is called
the "sampling assumpt ion ." (T he sampling assumpt ion illustrated in this
par agraph is very similar to the one imp licit in the "coin-tossing" argument

8 Although in th e rea l world we usually have direct access to both th e hyp othesis func­
tion (aft er all, we const ruct ed it ) and th e training set , we do not necessari ly have such
access to targ et funct ions. T he only connection between the real world and the mathemat­
ical construct of target funct ions occurs through the (pro ba bility dist ribu tion concern ing
the) error function . However this error fun ction need not concern th e level of agreement
between th e function h and some hypothesized pre-fixed target fun ction f that we believe
was sampled to produce O. In ot her words, alt hough we usually th ink of the tra ining set as
being a sample of a target functi on , such a view is no t intrinsic to U. Nothing in th e math­
ema t ics that defines U says tha t we assume th ere exists a fixed , unknown target funct ion
f t hat is sa mpled to create O. Nonetheless, it is often the case th at th e researcher has in
mind precisely thi s scenario in which 0 is a sampling of some pre-fixed target function.
(T his is imp licitly th e case , for exa mple, whenever we talk of "no noise" and therefore
set P(j, h,0) = 0 for 0 <t. f .) Accordingly, t he discussion in th e rest of this pap er will
be presented in te rms of such a scena rio, and erro r functions and the like will be chosen
accordingly.
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for inducti ve inference (see appe ndix B).) In general, t he sampling assump­
t ion reflects three quan ti ti es: how X values at which to sample the target
functi ons are chosen , how training set sizes are chosen (for the case where m
is allowed to vary) , and what kind of noise is in effect.

As much as possible the generaliza t ion errors calculated in this paper will
be condit ioned on a par t icular training set . In this way we can avoid undue
reliance on a parti cular sampling assumpt ion . For completeness , however ,
it is necessary to state the sampling assumpt ion made in this pap er , rarely
used though it might be. For simplicity of the analysis, I will assume that e
is chosen according to a uniform distribution, wit h no rep eats and no noise.
More prec isely, our sampling assumption states first that P(j, h , e) equals
zero unl ess all the X components of e are distinct. It then states that , for a
given cardinality of t raining sets , p(e I f) is independ ent of the tr aining set
e,so long as eand f are mu tually consistent. (If they are not consistent then
due to our assumpt ion of no noise the probability equ als zero .) This second
stipulation mean s that P(j I h, e), which equals P(j I e), is proport ional to
p(j) / p(e) for those e consist ent with f .9 However , this fact will never be
used in this pap er.

As previously mentioned , almost always, when generalizing in the real
world, what we are really int erested in is the error rate of h for X values
not contained in t he tr aining set . (Even if there is a lot of noise, if we
kn ow the parametric form of the noise then calculating how best to guess for
quest ions from inside the training set is straight forward , at least in theory,
an d again the only questions of interest are those outside the training set .) An
appropriat e error function for this scenario and for the sampling assumpt ion
used in this paper is Er(j , h , e ) = L{x7!9x }[1 - 8(j(x ),h(x))JI(n - m ) (ex
is defined as the set of the X components of t he elements making up e).
More elaborate error measures could be used-e-for example, L {x7!9x }(j (x ) ­
h (x ) ?~but for simplicity such measures will not be considered here.!''

9p (0 I J) = P(f, O)j P(f ) = P(f,O)j[L {wcnP(f, w)], where {w ~ J} is t he set of
all training sets w consist ent with j . P (0 I J) --= P (0' I J) V0 and 0' t hat are consiste nt
with j th en implies that if 0 c I , P (O I J) = {l j[L{wcn 1]} '= k. (k can be ca lculated
by summing over all allowed trainin g set cardina lit ies t ne numb er of t raining sets of t hat
ca rd ina lity that can be chosen from j . For exa mple, if all t ra ining set ca rdinalit ies are
allowed in U, bu t t ra in ing sets are not allowed to contain repeats, t hen k- 1= L 7=1 [n!ji !) .)
Not e t hat k is independent of both j and O. As a result , P(f I0) = P( 0 I J) x P(f) j P(0) ex
P(f )j P(O), which proves t he sup posit ion .

10 Note that in addit ion to avoiding relian ce on a sa mpling ass um pt ion (by calculating
erro rs cond it ioned on a par ticular tr aining set ), it is also possible to avoid making an
assumption-as is implicit in any error fun cti on- concerning how questi ons are chosen. To
do this we must calculate "erro rs" condit ioned on a pa rt icular questi on , th at is, we rep lace
an invest igation of the probability of errors of th e form L{x9! ox J[1-8(f(x), h(x)) J!(n - m)
with an investi gation of th e probab ility of errors of the form II - 8(f(q), h(q))), where q
is a provided quest ion. Form ally, t his can be do ne in severa l ways. One way is to expand
our event space to be quadruples (f , h,0,q). Another way is to keep th e original event
space involving triples (f, h, 0) and imp lement t he following proced ure: Aft er being given
0, redu ce X to t he set of m + 1 elements {Ox U q} and t hen use t he origina l error measure
L {x\!ox } [1 - 8(f(x) , h(x)) ]j(n - m) . Investi gat ions of any sort based on being provided a
single quest ion q will not be purs ued in t his pap er.
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More sophisticated vers ions of the analysis of this pap er might make
less restrictive sampling assumpt ions than the ones mad e here, perhaps al­
lowing for noise or involving a sampling dist ribution 1T(X) ; and they might
also use a corre spondingly modified error fun ction (e.g., [~{x~gx} 1T(x)[l ­
8(j(x) ,h(x)) ] JI [~{x~gx}1T(X)]). By and large, however , such changes in the
sa mpling assumpt ion and/or correspo nding changes in the error function
have lit tle effect on the conclusions of this pap er. (In fact , un less explicitly
indi cated ot herwise, all conclusions reached in this pap er are independent of
the sampling assumpt ion .) or do most of those conclusions change much if
we mod ify the error fun ction to reflect an assumption of independent iden­
t ically distributed (i.i.d.) test ing questions (i.e., t o allow questions E Bx )
rat her th an the off-training set quest ions used here.

2.2 Comments on U a n d it s use in a theory of super vised machine
learning

It is important to note t hat the event space pr esented in this paper is com­
plet ely symmet ric between F and H ; no aspe ct of the defin it ion of that space
tr eats hyp othesis and target functions differently. The difference between F
and H comes instead from the way we view F and H . As an example, du e to
this way of viewing F and H we add (!) t he condit ion that P(j, h,B) equals
ounless B C f . However , such a condit ion is not intrinsic to the event space .
Moreover , except for those rare circumst ances when we will make use of a
sampling assumpt ion , this no-noi se condit ion is the only way in which F and
H will be tr eat ed differently (in particular , th e error functi on is symmet ric
between F and H) . W ith this in mind , it is very often possible to extend the
mathemat ical resu lts present ed in this pap er simply by interchanging targ et
functions and hypothesis funct ions.

The following ten points summarize the definit ion of U:

1. The input space, wit h cardinality n , is X .

2. The output space, with cardinality r , is Y .

3. F and H are bo th the set of all functions from X to Y.

4. Training sets B consist of m pairs {Xi,Yi} . Bx == the set of all the {Xi}
in train ing set B. Similarly for By .

5. U is the set of all triples {j E F, hE H, B}.

6. P(h I B) is the genera lizer , usually set by the researcher.

7. P (B IJ) is the sampling assumpt ion , someti mes set by the resear cher.

8. P(j ) is set by the universe, and is unknown to the researcher. (Con­
ventional Bayesian analysis involves making assumptions direct ly for
P(j ).)

9. P(h I f ,B) = P(h IB) . P(j Ih,B) = P(j I B) .
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10. Er(f, h,e) is the erro r fun ct ion , usually set by the researcher.

Using the form alism presented in this paper , supervised machine learning
involves two stages. First , one fixes certain aspects of the full dist ribut ion
P(f,h,e) (e.g. , one fixes P(h I e)) an d chooses a condit ional prob ab ility
distr ibu tion of interest (e.g. , P(Er(f,h,e) = E Ih,e)). Then one goes abo ut
calculating that distribution.

One advantage of this two-stage process is that since the researcher starts
by writ ing down the condit ional pro bability distribut ion that is of inter­
est, the context and assum ptions ar e forced to be explicit . For example, as
it turns out , some previous machine-learning research implicitly has target
functions fixed (as can be deduced by not ing that it calculates quant it ies
like P(Er(f,h,e) = E I f ,e)), some research impli citly allows target func­
t ions to vary (i.e. , calculates quantities like P(Er(f ,h,e) = E I e)), and
ot her research impli citly fixes only the t raining set size and not its elements
(i.e., calculates quantit ies like P(Er(f ,h,e) = E lm)). It is suspecte d that
in some of this previous work the resear chers themselves were not aware of
these implicit condit ions underlying their results. If the formalism of this
paper had been used , such lack of rigor would not have been possible.

Anot her advantage of the formalism presented in this pap er is that , be­
cause U is so low-level, essentially every aspect of a supervised machine­
learni ng issue can be cast in te rms of U. As a result , as was menti oned in the
introduction , essent ially all previous supe rvised machine-learni ng formalisms
that are based on probabi lity theory can be cas t in te rms of the form alism
present ed in this paper Y Using the form alism present ed here, it is seen that
the differences among those previous formalisms is just that they ana lyze
different condit ional prob abi liti es over the space U, wit h different a prio ri
restrict ions on the full joint distribution P(f ,h,e).

Aside from sect ion 5, the rest of this pap er consists of the calculat ion of
some important condit iona l probability distrib ut ions over the space U that
have not previously been calculated in any formalism .

2.3 The independence of r eproducing t he training set and having
low generalization er ror

When calculating condit iona l probabilit ies, the right-hand side (i.e., the con­
dit ions) should have everything that is fixed , which includes in particular
everything known to the resear cher. The left-hand side should be the quan­
t ity of interest . T herefore, since wha t the resear cher knows is almost always
restri cted to the trainin g dat a and the resultant guess by the generalizer,
and since what the resear cher is interested in is the error assoc iate d wit h
that guess , we need to calculate P(E I h,e). Form ally speaking, by the "E"
argument is meant the union of all events (f , h , e' ) such that Er(f , h , e') = E .
T he "h" argument in the distribution P is the event of our particular hy­
po thesis fun ction h (i.e., it is the union over our event space of all events

ll Note th at convent ional Bayesian analysis, which does not disti nguish H from F , can­
not serve as such an over-arching fram ework.



In-sample Testing and Generalization Error 59

that have hypothesis functi on h). T he final argument , e, refers to the union
of all events that have training set e.

Rest rict attent ion to those error values E such that there exists at least
one f E F containing e for which Er (f , h,e) = E. For all ot her E values
P(E I h,e) necessarily equals zero . (Among others, this restrict ion excludes
all E values that are negative and all values that exceed 1.) By definit ion ,

P(E Ih,e) P(E ,h,e)/ P(h,e)
2:{f )II }{ 6[Er(f ,h ,e),E] x p (f ,h ,e)}

2:{f::JlI} {P (f , h,e)}

(2.1)

where 6 is the Kronecker delt a funct ion . (For clarity, in this paper the con­
dition ":::J e" will be explicitly written whenever it applies. Not e that it
is act ually superfluous to do so, however , since that condition is a dir ect
reflecti on of the fact that P(J ,h,e) equals zero if e <t f ·)

Now use the fact that P(j,h,e) = P(J Ih,e) x P(h Ie) x p(e) = P(J I
e) x P(h Ie) x p(e) to rewri te the formula for P(E I h,e):

P(E Ih,e) = L {6[Er(f ,h ,e),E] x P(f Ie)}.
{ f ::JlI}

To pr oceed fur ther , we need to make some assumptio ns abo ut P(J I e).
As a first example, assume that P(J I e) is constant over its support in F ; all
target functions consistent with e are equally likely, given only e and some
guessed hyp othesis funct ion h .12 We have the following theorem :

Theorem 1. When P(J Ie) is independent of I,

P(E I h,e) = c~n-m) X (r - l )(n-m- z)/ r(n -m) ,

where z == [(n - m )(l - E )].

(2.2)

Proof. Label the m elements of eas (x n- m+l ' Yn- m+l ) , (Xn- m+2, Yn- m+2), .. . ,
(x n , Yn). Lab el the remaini ng elements of X according to th e same scheme ,
so that questions outs ide e are chosen from the set {Xl, . .. , x n - m } . This
allows us to rewri te the sum L {f::J /!} as L {fl ,...,fn - m } ' where fi is shorthand for
f(x i) , and the sum is underst ood to extend over all r(n - m) possible values of
it s subscript. Now writ e the constant value that P(J Ie) has over its support
as p. With (2.1) , this allows us to rewrite P(E I h,e) as

p x L {6[Er(f ,h ,ex ),E]}=
{Ii ,...,fn - m }

12Note that this assum pt ion of uniform pro bab ility over the space of possible target
functions is not the same as assuming a uniform probabili ty over the space of possible
erro r values.
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This is just p t imes the number of instan ces in which the set {fl , .. . ,fn-m}
agrees with {h (Xi )} exactly z == [(n - m)(l - E)] t imes.P Simple com­
binatorics tells us that this equals p x c~n-m) X (r - l )(n- m- z). By nor ­
malization , p = r m - n Therefore, when P(J I B) is independent of I ,
P (E I h , B) = c~n-m) X (r - l )(n- m- z)F (n- m).•

This case in which P(J I B) is const ant over it s suppo rt is the distribution
with the max imum ent ropy. It serves as a benchmark case, corresponding
to a "random" universe.l" Equation (2.2) shows that for such a maximum
entropy P(J I B), P (E I h,B) is explicit ly indep endent of s , t he number of
agreement s between the training set B and the hyp othesis fun cti on h. Since
there is no a priori reason to ru le out the possibili ty that P (J I B) has
maximum entropy, there is no a priori reason to rul e out (2.2), and therefore
there is no theoretical.justi fication for the oft -voiced claim that , for a priori
reasons alone, P (E Ih,B) dep ends on s . This answers quest ion (2) from the
introduction ; we have an explicit proof that all ar guments trying to justify
the claim of inductive inference without mak ing a priori assumptions (e.g.,
wit hout assuming P(J I B) depends on j) are wrong.

In fact , (2.2) shows that , for this benchmark case of fiat P(J I B) , not only
is P(E I h, B) ind ependent of s , it is independent of h entirely. This means,
for example, that one cannot meaningfully say "what size neural net gives
valid generalizat ion" wit hout making some ultimately ad hoc assumptions
about P (J I B). To put it anot her way, (2.2) shows that any at te mpt to
det ermine in an a priori fashion what size neural net to use implicit ly makes
assumpt ions about P (J IB), and without justi fying those assumpt ions there
is no reason to be lieve the resulting conclusion .

Note also that (2.1) says that P (E I h,B) is independent of P (h I B).
In fact , (2.1) shows that P(E I h, B) is independent of P(h I B) even if
P(J I B) var ies wit h i, since changing P(h I B) has no effect on P(J I B) .
In other words, although replac ing our max imum entropy assumpt ion with
some other assumpt ion allows the choice of h to affect P (E I h,B) (see the
next sect ion) , no assumpt ion for the form of P(J IB) result s in a corr elat ion
between P (E Ih;B) and P (h IB). This fact can be used to address quest ion
(3) from the int roduction: Despi te the sugges t ions of some authors [23- 24]
and despi te what intuit ion might say, given a par ti cular hyp othesis function
h, as far as the distribu tion P (E I h, B) is concern ed , it does not matter if h
was fixed before the resear cher has any kn owledge of B, or if instead h was
chosen based on B (as in a generalizer ).

13Note th at z is always an int eger. T his reflects the fact th at only certain E values are
allowed; in particular, no E value is allowed for which (n - m)E is not an int eger.

140ne could define "random" differentl y from how it is defined here. For exa mple,
considered as a function of f , wit h (J fixed , P(J I (J ) is a vect or in R (r (n- n,») . T he only
const raint on this vector is that its comp onents are all ?: 0 and that t he sum of its
components equals 1. This mea ns that , a pr iori, P (J I (J) can live anywhere in a cert ain
simplex T t hat is a subset of R (r (n- m») . We could now define a "random" probability
distribu tion over T (rather tha n over F ) and estimate (P( E Ih,(J)){T}' For simplicity, in
this pap er no such altern ative definit ion of "random" will be used .
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3 . The assumptions needed for in-sample testing to be relevant

Given (2.2) , how is it t hat in our physical universe so many learning tech­
niqu es that expend all of their effort at reproduc ing t he training set manage
to generalize fairly well? This sect ion ad dresses this question by investigating
what assumptions can result in a corr elation between {t he level of agreement
between h and O} and {the generalizing err or for questions outside O}. In
doing so, t his sect ion answers issues (4) , (6), (7), and (8) from the int roduc­
t ion .

3.1 Non-constant P(f I 0)

P(j I 0) is det ermined by the physical universe, and by what kind s of 1's
are likely in our physical universe. If, in our un iverse, for the kin ds of pr ob­
lems generalizing algorit hms are usually test ed on, repr odu cing the t ra ining
set result s in good generalizati on , then it must be that the maximum en­
tropy assumpt ion for P (j I 0) is wrong. In ot her word s, we have empirical
evidence suggest ing that t here are non-u niformi ties in the distribution of in­
ference pr oblems (or at leas t in the distribution of such prob lems wit h which
humanity has so far concerne d itself )15,16

In this sect ion I consider the case in which MaxEnt is wrong and P(j I0)
is more elaborate than {P (j I0) = 0 if 0 <t. f ; P (j I0) = a constant over its
supp ort in F}. First rewrite (2.1) to explicit ly delineate what aspect(s) of h
is relevant to the generalization error:

P(E I h,O) = L { P(f I 0) x 8 (['f8(f(xi ), h(Xi ))] ,z)}, (3.1)
{fJO} ,=1

where z is the num ber of off-t raining set agreements between h and f,
(n - m)(1 - E ) (just like in the proof of (2.2)) , and the n - m elements
of the set X - Ox are labeled X l through X n - rn . By appropriate choice of
the funct ion P(j I 0), we can make almost any dist ribut ion P (E I h,O) we
choose. In part icula r , choo se P (j I0) to equal 0 unless all of the f (Xi) equal
h' (Xi) for some pr e-set hypothesis funct ion hi, in which case it equals 1. In
this case, P (E I h' ,O) equals 1 for E = 0, and 0 for all other E values; we get
perfect genera lization .!" However , for generic h =P hi we do not get perfect
generalizat ion . In other words, given that P(j I 0) is allowed to vary, for
fixed 0 different h might lead to different P(E Ih,O).

1S It is important to realize t hat we st ill have no a priori basis for believing P (J I B)
depends on f . To prove that P(J I B) is of a certain form (as opposed to collect ing
empirical evidence to t ha t effect) would requi re knowledge of physics and psychology far
in excess of what we have tod ay.

16 App ar ent ly hum anity has learned to recognize the local max ima in t his non-uniform
P (J I B)-humans refer to t he f at t hose maxima as being "regular" or "pars imonious ."
See [5J.

170 f course , t his is a very unlikely P(J I B). In t he real world , P (J I B) is non-zero for
all f cons istent wit h B.
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Although this clarifies how choice of h can affect generalization, it st ill
leaves unresolved the two other issues raised at the end of the pr evious sec­
tion: Even for a non- un iform PU I e), P(E I h,e) is independ ent of both s
and P( h I B), in apparent violation of common experience.

To resolve these two issues, first make the definition SU, h, {Xi}) ==
L {i} O[h(Xi)' f (Xi)]' S is a mapping that takes two fun ctions and a set of X
values to an integer. T hat integer is the number of times the two funct ions
agree with one another on what output corr esponds to an inpu t , over the set
of provided X valu es. Not e that SU,h, {x;}) is symmetric under interchange
of f and h . Often for conciseness the third argument to S will be given as
the X components of a set of X-Y pair s (i.e., a training set ) rather than di­
rect ly as a set of X values. For example, I will sometimes write SU, h,Bx ),
by which I mean SU,h, {x;}), where the {Xi} are the X component s of B.
Using this notation, SU,h, X - ex) is the number of times h( x) agrees wit h
f(x) for x outside e; ErU, h,e) = 1 - SU,h,X - Bx )/(n - m). Similarly, if
e c I, then SU,h,ex) is the number of ti mes h agrees with e. Note that in
such cases we can write S(e ,h,ex) inst ead of SU,h,Bx) .

S(e , h, ex) never occurs in equation (3.1) ; if we know h and B, then we
have determined P(E I h,e) , and counting S(e ,h,ex) does not have any
effect on P(E I h,B) . In other words, despite the fact that we are no longer
assuming maximum ent ropy PU I e) , (3.1) tells us that it is st ill true that
only h 's behavior outside the train ing set is relevant.l"

To see why (3.1) might not be the final word on inductive inference, note
that we are interested in the "dependence" between s == S(e, h,Bx) and
E. Now such "dependence" is a meani ngless concept if s is not allowed to
vary. However , s cannot vary if both h and eare fixed. This suggests that , to
an alyze induct ive inference, we should fail to spec ify h and/ or e,and evaluate
(for example) P(E I s, e) rather than P(E I h,e).

Another reason for examining a quantity like P(E I s , e) rather than
P(E I h, e) comes from the fact that in pr actic e we cannot evaluate (3.1)
since we do not know PU I e) (it is det ermined by the universe) . To get
aro und this problem , we could just make a direct assumption for PU I B).
That is a huge assumption to make , however (which, interestingly enough,
does not stop Bayesian s from making it) . As an alt ernative, it would be
pr eferable to make one (or mor e) relatively weak indirect assumptions that
can "take the place" of knowledge directly concern ing PU Ie).

As an example, we can make an "indirect" assumpt ion about PU I B) by
assuming there exists a corres po ndence between PU I e) and the distribution
P(h I e). In other words, we can assume that the probability distribution
over the architecture on which we are going to implement our hypothesis

l8To understand thi s intuitively, imagine th at we have a genera lizer G th at tr ies to
reproduce th e tr ain ing set (e.g., let G be back-propagat ion run on feed-forward neural
nets) , and use G to construct an input-output surface h th at reproduces a provided training
set e. Then the generalization error is unchanged if we replace h with some new function
h' that is identical to h for questions outside ex but disagrees with h for questions inside
ex ·
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function (e.g. , a feed-forward neural net ) corresponds in a certain way to the
prob abili ty distribution over target funct ions in the real world .P

As an example of how such an indirect assumptio n can mit igate (3.1) and
its implication that generalization error is independ ent of 5 (e, h, ex) , ass ume
that over our event spac e only those target functions can occur that are con­
stant (i.e., independ ent of X) . Now assume that we examine only const ant
hyp othesis functions, that is, assume that the space of hypothesis functions
we are examining corresponds to the space of target funct ions. T hen the
agreement (or lack thereof) between a hypothesis funct ion and a target func­
tio n over the elements of the training set fixes exact ly the agreement between
the two funct ions over input values outside the trainin g set. It is st ill true
that only h's behavior outside the training set is relevant , as st ipula ted by
(3.1). Bu t now the corresponde nce between the distribution over F and the
distribution over H couples t he erro r outside the trainin g set with the err or
inside the training set . The next subsec tion is a form al invest igation of such
coupling behav ior in the cont ext of evalu ating P(E I s ,e)20

3.2 How agreement b etween a hypothesis and a training set can
affect generalization

We have some probability distribution across our event space, and therefore
in par ticular a distribut ion P (h Ie). Choose a stochastic P(h Ie), that is, a
P( h Ie) whose sup po rt extends over mor e than one h for a given e (so that
the hyp othesis guessed by the generalizer is not uni quely fixed by the t raining
set) . In fact , in pr act ice the P( h I e) used in the following analysis is ofte n
complete ly independ ent of e. For example, the support of P(h I e) might
be the set of feed-forward neur al nets smaller than a given size. As another
example, the sup port of P( h I e) might be the set of functions formed by
taking linear combinations of the elements of some set of basis functions.

Now consider the following scheme. Let s" be some integer and randomly
pick a hypothesis function h from H (according to the pr obabi lity distribution
over H ), subject to the condition that 5 (e, h, ex ) = s'', This pro cedure
defines a dist ribution P(h Ie,s") , which can be used as a generalizer. Now
pick a new integer s' > s" . s' defines a new generalizer P(h I e,S')21

We wish to choose between a hypothesis funct ion output by the gen­
eralizer P (h I e,s') and a hypothesis function output by the gene ralizer

19See [5] for a discussion of how t he existe nce (or lack th ereof ) of this kind of correspon­
dence affects whet her applicat ion of Occam 's razor results in imp roved genera lizat ion.

20T his next subsect ion will not show that the knowledge that th e hypoth esis was chosen
according to a particula r P(h I e), by its elf, can affect genera lizat ion error . After all,
such a result would contradict t he discussion at th e end of sect ion 2.2. Rather it is t his
knowledge together wit h the knowledge that P (h I e) corresponds to P(J I e) t hat (th e
next subsection shows) can affect the prob able generalizat ion error.

21It is essentially a semantic dist inct ion wheth er (a) P (h I e) it self is viewed as a
generalizer , wit h s being an observed level of agreement between th e hypot hesis output by
the generalizer and e, or (b) whether P (h Ie) is viewed as being only a common substrate
over which other genera lizers are defined by their s values. Wh at is importan t is how
P (h Ie) is used in the math ematics.
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(3.2)

P(h I e,s"). Our strategy is to use the fact that s" < s' to choose the
hyp othesis function output by the generalizer P (h I e,s") . The following
argument shows that this st rategy results in desirable P(E I s, e) if there is
a corres pondence between P(j Ie) and P(h Ie).

By expressing it in te rms of f and then marginalizing over F , one read­
ily proves that p (E ,s,e ) = L {h }{p(E ,h,e) x 8[5(e,h,ex ),s]} . Similarly,
p(s ,e) = L{h} p (h,e) x 8[5(e,h,ex) ,s]. T herefore we can write

( I )
L{h }{P(E I h,e) x p (h,e) x 8[5(e,h,ex) ,s]}

PE s,e = { ( [ ( ]} .L {h} P h,e) x 85 e,h,ex) ,s

Note that one can replace both of the P (h,e) term s in (3.2) (one in the
numerator , one in the denominator) with P(h I e) terms .

Equation (3.2) explicit ly relates P(E I s,e) to P(E I h,e), the quant ity
analyzed in the previous sect ion . If P(E I h,e) is independent of h, as in
the maximum entropy case described by equation (2.2) (for which P(j I e)
is ind ependent of I) , then we can take P(E I h,e) out of the sum in the
num erat or in (3.2) , and P(E I s , e) is ind ependent of s . In ot her words, for
the maximum-entropy case, it does not mat ter what level of agreement there
is between our hypothesis function and the training set ; inductive inference
st ill does not hold , even though we are examining P(E I s, e) rather tha n
P(E I h,e).

Similarl y, if P(h I e) is independent of h, then again P(E I s,e) is ind e­
pendent of s . T his is suggested by the interchange symmetry between F and
H (see sect ion 2.2) . A formal proof follows.

Proof. First note that , if P(h Ie) is ind ependent of h, (3.2) becomes

( I )
_ L {h}{ p (E l h,e) x 8[5(e,h,ex ),s]}

P E s,e - { [ ( ) ]} .
L {h} 85 e,h,ex ,s

In a manner similar to that in sect ion 2, we can split the sum over h into
two sums , one over the values of h(x) in which x is within the t raining
set , and one over the values of h(x) in which x is outside the tr aining
set : L {h} = L {hl ,h2,...,hn_= } L{hn_= + I,hn_= +2,...,hn} · This allows us to rewrite
our denominator as L {h1 ,h2,.. ,hn_= } L {hn _=+I,hn _=+2,... ,hn }{8(5(e,h,ex ),s)} =
1"

n
-

m
X L {hn_= + I ,hn_= +2,.. ,hn }{8(5 (e,h' , ex ),s)} , where hI is defined as t he m ­

tuple {h n - m +1 ' hn - m +2 , . • . , hn } . Evaluat ing, we get 1"
n - m X C;' X ( 1" _ 1)m - s .

Since P(E I h, e) is only dependent on that part of h outs ide e, we can
rewri te our numerator in a similar fashion , getting L{h

"
h2,...,hn_= }{ P (E I

h ,e)} x L {h n _=+I,hn _=+2,. ,hn }{ 8(5(e,h' ,ex ),s)} , where h is defined as the
(n - m )-t uple [ h-, h2 , ... ,hn - m } and h' is as before. Therefore when P(h,e)
is independent of h , P(E I s,e) = 1"

m
-

n
X L {h1,h2,. .,hn _=} {P(E I h ,e)}, and

is independent of s . •

In particular , if h is chosen at ran dom according to a uni form distribution,
the generalization error is ind ependent of s .
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If P(E I h , e) is not independent of h (see equation (3.1)), and if P(h Ie)
is not uniform , then P(E I 8, e) can dep end on 8. In ot her words , under
these circumstances there can be coupling between on-t raining set error and
off-training set error (as measured by P(E I 8, e)) and indu cti ve inference can
occur . The prec ise form of the indu cti ve inference-how P(E I 8, e) depend s
on 8- is determined by the form of P(f I e) (which determines P(E I h , e))
and the form of P(h I e). The following is an example of this.

Example . Assume P(f I e) = 1 if f is some particular function r , 0
otherwise. (Note that 5(e,r ,ex) = m, i.e., r must agree with e, so we
can rewrite 5(e,h,ex ) as St]" ,h,ex ) for any fun ction h.) Similarl y, assume
P(h I e) = 1/ 2 if his i ' , 1/ 2 if h is some part icular fun ction hi for which
5ir ,hi,ex) = m - 1 (5(f*,hi,X - ex ) being unspecified except that it does
not equal n - m), and 0 for all ot her h. For this scenario, t he denominator
in (3.2) equals 1/ 2 if 8 = m or if 8 = m - 1. (If 8 equals neither m nor m - 1,
P(E I 8, e) is undefined since the event (8, e) can never occur. ) To evaluate
the numerator in (3.2), not e that P(E Ih,e) = 1 if St]" ;h,X - ex ) = (n ­
m)(l - E) , 0 ot herwise. In ot her words, P(E I h,e) = 8(E ,1 - [5(f*,h,X ­
ex) /( n - m)]) . For 8 = m , this mean s that P(E I 8,e) = 1 for E ~ 0,0
otherwise. For 8 = m - 1, P(E I 8, e) = 1 for E = 1- [5(f*,hi,X - ex)/ (n ­
m)] (whi ch is greater than 0), 0 ot herwise.

A single number giving "the generalization error" can be defined in a
number of ways (e.g. , as argmaxE P(E I 8,e), or as L {E}{ E x P(E I 8, e)}) .
Whatever the precise definit ion used , for the scenario recounted in the ex­
ample above, if 5(f*, h' ,X - ex) > 0 then the generaliza t ion err or eit her
impr oves or stays constant as 8 increases. We will refer to this behavior by
saying that "reproduct ion corr elat es with generalizat ion ," for all 8, for this
scenario, for any (reasonable) definiti on of generalization erro r. When repro­
du ction corr elates wit h generalizat ion, we should pick a hyp othesis functi on
h found by randomly samp ling H sub ject to the constraint that h agrees wit h
all of e, rather than a hypothesis function h found by randomly sampling H
subject to the cons traint t hat h does not agree wit h all of e.

3.3 When reproduction correlates with generalization

Rep roduction does not correla te wit h generalization for all pairs {P(f I e),
P(h I en·An example is the following.

Example. As in the previous example, assum e that P(f I e) = 1 if f is
some par ti cular functi on f* , 0 ot herwise. Similarly, assume P(h I e) = 1/2
if h is some part icular funct ion h* for which 5(e,h*,ex ) = m , 1/2 if his
some part icular fun ction hi for which 5(e,hi,ex) = m- 1, and 0 for all other
h. (Note that h* need not equal f* .) As before, the denominator in (3.2)
equals 1/ 2 if 8 = m or if 8 = m - 1. Also as before, P(E I h,e) = 8(E ,1 ­
[5(f*,h,X - ex )/(n - m)]) . For 8 = m , this means that P(E I 8, e) = 1 for
E = 1 - [5U *, h*,X - ex )/(n - m)], 0 ot her wise. Simil arly, for s = m - 1,
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P (E I s ,O) = 1 for E = 1- [S(J* , h' , X - Ox )/ (n - m)], 0 otherwise. If
S (J*, h*, X - Ox ) < S (J*, h' , X - Ox ), then generalization error increases as
s goes up .

T his behavior is not so uncommon as might be hop ed . For example, as
reported in [38], for the pari ty target funct ion the err or of back-prop agation
increases as the cardinality of the training set goes up.

It has often been observed that one can "over-train" an architect ure (e.g. ,
a feed-forward neur al net ) , and thereby degrade the genera lizat ion . What
is mean t by this is that , if s is forced to be too close to m , then for certain
scenarios the generalization error is empirically obse rved to start to increase.
"Over-t raining" mean s that reproduction correlates wit h generalization for
small s but not for large s . Usually over-training is considered a side-effect
of noise; one "learns the noise" .if one t rains too mu ch. However , it can occur
even in the absence of noise, as the following example illustrates.

Example. Consider the situat ion in which , in addition to the 1*, h*, and
h' of the previous example, we also have h" and h"' , where S(O,h" ,Ox) =
m - 2 and S (O , h"' ,Ox ) = m - 3. As above, have the prob abilit ies of all
elements of H under consideratio n (of which th ere are now four ) equal to one
another , and t he pro bability of any other element of H equal to zero. Then if
S(J*,h*,X - Ox ) < S(J*,h' , X - Ox) while S(J*, h' , X - Ox ) > S(J*, h" ,X ­
Ox ) > S (J*, hili , X - Ox), reproduct ion correlates with generaliza tion in going
from s = m - 3 to s = m - 2 to s = m - 1, but in going from s = m - 1 to
s = m the generalization error increases.

It is st ill an open prob lem to classify all pair s {P(J I 0), P (h I O)} for
which reproduction correla tes with generalizat ion over given ranges in s . In
particular , it is not known precisely how P(h I 0) must relate to P(J I 0)
if repro duct ion is to corre late wit h generalizat ion for all s . Nor is it known
precisely how they must be related to resul t in "over-training." Nor is it
curre nt ly known whether reproduction corre lates with generalizat ion on av­
erage, where the average is over all possible pairs {P(J I 0), P (h I O)} and
over all s. (Note, however , that (3.1) sugges ts that , on average , reproduct ion
does not correlate wit h generalizat ion just as often as it does corre late wit h
generalization. )

Nonetheless, some interest ing observations can be made by rewri t ing
(3.2). In particular , P (E I s, O) can be rewri t ten as the inner pr oduct
L{h}P(E I h ,O) x P (h I s ,O). More enlighteningly, we can rewri te it as
an inner product wit h a non-Euclidean metric, where the two vectors are
simply P (h I0) and P (J I0):

P (E I s ,O) = L P (h I0) x P (f I0) x ME,s,o(h, f) ,
{ f ,h}

(3.3)

where ME,s,o(h , f) == ""s,o x 6[S(J , h,Ox ), s]x 6[S (J , h, X - Ox ), (n-m)(l - E)],
""s,o being a norm alizati on constant set by the condit ion L {E}P(E I s ,O) = 1.
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(T he "B c f" condit ion is being enforced by the P(f I B) term . There is no
equivalent rest riction on the P (h I B) term .)

Note that ME,s,e (h, J) is a symmet ric matr ix; this is what allows us to
interpr et (3.3) as an inner pr od uct of two vectors wit h Ms,E,e(h,1) being the
metric. Not e that if noise is allowed , we must replace the 6[S(f , h , Bx) , sJ term
with 6[S(B, h, Bx ),s] and the mat rix is no longer symmetric. (On t he other
han d, even if noise is allowed a quantity like P (E I B) is an inner pr oduct
with a symmet ric mat rix.) Not e also that (3.3) holds for any error fun ct ion
(different Er simply lead to different Ms,E,e) . Finally, not e that (3.3) tells us
that the average L,E(E x P (E I s , B)) is an inner product between P(j I B)
and P (h IB).

Whether reprodu ction corre la tes wit h generalizat ion is determ ined by the
precise definiti on of generalization error used and by the two vecto rs P (h I B)
an d P(j I B) . T he metric ME,s,e(h,1) is param eterized by s and E ; t his
allows us to view the inner pr oduct of our two vectors as a function of E ,
this function being par am eterized by s. To determine whet her repro duct ion
corre lates with generalizat ion , (3.3) instruct s us to see how the inner product
of our two vecto rs, viewed as a funct ion of E , changes as s is increased . Im­
plicitl y, whenever one uses a technique like back-p rop agation , one is making
an assumption abo ut how this inner product funct ion between P( h I B) and
P(j I B) changes with s. Rather than making an assumpt ion about (3.1)
direct ly (by assum ing something about P(j IB)) , one is making an assump­
ti on about (3.3) (by assum ing some thing about the correspondence between
P(h I B) and P (j Ie)). Phrased another way, whenever one uses a technique
like back-propagation over a part icular set of allowed neur al net s, one is im­
plicit ly assuming we live in a un iverse whose PU I B) "corr esponds" to the
set of allowed feed-forward neural net s, P (h IB).

3.4 R a m ifica t ions of equ at ion (3.3 )

The arguments of the preceding subsections can be used even if one is not
solely interested in SU,h,Bx ). For example, one might want to use a regular­
izer in conjunction with SU, h,Bx ) to guess a hypothesis function (see [7, 8J
and references therein). In such a situat ion, instead of investigat ing how gen­
era lizat ion error depends on S U ,h,Bx ), one wan ts to investigate how it de­
pends on S(j, h, Bx ) toget her wit h R (h), where R (h) is some regularizer cost
function (e.g., the integrated curvature of h). T he formalism pr esented above
can be modi fied to describe whether minimizing both SU , h, Bx ) and R (h) to­
get her leads to bet ter generalization on average, whet her "over-regularizing"
(akin to over-t raining) occurs , and so forth. All such issues redu ce to an in­
vest igat ion of a non-Euclidean inner product between P U I B) and P( h I B)
(where now the matrix M (h,1) is not necessarily symmet ric in h and f since
the regular izer is a fun ct ion only of h). T his is because using a regular izer
simply sub-divides the par t it ion of equivalence classes of hyp othesis funct ions
h with identi cal S U ,h, Bx ). T he precise form of the met ric defining the inner
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product is determined by the final par tition used , that is, it is determined
by the regular izer used .

There are a number of interesting issues raised by (3.3) , even if one does
not extend it to encompass regu lariz ation. Besides questions of genericness
(e.g., how generic is over-t raining) , (3.3) could perh aps allow one to predict
the full fun ction P (E I s ,B) from samples of P (E I s , B). For example, one
might be able to exa mine the behavior of P (E I s, B) for several low s cases,
and from this information deduce how likely over-t raining will be for high s
cases. If the conclusion is that over-t raining is likely, then perhaps one could
cha nge P (h IB) to obviate the over-t raining .

In addit ion to raising such new issues, (3.3) also addresses many old is­
sues. For example, a commonly held belief is that , loosely speaking, if one
has too many parameters with which to vary the hypothesis funct ion , then
one might end up wit h large generalizat ion error [25, 4]. Such a phenomenon
can be translated into the term s of this pap er 's formalism in a number of
different ways. For example, one might wish to view this ph enomenon as
similar to over-trainin g, which was dealt wit h above. Alt ern atively, havin g
too many par am eters to vary might be interpreted as meaning tha t the sub­
strate dist ribution P (h I B) is too broad (viewed as a function of h) ; too
many hypothesis functions are allowed. With this interpretation , whether
too many par amet ers to fit is undesirab le, "on average," is determined by
whether a broad P(h I B) means that reproduct ion does not correlate with
generalization, "on average."

Taking this viewpoint , even wit hout performing the relevant calculations
in det ail one can use (3.3) to make an heuri sti c argument that it is beneficial
to hold down the number of free parameters . T he argument starts by noting
that P (E I s , B) is a cont inuous fun ctional of P (h I B). We also know that , at
the one ext reme, if P (h I B) is uniform then repro duction has zero correlation
wit h generalization . Moreover , when P (h I B) is not uni form , repr oduction
can correlate with generalizat ion. Therefore, in general, as P (h IB) is vari ed
from uniformi ty to being sharply peaked over H , there can be more and more
of a corr elation between reprodu ction of a t raining set and generalizat ion .
Since such peakedness in P (h I B) corresponds to limi ting the number of
free parameters in the hyp othesis fun ction , it is reasonab le to expect that
holding down the number of free param eters, if it is don e in such a way as t o
"align" P (h I B) wit h P(j I B), facilit ates correlation between repro duction
of a training set and generaliza t ion.

Another issue that can be addressed by this kind of heuri stic argument is
the often-observed necessity of having the tr aining set be "represent ative" of
the target function in order to get good generalization from that tr aining set.
To address this issue, first one must define what it means for a training set
not to be "representat ive" of the target function from which it is sampled .
One possible definition is that a t ra ining set B is not "representat ive" of it s
actual target function if there are many t arget functions all of which, with
high prob abili ty, might have served as the par ent of B. In other words, B is
not repr esentative of it s tar get fun ction if P (j I B) is broad and not sharply
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peaked , so B does not help much in picking the correct target function . As
an extreme case, we kn ow that if P (J I B) is flat then repr oduction of B
has 0 correlation with genera liza tion . We can now invoke the cont inuous
dep end ence of P(E I s , B) on P(J I B) to argue that even if P(J I B) is not
fiat , then if it is close to fiat (i.e., if it is br oad and not sharply peaked) ,
the correlation between reproduction of Band generalization from B is weak.
This argument suggests , in accord wit h empirical observation, t hat B must
be representat ive of its target funct ion for one to generalize from B wit h low
generaliza t ion error .

Both this argument concerning how representative B is and the argument
concern ing the number of free parameters are only mean t to be illust rative.
One could carry out the analyses in much more detail , getting fully rigoro us
resul ts. Such a detailed investigation of these issues is beyond the scope of
this paper , however. It should also be noted that there are ot her ways of
addressing these issues. (For example, holding down the number of free pa­
rameters is an imp lementation of Occam 's razor. Accordingly, [5] describes,
in a context slightly different from that presented in this pap er , when and
how such a str at egy will resul t in diminished generaliza t ion err or.)

4 . T he b est poss ible hypothesis function

If, as in convent ional Bayesian analysis, we know (or pret end we know) the
U-space distribut ion P (J I B), t here is no need to consider explicit ly repro­
du cti on of the t raining set, meta-generalization , or any such issue. In such
a scenario, we already know everything that can possibly be relevant . T his
kind of scenario raises it s own questions, however. For example, since we
know P (J IB), t hen given that the choice of h can make a difference (see the
discussion below equation (3.1)) , what h should we use for a given B? This
is issue (5) from the introduction.

There are several ways to answer this question. For example, in analogy
to maximum likelihood techniques, we could st ipulate that one should pick

I t he h that minimizes the mod e of a pr obabili ty distribut ion over errors (e.g. ,
minimize the mode over E of P (E Ih , B)). Another possibili ty is to minimize
the expectat ion value of the erro r with resp ect to such a distribution . A third
possible approach, which is invest igat ed in this sectio n , is to find the h that
maximizes the probabi lity of zero erro r.

For illustrative purposes, I will not t ry to find the h that is optimal for
the distribution P (E I h , B). Instead I will find the P (h I B) that is opt imal
for the distribution P (E I B). More precisely, I will find the P (h I B) t hat
maximi zes P (E = 0 IB). The answer is the following theorem.

Theorem 2. To m aximize P (E = 0 I B), one should guess a hypothesis
fun ction h such that the outpu t values of h for points outside B are th e same
as those for the target function argm aJerEFP(f I B). Th e resultant value of
P (E = ·0 IB) is max{fEF}{P(f IB)}.
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P(E IB)

P roof. First recall that P(j,h,B) = P(B ) x P(h IB) x P(j I B) . P(h IB) is
determined by our generalizer. This allows us to write

P(E ,B)/ P(B)
I:{h,f:J8}{5[Er (f , h , B) ,E] x P(f ,h, Bn

P(B )

L {5[Er(f,h,Bx ),E] x P(h I B) x P(f IB)}
{h,f:J8}

(compare to equat ion (3.3)). In a manner similar to the proof of (2.2) we
can rewrite this as

where z == (n - m)( l - E) and P'(event) == P (event I B). P'(fl , . .. , fn - m )

is determined by the universe. Our job is to determine t he opt imal
P'(h l , .. . ,hn - m ) .

Now make the following notational convent ions . A generic (n - m )-t uple
{fl , ... , fn - m } is ind icated by f , whereas a part icular (n - m)-tuple is indi­
cated by f . Both tuples live in the space F . The i th component of such a
tuple, i .. equals t.. where I is t he full n-t uple {II, . .. ,In}. (The difference
between I and f is that I is an n-dimensional vecto r E F , whereas f is
only (n - m)-dimens ional and lives in F .) Similarly, the generic (n - m)­
tuple {hI, '" ,hn - m } is ind icated by h E H . Note that since I must con­
tain B, P' (f) = P' (j ). However, h need not contain B, so giving the val­
ues of h for all input values out side th e training set does not spec ify h
comp letely, and P' (h) need not equal P' (h): PI(h) = PI(hl , . . . , hn - m ) =
I:{hn_m+J,...,hn}P ' (hl " . . , hn - m , hn- m+l " .. , hn). Also make the definition
T(f ,h ) == 5([I:~~lm5(Ji, hi )], n - m). (Not e th at (n - m) is the value of
z when E = 0.) Finally, define U(h) == [I:r{P' (f ) x T( f ,h)}] . Note that
U(h) ~ OVh .

Our tas k is to find the probability distribu t ion PI(h ) tha t maximizes
I:h{P' (h) x U(hn , that is, to find the probability distribut ion tha t max­
imizes the expectat ion value of U(h) , (U(h)){h}' This maximizing dis­
t ribut ion is simply P' (h ) = 5[h ,argmax(U(h))]. In other word s, for a
given t rain ing set B, the optimal genera lizer guesses an h that maximizes
I:{f}[P ' (f) X 5{ [I:~~lm5 ( fi, hi )], (n - mn] . Now note that th e outermost Kro­
necker delta in t his expression is 1 iff f agrees with h on all (n - m) points
out side the tra ining set. T herefore I:{f}[P' (f) X 5{[I:~~lm5(fi , hi )], (n - mn]
just equals P' (f) evalua ted for f = h. T he rest of the proof follows from
the fact tha t our task is to maximize (U(h)){h}' •

Note that this generalizer arg maxfEFP(f IB) gives the hyp othesis function
one should guess to maximize P(E = 0 I B), which in general is not the
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same as t he "Bayes-optimal" function consisting of the input-outpu t pairs
{x ,argmaxyEyLdP(f I e) x 8(f(x ),y)]} .

If the set H is a proper subse t of F , then Theorem 2 does not apply since
we cannot guess the mode of P(J I e). For this case we must inst ead solve
the full probl em of finding the (allowed) h t hat maximizes U(h) (see the
pro of of Theorem 2 for the definition of U and h ).

Theorem 2 tells us that , under t he assumption that P(h Ie) is the same
distribution over H as P(f I e) is over F , we should guess the mode of
P (h I e). This advice is exactly the same as t hat given by Occam 's razor
when a uniform simp licity measure is used . (Most simplicity measures- e.g. ,
the number of weights in a neural net , or t he coding length of a theory­
appear to be approximat ions of simp licity measures; see [5]). Moreover,
sect ion 3 told us that this assumptio n of a correspo ndence between P(j I e)
and P(h I e) is what allows us to assume that reproduction of the training set
corre lates wit h generaliza t ion . In other words, t he assumption that Occam 's
razor works is rela ted to the assumpt ion that reproduction of the training
set correlates with generalization . T his is exact ly the result pr oven (more
form ally) in [5] using a complete ly different formalism.

Theorem 2 answers the question of how best to generalize from a given
tr aining set , at least for this definition of "best ." We can phrase Theorem
2 differentl y: Any genera lizer , no matter what the cont ext , to believe that
it is generalizing as well as possible, is of necessity making an assumption
concern ing the mode of P(J) . Sometimes this assumpt ion will be explicit .
For example, in regulari zation t heory one might guess h from eby fitting the
elements of ewith the surface of minimal integrated curvature going through
the elements of e. Oft en , however , and espec ially in neural net learning
schemes , the assumption abo ut P(J) is never mad e explicitly.

5. Meta-generalization

For almost any real-world generalizati on prob lem , there are many generalizers
that could be used to guess a hypothesis functi on . T her efore, either implicitl y
or otherwise, every time one generalizes one uses a scheme for choos ing which
generalizer to apply. T his mean s that it is desirabl e to have an algor it hm
for explicitly cho osing which among a set of poss ible generalizers to use wit h
a particular provided trainin g set e. This is the idea behind techniques
like cross-validat ion [26- 30, 34], bootstrap [30], and the like. It is also the
start ing point for more sophist icate d techniques in which one generalizes
among generalizers [31, 32].

T here are several ways to modify the formalism of the pr evious sect ions
to allow one to address the issue of whether a particular scheme for choos ing
among generalizers will lead to small generaliza t ion error. For simplicity , it is
eas iest to illustrat e the ideas when the scheme for choos ing among generaliz­
ers is cross-validation. The rest of this sectio n consists of such an illustration .
As such, it is an answer to issue (9) presented in the introduction . Fi rst , a
relatively simple way to address the efficacy of cross-validation is pr esented ,
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and then a more sophist ica ted scheme is out lined. In this second approach , a
new "meta" space is created in which minimizing cross-validation err or plays
an ident ical role to the role played , in the analysis of U , by minimizing error
at reprodu cti on of the t raining set.

5 .1 C r oss-validation

Recall that a (deterministic) generalizer is any algorit hm that takes in a
training set 8 of m pairs (Xi E X ,Yi E Y) along with a quest ion q E X
and produces a guess E y 2 2 As pointed out in [Ll ], any such algorithm
9 is equivalent to a countably infini te set of functions g{i }, where g{i} is a
mapping from { (X x y)i x X } to Y. g{l} map s a training set consisting of one
pair (Xl E X ,Yl E Y) along with a quest ion q to an output (guess ) in Y ; the
result ing output is written as g{l}(Xl ' Yl; q). Similarl y, g{2} t akes a training
set consisti ng of two pairs {(Xl E X ,Yl E Y ), (X2 E X ,Y2 E Y)} along with
a question q to an output g{2}(Xl ' Yl, X2,Y2;q) in Y , and so forth. Any set
of g{i} (defined for all i > 0) uni quely fixes a determ inist ic genera lizer and
vice versa.P

Sometimes I will not explicit ly indicate the cardinality of the tr aining
set , and will simply writ e g(fJ ;q) when what I really mean is g{cardinality
of fJ}(O;q). Similarly, I will somet imes take lib erties wit h the definiti on of
a generalizer and view it as a mapp ing from t raining sets to input-output
functions rather than from tr aining sets together with inputs to out puts .
(Such a meaning is assumed whenever I write g(O) as opp osed to g(O; q).) As
always , the context should make meanings clear . I will say that a par ticular
generalizer 9 is "trained" with a par ticular training set 8 when I have in mind
the funct ion g(O; q) (or g(8), as the case might be).

Assume we have a set of p generalizers , indicated by gl , . . . , gp (so the i th
function definin g the jth gener alizer is indicated by gj{i} ). Let 8 be a t raining
set consist ing of m elements. Use the notat ion that 8_i is the training set 8
minus the ith pair , {Xi,Vi}. Then the cross-validation error asso ciated with
the j t h generalizer is defined as L~l [gj {m - 1}(8_i ; x;) - Yi]2. It meas ures
the average error of generalizer j at guess ing one of the inpu t-ou tpu t pairs
in 8 when taught wit h the rest of 8. The idea of cross-validati on is simple;
generalize from 0 with the generalizer gj having the lowest cross-validat ion

22For a stochas tic gener alizer , t he out put is a pro ba bility distribu t ion over Y rath er
than a single element of Y . For t he moment , we will ignore such sto chastic generalizers.
However , it is wort h noting th at , for most pr actical sit uations , at th e end of the day one
must have a single guess, and therefore one has to have a means of collapsing the set of
possible guesses prov ided by a stochast ic generalizer down to a single guess . (Examples
of such a collapsing process are averag ing the stochast ic generalizer 's guesses or picking
one of the possible guesses according to a pseud o-random number genera tor .) For such
cases , th e stochas t ic genera lizer is essent ially a sub-a lgorit hm in a larger determ inisti c
generalizer.

23Note that for some applicat ions, if X is a k-dimensional space then g{i} is undefined
for i < k + 1, and a genera lizer is defined by a set of g{i } for i > k rather tha n for i > o.
See [111 for details. Such a scenario will never be explicit ly considered in this paper.
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error over 8.24 ,25 (See [32, 26-30, 34].) Rather than direct ly assuming a best
generalizer , cross-validation assumes something about how best to choose a
generalizer.

5.2 Addressing cross-validation via a new event space

It is st raight forward to mod ify the formalism of the previous several sect ions
to dir ect ly address the issue of whether and when cross-validat ion will result
in low generalizat ion error. Again have an event space consist ing of tr iples.
T wo of the triples are identical to those in the pr evious sect ions : tar get
fun ct ions f E F : X ---> Y , and training sets 8 consist ing of m pairs of
elements from X x Y. For the third element of the triple, however , we no
longer have hypothesis functions from X to Y. Rather , we have "hypothesis"
generalizers g E G taking tr aining sets to fun ctions from X to Y . (G is the
space of all possible generalizers for input spac e X and output space y. 26 )

Denote the new event space by V. V and U (t he event space of the
pr evious several sect ions) are very similar to one another. In par ticular ,
all t he probab ility axioms from the previous sections are assumed to hold
for V , with the set G replacing the set H. (For example, it is assumed that
P (g I t. 8) is independ ent of f. ) We also make the same sampling assumption
as when analyzing U. Moreover , the error function for V is dir ect ly rela ted to
the error functi on for U: Er v (f, g,8) = L {x\!9}[1- 8(g(8;x) ,h(x))JI(n-m).27

24Note that using cross-validation wit h a fixed set of generalizers is itself a generalizer;
cross-valida tion maps t raining sets and questions to out puts by set ti ng the output to
gj {li;q} , where gj is the generalizer that has th e lowest cross-valida t ion err or for Ii. Viewed
t his way, schemes like cross-validation differ from schemes like back-propagation in two
ways . F irst , t hey choos e among hyp oth esis fun ctions indirect ly ra th er tha n dir ectly, by
having th e dir ect choice be among generalizers. Second , t hey do t heir choosing by means
of partitioning the tr ain ing set. See [32].

250 ne interesti ng feature of cross-validat ion is t ha t t he {g;}, t he set of generalizers
among which one is choosing, cannot be t he set of all possible generalizers. T he reason
is t ha t , for any t ra ining set Ii, quest ion q E X , and guess t E Y , t here is a generalizer
with zero cross-valida t ion error on Ii t hat makes th e guess t in response to t he questi on
q. (T he parallel wit h the discussion in sect ion 2 is immediate.) In ot her words , by itself
t he crit erion of zero cross-validation error is under-restri cti ve in the sense that it can not
uniqu ely fix how one should generalize. Moreover , it can be proven t hat t here is no subset
of t he set of all genera lizers such that for any t raining set t here is always one (and only
one) genera lizer from t hat subset t hat has zero cross-validation erro r for that training
set . In ot her words , even in concert wit h ot her genera liza ti on criter ia , one cannot use
cross-validat ion to fix uniquely how one should genera lize. See [34] for details.

260 ne might want to have some restrict ions on t he set of generalizers. For exa mple, in
t his paper I will usually want to rest rict attent ion to t hose genera lizers whose guessing is
invarian t under re-ordering of th e elements of t he training set , so that t heir guessing is
defined even for unord ered training sets .' It is implicitly assumed in t his paper t ha t "G"
is t he appropriately restrict ed set of generalizers if a ny such restr ictions are desired .

27Wit h all th ese equivalences between U and V , one is tempted to say t ha t t he prob­
ability of eleme nts in V is given by t he pro bability of element s in U via Pv (f E P,g E
G, Ii) == Pu (f E P, g(Ii), Ii), where g(li) is a par ticular hyp oth esis function. However , t here
is no a priori reason to requ ire tha t this equality hold , a nd in many circumstances it wou ld
violate normalization (e.g., t here are many generalizers wit h t he same function g(li) for
a particular Ii, so summing Pv(J,g, Ii) over all 9 might give a number grea ter th an 1 if
Pu(J, h, Ii) is norm alized. )
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In this new event space, however , conditional probabilit ies have different
meanings from those they held in U. In par ti cular , P(g I e) is int erpr et ed as
the pr obability of picking generalizer g given training set e. This probability
is set by the resear cher (just as P(h I e) was before). It reflect s our use
of cross-validat ion (or whatever scheme one is interested in) to choose a
generalizer based on the provided training set .28

All of the analysis of the prev ious sect ions goes through essentially un­
changed for this new event spac e. In particular, the maximum ent ropy dis­
tribution of targe t functions results in a formula for P(E I g, e), which is
independent of g . Therefore, just as previously we were forced to assume
that the distribution of targe t fun ctions is not uniform to allow choice of h to
be of any consequence , so must we now ma ke this assumpt ion to allow choice
of g to be of any consequence. In particular , without such a non-uniform
distribution , use of cross-valid ation will not help lower genera lizat ion erro r.
In other word s, contrary to the claims of some (e.g. , [17]) , cross-validat ion
and related schemes cannot be pr oven to work from first principles; it is an
assumption that cross-validat ion resul ts in good generalizat ion, equivalent to
the assumpt ion that repr oducing the t raining set results in good genera liza­
ti on.

In sect ion 3 we supplemented t he investi gat ion of P(E I h,e) with an
investigation of P (E I s,e). With our new event space we can similarly
investigat e P(E I s,e) rather than P(E I g , e), where in this new context
s is given by the functi onal S' rather than by t he functi onal S , and mea­
sur es the sum , over i , of whet her g(e_i ; Xi ) agrees wit h Y i (i ranging over
the m elements making up e). T he conclusion is similar to that reached
in sect ion 3 concern ing whether reproducti on corre lates wit h generaliza­
tion : whet her "cross-validat ion corre lates with generaliza t ion" is determined
by the behavior of the inner pr oduct P(E I s,e) = 2: {f,g} P(g I e)
x P(f I e) x M~ sB(g ,f ) , where M~ s B (g ,f) == "'~B x 8[S' (f,g ,e),s]
x 8[S(f ,g(e),X - e~) , z], "'~ B being a ~~rmalization c~nstant set by the
conditi on 2: {E } P(E I s,e) = 1.

This formula relating how one chooses a genera lizer to the generaliza ti on
error allows us to t ackle issues pr eviously un addressabl e. For example, it is
straightforward to show that , for any t ra ining set , there exists a generalizer
with zero cross-validat ion err or making any guess desired for questions out­
side that training set (see [34] and footnote 35) . Therefore, the only way a
technique like cross-validation could be helpful is if before using it one re­
st ricts the set of generalizers over which the cross-validat ion is run . However ,
once that set of generalizers is restrict ed , one has clearl y mad e some sort of
implicit assump t ion about what genera lizers to use in our particular physical
universe. The explicit form of that assumption is given by the formula at the
end of the pr eceding par agraph.

28Note that for cross-valida t ion, P (g I e) is determinist ic; for fixed e, P (g I e) is a delt a
functi on over G.
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5 .3 A "meta" event space

75

Consider again the event space U. Equation (3.1) implicitly tells us the
optimal hypothesis funct ion for any tr aining set , as a function of P (J I e).
Unfortunately, we do not know P (J I e) a pr iori- it is determined by the
physical universe. As ment ioned in section 3, one way around this dilemma is
to investi gate P (E I 5 , e) rather than P (E I h,e),since to evaluate P (E I s, e)
we need only make assumpt ions about th e inner pr odu ct of P(j I e) with
P (h I e) rath er than abo ut P(J I e) directly. Another way around the
dilemma is to estimate P(J Ie) over all f E F . If one does not want to make
a bald-faced assumpt ion for P (J Ie), one might tr y to est imate P (J I e) by
examining many instances in the physical universe of training sets identical
to eand associated target functions f. This is hardly pract ical, however. An
alt ern at ive is to t ry to ext rapolate from P (J I e' i= e) to make our est imat ion
for P(J I e).

Unless we wish to examine many different generalizing situat ions, the
only such t raining sets e' i= e at our disp osal are the subse ts of e. We can
view such subse ts as examples that te ll us how to generalize for training
sets different from e. For example, we can view the pair { (e_i ;Xi), Yi} as
telling us how to generalize when th e t raining set is e_i and the quest ion is
Xi. T herefore our task is to extrapolate, from information concern ing how
to generalize with subsets of e (this information being prov ided bye) , to
the case of generalizing with the full tr aining set , e. Replacing the word
"ext rapolate" wit h the synonym "generalize," we see that this is a meta­
generalizat ion problem ; we wish to generalize how to generalize.

Cross-validation is one , rat her pr imit ive way of carrying out this meta­
general ization. To consider mor e sophist icated forms of meta-generalization ,
we must creat e a completely new "met a" event space, indicated by U' . In­
tuiti vely, in this new event space, in addit ion to replacing H by G, we
replace target functi ons by "met a" target fun ct ions, that is, by "target"
generalizers. Similarly, we replace t raining sets e (hereafter referred to as
"base" training sets ), which are examples of how to map inputs to out­
puts, with meta-training sets , consist ing of examples of how to map pairs
{base train ing set , input} to outputs. Such meta-t raining sets are const ructed
by partit ionin g the original base training set. For example, using the par­
t iti onin g of cross-validat ion , a base training set e consist ing of the m pairs
{Xi ,Yi} result s in a met a-train ing set consist ing of the m pair s {(e_i ;Xi),Yi}'
Whereas elements of a base training set tell us how to map inputs to out puts,
element s of meta-tr ainin g sets tell us how to generalize .

More formally, as in the preceding sections, we st art wit h an input space
X and an outp ut space Y . An arbitrary element of X is now called a
"base question ," and X is called the "base input space." From X and Y
we construct a new "me ta" input space X' , which consists of all possible
ordered sets {Xl, YI, X2 ,Y2, · ·· , Xm,Ym;q} for all m > 0 (and m < some suf­
ficiently large upper cut-off) , where all Xi and q are elements of X , and
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all the Yi are elements of Y. In ot her words, X I consists of all pos sible
{base training set, base question} pair s.

T he event space U' is constru cte d from X' and Y in exactly the same
manner that U is constructed from X an d Y . U' consists of triples. T he
first element of such a triple is a mapping from the space X' to the space
Y . T his should be viewed as a "meta" tar get functi on , that is, as a target
generalizer . Such a target generalizer is indica ted by an element d E D. The
second triple in UI is also a mapping from X I to Y . It should be viewed as a
met a-hypothesis funct ion , that is, a hypothesis generalizer. Such a hypothesis
generalizer is indicated by an element 9 E G. T he third element of a t riple
in U' is a meta-training set, that is, a set of m' pairs {x; E X ' ,Yi E Y} . Such
a meta-t rain ing set is indicated by an element w E Q. We are interested in
probab ility distributions over U' (see appendix C).

For brevi ty, I will write P(d,g,w) rather than Pu' (d,g,w), letting the
argument list te ll us we are interested in prob abilities over U' , In an anal­
ogous fashion to when we were invest igating U, with the event space U'
the hypothesis generalizer is under the researcher 's control whereas the tar­
get generalizer is not. More pr ecisely, it is up to the researcher to set the
met a-genera lizer P(g I w). In exact an alogy with the similar situat ion in
the analysis of U, this leads us to conclude that P(g I d,w) = P(g Iw) and
P(d Ig,w) = P(d Iw).

5.4 Calculating er rors via the meta event sp ace

The meta err or function ErU' is determined by what cost function interests
us. Since the error function is what we "measure, " it (an d only it! ) gives
physica l mean ing to the probabilit ies over our event space. For our curr ent
purposes, we are not interested in using an error funct ion Eru'(d,g,w) <X

L{x' ~wx , }[l - 6(d(xl) ,g(X'))], the direct analogue of the base erro r function
Eru(J,h,ex ). Rather , since what ultimately int erests us is the same kind of
generalizat ion error involved in base generalizing , Eru' is given in terms of the
base err or funct ion. This is done by the following formula : Eru'(d,g,w) ==
Eru(d(e(w)),g(e(w)),e(w)), where d(e(w)) is being viewed as an element of
F while g(e(w)) is being viewed as an element of H , and e(w) is defined as
the base training set that generated w (see appendix C). Expanding , we can
write Eru,(d,g,w) = L{x~ [9 (w)J x }[l - 6(d(e(w) ;x), g(e(w);x))]/(n - m). From
now on, unless noted ot herwise, the subscript will be dropped from erro r
functions; the arguments will det ermine if I mean Eru or Eru'.

As in sect ion 2, we start by evaluat ing P (E I g,w). To do this first we
write

P(Elg,w)
L{dED} P(d,g,w) x 6(S(d(e(w)) ,g(e(w)),X - [e(w)] x) ,z)

L {dED } P(d,g,w)

L P(d Iw) x 6[S(d(e(w)),g(e(w)),X - [e(w) ]x),z],
{dE D}

(5.1)
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where S is the same fun ction S as in sect ion 3; z is defined in terms of
E , n , and m just as in section 2; and use has been made of the fact that
P(d Ig,w) = P(d I w).

In appendix C , (5.1) is used to reduce P(E I g,w) to a probab ility over
the original event space U. The ensuing analysis shows that a probab il­
ity distribution P( d, g, w) uniform over D results in P( E I s,w) = c~n-m)

x (r_ l)( n- m- z)/ r(n-m), the same value calculated in sect ion 2 for P(E I h, B)
under the assumption of a uniform distribution over F in the event space U.
This is precisely the result we would have expecte d . Without some non ­
uniformity in our probability distribution over U' , choice of generalizer 9 is
irrelevant .

5 .5 Generaliz ing how to generalize

We can now evaluate the U'-space an alogue of the U-space probability
P(E I s,B). We are interested in P(E I s,w), where here s = S(w ,g,wx')
rather than S(B, h, Bx) (as in the analysis of U). The idea , in dir ect analogy
to the analysis of sect ion 3, is to analyze P(E Is,w) as a fun ction of E and s.
In a manner analogous to when we analyzed U , if we wish we can view this
analysis as assuming a "subs trate" met a-generalizer P(g I w), from which we
ar e picking a generalizer with a given value of s . Bu t such an int erpretation
is not demanded by the math.

Proceeding as in sect ion 3, we write P(E,s ,w) = L{d ,g}P(d, g,w) x
o(S (w,g ,wx ' ),s ) x o(Er(d , g ,w) ,E) = L{g}P(E,g ,w) x o(S(w ,g ,wx ') ,s).
Similarly, P(s ,w) = L{g}P(g ,w) x o(S(w,g, wx' ), s). This allows us to write
down the analogue of (3.2):

I )
L{g}P(E I g,w ) x P(g,w) x o[S (w,g ,wx' ),s]

P (E s, w = -----'''-'-----'-------'--------,- -----,---'----,-----:.,- ----'---- -----c- ---'------'-
L {g} P(g ,w) x o[S (w,g ,wx ' ), s]

(5.2)

As before, if P(E I g,w) is independent of g, then P(E I s,w) is ind epen­
dent of s . Carrying on as when we analyzed U, we can now plug (5.1) int o
(5.2), gett ing

P(E I s,w) = :L P(d Iw) x P(g Iw) x ME,s,w(d,g) ,
[d.g]

(5.3)

where ME,s,w(d,g) "":,w x o(S (w, g,wx' ), s) x o[(S(d(B(w)) ,g(B(w)),
X - [B(w)]x ),z], "":w being a normalization const ant set by the condition
L {E} P(E I s, w) = 1. If we insist that only those tar get generalizers d that
reproduce w have non-zero probability, then we can replace S(w ,g,wx') by
S(d ,g,wx') in the formula for ME,s,w(d,g). On ce this is done, ME,s,w(d,g)
becomes a symmetric matrix ind exed by d and g.

Under this assumption that d reproduces w, P(E I s,w) becomes a non­
Euclidean inner product between P(d I w) and P(g I w), in dir ect anal­
ogy to the formula for P(E I s , B) derived in sect ion 3. The conclusion is
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similar: the "correspondence" between a par t icular distribution of hyp othesis
generalizers (i.e. , a par ti cular P (g I w)) and the un iverse's condit ional pr ob­
ability for generalizers , P (d Iw), determines whether the level of agreement
between {the generalizing of a generalizer 9 guessed acco rd ing to P (g Iw)}
and {th e generalization instan ces in the met a-training set w} resul ts in low
generalization error.

Not e that corre lation of reproduction of the meta-t raining set wit h gener­
alization supersedes corre lation of reproduct ion of the bas e t raining set wit h
generalization. In ot her word s, if the meta-generalizer works , it should be
used regardless of how well a particular base generalizer works. For exam­
ple, even if one has several generalizers for all of whom reproduction corre­
lates with generalization , if in addition cross-validation works, then cross­
validation should be used to weed out all bu t one of the base generalizers.

5 .6 Discussion

One could argue about whether and how (5.3) can have ramifications for our
physical universe. In particular , one can argue about whether the probabil­
ity of a target generalizer is a meaningful concept; the physical un iverse is
chocker-block full of target input-output functions, but target generalizers?
One way to address this issue is the following: inst ead of viewing the prob­
lem of induct ive inference as your being given a target input-output funct ion
that is sampled, view the problem as your being given a target generalizer
that is sampled . After all, recall that the probab ility of target input-output
funct ions really indicates some sort of "degree of belief" that we are likely
to encounter a sampling of such a functi on. (T he frequ entist interpretation
of probability , in which we are said to view the pr obab ility of target input­
output functions as some sort of object ive, uni verse-wide frequency count of
such functions, has long been discredi ted . See in par ti cular [35-37].) Simi­
larly, the prob abili ty of target generalizers indicates our degree of belief that
we are likely to encounter a sampling of such a generalizer (as oppose d to
some object ive, universe-wide frequ ency count of such generalizers) . Less
metaphysically, one can simp ly note that , for the purposes of this pap er ,
the physical meaning of probab iliti es is set by their use in error func tions :
P(d Iw) is simply whateve r distr ibution gives the experimentally observed/ "
functi on P(E I s,w) for our hypothesis generalizer substrate P (g Iw).

Ind epend ent of the issue of how to interpret probabilities of target gen­
eralizers, the parallel between (3.3) and (5.3) immediately suggests many
interest ing and novel features of inductive inference. For example, base gen­
eralizing phenomena like over-training, the usefulness of reducing the num­
ber of free parameters, the need to have a "representative" training set ,
the usefulness of regular izers, and so forth (see the end of sect ion 3) all
have met a-generalizing version s. For example, over-training corresponds to

29 If one insist s on using a frequency-count int erp retation of probabi lity, t hen "experi­
mentally observed" can be taken to mean frequency counts.
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redu cing cross-validat ion erro r so much t hat generalization suffers. As an­
other example, reducing the number of free paramet ers might aid the per­
formance of hypothesis genera lizers , just as it can aid the performance of
hypothesis funct ions. Similarly, a meta-train ing set w can be not "represe n­
tative" if P( d Iw) is bro ad and flat , in which case using a meta-generalizer
to determine how to generalize might not result in low genera liza tion err or.
In addition , applying regularizer cost functions to hypothesis generalizers
might be beneficial, just as applying regular izer cost fun ct ions to hyp othesis
functions can be beneficial.

In ad dit ion to resulti ng in predicti ons concern ing the phenomenology of
meta-generalization , the par allel between (3.3) and (5.3) has many ot her im­
plicati ons. For example, it means that almost any method that is usually
viewed as meta-generalizing (e.g., cross-validation [26-30], bootst rap [30], fan
generalizers , and t ime-series analysis [38, 12]) can also be applied dir ect ly
to (base) generalizing. For example, in techniques akin to the boot st rap
met hod, one does not simply sum , over all partitions of the base training set,
the erro rs in guessing one side of th e partition when train ed with the other
(as one does in cross-validation) . Rather , one might look at the probability
dist ribution of such errors . Such a distribution can be estimated by construct­
ing a large ensemble of part it ions and colla ting a histogram of {number of
part itions that had a cert ain err or in guessing one side of the partition when
trained with the rest of it } vs. {that erro r value}. The parallel between (3.3)
and (5.3) immediately suggests the idea of doing a similar thing with base
generalizatio n: rat her than simply sum the erro rs of a hyp othesis functi on
at reproducing a training set (the an alogy of cross-validat ion) , construct a
histogram of {number of qu estions leading to a given erro r between the hy­
pothesis fun ction and the target fun ction} vs. {t hose erro r values}. In this
way one could, for exa mple, esti mate whether a difference in the average
error at reproducing a t raining set between two neural nets is statist ically
significant .

In a similar fashion , the parallel between (3.3) and (5.3) suggests us­
ing techniques usually used in base generalization to meta-generalize. For
example, one might apply grad ient descent in meta-generalization, thereby
arr iving at a generalizer wit h low cross-validation error. Alternatively,
one might wish to apply Rissanen 's minimum description length principle to
hypothesis generalizers rather than hypothesis fun ct ions; pick the
generalizer that when comb ined with the training set results in the small­
est cod ing length , and use that generalizer to generalize from the t raining
set .

As an other possibility, not e that using cross-validat ion to meta-generalize
is akin to base generalizing by the following procedure: .choose from a set
of candidate hyp othesis fun ctions the hyp othesis function that best repro­
du ces the training set . However , in base generaliza tion one ofte n creates the
hypothesis fun ction from the base training set directly with sur face-fitters
[9- 13] rather than by searching over a set of possible hypothesis fun ct ions.
The parallel between (3.3) and (5.3) suggests meta-generalizing in a similar
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fashion , with "meta" surface-fit te rs rather than with cross-validatio n. For
example, the analogy suggests that , just as one can bas e generalize by taking
as one's hypothesis functi on the linear combination of basis hypothesis fun c­
tio ns with the best fit to the base training set, so might one meta-generalize
by taking as one's hyp othesis generalizer the linear combinat ion 'of basis hy­
pothesis genera lizers with the best fit to the meta tr ain ing set . Similarly,
just as one might genera lize over a set of residuals between a hyp othesis
function and the base t raining set , one might t ry to meta-generalize over a
set of residuals between a hyp othesis generalizer and the met a-training set.
In point of fact , schemes of these types have been invest igated before, and
often work ext remely well in pract ice [31- 33, 40J.

Another version of such "meta-sur face-fit t ing" follows from the observa­
tion that when base generalizing one often pre-processes the inpu t space , for
example to redu ce the dimensionality of the inp ut space values fed to the
genera lizer. In other words, one often map s X ---> Z via a map ping T and
then does the generalizing from Z ---> Y , where Z has lower dimension than
X and yet still (hopefully) captures the salient charac terist ics of X . Again,
the suggestion of (5.3) is to do the same thing when meta-generalizing: re­
du ce X ' to some smaller space Z' via some mapping T ' , and then map Z'
to Y . Ret urn ing for a moment to the case of base generalizing, if Z is a
Cartes ian prod uct of subspaces all of which are copies of Y , then T is just a
Cartesian product of funct ions from X to Y. Similarl y, if Z' is a Cartesian
pr oduct of subspaces all of which are copies of Y , t hen T' is a Cartesian
product of funct ions from X' to Y . In ot her words , if Z' is a Cartesian pro d­
uct of subspaces all of which are copies of Y , t hen T ' is a Cartesian product
of generalizers. Now note that , wit h such a space Z' , the map ping from Z'
to Y can be done via a base generalizer (just like the map ping from Z to
Y ). Therefore such pr e-processing via T ' cons tit utes a very int eresting means
of met a-generalizing; under such schemes one com bines generalizers (which
make up T' ), by pipin g their guesses through anoth er- generalizer (the
mapping from Z' to Y ). As an example, with such a scheme one can use
sur face fit ters to combine decision tree generalizers , neural nets, and surface­
fitters.

These kinds of "meta-sur face-fit t ing" are examples of the technique of
stacked generalization [32J. One important aspect of the procedure of stacked
generaliza tion is that the entire procedure can itself be stacked , that is , fed
into yet another generalizer. In terms of the parallel between (3.3) and
(5.3), this simply means that since one can jump to a meta-realm (i.e., go
from (3.3) to (5.3)) and maintain essentially the same formal st ruct ure for
calculating th e value of the error fun cti on , so can one jump to a met a-met a­
realm. In meta-generalization one generalizes among generalizers . In met a­
meta-generalization , one generalizes among met a-generalizers. An example
of such meta-meta-generalization is to decide between using cross-validation
and some ot her scheme for choos ing among generalizers by parti ti oning the
meta-training set and then calculat ing whether cross-validation or the other
scheme results in lower generaliza t ion error.
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T his paper addresses the question of how and why in-sample tes t ing can
corre late wit h generalization erro r off of the testing set. In add ress ing this
quest ion , a formalism is developed that can be viewed as an extension of
the conventional Bayesian formalism. This formalism can be used to address
all generalizat ion issues of which I am aware: over-training, the need to re­
strict the number of free param eters in th e hyp othesis function , the problems
associated with a "non-representat ive" training set , whet her and when cross­
validat ion works, whether and when stacked generalizat ion works, whet her
and when a particular regulari zer will work , and so fort h.

The most import ant feat ure of the form alism presented in this paper is
tha t it uses an extremely low-level event space, consist ing of t riples of {target
fun ct ion , hypothesis funct ion , trainin g set}. In much previous theoret ical
research peculiar definitions of machine-learn ing issues have been used to
allow the researcher t o (try to ) shoehorn a pet formalism into the field of
machine learni ng. Using the ext remely low-level event space employed in
this pap er ensures that no such "sleight of hand" occur s; all machine-learning
issues are addressed dir ectl y and overtly. For example, use of this event space
ensures that one's assumptions about the probab ility distribu tion of target
functions in the physical un iverse are explicit .

Most (if not all) other form alisms that have been const ructed to address
machine learn ing (e.g., PAC) are spec ial cases of the form alism present ed
in this pap er , and are capable of address ing only a subset of the issues ad­
dressed in this paper. Moreover , such schemes can be expressed in te rms of
the form alism presented in this pap er , whereas the reverse is not t rue . In
part icular , the convent ional Bayesian form alism uses only two-thirds of the
full event space exploited in this paper ; it has probabilit ies involving target
fun ctions and training sets, but hyp othesis funct ions are ignored. (Despite
use of the word "hypothesis," what a Bayesian would call "P (hypothesis
such-and-such)" is equivalent not to what is called "P(hypothesis function
such-and-such)" in this paper, but rather to what is called "P(target func­
t ion such-and-such)." ) As a result , by construction the Bayesian formalism
is incap ab le of deriving resul ts like equation (3.3).

Some of the conclusions of this paper are :

1. If one assumes a maximum-ent ropy universe, then it is ent irely irrel­
evant what hypothesis funct ion one uses and there is no corre lation
between reproduction of the t raining set and off-training set general­
ization err or . Since such a universe cannot be ru led out on an a pr iori
basis, it is theoreti cally impossible to come to any conclusions about
how to generalize using only a pr iori reasoning.

2. Given (1), empirical evidence that the choice of hypothesis funct ion is
relevan t serves as empirical evidence that the probab ility distribut ion of
target funct ions in our universe is not uniform (i.e., has sub-maximal
ent ropy) . Peaks in this distribut ion presumabl y corres pond to what
humans call "parsimonious" or "regular" target functions.
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3. Assuming a physical universe wit h less than maximal ent ropy, not only
is choice of hypothesis funct ion relevant , bu t t he corres po ndence be­
tween the hypothesis funct ion and the t raining set can corre la te with
the erro r of the hypothesis function off of the training set. (Inte r­
estingly, a necessary condit ion for such a correspo ndence is that t he
hypothesis fun ction was not chosen at ran dom , according to a uniform
distribu tion , independently of the training set. T his is contr ary to the
sugges t ion of some researchers that choosing the hypothesis funct ion
at rand om is a sufficient condit ion for such corres pondence .) The cor­
relat ion can be writ ten as a non-Euclidean inner pr oduct between two
vectors , one represent ing the physical un iverse and one representing the
generalizer used to create the hyp othesis funct ion. So far as it assumes
that such a st rategy results in improved generalization , any generalizer
that st rives to create a hyp othesis function in agreement with the t ra in­
ing set (e.g., back-p ropagation run on neur al nets) is imp licit ly making
an assumption abo ut this non- Euclidean inner product.

4. The inner product mentioned in (3) can be used to demonstrate over­
training, the utility of minimizing the number of free parameters in
the hypothesis funct ions, difficult ies ar ising from the use of training
sets that are not "representat ive" of their target fun ctio n , the ut ility
of regularizers, and so forth. That inner product can also be used to
demonstrate some very counter-intuitive phenomena, such as sit uations
in which the wors e t he fit between the hypothesis function and the
t raining set , t he better t he generalization .

5. If one knows the distrib ut ion of tar get functions beforehand , then for
a given definit ion of generaliza t ion erro r one can bu ild an optimal gen­
eralizer. For example, to maximize the prob ability that the chosen
hypothesis fun ction has perfect generalizat ion , one should guess the
hypothesis function lying at the mode of the dist ribu tion of t arget fun c­
tions. (In general that funct ion is not the same as the "Bayes-opt imal"
funct ion. )

6. A "meta-formalism" can be constructed for addressing issues like how
to combine generalizers , how and when cross-validat ion works, and so
forth. This meta-form alism is formally equivalent to the form alism al­
luded to in (1) t hrough (4), and therefore all the conclusions in (1)
thr ough (4) carryover to the met a-r ealm . For example, just as one
can have "over-training" in which one over-minimizes error at repro ­
ducing the t raining set and thereby increases generalizat ion erro r, so
might one "over-minimize" cross-validat ion error and thereby increase
generalization erro r.

Future resear ch involves:

1. Invest igat ing in mor e detail some of the issues discussed in the text :
how and when over-t raining occurs , how and when regulari zers are
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helpful , how and when "over-regularizing" occurs, how and when lim­
iting the number of free parameters is helpfu l, how and when it helps
to choose a trainin g set that is "representat ive" of the targ et function ,
and so forth.

2. Using the answers to (1) to improve real-world generalizers. In partic­
ular , following up on the suggest ions in the text on how to avoid over­
tr aining, and using the ana lysis of the utility of limiting the number
of free parameters to deduce t he relationship between what simp licity
measure one should use and what assumptions one makes about the
physical universe.

3. Answering the "meta" versions of all the quest ions in (1), and using
these answers to improve real-world generalizat ion , just as in (2) .

4. Extending the analysis to different err or fun ctions, in part icular to
err or funct ions involving a metric over the output space; extending
the analysis to cont inuous input and output spaces; and ext ending the
an alysis of sect ion 4 to different measur es of "best" generalization erro r.

5. Ext ending the analysis to situa tions in which (like in PAC and like in
append ix B) one sums over training sets as well as over target fun ctions,
and/ or in which one has erro r functions that run over the elements of
the training set as well as off of it .

6. Reconciling the analysis in this paper with the analysis in [5] concern ing
Occam 's razor and uniform simplicity measur es (the optimal measur es
of the simplicity of a hypothesis fun ction).

7. Investigat ing whether and when requiring var ious invari an ces of the
generalizer (as in [11]) results in improved generalizat ion . Investigating
whether and when stacked generalizat ion [32] results in imp roved gen­
eralization , whether and when fan generalizers [38] result in imp roved
generalizat ion , and so for th.

8. Extendin g the analysis to fields closely related to machine learn ing
(e.g., time-series ana lysis) .

Appendix A. The ramifica tions of r equiring that P (h It. (J) be in­
d ependent of f

Since P (h I f ,8) is undefined for 8 <t. f when there is no noise, this appendix
works with the restrict ed requirement tha t P (h I f ,8) = P (h I 1',8) Vh, 8,
i , and l' such that f :J 8 and l' :J 8.

First note that this requirement follows from the requirement that P (h I
f ,8 ) = P (h I 8) Vh, 8, and f :J 8. Therefore, to prove the equivalence of these
requirement s, we must prove the converse: {P(h I f ,8) = P (h I 1', 8) Vh,
8, i , and l' such that f :J 8 and t ' :J 8} => {P(h I f ,8 ) = P (h I 8)Vh ,
8, and f :J 8}. To prove this, define kf as the ratio P (h I I, 8)/ P(h I 8)
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where f :J e. Our task is to prove tha t {P (h I i, e) = P(h I 1',e)vh, e,
t, and l' such tha t f :J e and l' :J e} implies kf is constant and equals l.
Expanding both the condit iona l probability in the numerator and the one in
the denominator , we get

k- 1 _ I:{f} P(h,f, e) x I:{h} P(h, f ,e) (A.I)
f - P(h, i, e) x I:{h,f} P(h,f , e) .

Now rewrite {P (h I f ,e) = P(h I1' ,e)V h, e, I, and I ' such that j : e and
i' :J e} as

P(h, f ,e) _ I:{h} P(h, f ,e)
P(h,1',e) - I:{h} P(h,1',e)

t/ 1:" e, t, and l' such that f :J () and t ' :J e. Plugging this into (A.I ), we
get

- 1 L { I:{h} P(h,f,e) } I:{h} P(h, f ,e)
kf = (f) I:{h} P(h,I, e) x I:{h,f} P(h ,f ,er

T his just equa ls 1, however, independent of f , which proves the supposition

P(h I t, e) = P(h Ie) vh, e, and f :J e. (A.2)

A similar proof, without the ":J e" conditions, holds when noise is allowed
(so that P(h I f ,e) is defined even for e ct J).

Now rewrite P(h I i, e) = P(h Ie) as P(h, i, e)1P(j,e) = P(h,e)1p (e).
T his last equa lity can be rewrit ten as P(h,I, e)1P(h,e) P(j,e)1p (e),
which is equivalent to P(j Ih,e) = P(j Ie). Therefore,

P(j l h,e) = P(j Ie) vh, e, and f. (A.3)

A number of interesting corollaries follow immediately from (A.3). For ex­
ample, (A.3) means tha t P(j I e) x P(h I e) = P(j I h,e) x P(h I e), that
is , the joint probability P(j,h Ie) factors:

P(j,h Ie) = P(j Ie) x P(h Ie) Vh, e, and f. (A.4)

Not e that , in both (A.3) and (A.4) , even when there is no noise we do not
need to spec ify e c f since, for e ct I , (A.3) and (A.4 ) bot h reduce to the
equa lity 0 = o.

Appendix B. A rigoro us investigation of the "coi n-t ossing proof"
of inductive inference

T his appendix is a rigorous invest igation of the "coin-tossing proof" of in­
duct ive inference outlined in the introduct ion . T his "proof" makes at least
two crucial assumptions, both of which are hard to justify from the point of
view of real-world machine learning. T he first is that when measuring gener­
alization error one allows questions from within the t raining set. The second
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is that the training set is unknown; we only know how many times it agrees
with a hyp othesis function. However , even given these two assumptions­
both imp licit in the coin-tossing argument-as this appendix shows we do not
recover the conclusion suggested in the introd uct ion (i.e., these assumptions
do not lead to Lap lace's law of succession for generalizat ion).

For simp licity, let Y be {O, I} , and let X be the n integers {I , 2, . . . , n}.
P(f, h, B) = 0 if B et I, as usual. Assume also that t raining sets are chosen ,
independent ly of h, accord ing to a uniform sampling distri bution over X wit h
repeats allowed; in ot her words, t raining sets B consist of any finite ordered
set of pairs (Xi E X ,Yi E Y) (wit h or wit hout rep eats), and P(f , h, ( 1 ) =
P (f , h, ( 2 ) if both B1 and B2 contain the same number of elements , all of
which are chosen from f .30 ,31 Let the cardinality of the tr aining set be m ,
as usual. Use an erro r function ind epend ent of B: Er(f, h) = 2: {XEX} {I ­
8(f(x) ,h(x))} /n == 2:~=1{1 - 8(fi, hi)}/n.

We are int erested in P(Er(f, h) = E I h, B has m elements, and s of
the elements of B agree with h). Not e that B it self is not known, that
is, it is not an argument in this pro bab ility distribution . Write this dis­
tribut ion symbolically as P (A I E , G, D ). Bayes' theore m tells us that
P (A I E ,G,D) ex P (D I A,E,G) x P (A I E ,G), where the proportion­
ality constant is ind ependent of A. P (D I A, E ,G) is P ({s of the elements
of B agree wit h h} I Er(f , h) = E , h, B has m elements) . This can be written
out as

2: { f;Er(f ,h)= E } 2: {OO;m }{8(S (B , h,Bx), s) x P(h,f, B)}

2:{f;Er (f ,h)= E } 2:{OO;m}{P (h,f, B)}

where by {B c f; m} is mean t all tr ainin g sets B with m elements all chosen
from f; S(B , h,Bx ) is the number of agreements between B and h (see sect ion

30 Note t hat since repeats are being allowed , if t rai ning sets were unordered th en a
uniform sampling dist ribut ion over X would not result in P (f, h, 191 ) = P( f, h, fh) V191 and
192 of t he same cardinality and both c f. For example, if t ra ining sets were unordered , t hen
if 191 contained t hree elements with t hr ee dist inct X components whereas 192 contained th ree
elements two of which shared th e same X component , t hen a uniform sampling dist ribut ion
over X would give P (f, h, BIl/P(f, h, 192 ) = 31/3 = 2.

3 1A sampling ass umpt ion concerns P (B I I). For exa mple, t he uniform sampling as­
sumption int rodu ced in sect ion 2 assumes t hat P (B I J) is independent of 19 for all allowed
B. The assumption {P(f ,h, 19 1 ) = P (f, h, 192 ) if both 191 and 192 contain th e same number
of elements , all of which are chosen from J} is mor e t ha n just a sampling ass umption,
however. To see t his, write P(f, h, B) = P(f, h I B) x P(I9) = P(f I B) x P(h I B) x P(I9)
(du e to (A.4)) = P(19 I I) x P (f ) x P (h I 19) . We are not making a uni form sampling
ass umpt ion; rath er we are assuming tha t P (B I I) is chosen to cancel out th e 19 depen­
dence of th e generalizer P (h I B). T his is clearl y a somewhat peculiar ass umpt ion to make.
Unfor t unately, t his ass umption is not just a side-effect of appendix B's form alization of
t he coin-tossing arg ume nt. T he coin-tossing arg ument presented in sect ion 1 impli citly
fixes h first ; aft er this 19 is chosen, and we wan t it to be chosen according to a uniform
distribut ion over X . However , by assumpt ion h is th e hypo th esis fun ction ou tput by t he
genera lizer aft er tra ining on B. Therefore, knowledge of h will te ll us somet hing abo ut
what 19 can be, th at is, it will int rodu ce non-uniformities in probab ility distributions over
B. To get t he distribut ion over 19 to be uniform desp it e knowledge of h, P(B I J) must
compensate for th e non-uniformity introduced by th at knowledge of h.
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3.1) ; and by {f; Er(f , h) = E} is meant the set of all target functions that
have error E with hyp othesis function h.

We ar e assuming that P(f,h,e) is independent of e, so long as e agrees
with f and has m elements . Therefore, P({s of the elements of eagree with
h} I Er(f, h) = E , h, e has m elements ) be comes

I:{f;Er (f ,h)= E } [P(f ,h, _) x I:{OCf;m} {8(S(e,h,ex) ,s)}]
I:{f;Er (f ,h)=E } [P(f, h, _) x I:{OCf;m} {I}]

where by P(f, h, _) is meant R(f, h, e) for any m-element e in agreement
with f.

Since repeats are allowed and t raining sets are ordered , I:{OC!;m}{I} = nm

for any f. Now examine a fun ction f such that Er(j, h) = E. To calculate
I:{Oc! ;m}{8(S(e,h,ex ), s)}, relab el the elements of X so that h disagr ees
with f on the elements 1,2, . . . ,nE, and h agrees with f on the remaining
elements nE +1, . .. ,n. To evaluate the sum we must calculate the number of
ordered sets of m X values , s of whose elements are in the set {nE+1, . . . , n} .
T his te lls us that I:{OC!;m}{8(S((8,h,ex) ,sm = cr; x [n - (nE + 1)+ 11s x
[nEjtm- s) = cr; x [n]m x [1- E]S x [E](m- s).

These values for I:{Oc ! ;m}{l} and I: {Oc! ;m}{8(S((e ,h,ex ),sm are both
independent of f. Therefore, P({s of the elements of e agree with h} I
Er(f, h) = E , h, ehas m elements ) = Cr; x [1- Elsx [E jtm- s). This is exact ly
the value of P(E I D) calculated in the introduction for the coin-to ssing
problem ("D " there mean ing the provided data). Also as in the coin-toss ing
problem , here our result is independent of any assumpt ions concern ing the
probabili ty distribution of tar get functions.

When discussing the coin-toss ing problem in the introduction, we not ed
that for this P( E I D ), if we assume a unif orm prior P(E) , then (E) ID,
the expec tat ion value of E subject to the const raint of the dat a D , equals
(s+ 1)/(m +2) . The analogous assumpt ion here to a uniform prior P( E) is to
assume that P(A I B , C) = P(Er(f , h) = E I h,ehas m elements ) is uniform
(i.e., has the same value for all values E). However , P(Er(f ,h) = E I h, e
has m elements ) equals

I: { f ;Er(f ,h)=E} I:{OCf;m} {P(f ,h,e)}
I:{f} I:{OCf;m }{P(f , h,e)}

Since the I:{f} in the numerator has an ext ra condit ion on f not pr esent
in the I:{f} in the denominator , alt hough we can just pull P(f,h,e) out
of the I:{O} like we did pr eviously, we do not get a result indep end ent of
P(f ,h,e). T herefore we have to make an assumpt ion abo ut P(f ,h,e). The
most reasonable (i.e., least informative) a priori assumpt ion is that P(f ,h,e)
is independent of f (the exact same assumpt ion we made in sectio n 2.1) .
Under this assumpt ion , we can rewrite our quotient of sums as

I:{f} [{8[S(f ,h,X) ,n - nE]} x I:{OCf;m} {I }]
I:{f} I:{OCf;m} {I}
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As before, L {8cf;m}{1} = n'" , ind epend ent of f . Therefore we only need
to calculat e L {f }{6[S(f ,h,X) ,n nE] to see if P(Er(f ,h) = E I h, 0 has
m elements ) is indeed uniform. To evaluate this sum , we must count how
many target functi ons f agree n - nE t imes with a given hyp othesis function
h. Simp le combinatorics gives us C;:E x (r - l )(nE). T his expression is
not uniform over E . Therefore we have a constructi ve pro of that the coin­
tossing proof has dubious validity; there exists a (repeat-allowing) sampling
assumpt ion that , together with the benchmark distribution P(f , h, 0) , does
not result in Lap lace's law of succession for generalizat ion .

As a final comment on this problem , note th at calculat ing P( E I h,m , s)
is a somewhat odd thing to do. To perform the calculat ion we must sum
over different training sets . However , the hypothesis funct ion h is being held
fixed. It is as though we are assuming the generalizer makes the same guess
h regar dless of O. (This oddity obtains whether or not we use a sampling
assumption that implies P(0 I f) is independent of i , see footnote 31.) Per­
haps a more natural distribution to calculat e is P( E lm, s). However , this
distribution can be very nasty indeed . Con sider the case in which , wit h
probability 1, the target function is the constant fun ct ion Y = 1, and t he
generalizer is the following ru le: for questions contained in the training set,
guess in agr eement with the t ra ining set s times (disagreeing m - s times) ,
and for all other questions, guess a O. For this scenario the hypothesis func­
tion guessed by the generalizer disagr ees with the target fun ct ion for every
quest ion outside the training set, for every trainin g set . Although Er(J, h)
for this problem will decrease as s increases (in loose accord with the im­
plication of the naive version of the "coin-tossing problem" presented in the
text) , for q fJ. Ox - the quest ions of int erest-the error is always maximal.

Appendix C. Miscellaneous characteristics of meta-generalization

This appendix fleshes out the discussion in section 5 of meta-generalizat ion
in the event space U'.

Fi rst , note that for the purposes of this paper we wish to rest rict our
at tention to those met a-training sets that are produced via a cross-validat ion­
typ e partitioning of a base training set O. Second , not e that 0 is assumed
to have been mad e with the same sampling assumpt ion as in the previous
sect ions . We can form ally express these facts via the following restricti ons
on the probab ility distribution over U' ,

Write w == {X;,Yi}, where 1 ::; i ::; m' for some count ing number m'.
Also write x; as a set product of a quest ion component and a training set
component: x; == {xaq x {x;hs. {xa q is a single base input-space value,
and {x;hs is a base tr ain ing set. We require that P(d ,g ,w) be zero unless
(1) the unordered set of X x Y pairs given by O(w) == {x;hs x ({X;}q ,Yi)
is ind epend ent of i , and (2) the elements of w are those form ed by cross­
validation-type partitioning of O(w). T hese two restrictions formally express
the fact that we restrict our attention to those meta-training sets that are
produced via a cross-validation-typ e partit ioning from a base training set O.
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To form ally express the fact that we assume the same sampling ass umpt ion
as in the pr evious sect ions, we can also require t hat P(d,g ,w) is zero unl ess
(3) 8(w) could have been mad e using that sampling assumpt ion over X for
base training sets discussed in the pr evious sect ions. (T hough note that ,
formally speaking, an ordering must be imposed on 8(w) before it can serve
as a base training set.)

For an appropriate sampling assumption , requir ement (3) mean s that the
elements of 8(w) have no duplicati ons in their X components . It is interesting
to note that as a resul t , if so desired , X ' can be defined as a single, (n + 2)­
dim ensional space. The idea is that the first n + 1 compo nents of an element
of the space X ' represent a single argument list for a generalizer (t hat is, they
represent a base question together with a base training set) , whereas the last
compo nent gives ordering information. More pr ecisely, the first component
of an element of X' can only take on one of the n values of X ; it represents
a base quest ion . The next n components represent the base tr aining set.
Each of these next n components take on any one of r + 1 valu es. The
first r of th ese values are th e r values of Y, and the last one is a spec ial
value, "blank." T he number of non-b lank values in these n components of
x' E X ' is m , the card inality of a base training set. These m non -blank Y
values of x' give the Y values of the elements of the base training set . The
components of x' in which they occur give the corresponding X values of
the elements of the base t raining set . For example, with X = {I , 2, 3, 4, 5}
and Y = {O, I} , {3; blank, 1, blank, 1, O} represents the element of X' wit h
questi on (3) and (unordered) base trainin g set {2, 1;4,1 ;5, O} . The last of
the n + 2 compo nents is an integer coding for the ordering of the m {Xi,Y;}
pair s given in compo nents 2 through n + l.

In some circums tances one might wish to impose a par ti cular sampling
assum ption over t he allowed region of X' (and thereby over the allowed w).
As another possibili ty, in some circumstances one might wish to disallow
meta-t raining sets w for which 8(w) has too Iow a cardinality (see footnote
23) . For cur rent purposes, we have no need to impose any assumptions of
these types.

In the text it is claimed that , under the assumption of a uniform distribu­
ti on over tar get generalizers, P (E Ig,w) has the same valu e that P (E Ih,8 )
has under the assumpt ion of a uniform distribution over t arget functions.
The pr oof follows.

Proof. Given a particular meta-train ing set w, index the t arget gener­
alizers d E D as di j . The first index, i, fixes the value of the function
d(8(w); X ~ [8(w)]x), taking (some) base input values to output values. T he
second index, i , runs over all generalizers wit h identical first index. To­
gether , i and j un ique ly fix the generalizer . So, for example, di j(8(w) ;x) =
di k(8 (w);x)Vi ,j,k ,x ~ [8(w)]x . However , if X E [8(w)]x ,di j(8 (w);x) does
not necessaril y equal d;k(8(w);x) for k 1= j. Simil arly, nothing is implied
abo ut the relation between di j and di k when they are trained on a training
set other than 8(w). In fact , if k 1= i , t hen it must be that the
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generalizers dij and dik differ eit her when trained on B(w) and asked some
question x E [B(w)]x , or when t ra ined on a t raining set other than B(w) and
asked some questi on x EX.

When we just wish to refer to t he function d(B(w);x rJ. [B(w)]x ), without
specifying what generalizer create d this function (i.e., wit hout specifying j ),
we will write di;w. We can now rewri te (5.1) as

P(E I g,w) = L:,P(dij I w) x 8(S(di;w ,g(B(w)), X - [B(w)]x ),z)
i,j

L:,[8(S(di;w,g(B(w)),X - [B(w )]x) ,z) x L:,P(dij I w)]

L:, [8(S(di;w,g(B(w)) ,X - [B(w)]x ),z) X P(di;w Iw)],

where by P(di;w I w) is meant t he prob abili ty that the tar get genera lizer
pro duces the function di;w when taught with B(w), given the informat ion of
the meta t raining set w. Note that di;w is defined (only) for questi ons outside
B(w). T his means that the quanti ty I.:; [8(S(di;w,g(B(w)),X - [B(w)]x ),z) x
P(di ;w I w)] is identical to the quantity L {f"oo,fn_m}{P(fl , .. . ,fn- m I B) X

8( [L~lm8(fi , h(Xi) )], z )} from (a slight ly rewrit ten version of) equation (3.1) ,
under the subst it ut ion of PUl " '" f n- m I B) for P(di;w I w), and h(x) for
g(B(w)). T he conclusions are there fore the same : if P(di;w I w) does not
vary with i (corresponding to PUb"" fn-m I B) not vary ing wit h I , the
case investigated in sect ion 2.2), then P(E I g,w) is equal to cin - m ) x (r­
l)(n- m- z)/r(n-m) .•

Appendix D. The ramifications of the various "sleights of hand" in
the PAC formalism

This appendix discusses how the various sleights of hand going into the PAC
formalism make it an inappropriat e fram ework for addressing machine learn­
ing.

The powerful PAC formalism [18- 21, 41] has been promoted by many
researchers as a fram ework for addressing generalizat ion. This is despite the
many peculiar aspects (from the point of view of generalization) of PAC. In
fact , those very features of PAC t hat serve as its st rengt h as a form alism
actually make it ill-suit ed for the t ask of addressing generalizat ion. PAC 's
st rength is that it man ages to reach conclusions while making very few as­
sumpt ions. In fact , not only are the theorems of PAC complete ly independ ent
of the sampling distribution over X, they are also independent of the training
set, and they are close to independent of the generalizer used and of the dis­
tribution of t arget functi ons. All of this would lead one to suspect that PAC
can have little dir ect bearing on real-world issues concerning generalization ,
especially for t hose issues discussed in this pap er . Further support for such
a suspicion comes from PAC's allowing questions to run over the training
set , and from its concent rat ing on the game-theory typ e issue of whether a
st rategy achieves success polynomially or exponent ially.
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In a mislead ingly ent it led art icle [20] , Blumer et al. have presented striking
evidence in support of t he view that PAC has lit tl e direct relevan ce to issues
of generalization . They show that one version of PAC implies that guessing
according to lower complexity measure is a "good" thing (as defined by PAC ),
in dependent of the particular complexity measure used. T his result serves as
a re·ductio ad absurdum of PAC, as far as inductive inference is concerne d .
For example, this resul t shows that PAC counsels that choosing between
theories according to the alpha bet ical listing of the creators of the theories
is a "good" way to generalize. (Here the complexity measure of a theory
is the alphabet ical list ing of the theory's creator). More prosaically, if one
is trying to guess a fun ct ion from {0,1}n -+ {0, 1}, basin g the guess on a
tr aining set of m samples of that funct ion , PAC counsels simply to guess O's
for all quest ions not in the training set .32 Alte rnat ively, guessing all 1's for
quest ions outside the t rainin g set is a "good" st rategy. In fact , almost any
st rategy that completely ignores any pattern s in the tr aining set is a "good"
strategy in the PAC sense.

PAC is a very powerful formalism, wit h many int eresti ng features. How­
ever, one must be ext remely careful in trying to ap ply it beyond its domain
of definit ion, to issues of real-world machine learning.33 ,34 Very few empiri­
cal studies of real-world machine learn ing meet the assumpt ions that go into
PAC . Moreover , very few such real-world st udies are dir ect ly interested in the
issues that concern PAC (the concerns of PAC being things like polynomial
vs. exponent ial convergence) . A more detailed analysis of this inappropriate­
ness of PAC can be found in [41].

Appendix E: The m eaning of P(f )

T his appendix is a semi-philosophical discussion of what P(J) "really means."
First , note that given any well-defined event , I can always slap down a

probabi lity distribution on that event. This fact alone means that P(J ) is
"real" and "exists." In fact , st rictly speaking nothing more needs to be said
to just ify the use of P(J ). Nonetheless, there are some ot her facts t hat might

32T his comes about by choosing th e complexity measure of a funct ion from {O, 1}n --->

{0,1} to be the bin ary decoding of the st ring of 2n O's and 1's defining that function. In
Blumer 's not at ion, for such a measure guessing O's is an Occam algorit hm with Q equal
to O.

33"Real world" mean ing problems in which we have no direct control over the target
funct ion dist ribution (t hat distribut ion being set by th e physical universe). This is meant
to cont ras t with "toy world" pro blems in which we direct ly const ruct th e target function
dist ribution .

34For example, one of the defining features of PAC is it s assum ption that bot h the
tr aining set and the test ing set were mad e according to th e same sampling distr ibut ion
7f(x) over the inpu t space. PAC's st rengt h is that it is "dist ribut ion-free"; in other words, it
man ages to reach concl usions without being to ld the precise distribut ion 7f(x) . In the real
world , wit hout access to the algorit hm used to choose them, it is imp ossible to determ ine
th at a particular finite training set and a particular finite testing set were created via t he
same sampling distribut ion. On th e other han d, if we do have access to the algorit hm used
to choose the dat a sets , th en we know the sampling dist ribution , in which case there is no
reason to ha ndcuff ourselves with a distribut ion-free formalism like PAC.
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make the reader feel more comfortable with th e use of P(J). Second , note
tha t P (B I J) is certainly a "meaningful" quant ity. Yet formally speaking,
since it is defined as P(B, J) / P(J ), for P (B I J) to have "meaning" so must
P(J ). Third , not e that there is no way to deal with quantit ies like off-t raining
set error without dist inguishing target funct ions from hypoth esis funct ions,
and in particular there is no way to deal with such quanti ties in a proba­
bilisti c framework wit hout a P(J ). T hird , note t ha t convent ional Bayesian
analysis implicitly uses a P(J ) (not a P(h)). Ind eed , the whole game in
Bayesian analysis is to make "informat ionless" arguments that uniquely fix
P(J ). Therefore, implicitly or otherwise, anyone comfortable with conven­
t ional Bayesian analysis is already comfortable with P(J ).

These arguments notwithstanding, the very fact that Bayesians use P(J )
serves as a warning. The reason is that , to a st rict Bayesian , "probability"
means "personal degree of belief." However , it is doubtful that one really
wants to interpret P(J) that way, because such an int erpret ation suggests
that th e resear cher ha s complete control over P(J) . This is an un comfortab le
thing t o claim even in convent ional Bayesian analysis; it is even more so in
the context of this pap er , which is an analysis of the (common-sense) notion
that one's personal biases, which go into making hypothesis functions, do not
in genera l equal the "t rue pr iors" of the universe, P(J ).

At this point it is worth noting that not hing in Cox 's derivation of the
laws of probabili ty as the unique calculus of inductive logic requires that
probability be interp reted as something so subject ive as "degree of belief."
All tha t is required is that a probab ility be interpreted as a means of rea­
soning in the abse nce of complete inform ation . And there are other ways
of interpret ing such a "means of reasoning" that do not imp ly one can set
prob ab ility as one wishes with complete impu nity (up to the constraints set
by the ru les of probab ility).

This paper is not meant to be a t reatise on the philosophical issues asso­
ciated with the quest ion of what probability "really means" (probability of
target funct ions being a special kind of probability). After all, this very issue
has bot hered some of the grea tes t minds in mathematics for two centuries.
(See in par t icular [35J and some of the articles in [42] for a discussion of
this cont roversy from the "degree of belief" point of view.) If the reader is
uncomfortab le with leaving the "true meaning" of P(J) less than completely
resolved , th en (s)he should simply view this pap er as an investigation of the
following two-person game:

Person A generates target functions according to some pre-fixed and un­
altera ble distribution P(J ), which person A determined before the game
started .

A fixed mechanism exists that translates such a target function f into
a t raining set B. This mechani sm may or may not be known, in part or in
whole, to person B.

Person B can see B. On the basis of B (and only B) , person B guesses
a hyp oth esis funct ion h . The means by which that guessing is done are
completely und er person B's cont rol.
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The goal of person B is to perform the guessing in such a way as to
minimize some (pre-determi ned) error function, Er U , h,B).

Nobody is allowed to cheat .
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