
Mapana J Sci, 16, 1 (2017), 67-80

 ISSN 0975-3303 https://doi:10.12723/mjs.40.5

67

Evaluation of Scipy.ode Integrators in

Solving the Lane-Emden Equation for

Polytropes as a Boundary Value Problem

with a Fitting Method

M N Anandaram*

Abstract

The use of Scipy integrators like dopri5 and others in
accurately solving the Lane-Emden equation of a
polytrope as a two-point BVP with fitting is investigated
by comparing the Emden radius with the extended
precision reference value obtained by Boyd's Chebyshev
spectral method. It is found that both dopri5 and dop853
integrators provide acceptable accuracy upto 14 decimal
digits.

Keywords: Lane-Emden equation, two point BVP with fitting
method, Scipy ode solvers

1. Introduction

The Lane-Emden equation is a well known non-linear second order
differential equation which describes the structure of a polytrope.
The polytrope of index n is a massive gas sphere in a state of
hydrostatic equilibrium and is governed by a pressure-density

relation of the form𝑃 = 𝐾𝜌1+1 𝑛 . The theory of the polytrope is
described in [1]. In the notation of [1] the Lane-Emden equation
with its two point central (𝜉 = 0) and surface (𝜉 = 𝜉1) boundary

conditions for the solution 𝜃 𝜉 and its slope 𝜃′ 𝜉 reads

* Bangalore University, Bengaluru, India; mnanandaram@gmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Christ University Bengaluru: Open Journal Systems

https://core.ac.uk/display/236435381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

68

 𝑑2𝜃 𝑑𝜉2 + 2 𝜉 𝑑𝜃 𝑑𝜉 + 𝜃𝑛 = 0; 𝜃 0 = 1; 𝜃′ 0 = 0; 𝜃 𝜉1 = 0
(1.1)

where 𝜃(𝜉) is the solution (aka Lane-Emden function) and
0 ≤ 𝑛 ≤ 5 is the constant index for a given polytrope. The first zero
of this solution denoted as 𝜉 = 𝜉1 yields the Emden radius of the
polytrope. Now this is written as a system of two coupled first
order ODEs using two new variables y and z defined by 𝑦 ≡ 𝜃
and 𝑧 ≡ 𝑦′ = 𝑑𝜃 𝑑𝜉 as

𝑑𝑦 𝑑𝜉 = 𝑧 ; 𝑑𝑧 𝑑𝜉 = −2 (𝑧 𝜉) − 𝑦𝑛 (1.2)

with the two-point BCs now reading as 𝑦 𝜉 = 0 = 1, 𝑧 𝜉 = 0 =
0 ; 𝑦 𝜉1 = 0, 𝑧 𝜉1 < 0 . The right hand sides of (1.2) are used for
integrating the Lane-Emden equation from either center or surface
as the starting point. When the integration is started from the
center (𝜉 = 0) a zero division singularity arises. This is avoided by
fixing the value of the latter function in (1.2) from the slope of the
power series expansion given by Equation (14) in [1] and repeated
here:

𝑧 = 𝑑𝜃 𝑑𝜉 = − 1 3 𝜉 + 𝑛 30 𝜉3 − 𝑛 8𝑛 − 5 2520 𝜉5+. .. (1.3)

It can now be seen using (1.3) that 2(𝑧 𝜉) = −2 1 3 as all other
terms containing 𝜉 vanish at the center and inserting this into the
second expression in (1.2) yields 𝑑𝑧 𝑑𝜉 = − 1 3 for all values of
index n since 𝑦 ≡ 𝜃 = 1 there. This value can also be found by
differentiating (1.3) again and evaluating it at the center. This is
taken care of in the computer script by inserting an if-else
statement (see line numbers 11 to 20 in the Appendix).

While there are many ways of solving this two-point BVP the
bidirectional shooting method is applied here so that it is
integrated simultaneously outward from the center and inward
from the surface of the polytrope towards a selected fitting point in
between. As the exact value of the scaled radius is unknown this
inward integration is started from a reasonably guessed value. The
two integrations do not meet at the fitting point at all as they are
like a directed shooting method. Therefore the difference between
them at the fitting point is used to adjust the value of the scaled
radius,(𝜉), in a proportionate way and the two-way integration is
repeated. In this manner many attempts (~ 30) are made before the

M N Anandaram Evaluation of Scipy.ode Integrators

69

two integrations converge at the fitting point to within a set
difference tolerance limit (like ~1.0e-14). This fitting point is set at
90% of the radius so that the Lane-Emden function (𝜃(𝜉)) would
have small values (𝜃 ≅ 0) characteristic of the polytropic envelope.
The algorithmic step sequence for carrying out this plan is taken
from [2] and briefly described below.

2. Bidirectional iterative integration and fitting method

The integration is carried out by using the python program
le_fit.py [3] and modifying it where needed to achieve maximum
accuracy. In order to start the inward integration of (1.2) from the
surface let 3 ≤ 𝜉𝑠 ≤ 10 denote the guessed value of the scaled
radius which will finally converge to the Emden radius 𝜉1 and the
slope at that point as 𝛼 < 0 (these are denoted as xi_s, xi1 and
alpha in the python script). The fitting point 𝝃𝒇𝒊𝒕 (xi_fit) is set as a

fraction of 𝝃𝒔 (say, xi_fit = 0.9 xi_s). The integrator is chosen in
turns to be one of dopri5(), dop853(), vode() or lsoda() invoked
from scipy.integrator.ode library. To maximize their accuracy the
relative and absolute tolerance parameters were set to the
minimum possible (~10−15). Now let y_in(𝝃𝒇𝒊𝒕) and z_in(𝝃𝒇𝒊𝒕) be

the arrays so obtained as outputs of inward integration from the
surface upto the fitting point. Similarly, in the case of outward
integration from the center upto the same fitting point, let
y_out(𝝃𝒇𝒊𝒕) and z_out(𝝃𝒇𝒊𝒕) be the arrays so obtained as outputs of

the integrators. In order to match the respective inward and
outward arrays at the fitting point the new functions which are
required to be zeroed are defined as 𝑌 𝛼, 𝜉𝑠 and 𝑍 𝛼, 𝜉𝑠 and given
by

𝑌 𝛼, 𝜉𝑠 ≡ 𝑦𝑖𝑛 𝜉𝑓𝑖𝑡 − 𝑦𝑜𝑢𝑡 𝜉𝑓𝑖𝑡 = 0 (2.1a)

 𝑍 𝛼, 𝜉𝑠 ≡ 𝑧𝑖𝑛 𝜉𝑓𝑖𝑡 − 𝑧𝑜𝑢𝑡 𝜉𝑓𝑖𝑡 = 0 (2.1b)

The corrections needed are found from Taylor series expansion as

 𝑌 𝛼 + Δ𝛼, 𝜉𝑠 + Δ𝜉𝑠 = 𝑌 𝛼, 𝜉𝑠 +
𝜕𝑌

𝜕𝛼
Δ𝛼 +

𝜕𝑌

𝜕𝜉𝑠
Δ𝜉𝑠 ~ 0 (2.2)

 𝑍 𝛼 + Δ𝛼, 𝜉𝑠 + Δ𝜉𝑠 = 𝑍 𝛼, 𝜉𝑠 +
𝜕𝑍

𝜕𝛼
Δ𝛼 +

𝜕𝑍

𝜕𝜉𝑠
Δ𝜉𝑠 ~ 0 (2.3)

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

70

To get the partial derivatives in (2.2) and (2.3) integrations
indicated in (2.1) are now repeated once to get 𝑌 𝛼 + 𝑑𝛼, 𝜉𝑠 and
𝑍 𝛼 + 𝑑𝛼, 𝜉𝑠 and again to get 𝑌 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠 and 𝑍 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠 so
that they are computed as numerical differences given by

 𝜕𝑌 𝜕𝛼 = 𝑌 𝛼 + 𝑑𝛼, 𝜉𝑠 − 𝑌 𝛼, 𝜉𝑠 /Δ𝛼 (2.4a)

 𝜕𝑌 𝜕𝜉𝑠 = 𝑌 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠 − 𝑌 𝛼, 𝜉𝑠 /Δξs (2.4b)

 𝜕𝑍 𝜕𝛼 = 𝑍 𝛼 + 𝑑𝛼, 𝜉𝑠 − 𝑍 𝛼, 𝜉𝑠 /Δ𝛼 (2.5a)

 𝜕𝑍 𝜕𝜉𝑠 = 𝑍 𝛼, 𝜉𝑠 + 𝑑𝜉𝑠 − 𝑍 𝛼, 𝜉𝑠 /Δξs (2.5b)

The magnitudes of Δ𝛼 and Δξs are adjusted to be as small as
possible [2] by using a multiplying factor, eps typically set close to
machine precision [3]. These steps are iterated for a number of
times so that a good convergence is obtained in about 20 to 40
iterations. At the end of each run there would be two outputs xi_s
and xi_in the average of which will be the required Emden radius
xi1 and a third output for its slope at that point. There would also
be a pair of two arrays comprising y_in (xi) and y_out (xi) and
another pair comprising z_in (xi) and z_out (xi). The entire
procedure was repeated with each of the aforementioned integrator
backends and the corresponding value of the Emden radius is then
compared with the highly precise reference value taken from [4] or
computed from [5]. The results will be discussed in the next
section. A sample plot of fitting at first and 28th iterations for n = 3
is shown in Figure 1.

Figure 1 (left) First iteration and (right) 28th iteration of fitting y_out and z_out (dashed) with y_in

and z_in (solid line) for a n=3 polytrope. Notice that xi_s is converging to its final value (~6.8968).

M N Anandaram Evaluation of Scipy.ode Integrators

71

We can get the complete solution of the polytrope by correctly
combining inward parts with outward parts got from the above
fitting procedure. Additional tasks performed to do this are
outlined here. Now 𝜃 = 0 at the polytropic surface from where the
inward solution y_in(xi) was found up to the fitting point whereas
y_out(xi) starts from the center and ends at the same fitting point.
Hence to get the complete solution 𝜃(𝜉) (or, y(xi)) running
smoothly from center to the surface of the polytrope, the inward
part y_in(xi) is now reversed and then merged with the outward
part y_out(xi) after averaging out minute differences at the fitting
point. Similarly the complete slope z(xi) is found by merging the
reversed z_in(xi) array with z_out(xi) array. Now from [1] we note
that as 𝑇(𝜉)/𝑇𝑐 ≡ 𝜃 𝜉 this solution itself specifies the run of
normalized temperature. Similarly we can find the normalized
density 𝜌(𝜉)/𝜌𝑐 from 𝜃𝑛 and the normalized pressure 𝑃(𝜉)/𝑃𝑐
from 𝜃𝑛+1. These parameters can be readily graphed in all-in-one
plots as functions of normalized radius or normalized mass
parameter and these show the structural properties of the given
polytropic model. In order to do these computations a python
function module Merge2Get_LEPol(npol, xi_out, xi_in, y_out, y_in,
z_out, z_in) was written and added to the earlier integration script
[3]. The combined script is listed in the Appendix. All other
polytropic model parameters can then be computed from
expressions given in [1].

3. Discussion and Conclusion

While doing the bidirectional integration with each of the four
integrators mentioned above in turn for each polytropic index the
resulting value of the Emden radius was noted and then compared
with the corresponding reference value obtained using extended
precision Python script [5] based on Boyd's Chebyshev Spectral
method [4]. The values produced by the two step size adapting
integrators dopri5() and dop853() were closest to the reference
value with the smallest difference and hence they are listed in
Table 1. It may be noted that dopri5 is based on a pair of
embedded and optimized runge-kutta formulas of orders 5 and 4,
found by Dormand and Prince, together with a dense output
interpolation of order 4. Here the order 5 method is used as a

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

72

proxy for the exact value to estimate the error of the order 4
method which of course has a gross truncation error varying as the
fourth power of the step size. If the error does not fall into a
predetermined range relative to step size and problem scale then
the step size is reduced or increased as needed so that the
integration is steered to have a predetermined global error.
Similarly dop853 method is based on a pair of embedded formulas
of orders 8 and 5 combined with a dense output interpolation of
order 7.

 In the case of n = 3 polytrope the dopri5 result differs from the

reference value by 2.3 × 10−15 whereas the dop853 result differs by
3.05 × 10−14. In other cases the dop853 results differs less or even
same as the result from dopri5. So the conclusion is that both these
are suitable for use as integrators in this problem. If lower accuracy
is acceptable the other two integrators may also be used. The
preference for dopri5 is dependent on setting the fitting point
(xi_fit) close to the surface at 90% of the Emden radius (xi_s) of the
polytrope. This has the advantage that the fitting iterations
converge quickly. In addition the inward and outward parts of the
solution (y and z) at the fit point are almost equal and so the
merger of the corresponding arrays has negligible error (a sample
print out is given in the Appendix). Further the numerical

difference factor eps should be set to 10−15 or so. This is fixed by
trial and error so that the result is closest to the reference value
shown in the second column of Table 1 at least upto first 14 digits.

Table 1 Comparing Emden Radii from dopri5() and dop853() with the Reference value from Boyd's

Chebyshev Spectral Method

The normalized all-in-one plot of the n = 3 polytrope is shown in
Figure 2. To sum up it has now been shown that the method of
solving the Lane-Emden equation as a BVP with fitting as
described above also leads to an accurate solution of the problem
with the use of the modified python script listed in the Appendix.
This fitting method is similar to those widely used in professional
stellar structure computations.

n Reference value [4] dopri5() (this work) dop853() (this work)

0.5 2.7526980540652 2.75269805406500634 2.75269805406500900

1.0 3.1415926535897932 3.14159265358981177 3.14159265358980777

1.5 3.6537537362191223 3.65375373621913013 3.65375373621912969

2.0 4.35287459594612468 4.35287459594613413 4.35287459594613679

2.5 5.35527545901077946 5.35527545901080337 5.35527545901080426

3.0 6.89684861937696037 6.89684861937695803 6.89684861937699090

3.25 8.01893752727151142 8.01893752727152176 8.01893752727152176

3.5 9.53580534424485044 9.53580534424484583 9.53580534424487070

4.0 14.97154634883809510 14.97154634883809621 14.97154634883809976

4.5 31.83646324469428526 31.83646324469370725 31.83646324469442135

M N Anandaram Evaluation of Scipy.ode Integrators

73

Acknowledgement

I wish to thank Mike Zingale for information used from [2] and [3]
and Nikola Merkov for assistance in developing and hosting the
Python version of Boyd's script in [5].

Figure 2 The n=3 polytrope structure as drawn against radius fraction (left) and mass fraction (right).

References

[1] M.N. Anandaram, "On Emden's Polytropes: Gas Globes in
Hydrostatic Equilibrium", Mapana J Sci, Vol.12, No. 1, pp. 85-114,
2014.

[2] http://bender.astro.sunysb.edu/classes/stars/notes/models.pdf

[3] http://bender.astro.sunysb.edu/classes/stars/notes/le-fit.py

[4] J.P. Boyd, "Chebyshev Spectral Methods and the Lane-Emden
Problem", Numer. Math. Theor. Meth. Appl., Vol. 4, No. 2, pp. 142-
157, 2011.

[5] https://github.com/nikola-m/another-chebpy/blob/master/
boyd_polytropes.py

Appendix

The source code listing of the complete Python script with line numbers is
given below:

 Python Script: LaneEmdenSol_Fit.py
1 # -*- coding: utf-8 -*-
 from __future__ import division #, printfunction
 import scipy # scipy includes all of math and numpy!

http://bender.astro.sunysb.edu/classes/stars/notes/models.pdf
http://bender.astro.sunysb.edu/classes/stars/notes/le-fit.py

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

74

 from scipy.integrate import ode
 import matplotlib.pyplot as plt

 #Original Python Script by Mike Zingale has been taken from
 #http://bender.astro.sunysb.edu/classes/stars/notes/le-fit.py

(line Nos. 11 to 148)
 #Additional Script added by M.N. Anandaram to output complete

model.

11 def rhs(xi, H, n):
 """ input: [y, z]; output/return: [dy = z, d2y = dz] """
 y = H[0]; z = H[1]
 dy = z
 if (xi == 0.0):
 d2y = -1.0/3.0 # <==> dz = (2.0/3.0) - y**n = 2/3 - 1 = -1/3
 else:
 d2y = -2.0 * z/xi - y**n # dz

20 return scipy.array([dy,d2y])

22 def le_integrate(xi_start, xi_end, H0, n):
 # use the explicit (adams) integrator from the VODE package
 #r = ode(rhs).set_integrator("vode", method="adams", #"bdf"
 # atol=2.e-15, rtol=3.e-14, nsteps=15000, order=12)
 r = ode(rhs).set_integrator("dopri5", #"dop853", #"lsoda",
 atol=2.e-15, rtol=3.e-14) #, nsteps=15000)
 r.set_initial_value(H0, xi_start)

30 # pass n into the rhs() routine
 r.set_f_params(n)
 xi_out = [xi_start] # store starting values
 y_out = [H0[0]]
 z_out = [H0[1]]

 # we want to know what the solution looks like on some regular

grid
 xi = scipy.linspace(xi_start, xi_end, 800)
 iend = 1
 if (xi_end > xi_start):
40 while r.successful() and r.t < xi_end:
 r.integrate(xi[iend])
 xi_out.append(r.t)
 y_out.append(r.y[0])

M N Anandaram Evaluation of Scipy.ode Integrators

75

 z_out.append(r.y[1])
 iend += 1
 elif (xi_end < xi_start):
 while r.successful() and r.t > xi_end:
 r.integrate(xi[iend])
 xi_out.append(r.t)
50 y_out.append(r.y[0])
 z_out.append(r.y[1])
 iend += 1

 return scipy.array(xi_out), scipy.array(y_out), scipy.array(z_out)

 # initial guesses for the unknowns -- if we aren't careful with the
 # guess at the outer boundary, we can get 2 roots. Here we know

that
 # n = 1 has xi_s = pi
 n = 3.0 # <--- Here choose any value of n like 0.5,1.,1.5,2.,3.,4.,4.5 or

4.9
60 if (n > 2.0): xi_s = 10.0
 else: xi_s = 10.0
 alpha = -0.15 # guesstimated slope dy/dxi at xi_s (known that

alpha < 0)
 # set numerical differentiation factor (this multiplies alpha, xi_s)
 eps = 5.0e-15 #eps = 1.0e-8

 # main iteration loop
 converged = 0
 iterno = 1
69 while not converged:
70 # fitting point set here at 90%
 xi_fit = xi_s * 0.9
 # baseline integration
 # outward from the center
 H0 = scipy.array([1.0,0.0]) # y[0]= 1; y'[0] = 0
 xi_out, y_out, z_out = le_integrate(0.0, xi_fit, H0, n)
 # inward from xi_s
 H0 = scipy.array([0.0,alpha]) # y[xi_s] = 0; y'[xi_s] = alpha
 xi_in, y_in, z_in = le_integrate(xi_s, xi_fit, H0, n)
 # the two functions we want to zero
80 nin = len(y_in)
 nout = len(y_out)
 Ybase = y_in[nin-1] - y_out[nout-1]
 Zbase = z_in[nin-1] - z_out[nout-1]

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

76

 # now do alpha + eps*alpha, xi_s
 # inward from xi_s
90 H0 = scipy.array([0.0,alpha*(1.0+eps)])
 xi_in, y_in, z_in = le_integrate(xi_s, xi_fit, H0, n)

 Ya = y_in[nin-1] - y_out[nout-1]
 Za = z_in[nin-1] - z_out[nout-1]
 # our derivatives
 dYdalpha = (Ya-Ybase)/(alpha*eps)
 dZdalpha = (Za-Zbase)/(alpha*eps)

 # now do alpha, xi_s + eps*xi_s inward from xi_s
100 H0 = scipy.array([0.0,alpha])
 xi_in, y_in, z_in = le_integrate(xi_s*(1.0+eps), xi_fit, H0, n)
 Yxi = y_in[nin-1] - y_out[nout-1]
 Zxi = z_in[nin-1] - z_out[nout-1]
 # our derivatives
 dYdxi_s = (Yxi-Ybase)/(xi_s*eps)
106 dZdxi_s = (Zxi-Zbase)/(xi_s*eps)
 # compute the correction for our two parameters
 if (dZdxi_s - dZdalpha*dYdxi_s/dYdalpha == 0.0):
 dxi_s = 2.0*dxi_s
110 else:
 dxi_s = - (Zbase - dZdalpha*Ybase/dYdalpha)/ (dZdxi_s -

dZdalpha*dYdxi_s/dYdalpha)
 dalpha = -(Ybase + dYdxi_s*dxi_s)/dYdalpha
 # limit the changes per iteration
 if (abs(dalpha) > 0.1*abs(alpha)):
 dalpha = 0.1*abs(alpha)*scipy.copysign(1.0,dalpha)
 if (abs(dxi_s) > 0.1*abs(xi_s)):
 dxi_s = 0.1*abs(xi_s)*scipy.copysign(1.0,dxi_s)
 #print "corrections: %3.10e, %3.10e, %3.16f " %(dalpha, dxi_s, xi_s)
 alpha += dalpha
120 xi_s += dxi_s
 #print ("corrections: %3.10e, %3.10e, %3.17f " %(dalpha, dxi_s,

xi_s))
 iterno += 1
 print ("corrections: %3.10e, %3.10e, %3.17f " %(dalpha, dxi_s,

xi_s))

 if (abs(dalpha) < eps*abs(alpha) and abs(dxi_s) < eps*abs(xi_s)):
 converged = 1
 print("\nLEEq solutions converge at xi_fit after %3d

M N Anandaram Evaluation of Scipy.ode Integrators

77

iterations"%iterno)
 #plt.figure()
 plt.clf()
130 plt.plot(xi_in, y_in, color="k",lw=2, label=r"θ")
 plt.plot(xi_out, y_out, color="k", ls="--",lw=2)
 plt.plot(xi_in, z_in, color="b",lw=2, label=r"θ'")
 plt.plot(xi_out, z_out, color="b",lw=2, ls="--")
 plt.grid()
 plt.xlabel(r"ξ", fontsize=14)
 plt.ylabel(r"$\theta,\, \theta'$", fontsize=14)
 #plt.ylim(-0.02,1.02)
 t = plt.title(r"solution of $\frac{1}{\xi^2}\frac{d}{d\xi}\left(\xi^2

\frac{d\theta}{d\xi}\ \right) = -\theta^n$ via fitting")
 t.set_y(1.05)
140 ax = plt.gca()
 plt.text(0.5, 0.90, "n = %3.2f polytrope, iteration # %d" % (n,

iterno),
 transform=ax.transAxes, fontsize=11,

horizontalalignment="center")
 plt.text(0.5, 0.85, "Emden radius, xi_s: %3.17f" %(xi_s),
 transform=ax.transAxes, fontsize=11,

horizontalalignment="center")
 plt.text(0.5, 0.80, "fitting point: xi_fit / xi_s = %.3f"%(xi_fit/xi_s),
 transform=ax.transAxes, fontsize=11,

horizontalalignment="center")
 plt.legend(loc="best", frameon=False)
148 #plt.show()

150 # The following was added by M.N. Anandaram to print all results

at the
 # fitting point,to compute all the model solutions and show them as

graphs
 print "\nExamine both _in and _out solutions to merge them at the

fitting point:"
 print "xi_s = %3.17f" %(xi_s)
 print "xi_in = %3.17f" %xi_in[0]
 print "xi1 = (xi_s+xi_in[0])/2 = %3.17f" %((xi_s+xi_in[0])/2);
156 print "fitting point at xi = %3.17f"% xi_fit
157 print "both in, out fitpoints same?: %3.17f ; %3.17f"%(xi_out[-

1],xi_in[-1])
 print "theta at fitpoint: %3.17f; %3.17f"%(y_out[-1],y_in[-1])
 print "theta' at fitpoint: %3.17f; %3.17f"%(z_out[-1],z_in[-1])
 print "theta' = dtheta/dxi at xi1: %3.17f "%(z_in[0])

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

78

161 print "[xi**2 * theta'] AT xi1 : %3.17f " %(xi_s**2*z_in[0])

163 def Merge2Get_LEPol(npol,xi_out,xi_in,y_out,y_in,z_out,z_in):
 # merge xi_in, y_in, z_in vectors carefully with xi_out, y_out,

z_out
 xi_in = xi_in[:-1] # duplicate xi_fit point deleted
 xi_in = xi_in[::-1] # reversed for merging with xi_out
 xi = scipy.hstack((xi_out,xi_in)) # merged radius vector
 # adjust smooth continuity of _in vectors at fitting point and

then merge
 adj_yout_yin_fit = y_out[-1] / y_in[-1] # ratio y_out/y_in at fit

point
170 print"adj_yout_yin_fit = %.17f"%adj_yout_yin_fit #should be

~= 1
 #y_out[-1] = (y_out[-1] + y_in[-1])/2.0 # averaged at xi_fit point
 y_in = adj_yout_yin_fit * y_in #adjust fit-point transition of y_in
 y_in = y_in[:-1] # duplicate y_in[-1] point deleted
 yxi = scipy.hstack((y_out, y_in[::-1])) # reversed y_in merged

with y_out
 adj_zout_zin_fit = z_out[-1] / z_in[-1] # ratio z_out/z_in at fit

point
 print"adj_zout_zin_fit = %.17f"%adj_zout_zin_fit #should be ~=

1
 #z_out[-1] = (z_out[-1] + z_in[-1])/2.0 # averaged at xi_fit point
 z_in = adj_zout_zin_fit * z_in #adjust fit-point transition of z_in
 z_in = z_in[:-1] # duplicate z_in[-1] point deleted
180 zxi = scipy.hstack((z_out, z_in[::-1])) # reversed z_in merged

with z_out
 # compute mass fraction from xi,zi; density and pressure

fractions from yi
 mxi = xi*xi*zxi # mxi = xi^2.dtheta = M(xi) / [4*pi* (r_n)^3 *

rho_c]
 rhoxi = yxi**npol # density fraction, theta**n = rho(xi) / rho_c
 pgasxi = yxi**(npol+1.0) # pressure fraction, theta**(n+1) = P(xi)

/ P_c
 return (scipy.array(xi), scipy.array(mxi), scipy.array(yxi),
 scipy.array(rhoxi),

scipy.array(pgasxi),scipy.array(zxi))
 #Now get polytrope model data: (Rxi and Mxi not normalized here)
 Xi,Mxi,Txi,Dxi,Pxi,Zxi =

Merge2Get_LEPol(n,xi_out,xi_in,y_out,y_in,z_out,z_in)
 G = 6.67259e-8; Msun = 1.989e33; Rsun = 6.9599e10; Lsun =

3.826e33;

M N Anandaram Evaluation of Scipy.ode Integrators

79

190 mass = 1.0; rad = 1.0; Xi1 = Xi[-1]; Zxi1 = Zxi[-1]; Mxi1 = Mxi[-1]
 Pc = 9.048e+14 * mass * mass / rad**4 /(n + 1.0) / Zxi1**2
 #D_mean = Msun/(4*pi/3)/Rsun**3 #
 D_mean = 1.408436186 * mass / rad ** 3
 Dc = D_mean * (- Xi1 /Zxi1 / 3.0)
 alpha_n = rad / Xi1 # Radius scaling Factor
 GBE = -3.80e+48 * 3.0/(5.0-n) * mass * mass / rad
 print "---"
 print " The basic properties of the Lane-Emden Polytrope are : "
 print "---"
200 print " Polytropic index selected : ", n
 print " Radius parameter(Xi1) : %.17f" %(Xi1)
 print " Radius scaling Factor, alpha_n : %.14f " %(alpha_n)
 print " Slope, [dtheta/dxi] AT Xi1 : %.17f" %(Zxi1)
 print " Mass parameter, [Xi1**2*Zxi1] : %.17f" %(Mxi1)
 print " Central Pressure (Pc) : ", Pc
 print " Central density (Dc) : ", Dc
207 print " EOS Constant, K=Pc/Dc**(1+1/n) : %.14e "

%(Pc/Dc**(1.0+1.0/n))
208 print " Mean density (D_mean) : ", D_mean
 print " Central Condensation, Dc/D_mean : ", Dc/D_mean
210 print " Binding Energy (GBE) : ", GBE
 print "--"
 # Rx and Mx are now normalized here
 Rxf = Xi/Xi1 # max(Rx) # get radius fraction (normalized radius)

here
 Mxf = Mxi/Mxi1 # mass fraction (normalized mass) M(xi) / M

where M == M(xi1)
 # and show them as all-in-one plots vs Radius fraction
 plt.figure(figsize=(12,6)) #(7,10))
 plt.subplot(121) #(211)
 plt.plot(Rxf,Txi,"k",lw=2,label=r"$\theta(\xi)=T/T_c$");
 plt.plot(Rxf,Dxi,"b",lw=2,label=r"$\theta^n=\rho/\rho_c$")
220 plt.plot(Rxf,Pxi,"k-.",lw=3,label=r"$\theta^{n+1}=P/P_c$")
 plt.plot(Rxf,Mxf,"k--",lw=2,label=r"$M(\xi)/M$")
 plt.xlim(-0.02,1.02); plt.ylim(-0.02,1.02)
 plt.title(r"$n = %.2f$ Polytropic Model"%n)
 plt.xlabel(r"Radius fraction, $\xi/\xi_1=r/R$")
 plt.ylabel(r"$\theta,\theta^n,\theta^{n+1},M(\xi)/M$",

fontsize=14)
 plt.grid();plt.legend(loc="best", frameon=False)
 # also show them as all-in-one plots vs Mass fraction
 plt.subplot(122) #(212)

Mapana J Sci, 16, 1(2017) ISSN 0975-3303

80

 plt.plot(Mxf,Txi,"k",lw=2,label=r"$\theta(\xi)=T/T_c$")
230 plt.plot(Mxf,Dxi,"b",lw=2,label=r"$\theta^n=\rho/\rho_c$")
 plt.plot(Mxf,Pxi,"k-.",lw=3,label=r"$\theta^{n+1}=P/P_c$")
 plt.plot(Mxf,Rxf,"k--",lw=2,label=r"$\xi/\xi_1=r/R$")
 plt.xlim(-0.02,1.02); plt.ylim(-0.02,1.02);
 plt.grid();plt.legend(loc="best", frameon=False)
 plt.title(r"$n = %.2f$ Polytropic Model"%n)
 plt.xlabel(r"Mass fraction, $M(\xi)/M$")
 plt.ylabel(r"$\theta,\theta^n,\theta^{n+1},r/R$")
238 plt.show()

