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SUMMARY

There is growing recognition that climate change is impacting the ocean’s western

boundary current system. In the Pacific, the Kuroshio and its offshore Kuroshio-Oyashio

Extension (KOE) play a central role in the North Pacific climate and impact the social-

ecological dynamics of countries that rely on marine ecosystem services (e.g. fisheries).

In the thesis, we have used a combination of observations and modeling approaches to

understand how past and projected changes in the physical environment of KOE impact

social-ecological dynamics linked to the fish industry of Japan and the North Pacific more

widely. The thesis is articulated in 3 Chapters. In Chapter 1 we have introduced the prob-

lem and the main motivation that lead us to perform this study. In Chapter 2, we analyze

the climate variability and change of the KOE over the historical and future projection pe-

riod 1920-2100. We perform this task using Coupled Model Intercomparison Project 5

(CMIP5) models and a large ensemble from the Community Earth System Model (CESM-

LE) output runs. The reason for considering also the CESM-LE runs is that they give the

possibility to explore how the variance of the KOE in one model (e.g. a fixed set of dynam-

ics) responds to anthropogenic forcing when compared to the range of natural variability

of the CESM-LE model. In this way, we can perform a scenario which goes beyond the

time of the observational data. In Chapter 3, we have used an Empirical Dynamical Model

approach to characterize the joint statistics of the physical and social-ecological environ-

mental system (SEES) that is relevant to climate and fisheries. To define the states of the

SEES we use three international fish databases, (1) the Large Marine Ecosystem (LME,

9,000 fish stocks), (2) the NOAA fishery database referred to as Restricted Access Man-

agement (RAM, 300 fish stock) and the (3) the Food and Agriculture Organization (FAO,

1400 fish stocks). Among the approaches used to explore the relationship between KOE’s

climate and the SEES response, we have developed a Linear Inverse Model (LIM) approach

that has been very successful to simulate and predict the KOE physical climate and its re-

xv



lation to large-scale Pacific dynamics such as El Niño Southern Oscillation (ENSO), the

Pacific Decadal Oscillation (PDO), and others.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Kuroshio-Oyashio region

The Kuroshio-Oyashio region is formed by the Western Boundary Current(WBC) of the

North Pacific subtropical and subpolar gyres. As represented in Fig. 1.1, the Kuroshio-

Oyashio system has two recirculation gyres, an anticyclonic Southern Gyre and a cyclonic

Northern Gyre. In the middle, around 35 N, quasi stationary meanders form the Kuroshio

Oyashio Extension (KOE) jet. Atmosphere-ocean interactions are exceptionally strong

[Kwon et al. 2010] over the WBC and their eastward extension. For example, the largest

mean and variance at inter-annual and longer timescales of the net surface heat flux occurs

in the WBC regions. In addition, eddy variability has also been found to play an important

role in the surface ocean heat budget [ Kelly 2010; Vivier et al.2002; Nonaka and Xie 2003].

The eddy kinetic energy level in the upstream region (32-38N and 141-153E) reveals that

its variability correlates well regional KOE path variability [Qiu et al. 2005].

1.2 North Pacific Modes of Variability

The Kuroshio-Oyashio Extension jet is also known to be one of the major regions of decadal

variability in the North Pacific. The origins of this low-frequency variability are linked to

both internal and externally forced mechanisms. However, most studies[Ceballos et al.

2009] have identified external atmospheric forcing as a consequence of the adjustment of

the PDO and NPGO SSH anomalies.
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Figure 1.1: Qiu et al. 2013 ; Root mean Square SSH Variability in the North Pacific

1.2.1 Pacific Decadal Oscillation

The first mode considered is the Pacific Decadal Oscillation(PDO). The PDO was named by

Steven Hare, who noticed it while studying salmon production patterns. It is the dominant

low-frequency climate variability in the North Pacific and it is defined as the leading mode

of detrended SST anomalies in the region [20, 60; -200, -110]. The PDO experiences

phase shifts which occur every 30 years with pronounced effects on biology and fisheries.

Specifically, when the PDO is in a positive phase, strong westerly winds and vertical mixing

result in a cool SST and low spring primary production due to light limitation, with the

reverse happening in a negative phase [(Mantua & Hare,2002; Miller et al., 2004]. The

region of KOE responds to these oscillations with a time lag of 3-6 years because the

anomalies have to propagate westward in the form of Rossby waves. Consequently, the

KOE experiences a shift between two dynamical states, a stable and an unstable state.

When in a stable phase the KOE eastward transport intensifies and the latitudinal position
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shift more Northward [Qiu et al. 2014], while the opposite happens in an unstable phase.

1.2.2 North Pacific Gyre Oscillation

A second important mode is the North Pacific Gyre Oscillation or NPGO. As for the PDO,

the NPGO is stochastically induced by the atmospheric mode of the North Pacific Oscil-

lation (NPO) and it is defined as the second leading mode of the SST in the same region

mentioned before. The ecological relevance of the NPGO has been recently emphasized by

different studies [Di Lorenzo et al. 2008]. They find that NPGO variability is significantly

correlated with fluctuations in salinity and Chl-a. On the East coast of the North Pacific, the

NPGO reflects changes in wind stress, in particular winds that force coastal upwelling. This

makes the NPGO a primary indicator for upwelling strength and nutrient fluxes (N03 and

P04 and SiO2). In contrast to the phases of the PDO, the NPGO mode positive phase shows

a pair of counter-rotating gyres that reflect the gyre scale mean circulation. In recent years

the observed strengthening of the NPGO mode may represent a response to anthropogenic

forcing and global warming[Bond et al., 2003;Douglass et al.,2006].

1.2.3 Regime shift of ecosystem

The impact of decadal fluctuations of the KOE on marine ecosystems is well documented.

It has been found that the AL/PDO induces temporal variations in the KOE fisheries and

secondary producers by dominating the seasonal mixed layer process [Chiba et al. 2009].

When the PDO is in the positive phase, that is a positive value of the associated index,

the sea level dropped, the thermocline shoals and the mixed layer deepened leading to a

weakening of the KOE. While the opposite happens in a negative phase. These climate

regime shifts are well correlated with biological shifts [Yati Emi et al. 2020; Möllmann

et al. 2012]. The weakening of the KOE leads to an increase in Western Pacific Sardines,

while during a strengthening of the jet the anchovies are more abundant [Chavez et al.

2003]. Also, in recent years fisheries have been greatly impacted by climate change. One
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important effect of the ocean heat uptake regards ocean deoxygenation which consists of the

decline of Dissolved Oxygen with profound impacts on fisheries and marine ecosystems.

This negative trend is driven by reduced ventilation and solubility [Ito et al. 2019; Keeling

et al. 2010]. The lack of oxygen supply as the environment warms up may lead to altered

distributions or extinctions of fish from cooler conditions. It is then very important to

analyze and predict future scenarios for the marine ecosystem in the Kuroshio.

1.3 Forecasting marine ecosystems

However, even though our understanding of large-scale climate variability and its drivers

has seen major advances, the mechanism by which climate variability impacts marine

ecosystems and the services they provide remain not well understood. Furthermore, the

ways in which human society interacts with these ecosystems can be very complex and

determine the severity of the climate impacts [Bograd et al. 2019; Tam et al. 2019]. The

influence of long-term anthropogenic climate change on the social-ecological and environ-

mental dynamics of the North Pacific basin is increasingly evident. This impact is particu-

larly strong in the Western Boundary Currents not only of the North Pacific but also of the

Atlantic. To identify projected changes in fisheries due to climate change, social-ecological

indicators have been used. Indicators acts as proxies to simplify complicated trends in bi-

ological, environmental and anthropogenic variables. [Shin and Shannon. 2010]. In the

thesis, we have examined how past and projected changes in the physical environment of

KOE impact social-ecological dynamics linked to the fish industry of Japan and the North

Pacific more widely.

1.3.1 Dynamical Forecasting approach

Dynamical models have been extensively used for making the forecast of marine ecosys-

tems [Yati et al. 2020]. Those models rely on the assumption that knowledge of the present

climate yields useful predictions of future climate states[Tommasi et al.2017, Jacox et
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al. 2020]. A great advantage of climate models is that they are able to simulate regions

where no data are actually present (like the deep ocean). However, they are an imperfect

representation of reality due to their finite resolution which force them to insert sub-grid

parametrization for physical phenomena which happens below the resolution. One way to

deal with this issue, in case observations are present, regards data assimilation. In this case,

the observations or climate reanalysis produce an initialized climate state which differs

from the one the model simulate by running freely.

1.3.2 Statistical Forecasting approach

On the other side, statistical approaches rely on extracting relations between the physical

data on a large-scale circulation and the ecosystem data. These type of methods are much

less memory intense compared to dynamical down-scaling and don’t have a bias that are

always present in climate models. There can be many types of statistical forecasting, how-

ever we can recognize two main types. the first one is uni-variate, so they relate the local

variable to predict (the predictand) to just one large-scale climate variable (the predictor).

The second main approach regards multivariate forecasting where the predictand is asso-

ciated with many predictors. One issue related to the statistical approach is that they rely

on long historical records for model training and development and are not well equipped to

handle non-stationarity in physical-biological systems.

1.4 Motivation

Even though our understanding of large-scale climate variability and its drivers has seen

major advances, the mechanism by which the climate variability impacts marine ecosys-

tems and the services they provide remain not well understood. Furthermore, the ways

human society interacts with these ecosystems can be very complex and determine the

severity of the climate impacts [Bograd et al. 2019 ; Tam et al. 2019]. The influence of

long-term anthropogenic climate change on the social-ecological and environmental dy-
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namics of the North Pacific basin is increasingly evident. This impact is particularly strong

in the Western Boundary Currents not only of the North Pacific but also of the Atlantic.

The importance of the problem can be described considering Fig. 1.2. The interactions

of the ecosystem with human society are often nonlinear and occur over a range of spatial

and temporal scales. Thus, the human society which relies heavily on the ocean is nega-

tively impacted by these fluctuations. This makes it crucial to build a forecasting model

which can predict future behaviour of particular quantities related to secondary producers

called indicators. The indicator acts as proxy to simplify complicated trends in biological,

environmental and anthropogenic variables, [Shin and Shannon. 2010]. However, when it

comes to forecasting a marine ecosystem some challenges came up. We actually don’t have

dynamical equations to describe the interaction between climate and ecosystems. Also ma-

rine ecosystems present non-linearities and complex behavior which can make them more

difficult to predict.

Figure 1.2: (Bograd et al. 2019) The North Pacific Social–Ecological–Environmental Sys-
tem (FUTURE schematic).

In the thesis, we want to further understand the application of Stochastic modeling tools

which have been proven to be successful in forecasting the SST in the subtropics. To make

these predictions we have used an Empirical Dynamical Model approach (LIM) which has
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not yet been applied to include social-ecological state variables. We have applied the LIM

to a set of fishery indicators that act as proxies to simplify complicated trends in biological,

environmental, and anthropogenic variables. [Shin and Shannon 2010]. It is our goal as a

next step to compare these results with the same forecast obtained from a Deep Learning

Model.

1.5 References
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CHAPTER 2

UNDERSTANDING PAST AND PROJECTED CHANGES IN CLIMATE

This chapter is published as ”Navarra, G.G., Di Lorenzo, E. Poleward shift and intensified

variability of Kuroshio-Oyashio extension and North Pacific Transition Zone under climate

change. Clim Dyn 56, 2469–2486 (2021). https://doi.org/10.1007/s00382-021-05677-0”

2.1 Introduction

The Kuroshio-Oyashio Extension (KOE) represents the western boundary current devel-

opment of the subtropical gyre. When the Kuroshio and Oyashio currents separate from

the Eastern part of Japan, at 35° N they form the KOE, which is characterized by quasi-

stationary meanders formed in the Izu-Ogasawara Ridge [Qiu et al. 2002; Qiu et al. 2005].

In this region high interactions between the atmosphere and the ocean take place. The

oceanic features of the KOE can be described through heat transfers that are mainly latent

and sensible energy fluxes. In particular, the connection between winds and multi-scale

ocean variability plays a key role in the climate system by maintaining the surface baro-

clinicity and energizing storms [Kwon, et al 2010; Sasaki et al. 2011]. The KOE is part of a

larger region between the subpolar and subtropical gyre that is also referred to as the North

Pacific Transition Zone (NPTZ) (Figure 2.1a, black box). This region is characterized by

the presence of a strong chlorophyll-a (CHL-a) front and is defined as the contour where

CHL-a equals 0.2 mg m-3 66 . [Ascani et al. 2016; Polovina et al. 2001; Polovina et al.

2015; Sasai et al. 2007]. The seasonal changes of the NPTZ, it is South of the KOE in

boreal winter while in Summer it moves North of the jet, making it crucial for physical and

biological reasons. Ocean turtles follow the meridional seasonal migrations of the NPTZ,

specifically the sharp surface chlorophyll gradient. These migrations of the front are char-

acterized by strong interannual to decadal variability linked to the KOE dynamics and are
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evident as a region of high correlation between CHL-a and sea surface height anomalies

(SSHa) (Figure 2.1b, black box). The KOE is also known to be one of the major regions

of decadal variability in the North Pacific. The origins of these low-frequency fluctuations

are linked to both internally generated and externally forced mechanisms. Although some

studies suggest that instabilities and eddy mean flow interactions act as an important mech-

anism for generating internal decadal variability [Yang et al. 2018; Pierini et al. 2009;

Taguchi et al. 2010], most studies have identified external atmospheric forcing through the

excitation of large-scale ocean Rossby waves as the more dominant driver of KOE decadal

variability [Qiu 2003, Qiu 2005, Ceballos et al. 2009, Yang et al. 2017]. Specifically,

the low-frequency variability of the KOE and NPTZ is linked to large-scale atmospheric

forcing associated with the variability of the Aleutian Low (AL) [Qiu et al. 2007] and the

North Pacific Oscillation (NPO) [Ceballos et al. 2009]. The AL and NPO drive the oceanic

variability of the PDO and of the North Pacific Gyre Oscillation (NPGO) [Yi et al. 2018],

respectively. The adjustment of the PDO and NPGO SSHa is known to excite long Rossby

waves in the central and eastern North Pacific that propagate westward towards the western

boundary where they energize the decadal variability of the KOE [Minobe, 1999, Taguchi,

B., et al. (2005)]. In recent years [Wu et al. 2019] argue that another candidate for the

generation of westward propagating Rossby waves is the Atlantic-Multi-decadal Oscilla-

tion (AMO). The AMO wind-induced anomalies propagate westward at the speed of the

first mode baroclinic Rossby wave. The impact of decadal fluctuations of the KOE on the

NPTZ and marine ecosystem is well documented. It has been found that the seasonal mi-

gration of juvenile turtles is influenced by the decadal changes in the mean location of the

NPTZ in connection with the KOE position and phases of the Pacific Decadal Oscillation

(PDO) [Mantua et al. 2002;Ascani et al. 2016]. When the PDO is in the positive phase,

that is a positive value of the associated index, the KOE weakens allowing the neonates to

move north where they find more productive waters. On the opposite, during a negative

phase of the PDO, the KOE strengthen and the loggerhead neonates move South in the less
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productive waters of the Subtropical gyre. One explanation of this relation is linked to the

way the PDO interacts with primary production. When the AL intensifies (positive phase

of the PDO) it leads to an increase in wind stress and the vertical mixing of cold water in

the upper ocean. The resulting deepening of the mixed layer leads to less availability of

light in the euphotic layer and an overall reduction of zooplankton biomass, [Yatsu et al.

2013; Nakata K. et al.2001]. The loggerhead turtles will then move North to find more pro-

ductive waters in the Oyashio region. Although the vertical mixing of nutrient is clearly an

important driver of ecosystem variability in the KOE, horizontal transport dynamics play

an equally important role [Di Lorenzo et al. 2013]. From previous studies, it has been

confirmed the role of the AL/PDO in inducing temporal variations in the KOE zooplankton

by dominating the seasonal mixed layer process [Chiba et al. 2009]. However, it has also

been shown that changes in the NPO/NPGO modify the mean advective transport of the

KOE and impact the zooplankton biogeography [Chiba et al. 2013]. Given the reliance of

marine ecosystems and fisheries on the interannual and decadal variability of the NPTZ,

the goal of this study is to explore how the NPTZ variance responds to a warmer climate

predicted by global climate models. Specifically, we examine the Community Earth Sys-

tem Model Large Ensemble (CESM-LENS) projection and compare against an ensemble

of climate models from the Coupled Model Intercomparing Project (CMIP5) under the

Representative Concentration Pathways RCP8.5. Previous studies have already noted that

western boundary currents, such as the KOE, are likely shifting poleward and intensifying

as a result of climate warming [Yang et al. 2016;Lorenz et al. 2014], however, it remains

unclear if these changes in the mean are also followed by a change in the variability – which

may have even more important impacts on marine populations [Sydeman et al. 2013]. The

article is organized into sections as follows. The covariance analysis between SSHa and

CHL-a is described in Section 3 and it is used to identify the physical signatures of the

NPTZ variability in the KOE modes. In Section 4 the future scenario of the SSH variance

is described considering the CMIP5-E models and CESM-LE runs. In the last section, the
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sea level pressure (SLP) pattern that guides the SSH in the Kuroshio has been considered.

The main purpose is to analyze the future scenario of the SSH variance. We also connect

this change to the atmospheric influence of SLP variations on KOE and how it will change

over time. The importance of considering the variance of SSH is connected to its biological

implications.

2.2 Methodology

The SSH altimeter data is produced by the Copernicus Marine Service and it derived by

merging. multimission altimeter data from the following missions: Jason-3, Sentinel-3A,

HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1,T/P, ENVISAT, GFO, ERS1/2. Further

description and download of the data is found in https://resources.marine.copernicus.eu/

?option=com csw&task=results?option=com csw&view=details&product id=SEALEVEL

GLO PHY L4 REP OBSERVATIONS 008 047

(A more recent version is also available in https://data.marine.copernicus.eu/product/

GLOBAL REANALYSIS PHY 001 031/description)

For the chlorophyll, we use the data from the ocean Colour CCI project which focuses

on the water-leaving radiance in the visible domain. Derived chlorophyll and inherent opti-

cal properties utilize data archives from ESA’s globally merged MERIS, NASA’s SeaWiFS

and MODIS sensors archives. It is also looking at the feasibility of using OCM-2 and VI-

IRS data as a “gap filter” before the launch of Sentinel-3. Further information is found

in https://esa-oceancolour-cci.org/ The SSH dataset used in this study has a 0.25° x 0.25°

spatial resolution. It covers the period from 1993 to 2017 and consists of monthly mean

values. The grid goes from 50°S to 61°N of latitude and from -260 to -50 of longitude. The

chlorophyll data have been put on the same spatial grid.
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2.2.1 Variance trend calculation

We can describe the method used to obtain the variance. After calculating the absolute

value of the first principal component, a Taylor expansion ytr = xo + x1t+ x2t2 has been

considered. In this case t is the length of the ensemble mean first pc. We have then two

vectors, one of the coefficients x = [xo x1 x2...] and the other of the variable E = [1 t t2...].

If we define ytr = Ex, the variance is obtained by minimizing the square min|y−Ex|2 = 0

J = nTn = (y − Ex)T (y − Ex) (2.1)

2.2.2 Model output

The data sets used in the model part are two kind of series, a CMIP5-E/historical and a

CMIP5-E/RCP8.5. This kind of model is a coupled ocean-atmosphere model where the

atmosphere is represented as a stochastic interference in the ocean. For the analyses 23

different types of CMIP5-E models are considered. The reasons why there is not only one

model of coupled atmosphere-ocean depends on the fact that the stochastic interference can

be treated in many different ways. The list of those models is present in table 1. y is the

first principle component. The same procedure has been done for the second pc. This is a

kind of linear regression, with a numerical error that depends on when the series is stopped.

CESM-LE model runs

We compare the results of the CMIP5-E with 29 runs of CESM-LE. Two different grids

have been considered for SSH and PSL. In the first case, the runs extend from 60°S to

60°N, while for the PSL the models go from 10°N to 90°N, for both cases the resolution is

1 degree. The reason for considering also the CESM-LE runs is that they give the possibility

to explore how the variance of the KOE/NPTZ in one model (e.g. a fixed set of dynamics)

responds to anthropogenic forcing when compared to the range of natural variability of the

CESM-LE model. In the CMIP5-E, we cannot examine the changes in KOE/NPTZ vari-
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Table 2.1: CMIP5 models

Model Name Institution
ACCESS1-0 Australian Community Climate and Earth System Simulator Coupled Model
ACCESS1-3 Australian Community Climate and Earth System Simulator Coupled Model
CESM1-BGC National Science Foundation, Department of Energy,

National Center for Atmospheric Research
CESM1-CAM5 National Science Foundation, Department of Energy,

National Center for Atmospheric Research
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici
CanESM2 Canadian Centre for Climate Modelling and Analysis
EC-EARTH The First Institute of Oceanography, SOA, China
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences;

and CESS, Tsinghua University
CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization in collaboration

with the Queensland Climate Change Centre of Excellence
HadGEM2-CC Met Office Hadley Centre
GISS-ES-R-CC NASA Goddard Institute for Space Studies
GFDL-ESM2G Geophysical Fluid Dynamics Laboratory
GFDL-ESM2M Geophysical Fluid Dynamics Laboratory
GFDL-CM3 Geophysical Fluid Dynamics Laboratory
NorESM1-M Institut Pierre-Simon Laplace
NorESM1-ME Norwegian Climate Centre
Inmcm4 Institute for numerical mathematics
bcc-csm1-1-m Beijing Climate Center, China Meteorological Administration
MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M)
MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (The University of Tokyo),
and National Institute for Environmental Studies.

IPSL-CM5A-MR Institute Pierre-Simon Laplace
IPSL-CM5B-LR Institute Pierre-Simon Laplace

ance against the natural variability in isolation because an important fraction of variability

arises from the “model biases” in their representation of the KOE dynamics and variabil-

ity. Therefore, the CESM-LE and CMIP-E provide us with different but complementary

insights into the climate change response of KOE/NPTZ variability. 380 nm to 750 nm.

2.2.3 Test to evaluate the significance of trends in variance in an ensemble

Here we develop a Monte Carlo approach to test if the changes in variance inferred from

ensemble averaging multiple realizations of a time-series are significant. Specifically, we
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use this test to estimate the significance of changes in variance found in the principal com-

ponents of the climate model output. To calculate it we use 10000 random pcs to compare

the simulation with the real pc. These random pcs have been used as input for the autore-

gressive model (AR1-model). The significance is then given by considering the difference

in percentage between the real pc and the mean of the pcs calculated randomly.

2.3 Characterizing the North Pacific Transition Zone (NPTZ)

The impact of the physical climate variability of the KOE on the ecological dynamics of

the NPTZ is evident from the large-scale co-variability between SSHa and CHL-a anoma-

lies in the NPTZ. A pointwise correlation between satellite SSH and CHL-a anomalies

(see methods for data sources) reveal a strong band of negative correlation (R -0.6) ex-

tending from Japan to California along the latitudinal boundaries of the NPTZ (Figure 1b,

see orange box). The NPTZ region is compatible with the one represented in the paper by

[Polovina et al. 2001], where the trajectories of loggerhead turtles are shown. The sea-

sonal movements are to the North during summer, while they are to the South in Winter.

The seasonal cycle is not the only influencing factor, the low-frequency variability of the

climate modes has a great influence in establishing the migration direction of little turtles

[Ascani et al., 2016]. These species change their trajectories if the PDO is in a positive or

in a negative phase. Changes in ocean advection related to the NPGO are also found to be

critical in determining the zooplankton species distribution in the NPTZ, especially in the

KOE region [Chiba et al. 2013]. A physical interpretation of the anti-correlation between

SSH and CHL-a anomalies along the NPTZ and California Current System may be given

by taking into consideration that the SSH in these regions tracks closely the upper ocean

heat content because temperature effects generally dominate over salinity effects. Positive

SSH anomalies are associated with warmer sea surface temperatures and higher heat in the

upper ocean [Kelly et al. 2010], which in turn are indicative of downwelling conditions

and/or reduced flux of nutrients from the deep ocean. The reduced nutrient content in re-

17



gions of warmer SSTs/higher SSHa leads to less biologically productive waters and lower

CHL-a content. Therefore, in the KOE the increase in SSH is associated with an increase

of SST. The increase in stratification associated with the SST gradients leads to a decrease

in nutrients and chlorophyll. A negative correlation in Fig. 2.1b between the SSH and the

chl-a in the Kuroshio extension is then expected [Kouketsu, S., et al. 2016; Storch et al.

1999]. We also observe regions where the correlation between SSH and CHL-a anomalies

is positive, especially along the Aleutian Islands and the Gulf of Alaska. In these regions,

anti-cyclonic eddies are the primary mechanism supplying high nutrient waters from the

coast into the open ocean through lateral advection and vertical mixing of nutrients is a

minor control on the overall productivity [Di Lorenzo et al. 2013]. To further examine the

relationship between physical and ecosystem variability we perform a more in-depth analy-

sis of the covariance between SSH and CHL-a anomalies. A singular value decomposition

(SVD) of the correlation matrix between SSH and CHL-a anomalies in the region on the

NPTZ (black box in Figure 2.1b, [-220 -140, 25 50]) reveals that this co-variability tracks

the two dominant modes of North Pacific climate variability, the PDO and NPGO (Figure

2.1c, 2.1d, 2.1e, 2.1f). We choose the SVD method as we are dealing with two different

fields, the SSH and the CHL-a. The SVD extracts structures that share most covariance

between the two fields in a similar way in which the EOF’s describe structures that explain

most of the variance of an individual variable. Consistent with previous findings [Taguchi

et al. 2007] on the climate variability of the KOE, the spatial and temporal patterns of the

first singular vector (SVD1) track the PDO (Figure 2.1c and 2.1e) with a strong center of

action in the KOE associated with a shift in the position of the NPTZ, while SVD2 tracks

the NPGO with a North/South dipole characteristic of a change in the strength of the NPTZ

(Figure 2.1d and 2.1f).

The two modes are not only different for spatial structure but also for the quantity of

variance explained, that is 25% in Fig.1c and 15% in Fig. 1d.
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2.4 Climate Change Projections of NPTZ, CESM-LE vs. CMIP5-E

2.4.1 Changes in mean circulation of the North Pacific Ocean

We now examine the output of long-term climate simulations to explore changes in the

mean and variance of the KOE circulation along the NPTZ under the climate warming sce-

nario RCP8.5. Specifically, the CESM-LE large-ensemble (29 members) and an ensemble

of CMIP5-E models (23 members) have been considered. The mean ensemble circulation

for both the CESM-LE and the CMIP5-E (Figures 2.2a and 2.2e) shows a gyre circula-

tion structure that is consistent with SSH satellite observations. To examine how and if

the mean circulation changes under anthropogenic forcing, the difference of the mean SSH

2050-2100 minus 1950-2000 (Figure 2.2b for CESM-LE, Figure 2.2f for CMIP5-E) has

been computed. Before calculating the means, a constant equal to the average SSH of

the entire Pacific has been subtracted from the SSH. In both ensembles, we find a merid-

ional dipole structure with amplitudes changes 13% of the mean, which projects onto an

intensification and northward shift of the mean KOE gradient region.

To better understand the relationship between changes in the mean circulation of the

ocean and the atmospheric forcing we examine the Sea Level Pressure (SLP) fields in both

the CESM-LE and the CMIP5-E ensemble. Figures 2.3a and 2.3e show the mean SLP for

the period 1950-2000 for CESM-LE and CMIP5-E, while Figures 2.3b and 2.3f shows the

difference in SLP between the time period 2050-2100 and 1950-2000. In the SLP differ-

ence maps, we find a weakening and Northward shift of the Aleutian Low with the center

of action at 40°N. In the CMIP5-E and the CESM-LE outputs, we also find a reduction of

SLPa over the polar latitudes (> 50°N). These results are consistent with previous stud-

ies [Yang et al.2016; Gillett et al. 2013] documenting a climate change signature in SLP

similar to the positive phase of the Northern Annular Mode with a poleward shift of the

Westerlies linked to negative SLP over high latitudes and positive SLP at mid-latitudes.

The difference in mean SLP between present and future climate is not necessarily signif-
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icant in terms of absolute value given that the amplitude of the changes is less than the

standard deviation (e.g. compare panel f and g in Figure 2.3). However, the changes in the

large-scale gradients of SLPa are significant. For example, in the CESM-LE, the gradient

between the sub-tropical gyre region (e.g. 50°N) and the pole (e.g. 75°N) changes by 10

Pa (Figure 2.3b), which corresponds to a significant fraction (35%) of the mean gradient

of 35 Pa (Figure 2.3a). These changes in the gradient impact the surface winds and ocean

circulation. Specifically, the enhanced positive gradient from the subtropical gyre region

to the poles leads to stronger downwelling in the subtropical pacific which leads to higher

SSH in the subtropics and lower SSH in the subpolar gyre. Consistent with these changes

in downwelling/upwelling conditions, the ocean circulation difference maps inferred in the

SSH show a poleward shift and intensification in the NPTZ during the period 2050-2100.

This climate change signature is also evident by performing an EOF analysis of the ensem-

ble mean SSH of the CESM-LE and CMIP5-E (Figure 2.4). The first EOFs reveals again

the same dipolar pattern (Figure 2.4a, 2.4c), and the first principal components are char-

acterized by a strong trend developing at the end of the 21st century (Figure 2.4b, 2.4d).

This finding is consistent with previous studies with CMIP5-E models suggesting that the

KOE is warming and shifting poleward as a response to anthropogenic forcing [Yang et al.

2016]. Some studies attribute these changes to either an increase in baroclinicity or to an

expansion of the Hadley Cell with a poleward shift in the Westerlies [Vallis et al. 2014;

Deser et al. 1999]. An alternative explanation has been done by [Chen et al. 2008] for

which the increase in temperature leads to a change in the critical latitude of the eddies. As

a consequence, there is a poleward shift of eddy momentum flux and also of the Wester-

lies. The climate spatial trends in the mean SLP changes emerge also in the first EOF of

SLPa where the trends have not been removed (Figure 2.4c for CESM-LE and Figure 2.4g

for CMIP5-E). However, the ensemble means first principal component in CESM-LE and

CMIP5-E (Figure 2.4b, 2.4f) do not show strong trends because the changes in mean SLP

are weak compared to the standard deviation of the field.
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2.4.2 Changes in the Variability of the NPTZ

Both the CESM and CMIP5 ensemble captures the structure of the mean spatial variance of

SSHa over the North Pacific with strong values in the KOE region (Figure 2.2c and 2.2g).

To quantify how the variability of the NPTZ changes under anthropogenic forcing, we

compute the difference in the mean spatial variance for the period 2050-2100 minus 1950-

2000 for both the CESM-LE (Figure 2.2d) and CMIP5-E (Figure 2.2h) ensemble. Both the

CMIP5-E and the CESM-LE runs gives a significant increase in the mean SSH that is as-

sociated with a lower increase of variance in the Kuroshio extension region. The increased

SSH gradient (Figure 2.2 b and Figure 2.2f) works to intensify the midlatitude westerlies

resulting in an increasing wind stress curl field. As the subtropical gyre increases the SSH

mean, as we can see from the southern recirculation gyre, the corresponding intensification

of poleward heat transport reverse this effect. To further understand the dynamics under-

lying the changes in variance, and how it impacts the NPTZ, we decompose the variance

using EOF analyses. Specifically, we consider the spatial domain [215W-140W;30N-50N]

that was used to extract the two dominant modes of SSHa-CHL-a co-variability (Figure

2.1c and 2.1d) associated with a shift in positions and changes in the intensity of the NPTZ

circulation. Before the computation of the EOFs, we remove the anthropogenic signals in

the CESM-LE and CMIP5-E (see methods) to focus on changes in the variability that are

not influenced by the anthropogenic trends. For each model realizations, we compute the

first two modes and align the signs of each mode so that the spatial expressions are consis-

tent in sign with that of the observations in Figure 2.1. We then take the ensemble mean of

the spatial patterns for the CESM-LE and CMIP5-E simulations. We find the spatial struc-

ture of the first two modes of SSHa, in both CESM-LE (Figure 2.5) and CMIP5-E (Figure

2.6), track closely the modes derived from observations (Figure 1c and 1d), suggesting that

the climate models capture realistically the dominant structures of SSHa variance over the

NPTZ region. The first SSHa mode reveals a strong pole over the NPTZ region that is

consistent with a shift in the axis of the KOE (Figure 2.1c) and tracks the PDO mode of

21



the models (e.g. In supplemental materials the PDO index has been computed by using the

SSH anomalies and compared with the same index with the SST anomalies). The second

mode reveals a meridional dipole associated with a change in the strength of NPTZ gradi-

ent and tracks the NPGO indices in each model. We now explore the changes in variance

in the two dominant modes of NPTZ variability and test if there are any significant changes

over the period 1920-2100. For the CESM-LE, we begin by taking the absolute value to

the individual PC1 realizations (Figure 2.5c, gray line), we then average the PC1s together

(Figure 2.5c, the ensemble mean is the black bold line) and fit a quadratic trend model

(Figure 2.5c, green line,y(t) = at+bt2) to estimate the long-term changes in variance. The

percentage change in variance with respect to 1920 values is found by scaling the trend

by the value on January 1920 and multiplying by 100 (Figure 5e, green line). The same

procedure is repeated using only winter (Figure 2.5e, blue line) and summer (Figure 2.5e,

red line) values to understand if there are seasonal dependences in the trend of the variance.

In the case of CESM-LE PC1, we find a significant increase in the total variance of about

20% by 2100, with about 25% in the summer and 10% in the winter (see below for the

significance test). The second mode of the CESM-LE also shows a very significant increase

in variance (Figures 5c and 5f) with a predicted amplification of about 30% by 2100. Test

of significance for the ensemble trend in variance: To assess if the trends of variance in the

ensemble average are significant (e.g. green line, Figure 2.5c), we develop a Monte Carlo

approach that simulates the trend estimation process used to derive the ensemble trend in

variance shown in Figure 2.5 (green line). Specifically, we generate 10,000 random realiza-

tions of the ensemble trend (gray spread, Figure 2.5e and Figure 2.6e). Each random trend

line is generated by applying the quadratic trend fit on 30 random PC1s red noise time se-

ries that have the same autocorrelation as in the original 30 PC1s of the CESM ensemble.

This test is also repeated for estimating the significance of the PC2 trends in variance (gray

spread, Figure 2.5f, and Figure 2.6f). To understand if the predicted changes in variance

from the CESM ensemble are robust, we perform the same trend analyses for the CMIP5-
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E. We obtained that the trend in variance for PC1 is confirmed in the CMIP5-E with a

total variance increase 10% (Figure 2.6e). However, for PC2, the CMIP5 ensemble does

not predict a significant change in variance (Figure 2.6f). The lack of a significant trend

in the PC2 running variance reveals an important discrepancy between the CMIP5-E and

the CESM-LE scenario, which may indicate a high level of uncertainty emerging from the

model’s inability to reproduce a consistent NPGO dynamics e.g. [Furtado et al. 2011]

2.5 Correlation SLP forcing index with SSHPC1 and SSHPC2

To further understand and verify the relation between the SLPa forcing timeseries and the

SSHa PCs, a simple statistical model has been developed to relate changes in SSHa to SLPa

forcing,
∂SSHPC1(t)

∂t
= SLPaforcing(t)− γSSHPC1(t) (2.2)

Following the approach of [Frankignoul and Hasselman 1977], Eq. 2.2 represents a

simple model of a climate system where the rate of change of the SSHa is forced by the

atmospheric SLPa and decays back to zero with a damping time scale defined by 1/γ.

Negative feedback leads to an asymptotic balance between the random forcing and the

feedback damping yielding to a statistically stationary response. If we consider SLPa =

[SLPa] + SLPaforcing(t), in an equilibrium condition the mean value of SLPa can be

considered negligible. In this way, the response of the climate system to the continuous

random forcing is represented as a first-order autoregressive model (AR-1 model). At the

same time the meaning of the coefficient γ is explained by looking at the autocorrelation

of the red noise, r(t) = exp( t
τ
), τ is the time lag while γ represents the damping rate given

by the inverse of the autocorrelation decay time T. We analyze the influence of the forcing

factor represented by the SLPaforcing on the SSHPC1 by calculating the correlation be-

tween the two indices. In Fig. 2.9a and 2.9c the ensemble mean correlation has been done

for the SSHPC1 and the forcing index obtained from integration of SLPPC1. A correlation
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of 0.64 for CESM and 0.49 for CMIP5 has been obtained. To estimate the significance of

the correlations the PDF of cross-correlation coefficients is represented in the same figures.

To build the PDF we examine the correlation of 1000 random pairs that have the same au-

tocorrelation of the two-time series considered. In Fig.2.9b and 2.9d the SLP forcing index

from model (equation 2.2) is calculated with SLPPC2. In this case, the ensemble mean

correlation of the index with SSHPC2 gives a correlation of 0.57 for CESM-LE and 0.45

for CMIP5-E. To further understand the relationship between the atmospheric forcing and

the KOE, we adopt a lag correlation analysis proposed by [Frankignoul et al. (1998)]. The

essence of this approach is to examine the correlation between an atmospheric variable, the

SLPa field, and the SSHPC1 (Supplemental Materials) with a lag that is longer than the

intrinsic atmospheric timescale ( 2 month, [Deser et al. 2007]). The resulting correlation

maps show significant correlation patterns similar to Fig.2.7a and Fig.2.8a when the SLPa

patterns lead the SSHa PCs by 12 months. This confirms that the SLP acts as a forcing

of the KOE SSH and NPTZ. To explain this leading time, we can consider that when the

Aleutian Low intensifies (positive phase of the PDO) it cools the Central North Pacific and

generates SSH anomalies through Ekman divergence. [Kwon et al. 2010]. It also has been

found by other studies [Ceballos et al.2009] that the Rossby waves generated by NPO-

induced SLP anomalies can have an impact on the KOE. The time of wave propagation

gives rise to the time lag of 6-12 month.

2.6 Conclusions

The presence of strong chlorophyll gradients makes the NPTZ a region of great importance

for ecosystem dynamics. Changes in the location and amplitude of the chlorophyll gradient

are strongly connected to changes in the KOE dynamic circulation. This is evident from

the dominant modes of covariability between SSHa and chlorophyll-a in the KOE region

in satellite observations (Fig. 2.1). The first mode represents a meridional shift in location

of the KOE/NPTZ and tracks the PDO, whereas the second mode has a dipole structure
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and describes an intensification of the KOE mean circulation and the NPTZ. To understand

the impact of anthropogenic forcing on the NPTZ, we examine the projected changes in

the characteristics of the KOE physical modes using the Community Earth System Model

Large Ensemble (CESM-LE) and 23 CMIP5-E models. We consider the change in SSH

mean and variance between two time periods, 1950-2000 and 2050-2100 (Fig. 2.2 and

2.3). The SSH mean difference map gives a meridional dipole structure that projects onto

an intensification and Northward shift of the KOE and NPTZ. The poleward shift is also

associated with a Northward movement of the Aleutian Low as revealed by the SLP mean

difference maps. A shift in the North Pacific atmospheric circulation has been previously

examined. [Vallis et al. (2015)] found a correlation between the expansion of the Hadley

cell and the poleward shift of the Westerlies and the corresponding ocean circulation im-

print. An alternative explanation is given by [Chen et al. (2008)], which argue that as

a consequence of global warming the phase speed of mid latitude atmospheric eddies in-

creases. This leads to a poleward shift of the eddy-momentum flux and, as a consequence,

of the Westerlies.

Several studies have recognized that changes in climate variance, rather than changes in

the mean, are a better predictor of phase and regime shifts in a variety of oceanic systems

[Sydeman et al. 2013]. We have explored the changes in the NPTZ variance by examining

the two dominant modes of detrended KOE SSHa (Fig 5 and Fig. 6) in the CESM-LE and

CMIP5 ensemble. A Monte Carlo test has been done to test the significance of the trend.

The CESM-LE suggests a 20% increase in the SSHa of SSH PC1 while for the CMIP5-E

models the increase is almost 15%. We found that the increase in SSH variance is asso-

ciated with trends in the variability of the corresponding SLP forcing patterns (e.g. SLP

PC1) (Fig. 2.7 and 2.8). For SSH PC2, the CESM-LE predicts a very significant trend in

variance with changes up to 30−40%. However, in the CMIP5-E this trend is not as signif-

icant, and the corresponding forcing patterns in SLP do not exhibit clear trends (e.g. SLP

PC2). This may indicate that changes in the variance of the CESM-LE second mode, and
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to some degree of CMIP5-E, are driven by internal ocean processes linked to the changes

in the mean circulation. To further examine the relation of the SSHa modes (SSH PC1 and

SSH PC2) to atmospheric forcing in the KOE we apply a simple auto-regressive model of

order 1 forced by indices of the SLPa forcing patterns (SLP PC1 and SLP PC2) (eq. 2.4).

The reconstructions of SSH PC1 in the CESM-LE gives a correlation of 0.71 while for the

CMIP5 the values are lower, 0.45. Lower correlation values are found in the reconstruc-

tion of SSH PC2 with a correlation of 0.57 for the CESM-LE and 0.39 for CMIP5-E. The

weaker correlation in the reconstruction of the second SSHa mode further confirms the role

of internal ocean dynamics in controlling its variability. The changes in KOE circulation

and NPTZ identified in this study have several biological implications. In addition to the

co-variability between the SSHa and CHL-a, which can be considered a proxy for primary

productivity, the variability of the NPTZ is linked to higher-trophic ecosystem dynamics.

For example, changes in the intensity of the KOE circulation, captured by the second SSHa

mode, have been linked to the alternation of zooplankton species found in the NPTZ [Chiba

et al. 2009]. Similarly, meridional shift in the axis of the NPTZ associated with changes

in the AL intensity, captured by the first SSHa mode, are linked to changes in the over-

all biomass of zooplankton [lower biomass during stronger AL, [Nakata et al. 2001] and

changes in migration patterns marine turtles [Ascani et al. 2016]. While these links be-

tween the NPTZ variability and marine ecosystem dynamics clearly indicate that marine

populations respond to the SSHa modes of variability, it remains unclear how a trend in the

variance of these modes will impact ecosystem function. Rising trends in climate variance

are accompanied by rising levels of synchrony (e.g. covariability) [Black et al. 2018]. Such

a rise in synchrony may destabilize the ecosystems and expose populations to higher risks

of extinction by reducing the so-called “portfolio effect”. Specifically, when marine popu-

lations respond more synchronously to the same perturbations, they become less resilient

and more susceptible to sudden collapses with disruptions of the ecosystem services they

provide e.g. [Moran 1953].
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Figure 2.1: in part a) the mean chlorophyll concentration is shown with particular relevance
to the NPTZ area. (b) represents the total correlation between SSH and the chlorophyll. In
(c) and (d) instead correlation maps between SSH anomalies with the first pc and second
pc are explained. The former case, is displayed in c) while the correlation with the second
pc is in (d). Then the last two represents how the first pc correlates with the PDO index (e)
and how the second pc correlates with the NPGO index (f)
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Figure 2.2: CESM-LE and CMIP5-E difference maps for SSH. In part (a) the mean SSH in
the period 1950-2000 is explained, the black lines represents the contour of the mean SSH
in this period. In b) the difference between 1950-2000 and 2050-2100 SSH is calculated.
In (c) and (d) the same is done but for the variance of the SSH. In (e)-(h) figures the same
procedures has been followed but with CMIP5-E models. Units of SSH are in cm
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Figure 2.3: CESM-LE and CMIP5-E difference maps for SLP. In (a) the mean SSH in
the period 1950-2000 is explained, the black lines represents the contour of the mean SSH
in this period. In b) the difference between 1950-2000 and 2050-2100 SSH is calculated.
In c) and d) the same is done but for the variance of the SSH. In (e)-(h) figures the same
procedures has been followed but with CMIP5-E models. Units of SSH are in cm
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Figure 2.4: In (a) the first EOFs with trend is displayed. There is a clear pattern in the
region of the Kuroshio. In b) the first pc associated to this EOF is represented. This gives a
clear increasing trend. Then the same EOF is calculated for the SLP in (c).In this case the
first pc explain an stable scenario. In (e)-(h) the same figure have been done but with the
CMIP5 models. Units of SSH are in cm, while for the SLP Units are in Pa.
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Figure 2.5: In (a) and (b) the first and second EOF for the SSH anomalies are represented.
Here the trend has been removed, compared to Fig.2.4. The trend in the variance corre-
sponding to the first EOF is displayed in (b). In this latter one the top figure displayed the
principal component and the mean pc(in black). In the bottom figure instead, the trend of
the variance is represented. In (g) and (h) the pdf associated with the random samples (grey
part in (e) and (f) ) is calculated. In this case the CESM output is taken into consideration.
Units of SSH are in cm.
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Figure 2.6: In (a) and b) the first and second EOF for the SSH anomalies are represented.
Here the trend has been removed, compared to Fig.2.4. The trend in the variance corre-
sponding to the first EOF is displayed in (b). In this latter one, the top figure displayed the
principal component and the mean pc( in black). In the bottom figure instead, the trend of
the variance is represented. In (g) and (h) the pdf associated to the random samples (grey
part in (e) and (f)) is calculated. In this case, the CMIP5 output is taken into consideration
. Units of SSH are in cm.

39



Figure 2.7: In (a) the first correlation pattern for the SLP anomalies over the first pc of
SSH is represented. The trend in the variance corresponding to the first pattern is displayed
in (c). The principal components for each single runs are the grey part while the mean
pc is in black. The trend of the variance is given by the green line. In (e) the percentage
increase is calculated. The red line is the increase for just the summer season, while the
blue line regards the winter season. In (b) the second correlation pattern associated to the
SLP anoamlies projected over the second pc of SSH is displayed. The trend in the variance
corresponding to the first pattern is described in (d) while the associated percentage increase
is in (f). The grey part in (e) and (f) describe the significance test performed. In this case
CESM runs are taken into consideration. Units of SSH are in cm.
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Figure 2.8: In (a) the first correlation pattern for the SLP anomalies over the first pc of
SSH is represented. The trend in the variance corresponding to the first pattern is displayed
in (c). The principal components for each single runs are the grey part while the mean
pc is in black. The trend of the variance is given by the green line. In (e) the percentage
increase is calculated. The red line is the increase for just the summer season, while the
blue line regards the winter season. In (b) the second correlation pattern associated to the
SLP anomalies projected over the second pc of SSH is displayed. The trend in the variance
corresponding to the first pattern is described in (d) while the associated percentage increase
is in (f). The grey part in (e) and (f) describe the significance test performed. In this case
CMIP5 models are taken into consideration. Units of SSH are in cm.
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Figure 2.9: in this case we consider the response of the climate system to continous ran-
dom forcing and its correlation with the first and second pc of SSH. In (a) and (b) the
correlation between the SLP forcing index and the SSH ensemble mean first and second
pc is displayed. In this case the CESM-LE output has been used. In (c) and (d) the same
figures have been done with the CMIP-E models. We obtain a correlation a little higher in
the CESM-LE case

42



CHAPTER 3

PREDICTABILITY AND EMPIRICAL DYNAMICS OF FISHERIES TIME

SERIES IN THE NORTH PACIFIC

This chapter is published as ”Navarra GG, Di Lorenzo E,Rykaczewski RR and Capotondi

A (2022) Predictability and empirical dynamics of fisheries time series in the North Pacific.

Front. Mar. Sci. 9:969319. doi: 10.3389/fmars.2022.969319”

3.1 Introduction

The Kuroshio-Oyashio system is composed of the western boundary currents (WBC) of

the North Pacific’s subtropical and subpolar gyres. In the transition region between the two

gyres, quasi-stationary meanders form the Kuroshio-Oyashio Extension jet (KOE). The

KOE is flanked to the south by an anticyclonic recirculation gyre which has been observed

to increase the eastward transport of the jet [Mizuno et al., 1983; Qiu and Chen, 2005;

Qiu et al., 2017]. Atmosphere-ocean interactions are particularly intensified in the WBC.

Almost 70% of the latent and sensible heat transferred to the atmosphere from the ocean

in the northern hemisphere is transferred in the region between 25°N and 45°N latitude

[Kwon et al., 2010]. This heat transfer is crucial in controlling surface baroclinicity and

increasing storm activity. As a result, the KOE jet is one of the regions with the greatest

eddy kinetic energy in all the North Pacific. [Kelly et al., 2010]

The internal dynamics of the KOE play a critical role in explaining the decadal fluc-

tuations of the Kuroshio-Oyashio system [Mitsudera et al., 2001; Qiu, 2003]. However,

it is now well established that the interactions with external modes of variability are im-

portant in triggering the quasi-stationary meanders in the KOE jet. Recent study confirms

that the surface Chl-a concentration, nutrient concentration, and catches of fish stocks are

associated with two dominant modes of variability of the North Pacific [Yati Emi et al.,
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2020] which are the Pacific Decadal Oscillation (PDO) [Mantua et al., 1997] and the North

Pacific Gyre Oscillation (NPGO) [Di Lorenzo et al., 2008; Yatsu et al., 2013; Lin et al.,

2014]. One way in which the PDO-related dynamics influences the marine ecosystems is

through the control of seasonal mixed layer processes. For the northwestern Pacific, a pos-

itive phase of the PDO is associated with a negative anomaly in the SST with an associated

increase in the mixed layer depth, leading to a weakening of the KOE [Yatsu et al., 2013].

The opposite happens in a negative phase. These climate regime shifts are well correlated

with fluctuations in biological characteristics [Yati et al., 2020; Möllmann and Diekmann,

2012]. The weakening of the KOE is hypothesized to increase the catches of Japanese sar-

dine in the northwestern Pacific, while during a strengthening of the jet, catches of Japanese

anchovies are relatively high [Chavez et al., 2003].

While the patterns of climate variability are well established [Liu and Di Lorenzo,

2018], the mechanism by which the marine ecosystems are influenced by climate fluc-

tuations remains unclear [see review in Bograd et al., 2019]. As climate processes induce

fluctuations in marine ecosystems, human societies are often negatively impacted, as food

security and coastal economies are dependent on the stability of marine resources [Yunne-

Jai et al., 2010; Shin et al., 2010]. This means that improved predictions of future changes

in the fisheries of the Kuroshio-Oyashio system can have important socioeconomic impacts.

Forecasting marine ecosystems presents a series of challenges because the interactions

of the ecosystem with human society often have been nonlinear and occur over a range of

spatial and temporal scales. Also, the lack of long and accurate time series challenges our

ability to study climate and fisheries interactions and develop forecasts that are accurate at

long lead times. To address these challenges, past studies have focused on identifying the

observational needs for ecosystem forecasting [Capotondi et al., 2019] and on exploring

the use of dynamical model approaches to account for non-linearities present in marine

ecosystems dynamics [Jacox et al., 2019; Tommasi et al., 2017]. Yet, numerical dynamical

models still have biases, including erroneous representations of the WBCs and their sepa-
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ration latitude, limiting their usefulness for capturing many complex, fine-scale processes.

Given that we still do not have adequate dynamical models that capture the dynamics of

climate, fish, and human interactions, previous studies [Koul et al., 2021] have investigated

the use of simple statistical models (linear regression and multiple linear regression) for

fishery forecasting. These studies have offered successful predictions of cod stocks in the

Barents Sea on decadal time scales.

In this article we have considered an alternative approach to predict of time series of

fisheries indices by using an empirical dynamical model (EDM) method or Linear Inverse

Model (LIM). These approaches have proved very useful for understanding the variability

of North Pacific physical ecosystems drivers, including extremes [Capotondi et al., 2022],

and have exhibited promising results when applied to North and tropical Pacific SST fore-

casts [Newman, 2007]. Here, we apply the LIM approach to explore the predictability

of a set of fisheries time series describing the temporal changes of specific stocks. These

time series can be viewed as proxies that simplify complicated biological and socioeco-

nomic conditions over time [Blanchard et al., 2010; Tam et al., 2019]. The three fisheries

databases considered in this study are (1) stock biomass anomalies from scientific stock

assessments performed for a limited number of stocks in different regions (RAM database,

[Ricard et al., 2012]), (2) landings of stocks as reported by the country targeting the species

(LME database, [Pauly et al., 2020]), and (3) the catches of species that are estimated from

data reported to the United Nations (FAO database [Pauly et al., 1998]).

These data sources are useful in the context of EDMs because they provide a large

number of time series that capture physical, ecological and human factors inherent to com-

mercial fisheries statistics. Also, EDMs like the LIM have the added advantage of being

able to capture some of the human-forced dynamics that are implicitly reflected in the fish

indicators and yet are not explicitly known.

The purpose of the paper is to analyze the ability of the EDM to forecast fisheries

time series. While the use of complex dynamical models could be another possible ap-
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proach [Park et al., 2019], the inclusion of fisheries information in dynamical models is not

straightforward. In addition, dynamical models often suffer from biases in the represen-

tation of physical climate features, such as the Western Boundary Currents, and are much

more computationally intensive. The EDM approach explored here, if skillful, may pro-

vide a useful alternative for forecasting fisheries indices. Here, we consider the forecasting

skill related to the fisheries metrics and partition the fisheries predictability between the

component associated with climatic variables, i.e., sea surface temperature (SST) and sea

surface height (SSH) and that related to stock-stock interactions or socioeconomic factors.

3.2 Methodology

3.2.1 Reanalysis Data

The physical data that we included in the LIM was extracted from the ECMWF Ocean

Reanalysis System 4 (ORAS4) on a 1 by 1 latitude–longitude spatial resolution between

1958-2016, for a spatial region of 15°S-62°N, 100°E-290°E, which includes the tropical

and North Pacific. It is important to include in the LIM all North and tropical pacific basins

for the physical state. This allows us to capture the dynamics of the large-scale climate

modes such as PDO and NPGO and their tropical forcing linked to the different flavors of

the El Niño Southern Oscillation [Di Lorenzo et al. 2013].

As is often done with the LIM [Newman et al., 2007; Zhao et al. 2021], the SSH

and SST data were first coarsened by averaging them into a box of 2 degrees of lat-

itude and 5 degrees of longitude. As a next step, the data were smoothed to remove

sub-seasonal variations with a 3 month running mean. The SSH and SST anomalies

were computed by removing the mean monthly climatology. Further description and ac-

cess to the data can be found at https://icdc.cen.uni-hamburg.de/daten/reanalysis-ocean/

easy-init-ocean/ecmwf-ocean-reanalysis-system-4-oras4.html
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3.2.2 Fishery Data

The first database considered for the fisheries was the RAM Legacy Stock Assessment

Database (RAM), www.ramlegacy.org, [Ricard et al. 2012]. Globally, this database con-

tains 331 stock assessments divided into 295 marine fish stocks and 36 invertebrate stocks.

The species considered from the RAM database are displayed in Supplemental Table 1

and included 20 species from the northwest Pacific region of interest (Figure 3.1a). For

some species, the associated time series have a time duration of 63 years from (1950-

2012). However, most of the fish indicators are only available after 1979. For this reason,

we selected data after 1979 with less than 5 years of data gaps for developing the LIM.

The second database considered was the commercial catches from a database aggregated

by Large Marine Ecosystem (LME), https://www.lmehub.net/, [Pauly et al. 2020] (Figure

3.1b). An LME is defined as an area of 200,000 km2 or greater whose extent is determined

by similarities in relevant variables such as bathymetry, productivity, or trophic relation-

ships [Sherman et a. 2014]. The database contains 10,438 stocks in all regions of the world

with 55 years of data, from 1950 to 2004. Three LMEs were considered in this study (the

Kuroshio, the Oyashio Current and the Sea of Japan LMEs), and those included catches

for 225 stocks that have data gaps for less than 5 years. The catches were defined as the

weight of fish caught in the open sea independently of the way they have been taken (i.e.,

gear type or as target or non-target catch). We have considered catches data from 1959 to

the most recent data. Here, catches in FAO region 61 (Fig. 3.1j) were analyzed (a region

of the Northwest Pacific from about 20◦N to 65◦N and from the coast of Vietnam east

to the Bering Strait). The discarded fish have not been filtered out in the two databases;

the stocks of the LME database are referred as “catches” as the database contains more

catches in weight than the FAO database. The last database considered included the land-

ings obtained from the Food and Aquaculture Organization (FAO) of the United Nations

(www.fao.org/fishery/en/statistics) [Pauly et al. 1998] (Figure 3.1c). Landings for each re-

gion offer insight into variability in commercial fishing operations and the fish populations
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that support them. WE have used 171 landings data with data gaps less than 5 years. As

for the LME database we have started the data from 1959. The stocks considered for

3.2.3 Detrending and Standardization

Before proceeding in developing the LIM, we detrended the fisheries and physical time

series so to increase their stationarity (i.e., no linear trends are present in any record).

Specifically, the time series extracted from the fisheries databases were standardized by

dividing by the standard deviation for each individual stock ID and detrended by removing

the best linear trend fit. Consequently, the time series are represented in STD units, and

the total number of fish species is described by the StockID (Figure 3.1a, b, and c). The

fish informations relative to the fish stocks are provided in Table 1, 2, and 3 of the supple-

mental materials. To examine the percentage of variance excluded by the detrending, we

calculated the difference in variance between the total original data and the detrended time

series. The mean variance explained by the trend is 29.5% for the RAM biomass (Figure

3.1d). In particular, the Red seabream Inland sea of Japan (stockID 18) displays the highest

variance associated with the trend. For the LME catches and the FAO landings, the variance

excluded by removing the trend is 13.5% and 17.5% respectively, as displayed in Figure 1e

and f. The associated sign of the removed trend displays a mixture of positive and negative

trends in the stock time series of all three databases (see supplemental Figure S1).

3.2.4 Principal Components and Empirical Orthogonal Functions

To reduce the dimensionality of the detrended and standardized fish indicators, we used

a classic principal components (PCs) analysis. To extract the PCs we first compute the

covariance matrix of each fish dataset Fi(s, t), where s denotes the stock id, t its time

values, and i the dataset label:

C(s, s) = F (s, s)F (s, s)T (3.1)
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By performing an eigenvalue decomposition of C(s,s),

Ei(s, k)Λ(k, k)Ei(k, s)
T = Ci(s, s) (3.2)

we derive the eigenvector Ei(s, k) for the eigenmodes k = 1. . .K, where K=7 for RAM,

and K=8 for LME and FAO that are associated with the K largest eigenvalues λ(k) from the

diagonal of the eigenvalue matrix Λ(k, k). The choice of K modes retained in each dataset

is explained in section 2.5. Physically, these eigenvectors, referred to as the Empirical

Orthogonal Functions (EOFs), are the dominant patterns of variance across the stocks and

provide an orthogonal basis onto which we can decompose the original fish datasets as:

Pi(k, t) = Ei(k, s)
TFi(s, t) (3.3)

where Pi(k, t) are the PCs for each dataset i. Using this approach we reduce the dimen-

sionality of the fish dataset from s (order 100)→k (order 10). Prior to the computation

of the covariance, years with missing data in any given stock were set to zero to void any

contribution to the covariance. Given that for any given year there were only few missing

data across all the stocks, the impact of setting to zero the missing values has negligible

impact the estimation of the EOFs. The first two dominant PCs for each of the fish dataset

are reported in Figure 1g and h and are discussed further in the results section 3.1. The

EOFs structures for the first two modes are reported in supplemental material Figure S1.

By normalizing the eigenvalue λ(k) from the EOFs decomposition, we measure the frac-

tion of variance explained by each pair of PC/EOF mode k as λ(k)/
∑

λ(k). The spectrum

of explained variance is reported in Figure 3.1i.

3.2.5 LIM model

Inverse modeling can be defined as the extraction of dynamical properties of a physical-

biological system from its observed statistics. The LIM model suggests that on inter annual
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time scales, a system may be viewed as a linear system driven by Gaussian white noise.

The idea is that the climate timescales underpinning the dynamics of our system are longer

than the noise. An example of noise are the fast air sea interactions. In this framework

the N component state vector of anomalies X evolves accordingly to the linear equation

(3.4). In this equation L represents a matrix that describes the feedback among different

components of X, while ξ is the stochastic forcing term.

dX

dt
= LX + ϵ (3.4)

In this equation L represents a matrix that describes the feedback among different com-

ponents of X, while ϵ is the stochastic forcing term. For the purpose of this study, the

components of the state vector X and of the operator L in equation (3.4) are:

dX

dt
=

d

dt


Xfishery

XSST

XSSH

 =


Lfishery−fishery LSST−SSH LSST−fishery

LSSH−SST LSST−SST LSSH−fishery

Lfishery−SST Lfishery−SSH LSSH−SSH



Xfishery

XSST

XSSH

+

ξfishery

ξSST

ξSSH


(3.5)

In this framework, the state vector X is made of three substate vectors representing the

fishery, SST, and SSH dataset. Each of these substate vectors is constructed using the PCs

to reduce the dimensionality of the problem. For example,

X(t)SST = [SSTPC1(t), SSTPC2(t), . . . ., SSTPCK(t)] (3.6)

As discussed by Penland et al. [1989], the statistics of a system modeled by the LIM

must be Gaussian [Penland et al. 1995]. The operator L can therefore be determined from

the state vector X by discretizing the equation (3.4).

L =
1

τ
ln(< X(t+ τ)X(t) >< X(t)X(t) >) (3.7)
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After obtaining L , we can forecast of the state vector for a specific lead time τ using:

X(t+ τ) = exp(Lτ)X(t) (3.8)

An important assumption in the use of the LIM, and the forecast equation (3.8), is

that the statistics of the system are stationary over the period considered. For this reason,

the operator L must be dissipative, which means its eigenvalues must have negative real

parts [Newman et al. 2013]. Similarly, we expect that the statistics of stochastic forcing

Q =< ξξT > [Penland et al. 1995], which are determined from the fluctuations-dissipation

relationship,

Q = −LC(0)− C(0)LT (3.9)

has positive eigenvalues. In supplemental Figure S2 we have displayed the eigenvalue

spectrum for the operator L and the matrix Q. We obtain negative eigenvalues for L and

positive for Q indicating that our statistics are stationary.

-LIM forecast configuration

Number of PCs used in the state vector. To implement the LIM forecast model, the number

of PCs retained in the physical and biological state vectors were chosen differently. For

the physical components of the analysis, we retain 20 PCs for the SST and 17 for the SSH

which capture 77% and 76% of the variance, respectively. These numbers were selected

following the configuration of a previous Pacific LIM that uses the same data sources and

domain area [see Zhao et al. 2021]. Equation 3.5 is used independently for each of the

fish datasets. To establish how many PCs to retain for each datasets (e.g. RAM, LME, and

FAO), we performed a series of cross-validated forecasts (explained in the next section 2.6)

using equation (4) to identity the number of biological PCs to retain in the LIM that would

lead to the highest forecast skill for the reconstructed fish indicators. Based on this cross-

validation, we retained 8 PCs for the RAM biomass, corresponding to 94% of the variance

of that quantity, 7 PCs for the LME landings, which describes 74% of the landings total
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variance, and 7 PCs for the FAO catches, which still correspond to 70% of the variance.

Also, for the fishery state vectors, we interpolate the data to the same monthly scale of SST

and SSH to allow inclusion of physical information at seasonal time scales. Temporal span

of forecast. The dataset used in this study have different spatial coverage. The physical data

is only available starting 1959. Thus, we begin our training of the LIM and examination

of the forecast skill over the following period: 1959-2016 for SSTa, 1979-2012 for RAM,

1959-2004 for LME, and 1959-2014 for FAO.

3.2.6 Cross-validation

To ensure that the LIM is tested on independent data, the estimates of L and of forecasting

skills were cross validated by subsampling the data record. We have removed in total 10%

of the data, for both the fishery and the physical part, and computed the operator L for the

remaining data. The independent years removed are then forecasted using the computed

L. This procedure is repeated for the entire period. The associated forecasting skills are

computed by the correlation r(τ) between the observational data and the forecast for the

different lead times τ . For example, to evaluate r(τ) for the each of the fish datasets, the

PCs of the forecasted sub-state vector X̂(τ) obtained from (eq. 4) [Newman et al. 2003]

are projected into the truncated EOF space,

F̂ (s, τ) = Ei(s, k)
T P̂ (k, τ) (3.10)

to obtain the forecasted fishery time series that are then correlated with the original data

Fi(s, τ). We apply this procedure to the LIM that (1) contains only the physical state

variables SST and SSH, and (2) contains the physical variables plus the fishery’s principal

components.
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3.2.7 LIM tau test

To test the validity of linear approximation of the LIM, we perform the so called a τ test,

which is designed to test the ability of the LIM to reproduce the lag covariance statistics

using a lag which goes far beyond the training τ = 3 months. Practically, the test consists

of comparing the covariance matrix obtained from the original state vector to the covariance

matrix calculated using the LIM for different lags τ = 3..12..36 months. The LIM is re-

computed each time using the different training τ . Given that the LIM must be independent

of the chosen lag, these two covariance matrices should give a compatible result for the LIM

to perform well [Newman et al. 2011; 2017]. A comparison of the diagonal elements of the

observed lag covariances with the one obtained from the LIM is show in the supplemental

material for the SST (Figure S3), and each of the fishery datasets (Figures S4, S5, and

S6). Overall, LIM is able to capture the main structures of the lag autocovariance pattern

for both the SST (Fig.1 of supplemental materials) and the fishery indicator (Fig 2-4 of

supplemental material) for lags up to =72 months in the fish dataset.Results from this test

indicate that the LIM approximation is valid for long-lead forecasts of this set of physical

and fishery indicators.

3.2.8 Persistence and Forecast Skill

When evaluating the skill of a forecast it is customary to ask the question of whether the

forecast model adds skill beyond the so-called persistence forecast. This is equivalent to

forecasting that each future conditions is the same as the condition today. From a mathe-

matical point of view the persistence correlation forecast skill at different lead time for a

timeseries y(t) is given by the auto-correlation function

ACF (τ) =
< y(0)y(τ) >

< y(0)y(0) >
(3.11)

Where <y(0)y(0)> is the covariance at zero lag and <y(0)y(τ)> is the covariance at
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lag τ . In climate science, for a forecast model to have higher skill that persistence is a

fundamental measure to indicate that the model is able to extend the predictability through

its dynamics beyond the natural temporal auto-correlation that exists in the data. A recent

discussion of the concept of persistence can also be found in Jacox et al. [2020]. In the

article, we compare the LIM forecast skill to persistence as a way to estimate the LIM’s

ability to capture the dynamics of the system and to use those dynamics to extend the

predictability of the fish indicators. Specifically, we use the following definitions for the

correlation skill,

rpersistence(τ) = ACF (τ) (3.12)

rforecast(τ) = correlation(ŷ(τ), y(τ)) (3.13)

where ŷ(τ) is the LIM forecasted state at lead and y(τ) is the observed state. As

reported in section 2.6, all the forecasted states use a LIM that is trained with a datasets

that does not include the observed state, which we also refer to this as the cross-validated

forecast skill. To estimate the statistical significance of the correlation skill we have used

a Montecarlo approach. Specifically, we first develop an auto-regressive model of order 1

(AR1) as a null-hypothesis simulation model (i.e., red noise) for a given pair of timeseries

that are being compared in the correlation. Next, for each of the timeseries we estimate the

lag-1 auto-correlation coefficient and use that to generate 2000 pairs of red noise timeseries

using the AR1 model. We compute the probability distribution function (PDF) of correla-

tion coefficients between the red noise timeseries pairs. This PDF is then used to estimate

the 95% and 99% confident levels of the correlation between the two original timeseries.

3.3 Results and Discussion

3.3.1 Fisheries biomass data and relation to physical quantities

Given that the data has been decomposed in EOFs and PCs we first perform an inspection of

their statistics. The temporal evolution of the first two dominant modes for the fish datasets
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are captured by the PC1 and PC2 (Figures 1G, H). Both the PCs1 and PCs2 displays very

strong low-frequency variability in each dataset with a significant level of coherency across

the datasets. As further discussed in the next sections, these low-frequency variations may

be associated not only with decadal climate variability, but also with human influences.

For example, these stocks have been heavily exploited in the last 60 years [Pons et al.,

2017]. In particular, the increase in fishing pressure coupled with the demography of the

fish stocks has led to a collapse and recovery of populations with common trends among

stocks as discussed by previous authors [Myers and Worm, 2003; Nye et al., 2009; Wang

et al., 2020]. The amount of variance explained by the first two PCs for each fisheries

databases (see Methods section 2.4) is very large (Figure 1I). For example, PC1 for the

RAM biomass represents 47% of the total variance, while the PC1 of the LME catches

and the FAO landings describe respectively 25% and 35% of the variance. This indicates

that despite the large number of fish stock indicators, the overall degrees of freedom in

the datasets are low and represented by a relatively low number of modes (e.g. pairs of

PCs/EOFs). To quantify the extent to which the low-frequency fluctuations of the fish

indicators are tracking climate variability, we perform a correlation analysis between the

PCs of the fisheries data and large scale SSTa. Correlations between SST anomalies and

the PCs1 for the three fish datasets are reported in Figure 2a. While the patterns show some

differences it is evident, especially for the LME and FAO, that stronger correlation existing

the region of the KOE. This is more evident by computing a map of the mean correlations

across the datasets (Figure 2b), which shows a strong negative correlation from the East

China Sea and coastal Japan extending in the central North Pacific. A similar correlation

analysis for the PCs2 (Figure 2c) reveals the emergence of the more familiar basin-scale

pattern of Pacific decadal variability such as the PDO across all the datasets. Again, this

PDO-like pattern becomes clearer in the map of the mean correlations for PCs 2 (Figure 2d)

exhibiting strong correlations in the canonical center of actions of the PDO over the central

and eastern North Pacific. The correlation patterns of the PCs with the SSTa (Figure 3.2)
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give us confidence that the link between the climate variability and the fish can be exploited

for forecasting, especially in the KOE region, where previous studies have shown longer-

lead multi-year predictability (see next section 3.2).

3.3.2 LIM Forecasts of the low-frequency variability of the KOE

It is well known that the KOE variability is strongly linked to wind induced Rossby waves

formed in the Central North Pacific [Deser et al., 1999; Schneider and Miller, 2001; Sea-

ger et al., 2001]. The effect of the wave propagation can be separated into two dynamical

modes of variability. The first mode is related to a latitudinal shift of the KOE jet, while

the second is associated with a strengthening or weakening of the KOE quasi-stationary

meanders [Taguchi et al., 2007; Taguchi et al., 2014; Ceballos et al., 2009]. These dy-

namical changes in the KOE jet can impact the local marine populations with changes in

the wintertime mixing and springtime stratification that control seasonal nutrients and light

supply for primary producers [Chiba et al., 2013; Nakata et al., 2003]. Given that it takes

approximately 2-3 years for the Rossby waves to propagate in the KOE region, these large-

scale dynamics carry an inherent multi-year predictability that can be exploited for longer

lead low-frequency forecasts on physics and marine ecosystems. Thus, before exploring

the predictability of the fisheries time series, it is informative to quantify the low-frequency

predictability of the KOE physical environment, specifically the SST, which is a state vari-

able with strong links to the dynamics of fish populations. For this purpose, we build a LIM

using only SSTa and SSHa data (see Methods section 2.5) and use equation (3.8) to perform

a series of cross-validated forecasts for lead times of 6, 12, and 24 months (Figure 3.3a, b,

and c). We find that areas of higher skill are concentrated along the Northeast Pacific coast

and the KOE extension and are co-located with centers of actions of the PDO and the KOE

low-frequency variability patterns [Matsumura et al. 2016]. We also examine the forecast

skill in the KOE region (the average SSTa in the black box of Figure 3.3a) as a function

of the month used to initialize the forecast (Figure 3.4a). We find that significant forecast
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skill (correlation ¿0.6) extends only up to 1.5 years. If we compare this skill level with

that obtained from persistence (Figure 3.4b), we find that the LIM extends this skill beyond

persistence up to 10 months (Figure 3.4c). Given that the fisheries are predominantly char-

acterized by low-frequency variability, we now quantify the low-frequency predictability of

the SSTa in the KOE by applying a 6-year filter to the forecasted state vector. As expected

when applying a lowpass filter, we find an overall increase in skill spatially at 6, 12, and

24 months (Figure 3.3d, e, and c). If we examine the skill as a function of initialization

month (Figure 3.4d), we find that high skill levels (R¿0.6) extend up to lead times of 4-5

years. However, the filtering also leads to longer persistence skills due to the increase in

autocorrelation, up to 1.5 years (Figure 3.4e). Nevertheless, if we look at the difference

in skill between the LIM forecast and persistence (Figure 3.4f), we find that the filtering

does extend dynamically the low-frequency predictability by 4-5 years. As emphasized by

previous articles [Thompson et al. 2010], the increased skill shows the importance of the

low frequency variability of SST anomalies in the KOE jet. These results confirm previous

findings that in the KOE, the large-scale climate associated with the propagation of Rossby

waves and the modes of decadal variability lead to extended multi-year predictability.

3.3.3 LIM forecast of Fisheries Time Series

We now analyze if the long-lead, low-frequency predictability of the KOE physical state

is important in extending the forecast of fisheries metrics. We construct three independent

forecast LIMs for each of the fish datasets (i.e., RAM, LME, FAO) using the definition

of the state vector in equation (2) (see Methods section 2.5). The results from the cross-

validated forecast are shown in Figures 3.5a, b, and c for leads up to 160 months. Results

show high correlation skill values R 0.7 extending almost to the end of the forecast win-

dow. Given that stocks are characterized by time series with exceptional low-frequency

variability, it is critically important to assess If the correlation skill of the LIM is signif-

icant. Using the Montecarlo approach discussed in Method section 2.8, we identify the
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95% and 99% significance levels for each of the datasets. These are marked in the colorbar

of Figure 3.5 and show that any correlation above R=0.55 (RAM), R=0.41 ((LME), and

R=0.44 (FAO) is significant at 95%. Correlations above R=0.66 (RAM), R=0.51 (LME),

and R=0.54 (FAO) are significant at the 99% with the RAM being higher than the other

datasets because of its shortened temporal span, which reduced the degrees of freedom. We

further examine the impact of autocorrelation in the data on the forecast still by computing

the persistent forecasts (Figure 5d, e, and f). We find significant persistence skill R 0.7 up

to 4 years for some of the RAM biomass anomalies (Figure 3.5d) and up to 3 years for

the LME (Figure 5e) catches and FAO landings (Figure 3.5f). Despite the long-lead fore-

cast skill from persistence, the difference maps between the LIM forecast and persistence

skill (Figure 3.5g, h, and i) show that the LIM has higher and extended significant forecast

skill beyond the range of persistence by 3-5 year limit. Despite the statistical measures

of skill significance discussed above, it is important to recognize that ultimately the real

usefulness of these forecasts will depend on how, and what aspects of, this information

enables better-informed decisions by fishery managers. For this purpose, it is informative

to show the time series of the LIM forecasts for a few selected species. In each database

we picked two species that show extended predictability and displayed their 2- and 5-years

composite forecast time series (Figure 3.6, red lines are the cross-validated forecasts, blue

line the original data). Focusing on the RAM, Figure 6a and b displays the stock Striped

Marlin North Pacific and Yellow sea bream Sea of Japan from the RAM database. Despite

the overall higher frequency variability of the LIM forecast, overall the 2-year LIM well

captures the low-frequency evolution of the time series including some of the interannual

extrema on timescale between 2-5 years. In contrast, for longer lead forecasts such as the

5-year (Figure 6c and d), the LIM is only able to capture the low-frequency variations (6

year and above) and loses information about the interannual fluctuations (e.g. compare

Figure 6b vs. d). A similar behavior is somewhat evident also in the LME catches stocks

Sardinops sagax and Reinhardtius evermanni (Figure 6e-h) and the FAO landings stocks
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Sciaenidae and Colorabis saira (Figure 3.6i-l). We examine this behavior more systemati-

cally across the stocks – that is the LIM loses its ability to forecast interannual fluctuations

for longer forecast leads, by applying a 6-year highpass filter on the composite forecasted

time series for leads times between 0-160 months and re-examining the correlation skill

with the original data. We find that the LIM interannual forecast skill is significantly less

for longer lead times (Supplemental Figure S7a, b, c) as evidenced by taking the difference

with the non-filtered forecast (Figure S7d, e, and f).

3.3.4 LIM forecasting skills Sensitivity analysis

To better understand how marine ecosystem components and physical components (and

their interaction) contribute to the forecast skill, we perform a sensitivity analysis to inves-

tigate key physical and biological factors that influence the predictability of the fisheries.

More precisely, the purpose of the sensitivity analysis is to quantify how the forecasting

skill of individual fisheries time series depends on knowledge of the climate state and to

the knowledge of the other fish stocks. We begin by exploring the role of the physical state

variables in the predictability of the fisheries time series by including the constraint that

the interaction terms of the fisheries with SSTa and SSHa in the operator L are zero. This

condition implies that we are excluding the interaction of the SSTa and SSHa PCs with

the fishery PCs. The forecast skill of the LIM that does not include the coupling with the

physics is shown in Figure 3.7a, b, and c for the different fish datasets. It is immediately

apparent that the skill is greatly reduced compared to the full LIM (Figure 3.7d, e, and f,

show the difference map) suggesting that the information of the physical climate variability

plays a primary role in extending the LIM forecast skill of the fishery indicators. Specifi-

cally, we find that a LIM forecast that depends only on the knowledge of the stock vs. stock

interactions (e.g. without the physical information) has limited extended predictability to

up to 50 months across the RAM, LME, and FAO timeseries. This reduction in skill can

be attributed to several factors, which are not fully investigated in this study. One possible
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reason regards the role of the Rossby wave propagation in the multiannual prediction of

ecological systems [Jacox et al., 2020]. These waves are predominantly initiated in the

eastern side of the North Pacific Ocean through modulation of Ekman pumping connected

with wind stress curl anomalies induced by the PDO mode [Capotondi and Alexander,

2001; Qiu et al., 2017]. Propagating Rossby waves (RWs) have an important impact on

nutrients availability on interannual timescales, which are linked to changes in primary

[Sakamoto et al., 2004] and secondary producers as well. In particular, it has been found

that RWs modulate the depth of the nutricline by a few tens of meters [Killworth et al.,

2004] with corresponding impact on surface nutrient availability. In addition, RW impact

surface chlorophyll concentration by a vertical displacement of the chlorophyll maximum,

[Dandonneau et al., 2003]. Consequently, it is possible that the exclusion of the physical

interactions that are associated with skillful physical predictions from the LIM lead to a

much lower forecasting skill for most of the stocks. Next, we want to examine how the

forecast skill depends on the interactions among species. To this end, the full case LIM

forecast is repeated by replacing the principal components of the North Pacific stocks with

the data time series for every single stock rather than all stocks together (Figure 3.7g, h,

and i). For each of the three databases, the RAM biomass, the FAO landings, and the LME

catches, we find again a substantial reduction in forecast skill when data from other stocks

are excluded from the LIM (Figure 3.7k, l, and m, show the difference map). This suggests

that interactions between stocks contain information that is useful for the predictability.

Through these sensitivity analyses, we conclude that the climate forcing has a considerable

impact on the fisheries forecast, but it does not represent the only contribution to the skill.

To a lesser extent, skill is contributed from the fisheries data from other stocks in the region.

3.4 Conclusions

Previous studies [Yati et al. 2002, Brander et al. 2007] have documented how climate

variability and change have a significant impact on marine populations and fish species in
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the North Pacific. However, the mechanisms linking climate fluctuations to the dynam-

ics of marine ecosystems are not fully understood and are currently not well captured by

numerical models. Long-term time series of data for both climate and fisheries such as

population biomass (RAM), catches (LME), and landings (FAO) provide an opportunity to

explore the coupled climate-fish predictability using empirical dynamical models and ma-

chine learning approaches. These approaches are very promising because the time series of

fish indicators also reflect non-climate forcing that are related to the internal stock dynam-

ics, human exploitation by commercial fishing, economic conditions, and technological

advancements. These combined interactions are hard to resolve in traditional dynamical

models. Each of these non-climate processes and their interactions can have a substantial

influence on metrics of fisheries biomass, landings, and catches. However, the relative im-

portance of these factors on the variability of fish species and their predictability has not

been fully explored. In this paper, we used observationally derived lag covariance statistics

to empirically capture the linear and (fast) nonlinear interactions among fish stocks, and

of fish stocks with human and climate drivers (e.g. the LIM forecast model). Our results

showed that the empirical dynamical forecast of the climate-fish-human multi-variate LIM

has long-lead predictability that extends beyond the persistence timescale for up to 5 years

with significant skill. This finding is consistent with recent studies showing how both short-

lived and long-lived species display a response to climate variability and to the increased

fishing pressure [Pinsky ML et al. 2015; Rouyer et al. 2014; Wang et al. 2020]. To further

confirm and separate the impacts that climate and non-climate drivers are having on the

fisheries, we have implemented a series of sensitivity analyses that selectively included or

excluded the interaction terms between climate and fisheries time series in the LIM dynam-

ical operator. Results of the analysis revealed a significant decrease in fish forecast skills

when the interaction with the SSH and SST is excluded. While the LIM methodology does

not allow us to explicitly diagnose which mechanisms of physical-biological coupling are

important for extending the predictability in the KOE region, it does confirm and quantify
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the critical role of ocean climate dynamics, which previous studies had discussed but not

explored with rigorous quantitative measures [see also review from Jacox et al. 2020]. In

fact, this study is to our knowledge one of the first attempts to explore empirical model

forecasting in the KOE region. Further analyses also revealed that the forecast skill arising

from empirical relationships among the stocks is also important, although less important

than the inclusion of physical characteristics. This indicates that the information shared

among stocks, which could be reflective of changes in industrial fishing practices, market

forces, or species interactions, substantially improves forecasting skills. In particular, we

notice a distinction in the RAM data between short-lived species and long-lived species as

we compare the results with the first sensitivity analysis. Short-living species are highly

dependent on climate factors and much less on stock-stock interactions. While long-living

species have a dependency on climate factors of the North Pacific, but the stock-stock inter-

actions give a high contribution as well to the forecasting skill much more than short-living

species. Although more studies are required to understand the joint predictability dynam-

ics between climate and fisheries In the Pacific Ocean, the analyses presented here with

a multivariate linear inverse model provide a promising approach for utilizing climate in-

formation to predict socio-ecological indicators such as fish catch, biomass, and landings.

Our results also suggest that this approach may be successful in accounting for the dynam-

ics of external human forcing (e.g., in this case, fishing) that are implicitly incorporated

in the stock-stock interaction terms. Lastly, these findings support the idea that predicting

the marine ecosystem as a hole (e.g., including multi-variate ecological indicators) is more

skillful than focusing on individual stock time series.
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Ojaveer, H., ould Mohammed Abdallahi, K., Perry, I., Thiao, D., Yemane, D., and Cury, P.

M. 2010. Using indicators for evaluating, comparing, and communicating the ecological

70

https://journals.ametsoc.org/view/journals/clim/14/20/1520-0442_2001_014_3997_pwnpoc_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/clim/14/20/1520-0442_2001_014_3997_pwnpoc_2.0.co_2.xml


status of exploited marine ecosystems. 2. Setting the scene. – ICES Journal of Marine

Science, 67: 692–716.

Taguchi, B., & Schneider, N. (2014). Origin of Decadal-Scale, Eastward-Propagating Heat

Content Anomalies in the North Pacific, Journal of Climate, 27(20), 7568-7586. Retrieved

Nov 8, 2021, from https://journals.ametsoc.org/view/journals/clim/27/20/jcli-d-13-00102.

1.xml

Taguchi, B., Xie, S., Mitsudera, H., & Kubokawa, A. (2005). Response of the Kuroshio

Extension to Rossby Waves Associated with the 1970s Climate Regime Shift in a High-

Resolution Ocean Model, Journal of Climate, 18(15), 2979-2995. Retrieved Mar 21, 2022,

from https://journals.ametsoc.org/view/journals/clim/18/15/jcli3449.1.xml

Taguchi, B., S.-P. Xie, N. Schneider, M. Nonaka, H. Sasaki, and Y. Sasai, 2007: Decadal

variability of the Kuroshio Extension: Observations and an eddy-resolving model hindcast.

J. Climate, 20, 2357–2377, doi:10.1175/JCLI4142.1.

Tam, Jamie & Fay, Gavin & Link, Jason. (2019). Better Together: The Uses of Ecologi-

cal and Socio-Economic Indicators With End-to-End Models in Marine Ecosystem Based

Management. Frontiers in Marine Science. 6. 560. 10.3389/fmars.2019.00560.

Thompson, L. A., & Kwon, Y. (2010). An Enhancement of Low-Frequency Variability in

the Kuroshio–Oyashio Extension in CCSM3 owing to Ocean Model Biases, Journal of Cli-

mate, 23(23), 6221-6233. Retrieved Jan 14, 2022, from https://journals.ametsoc.org/view/

journals/clim/23/23/2010jcli3402.1.xml

71

https://journals.ametsoc.org/view/journals/clim/27/20/jcli-d-13-00102.1.xml
https://journals.ametsoc.org/view/journals/clim/27/20/jcli-d-13-00102.1.xml
https://journals.ametsoc.org/view/journals/clim/18/15/jcli3449.1.xml
https://journals.ametsoc.org/view/journals/clim/23/23/2010jcli3402.1.xml
https://journals.ametsoc.org/view/journals/clim/23/23/2010jcli3402.1.xml


Tommasi Desiree, Stock Charles A., Alexander Michael A., Yang Xiaosong, Rosati An-

thony, Vecchi Gabriel A. (2017). Multi-Annual Climate Predictions for Fisheries: An As-

sessment of Skill of Sea Surface Temperature Forecasts for Large Marine Ecosystems,

Frontiers in Marine Science, Volume=4, 2296-7745, https://www.frontiersin.org/article/10.

3389/fmars.2017.00201

Wang, JY., Kuo, TC. & Hsieh, Ch. Causal effects of population dynamics and environ-

mental changes on spatial variability of marine fishes. Nat Commun 11, 2635 (2020).

https://doi.org/10.1038/s41467-020-16456-6

Yati E, Minobe S, Mantua N, Ito S and Di Lorenzo E (2020) Marine Ecosystem Variations

Over the North Pacific and Their Linkage to Large-Scale Climate Variability and Change.

Front. Mar. Sci. 7:578165. doi: 10.3389/fmars.2020.578165

Yatsu, A. Review of population dynamics and management of small pelagic fishes around

the Japanese Archipelago. Fish Sci 85, 611–639 (2019). https://doi.org/10.1007/s12562-

019-01305-3

Yunne-Jai Shin, Lynne J. Shannon, Using indicators for evaluating, comparing, and com-

municating the ecological status of exploited marine ecosystems. 1. The IndiSeas project,

ICES Journal of Marine Science, Volume 67, Issue 4, May 2010, Pages 686–691, https:

//doi.org/10.1093/icesjms/fsp273

Zhao, Y. Y., M. Newman, A. Capotondi, E. Di Lorenzo and D. X. Sun, 2021: Removing the

Effects of Tropical Dynamics from North Pacific Climate Variability. Journal of Climate,

34(23) 9249-9265, doi:10.1175/jcli-d-21-0344.1.

72

https://www.frontiersin.org/article/10.3389/fmars.2017.00201
https://www.frontiersin.org/article/10.3389/fmars.2017.00201
https://doi.org/10.1038/s41467-020-16456-6
https://doi.org/10.1093/icesjms/fsp273
https://doi.org/10.1093/icesjms/fsp273


Figure 3.1: Timeseries of detrended and normalized fish stocks for the RAM (a), LME
(b), and FAO (c) datasets. The variance explained by the removed trend is represented in
(d), (e),and (f). The mean variance excluded by the detrending has been inserted in the
plots. The associated variability is described by the first and second principal component
(g) and (h), while the corresponding EOFs are displayed in supplementary Figure S1. The
percentage of variance explained by the PCs in each dataset is shown in (i).
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Figure 3.2: Correlation map between SST anomalies and PC1 (a) and PC2 (c) of the fishery
datasets (RAM, LME, FAO). The average correlation maps across the datasets for PC1 and
PC2 are shown in (b) and (d).
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Figure 3.3: Forecast correlation skill of the LIM with physics only (SSTa, SSHa) for lead-
times of 6 months (a), 12 months (b), and 24 months (c). In (d), (e), and (f) the same
correlation skill maps are shown but computed using the 6-year low-pass filter applied on
the original and forecasted monthly data
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Figure 3.4: KOE SSTa index forecast correlation skill as a function of the initialization
month of the year from the physics only LIM (a), the persistence (b), and their difference
(c). The same correlation skill maps are shown but computed after applying a 6-year low-
pass filter applied on the original and forecasted monthly data (d)(e), and (f).
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Figure 3.5: The LIM forecasting correlation skill as a function of different lead-times is
displayed from the RAM (a), LME (b), and FAO (c) stocks. The persistence correlation
skill for each of these stock is also shown for comparison in (d), (e), and (f). A different
between the skill of the LIM minus persistence is shown in (g), (h), and (i).
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Figure 3.6: Selected single stock time series (blue lines) and the forecasted time series
(red lines). The stock have been selected considering those that have the highest difference
between forecasting LIM skill and the persistence. The 2- year lead forecast are shown for
the RAM (a,b), for LME (e,f) and for the FAO(i,j). The same comparison are shown for the
5-year lead forecast in panels (c,d) for RAM, (g,h) for LME, and (k,l) for FAO. The name
of the selected stock is displayed at the top of each panel
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Figure 3.7: Same as Figure 5, except showing the forecast skill of the LIM where the
physics and fish sticks are decoupled, (a) RAM, (b) LME, (c) FAO. The differences in
skill between the decoupled and the full LIM case are shown in (d), (e), and (f). The
forecasting correlation skill as a function of different lead-times is displayed also for a
LIM where each stock is forecasted independently are shown for the RAM (g), LME (h),
and FAO (i) datasets, along with the differences from full LIM case in panels (d), (e), and
(f), respectively.
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CHAPTER 4

CONCLUSION AND FUTURE RESEARCH

A large part of this dissertation is based on the idea that external physical drivers of the

North Pacific region are a key source of predictability for marine ecosystems. Specifically,

we have considered the impacts of large-scale climate modes of variability such as the

Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). These

modes have an important influence on the ecological dynamics of the Kuroshio-Oyashio

region (Chapter I).

Previous studies have linked the PDO ecological impacts to changes in nutrient avail-

ability that are caused by seasonal changes in mixed layer processes driven by the wind-

stress curl pattern of the PDO. Similarly, the NPGO has been shown to control the changes

in mean advection of the KOE and distribution of zooplankton [Chiba et al. 2013]. The

relationships between these physical climate processes and the ecological dynamics of the

North Pacific are also evident in the significant covariability between the SSH and the Chl-

a, which is an indirect measure of phytoplankton abundance. To better emphasize how this

covariability tracks the main dominant North Pacific modes we have performed an SVD

analysis. From the analysis, we identify two main modes of covariability, which are as-

sociated with a poleward shift of the KOE (e.g. PDO, the first single pattern mode) and

to an intensification of the current (e.g. NPGO, the second mode). As our observational

data does not allow us to identify a climate change signature in the short 30-years data

record, we considered 29 simulations of the Coupled Earth System Model (CESM) over

the period 1900-2100, and 23 models from the 5th Coupled Model Intercomparison Project

(CMIP5). These simulations use transient external forcings over the observed historical

record (e.g. increases in greenhouse gases) and the Representative Concentration Pathway

scenario of climate change version 8.5 (RCP8.5) from 2000-2100. From difference maps

80



of mean SSH between 1950-2000 and 2050-2100, we find a meridional dipole structure

that projects onto an intensification and poleward shift of the Kuroshio-Oyashio Exten-

sion (KOE) leading also to an increase in downwelling over the subtropics. We link these

changes to an increased SLP gradient between the polar and the subpolar regions with a 10

Pascal increase in the gradient, which corresponds to 35% of the total gradient. The change

in SLP gradient between the poles and the tropics leads to intensified Westerlies and a shift

of the winds to Northern Latitudes, which consequently induces a poleward shift also on

the KOE mean circulation axis. The change in the variability associated with the first and

the second modes has been analyzed by looking at the trend in the variance of the first and

second principal components (PCs) of SSH. The importance of looking at the SSH vari-

ance is because of it’s biological implications regarding an increase in synchrony of how

marine populations respond to a climate perturbation. Specifically, it has been suggested

that marine ecosystems may behave more synchronously when the variance of the climate

signals is stronger, which in turn make them more vulnerable to collapse and extinction

due to the portfolio effect. Therefore the positive trend found in the SSH variability can

have important consequences on the ecological dynamics of the North Pacific. To further

analyze the significance of the trend we have performed a Monte Carlo test using 10000

random PCs. The first PC of the SSH displays a positive increase in the trend which is sta-

tistically significant in both the CESM and the CMIP5. For the second we find significant

changes in variance only in the CESM ensemble but not the CMIP5. These results may be

linked to the models’ inability to capture the NPGO dynamics (Chapter II).

Given the importance of SSH and SST for the North Pacific marine ecosystem, we pro-

ceed to build a forecasting model where the Reanalysis data of SST and SSH have been

used as predictors. The methodology relies on a Linear Inverse Model, which previous

studies have successfully used to forecast the SST in different oceanic basins [Newman et

al. 2007]. We have applied the LIM on a set of fish stock indicators, which we are con-

sidered proxies to simplify complicated trends always present in ecosystems. Specifically,
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we have analyzed the biomass anomalies from the Restricted Access Management (RAM)

database, the catches from the Large Marine Ecosystem database (LME), and the landings

from the Food and Aquaculture Organization (FAO) database. We found that the LIM was

able to forecast the fishery time series beyond the persistence time scale. To further analyze

the importance of the ecosystem as a whole we conducted a series of sensitivity analyses,

which revealed the important role played by the SST/SSH of the North Pacific as predictors

of the fish indicators. While the LIM did not allows us to directly explore the mechanisms

that lead to the increase in forecasting skill and to the links between climate and fisheries,

we speculate based on previous studies [Jacox et al. 2020] that ocean advection processes

linked to the arrival of Westward propagating Rossby waves from the Central North Pacific

are important. These waves are formed following wind stress curl anomalies induced by

the PDO and the NPGO and propagate westward to the KOE with a time lag of 2-3 years.

The arrival of the Rossby wave is responsible for changes in the eastward transport of the

jet and consequently impacts the local marine ecosystem processes. Also, it has been found

that the Rossby waves change the depth of the nutricline and therefore impact the nutrient

availability and the trophic food chain including fish. To explore the importance of inter-

actions within fish species we have conducted a second sensitivity analysis where the LIM

has been run for each stock individually. We find that for most species the skill is reduced,

although this is highly dependent on the type of stock. We conclude that some stocks have

internal population interaction dynamics that play an important role in the skill (Chapter

III).

As a future direction for this work, the Linear Inverse Model analysis will be expanded

to a different set of data and compared with the forecast skill derived from deep learning

methods. The Gated Recurrent Unit neural network and the Encoder-Decoder model are

examples of methods that have the potential to better capture the nonlinearity of fish indica-

tors. These data mining tools have shown promise in several fields of science ranging from

computer vision to natural language processing [LeCun et al.2015] and they are becoming
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commonly used also in climate science. The Encoder-Decoder model falls under the class

of recurrent neural network (RNN), which are sequence models more advance than tradi-

tional neural network introduced by [Kyunghyun Cho et al. 2014]. They have been widely

used for time series forecasting tasks, from SST prediction [Nadiga et al. 2021] to Chl-a

forecasting [Chen et al. 2015]. Despite their successful applications, however, traditional

RNNs have two disadvantage with regard to the lower number of parameters, which can

result in a more difficult optimization, and the vanishing gradient problem, where the gra-

dient used by the neural network to update the parameters become zero. In recent years, a

more recent type of neural network, the Long Short Term Memory (LSTM) has been de-

veloped [Hochreiter et al., 1997] to overcome these issues. In our future work, we plan to

use a more advanced version of LSTM based on an Encoder-Decoder approach, where the

model has a first LSTM network (the encoder) that reads the historical sequence to a fixed

length vector, while the second LSTM (the decoder) predict the future workload value. To

the extent that nonlinearity and nonlinear relationship between climate and marine ecosys-

tems are important, we anticipate that the application of the improved Encoder-Decoder

methods will lead to an improvement in forecast skill with respect to the LIM approach

presented in Chapter III.
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Figure A.1: Figures 1-29 represents correlation map obtained by the projection of the SLP
anomalies on the first pc of SSH calculated with CESM-LE output runs. In this case each
single output has been considered.
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Figure A.2: Variance trend of the PSL. In Figures a1-a29 the principal component and the
mean pc( in black) are displayed. The trend is associated to the patterns obtained from the
projection of PSL anomalies on the first pc of SSH. While in figures b1-b29 the trend in
SLP variability for each singular model is represented. The CESM has been used
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Figure A.3: In Fig.1-29 we represent correlation map obtained by the projection of the SLP
anomalies on the second pc of SSH. In this case the CESM models have been used
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Figure A.4: variance trend of the SLP. In Figures a1-a29 the principal component and the
mean pc( in black) are displayed. The trend is associated to the patterns obtained from the
projection of SLP anomalies on the second pc of SSH. While in figures b1-b29 the trend in
SLP variability for each singular model is represented. The CESM has been used
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Figure A.5: In Fig.1-23 we represent correlation map obtained by the projection of the SLP
anomalies on the first pc of SSH. In this case the CMIP5-E models have been used.
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Figure A.6: variance trend of the PSL using the CMIP5-E models. In Figures a1-a29 the
principal component and the mean pc( in black) are displayed. The trend is associated to
the patterns obtained from the projection of PSL anomalies on the first pc of SSH. While
in figures b1-b29 the trend in SLP variability for each singular model is considered.
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Figure A.7: In Fig.1-23 we represent correlation maps obtained by the projection of the
SLP anomalies on the second pc of SSH. In this case the CMIP5-E have been used.
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Figure A.8: variance trend of the PSL using the CMIP5-E models. In Figures a1-a29 the
principal component and the mean pc( in black) are displayed. The trend is associated to
the patterns obtained from the projection of PSL anomalies on the second pc of SSH. While
in figures b1-b29 the trend in SLP variability for each singular model is considered.
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APPENDIX B

APPENDIX CHAPTER 3

Figure B.1: The first and second EOF weights for the RAM Biomass (a), the LME landings
(b), and FAO catches (c).
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Table B.1: RAM stocks

StockID RAM fishery stock
1 Bigeye tuna Western Pacific Ocean
2 Striped marlin Southwestern Pacific Ocean
3 Blue marlin Pacific Ocean
4 Pacific bluefin tuna Pacific Ocean
5 Striped marlin Western and Central North Pacific
6 Albacore tuna North Pacific
7 Swordfish North Pacific
8 Striped marlin North Pacific
9 Alaskan Pollock Pacific Coast of Japan
10 Yellow sea bream Sea of Japan
11 Chub mackerel Pacific Coast of Japan)
12 Chub mackerel Tsushima Strait
13 Japanese anchovy Pacific Coast of Japan
14 Japanese anchovy Inland Sea of Japan
15 Japanese anchovy Tsushima Strait
16 Jack mackerel Pacific Coast of Japan
17 Japanese jack mackerel Tsushima Strait
18 Red seabream Inland Sea of Japan (East)
19 Red seabream Inland Sea of Japan (West)
20 Round herring Tsushima Strait’
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Figure B.2: Eigenvalue spectra of the LIM operator L (a) and the spectra of the matrix Q
(b) for the LIM containing only SST and SSH. The same calculation has been done in (c)
and(d) for the RAM LIM, in (e) and (f) for the LME LIM and in (g) and (h) the FAO LIM.
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Figure B.3: LIM tau test applied to the SST forecast LIM. In column (a)-(c) we compute
the lag Covariance matrix with the LIM up to 2 years of leading time. The results are
compared with the lag covariance matrix from the observational data (d)-(f).
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Figure B.4: LIM tau test for the RAM stocks. The test consists in calculating the covariance
matrix with the state vector (d)(e)(f) and compare the results with the same matrix obtained
from the LIM (a)(b)(c). The calculation is done at different lags up to 132 months.
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Table B.2: LME stocks

StockID Name StockID Name StockID Name
1 Haliotis gigantea 2 Larimichthys polyactis 3 Epinephelus
4 Trachurus japonicus 5 Thunnus alalunga 6 Clupeiformes
7 Oncorhynchus keta 8 Hypoptychus dybowskii 9 Chrysophrys auratus
10 Elasmobranchii 11 Scapharca subcrenata 12 Chionoecetes
13 Ariidae 14 Paralichthys olivaceus 15 Takifugu vermicularis
16 Thunnus albacares 17 Crustacea 18 Paralithodes
19 Portunus trituberculatus 20 Apostichopus japonicus 21 Pleuronectiformes
22 Ammodytes personatus 23 Sebastes alutus 24 Chelidonichthys kumu
25 Auxis 26 Nibea mitsukurii 27 Scomber japonicus
28 Penaeus 29 Cynoglossidae 30 Etrumeus teres
31 Strongylocentrotus 32 Katsuwonus pelamis 33 Pectinidae
34 Crassostrea 35 Penaeus monodon 36 Crassostrea gigas
37 Bivalvia 38 Oncorhynchus nerka 39 Scorpaenidae
40 Sciaenida 41 Oncorhynchus tshawytscha 42 Arctoscopus japonicus
43 Thunnus obesus 44 Pleurogrammus azonus 45 Scomberomorus niphonius
46 Theragra chalcogramma 47 Ruditapes philippinarum 48 Engraulis japonicus
49 Salmonidae 50 Sepiidaes 51 Cololabis saira
52 Haliotis 53 Mactra sachalinensis 54 Xiphias gladius
55 Teuthida 56 Thunnus orientalis 57 Coryphaena hippurus
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Table B.3: LME stocks part2

58 Oncorhynchus kisutch 59 Glossanodon semifasciatus 60 Larimichthys croceus
61 Clupea pallasii 62 Todarodes pacificus 63 Panulirus longipes
64 Meretrix lusoria 65 Muraenesox cinereus 66 Stromateidae
67 Trichiurus lepturus 68 Caranx 69 Rajiformes
70 Sparidae 71 Spratelloides gracilis 72 Sardinops sagax
73 Pennahia argentata 74 Pecten yessoensis 75 Acetes japonicus
76 Marine fishes not identified 77 Makaira indica 78 Decapterus maruadsi
79 Brachyura 80 Loligo 81 Exocoetidae
82 Octopodidae 83 Mugil cephalus 84 Chirocentrus dorab
85 Metapenaeus 86 Oncorhynchus gorbuscha 87 Cheilopogon agoo
88 Seriola 89 Penaeus japonicus 90 Clupanodon thrissa
91 Shrimps prawns 92 Psenopsis anomala 93 Crassostrea gigas
94 Trachurus japonicus 95 Reinhardtius evermanni 96 Katsuwonus pelamis
97 Eleginus gracilis 98 Chrysophrys auratus 99 Scomber japonicus
100 Oncorhynchus nerka 101 Oncorhynchus keta 102 Marine fishes not identified
103 Oncorhynchus kisutch 104 Paralichthys olivaceus 105 Osmeridae
106 Mugil cephalus 107 Pseudopleuronectes herzensteini 108 Penaeus monodon
109 Pecten yessoensis 110 Mactra sachalinensis 111 Oncorhynchus tshawytscha
112 Takifugu vermicularis 113 Clupeiformes 114 Gadus macrocephalus
115 Auxis 116 Haliotis 117 Bivalvia
118 Scorpaenidae 119 Metapenaeus 120 Chionoecetes
121 Paralithodes camtschaticus 122 Paralithodes 123 Theragra chalcogramma
124 Sciaenidae 125 Acetes japonicus 126 Sebastes alutus
127 Octopodidae 128 Strongylocentrotus 129 Xiphias gladius
130 Gobiidae 131 Todarodes pacificus 132 Pleuronectiformes
133 Elasmobranchii 134 Clupea pallasii 135 Stromateidae
136 Shrimps prawns 137 Thunnus obesus 138 Teuthida
139 Pleurogrammus azonus 140 Sardinops sagax 141 Sepiidae
142 Thunnus alalunga 143 Engraulis japonicus 144 Cynoglossidae
145 Salmonidae 146 Cololabis saira 147 Hypoptychus dybowskii
148 Thunnus albacares 149 Apostichopus japonicus 150 Ammodytes personatus
151 Brachyura 152 Arctoscopus japonicus 153 Seriola
154 Sparidae 155 Oncorhynchus gorbuscha 156 Thunnus orientalis
157 Trichiurus lepturus 158 Rajiformes 159 Mugil cephalus
160 Ruditapes philippinarum 161 Teuthida 162 Oncorhynchus nerka
163 Shrimps prawns 164 Gobiidae 165 Chionoecetes
166 Octopodidae 167 Paralithodes camtschaticus 168 Apostichopus japonicus
169 Acetes japonicus 170 Katsuwonus pelamis 171 Stromateidae
172 Panulirus longipes 173 Oncorhynchus gorbuscha 174 Sparidae
175 Starfish and other echinoderms 176 Gadus macrocephalus 177 Pecten yessoensis
178 Sardinops sagax 179 Paralichthys olivaceus 180 Hypoptychus dybowskii
181 Cololabis saira 182 Etrumeus teres 183 Bivalvia
184 Thunnus orientalis 185 Sepiidae 186 Elasmobranchii
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Table B.4: LME stocks part3

187 Clupeiformes 188 Salmonidae 189 Clupea pallasii
190 Scomberomorus niphonius 191 Trachurus japonicus 192 Reinhardtius evermanni
193 Chrysophrys auratus 194 Paralithodes 195 Coryphaena hippurus
196 Glossanodon semifasciatus 197 Penaeus monodon 198 Rajiformes
199 Thunnus obesus 200 Oncorhynchus keta 201 Xiphias gladius
202 Sciaenidae 203 Thunnus albacares 204 Eleginus gracilis
205 Strongylocentrotus 206 Cynoglossidae 207 Seriola
208 Arctoscopus japonicus 209 Penaeus japonicus 210 Trichiurus lepturus
211 Auxis 212 Pleuronectiformes 213 Marine fishes not identified
214 Takifugu vermicularis 215 Engraulis japonicus 216 Mactra sachalinensis
217 Brachyura 218 Todarodes pacificus 219 Scorpaenidae
220 Sebastes alutus 221 Theragra chalcogramma 222 Scomber japonicus
223 Metapenaeus 224 Haliotis 225 Osmeridae
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Table B.5: FAO stocks part1

1 Scorpaenidae 2 Rajiformes 3 Anoplopoma fimbria
4 Natantia 5 Ophiodon elongatus 6 Saxidomus giganteus
7 Gadus macrocephalus 8 Cancer magister 9 Pleuronectiformes
10 Oncorhynchus tshawytscha 11 Hippoglossus stenolepis 12 Oncorhynchus nerka
13 Oncorhynchus gorbuscha 14 Oncorhynchus keta 15 Clupea pallasii
16 Larimichthys polyactis 17 Sepiidae, Sepiolidae 18 Scomber japonicus
19 Acetes japonicus 20 Larimichthys croceus 21 Mollusca
22 Mollusca 23 Crustacea 24 Trichiurus lepturus
25 Osteichthyes 26 Brachyura 27 Loliginidae, Ommastrephidae
28 Serranidae 29 Stromateidae 30 Cynoglossidae
31 Elasmobranchii 32 Scomberomorus spp 33 Branchiostegidae
34 Decapterus spp 35 Lutjanidae 36 Trichiuridae
37 Caranx spp 38 Sardinella spp 39 Sparidae
40 Stolephorus spp 41 Muraenesox spp 42 Synodontidae
43 Sciaenidae 44 Upeneus spp 45 Nemipterus spp.
46 Natantia 47 Clupea pallasii 48 Thunnus albacares
49 Bivalvia 50 Squalidae 51 Thaleichthys pacificus
52 Anoplopoma fimbria 53 Sebastes alutus 54 Scorpaenidae
55 Hippoglossus stenolepis 56 Oncorhynchus tshawytscha 57 Mammalia
58 Panulirus longipes 59 Penaeus japonicus 60 Scomberomorus niphonius
61 Chionoecetes spp 62 Haliotis gigantea 63 Paralithodes spp
64 Portunus trituberculatus 65 Atheresthes evermanni 66 Hippoglossoides elassodon
67 Sebastes alutus 68 Turbo cornutus 69 Lateolabrax japonicus
70 Psenopsis anomala 71 Pseudocardium sybillae 72 Chionoecetes spp
73 Coryphaena hippurus 74 Mugil cephalus 75 Apostichopus japonicus
76 Glossanodon semifasciatus 77 Paralithodes camtschaticus 78 Paralichthys olivaceus
79 Strongylocentrotus spp 80 Xiphias gladius 81 Arctoscopus japonicus
82 Cypselurus agoo 83 Oncorhynchus kisutch 84 Clupea pallasii
85 Scapharca subcrenata 86 Paralithodes spp 87 Patinopecten yessoensis
88 Meretrix lusoria 89 Dasyatis akajei 90 Chelidonichthys kumu
91 Auxis thazard, A. rochei 92 Pagrus auratus 93 Octopodidae
94 Saurida tumbil 95 Sebastes alutus 96 Muraenesox cinereus
97 Oncorhynchus nerka 98 Thunnus orientalis 99 Clupeoidei
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Table B.6: FAO stocks part2

100 Decapterus maruadsi 101 Thunnus obesus 102 Plantae aquaticae
103 Rhodophyceae 104 Oncorhynchus keta 105 Seriola spp
106 Natantia 107 Thunnus alalunga 108 Oncorhynchus gorbuscha
109 Etrumeus teres. 110 Ammodytes personatus 111 Katsuwonus pelamis
112 Ruditapes philippinarum 113 Theragra chalcogramma 114 Bivalvia
115 Pleurogrammus azonus 116 Theragra chalcogramma 117 Laminaria japonica
118 Trachurus japonicus 119 Sardinops melanostictus 120 Todarodes pacificus
121 Engraulis japonicus 122 Cololabis saira 123 Thunnus alalunga
124 Metapenaeus spp 125 Tetrapturus audax 126 Istiophorus platypterus
127 Epinephelus spp 128 Makaira nigricans 129 Mene maculata
130 Ariidae 131 Coryphaena hippurus 132 Larimichthys polyactis
133 Todarodes pacificus 134 Muraenesox cinereus 135 Sepiidae, Sepiolidae
136 Natantia 137 Mugil cephalus 138 Exocoetidae
139 Atrobucca nibe 140 Clupeoidei 141 Makaira indica
142 Pennahia argentata 143 Thunnus albacares 144 Sparidae
145 Saurida tumbil 146 Spratelloides gracilis 147 Auxis thazard, A. rochei
148 Etrumeus teres 149 Sparidae 150 Lophiidae
151 Pleurogrammus azonus 152 Mytilus coruscus 153 Chelidonichthys kumu
154 Arctoscopus japonicus 155 Lateolabrax japonicus 156 Haliotis spp
157 Chlorophyceae 158 Clupanodon thrissa 159 Crassostrea gigas
160 Tetraodontidae 161 Rhodophyceae 162 Sardinops melanostictus
163 Natantia 164 Apostichopus japonicus 165 Paralithodes spp
166 Pagrus auratus 167 Octopodidae 168 Mugil cephalus
169 Muraenesox cinereus 170 Hypoptychus dybowskii 171 Nibea mitsukurii
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Figure B.5: LIM tau test for the FAO stocks. The test consists in calculating the covariance
matrix with the state vector (d)(e)(f) and compare the results with the same matrix obtained
from the LIM (a)(b)(c). The calculation is done at different lags up to 132 months.
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Figure B.6: LIM tau test for the LME stocks. The test consists in calculating the covariance
matrix with the state vector (d)(e)(f) and compare the results with the same matrix obtained
from the LIM (a)(b)(c). The calculation is done at different lags up to 132 months.
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Figure B.7: The LIM forecasting correlation skill as a function of different lead-times is
displayed from the RAM (a), LME (b), and FAO (c) stocks. Prior to the computation of the
skill, a 6-year high-pass filter applied. The difference in skill between the full LIM and the
high-pass version is displayed in (d), (e), and (f) for the three datasets respectively
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