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Abstract 

 

Magnetic Resonance Imaging was used to study changes in the crystalline lens and ciliary body with accommodation and 

aging. Monocular images were obtained in 15 young (19-29 years) and 15 older (60-70 years) emmetropes when viewing 

at far (6m) and at individual near points (14.5 to 20.9 cm) in the younger group. With accommodation, lens thickness 

increased (mean±95% CI: 0.33±0.06mm) by a similar magnitude to the decrease in anterior chamber depth 

(0.31±0.07mm) and equatorial diameter (0.32±0.04mm) with a decrease in the radius of curvature of the posterior lens 

surface (0.58±0.30mm). Anterior lens surface shape could not be determined due to the overlapping region with the iris. 

Ciliary ring diameter decreased (0.44±0.17mm) with no decrease in circumlental space or forward ciliary body movement. 

With aging, lens thickness increased (mean±95% CI: 0.97±0.24mm) similar in magnitude to the sum of the decrease in 

anterior chamber depth (0.45±0.21mm) and increase in anterior segment depth (0.52±0.23mm). Equatorial lens diameter 

increased (0.28±0.23mm) with no change in the posterior lens surface radius of curvature. Ciliary ring diameter decreased 

(0.57±0.41mm) with reduced circumlental space (0.43±0.15mm) and no forward ciliary body movement. Accommodative 

changes support the Helmholtz theory of accommodation including an increase in posterior lens surface curvature. 

Certain aspects of aging changes mimic accommodation. 

 

 

 

Keywords: Presbyopia, mechanism of accommodation, anterior chamber depth, anterior segment length, asphericity, 

lens, lens thickness, ocular parameters, radius of curvature, equatorial diameter, cataract surgery, accommodation 

restoration. 
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Introduction 

Ocular accommodation is a change in the optical power of the eye with an attempt to focus at near. Accommodation 

occurs by ciliary muscle contraction which leads to changes in the shape of the crystalline lens (Glasser & Kaufman, 1999; 

Helmholtz von, 1924). With increasing age, it is generally believed that the crystalline lens progressively loses elasticity, 

leading to a complete inability to change shape and to loss of accommodation by the mid fifties (Atchison, 1995; Duane, 

1912). The loss in near visual function associated with the loss in accommodation is termed ‘presbyopia’. Much of the recent 

research on the accommodative mechanism of the eye has been prompted by interest in the restoration of accommodation 

in presbyopes. In theory, accommodation can be restored surgically by replacing the inelastic crystalline lens with an elastic 

material, by laser assisted intra-lenticular photodisruption to restore elasticity or by replacing the crystalline lens with an 

“accommodating” IOL (Nishi, Hara, Sakka, Hayashi, Nakamae & Yamada, 1992; Parel, Gelender, Trefers, & Norton, 1986; 

Krueger, Sun, Stroh, & Myers, 2001; Dick, 2005). Current approved techniques for restoring accommodation involve 

implantation of an accommodating intraocular lens (AIOL) during cataract surgery eg: Crystalens (Bausch & Lomb, USA) 

and 1CU (Humanoptics AG, Germany). These IOLs have been shown to restore only up to 1 D of accommodation 

(Mastropasqua, Toto, Nubile, Falconio, & Ballone, 2003; Cumming, Slade, & Chayet, 2001). The relatively modest effect is 

due in part to physiological and theoretical limits of performance i.e. the limited (~1 D) dioptric power change per 

millimeter movement of a single optic lens (Dick, 2005; Ho, Manns, Pham, & Parel, 2006). Other methods of restoring 

larger amounts of accommodation being developed include novel IOLs (Synchrony Dual Optic IOL, Abbott Medical Optics, 

USA; NuLens, NuLens Ltd., Israel and PowerVision IOL, PowerVision Inc., USA), polymer refilling of the capsular bag 

(Koopmans, Terwee, Barkhof, Haitjema, & Kooijman, 2003; Koopmans, et al., 2006) and extra-lenticular surgical 

procedures to increase the space between ciliary muscle and crystalline lens (Priavision Inc., USA). Currently only limited 

restoration of accommodation following cataract surgery has been achieved, while the ultimate goal of restoring large 

amounts of accommodation in presbyopes without cataract (i.e. through clear lens extraction) is yet to be realized. A better 

understanding of the mechanism of accommodation and age-related changes in ocular structures involved in 

accommodation will help in developing and refining surgical procedures designed to restore accommodation in presbyopes. 
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The current study characterizes the changes in the shape of the crystalline lens and location of the ciliary body with 

accommodation and age in normal human subjects.  

Most previous in-vivo studies on crystalline lens shape have utilized optical techniques such as catoptric and slit lamp 

imaging or ultrasound based imaging. Optical techniques have been employed to study the shape of the crystalline lens as 

visible through the pupil (Koretz, Bertasso, Neider, True-Gabelt, & Kaufman, 1987; Rosales & Marcos, 2006; Dubbelman 

& Van Der Heijde, 2001; Brown, 1973; Smith & Garner, 1996; Atchison, Markwell, Kasthurirangan, Pope, Smith, & 

Swann. 2008). Accurate characterization of lens thickness and posterior surface curvature using optical techniques could be 

influenced by changes in the anterior surface and refractive index distribution of the lens with accommodation and age 

(Dubbelman, Van Der Heijde, & Weeber, 2001). Ultrasound imaging techniques have been used for axial measurements of 

biometric distances within the eye and to image the lens periphery and ciliary body (Beers & Van Der Heijde, 1994; Ostrin 

& Glasser, 2007; Vilupuru & Glasser, 2003; Stachs, Martin, Kirchhoff, Joachim, Terwee, & Guthoff, 2002). The advantages 

of ultrasound based techniques are images not affected by refractive effects due to changes in crystalline lens shape with 

accommodation or aging, and the ability to image behind the iris. However, age-related variation in speed of sound in the 

crystalline lens is not fully understood (Atchison, et al., 2008; Beers & Van Der Heijde, 1994; Koretz, Kaufman, Neider, & 

Goeckner, 1989). Ultrasound techniques also usually lack internal references or landmarks unless tattoos are used, as in 

some animal studies (Ostrin & Glasser, 2007). Whole lens in-vivo imaging, including characterization of lens surfaces, has 

not been undertaken with optical (due to the presence of iris) or ultrasound (restricted field of view) techniques. In short, 

while past studies using optical or ultrasound techniques have provided reliable axial and central anterior lens surface 

characteristics, whole lens shapes including posterior surface characteristics have not been clearly described.  

 

MRI is a non-optical imaging technique and does not require any assumptions concerning lens optical properties for 

dimensional measurements. Consequently accommodative and age-related changes in the optical properties of the crystalline 

lens are not expected to create any distortions in the MR images of the lens. However, MRI is a relatively time consuming 

technique and is of lower resolution compared to optical and ultrasound techniques. MRI has been used previously for 

ocular imaging to study overall eye shape, extraocular muscle anatomy, crystalline lens shape, refractive index distribution 

and ciliary muscle anatomy (Atchison & Smith, 2004; Demer, Clark, Crane, Tian, Narasimhan & Karim, 2008; Atchison, 
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et al., 2008; Jones, Atchison, & Pope, 2007; Strenk, Strenk, Semmlow, & DeMarco, 2004; Jones, et al., 2007; 

Kasthurirangan, Markwell, Atchison, & Pope, 2008; Strenk, Strenk, & Semmlow, 2000). We have previously described the 

dependence of refractive index distribution of the crystalline lens on accommodation and age using MRI imaging (Jones, et 

al., 2007; Kasthurirangan, et al, 2008). Strenk et al reported anterior chamber depth, crystalline lens diameter, thickness and 

surface area and ciliary ring diameter as a function of age and accommodation using MRI (Strenk, Semmlow, Strenk, 

Munoz, Gronlund-Jacob, & DeMarco, 1999; Strenk, et al., 2000; Strenk, et al., 2004), but did not describe changes in 

curvature and shape of the lens surfaces with age and accommodation.  

 

The aim of the current study was to use MRI to study changes in crystalline lens shape and ciliary body position with 

accommodation in 20 to 30 year old subjects, and with aging in 60 to 70 year old subjects. Some of the results on crystalline 

lens shape from the present study have been reported previously (Atchison, et al., 2008). The present report provides a 

complete description of the crystalline lens shape including previously unreported information on the asphericity of lens 

surfaces, measures of overall lens shape and ciliary body position.  

 

Methods 

Subjects 

Subject demography and experimental set up are as described previously (Kasthurirangan, et al., 2008). Only a brief 

description of the methods is provided here. Fifteen young and fifteen older subjects were recruited. Young subjects were 

between 19 and 29 years (mean ± 1 SD: 22.8 ± 3.1 years) and older subjects were between 60 and 70 years (mean ± 1 SD: 

64.3 ± 3.2 years). All subjects had good ocular and general health. A preliminary examination confirmed emmetropia (± 

0.75 D sphere and ≤ 0.50 D cylinder) with 6/6 distance visual acuity in the tested eye. The research followed the tenets of 

the Declaration of Helsinki. The experimental protocol was approved by the Queensland University of Technology and 

Prince Charles Hospital human ethics review boards. Informed consent was obtained from all subjects. 



Journal of Vision (20xx) xx, xx-xx Kasthurirangan, Markwell, Atchison & Pope 6 

 

MRI Technique 

Monocular MR images were obtained with a General Electric “Twin Speed” clinical MR scanner operating at a field 

strength of 1.5 Tesla (Signa Twin Speed; GE Medical Systems, Milwaukee, WI). Subjects lay supine in the MR equipment 

with the head stabilized with foam pads (see Figure 1 of Kasthurirangan et al, 2008 for schematic of experimental set up). A 

3.5 cm receive-only surface coil (Nova Medical, Wilmington MA) was used to obtain high resolution images from one eye of 

each subject in the transverse axial and sagittal planes. After obtaining a set of scout images to ensure eye alignment (see 

details in Experimental Procedures section), a Fast Spin Echo (FSE) imaging sequence was used to obtain high resolution 

images for dimensional measurements within the eye. MR images were acquired with a 40 mm field of view and 3 mm slice 

thickness, an effective echo time TE = 19 ms, an echo train length of 4, 320 × ×320 matrix size (interpolated to 512 × ×512 

pixel images) and a recycle time TR = 400 ms, giving a total image acquisition time of 2 minutes and 11 seconds. During the 

same session another imaging sequence (Multi Spin Echo) was used for refractive index measurements as reported previously 

(Kasthurirangan, et al., 2008).  

 

Experimental Procedures 

 

In young subjects MRI measurements were performed for far and near viewing, while in the older subjects MRI 

measurements were performed only for far viewing. The MRI eye coil, with a viewing hole in the middle, was placed in front 

of and as close as possible to the measured eye (without touching the skin or eye lashes) and clamped in place. A mirror 

tilted vertically by 45° was placed 10 cm above the eye. The subject looked through the mirror at the center of a 31-mm-

diameter spoke-wheel target on a wall 6.1 m away. The subject was instructed to look at the target during the measurements 

and to relax between measurements. The order of image acquisition was (1) a 16 second set of scout images, (2) an FSE 

image in the sagittal plane of the eye, (3) an FSE image in the transverse axial plane, (4) an MSE image in the sagittal plane 

and (5) an MSE image in the transverse axial plane. If the eye appeared tilted in the sagittal scout images, the vertical tilt of 

the mirror was adjusted appropriately and another set of scout images was obtained. The transverse axial scout images were 

used to manually select the slice plane for the first sagittal FSE image to correspond with the geometrical axis of the 
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crystalline lens. The sagittal FSE image was used to determine the slice for the next transverse axial FSE image i.e. in the 

sequence mentioned above, each image was used to set up the axis for the next image.  

 

In young subjects, MR images during near viewing were obtained while fixating on a spoke-wheel target placed in a 

mount in front of and as close as possible to the eye, so that it could still be seen clearly and comfortably. The near target 

was removed from the mount to reveal a round hole in the mount. The subject was instructed to move the mount vertically 

and horizontally until the distant target appeared centered in the hole. The mount was locked in place, and the near target 

was replaced. In this manner, the near target was subjectively aligned with the distant target, to maintain similar gaze 

direction for far and near scans. The subject was instructed to look at the near target and keep it in focus. The range of near 

target distances for different subjects was 14.5 to 20.9 cm, which corresponds to 6.9 to 4.8 D of accommodative stimulus. 

 

Data Analysis 

The MR images were analyzed with custom written software in Matlab (The MathWorks Inc., Natick MA). MR images 

during far and near viewing for a young subject, and far viewing only for an older subject, are shown in Figure 1. External 

and internal boundaries in the eye were identified using a Canny edge filter available in Matlab Image Processing Toolbox. 

The eye image was rotated to orient vertically with cornea above and sclera below (Figure 1B). The angle of rotation was 

noted to check for any gaze deviations between far and near viewing in young subjects. Adequate performance of the eye 

rotation algorithm has been reported previously (Kasthurirangan, et al., 2008). 

 

A difficulty in the identification of crystalline lens pixels is that the iris obscures part of the anterior edge of the lens. 

Therefore, the user manually defined two regions on either side of the pupil around the region of contact between the iris 

and the lens. These regions were removed from further analysis. The remaining anterior and all of the posterior edge data of 

the lens were individually smoothed with a conic curve (Dubbelman & Van Der Heijde, 2001): 
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where x0, y0 is the vertex position, c is the curvature at the vertex and k is the conic constant. This curve was used to obtain 

the curvature at vertex and the asphericity over 99% of the anterior (excluding iris-covered regions) and posterior surfaces of 

the lens. 

 

Various biometric parameters were measured automatically from the MR images (see Figure 1B). These included 1.  

anterior chamber depth (ACD: distance from the front of the cornea to anterior pole of the crystalline lens), 2.  lens axial 

thickness (LT: distance between anterior and posterior poles of the lens), 3.  anterior segment depth (ASD: distance from 

the front of the cornea to the posterior pole of the lens), 4.  lens equatorial diameter (ED: distance between the equatorial 

edges of the lens), 5.  lens surface curvatures and asphericity (obtained from conic curve fits over 99% of anterior and 

posterior lens surfaces), 6.  ratio of lens axial thickness to equatorial diameter as a metric of lens shape (LT/ED ratio), 7.  

ciliary ring diameter (distance between innermost ciliary body tips identified manually), 8. ciliary body depth (axial distance 

between anterior cornea and a line joining innermost ciliary body tips) and 9. axial length (distance between anterior cornea 

and posterior edge (outer sclera) of the eye – note that the retina was not always clearly visible in the MR images and so the 

posterior edge of the eye was used). Axial length was measured along a geometric axis of the eye (Figure 1B). All 

measurements, except for ciliary ring diameter, were automatically performed. Statistical comparisons for accommodative 

trends were performed through paired t-tests and for age-related trends through unpaired t-tests. An α level of 0.05 was 

considered to be significant. 

 

Lens thickness and axial length measured with MRI during relaxed accommodation were compared with A-scan 

ultrasound (Axis-II A-scan, Quantel Medical Inc., USA) measurements during far fixation in the same eyes to evaluate the 

accuracy of MRI dimension measurements. 
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Results 

Resolution and noise level 

In general, the sagittal images were noisier than the transverse axial images. In order to quantitatively evaluate this 

difference, signal-to-noise ratio and the intensity gradient across the anterior edge of the crystalline lens were compared 

between sagittal and transverse axial images in the same eyes. Signal-to-noise ratio was calculated as the ratio of average pixel 

intensity within the crystalline lens (signal) and average pixel intensity anterior to the cornea (i.e. region with no ocular 

structures to calculate noise). The average signal-to-noise ratio was significantly larger in the transverse axial images than in 

the sagittal images (5.31 vs 4.81, paired t-test, p < 0.01). Peak intensity gradient across the crystalline lens was calculated in 

the following manner: (1) the intensity gradient along five lines of pixels across the anterior lens surface from the anterior 

chamber into the lens was calculated, (2) an average of peak intensity gradients from the five lines was calculated, and (3) 

average peak intensity gradient was considered as the intensity difference across the anterior lens surface. Average intensity 

gradient in the transverse axial images was 31% greater than in sagittal images (paired t-test, p < 0.01). The increased noise 

was mainly due to motion artifacts, most likely due to blinks, affecting the sagittal images more than the transverse axial 

images. Paired comparisons revealed statistically significant differences between sagittal and transverse axial images for some 

ocular biometric parameters. Since ocular measurements with transverse axial images show some differences from sagittal 

images and the transverse axial images were sharper with well defined edges compared to sagittal images, further results are 

presented for transverse axial data only. 

 

The MR images had an in-plane resolution of 0.078 mm/pixel based on 40 mm field of view with image resolution of 

512 x 512 pixels. Profile plots of intensity change along the anterior lens surface showed that the edge consisted of two 

pixels of rising intensity (or grey values). As an upper estimate, the uncertainty in defining a surface edge was of one pixel 

length, i.e. one of the two pixels could be determined as the edge. The error in measuring intra-ocular lengths (i.e. distance 

between two surfaces) was therefore two pixels (one pixel error for each surface) or 0.156 mm. This suggests that the 

practical resolution of the MR images was 0.156 mm. 
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While the MRI technique was capable of imaging behind the iris, around the region of contact between the iris and 

anterior lens surface, the two structures could not be distinguished. This required removal of these data when fitting the 

anterior lens surface with conic curves. Examples of conic curve fits to the anterior and posterior lens surfaces are shown in 

Figure 2 for one eye of a young subject in the relaxed (A) and accommodated states (B) and for one eye of an older subject 

(C). For the anterior lens surface, considerable data were unavailable along the region of contact between the iris and the 

anterior lens surface. Therefore, the conic curve fits were unreliable and the results on the anterior lens surface vertex radius 

of curvature and asphericity were excluded from the study. The posterior surface conic curve fits were good with r-squared 

values greater than 0.95 and root mean square error of less than 0.1 mm for all fits. 

 

MRI versus A-scan measurements 

MRI and applanation A-scan measurements of axial ocular dimensions were compared in all eyes of young and old 

subjects for the relaxed accommodative state. MRI lens thickness measurements were significantly correlated to A-scan lens 

thickness measurements (MRI_LT = 0.89 * AScan_LT + 0.43, r2 = 0.90, p < 0.01, regression not shown). The slope of the 

linear regression was marginally significantly different from 1 (p = 0.05) and the intercept was not different from 0 (p = 

0.08). A paired t-test revealed no significant differences between MRI and A-scan measurements (mean ± SEM: 0.05 ± 0.036 

mm; p = 0.22). When the outlier (marked with a square in Figure 3A) was ignored in the regression analysis, the slope and 

intercept were not significantly different from 1 (p = 0.14) and 0 (p = 0.17), respectively, indicating good correspondence 

between MRI and A-scan measurements of anterior chamber depth. Bland –Altman analysis, i.e. difference between A-scan 

and MRI measurements plotted against the mean of A-scan and MRI measurements, showed no obvious trends in the data.  

 

MRI axial length measurements were significantly correlated to A-scan axial length measurements (MRI_AL = 

0.98 * AScan_AL + 1.37, r2 = 0.89, p < 0.01, Figure 3B). The slope and intercept of the linear regression were not different 

from 1 (p = 0.71) and 0 (p = 0.39), respectively. In the MR images, the internal boundary of the retina was not always clearly 

visible, so axial length measurements were performed from the anterior border of the cornea to the posterior border of the 

eye which would have resulted in an offset between A-scan and MRI axial length measurements. Paired differences showed 
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that MRI axial length measurements were larger than A-scan length measurements by 0.79 ± 0.039 mm (mean ± SEM, p < 

0.05). The slope in Figure 3B is close to 1, indicating good correspondence between A-scan and MRI axial length 

measurements. Bland –Altman analysis for axial length data indicated a mean difference of 0.79 mm and no other obvious 

trends in the data.  

 

Changes with Age and Accommodation 

Ocular alignment during far viewing and near viewing in young subjects was checked by comparing eye rotation angle 

and axial lengths. No statistically significant differences were seen for eye rotation angle (paired t-test, p = 0.99) or axial 

length (paired t-test, p = 0.13) between unaccommodated and accommodated states. The average absolute difference in 

ocular alignment was 1.95 ± 1.99 degrees and absolute axial length difference was 0.13 ± 0.10 mm. While there were some 

differences in eye rotation angle and axial lengths between unaccommodated and accommodated images in individual eyes, 

these differences were not systematic. 

 

Axial distances: 

Anterior chamber depth decreased significantly with accommodation and age (Figure 4 & Table 1). On average, anterior 

chamber depth decreased 0.31 mm with accommodation (paired t-test, p < 0.05) and 0.45 mm with age (unpaired t-test, p < 

0.05). Lens axial thickness increased 0.33 mm with accommodation (p < 0.05) and 0.97 mm with age (p < 0.05) (Table 1). 

The decrease in anterior chamber depth with accommodation was 92% of the increase in lens thickness, but the decrease in 

anterior chamber depth with age was only 46% of the increase in lens thickness. Consequently, anterior segment depth did 

not change significantly with accommodation (p = 0.31), but increased significantly with age (mean change: 0.52 mm; p < 

0.05). The ciliary body depth did not change with accommodation (p = 0.41) or with age (p = 0.71). 

 

Equatorial distances: 

 Lens equatorial diameter decreased 0.32 mm with accommodation (paired t-test, p < 0.01) and increased 0.28 mm with 

age (unpaired t-test, p < 0.05) (Figure 5 & Table 1). As a measure of lens shape, the ratio of lens axial thickness to equatorial 



Journal of Vision (20xx) xx, xx-xx Kasthurirangan, Markwell, Atchison & Pope 12 

 

diameter (LT/ED) was calculated (Table 1). This ratio (LT/ED) increased with accommodation (mean change: 0.05; p < 

0.01, Table 1) and age (mean change: 0.09; p < 0.01). An increase in LT/ED suggests that the whole lens became more 

rounded with accommodation and age. With accommodation, the decrease in lens equatorial diameter was 98% of the 

increase in lens axial thickness. With age, the increase in lens equatorial diameter was only 29% of the increase in lens axial 

thickness. Therefore, although the relative changes in lens thickness and equatorial diameter were different between 

accommodation and age, the lens assumed a more rounded shape in either case. The ciliary ring diameter decreased with 

both accommodation (mean change: 0.44 mm; p < 0.05) and age (mean change: 0.57 mm; p < 0.05) (Figure 5 & Table 1). 

The circumlental space, the distance from the equatorial edge of the lens to the ciliary body tip, did not change with 

accommodation (1.07 vs 1.02 mm; p = 0.13) but decreased significantly with age (1.07 vs 0.65 mm; mean change: 0.43 mm; 

p < 0.05). 

 

Posterior Lens Surface Curvature and Asphericity:  

The vertex radius of curvature of the posterior lens surface decreased with accommodation (mean change: 0.58 mm; p < 

0.01) but not with age (p = 0.21) (Table 1). The conic constant of the posterior lens surface did not change with 

accommodation (p = 0.98) (Table 1), but increased, becoming more spherical (i.e. closer to a ‘k’ value of 1) with age (mean 

change: 0.87; p < 0.01). 

 

Summary of the Results: 

Table 1 provides the mean values of the various biometric parameters measured in the study. Figure 6 shows the 

changes in lens dimensions with accommodation (A) and age (B) using actual measured average dimensions. The data points 

in the figure represent mean ± 1 standard error of the mean (in most cases the error bars were smaller than the symbol size). 

Corneal apex for the various lens groups was fixed at ‘0’ for reference. The curve representing the posterior crystalline lens 

surface was based on the average vertex curvature and average conic constant derived from equation 1. The specific changes 

in lens axial and equatorial dimensions, ciliary body location and posterior lens surface curvature can be seen in Figure 6. 
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Discussion 

The MRI technique was successfully employed to study changes in crystalline lens shape with age and accommodation. 

The crystalline lens became thicker and more spherical in shape with both accommodation and age. However, equatorial 

diameter of the crystalline lens decreased with accommodation and increased with age. A significant change in the posterior 

surface radius of curvature was seen with accommodation. Age and accommodation related changes in crystalline lens and 

ciliary muscle position are discussed in detail below.  

MRI accuracy and resolution 

The resolution of the MRI technique was not as high as optical (< 10 microns) or ultrasound techniques (~100 microns 

with conventional ultrasound biometer or 2 microns with continuous high resolution biometer) (Drexler, Baumgartner, 

Findl, Hitzenberger, & Fercher, 1997; De Vries, Van Der Heijde, & Goovaerts, 1987). An important advantage of MRI is 

the unique ability to image whole lens and adnexa in-vivo, with ~100 micron resolution. With blinks and eye movements, it 

was possible in this study to detect changes of about 156 microns (see Results – Resolution and noise level). One of the aims 

of the study was to describe the three dimensional shape of the lens by obtaining images along sagittal and transverse axial 

sections. Unfortunately, the sagittal images were noisier than the transverse axial images, possibly due to eye movements and 

blinks. In the interest of accuracy, only results from the transverse axial images have been provided. At the region of contact 

between the iris and the anterior crystalline lens surface, the two surfaces were indistinguishable leading to exclusion of the 

anterior lens surface data from further analysis (Figure 2). The radius of curvature and asphericity values for the posterior 

lens surface alone are provided. 

 

Axial Distances 

As reported previously, anterior chamber depth decreased with accommodation and age and the lens thickness 

increased with accommodation and age (see Table 1 & Figure 4) (Bolz, Prinz, Drexler, & Findl, 2007; Drexler, et al., 1997; 

Dubbelman, Van der Heijde, & Weeber, 2005; Garner & Yap, 1997; Koeppl, Findl, Kriechbaum, & Drexler, 2005; Koretz, 
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Cook, & Kaufman, 1997; Ostrin, Kasthurirangan, Win-Hall, & Glasser, 2006; Tsorbatzoglou, Nemeth, Szell, Biro, & Berta, 

2007; Atchison, et al., 2008; Cook, Koretz, Pfahnl, Hyun, & Kaufman, 1994; Dubbelman, et al., 2001; Kashima, Trus, 

Unser, Edwards, & Datiles, 1993; Koretz, et al., 1989; Koretz, Strenk, Strenk, & Semmlow, 2004; Hermans, Pouwels,  

Dubbelman, Kuijer, van der Heijde, & Heethaar, 2009; Jones, et al., 2007; Kasthurirangan, Markwell, Atchison, & Pope, 

2008; Richdale, Bullimore, & Zadnik, 2008; Strenk, et al., 1999). The anterior segment depth did not change with 

accommodation, but increased with age (Figure 4). With accommodation, the decrease in anterior chamber depth (0.31 

mm) was similar to the increase in lens thickness (0.33 mm), leading to no change in anterior segment depth. A drawback of 

the current study was the inability to measure accommodative response in diopters during MR imaging. However, an 

increase in lens thickness of 0.33 mm would correspond to an accommodative response of 4.92 D using the lens thickness 

change to accommodation ratio of 0.067 mm/D reported by Ostrin et al (2006).. The mean accommodative changes 

reported in the current study correspond to about 5 D of response accommodation. With aging, the increase in lens 

thickness (0.97 mm or 0.02 mm/year) was twice the decrease in anterior chamber depth (0.45 mm or 0.01 mm/year) and 

twice the increase in anterior segment length (0.52 mm or 0.01 mm/year) (Atchison, et al., 2008). 

Some previous studies have reported that anterior segment depth increases with accommodation (Bolz, et al., 2007; 

Drexler, et al., 1997; Dubbelman, et al., 2005; Ostrin, et al., 2006). Koeppl et al (2005) did not find this with partial 

coherence interferometry although two other studies using the same technique did find an increase (Bolz, et al., 2007; 

Drexler, et al., 1997). The increase in anterior segment depth reported in these studies, for ~5 D accommodation, ranged 

from 0.04 to 0.09 mm. A possible reason for the lack of significant change in anterior segment depth in the present study 

could be due to the resolution limits of the MRI technique (0.156 mm) as the expected changes are only 0.1 mm or less. 

Another plausible reason, given the similar magnitude of change in anterior chamber depth and lens thickness, could be the 

supine posture of the subjects compared to the erect posture of subjects in past studies (personal communication with Dr. 

Adrian Glasser). In a supine posture, the crystalline lens may sag to its deepest position due to the effect of gravity, even in 

the unaccommodated state. Therefore, with accommodation, no further backward movement could have been possible. In 

the present study anterior chamber and segment depths measured in erect posture using an A-scan ultrasound were 

significantly smaller than the supine MRI measured values, with mean differences (paired t-tests; p < 0.05) of 0.12 and 0.11 
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mm respectively. However, lens thickness was not different between erect and supine measurements (paired t-test; p = 0.22). 

The difference between MRI and A-scan measured anterior segment depths is similar to the expected accommodative 

change (up to 0.10 mm). This lends support to the idea that erect vs supine posture of the subjects may determine whether 

or not anterior segment depth changes during accommodation. It is of interest to evaluate this effect of lens position during 

erect and supine postures and with accommodation in a future study. 

A significant change in posterior lens surface radius of curvature was seen with accommodation. Therefore, although 

there is no posterior movement of the posterior pole of the lens in this study (i.e. no change in anterior segment depth), the 

posterior surface of the lens actively participated in the accommodative process. 

 

Equatorial Lens Diameter and Shape 

Similar to previous reports, the equatorial diameter of the lens decreased with accommodation (Glasser, Wendt, & 

Ostrin, 2006; Strenk, et al., 1999; Wendt, Croft, McDonald, Kaufman, & Glasser, 2008) (Table 1 & Figure 5). In the 

current study, the decrease in equatorial diameter (0.32 mm) was equivalent to the increase in axial thickness of the lens 

(0.33 mm). Also, the ratio of crystalline lens thickness to diameter increased, approaching 0.5, indicating that the crystalline 

lens became more rounded with accommodation. It is interesting to note the similarity in magnitude of the change in lens 

axial thickness and equatorial diameter for a certain magnitude of accommodative response, suggesting that the changes in 

the two parameters per diopter of accommodation may also be equivalent. 

A significant increase in crystalline lens diameter with age was seen. The change in equatorial diameter (0.28 mm, 0.007 

mm/year) was only 1/3rd of the increase in crystalline lens thickness (0.97 mm) with age. Previous reports have shown no 

change in crystalline lens equatorial diameter with age in humans (Strenk, et al., 1999) or Rhesus monkeys (Wendt, et al., 

2008). In the present study mean crystalline lens diameters in two groups of subjects separated in age by about 40 years were 

compared. In past reports linear regression analysis was undertaken to study age-related changes in lens diameter (Strenk, et 

al., 1999; Wendt, et al., 2008). The magnitude of the changes reported in the present study could have been missed in past 

studies using regression analysis, due to the wide individual variation and lack of sufficient subjects in clearly delineated age 
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groups. A potential confounding factor leading to the observed age-related changes in equatorial diameter in the current 

study could have been the level of tonic accommodation in the younger subjects even when a far target was used to relax 

accommodation. This and previous studies measured unaccommodated lens diameters during far viewing and without any 

cycloplegic agent (Strenk, et al., 1999; Wendt, et al., 2008). A greater baseline tonic accommodation in younger subjects 

(leading to decrease in lens diameter) compared to older subjects could have resulted in an increase in lens diameter with 

age as seen in the current study. Nevertheless, present study is comparable to past studies because none of the studies used a 

cycloplegic agent. A future study should consider using cycloplegic agents to truly measure changes in unaccommodated lens 

equatorial diameter with age. 

The increase in the lens thickness to equatorial diameter ratio shows that the crystalline lens becomes more rounded 

with age. Across vertebrate species a flattened lens shape in the unaccommodated state leads to greater change in lens shape 

with an effort to accommodate (Fisher, 1969; Schachar, Pierscionek, Abolmaali, & Le, 2007). Schachar suggested that lens 

central thickness to lens equatorial diameter ratio of ≤0.60 is commonly seen in animals that have the capacity to 

accommodate (Schachar, et al., 2007). In the current study, while the LT/ED ratio of the crystalline lens increases with age 

(0.50 at 65 years of age compared to 0.41 at 22 years), it is still within the limits seen for accommodating animal species (i.e. 

≤0.60). Interestingly, the LT/ED ratio of the older lenses (0.50) is similar to the fully accommodated young crystalline lens 

(0.46), suggesting that there may be some decrease in accommodative functionality due to lens growth. The relatively 

spherical shape of the unaccommodated crystalline lens in older subjects and any associated changes with age in the 

geometric relationship between ciliary muscle and lens (Koretz & Handelman, 1988; Strenk, Strenk, & Koretz, 2005) may 

contribute to a faster decline in accommodative amplitude with the progression of presbyopia, even though the ultimate 

cause may still be increased lens stiffness (Atchison, 1995; Fisher, 1973; Glasser & Campbell, 1999; Heys, Cram, & 

Truscott, 2004; van Alphen & Graebel, 1991; Weeber, Eckert, Soergel, Meyer, Pechhold, & van der Heijde, 2005).   

Ciliary Body Movement 

Only a few studies have reported ciliary body/ciliary muscle movement with accommodation and age, especially in 

humans. In the current study no forward movement of the ciliary body was observed with accommodation or aging (Table 
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1). The lack of forward movement of the ciliary body with accommodation is in accordance with two studies in humans 

(Baikoff, Lutun, Wei, & Ferraz, 2004; Strenk, Strenk, & Guo, 2010),) while ultrasound imaging in humans and Rhesus 

monkeys have shown forward movement of the ciliary muscle apex with accommodation (Stachs, et al., 2002; Croft, Glasser, 

Heatley, McDonald, Ebbert, Dahl, Nadkarni & Kaufman, 2006). An MRI study in humans showed a more forward 

positioning of the ciliary muscle with age (0.009 mm per year; Strenk, et al., 2010), which was not seen in the current study. 

It is likely that the lack of any measurable forward ciliary movement during accommodation or with age in the current study 

was due to the limited resolution of our MRI technique (0.156 mm). 

Centripetal movement (i.e. decrease in ciliary ring diameter) was observed with accommodation and aging similar to 

previous studies (Baikoff, et al., 2004; Strenk, et al., 1999; Strenk, Strenk, & Guo, 2006) (Table 1 & Figure 5). The 

circumlental space, the space between lens equatorial edge and ciliary body tip, did not change with accommodation and 

decreased with age as shown previously in humans (Strenk, et al., 2006) and Rhesus monkeys (Glasser, Croft, Brumback, & 

Kaufman, 2001). In young Rhesus monkeys the circumlental space has been shown to remain stable or decrease only slightly 

during Edinger Westphal (EW) nucleus stimulated accommodation, while significant changes were observed during supra-

maximal or pharmacological (eg: carbachol) stimulation of accommodation (Ostrin & Glasser, 2007). The lack of changes in 

circumlental space in young humans in the current study may be because the ciliary muscle effort was within the maximum 

accommodative amplitude of the subjects. 

Circumlental space decreased by 40% over the 40 year age gap between young and older subjects. This decrease was due 

to a combination of increase in lens equatorial diameter (0.28 mm) and decrease in ciliary ring diameter (0.57 mm) leading 

to 0.43 mm decrease in circumlental space. Following cataract surgery, the ciliary body has been shown to move outward 

(i.e. towards its position in young humans) (Strenk, et al., 2010). This observation, along with the findings of the current 

study, suggests that the axial growth of the lens with age may increase the natural tension in the anterior zonular fibers 

during relaxed accommodation, in turn exerting an inward pull on the ciliary body leading to a reduction in circumlental 

space. This force may be partly or fully released following cataract surgery due to the removal of lens material and collapse of 

the capsular bag. The magnitude of the re-positioning of the ciliary muscle following cataract surgery will be quite 

informative in determining the success of accommodating IOLs. 
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Lens Surface Curvature and Asphericity 

The objective of the current study was to describe the overall biometric shape of the lens surface and not a central 

optically relevant region. All previous studies on the lens surface shape had considered only a central zone and are not 

directly comparable to the current study. With accommodation, the radius of curvature of the posterior lens surface 

decreased as reported previously with a variety of optical methods in humans and Rhesus monkeys (Brown, 1973; 

Dubbelman, et al., 2005; Garner & Yap, 1997; Kirschkamp, Dunne, & Barry, 2004; Koretz, et al., 1987; Koretz, Cook, & 

Kaufman, 2002; Rosales, Dubbelman, Marcos, & van der Heijde, 2006; Rosales, Wendt, Marcos, & Glasser, 2008) (Table 

1). The conic constant of the posterior surface did not change with accommodation (Table 1). Previous studies were based 

on optical techniques and it was not clear if the observed changes in the posterior lens surface were due to any optical 

artefacts when measuring through an accommodating lens. The current study has used MRI to demonstrate clear changes in 

the posterior lens surface during accommodation using a non-optical imaging technique. The anterior lens surface curvature 

could not be reliably measured in the current study primarily due to the loss of data at the region of contact between the iris 

and anterior lens surface.  

With age, the radius of curvature of the posterior lens surface did not change and the conic constant increased. The 

trends in radius of curvature are largely supported by literature (Atchison, et al., 2008; Brown, 1973; Koretz, et al., 2004), 

with only two studies showing some decrease in posterior lens radius with age (Dubbelman & Van Der Heijde, 2001; 

Koretz, Cook, & Kaufman, 2001). The mean posterior lens radius of curvature of 6.08 mm is at the lower end of past 

reports of 5.6 mm to 7.7 mm (Koretz, et al., 2004, Koretz, et al., 2004, Dubbelman & Van Der Heijde, 2001, Atchison, et 

al., 2008, Brown, 1973). Dubbelman et al (2001) reported no changes in the conic constant of the posterior surface with 

age. It is difficult to compare the findings of the current study directly with Dubbelman et al’s Scheimpflug measurements 

because of the differences in lens zone diameter considered and the potential influence of the optical technique on posterior 

lens surface measurements. The current study shows that the posterior lens surface becomes more spherical with age. 
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Mechanism of Accommodation 

The various changes in the crystalline lens identified during accommodation are shown in Figure 6A based on the mean 

data from Table 1. During accommodation, the anterior chamber depth decreases, the crystalline lens increases in thickness 

and decreases in diameter with a reduction in the radius of curvature of the posterior lens surface. The increase in lens 

thickness is equal to the decrease in anterior chamber depth with no change in anterior segment depth. The decrease in 

equatorial diameter is equal in magnitude to the increase in lens thickness. The ciliary body moves inward without any 

forward movement, while the circumlental space remains unchanged. The lenticular findings strongly support the 

Helmholtz theory of accommodation with clear demonstration of the role of the posterior surface during accommodation. 

The lack of any decrease in circumlental space for maximum accommodation, combined with past reports of a decrease in 

circumlental space with supramaximal stimulation (Ostrin & Glasser, 2007), suggest that maximum accommodation in 

conscious young humans is achieved with ciliary muscle effort in reserve, supporting the Hess-Gullstrand theory which is 

that the amount of ciliary muscle contraction required for a given change in accommodation response remains the same 

throughout life (Atchison, 1995; Eskridge, 1984; Gullstrand, 1924). 

Mechanism of Presbyopia 

The various changes in the crystalline lens with age are shown in Figure 6B using mean data from Table 1. Age-related 

crystalline lens growth leads to a decrease in anterior chamber depth, an increase in lens thickness three (3) times more than 

the increase in lens diameter and no change in the vertex radius of curvature of the posterior lens surface. The increase in 

lens thickness manifests as a similar decrease in anterior chamber depth and an increase in anterior segment depth. Since 

lens thickness increases significantly more than the lens diameter, the ratio of thickness to diameter increases with age 

(approaching 0.50). The posterior lens asphericity approached ‘1’ i.e. towards spherical surfaces. The ciliary body moves 

inward with no forward movement. 

A majority of the age-related lenticular changes and the ciliary body position mimic accommodative changes suggesting 

that the decline in accommodative amplitude with presbyopia may be accelerated by age-related changes in lens shape and 

ciliary body position (i.e. inward movement). A recent study reported that the ciliary body undergoes a centrifugal 
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movement following cataract surgery (Strenk, et al., 2010),) presumably due to the release in inward forces on the ciliary 

body after removal of a cataractous and presbyopic crystalline lens. Such a change, if consistently demonstrated, will increase 

the promise of presbyopia reversal procedures in restoring useful accommodation. An important outcome of this study is 

the age-related normative values given in Table 1, that will help in planning accommodating-IOL designs and presbyopia 

reversal procedures to better suit the accommodative anatomy of older patients undergoing cataract surgery to maximize 

accommodative potential. 
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A B

C D

 

Figure 1. (A) Transverse axial MR image of a 23 year old subject during far viewing. (B) The same image has been rotated using 

custom developed Matlab software to orient the eye with cornea above, sclera below and a horizontal crystalline lens with no tilt. 

Dashed white lines indicate various automatically measured intra-ocular dimensions including anterior chamber depth, lens thickness, 

lens diameter, ciliary ring diameter and axial length. Conic curve fits to lens surfaces are indicated by thick white lines. (C) MR image of 

the same 23 year old subject during near viewing. (D) MR image of a 65 year old subject during far viewing.  
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Figure 2: Examples of conic curve fits to anterior and posterior lens surfaces in one eye of a young subject during relaxed (A) and 

accommodated (B) states, and in one eye of an older subject during relaxed state (C). These examples represent posterior lens radius 

of curvature values close to the average value within each condition. The anterior lens surface fits suffered from missing data at the 

region of contact between the iris and the crystalline lens. Results on anterior lens surface fits were excluded from the study. The 

posterior lens surface fits were excellent with r-squared values greater than 0.95 and rms fit error less than 0.1 mm.  
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Figure 3. (A) Lens thickness measured with A-scan (X-axis) and MRI (Y-axis) show good correlation, albeit with one outlier marked in a 

square. A significant linear relationship (excluding the outlier) was found with slope not different from 1 and intercept not different from 

zero. No difference was seen between the two data sets based on a paired t-test (p = 0.22). (B) Bland-Altman analysis of lens thickness 

data showed a mean difference close to zero and no obvious trends. (C) Axial length measured with A-scan (X-axis) and MRI (Y-axis) 

show good correlation with slope not different from one and intercept not different from zero. (D) Bland –Altman analysis of axial length 

data showed that, on average, MRI measurements were 0.79 mm larger than A-scan values, with no other obvious trends in the data. 
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Figure   4. Box plot showing median and range of axial distances of anterior chamber depth, lens thickness and anterior segment length 

for young subjects during far viewing (YF) and near viewing (YN),) and for older subjects during far viewing (OF). Statistically significant 

differences in means from YF data are indicated with ‘***’. Anterior chamber depth decreased with accommodation and age. Lens 

thickness increased with accommodation and age. Anterior segment length did not change with accommodation, but increased with 

age. 

                      

Figure 5. Box plot showing median and range of equatorial values of crystalline lens diameter and ciliary ring diameter for young 

subjects during far viewing (YF) and near viewing (YN),) and for older subjects during far viewing (OF). Statistically significant 

differences in means from YF data are indicated with ‘***’. Lens diameter decreased with accommodation and increased with age. 

Ciliary ring diameter decreased with accommodation and age. 
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Figure 6. Changes in crystalline lens and ciliary body apex with accommodation (A) and age (B). In (A),, the corneal apex is fixed at ‘0’ 

for unaccommodated (filled circle and solid lines in blue) and accommodated (open square and dashed lines in red) conditions. The 

data points are mean ± 1 SEM values and the lines indicating lens surfaces are based on mean radii of curvature and conic constants. 

In (B),data for older subjects (open square and dashed lines in red) are plotted using the same scheme as (A).. The overall changes in 

lens size and shape can be observed in the figures. The anterior lens surface could not be well fit with conic curves due to missing data 

at the region of iris overlap. The anterior pole of the crystalline lens moved forward with accommodation and aging. The ciliary body 

apex moved inward with accommodation and age, but no forward movement in either case was observed. 
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Tables 

Parameter 

Young    
Far 

Young 
Near 

Older     
Far 

mean      
(SD) 

mean       
(SD) 

mean       
(SD) 

Age (years) 22.32       
(3.39) 

22.32       
(3.39) 

63.61*       
(3.09) 

Axial Length (mm) 24.27       
(0.79) 

24.20       
(0.76) 

24.36       
(0.41) 

Anterior Chamber Depth (mm) 3.69        
(0.29) 

3.38*        
(0.30) 

3.24*        
(0.25) 

Lens Thickness (mm) 3.69        
(0.25) 

4.02*        
(0.27) 

4.66*        
(0.36) 

Anterior Segment Depth (mm) 7.38        
(0.28) 

7.40        
(0.28) 

7.90*        
(0.31) 

Ciliary Body Depth (mm) 4.66        
(0.29) 

4.64        
(0.30) 

4.70        
(0.24) 

Lens Equatorial Diameter (mm) 9.03        
(0.30) 

8.71*        
(0.29) 

9.31*        
(0.29) 

Lens Thickness/ Equatorial Diameter  0.41        
(0.03) 

0.46*        
(0.04) 

0.50*        
(0.05) 

Ciliary Ring Diameter (mm) 11.18       
(0.54) 

10.74*       
(0.59) 

10.61*       
(0.49) 

Posterior Surface Radius of Curvature 
(mm) 

-5.66        
(1.00) 

-5.08*       
(0.71) 

-6.08        
(0.74) 

Posterior Surface Conic Constant ‘K’ 0.22        
(0.64) 

0.22        
(0.57) 

1.09*        
(0.44) 

 

Table 1. Mean (± SD) values for biometric parameters measured from transverse axial MR images for young subjects during far and 

near viewing and older subjects during far viewing. Statistically significant differences from young far viewing data for each parameter 

are indicated with ‘*’. 
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