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ABSTRACT OF THE DISSERTATION 

 

The Growth and Ecology of Upper Cambrian Microbialite Biostromes from the Notch 

Peak Formation in Utah 

 

by 

 

Ken P. Coulson 

Doctor of Philosophy, Graduate Program in Earth Science 

Loma Linda University, June 2016 

Dr. Leonard Brand, Chairperson 

 

Exposure of carbonate rocks within the uplifted mountains of southwestern Utah 

presents a unique opportunity to study the growth, morphology and ecology of two upper 

Cambrian microbialite reefs located within the Hellnmaria Member of the Notch Peak 

Formation. The first reef contains meter-length, strongly elongate microbialites that grew 

in a deep, subtidal marine environment. These elongate microbialites formed as a result 

of coalescence of round ‘algal’ heads, a process known to produce compound 

microbialite structures in shallow water, but seldom explored as a key factor in the 

elongation of deep, subtidal forms that grew in ancient environments. The second reef 

contains lithistid sponge-microbial ‘stromatolites,’ a new type of metazoan bio-structure 

that has only been described from the Carboniferous and Triassic periods. This discovery 

has important implications when reconstructing middle to upper Cambrian reef-building 

communities, as these periods are assumed to have a very low diversity of metazoan 

reefal components. Taken together, both reefs shed light on the paleoecology and 

paleoenvironment of upper Cambrian microbialite reef-building communities.  
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CHAPTER ONE 

INTRODUCTION 

Some of the world’s most impressive upper Cambrian microbialite reefs are found 

in the Great Basin region on the west coast of the United States (Fig. 1). Exposure of 

upper Cambrian carbonate rocks within the uplifted mountains of southwestern Utah, 

presents a unique opportunity to study some of these Cambrian microbialite reefs that 

appear stacked in multiple beds in and around the northern House Range (Fig. 1). Hintze 

et al. (1988) and Miller et al. (2003) provided a cursory account of some of these 

microbialites while describing the local stratigraphy, but a formal investigation into their 

genesis, growth and morphology has only now been published with the writing of this 

dissertation. Two beds were chosen from a total of 11 beds found within the upper half of 

the Hellnmaria Member of the Notch Peak Formation, for the purpose of answering 

specific questions related to their paleoenvironment and ecology. Several important 

conclusions have been developed from this research which will aid future microbialite-

workers and carbonate sedimentologists interpret similar paleoenvironments.  

 

Microbialite Definition 

Generally, microbialites are defined as: “Organosedimentary deposits that have 

accreted as a result of a benthic microbial community trapping and binding detrital 

sediment and/or forming the locus of mineral precipitation (Burne and Moore, 1987, p. 

241-242).” The term “microbialite” is an umbrella term that comprises four different 

subgroups: stromatolites, thrombolites, dendrolites and leiolites (Fig. 2). The latter will 

not be discussed any further.
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Fig. 1. The Great Basin region. Red star indicates location of the House Range, 

southwestern Utah. Author: Karl Musser. Image used under Creative Commons 

Attribution-Share Alike 3.0 Unported lic. Image can be downloaded from: 

https://commons.wikimedia.org/wiki/File:Greatbasinmap.png 
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Fig. 2. Microbialite classification. From left to right: conical, domal, columnar, and 

branching-columnar macrostructure. Internal mesostructure dictates nomenclature. From 

left to right: conical stromatolite, domal stromatolite, columnar thrombolite and 

branching-columnar dendrolite. Illustrations adapted from Shapiro and Awramik (2000, 

p. 6). 
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Microbialite Classification 

Microbialites are classified using one or a combination of just four 

macrostructural shapes: conical, domal, columnar, and branching-columnar (Fig. 2). 

Differentiating between stromatolite, thrombolite and dendrolite occurs at the 

mesostructural scale; at this level, the investigator is interested in the texture or fabric 

within the macrostructural shape (Fig. 2); Stromatolites have discrete laminations, 

thrombolites have a distinct clotted fabric, and dendrolites have a branch or flame-like 

fabric. These distinctions will need to be kept in mind during the flow of discussion, as 

nomenclature may change from one paragraph to the next without further explanation.  

 

Microbialite Growth Processes 

Microbialites accrete at a sub-laminar to laminar level using one of three general 

processes. 1) There is a purely mechanical interaction between benthic, microbial 

communities and detrital grains of sediment. Here, the sticky EPS sheaths of microbes 

trap and bind sediment grains (Burne and Moore, 1987).  2) Precipitation of calcite by 

purely biological factors due to chemical changes associated with photosynthesis (Dupraz 

and Visscher, 2005; Berelson et al., 2011). 3) Precipitation of calcite by purely inorganic 

factors due to changes in environmental and/or chemical factors (Serebryakov and 

Semikhatov, 1974).  

A fourth factor that as yet remains unaddressed in the microbialite community is 

the recent discovery of laminated sponge-microbial ‘stromatolites’ (Luo and Reitner, 

2014, 2015; this dissertation). There presently exists an ambiguity as to what these 
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structures should be called. Are they stromatolites, ‘stromatolites,’ laminated sponge-

microbialites, or something else?  

 

Geological Background 

The western continental margin of Laurentia is thought to have formed during the 

Late Proterozoic rifting of Rodinia. According to Miller et al. (2003, p. 58), lower 

Paleozoic strata of the eastern Great Basin were deposited on a subsiding carbonate 

platform that provided over 4500 m of early Paleozoic accommodation space. 

Superimposed throughout these sediments are large-scale, second-order sequences that 

deposited the Cambrian/Ordovician Orr and Notch Peak Formations as well as the 

Ordovician House Limestone (Miller et al., 2003) in what is now southwestern Utah (Fig. 

1 in chapter 2). Central to this discussion is the microbialite-bearing Notch Peak 

Formation which has been divided into three mappable members: the Hellnmaria, Red 

Tops and Lava Dam (Fig. 2A in chapter 2). All three members are traceable from within 

the House and Confusion Ranges in western-central Utah to the Wah Wah Mountains in 

the south (Hintze et al., 1988). According to Palmer, the Notch Peak Formation was 

deposited during the third interval of the Sauk mega-sequence (Palmer, 1981). Miller et 

al. (2003) broke the Sauk III interval into 14 smaller sequences (See illustration in Miller 

et al. 2003, p. 27). The Hellnmaria Member of the Notch Peak Formation includes the 

upper half of sequence 1, and all of sequences 2-4 in Miller et al. (2003).   

Conodont biostratigraphic correlations by Miller et al. (2003, p. 27) assign the 

microbialite-bearing beds of the upper Hellnmaria Member to the Proconodontus 

tenuiserratus through Proconodontus muelleri zones. This places the upper Hellnmaria 
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Member in the late Cambrian Sunwaptan Stage of the Millardan Series (middle 

Furongian) (Fig. 2A in chapter 2). According to Miller et al. (2003), the lower to middle 

parts of the Hellnmaria Member chiefly consist of thin-bedded to laminated dark lime 

mudstones, that change to intraclastal, ooid and oncoidal packstones and grainstones 

towards the top (Miller et al., 2003, p. 30). At its type section, only the upper 154 m of 

the 366 m thick Hellnmaria Member contains microbialite-bearing beds that are 

completely absent from the lower interval (Fig. 2A in chapter 2). Miller et al. (2003) 

interpret the Hellnmaria Member as an overall sea-level highstand that shallows 

significantly towards its top. This shallowing-upwards succession is terminated by the 

Red Tops Lowstand (Miller et al., 2003,  p. 27), where clean, largely homogeneous, fine 

to medium-grained stromatolitic limestones and dolostones are abruptly truncated by a 

coarse-grained calcarenite deposit.  

 

The House Range Embayment 

The House Range Embayment (HRE) was an “asymmetrical [fault-controlled] 

trough that deepened [in a southeasterly direction] and widened as it extended—400 km 

westward… (Rees, 1986, p. 1054).” The southeast end of the embayment represented a 

basin-like, deep-water environment while the northwest boundary represented its 

shallow-water continuation (Fig. 3). This embayment acted like a locally steepened 

carbonate ramp within the larger distally steepened carbonate platform of the east 

Laurentian passive margin. The literature is replete with descriptions of the HRE and 

associated facies-related processes that both prograded and retrograded up and down the 

ramp in response to varied allocyclic and/or autocyclic controls (Kepper, 1972; Rees, 
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1986; Brady and Keopnick, 1979; Miller et al., 2003; Halgedahl et al., 2009). According 

to Rees (1986), the Notch Peak microbialites are situated within the ancient HRE trough, 

just to the north of the southern fault boundary. This may be significant since the 

southern fault is described as discrete, with deeper water facies found to its north, within 

the HRE trough, and shallow water deposits found to its south, upon the Laurentian 

platform proper (Rees, 1986). The geographic area within the research may, therefore, be 

located on a mini steepened ramp dipping northwest down into the HRE trough. A 

northwesterly thickening of the wackestone-grainstone interval located between beds 10 

and 11 (Fig 2B in chapter 2) seems to support this interpretation (Appendix A).  

 

The Hellnmaria Member Microbialites 

Hintze et al. (1988) bundle all microbialites into a single package of strata that 

spans the upper 154 m of the Hellnmaria Member (Fig. 2A in chapter 2). I re-measured 

this segment of the type section (Fig. 2B in chapter 2) being especially attentive to 

specific microbialite beds, bed thicknesses and general microbialite characteristics. I 

found eleven distinct microbialite-bearing beds separated by intervening wackestone-

grainstone intervals that span the upper 154 m of the Hellnmaria Member. All eleven 

beds are morphologically unique, although substantial overlap does exist from one bed to 

the next. Beds 9 and 11 are the focus of this dissertation. 

Bed 9 is a microbialite-bearing unit exhibiting a remarkable change in 

morphology when seen in vertical section. Microbialites change from small, round,  
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Fig. 3. House Range Embayment adapted from Rees (1986). sHR = southern House 

Range, Steamboat Pass area. HR = House Range, Marjum Pass area. RS = Research Site. 

Arrow indicates approximate orientation for elongate microbialite long-axes 

(perpendicular to southern HRE fault boundary). Notice that research site is only located 

about 8-10 km to the north of the southern HRE boundary. 
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decimeter-sized forms to large, elongate structures many m in length, branching back to 

round profiles at the top of the bed.  

Bed 11 is a 1 to 3 m thick microbialite-bearing unit that contains a tightly packed 

field of round to sub-round microbialites covering a large geographic area of 

approximately 20 km2. Microbialite meso-scale fabric is best described as stromatolitic, 

and many forms have a large core composed of mini-stromatolites. Diameters vary from 

about 40 – 70 cm, and are very well exposed in plan-view at multiple locations. Heights 

vary from a few dm to about 70 cm and in cross-section widen slightly towards the top.  

 

Synopsis for Chapters 2 and 3 

Chapter 2 

Elongate microbialites represent important paleoenvironmental indicators for 

interpreting many sedimentary facies associated with ancient peritidal environments 

(Hoffman, 1967; Logan et al., 1974; Serebryakov and Semikhatov, 1974; Playford et al., 

2013).  

Most workers agree that the primary factors involved in the elongation of strongly 

elongate microbialites are hydrodynamics, microbially influenced trapping and binding of 

sediment, and/or precipitation of peloidal cement, and intertidally generated abrasion and 

mehanical scour over sheet-like microbial mats. Some of these processes, however, are 

inadequate for explaining the construction of strongly elongate structures in deep, 

subtidal, or wave-restricted environments. 

Chapter 2 examines the deep-subtidal, elongate microbialites of bed 9, and 

suggests that these strongly elongate structures formed as a result of coalescence, a 

process known to produce compound microbialite structures in shallow water, but seldom 
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explored as a key factor in the elongation of deep, subtidal forms that grew in ancient 

environments.  

My aims in chapter 2 are: 1) To evaluate the Notch Peak elongate microbialites, 

demonstrating the importance of elongate-related coalescence in the construction of these 

forms. 2) To suggest that some of the processes involved in the construction of modern 

elongate analogues do not correlate with the Notch Peak elongate forms. And 3) To 

propose some useful criteria from which to approach the subject of microbialite 

morphogenesis in general. 

 

Chapter 3 

The evolution of Cambrian reefs has traditionally been interpreted in terms of two 

general reef-building stages; the archaeocyath-calicimicrobe consortium that dominated 

the early Cambrian, followed by a largely microbial stage that dominated the middle to 

late Cambrian, subsequent to the achaeocyath decline in the late early Cambrian (Klappa 

and James, 1980; James and Gravestock, 1990; Shapiro and Rigby, 2004; Li et al., 2015). 

An increasing number of recent papers, however, are demonstrating that metazoan reef-

builders may have been more prevalent during these periods than was previously thought 

(Johns et al., 2007; Hong et al., 2014; Adachi et al., 2015) (Fig. 4).  

In chapter 3, I contribute to this growing number of middle and upper Cambrian 

reefal discoveries by examining bed 11, an upper Cambrian sponge-microbial reef 

located at the top of the Hellnmaria Member. This reef is unlike other coeval metazoan 

reefs, in that it contains small-scale, weakly fused lithistid sponges that encrusted 

automicritic laminae taking on a similar lamina-like morphology. Coeval sponge-

microbial reefs are typically dominated by frame-building anthaspidellids that are 
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randomly scattered throughout the sponge-microbial buildups (Shapiro and Rigby, 2004; 

Kruse and Zhuravlev, 2008; Hong et al., 2012). The overall meso-scale fabric of the 

Notch Peak associations, however, are stromatolitic, and therefore represent a significant 

departure from coeval sponge-microbial reefal architecture. Similar sponges have 

recently been found in Carboniferous and Triassic ‘stromatolites’ (Luo and Reitner 2014, 

2015). Taken together, these factors could easily lead to the misidentification of 

metazoan components in other microbial buildups at other locations around the world.   

My aims in this chapter are: 1) To suggest that as yet unclassified lithistid 

sponges, together with microbial reef-building communities, mutually constructed 

laminated ‘stromatolites.’ 2) To propose that these metazoan ‘stromatolites’ have largely 

gone unnoticed due to the sponge’s lamina-like morphology, size and preservation 

potential. And 3) To compare well preserved sponge spicule networks with deteriorated 

spicule networks and fenestral networks, for the purpose of providing some petrographic 

and taphonomic criteria that may help identify sponge-microbial associations in similar 

rocks. 
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Fig. 4. Recent middle to upper Cambrian fossilized reef discoveries. Modified and 

expanded from Hong et al. (2012). A. sponge = Anthaspidellid sponge; D. Sponge = 

Demosponge; H. Sponge = Heteractinid sponge. 1. Johns et al. (2007); 2. Johns et al. 

(2007); 3. Johns et al. (2007); 4. Lee et al. (2010), Chen et al. (2014), Lee et al. (2014); 5. 

Present study; 6. Shapiro and Rigby (2004); 7. Kruse and Zhuravlev (2008); 8. Kruse and 

Reitner (2014); 9. Park et al. (2011); Adachi et al. (2015); 10. Hong et al. (2012); 11. 

Kruse and Reitner (2014). Bold print highlights contribution of this research. 
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Abstract 

Strongly elongate microbialites having axial ratios greater than 4:1 and sometimes 

exceeding 10:1, are currently forming in modern, shallow-subtidal to intertidal 

environments. Construction of these elongate forms is greatly dependent on 

hydrodynamics, microbially influenced trapping and binding of sediment, and/or 

precipitation of peloidal cement, and intertidally generated abrasion and mechanical 

scour over sheet-like microbial mats. Some of these processes, however, are inadequate 

for explaining the construction of strongly elongate structures in deep-subtidal or wave-

restricted environments. Since elongate morphogenesis is an important factor in 

paleoenvironmental reconstructions, ancient examples of elongate-related growth 

sequences should be documented and compared with modern analogues. This paper 

explores such a growth sequence from a 13 meter thick, middle Furongian (upper 
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Cambrian) microbialite bed in western Utah that records a morphological succession of 

deep, subtidal microbialites in vertical section over a large geographical area. 

Microbialites change from round, decimeter-sized forms to large, elongate structures 

many meters in length, reverting back to round, centimeter-sized shapes at the top of the 

bed. We suggest that these elongate microbialites formed as a result of coalescence, a 

process known to produce compound microbialite structures in shallow water, but seldom 

explored as a key factor in the elongation of deep, subtidal forms that grew in ancient 

environments.  

 

Introduction 

Elongate microbialites represent important paleoenvironmental indicators for 

interpreting many sedimentary facies associated with ancient peritidal environments 

(Hoffman, 1967; Logan et al., 1974; Serebryakov and Semikhatov, 1974; Young and 

Long, 1976; Playford, 1980; Playford et al., 2013; Mariotti et al., 2014). Most researchers 

agree that the primary factors involved in microbialite formation are microbially induced 

trapping and binding of sediments, and/or precipitation of peloidal cements, and that 

structure elongation is a result of hydrodynamics and mechanical scour. 

Microbialite accretion occurs due to the trapping and binding of detrital grains 

(Logan et al., 1964; Cloud and Semikhatov, 1969; Logan et al., 1974; Semikhatov et al., 

1978; Playford, 1980; Burne and Moore, 1987) within the mucilaginous Extracellular 

Polymeric Substance (EPS) of cyanobacteria (Dupraz and Visscher, 2005; Berelson et al., 

2011). These particles are then cemented by microbially influenced precipitation of 

calcite, lithifying and preserving the structure so that it can act as a substrate for further 
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growth (Reid et al., 2000; Bosak et al., 2013). Microbially influenced precipitation of 

calcite may also act as the principal mode of microbialite accretion, especially in ancient 

forms (Serebryakov and Semikhatov, 1974). Specific to the process of elongation is the 

direction of microbial growth. Actualistic studies from Shark Bay, Western Australia, the 

Bahamas and Bermuda, have shown that microbialite surfaces exposed to up-current 

flow, tend to over-steepen and accrete sediment in that direction, producing a streamlined 

structure parallel to flow (Logan, 1961; Logan et al., 1964; Gebelein, 1969; Logan et al., 

1974; Playford and Cockbain, 1976; Playford, 1980; Dravis, 1983; Dill et al., 1986; 

Shapiro, 1990; Playford et al., 2013). Gebelein, for example (1969, p. 65), demonstrated 

that marine stromatolitic biscuits growing in Bermuda over-steepen and thicken in two 

directions during bi-directional flow as long as sediment supply is equal in both 

directions. In contrast, surfaces protected from sediment influx will not thicken at those 

locations.  

Scour by mechanical abrasion within microbialite interspaces is a well understood 

process that has also been observed sculpting elongate and ellipsoid microbialites in 

Shark Bay and in the Bahamas at both Highbourne Cay and Lee Stocking Island (Logan 

et al., 1964; Logan et al., 1974; Hoffman, 1976; Playford, 1980; Dravis, 1983; Dill et al., 

1986; Shapiro, 1990; Andres and Reid, 2006; Playford et al., 2013). Bosak et al. (2013) 

have summarized this process well, detailing the importance of moving, sediment-laden 

water which not only prevents mat growth between individual microbialites, but also acts 

as an abrasive, eroding fragments from microbialite walls, especially the lower 

extremities, and depositing them between columns and/or ridges.  
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Of course, other factors are involved in microbialite growth and elongation such 

as: sunlight and illumination angle, bed surface topography, type of substrate, size of 

detrital particles, and varieties of micro and macro biota (Playford, 1980; Feldmann and 

McKenzie, 1998; Ginsburg and Planavsky, 2008; Bosak et al., 2013), but hydrodynamics, 

microbially influenced trapping and binding of sediment, and/or precipitation of peloidal 

cement, and intertidally generated abrasion and mechanical scour over sheet-like 

microbial mats seem to be the major mechanisms through which modern, elongate 

microbialite arrangements are constructed. Some of these processes, however, are 

inadequate for explaining the construction of strongly elongate structures in deep, 

subtidal, or wave-restricted environments. 

This paper examines deep-subtidal, elongate microbialites from a 13 meter thick, 

middle Furongian microbialite bed from the Notch Peak Formation in western Utah. We 

suggest that the strongly elongate microbialites within this bed formed as a result of 

coalescence, a process known to produce compound microbialite structures in shallow 

water, but seldom explored as a key factor in the elongation of deep, subtidal forms that 

grew in ancient environments.  

Our aims in this paper are: 1) To evaluate the Notch Peak elongate microbialites, 

demonstrating the importance of elongate-related coalescence in the construction of these 

forms. 2) To suggest that some of the processes involved in the construction of modern 

elongate analogues do not correlate with the Notch Peak elongate forms. 3) To propose 

some useful criteria from which to approach the subject of microbialite morphogenesis in 

general. 

 



 

24 

Geologic background 

The western continental margin of Laurentia is thought to have formed during the 

Late Proterozoic rifting of Rodinia. According to Miller et al. (2003, p. 58), lower 

Paleozoic strata of the eastern Great Basin were deposited on a subsiding carbonate 

platform that provided over 4500 m of early Paleozoic accommodation space. 

Superimposed throughout these sediments are large-scale, second-order sequences that 

deposited the Cambrian/Ordovician Orr and Notch Peak Formations as well as the 

Ordovician House Limestone (Miller et al., 2003) in what is now southwestern Utah (Fig. 

1). Central to this discussion is the microbialite-bearing Notch Peak Formation which has 

been divided into three mappable members: the Hellnmaria, Red Tops and Lava Dam 

(Fig. 2A). All three members are traceable from within the House and Confusion Ranges 

in western-central Utah to the Wah Wah Mountains in the south (Hintze et al., 1988). 

According to Palmer, the Notch Peak Formation was deposited during the third interval 

of the Sauk mega-sequence (Palmer, 1981). Miller et al. (2003) broke the Sauk III 

interval into 14 smaller sequences (See illustration in Miller et al., 2003, p. 27). The 

Hellnmaria Member of the Notch Peak Formation includes the upper half of sequence 1, 

and all of sequences 2-4 in Miller et al. (2003) and has been interpreted in terms of an 

overall sea-level highstand.   

Conodont biostratigraphic correlations by Miller et al. (2003, p. 27) assign the 

microbialite-bearing beds of the upper Hellnmaria Member to the Proconodontus 

tenuiserratus through Proconodontus muelleri zones. 
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Fig. 1. Geological setting of research area. A) Satellite image of the USA showing state 

of Utah. Image Public Domain. Small black rectangle enlarged in B. B) Image adapted 

from Google Earth showing research area. Black rectangle enlarged in C. C) Image of 

research area provided by MyTopo indicating outcrop locations. Outcrops and UTM 

coordinates are as follows from NW to SE: 2U31, 296590 4332862; 2U28, 297509 

4330507; 2U25, 299088 4331582; U16, 299798 4331367; U30, 301002 4329694; U63, 

302195 4329234; 2U30, 302234 4329081. Type section (Hintze et al., 1988) runs through 

U63 (All 3 black lines). 
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Fig. 2. Stratigraphy and biostratigraphy. A) Stratigraphic column of the Notch Peak 

Formation, adapted and simplified from Hintze et al. (1988), and conodont zonation 

adapted from Miller et al. (2003). Notice that in the Hellnmaria Member, microbialites 

are only found in the top 154 m. B) Stratigraphic column for top 154 m of the Hellnmaria 

Member of the Notch Peak Formation measured at the type section (only beds 9,10 and 

11 could be correlated across the research area. Bed thicknesses vary depending on 

outcrop). Although each bed differs from the next, all eleven beds can be categorized 

using six basic facies. Illustrations of microbialites appear as plan-view representations, 

since at most outcrops this was the exposed surface available for inspection. Tapered 

limestone/dolostone sections communicate a general coarsening upward trend. 
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This places the upper Hellnmaria Member in the late Cambrian Sunwaptan Stage of the 

Millardan Series (middle Furongian) (Fig. 2A). According to Miller et al. (2003), the 

lower to middle parts of the Hellnmaria Member chiefly consist of thin-bedded to 

laminated dark lime mudstones, that change to intraclastal, ooid and oncoidal packstones 

and grainstones towards the top (Miller et al., 2003, p. 30). At its type section, only the 

upper 154 m of the 366 m thick Hellnmaria Member contains microbialite-bearing beds 

that are completely absent from the lower interval (Fig. 2A). Miller et al. (2003) interpret 

the Hellnmaria Member as an overall sea-level highstand that shallows significantly 

towards its top. This shallowing-upwards succession is terminated by the Red Tops 

Lowstand (Miller et al., 2003, p. 27), where clean, largely homogeneous, fine to medium-

grained stromatoltic limestones and dolostones are abruptly truncated by a coarse-grained 

calcarenite deposit.  

 

Methods 

Seven sections of the middle Furongian, Hellnmaria Member were measured, 

described and analyzed (Fig. 1) so as to record and interpret the vertical change in 

microbialite morphologies found in a single bed (Bed 9 in fig. 2B).  

In order to collect microbialite core samples we used a gas powered Stihl drill 

fitted with a diamond studded 3.2 cm core bit, and a gas powered Shaw-backpack drill 

fitted with a diamond studded 5.1 cm core bit. Cores varied in length from 2 to 15 cm, 

and were removed from several different locations, although most samples were obtained 

from a single outcrop. Where possible, large rock samples were also obtained from 

various microbialite beds. These rock samples were slabbed, lapped and polished at 
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Loma Linda University. We took ten core samples from bed 9, five from the interspace 

zones and five from within the corresponding microbialites. These cores were used as a 

source for both thin-sections and insoluble residues.   

Thin-sections and rock samples were analyzed using microscopy, Scanning 

Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray 

Spectroscopy (EDS). See Appendix B for extended Methods. 

 

Results 

Hellnmaria Microbialites 

The description from Hintze et al. (1988) bundles all microbialites into a single 

package of strata that spans the upper 154 m of the Hellnmaria Member (Fig. 2A). We re-

measured this segment of the type section (Fig. 2B) being especially attentive to specific 

microbialite beds, bed thicknesses and general microbialite characteristics. We found 

eleven distinct microbialite-bearing beds separated by intervening wackestone-grainstone 

intervals that span the upper 154 m of the Hellnmaria Member (Fig. 2B). All eleven beds 

are morphologically unique, although substantial morphological overlap does exist from 

one bed to the next. Only beds 9, 10 and 11 could be correlated over the entire research 

area. 
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Fig. 3. Diagram depicting vertical thickness of bed 9 at each of the seven outcrops 

(outcrop number above each section), but being especially attentive to the thickness and 

horizontal correlation for each morphology. Roman numerals and colors for forms in key 

correspond to those in the diagram. Datum line is set to the top of the bed. We drew a line 

between 2U31 and 2U30 (in a general NW/SE direction) and then projected the other five 

outcrops onto that line. Notice that intermediate forms (II and IV) pinch out northwest of 

2U25. At these northwesterly locations, morphologies change within just a few cm. 

Notice that the strongly elongate layer pinches out towards the southeast at 2U30. 
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Bed 9 is a microbialite-bearing bed exhibiting an acute change in morphology when seen 

in vertical section. Microbialites change from small, round, dm-sized forms to large, 

elongate structures many m in length, returning to more or less round profiles at the top 

of the bed. We were able to correlate these morphologies across seven outcrop locations 

spanning a total area of about 30 km2 (Fig. 3).  

 

Bed 9 Descriptions 

Bed 9 is a heavily dolomitized peloidal/bioclastic wackestone that contains 

packstone/grainstone domains within the interspace channels of the elongate 

morphologies. Disconformities exist at the top of the bed as well as its base. Only a few, 

local, discontinuous disconformities were observed within the bed which therefore 

suggests a single entity composed of changing morphologies. Unlike some of the other 

microbialite beds, where weathering tends to erode rock vertically, bed 9 at almost every 

outcrop weathers to an oblique surface. A benefit of such weathering is the production of 

a surface of exposure that cuts diachronously through the bed, revealing a continuous 

stratigraphic succession of several microbialite layers in oblique plan view. This allowed 

us to walk up section and document the temporal evolution of the microbialite 

morphologies.  

Current-induced sedimentary features are absent from bed 9, although some very 

fine cross-bedding is present to a small degree at the bottom of the wackestone interval 

intercalated between beds 10 and 11 (Fig. 2B and fig. 4A). 
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Fig. 4. Cross-bedding, synoptic relief, narrow interspace zones, microbialite interiors, and 

rose diagrams. A) Bioclastic wackestones just above bed 10 (Fig. 2B) sometimes exhibit 

fine-grained, bi-modal cross-bedding. B) Coarse-grained cross-beds located just below 

bed 11 (Fig. 2B). Bi-modal cross-bedding indicates current directions from the northwest 

and southeast. C) Cross-section of coarse-grained infill (short arrow) which overlies 

synsedimentary micritic infill (long arrow) within microbialite interspace records original 

synoptic relief (a single microbialite is outlined). Microbialites are planed off by the same 

coarse-grained material as in the interspace at the short arrow. D) Cross-sectional view 

through elongate layer shows consistent interspace width from top to bottom (arrow) 

(Note: this image comes from elongate forms found in bed 3 [Fig. 2B] which exhibit 

similar interspace dimensions as those in bed 9). E) Channel-like patterns become distinct 

as a function of weathering in elongate forms. Coarser-grained material stands in relief 

against finer-grained material. F) 324 long axis bearings taken for the strongly elongate 

microbialites found in bed 9 clearly demonstrate a strong signal favoring a 140/320° 

orientation. G) Elongate forms in bed 3 (Fig. 2B) share a similar signal. Cm-scale. Field 

book is about 18 cm in height. 

 

 

 

 



 

36 

Half meter thick cross-beds, composed of a very well sorted, coarse grainstone were 

correlated for about 100 m at the top of the same wackestone interval at the U16 outcrop 

location (Appendix C) (Fig. 2B and fig. 4B). This cross-bedded grainstone bed was also 

found at another location about 3 km away. In all three cases, dip directions indicated 

paleocurrent flowing from the northwest and southeast.  

The round microbialites at the base of bed 9 are columnar forms that widened 

slightly as they grew vertically. Diameters vary between 10 and 50 cm (Fig. 5A), 

although heights for the structures could not be determined. Synoptic relief likewise was 

difficult to ascertain, but since relief for round forms found in bed 10 average a few to 20 

cm (Fig. 4C), we tentatively suggest this to be the case for this and other layers as well. 

In thin-section, the dark rind located around the microbialite perimeter displayed mm-

thick laminations.  

Moving slightly up section, microbialites change in shape to become oblong to 

slightly elongate. Many of these forms exhibit alignment and incipient coalescence (Fig. 

5B – D). Small groups of round to slightly oblong and/or slightly elongate forms are also 

in alignment and often coalesce (Fig. 5E and F) just a few tens of cm below the strongly 

elongate layer. Individual groups of these aligned microbialites are always orientated at 

≈140/320°. These latter, intermediate forms, give way to strongly elongate structures just 

a few tens of cm further up-section (Fig. 5G and fig. 6), that likewise have a consistent 

≈140/320° bearing across the entire research area (Fig. 4F). This particular trait was 

noted for elongate structures in other microbialite beds (Fig. 4G). 

The strongly elongate layer thickens in a northwesterly direction ranging from 

about 1.5 m in the southeast to almost 8 m in the northwest (Fig. 3). 
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Fig. 5. Change in microbialite morphology, as seen in plan-view, moving up-section from 

the bottom of bed 9 to the top. A) Fully detached round to oblong forms are located at the 

base of the bed. B - D) Oblong to slightly elongate forms show incipient alignment and 

coalescence (arrows indicate sutures). All long axes are orientated at ≈ 140/320°. E and 

F) Groups of aligned and coalesced microbialites orientated at ≈ 140/320°. Notice the 

shared interspace channel. G) Strongly elongate forms. H) Elongate forms begin to 

detach and become wider. I) Fully detached, large round to sub-round forms. J) Fully 

detached round microbialites begin to shrink and become more irregular at the perimeter. 

K) Extremely irregular forms with diameters of less than about 10 cm appear at the top of 

most outcrops. L) Some round forms persist throughout the round to elongate transition. 

The arrow shows one of these round microbialites in the midst of the strongly elongate 

layer, although it coalesces at the tip of an elongate form. Cm-scale. Field book is about 

18 cm in height. 
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Long axis length averages around 3 m at most locations, but reduces in size towards the 

southeast, scaling down to only about 1.5 m at outcrop U63. Outcrops located southeast 

of U63 are almost devoid of the elongate form, instead containing more oblong or 

intermediate shapes with axial ratios of about 2:1 (Fig. 3). Short axis length for the 

elongate form remains fairly consistent at the southeasterly locations with an average 

width of around 25 cm (Fig. 6A – C), although the microbialites widen to around 60 cm 

at the locations northwest of 2U25 (Fig. 3 and Fig. 6D). We measured height for the 

elongate forms at two locations to well over 4 m. Strongly elongate forms did not seem to 

widen as the structures grew vertically. Looking at two elongate forms in cross-section 

reveals an interspace zone that is consistent in width from the top to the bottom (Fig. 4D). 

In 3D, these elongate forms would look somewhat tabular. All of the elongate forms are 

characterized by a dark rind at the microbialite perimeter, similar to that for the round 

forms below, but laminations cannot be distinguished even in thin-section. The centers of 

the microbialites are set apart from the external rind by an arrangement of patterns that 

become quite distinct due to weathering (Fig. 4E).  

A few dm further up section, strongly elongate forms detach into sub-round forms 

coalesced at the longer axis (Fig. 5H). These attached forms finally give way to fully 

detached forms with diameters averaging about 30 cm (Fig. 5I) dividing into much 

smaller forms with ≈ 5 cm diameters at the top of the bioherm (Fig. 5J and K). Once 

detached, the perimeter of the round forms becomes extremely irregular. We were unable 

to determine height or synoptic relief for any of these forms. Throughout the change from 

round to elongate and back to round again, thickness of interspaces between microbialites 

remains relatively consistent at around 3 - 8 cm. Interspace thicknesses for elongate 
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Fig. 6. Elongate forms from four different locations. A – C) Locations southeast of 2U25 

(Fig. 3) have narrow interspaces that average 3 - 8 cm in width. The length of the short 

axis is also quite consistent at about 25 cm. D) Elongate forms become wider northwest 

of 2U25. Outline shows a single structure that dips obliquely away from the camera. 

Long axis orientation (≈ 140/320°) is the same at all four locations. Field book is 18 cm 

in height. Cm-scale is displayed. 
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forms in the northwesterly outcrops averages around 5 - 10 cm (Fig. 6). All of these 

structures are best described as columnar microbialites.  

 

Petrographic Data 

Interspace sediments for the round microbialites at the base of bed 9 (Fig. 3, 

Roman numeral I) are characterized by abundant micrite (Fig 7A). Trilobite bioclasts are 

randomly located throughout the matrix, constitute ≈ 25% of the allochems and are ≈ 250 

µm to ≈ 3 mm in length. Small packstone pockets of medium to large-sized intraclasts up 

to ≈ 1.5 mm in size are also present. All of the allochems are angular and poorly sorted. 

This material is best described as a bioclastic wackestone with some intraclastal 

packstone domains. Inside the microbialites, the bindstone is composed of laminated, 

fenestral-rich micrite containing less than 5% bioclasts. The fenestrae have an orientation 

coincident and parallel to that of the laminations and are filled with sparry calcite.  

Interspace sediments for the elongated forms (Fig. 3, Roman numerals II and III) 

are composed of moderate to well-sorted, well-rounded, sub-spherical, micritized 

intraclasts ≈ 250 µm to 0.5 mm in diameter, and make up  80% of the allochems (Fig. 

7B). Triliobite fragments constitute less than 20% of the allochems, and are typically less 

than 0.5 mm in length. Some intraclastic packstone domains are randomly scattered 

throughout the matrix. Intergranular spaces are filled with sparry calcite. These interspace 

sediments are best described as intraclastal grainstones with some intraclastic packstone 

domains. Due to dolomitization within the microbialite interior it is difficult to discern 

the original fabric, but from what we can resolve we suggest that the microbialite interior 

was a bioclastic wackestone when deposited.   
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The interspace sediments for the large round microbialites, as well as the smaller 

forms with irregular perimeters (Fig. 3, Roman numerals IV and V) are composed of 

≈20% trilobite bioclasts, ≈ 250 µm to several mm in length (Fig. 7C). Intraclasts ≈ 0.5 to 

≈2 mm in diameter appear in isolated packstone pockets and constitute ≈ 30% of the 

allochems. All of the allochems are angular and poorly sorted. Inside the microbialites, 

the bindstone is rich in micrite, contains ≈ 20% randomly scattered trilobite bioclasts, and 

≈ 20% intraclasts that appear in isolated intraclastal packstone domains. One to 2 mm 

sized fenestrae also appear throughout the matrix and make up ≈ 30% of the overall 

fabric. Interspace and microbialite sediments are best described as bioclastic 

wackestones. 

The microbialite-free interval located just below bed 9 (Fig. 2B) is a very well 

sorted peloidal packstone with mm-thick mudstone laminae intercalated throughout (Fig. 

7D). Bioclasts constitute less than 5% of the allochems.  

Another microbialite-free interval located just above bed 10 (Fig. 2B) is a 

burrowed bioclastic wackestone that is rich in erratically distributed monaxin sponge 

spicules (Fig. 7E). The sediments in this interval grade into very coarse-grained, cross-

bedded grainstones directly below the contact with bed 11 (Fig. 7F). 
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Fig. 7. Petrographic data for bed 9 microbialite interspaces, as well as for intervals below 

bed 9 and above bed 10. A) Interspace zone for round forms at the base of the bed are 

best described as bioclastic wackestones. B) Intraclastic grainstones best describe the 

overall fabric of interspace zones for the oblong to elongate forms. C) A return to the 

round motif is accompanied by a return to similar bioclastic wackestones as in A. D) The 

interval just below bed 9 is a peloidal packstone with mudstone laminae occurring 

throughout. E) The interval just above bed 10 (Fig. 2B) is a bioclastic wackestone 

containing ubiquitous monaxin sponge spicules. F) The interval just above bed 10 grades 

into a mature grainstone right at the top of the interval, just below bed 11 (Fig 2B). 
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SEM, EDS, XRD and Grain Size Analysis of Insoluble Residues 

We found that siliciclastic percentages are consistently higher in the rounder 

(including round irregular) microbialites compared to those forms that exhibited 

elongation (Fig. 8C). This is the case whether the residues come from within the 

interspaces or from within the microbialites.  

SEM analysis demonstrates that the average insoluble residue grain sizes vary 

from about 5 – 40 µm in diameter. The largest grain we found in all the samples is only 

0.5 mm in diameter; the smallest is less than 1 µm. We determined that these siliciclastics 

are best described as very fine silts. Composition of the insoluble residues was 

determined using EDS and bulk sample XRD. These analyses show that the constituents 

making up most of the insoluble residues are a combination of authigenic chert, detrital 

quartz, detrital potassium feldspar and a combination of either detrital or authigenic clay. 

Most of the chert residues range in size from a few mm to almost a cm in diameter, and 

as such were easily removed and excluded from the final detrital residue percentages. 

Bulk sample XRD indicates that the feldspar is microcline (KAlSi3O8), and that the clays 

are either muscovite (KAl2(AlSi3O10)(F,OH)2),or chlorite ((Mg, Fe)3(Si, Al)4O10), 

although a combination of other clays could also be present. Detrital quartz makes up 

about 40% of the siliciclastic content, the feldspars also about 40% and the clays about 

20%. See Appendix D for SEM insoluble residue images.

http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Silicon
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Fluorine
http://en.wikipedia.org/wiki/Hydrogen
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Fig. 8. Microbialite morphology, associated petrographic data and interpretation for bed 

9. A) Macro-scale microbialite morphology showing changes in shape through time. B) 

Dominant lithology: wackestone, packstone or grainstone, as seen in thin section. C) 

Insoluble residues, consisting of very fine silts, were obtained from microbialite 

interspaces (solid line) and from within the corresponding microbialites (dotted line). 

Notice that both sets of data follow the same general curve. Lesser amounts of insoluble 

residues are interpreted to mean that they were kept in suspension, an interpretation that 

correlates with thin-section data in B. D) Relative change in sea-level. 
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Discussion 

Interpretation of Petrographic and Sedimentological Data 

The round microbialites at the base of bed 9 (Fig. 3, Roman numeral I) grew in an 

environment that was conducive to the accumulation of micrite (Fig. 8B). Although some 

packstone lenses bear testimony to occasional, higher energy conditions, the overall 

micritic nature of this bioclastic wackestone, along with relatively higher quantities of 

clay to fine, silt-sized insoluble residues, indicate deposition in a low energy, subaqueous 

environment, probably below fair-weather wave base, but above storm wave base. We 

suggest these round forms, and thus the establishment of bed 9, initiated and grew on a 

peloidal packstone at the sediment/water interface where current action was minimal 

(Gebelein, 1969; Ginsburg and Planavsky, 2008; Petroff et al., 2010).  

The oblong to elongate microbialites grew in a slightly different environment 

(Fig. 3, Roman numerals II and III). The presence of moderately to well-sorted, well-

rounded, sub-spherical intraclasts, combined with the absence of much of the micrite 

within the interspaces (Fig. 8B), suggests a relative sea-level fall (Fig. 8D) and the 

introduction of a directional, subaqueous current regime that abraded and shaped the 

microbialites. Reduced quantities of clay, to fine, silt-sized insoluble residues found both 

within the microbialites and within the associated interspaces, supports a more energetic 

paleoenvironmental interpretation which kept these grains in suspension (Fig. 8C).  

The intraclastic grainstones of the oblong to elongate layers change to bioclastic 

wackestones in the morphologies located towards the top of the bed (Fig. 3, Roman 

numerals IV – V). These bioclastic wackestones are similar to those for the microbialites 

of the round layer at the base of the bed and are, therefore, interpreted to represent the 
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same kind of low energy environment. In accordance with an increase in micrite, there is 

a concomitant increase in fine, silt-sized insoluble residues (Fig. 8C). We suggest that as 

accommodation space increased, microbialite morphology retrograded back through the 

round to elongate transitions outlined above. This phase began with elongate forms 

separating at distinct boundaries (Fig. 5H) before finally separating into individual 

structures (Fig. 5I). Unlike the round forms at the base of the bed, however, which 

widened as they grew vertically, these forms became more irregular, and split into 

smaller morphologies (Fig. 5J and K). 

 

The Importance of Coalescence 

Several hypotheses have been proposed for the evolution of strongly elongate 

microbialites. Some of the best modern examples are currently growing in the intertidal 

and shallow subtidal zones at Shark Bay in Australia, and Highbourne Cay in the 

Bahamas, and owe their primary, strongly elongate structures to various abrasive-related 

processes interacting with sheet-like microbial mats.  

Logan et al. (1974, p. 185) demonstrate how microbial mats growing over tidal 

flats can evolve into ridges and adjacent rill structures due to the abrasive action of wave-

scour perpendicular to the shoreline. Continual agitation within rills precludes the 

establishment of microbial communities, while on the ridges they thrive (Fig. 9A). These 

processes ultimately contribute to the construction of strongly elongate forms. 
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Fig. 9. Various examples of modern and ancient elongate microbialites. A) Microbial 

mats growing over tidal flats can evolve into ridges and adjacent rill structures due to the 

abrasive action of wave-scour perpendicular to the shoreline. B) “Seif” stromatolites. C) 

Pseudo-columns are coalesced into an elongate structure. Note ‘algal bridges’ crossing 

columns. D) Plan-view of a similar structure from C. Notice that laminations are no 

longer specific to individual columns. Scale bars for C and D = 3 cm. E) Individual 

columns coalesce to become a compound structure. Adapted from Logan et al. (1964). F) 

Elongate stromatolites at Shark Bay, formed from the coalescence of discrete columns 

(‘algal heads’). Arrow indicates directions of wave translation. Images in A and B 

courtesy of the Geological Survey of Western Australia, Department of Mines and 

Petroleum. © State of Western Australia 2016. Images in (C and D) courtesy Bertrand-

Sarfati, J., and Awramik, S. M., 1992. Stromatolites of the Mescal Limestone (Apache 

Group, middle Proterozoic, central Arizona): Taxonomy, biostratigraphy, and 

paleoenvironments. Geol. Soc. Am. Bull. 104, 1138 – 1155. Image in (F) courtesy of 

Brendon Doran, 2kiwis.nz. 
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Andres and Reid (2006) document similar structures growing in shallow water at 

Highbourne Cay, the Bahamas, which likewise owe their elongate morphology to wave-

scour perpendicular to shoreline. Playford (1980) and Playford et al. (2013) invoke wind-

induced helical vortices in the construction of “seif” stromatolites which formed parallel 

to the prevailing winds at Shark Bay (Fig. 9B), although recently this hypothesis has been 

challenged (Mariotti et al., 2014). Mariotti et al. (2014), seeking to interpret the same 

structures appeal to differential shear stresses related to standing wave hydrodynamics. 

Logan et al. (1974) also describe shallow-subtidal elongate forms that owe their primary 

morphology to substrate inheritance; the mats growing on ancient coquina ridges carved 

from the substrate.  

Perhaps the most effective, but least explored explanation for the evolution of 

large, m-scaled elongate structures is the coalescence of numerous smaller, usually round 

or oblong ‘algal’ heads. Bertrand-Sarfati and Awramik (1992) described coalescing, cm-

sized pseudo-columns from the Mescal Limestone, a middle Proterozoic, subtidal 

stromatolite-bearing unit in central Arizona. They interpret the resulting elongate 

structures to have formed from episodic, but persistent currents that initiated coalescence 

between pseudo-columns. This is one of the few instances where coalescence is clearly 

depicted, showing ‘algal bridges’ linking pseudo-columns in the direction of paleo-

current (Fig. 9C and D). Serebryakov and Semikhatov (1974, p. 564, 565) infer that 

Neoproterozoic columnar forms evolved into strongly elongate structures as a result of 

coalescence. Bunting (1986) similarly infers this for strongly elongate Proterozoic forms 

in Australia. These are some of the few examples where coalescence is employed, either 
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specifically or incidentally, as a key factor in the elongation of ancient forms. 

Coalescence is often mentioned, but only as it relates to linkage in neighboring forms. 

The most thorough description of microbialite coalescence in modern environments 

comes from Logan et al. (1964). In order to classify morphological variations within 

stromatolites at Shark Bay and apply those variations to specific environments, these 

authors proposed a nomenclature based on the arrangements of the hemispheroid. The 

two most pertinent arrangements are styled “laterally linked hemispheroids (LLH)” and 

“stacked hemispheroids (SH)” by Logan et al. (1964, p. 78). Noteworthy is the 

combination of these two arrangements, a formula that is written as: , to 

indicate columnar precursors (SH) that coalesced at their top surface (LLH), thus 

changing them from a columnar form to a compound form (Fig. 9E). These 

classifications reflect observations made in the field; Logan et al. (1974) demonstrate that 

some types of elongate stromatolites growing in Shark Bay are in fact a composite form 

constructed from round or oblong ‘algal’ heads (Fig. 9F), and that coalescence did in fact 

occur in the direction of and as a direct result of wave translation (Logan et al., 1974, p. 

172). Unlike the coalescence described by Bertrand-Sarfati and Awramik (1992), which 

seems to develop from the bottom up, Shark Bay coalescence develops due to crowding 

at the top of the structures. Once two adjacent forms are linked, binding mats continue 

the process by filling out the inter-columnar areas below the coalescing stromatolite head 

(Logan et al., 1974, p. 164).  

Coalesced stromatolites growing at Lee Stocking Island appear to challenge the 

observations just outlined above; instead of coalescing in rows parallel to flow, these 

forms coalesce perpendicular to flow. Shapiro (1990) describes these greater than 30 m 
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long structures as wall-like, coalesced at the heads, and growing in troughs between 

sinusoidal sand waves. If coalesced stromatolites such as this were found in the geologic 

record, they could be misinterpreted as elongate stromatolites that have coalesced 

parallel to current flow, leading to a false sense for the overall paleoenvironmental 

interpretation. This example shows the importance of the substrate as a control for 

coalescent microbialites. The physical location of these long, coalesced stromatolites, 

correlates with the sinusoidal sand waves that parallel one another perpendicular to 

current flow (across the channel). The troughs between the sand waves contain abundant 

hardground-rubble that consists of large conch shells, rip-up clasts, coral and other 

similar items. Shapiro (1990, p. 211) estimates that over 90% of the objects are covered 

in microbial mats. Since microbial mats tend to initiate and grow on hard substrates 

(Young, 1973; Andres and Reid, 2006; Ginsburg and Planavsky, 2008), it is no surprise 

to find groups of coalesced stromatolites competing for space on the only hard substrate 

available. Once removed from the troughs, the only available space for growth consists of 

unsuitable mobilized sand.  

Logan (1961) and Logan et al. (1964, 1974) went a step further, demonstrating 

that coalescence is actually dependent on the dense arrangement of closely packed 

microbialites, and that the substrate is only important in so far as it promotes this close-

packing relationship. Logan (1961, p. 527) observed that desiccated, stromatolitic 

fragments tend to spall and/or concentrate near or at the high-water level of the intertidal 

zone in Shark Bay, resulting in more potential nuclei per unit area within this region than 

for that located in a more seaward location. As a result, denser patches of stromatolites 

are more common at or near high-water level. Logan et al. (1974, p. 164 and 180) 
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demonstrated that these dense patches are typically located in headland areas where 

diffracted wave-fronts produce turbulence, and that the degree of local interference 

around a particular patch correlated to the way in which that patch coalesced. For 

example, stromatolites coalesced in a single direction produced very narrow elongate 

structures parallel to flow, and were typically found in the least diffracted zones where 

wave translation remained unobstructed by turbulence (Fig. 9F). Ellipsoid patches 

coalesced in the direction of wave translation, yet still coalesced to a lesser degree 

perpendicular to wave translation due to the presence of turbulent, choppy water.  

 

Constructing a Model 

We propose a bi-directional hydrodynamic system that favored a ≈ 140/320°  

bearing based on bimodal cross-bed dip directions at the top of the wackestone/grainstone 

interval just below bed 11 (Fig. 2B and Fig. 4B). As this bi-directional system was 

introduced to the environment, microbialite growth became more aggressive in both 

directions of flow (See Appendix E for the importance of directional hydrodynamics). 

Since the microbialites were tightly packed with respect to each other, coalescence 

occurred parallel to flow constructing linear groups of laterally linked forms. The 

obconical shape of these microbialites suggests coalescence most likely proceeded from 

the top down, similar to the coalesced ‘algal’ heads at Shark Bay (Fig. 5B-F and Fig. 9F). 

Strongly elongate structures naturally followed (Fig. 5G). Semikhatov et al. (1978, p. 

1002) suggest that the degree of linkage between adjacent microbialites depends on 

factors such as bottom turbulence, sediment movement and proximity to adjacent 

microbialites. These same factors were stressed by Logan (1961) and Logan et al. (1964; 
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1974). These observations strongly suggest that interspace channels with only cm of 

available space between adjacent microbialites, in conjunction with directional 

hydrodynamics, make conditions ideal for processes related to coalescence and 

subsequent elongation.  

Relying too much on modern analogues proves problematic with respect to the 

role of mechanical scour. Although abrasion is evident from the nature of deposited 

material within elongate interspace zones, it is also evident that this abrasion differed 

from that which presently sculpts elongate forms in Shark Bay and the Bahamas. 

Interspace zones between the Notch Peak forms are extremely narrow, on the order of 

just a few cm to about 8 cm in width (although as much as 10 cm at the most 

northwesterly locations), and are exceptionally consistent down the length of the long 

axes over an extensive area (Fig. 6). Interspace areas for elongate forms at both Shark 

Bay and the Bahamas, however, are extremely wide, measured in dm to m, are irregular 

down the long axes, and are filled with very coarse detrital grains (Fig. 9A, B and F). 

Petroff et al. (2010) have shown that narrow, uniform interspaces reflect the creation of a 

nutrient gradient due to the photosynthetic activities of microbes in modern elongated 

microbialites growing in Yellowstone National Park (See also Appendix F). Bosak et al. 

(2013), however, suggest that the biological processes responsible for these narrow 

interspace zones may not be good analogues for similar ancient counterparts.  

The best explanation for the presence of very narrow, consistent interspaces 

between elongate microbialites is most likely environmental, and reflects a contrast 

between shoaling internal and surface waves. Internal waves propagate sub-aqueously 

along stratified density boundaries within the water column. Much like shoaling surface 
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waves, internal waves break and dissipate energy as shoreward moving bores (same as 

‘surf fronts’ in the intertidal zone) that travel over internal ‘beach’ zones. Bourgault et al. 

(2008) measured the turbulent energy dissipation rate (ϵ) of breaking internal waves at 

4×10-6 W/kg within the internal ‘swash zone.’ The rate of turbulent dissipation within the 

swash zone at the surface, however, has been measured at 10-1 W/kg (Feddersen 2011). 

This suggests that wave-generated turbulence is much greater in the intertidal zone than 

on subtidal ‘beach’ zones. Chaotic eddies of shoreward-moving, sediment-laden surf 

therefore seem a natural mechanism for sculpting wide, irregular interspaces between 

modern elongate microbialites in intertidal zones. Abrasive sculpting is still important in 

the deeper subtidal regions, but most of the scouring would result from less turbulent, 

shoreward moving internal wave bores that can travel across the sea-floor at velocities as 

high as 40 cm/s (Cacchione et al. 2002).  

The size, shape and abrasive potential of entrained detrital grains are also 

important microbialite-sculpting factors that need to be considered. Siliciclastic beach 

sands are often extremely coarse and highly abrasive; this is in contrast to the detrital 

sediments associated with the Notch Peak microbialites that are mainly composed of clay 

to fine silt-sized carbonate grains. It seems, then, that the most intuitive solution for 

explaining narrow, consistent interspaces between the Notch Peak elongate microbialites 

is the presence of much smaller, less abrasive detrital grains, combined with processes 

related to shoaling internal waves. 
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Conclusions 

The existence of a uniquely preserved suite of upper Cambrian microbialite 

morphologies capturing many phases of elongate-related processes in vertical succession, 

serves as a useful case study from which to compare strongly elongate microbialites 

found in other ancient environments (Hoffman, 1967; Young, 1973; Campbell and 

Cecile, 1975; Hoffman, 1976; Young and Long, 1976; Button and Vos, 1977; Eriksson, 

1977). Apart from demonstrating elongation by coalescence, this example provides some 

general principles that can be universally applied to the study of microbialite 

morphogenesis:  

 

I. Coalescence is the most effective mechanism for constructing strongly elongate 

microbialites, parallel to flow, in deep-subtidal or wave restricted settings 

where intertidal scouring processes are weak. Other elongate-related processes 

do create strongly elongate structures, but in these cases the elongate forms 

are intertidal or very shallow subtidal structures that owe their primary 

morphology to a combination of sheet-like microbial growth combined with 

intertidal mechanical wave scour.  

II. Elongate morphologies, according to both modern and ancient analogues, are 

always formed in the presence of directional hydrodynamics where the long 

axes parallel the direction of flow, irrespective of whether those forms are 

constructed in a subtidal, intertidal or supratidal setting. The hypothesis put 

forward by Mariotti et al. (2014) as well as the example discussed by Shapiro 

(1990) are exceptions. If, as in the latter case, elongate microbialites are found 
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to have formed perpendicular to flow, then this might indicate some kind of 

substrate control that overprinted the hydrodynamic component.  

III. A close-packing relationship is necessary for elongation by means of coalescence 

to occur. Since most Proterozoic and early Paleozoic microbialites are closely 

packed, this mechanism, in conjunction with (I), is an interpretive possibility 

for these other ancient examples.  

IV. Modern examples of sculpting by mechanical wave scour in the intertidal zone are 

not good analogues from which to interpret some ancient examples. 

Extremely narrow and consistent interspaces found in the Notch Peak growth 

series are best explained by abrasion related to the propagation of less 

turbulent internal wave bores which entrain smaller, less abrasive detrital 

grains than do intertidal surface waves propagating across siliciclastic beach 

zones. 
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CHAPTER THREE 

LITHISTID SPONGE-MICROBIAL REEF-BUILDING COMMUNITIES 

CONSTRUCT LAMINATED, UPPER CAMBRIAN (FURONGIAN) 

‘STROMATOLITES.’ 
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Abstract 

Lamina-like, weakly fused sponge spicule networks are intercalated between 

convex stromatolitic laminae in an upper Cambrian (Furongian) reef. Sponges are small, 

millimeter to centimeter-sized lithistids that encrusted automicritic laminae and in turn 

were encrusted by microbial biofilms, eventually leading to columnar, crudely laminated 

‘stromatolites.’ Weakly fused desmas, now preserved as drusy calcite, possess an arcuate 

geometry along the medial to distal ray axes. Marginal decay and separation of calcified 

sponge tissue from these spicules produced curved, filament-like cavities that now 

obscure the former presence of spicules when viewed in cross-section. Further 

deterioration produced unrecognizable peloidal networks. These peculiarities may have 

contributed to the poor preservation of spicule networks in about 95% of the reef; an area 

covering at least 20 km2. These observations have important implications when 

reconstructing middle to upper Cambrian reef-building communities. Until recently, these 

periods were assumed to be virtually devoid of calcified metazoan reefal components. An 

increasing number of recent papers, however, are demonstrating that metazoan reef-

builders may have been more prevalent during these periods than was previously thought. 
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This paper adds a unique element to this consensus by demonstrating that lithistid 

sponge-microbial reef-building communities constructed laminated ‘stromatolites.’ This 

suggests that metazoan reef-builders may have had a flourishing ecology within upper, 

and perhaps middle Cambrian reefs, but due to the laminated morphology, size and 

preservation potential of sponges such as these, they have largely gone unnoticed in 

microbial buildups.  

 

Introduction 

The evolution of Cambrian reefs has traditionally been interpreted in terms of two 

general reef-building stages; the archaeocyath-calicimicrobe consortium that dominated 

the early Cambrian, followed by a largely microbial stage that dominated the middle to 

late Cambrian, subsequent to the achaeocyath decline in the late early Cambrian (Klappa 

and James, 1980; Kobluk, 1988; James and Gravestock, 1990; Brunton and Dixon, 1994; 

Shapiro and Rigby, 2004; Kruse and Zhuravlev, 2008; Adachi et al., 2011; Li et al., 

2015). An increasing number of recent papers, however, are demonstrating that metazoan 

reef-builders may have been more prevalent during these periods than was previously 

thought (Johns et al., 2007; Hong et al., 2012, 2014; Chen et al., 2014; Lee et al., 2014; 

Adachi et al., 2015). We seek to add to this growing number of middle and upper 

Cambrian reefal discoveries, by examining an upper Cambrian sponge-microbial reef 

from the Hellnmaria Member of the Notch Peak Formation in southwestern Utah. This 

reef is unlike other coeval metazoan reefs, in that it contains small-scale, weakly fused 

lithistid sponges that encrusted automicritic laminae using a similar lamina-like 

morphology. Coeval sponge-microbial reefs are typically dominated by frame-building 

anthaspidellids that are randomly scattered throughout the sponge-microbial buildups 
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(Shapiro and Rigby, 2004; Kruse and Zhuravlev, 2008; Hong et al., 2012). The overall 

meso-scale fabric of the Notch Peak associations, however, are stromatolitic, and 

therefore represent a significant departure from coeval sponge-microbial reefal 

architecture. The remains of similar, lamina-like sponges have recently been found 

intercalated between microbial automicrites in Carboniferous and Triassic ‘stromatolites’ 

(Luo and Reitner, 2014; 2015). Taken together, these factors could easily lead to the 

misidentification of metazoan components in other microbial buildups at other locations 

around the world.   

The aims in the paper are: 1) To suggest that as yet unclassified lithistid sponges, 

together with microbial reef-building communities, mutually constructed laminated 

‘stromatolites.’ 2) To propose that these sponge-microbial ‘stromatolites’ have largely 

gone unnoticed due to the sponge’s lamina-like morphology, size and preservation 

potential. And 3) To compare well preserved sponge spicule networks with deteriorated 

spicule networks and fenestral networks, for the purpose of providing some petrographic 

and taphonomic criteria that may help identify sponge-microbial associations in similar 

rocks.  

 

Geologic Background 

The western continental margin of Laurentia is thought to have formed during the 

Late Proterozoic rifting of Rodinia. According to Miller et al. (2003, p. 58), lower 

Paleozoic strata of the eastern Great Basin were deposited on a subsiding carbonate 

platform that provided over 4500 m of early Paleozoic accommodation space. 

Superimposed throughout these sediments are large-scale, second-order sequences that 

deposited the Cambrian/Ordovician Orr and Notch Peak Formations as well as the 
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Ordovician House Limestone (Miller et al. 2003) in what is now southwestern Utah (Fig. 

1). Central to this discussion is the microbialite-bearing Notch Peak Formation which has 

been divided into three mappable members: the Hellnmaria, Red Tops and Lava Dam 

(Fig. 2A). All three members are traceable from within the House and Confusion Ranges 

in western-central Utah to the Wah Wah Mountains in the south (Hintze et al. 1988). 

According to Palmer, the Notch Peak Formation was deposited during the third interval 

of the Sauk mega-sequence (Palmer, 1981). Miller et al. (2003) broke the Sauk III 

interval into 14 smaller sequences (See illustration in Miller et al. 2003, p. 27). The 

Hellnmaria Member of the Notch Peak Formation includes the second half of sequence 1, 

and all of sequences 2-4 in Miller et al. (2003) and has been interpreted in terms of an 

overall sea-level highstand. 

Conodont biostratigraphic correlations by Miller et al. (2003, p. 27) assign the 

microbialite-bearing beds of the upper Hellnmaria Member to the Proconodontus 

tenuiserratus through Proconodontus muelleri zones. This places the upper Hellnmaria 

Member in the late Cambrian Sunwaptan Stage of the Millardan Series (middle 

Furongian) (Fig. 2). According to Miller et al. (2003), the lower to middle parts of the 

Hellnmaria Member chiefly consist of thin-bedded to laminated dark lime mudstones, 

that change to intraclastal, ooid and oncoidal packstones and grainstones towards the top 

(Miller et al., 2003, p. 30). At its type section, only the upper 154 m of the 366 m thick 

Hellnmaria Member contains microbialite-bearing beds that are completely absent from 

the lower interval (Fig. 2A). Miller et al. (2003) interpret the Hellnmaria Member as an 

overall sea-level highstand that shallows significantly towards its top. This shallowing-. 
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Fig. 1. Geological setting of research area. A) Satellite image of the USA showing state 

of Utah. Image Public Domain. Small black rectangle enlarged in B. B) Image adapted 

from Google Earth, USDA Farm Service Agency, showing research area (black rectangle 

enlarged in C). C) Image of research area provided by MyTopo indicating outcrop 

locations. Dotted lines approximately outline zones 1 and 2. Pink stars are outcrop 

locations in zone 2. Black stars are outcrop locations in zone 1. Outcrops and UTM 

coordinates are as follows from NW to SE: 2U31, 296590 4332862; 2U28, 297509 

4330507; 2U25, 299088 4331582; U16, 299798 4331367; U30, 301002 4329694; U63, 

302195 4329234; U118, 299154 4331613; 2U44, 302507 4327662. The type section 

constructed by Hintze et al. (1988, p. 21) runs through U63 (All 3 black lines). 
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Fig. 2. Stratigraphy and biostratigraphy. A) Stratigraphic column of the Notch Peak 

Formation, adapted and simplified from Hintze et al. (1988), and conodont zonation 

adapted from Miller et al. (2003). Notice that in the Hellnmaria Member, microbialites 

are only found in the top 154 m. B) Stratigraphic column of the top 154 m of the 

Hellnmaria Member of the Notch Peak Formation measured at the type section (only 

beds 9,10 and 11 could be correlated across the research area. Bed thicknesses vary 

depending on outcrop) (see fig. 1C). Tapered limestone/dolostone sections communicate 

a general coarsening upward trend. 

 

 

 

 

 



 

73 

upwards succession is abruptly terminated by the Red Tops Lowstand (Miller et al., 2003,  

p. 27), where clean, largely homogeneous, fine to medium-grained limestones and 

dolostones are abruptly truncated by a coarse-grained calcarenite deposit 

 

Methods 

The microbialite bed pertinent to this paper was correlated over a large 

geographic area of about 20 km2. Samples were sourced from nine outcrop locations (Fig 

1C). Where rock samples could not be obtained easily, a gas powered Stihl drill fitted 

with a diamond studded 3.2 cm core bit, and a gas powered Shaw-backpack drill fitted 

with a diamond studded 5.1 cm core bit were used to obtain drill-core samples. Cores 

varied in length from 2 to 15 cm.  

Forty five thin-sections were prepared from eleven different microbialites; six 

from zone 1 and five from zone 2 (Fig. 1C). Thin-sections and rock samples were 

analyzed using microscopy, and scanning electron microscopy (SEM). Larger samples 

sourced from various outcrops were lapped, polished and photographed. 

Using microscopy, it was determined that the total area occupied by the sponges 

was about 50%. In order to quantify this, sponge spicule networks in three thin-sections, 

sourced from three separate zone 1 microbialites, were manually traced using the 

microscope and Illustrator CS6. These images were then filtered through ImageJ in order 

to obtain areal distribution of sponges as a percentage.  

All rock samples are kept on campus at LLU in Risley Hall. All thin-sections are 

kept in the basement of Griggs Hall, room 10. Thin-sections are a combination of (n = 4) 

2.5×4.5 cm, (n = 25) 5×7.5 cm, and (n = 16) 5×6.5 cm glass slides.  
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Results 

Overview of Bed 11 

Hintze et al. (1988) bundled all Hellnmaria microbialites into a single package of 

strata that spans the upper 154 m of the Hellnmaria Member (Fig. 2A). We re-measured 

this segment of the type section (Fig. 2B) being especially attentive to specific 

microbialite beds, bed thicknesses and general microbialite characteristics. We found 

eleven distinct microbialite-bearing beds separated by intervening wackestone-grainstone 

intervals that span the upper 154 m of the Hellnmaria Member (Fig. 2B). All eleven beds 

are morphologically unique, although substantial overlap does exist from one bed to the 

next. Bed 11 is a 1 to 3 m thick microbialite-bearing unit that contains a tightly packed 

field of round to sub-round microbialites covering a large geographic area of 

approximately 20 km2. Microbialites within the bed are separated into two zones on the 

basis of some fundamental macro, meso and micro-scale differences (Fig. 1C). This 

zonation, however, is merely a useful artifact as the microbialites are contiguous across 

the entire bed. 

Microbialites in zone 1 (Fig. 1C) are stromatolitic (Fig. 3A), have diameters of 

between 10 to 30 cm at their longer axes, and are typically 20 – 40 cm tall (Fig. 3B and 

C). Synoptic relief is about 10 – 20 cm. The interspace material is best described as an 

intra-bioclastic grainstone with some minor packstone domains (Fig. 4F). Allochems, 

predominantly composed of intraclasts (≈ 50%) and trilobite bioclasts (≈ 40%), average 

0.5 – 4 mm in length, appear moderately sorted, sub-rounded, but generally are not 

spherical. Some trilobite bioclasts are over 1 cm long. These forms only have a small



 

75 

 



 

76 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Macro and meso-scale features of ‘stromatolites’ in zone 1. S = Stromatolite. IS = 

Interspace between macro forms. A) 5 cm diameter core, cut longitudinally, lapped and 

polished. Alternating sponge (darker color, top arrow) and micrite (lighter color, bottom 

arrow) forms crude, mm-scaled laminae. Pockets of bioclastic packstone are outlined in 

black. B) Cross-sectional image of a stromatolitic microbialite showing convex 

laminations (a single lamina outlined). C) Plan-view of microbialites. Cm scales. Pencil 

is 15 cm long. Sample numbers: A) 2U45B. 
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areal distribution of about 1 km2 (Fig. 1C). Microbialites in zone 2 (Fig. 1C) are also 

stromatolitic, have diameters that vary from 40 to as great as 70 cm across their longer 

axes, with heights fluctuating from just a few dm to about 70 cm. These forms are 

differentiated from those in zone 1 by the presence of a central core composed of mini-

stromatolites (Fig. 4A-E). Synoptic relief is about 10 – 20 cm. The interspace material is 

best described as an intra-bioclastic grainstone with some minor packstone domains. 

Allochems, predominantly composed of intraclasts (≈ 70%) and trilobite bioclasts (≈ 

20%) average 0.5 – 2 mm in length, appear well-sorted, well-rounded and are sub-

spherical. This form is laterally continuous across the majority of the bed, having a total 

areal distribution of about 20 km2 (Fig. 1C). 

Diagenetically, microbialites from zone 1 are rarely altered by dolomitic 

recrystallization. Those forms in zone 2 are often badly dolomitized within the mini-

stromatolite-bearing core, with dolomitic recrystallization sometimes extending into the 

stromatolitic region of the microbialite proper.  

 

Spicule Networks in Zone 1 

Sponges are recognized as spicule networks that typically do not exceed a few cm 

in size, with many not exceeding 1 cm (Fig. 5A-D). With few exceptions, well preserved 

sponge spicule networks only occur within the microbialites of zone 1 (Fig. 6), and often 

grade into deteriorated spicule networks that vary in degree of preservation (Fig. 7A-F). 

Peloidal domains and voids seem to be the end members of the decay process (Fig. 7A 

and B). Spicule networks display various morphologies, taking on lamina-like, amoeboid, 

and varied lump-shaped forms, although the lamina-like form is the most
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Fig. 4. Macro and meso-scale features of ‘stromatolites’ in zone 2. S = Stromatolite. IS = 

Interspace between macro and mini forms. MSC = Mini-stromatolite Core. MS = Mini-

stromatolite. A) Plan-view of microbialites. B) A complete microbialite removed from 

outcrop, cut longitudinally through medial plane, lapped and polished. Mini-stromatolite 

core clearly marked off from stromatolite fabric below. Note the acute boundary. 

Rectangle enlarged in C. C) Enlarged from B showing two mini-stromatolites separated 

by packstone interspace. D) Second microbialite likewise cut longitudinally through 

medial plane. Specimen is not lapped or polished. Notice micritic clast (outlined) upon 

which this structure grew. White line separates stromatolite (below) from mini-

stromatolite core (above). The boundary between both fabrics is also acute. E) Transverse 

cut through stromatolite in B reveals maze-like structures composed of mini-stromatolites 

and wackestone-packstone interspaces. F) Thin-section of intra-bioclastic grainstone 

from interspace between microbialites in figure 3C. Cm scales. Sample numbers: B) 

U110A. D) U101A. E) U110Atop. 
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common (Fig. 5). Cryptic habits are also observed (Fig. 6A). The cryptic specimens are 

chiefly associated with cm-scale pockets of bioclastic packstone that regularly appear 

throughout the microbialites (Fig. 3A).   

Most of the megascleres have an overall length of between 200 and 500 µm (Fig. 

6E-G). These desma-like tetraxons seem to fuse in patches, with many of the patches 

and/or individual megascleres ‘floating’ in what at one time may have been a fleshy 

matrix (Fig. 6E-G). Rounded and sometimes gnarled zygomes (Fig. 6E-G) average about 

50 µm in diameter, and are attached to rays which themselves average 30 to 40 µm in 

diameter (Fig. 6F and G). The rays are often arcuate along their medial to distal axes 

(Fig. 6E-G), although some are straight (Fig. 6H). Some spicules exhibit an arcuate 

geometry that extends over the entire spicule structure. Zygomes in these spicules are 

typically diminished to non-existent (Fig. 6D). Using energy dispersive x-ray 

spectroscopy and microscopy, we determined that the formerly siliceous spicules are now 

preserved as drusy calcite, a diagenetic alteration that is typical for silica embedded in 

calcite.  

After tracing out sponge spicule networks representative of three separate 

microbialites, we were able to determine that total areal sponge distribution was: ≈ 60% 

(Fig. 5B), ≈ 49% (Fig. 5C), and ≈ 46% (Fig. 5D). 

Homogenous micritic domains, often filled with monaxons that appear to be 

randomly distributed, are found at the center of some sponge spicule networks (Fig. 6B). 

The mm-thick micritic lenses crudely intercalated between the sponges tend to be 

homogenous, blotchy light to dark gray in color, and locally host abundant monaxons and 

less abundant bioclasts (Fig. 7G). Bioclasts are typically less than 2 mm in length, and 
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Fig. 5. Photographs of complete thin-sections showing areal sponge distribution and 

planar morphology. All images are in cross-section. A) Rock surface (A complete, 

prepared thin-section) showing lamina-like sponges (perforated gray fabric) encrusting 

micrite (solid gray fabric), producing crude, diagonal laminae (from top left to bottom 

right). Outlined area is a large bioclastic packstone pocket. Arrows point to deteriorated 

sponge spicule networks producing geopetal structures. B) Same image as in A with 

sponges outlined in orange, and having a sponge areal distribution of 60%. Sponges also 

encrust a micritic fan-like structure (in blue). Notice that the packstone pocket is filled 

with sponge spicule networks. C) Rock surface (A complete, prepared thin-section from 

another microbialite) showing sponges encrusting micrite producing crude, convex 

laminae. Sponge areal distribution is 49%. D) Rock surface (A complete, prepared thin-

section from a third microbialite) showing sponges encrusting micrite producing diagonal 

laminae (from top right to bottom left). Rectangle enlarged in figure 7E, showing sponges 

encrusting a microbial mound-like structure. Sponge areal distribution of 46%. 
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Fig. 6. Spicule networks from zone 1. All images are in cross-section. M = Micrite, S = 

Sponge, SC = Sponge cavity. A) Sponge is attached to the underside of a trilobite 

carapace displaying a cryptic habit. B) Spicule networks circumscribe possible sponge 

cavities. Note desma tetraxons enlarged in E. C) Sponge spicule network. D) Some 

spicules exhibit an arcuate geometry that extends to the entire spicule. Note the 

diminished to non-existent zygomes. E) Desma-like spicules showing putative zygosis 

(long arrows) and curved, arcuate rays (short arrows). F) Partial network showing 

bulbous zygomes (outlined) and curved rays (arrows). G) Desma-like spicule showing 

possible gnarled zygome (circled) and curved ray (arrow). H) Spicules showing straight 

rays. 
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occur sporadically in isolated, micro-scale wackestone patches. Very fine wavy, to 

horizontal micritic laminae, small convex micritic mound-like, and micritic fan-like 

structures are also randomly distributed throughout these micritic lenses (Fig. 7E and F). 

Most of these mm-thick micritic lenses, however, are structureless. Large, cm-scaled 

pockets of bioclastic packstone, often found truncating micritic lenses and sponges, can 

also be found embedded within the matrix (Fig. 3A). Calcimicrobes, typically identified 

on the basis of diagnostic genera such as Epiphyton, Girvanella, and Renalcis, are absent 

from our thin-sections.  

 

Fenestral/Peloidal Networks in Zone 2 

Microbialites in zone 2 contain fenestral/peloidal networks, very similar to the 

deteriorated spicule networks from forms located in zone 1 (Compare fig. 7 A-F with fig. 

8A-G). Apart from some possible exceptions (Fig. 8A), spicule networks could only be 

clearly identified in the forms from zone 1, so at this stage we simply refer to the 

networks in the forms from zone 2 as fenestral or peloidal networks.  

The microbialites in zone 2 are composed of a stromatolitic region at the base of 

the form that abruptly transitions into a central core composed of mini-stromatolites and 

chaotic stromatolitic fabric towards the middle/top of the microbialite proper (Fig. 4B). 

The mini-stromatolites are separated by interspaces filled with detrital, packstone fill 

(Fig. 4C). This central core is sometimes encased within the stromatolitic laminae of the 

larger microbialite structure. A transverse cut through the top of the microbialite proper 

presents an organization that looks somewhat maze-like (Fig. 4E), but should be 
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distinguished from the maceriate forms described by Shapiro and Awramik (2006) based 

on the absence of non-laminated meso-clots. 

In cross-section, the basal, stromatolitic meso-fabric appears as alternating 

micrite-wackestone and fenestral/peloidal networks (Fig. 8G), similar to that found in 

zone 1. The micrite-wackstones are composed of homogeneous, blotchy light to dark 

gray micrites that contain ubiquitous, yet evenly distributed monaxons throughout. Some 

very fine laminae, small mound-like and fan-like structures can be found at random 

locations within the sediments. Small, less than 200 µm sized bioclasts are rarely found at 

this location within the larger microbialite form. The fenestral/peloidal networks often 

parallel the micrite-wackestone sediments, are about 1 – 3 mm thick, and are generally 

peloidal in character (Fig. 8G). Some of the peloids ‘float’ in blocky calcite, fenestral-

filling cement (Fig. 8E-G). This same phenomenon is also found in the deteriorated 

spicule networks of zone 1 (Fig. 7A-F). Fenestral networks also display amoeboid, and 

varied lump-shaped forms, similar to the spicule networks in zone 1 (Fig. 8B-F). 

Importantly, we were able to determine that the initial micritic laminae budding from a 

micritic clast upon which one of the microbialites grew is free of fenestral networks. This 

means that the microbial communities, and not the alleged sponges seem to have been the 

initial constructors.  

In the central, mini-stromatolite-bearing core of the microbialites, the wide, 

continuous laminations that are found at the stromatolitic base are replaced by 1 to 2 cm-

wide, and up to 20 cm tall, mini-stromatolites (Fig. 4B and C). These structures are 

surrounded by inter-stromatolite bioclastic packstones, primarily composed of trilobite 

hash, peloids and intraclasts. Fine, convex, micritic laminations occur within the 
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Fig. 7. Deteriorated spicule networks with associated micritic mound-like and fan-like 

structures from zone 1. All images are in cross-section. DSN = Deteriorated spicule 

network. FLS = Fan-like structure. MLS = Mound-like structure. M = Micrite. A) 

Deteriorated spicule networks circumscribe putative sponge cavities now preserved as 

micrite (outlined in dashed white lines. Note the pronounced boundary between networks 

and micritic domains). Networks show varying degrees of deterioration, with peloidal 

domains (arrows) presenting advanced decay (note ‘floating’ peloids). Less deteriorated 

domains (ellipses) contain filament-like cavities. B) Spicule network (lower ellipse. See 

figure 6D for enlargement) grades upwards into a deteriorated spicule network of 

filament-like cavities (upper ellipse), then into a peloidal domain (arrows), and finally 

into a void now preserved as drusy calcite. Dashed white line denotes a pronounced 

boundary between networks and adjacent micritic domain. C) Orb-shaped deteriorated 

spicule network consisting of filament-like cavities that grade into a peloidal domain. D) 

Reasonably well preserved spicule network grades upwards into a domain of filament-

like cavities. E) Mound-like structure encrusted by sponges (now preserved as 

deteriorated spicule networks). F) Fan-like structure encrusted by sponges (now 

preserved as deteriorated spicule networks). Line runs through fan axial plane. Arrows 

show ‘floating’ peloids. G) Homogenous, monaxon rich (arrows) micrite intercalated 

between sponge spicule networks from zone 1. H) Faecal pellets (now preserved as 

peloids) fill a macroburrow. These structures can be differentiated from sponge-related 

deteriorated spicule networks. 
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Fig. 8. Fenestral/peloidal networks from zone 2. FN = Fenestral network. M = Micrite. A 

– F) Networks are presented in a sequential series that display putative degrees of 

deterioration, going from best to worst. A) One of the rare, credible spicule networks 

from zone 2. B) Fenestral network composed of filament-like cavities that grade upward 

into a peloidal domain; very similar to the deteriorated spicule domains from zone 1. C) 

Automicrite vertically ‘encrusted’ by a fenestral network composed of filament-like 

cavities. Dashed lines delineate pronounced boundary between network and micritic 

domain. D) Fenestral network composed of less organized filament-like cavities. E) 

Fenestral network showing less organized filament-like cavities (ellipse), and peloidal 

domains (arrows). Note ‘floating’ peloids. F) Fenestral network composed of peloidal 

domains and voids. Note ‘floating’ peloids. G) Fenestral networks are oftentimes 

intercalated between automicritic sediments, similar to the spicule networks in zone 1. 

Arrows denote ‘floating’ peloids. H) Mound-like structure constructed of precipitated 

micritic clumps putatively derived from microbial activity. 

 

 

 

 



 

91 

mini-stromatolites, and alternate with fenestral/peloidal networks, similar to that found in 

the stromatolitic portion at the base of the structure. Larger, microbial mound-like 

structures are also found in the more chaotic regions of the mini-stromatolite-bearing 

cores (Fig. 8H). 

 

Discussion 

Microbial-sponge reef-building communities conscruct ‘stromatolites.’ 

Based on the presence of well-washed, inter-columnar grainstones deposited 

between the microbialites of bed 11 (the entire bed), we suggest that these forms grew in 

a shallow, sub-tidal environment.  

Microbial biofilms first colonized and stabilized the underlying substrate (or 

attached to already hard surfaces such as the clast in fig. 4D). As a result of continued 

microbial trapping and binding of lime mud and/or precipitation of micrite, the meso-

fabric took on a stromatolitic texture. This initial rigid microbialite served as a suitable 

substrate for early sponge attachment (Kruse and Reitner, 2014; Adachi et al., 2015). It 

seems that both microbial and sponge communities then took on reciprocal encrusting 

roles, slowly immuring each other in a regular organization that eventually led to the 

construction of a columnar ‘stromatolites’ in both zones 1 and 2. We observed no criteria, 

however, to determine if this close relationship was mutualistic, commensalistic, or 

parasitic. Although wide laminae continued to characterize the forms in zone 1, a change 

in conditions initiated a diminutive growth phase in zone 2, whereby singular columnar 

‘stromatolites’ branched into a grove of digitate, mini-‘stromatolites.’ We are not sure 
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what conditions changed, but this change must have been abrupt, as the boundary 

between the two different meso-fabrics is salient (Fig 4B).  

Most Paleozoic reef experts agree that during the middle to late Cambrian, it was 

the microbial reef-building communities that played the most significant reef binding and 

constructing roles, with sponges taking on a secondary role (Riding and Zhuravlev, 1995; 

Adachi et al., 2011; Kruse and Reitner, 2014). We suggest that these microbial 

communities were responsible for the overall stromatolitic fabric, the convex laminations, 

and the overall columnar form. Sponges contributed to the overall macro-shape only by 

means of vertical inheritance, having a total areal sponge distribution of around 50%.   

Although these sponges most commonly exhibit an encrusting habit, some 

sponges favored a cryptic habit and are found sheltered under bioclasts (Fig. 6A). This is 

important from a paleo-environmental perspective, since examples of sessile metazoan 

cryptobionts from the middle to late Cambrian are rare (Kobluk, 1988; Hong et al., 2014; 

Lee et al., 2014). This may, however, be an artifact based on the misidentification of 

sponges in many microbialite buildups (Luo and Reitner, 2015). 

 

Metazoan reefs: Underrepresented or Overlooked? 

Sponges closely resembling those described in this paper have also been 

described from middle Cambrian to Late Ordovician rocks in China and Korea (Hong et 

al., 2012, 2014; Chen et al., 2014; Lee et al., 2014; Park et al., 2015). Similarities include 

small-scale body sizes, irregular spicule networks, similar size and shape of megascleres, 

including the peculiar arcuate rays, similar reefal habits, and similar ecological zones. 

The absence of easily identifiable characters such as canal systems and rigid skeletons, 
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were also common features of these China/Korea associations. Typically, anthaspidellid 

sponge spicules fuse to form rigid frameworks of desmas easily identified as ladder-like 

trab networks (Rigby, 1983; Shapiro and Rigby, 2004; Adachi et al., 2013; Schuster et 

al., 2014; Hong et al., 2015). The desma-like spicules in the Notch Peak specimens 

however, seem to fuse in patches, with many of the patches and/or individual 

megascleres ‘floating’ in what at one time may have been a fleshy matrix (Fig. 6E-G). 

These observations may of course represent a taphonomic bias, but it may be that these 

isolated patches and/or individual megascleres were once attached to each other by 

spongin, a proteinaceous bundle of fibers that is rarely preserved (Narbonne and Dixon, 

1984; de Freitas and Mayr, 1995; Warnke, 1995; Carrera and Botting, 2008; Luo and 

Reitner, 2014).  

Although some of the spicule networks resemble the anastomosing filamentous 

structures of Luo and Reitner (2015) (Fig. 6D), we propose that the sponges connected 

with this study be affiliated with ‘Lithistida,’ a polyphyletic order of sponges that clusters 

around the presence of desma tetraxons (Pokorny, 1965; Rigby, 1983; Schuster et al., 

2014) (Fig. 6F). Fused skeletons and larger, cone-shaped morphologies are often 

diagnostic of lithistids, but this is not always the case (Pokorny, 1965; Rigby, 1983; 

Schuster et al., 2014).  

We suggest that these sponges, and others like them, shared a common 

morphological niche with microbial reef-building communities, but that this mutual role 

of construction has largely gone unnoticed for several reasons. First, weakly fused spicule 

networks are known to have a low preservation potential due to the absence of a robustly 

fused skeleton (Narbonne and Dixon, 1984; de Freitas and Mayr, 1995; Warnke, 1995; 
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Carrera and Botting, 2008). In order to achieve body rigidity, it has been suggested that 

ancient non-skeletonized sponges utilized spongin, much like many modern taxa (Carrera 

and Botting, 2008; Luo and Reitner, 2014). This rigidity can only be maintained, 

however, while the organism is alive. At death, bacterial decay will cause the sponge to 

disarticulate leaving disorganized spicule domains. The plentiful abundance of such a 

reef-building fauna in the Cambrian might explain the ubiquitous presence of spicules in 

reefal-type rocks that are at the same time often devoid of sponge fossils (de Freitas and 

Mayr, 1995; Carrera and Botting, 2008). de Freitas and Mayr (1995), discussing the 

presence of abundant spicules in an otherwise sponge-free Ordovician reefal 

environment, suggest the putative presence of what they call “fleshy, non-sclerotized” 

sponges. Carrera and Botting (2008, p. 131-133) recognize the presence of such a fauna 

in middle to late Cambrian environments, but acknowledge the rarity of such forms in the 

fossil record. This latest discovery, however, bridges a gap that associates an abundance 

of such a fauna with microbial reef-building communities.  

Second, there is an important overlap that exists between spicule networks, 

deteriorated spicule networks and fenestral networks. The latter two kinds of networks 

are somewhat similar, and mainly differ in how closely they can be related to sponges. 

Most of the ambiguous fenestral networks are found in the microbialites from zone 2, and 

reflect different, yet unknown environmental conditions that reduced the preservation 

potential of the sponges. We therefore suggest that many of these fenestral networks are 

actually degraded spicule networks. This idea is not novel. Several authors have 

suggested that similar reticulate networks represent decayed and/or decaying sponge 

spicule networks (Klappa and James, 1980, p. 439; Pohler and James, 1989, p. 208; 
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Bourque and Boulvain, 1993, p. 613). Others propose that similar structures represent 

spaces originally occupied by cyanobacterial filament bundles (Flügel and Steiger, 1981, 

p. 393; Pratt, 1982, p. 1217; Monty, 1995, p. 20). Pratt (1982, p. 1218) did however, 

entertain the idea of a sponge presence. Luo and Reitner (2014, p. 474; 2015, p. 11), 

working with very similar, anastomosing filamentous microstructures from the 

Carboniferous and the Triassic, were convinced that this kind of fabric may represent the 

remains of ‘keratose,’ non-spicular sponges. They called into question a cyanobacterial 

possibility, appealing to a lack of examples where cyanobacterial filaments form these 

kinds of 3D networks. A non-spicular, ‘keratose’ sponge interpretation seemed most 

likely for similar microtubule domains according to Larmagnat and Neuweiler (2015, p. 

179). Zhuravlev and Wood (1995, p. 457) discuss another possibility, attributing the 

presence of 100 – 500 µm tubular fenestrae to the activity of microburrowers. 

Microburrowers, however, excavate indiscriminately, and do not leave neat, linear 

boundaries between fenestral networks and adjacent micritic domains (Luo and Reitner, 

2014; 2015) (Figs. 7A,B and 8C,G). Significantly, the reticulate structures from Klappa 

and James (1980, see fig. 23), Flügel and Steiger (1981, see fig. 21), Pratt (1982, see fig. 

13), Bourque and Boulvain (1993, see fig. 10) and Monty (1995, see fig. 5), as well as the 

microtubule domains of Larmagnat and Neuweiler (2015, see fig. 10) look remarkably 

similar to some of the deteriorated spicule and fenestral networks found in our 

microbialites (Figs. 7 and 8).  

Advanced deterioration of sponges ultimately produced unrecognizable peloidal 

domains followed by gravity collapse, and the formation of large voids now preserved as 

drusy calcite. The association of peloids with calcified sponge fossils is a well described 
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phenomenon (Pratt, 1982; Pohler and James, 1989; James and Gravestock, 1990; de 

Freitas and Mayr, 1995; Adachi et al., 2009, 2011; Hong et al., 2012, 2015; Luo and 

Reitner, 2014, 2015; Park et al., 2015). Warnke (1995) suggests that calcification of 

ancient sponge tissue through microbially induced processes such as ammonification and 

sulfate reduction, best explains the existence of calcified sponges in fossilized reefs. 

Reitner (1993) verified this process at work in modern sponges. Neuweiler et al. (2007) 

demonstrated that early calcification of modern sponges may actually result from 

necrosis of sponge collagen networks in still living organisms. Either way, it is clear that 

calcification of decaying sponge tissue is an important process in the formation of 

peloidal domains in carbonate sediments. Of course, the presence of a peloidal domain 

does not necessarily correlate to the prior presence of a sponge. The generation of peloid-

rich domains can also be attributed to other factors; Riding and Tomás (2006) suggest 

that degradation of bacterial colonies are responsible for the formation of peloidal films 

encrusting Cretaceous stromatolites. Zhuravlev and Wood (1995) describe macroburrows 

filled with faecal pellets now preserved as peloids. Our specimens possess many 

macroburrow examples (Fig. 7H), and some microbial structures that although not 

containing peloids, do host microbially precipated micritic clumps (Fig. 8H). These 

contextual references alleviate some of the ambiguity when deciding between sponge and 

non-sponge-related networks. 

This latest discovery adds a significant element to these fenestral, filament-like 

and peloidal networks; many of the spicules of this as yet unclassified sponge are slightly 

curved to arcuate (Fig. 6D-G). Marginal decay and separation of calcified sponge tissue 

from around these spicules produced arcuate, 50 – 500 µm filament-like cavities that 



 

97 

obscured the former presence of spicules when viewed in cross-section (Fig. 7A-D). 

Further deterioration produced unrecognizable peloidal domains (Fig. 7A,B and E,F). 

These observations suggest that some vermiform, spongiform, and ‘algal’ 

microstructures, microtubule domains as well some peloidal domains described in the 

literature may actually characterize different stages of decay representative of sponges 

like the ones described in this study.  

Third, these sponges cannot be seen in the field, and where they are preserved, 

can only be detected using microscopy. Unlike many coeval lithistid taxa, which typically 

had cm to dm-scale body-plans (Shapiro and Rigby, 2004; Johns et al., 2007; Kruse and 

Zhuravlev, 2008; Schuster et al., 2014; Luo and Reitner, 2015), the Notch Peak sponges 

only achieved mm to cm-scale dimensions. Such minuscule sponges are known from 

both modern (Reitner, 1993) and ancient environments (Luo and Reitner, 2015). Sponges 

closely resembling those described in this paper have also been described from middle 

Cambrian to Middle Ordovician rocks in China and Korea (Hong et al., 2012; Chen et al., 

2014; Hong et al., 2014; Lee et al., 2014; Park et al., 2015). Most of these authors agreed 

that detection of this particular kind of sponge was almost impossible in the field.  

Finally, this kind of sponge typically took a lamina-like form that encrusted both 

itself and locally associated microbial communities (Fig. 5). As such, the overall meso-

scale fabric, although poorly laminated, is stromatolitic (Fig. 3A). This characteristic 

extends to the overall macro-scale morphology producing columnar ‘stromatolites (Fig. 

4B and D).’ Up until recently, middle to late Cambrian stromatolitic microbialites were 

simply assumed to represent a microbial, non-metazoan reef-building community. As 

such, many microbialites, including thrombolitic and dendrolitic forms, may actually 
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contain remnants of metazoan reef-builders that have simply been overlooked. Luo and 

Reitner (2014; 2015) confirmed this observation when they found sponges in 

Carboniferous and Triassic ‘stromatolites’ that had previously been interpreted as 

metazoan-free microbial buildups. Taken together, these observations make it very easy 

to overlook this reef’s metazoan component, and by extension, may mean that other 

similar reefs have been overlooked at other localities around the world.  

 

Conclusions 

I. Some lithistid sponge-microbial reef-building communities constructed laminated 

‘stromatolites.’  

II. This particular kind of lithistid sponge can easily be overlooked in the fossil 

record for several reasons: 1) These sponges encrusted automicritic laminae 

using a similar lamina-like morphology that can easily be overlooked in 

microbial buildups. 2) These lithistid sponges are typically very small 

compared to other coeval forms. 3) These sponges have a low preservation 

potential compared with other coeval forms due to the absence of a fully fused 

skeleton. 4) These sponges possessed arcuate spicules and spicule rays. As the 

sponges calcified, the micritized sponge tissue around these geometric 

surfaces would naturally have possessed some curvature. Slight deterioration 

and marginal separation of calcified sponge tissue from theses spicules 

produced filament-like fenestral and peloidal domains that obscured the 

former spicule networks when viewed in cross-section.  
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III. Some vermiform, spongiform, and ‘algal’ microstructures, microtubule domains 

as well some peloidal domains described in the literature may actually 

characterize different stages of decay representative of sponges like the ones 

described in this study. 
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CHAPTER FOUR 

CONCLUSIONS 

Excellent exposures within the uplifted mountains of southwestern Utah present 

geologists with a unique opportunity to study upper Cambrian microbialite reef 

environments and ecologies. The upper Hellnmaria Member of the Notch Peak Formation 

located in the northern House Range of southwestern Utah contains over 40 meters of in-

situ microbialites separated into at least 11 microbialite-bearing beds. Most of these beds, 

although sharing the same geographic location, differ substantially with regard to their 

paleoenvironmental and paleoecological constituents. Two of these beds were chosen for 

the purpose of studying some of these components, and then applying our results to both 

ancient and modern analogues.     

In one bed, the existence of a uniquely preserved suite of microbialite 

morphologies capturing many phases of elongate-related processes in vertical succession, 

serves as a useful case study from which to compare strongly elongate microbialites 

found in other ancient, as well as modern environments. This example demonstrates that 

coalescence is the most effective mechanism for constructing strongly elongate 

microbialites, parallel to flow, in deep-subtidal or wave restricted settings where 

intertidal scouring processes are weak. Other elongate-related processes do create 

strongly elongate structures, but in these cases the elongate forms are intertidal or very 

shallow subtidal structures that owe their primary morphology to a combination of sheet-

like microbial growth combined with intertidal mechanical wave scour. Although not a 

new discovery, this example also confirms that elongate morphologies, according to both 

modern and ancient analogues, are always formed in the presence of directional 
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hydrodynamics where the long axes parallel the direction of flow, irrespective of whether 

those forms are constructed in a subtidal, intertidal or supratidal setting. The hypothesis 

put forward by Mariotti et al. (2014) as well as the example discussed by Shapiro (1990) 

are exceptions. If, as in the latter case, elongate microbialites are found to have formed 

perpendicular to flow, then this might indicate some kind of substrate control that 

overprinted the hydrodynamic component. This study also shows that a close-packing 

relationship is important for elongation by means of coalescence to occur. Since most 

Proterozoic and early Paleozoic microbialites are closely packed, this factor, in 

conjunction with coalescence may provide a good explanation for the presence of 

strongly elongate forms in the fossil record. Finally, extremely narrow interspaces 

demonstrate that modern examples of sculpting by mechanical, intertidal wave scour, are 

not good analogues from which to interpret some ancient examples. Extremely narrow 

and consistent interspaces found in the Notch Peak growth series are best explained by 

abrasion related to the propagation of less turbulent internal wave bores which entrain 

smaller, less abrasive detrital grains than do intertidal surface waves propagating across 

siliciclastic beach zones. 

 In bed 11, the presence of microbial-sponge reef-building communities that 

constructed laminated ‘stromatolites’ reflects a new kind of bio-structure that up till now 

has only been described from the Carboniferous and Triassic. This particular kind of 

lithistid sponge has most likely been overlooked in the fossil record for several reasons: 

1) These sponges encrusted automicritic laminae using a similar lamina-like morphology 

that can easily be overlooked in microbial buildups. 2) These lithistid sponges are 

typically very small compared to other coeval forms. 3) These sponges have a low 



 

106 

preservation potential compared with other coeval forms due to the absence of a fully 

fused skeleton. 4) These sponges possessed arcuate rays. As the sponges calcified, the 

micritized sponge tissue around the rays would naturally have possessed some curvature. 

Slight deterioration and marginal separation of calcified sponge tissue from theses 

spicules produced filamentous and peloidal domains that obscured the former spicule 

networks in several sponges. This means that vermiform, spongiform, and ‘algal’ 

microstructures, as well as microtubule domains and perhaps some other carbonate 

microstructures described in the literature may actually represent poorly preserved 

sponge spicule networks. 
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APPENDIX A 

WACKESTONE—GRAINSTONE INTERVAL 

I also measured the wackestone-grainstone interval located between beds 10 and 

11 (Fig 2B, p. 71) at seven different locations along an 8 km northwest-southeast transect 

that runs through the research area. I found that this interval generally thickens in a 

northwesterly direction from 22 m at outcrop 2U44 to about 30 m at outcrop 2U31 (Fig. 

1). I drew a line connecting these two outcrops and then superimposed the remaining five 

outcrops onto that line. This trend may indicate a relative deepening towards the 

northwest, perhaps signifying a mini carbonate ramp that dipped down into what was left 

of the middle Cambrian HRE trough. 

 

 

 

Fig. 1. Wackestone-grainstone interval located between beds 10 and 11 (Fig 2B, p. 71). 

Notice general thickening of the interval towards the northwest. Datum set at the base of 

bed 11. Blue color is bed 11. 
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APPENDIX B 

ADDITIONAL METHODS 

All microbialite-related insoluble residues came from drill core samples sourced 

from a single outcrop. Cores were drilled in the interspatial zones as well as within the 

microbialites themselves, and spaced so as to obtain data from most of the discrete 

morphologies. Each sample was weighed, placed into a 500 mL beaker and then left to 

dissolve overnight in about 100 mL of 6N HCL. Acid was tested for strength the next 

day, and more acid added to the sample/acid mixture if the chemical reaction was poor. 

Once samples were completely dissolved, the sample/acid mixture was added to two 50 

mL test tubes and placed in a Beckman, Coulter Allegra X-30R Centrifuge for 15 

minutes at 3000 RPMs. After 15 minutes, test tubes were decantered leaving only the 

sediment plug behind. Deionized water was then added to the test tubes which were then 

thoroughly shaken and placed back in the centrifuge for an identical run. After test tubes 

were drained off for the second time, more deionized water was added, the tubes were 

then shaken vigorously, and their contents filtered. Filter paper was weighed both prior to 

filtering and after the filter, combined with insoluble residue, had completely dried. The 

difference was then recorded as a percent value.  

Thin-section samples were likewise sourced from a single outcrop, although four 

extra samples were obtained from the interspace zones of the strongly elongate layer at 

four other locations. Most of our thin sections were prepared at LLU using a Pelcon 

Automatic thin section machine. SEM and EDS data were obtained at LLU using a 

Tescan Vega II instrument interconnected to a Noran EDS device utilizing NORAN 

system SIX spectral imaging software. In order to qualitatively determine particle size 
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and composition of insoluble residues, a small portion of the sample was placed on a 1 

cm diameter aluminum stub, and then completely disaggregated by thoroughly mixing 

the sample with acetone while on the stub. This process moved heavier particles to the 

stub center, while smaller particles formed a thin film at the stub circumference. We were 

then able to closely examine the stub qualitatively to determine average clast sizes and 

composition. XRD analysis was performed at LLU using a Bruker, D8 Advance machine 

and then interpreted using JADE software. 
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APPENDIX C 

CROSS-BEDDING 

Very fine cross-bedding is present to a small degree at the bottom of the 

wackestone interval intercalated between beds 10 and 11 (Fig 2B, p. 71 and Fig. 2A 

below). One-half m thick cross-beds, composed of a very well sorted, coarse-grained 

ooid grainstone were correlated for about 100 m at the top of the same interval at the U16 

outcrop location (Fig. 2B and C below). This cross-bedded grainstone bed was also found 

at another location about 3 km away (Fig. 2D below). In both cases the bed is located 0.5 

m to 1 m below bed 11 (Fig. 2B below), but we are not sure if the bed is connected with 

the U16 location. Similarly, we were unable to detect the presence of tidal channels at 

either site, but it seems likely that this herring-bone cross-stratification reflects bi-

directionality associated with tidal channels. In all three cases, dip directions favor 

paleocurrent flowing from the northwest and southeast.  
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Fig. 2. Cross-beds located at the bottom and top of wackestone-grainstone interval 

between beds 10 and 11. A) Very finely cross-bedded layer located just above bed 10 at 

the U16 outcrop (sense of cross-beds outlined). B) 0.5 m to 1 m coarse-grained, yet 

laminar to massive layer intercalated between cross-bedded layer (bottom arrow) and 

stromatolites of bed 11 (top arrow) (base of some stromatolites outlined). C) Cross-

bedded layer located at the U16 outcrop. D) Cross-bedded layer located about 3 km to the 

west of U16 (sense of cross-beds outlined). All cross-bed dip directions favor 

paleocurrent flowing from the northwest and southeast. 
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APPENDIX D 

SEM IMAGES OF INSOLUBLE RESIDUES  

 

 

 

 

Fig. 4. SEM images of insoluble residues. A) Potassium feldspar showing signs of decay. 

B) Detrital quartz. C) Authigenic quartz (notice euhedral crystal center of image). D). 

Putative detrital chlorite or muscovite. 
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APPENDIX E 

HYDRODYNAMICS AFFECTS MORPHOLOGY 

Fossilized elongate microbialites, although lacking the actualistic advantage of 

modern day analogues, seem to strengthen the assumption that directional hydrodynamics 

are extremely important for elongation. Hoffman (1967; 1976) determined that the 

subtidal, elongate stromatolites of the lower Proterozoic Pethei Formation in Northwest 

Territories (NWT), Canada, owed their directional growth and primary orientation to the 

hydrodynamic flow regime. He was even able to show that over-steepened, laterally 

linked stromatolites accreted laminae and thickened in the up-current direction. Campbell 

and Cecile (1975) duplicated these findings for subtidal, stromatolitic, elongate mounds, 

30 m long, 10 m wide and about 3 m high, found in the Precambrian Goulburn Group, 

also in NWT, Canada. Upper Proterozoic, subtidal, stromatolitic mounds, several tens of 

m long and a few m high, found on Victoria Island, northwestern Canada, are considered 

by Young and Long (1976) to have been influenced by long-shore currents, with long 

axes both parallel to current direction and shoreline. In this example, the mound edges 

contain discrete, elongate stromatolites that are likewise thought to be shaped by the same 

long-shore currents. Individual stromatolites are arranged in horizontal beds stacked one 

upon the other, and are about 25 cm high and about 2 – 15 cm in diameter for round 

forms. In plan-view, these individual stromatolites exhibit a change in morphology from 

circular at the center of the mound to strongly elongate at the mound edge, with the long 

axes parallel to that of the mound (Fig. 4). Each mound is separated by a channel from a 

few cm to about 50 cm in width which acted as a conduit for water flow. Since 

channelized-flow is more likely to intensify flow velocity at mound margins, it is not 
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surprising that Young (1973) and Young and Long (1976) suggest a strong correlation 

between current flow and acute elongation at these margins. Mounds of similar 

dimensions have also been found in the lower Proterozoic Pretoria Group in South 

Africa, and likewise are interpreted to have grown in a subtidal environment where the 

long axes paralleled the hydrodynamic flow regime (Button and Vos, 1977). Although 

Button and Vos (1977) do not discuss processes related to elongation, they nevertheless 

imply a direct correlation between long axes direction and hydrodynamic flow. 

According to Eriksson (1977), elongate stromatolitic mounds that average 10 m wide and 

about 40 m long from the related Chuniespoort and Chaap Groups in South Africa, 

likewise formed as a result of directional hydrodynamics in a subtidal environment. He 

documents clear instances of mechanical scour, trapping, binding, and over-steepening of 

laminae in the up-current direction.  

 

 

 

Fig. 4. Round to elongate transition of small microbialites found in the same elongate 

mound. A) Elongate microbialites at the margin of a large, elongate mound. The hammer 

is sitting in the inter-mound zone. Many of these individual forms are coalesced. B) 

Round microbialites from the center of the same mound in A. Photos courtesy G. Young, 

http://dx.doi.org/10.1016/0301-9268(74)90015-1, license number 3702150483903. 

Cropped for detail.  

http://dx.doi.org/10.1016/0301-9268(74)90015-1
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APPENDIX F 

NUTRIENT DIFFUSION 

Petroff et al. (2010) have successfully tested a hypothesis that explains consistent, 

uniform, centimeter scale spacing for coniform microbialites growing in Yellowstone 

National Park (YNP). They predicted that narrow, uniform interspaces reflect the creation 

of a nutrient gradient due to the photosynthetic activities of microbes. Essentially, over a 

12 hour period, cyanobacteria harvest their nutrients more rapidly than the nutrients are 

able to move through the liquid media. This produces a diffusion gradient that exists over 

a length scale of about 1 cm (0.5 cm away from each microbialite). If this gap closes to 

less than 1 cm, then microbes from one microbialite will begin competing with microbes 

from a neighboring microbialite for nutrients. In order to limit competition, the 

cyanobacteria therefore maintain this regular 1 cm spacing which in turn produces a 

highly uniform centimeter scaled interspace between individual forms. They tested their 

hypothesis by growing mats under a range of day-night cycles that varied from 3 to 48 

hours. They confirmed that the 1 cm spacing between conical aggregates was a direct 

function of microbial communities limiting competition for nutrients. This 1 cm spacing 

between forms also holds true for ridge-like microbialites that are growing in YNP. 

During unidirectional flow, molecular diffusion in the direction of flow is of course 

negligible, but still occurs when transporting the required nutrients to the cyanobacteria 

perpendicular to flow. As a result, long ridges with consistent, 1 cm wide interspaces, 

develop.  

Extreme caution must of course be used when applying this data to the 

Hellnmaria forms. It must be kept in mind that the microbialites growing in YNP are 



 

116 

freshwater examples forming in the absence of sedimentation and are many orders of 

magnitude smaller. Secondly, and I think most importantly, their model only works for 1 

cm wide interspace gaps. It is true that the Hellnmaria elongate microbialites exhibit 

narrow interspaces of between 3 and 8 cm, but that is still a far cry from 1 cm. Since 

Petroff et al. do try to apply their model to the fossil record (Petroff et al., 2010, p. 9960), 

they proposed some modifications that may help explain the much larger interspace gaps 

found in fossilized forms. They hypothesized that competition for nutrients might 

continue to influence interspace gaps, but on a larger scale, given the role of molecular 

diffusion in concert with moving water and advection (Petroff et al., 2010, p. 9959).  
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Fig. 5. Interpretation from Petroff et al. (2010) explaining microbial nutrient gradients. A) 

Elongate ridges formed in the presence of unidirectional, laminar flow (arrow shows flow 

direction) from YNP. Scale = 30 cm. B) Cones formed in the presence of standing water. 

Scale = 1 cm. C) Diffusion of nutrients is perpendicular to flow. Dots represent nutrients. 

Squiggles represent microbes attached to the sides of adjacent microbialites. D) Red and 

blue lines represent the range in which microbes deplete the water column therefore 

setting up a diffusion gradient. If microbes are too close to each other, as in this frame, an 

area of competition is generated (between dotted lines). This is not favorable for optimal 

microbial metabolism. E) A distance of 1cm separating microbes produces a favorable 

metabolic scenario. Microbes therefore maintain this distance. Image in A courtesy of 

Petroff, A. P., Sim, M. S., Maslov, A., Krupenin, M., Rothman, D. H., and Bosak, T., 

2010. Biophysical basis for the geometry of conical microbialites. Proc. Natl. Acad. of 

Sci. U. S. A. 107, 9956-9961. Image in B courtesy of the Geological Survey of Western 

Australia, Department of Mines and Petroleum. © State of Western Australia 2015. 
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