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ABSTRACT In the Southern Ocean, the trophic ecology of deep-sea communities is probably 11 

one of the most neglected fields in the discipline. In the present study, the trophic position and 12 

energy storage-mobilization of 3 different deep-sea echinoderms living in the Weddell Sea 13 

(around 1500 m depth) were investigated with indirect tools (i.e. stable isotopes, carbohydrate-14 

lipid-protein balance, and free fatty acid [FFA] contents). The stalked crinoid Dumetocrinus 15 

antarcticus, the holothurian Rhipidothuria racovitzai, and the ophiuroid Ophiura carinifera were 16 

sampled in spring 2003 during a Polarstern cruise. We found that stable isotopes were in line 17 

with previous results of other species (13C ranging from –24.3‰ to –26.5‰; 15N ranging from 18 

6.8‰ to 7.9‰), showing similarities in the trophic position of the 3 echinoderms. The capability 19 

to store energy by these 3 organisms is conspicuous and different, e.g. from 18 to 45% of the 20 

organic matter (OM) consists of lipids. The capability to mobilize energy in the form of 21 

carbohydrates and FFAs among species was also very different (e.g. biomolecules ranging from 22 

9 to 22 µg carbohydrates mgOM–1 and from 4 to 39 µg FFA mgOM–1). It is suggested that even 23 

if the trophic level is similar in the 3 echinoderms, the strategies to invest the energy inputs in 24 

these deep-sea organisms in polar environments may be quite different. 25 

KEY WORDS: Suspension feeders · Deposit feeders · Fatty acids · Stable isotopes · Energy 26 

storage · Antarctica · Biomarkers · Deep sea 27 

INTRODUCTION 28 

An important part of the seasonal primary productivity in Antarctic waters (up to 90% at 29 

the beginning of the blooms in polar waters; Wassmann et al. 1991) arrives almost intact to the 30 

benthic communities, forming food banks (Gutt & Starmans 1998, Mincks et al. 2005, Isla et al. 31 

2006a,b). This organic matter fuels the overall system for weeks or months (Holm-Hansen 1985, 32 

Clarke 1988, Piepenburg et al. 1997). In the euphotic zone, twenty to forty intense blooms a year 33 

(produced between late spring and early autumn; Isla et al. 2009) produce a huge amount of 34 

particulate organic matter (POM) that is rapidly transferred to the benthic communities (Lampitt 35 

et al. 1993, Cattaneo-Vietti et al. 1999, Rossi et al. 2013, Gutt et al. 2017). This phenomenon 36 
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produces a tight benthic–pelagic coupling in Antarctic waters (Ambrose & Renaud 1997, Clough 37 

et al. 2005). 38 

The highly diverse Antarctic bottoms (Arntz et al. 1994, Gili et al. 2001, Gili et al. 2006a, 39 

Gutt et al. 2017) hold a huge biomass in which suspension and deposit feeders have a prominent 40 

role. Among these organisms, echinoderms are very abundant and taxonomically diverse, 41 

capturing particles by actively intercepting the main currents, or by detecting and consuming the 42 

primary productivity and its associated microbial and metazoan community from the ocean floor 43 

(Gutt 1991, McClintock 1994, O’Loughlin et al. 2011, Ambroso et al. 2016). In general, 44 

information on the trophic ecology of benthic organisms in Antarctic waters is scarce (Orejas et 45 

al. 2001, Jacob et al. 2003; Gili et al. 2006b, Elias-Piera et al. 2013). Most trophic studies to date 46 

have been carried out in the Antarctic Peninsula and on the Weddell Sea continental shelf (150–47 

2000 m depth) (McClintock 1994, Dahm 1999, Jacob et al. 2003, Purinton et al. 2008, Corsolini 48 

& Borghesi 2017), thus trophic ecology information for the deep-sea areas of the Weddell Sea is 49 

still very scarce (Jacob et al. 2003). 50 

These deep areas may also have an important presence of benthic suspension or deposit 51 

feeders (Brandt et al. 2007a,b; Gutt et al. 2017), but the trophic ecology of these organisms can 52 

only be guessed at, because very few studies have been made to date (see Frutos et al. 2017, Gutt 53 

et al. 2017). During the ANT XXI-2 'Polarstern' cruise (2003–2004), 3 different echinoderms 54 

were observed forming quite dense patches at 1500 m depth: the stalked crinoid Dumetocrinus 55 

antarcticus (Bather, 1908), the holothurian Rhipidothuria racovitzai (Hérouard, 1901), and the 56 

ophiuroid Ophiura (Ophiuroglypha) carinifera (Koehler, 1901). This suggests that primary 57 

productivity may also reach these deep zones in sufficient quantity to fuel these communities. 58 

The stalked crinoid is a suspension feeder, fixed on the substrate (Macurda & Meyer 59 

1974). Its body shape and morphology indicates that this animal is adapted to intercept particles 60 

from the water column, as in other suspension-feeding species (Orejas et al. 2001). Like other 61 

suspension feeders, it therefore depends on the quantity and quality of the water column seston 62 

particles to feed (Gili & Coma 1998). Other echinoderms may actively search for food in the 63 

food banks (‘green carpets’; Mincks et al. 2005), which may be sparse in different areas. We do 64 

not have precise information about the trophic ecology of the holothurian, but it may be a deposit 65 

feeder, detecting and feeding on these degrading phytoplankton carpets present in the sediment 66 

(Gutt 1991, McClintock et al. 1994). Ophiuroids can be considered intermediate strategists 67 

between suspension feeding and deposit feeding (Gutt et al. 2017): they may be highly 68 

concentrated in soft bottoms where detritus is available, filtering the resuspended material 69 

(Piepenburg et al. 1997), and actively moving from patch to patch of detritus, taking advantage 70 

of the asymmetric distribution of organic matter (OM) in the soft bottom substrates (Piepenburg 71 

& Juterzenka 1994). 72 

In areas like the deep Antarctic benthos which are logistically difficult to access, direct 73 

tools (e.g. stomach contents, feeding experiments) are not a practical method to obtain a 74 

complete picture of the energy fluxes (Gili et al. 2006b). However, indirect methods, such as the 75 

integration of results for multiple biomarkers (e.g. stable isotopes, biochemical balance, and fatty 76 

acids) assessed in combination, have proven very useful in elucidating the trophic ecology of 77 

benthic organisms (e.g. Gori et al. 2012, Elias-Piera et al. 2013, Viladrich et al. 2017). The use of 78 

identifiable molecular biomarkers, which pass from food sources to the consumer, is also useful 79 

to detect soft-bodied microscopic prey, such as bacteria, phytoplankton, ciliates and flagellates 80 

(Rossi et al. 2006c). Using such indirect tools allows identification of food sources, trophic 81 
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position of the organisms, the ecosystem's capability to store energy, or even the effects of 82 

environmental changes integrated over time (Viladrich et al. 2016a,b). For example, the 83 

proportions of carbon (13C) and nitrogen (15N) stable isotopes may vary with nutrient source 84 

and trophic level of consumers. Stable isotope analysis has been successfully used to elucidate 85 

food source partitioning, and food web dynamics (Jacob et al. 2005, Mincks et al. 2008, Søreide 86 

et al. 2008, Elias-Piera et al. 2013). Also, overall fatty acid (FA) composition and specific FAs 87 

used as trophic markers can help to elucidate trophic relationships in food webs and quantify 88 

available mobilisable lipids (free fatty acids [FFAs]; Viladrich et al. 2016a,b). Finally, many 89 

organisms commonly use energy storage to cope with seasonal food shortages: protein, 90 

carbohydrate, and lipid levels may reflect food shortages in benthic aquatic organisms (Rossi et 91 

al. 2006a,b). Benthic–pelagic coupling processes may be thus studied using these indirect tools 92 

(Rossi et al. 2017). 93 

Improving knowledge of the trophic ecology of deep-sea organisms, especially in 94 

Antarctic waters, will help in the understanding of biodiversity and ecosystem functioning in this 95 

remote area. In the present study, the 3 abovementioned echinoderm species were collected and 96 

analysed for stable isotopes, FFAs and biochemical balance (protein, lipid and carbohydrate 97 

content) to explore their trophic ecology in late spring Antarctic conditions. In this time of the 98 

year, food banks are almost depleted (Isla et al. 2011) and the cycle of primary productivity starts 99 

again. The study will be a key point to understand future changes in the trophic ecology of these 100 

considered important contributors of the biomass in Antarctica (Brey & Gerdes 1998) in a fast-101 

changing area. 102 

MATERIALS AND METHODS 103 

Sampling area and sampled species 104 

The sampling area was located in the southwestern Weddell Sea, around 1500 m depth 105 

( ; 70°7.88’S; 11°21.56’W). 106 

The 3 echinoderm species sampled belong to 3 different classes: Rhipidothuria racovitzai 107 

is a holothurian, Dumetocrinus antarcticus is a crinoid, and Ophiura carinifera is an ophiuroid. 108 

In a bottom trawl made using an Agassiz Trawl, these were among the more abundant species 109 

found in the deep platform, and the only 3 echinoderm species found at that time in this sampling 110 

(Arntz & Brey 2005). Also, the camera used in the Multi-Box Core (Arntz & Brey 2005) 111 

recorded the presence of these 3 echinoderms as the more abundant species (D. Gerdes & W. E. 112 

Arntz pers. comm.). Once collected, the animals (10–20 per species) were immediately frozen (–113 

80°C) and freeze-dried (at –110°C and a pressure of 5 mbar), and then stored at –20°C pending 114 

biochemical analysis. 115 

Stable isotope analysis 116 

Four replicates of freeze-dried holothurian tissue, ophiuroid and crinoid arms were 117 

weighed with a microbalance (Mettler Toledo, model XS3DU). Around 0.50 to 0.60 mg of 118 

freeze dried samples were used for this analysis. 119 

The samples were slightly acidified with 10% HCl to remove carbonates, which can bias 120 

13C signatures (Jacob et al. 2005), following protocols from McConnaughey & McRoy (1979), 121 

Hobson & Welch (1992) and Jacob et al. (2005). 122 
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The 13C and 15N stable isotope analyses were performed with a mass spectrometer 123 

(Flash EA 1112 HT O/H-N/C), following the same procedure as previously described in Elias-124 

Piera et al. (2013). Isotopic ratios are expressed as parts per thousand (‰) (difference from a 125 

standard reference material) according to the following equation: 126 

X = [(Rsample/Rstandard) – 1] × 103 127 

where X is 13C or 15N and R is the corresponding ratio 13C/12C or 15N/14N. Rstandard values 128 

for 13C and 15N are from PeeDee Belemnite (PDB) and atmospheric N2, respectively. 129 

Organic matter content and biochemical balance 130 

The OM content and the lipid analysis were calculated by sub-sampling 35 to 50 mg of 131 

holothurian tissue, ophiuroid and crinoid arms (10 per species). Samples were combusted at 132 

500°C for 4 h in a muffle furnace (Relp 2H-M9). The remaining inorganic ash was weighed. The 133 

difference between dry weight (DW) and ash weight gave the OM content (ash-free dry weight) 134 

(Slattery & McClintock 1995, Rossi et al. 2006a,b). 135 

The lipid analyses were performed spectrophotometrically and were quantified according 136 

to Barnes & Blackstock (1973) in 10 samples per species. Around 11 mg DW of holothurian 137 

tissue, around 35 mg DW of crinoid arms, and around 66 mg DW of ophiuroid arms were 138 

homogenised in 3 ml of chloroform–methanol (2:1 v/v), using cholesterol as a standard 139 

(absorbance vs. concentration). Results are presented in µg lipid (Lip) mgOM–1 (Rossi et al. 140 

2006a, Elias-Piera et al. 2013). 141 

Protein and carbohydrate analyses were performed applying spectrophotometric 142 

methodologies (10 samples per species and analytical procedure): 8 to 11.5 mg tissue DW was 143 

weighed in a microbalance (precision: ± 0.01 mg) for each analysis (Rossi et al. 2006a, Elias-144 

Piera et al. 2013). The Lowry et al. (1951) method was followed for protein analysis. The tissue 145 

was homogenised in 1 ml, 1 N NaOH, using albumin as a standard (absorbance vs. 146 

concentration). Carbohydrate content of tissues was analysed and quantified following Dubois et 147 

al. (1956). Each tissue was weighed and homogenised in 3 ml of double distilled water, using 148 

glucose as a standard (absorbance vs concentration). Results are presented in µg protein (Prot) 149 

mgOM–1 and µg carbohydrate (CHO) mgOM–1. 150 

Fatty acid analysis 151 

Holothurian tissue, ophiuroid and crinoid arms were analysed with gas chromatography 152 

to identify and quantify FFAs. Around 11 and 15 mg DW of 4 replicates of holothurian arms, 4 153 

of ophiuroid arms and 6 of crinoid arms were extracted with dichloromethane–methanol (3:1). 154 

An internal standard (250 µl of 2-octyldodecanoic acid, 5-cholanic acid, 2-nonadecanone and 155 

hexatriacontane) was added. The extract was re-dissolved in 0.5 ml of chloroform and passed 156 

through a 500 mg aminopropyl mini-column (Waters Sep-Pak® Cartridges). The FFA fraction 157 

was dried with nitrogen flux and then methylated using a solution of methanol/BF3 (20% of BF3 158 

diluted in methanol) heated at 90°C for 1 h. Subsequently, 4 ml of Milli-Q water saturated with 159 

NaCl was added and FAs were recovered as fatty acid methyl esters (FAMEs). FAMEs were 160 

analysed by gas chromatography (GC; Agilent 5890 Series II instrument equipped with a flame 161 

ionization detector and a splitless injector) and were identified by retention time in comparison 162 

with standard FAs (37 FAME compounds, Supleco® Mix C4–C24). FA quantification was 163 
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performed through peak area integration in the GC traces (Chromquest 4.1 software). Results are 164 

presented in µg FFA mgOM–1. 165 

The present protocol, with slight changes, has been previously used with different 166 

biological material (Rossi & Fiorillo 2010, Gori et al. 2012, Rossi et al. 2013, Elias-Piera 2014, 167 

Viladrich et al. 2016a,b, 2017). 168 

Statistical analyses 169 

Analyses of potential differences in stable isotopic signature (13C and 15N) and lipid-170 

protein-carbohydrate composition between species were performed with a 1-way ANOVA test 171 

(R-language function ‘aov’) and a post-hoc Tukey test (R-language function ‘TukeyHSD’) with 172 

a significance level of p < 0.05. Data were previously analysed by the Shapiro-Wilk (p = 0.1) 173 

and Levene's Test (p = 0.05) (R language function ‘Shapiro.test’ and ‘LeveneTest’) to test 174 

normality and homogeneity of variances, respectively. Data met the criteria for parametric 175 

analysis after logarithmic transformation. 176 

Analysis of similarity (ANOSIM;analogous to 1-way ANOVA) was conducted, and a 177 

principal components analysis (PCA) was performed to investigate which FAs were more 178 

representative in terms of abundance in the different echinoderms using the R-language function 179 

‘rda’ (vegan library). The PCA was constructed using logarithmically transformed FA 180 

compositional data. 181 

A multi-dimensional scaling (MDS) analysis using the PRIMER software was applied to 182 

investigate similarities (Bray-Curtis similarity) between the 3 species according the FAs. A 183 

SIMPER analysis using the FFAs was also conducted to evaluate the relative contribution of FAs 184 

to the dissimilarity of each species. 185 

RESULTS 186 

Stable isotopes 187 

 shows the stable isotope proportion of the 3 species. The 13C values of the 3 188 

echinoderms ranged from –24.3 to –26.5‰, but only the crinoid's value was significantly 189 

different from that of the other 2 species (F9,2 = 79.63, p < 000.1). The 15N values were similar 190 

among species, ranging from 6.8 to 7.9‰. The only difference was between the holothurian and 191 

the crinoid (F9,2 = 6.84, p = 0.0156). 192 

Carbohydrates, proteins and lipids 193 

 shows the biochemical balance (carbohydrate, protein and lipid content of the 194 

organic matter tissue). In Fig. 3A, carbohydrate concentration values of the 3 species are shown 195 

and ranged between 9 and 22 µgCHO mgOM–1. The carbohydrate, protein and lipid 196 

concentrations in the holothurian tissues were more than twice those of the other 2 studied 197 

species, being significantly different from them (F27,2 = 44.35, p < 0.001). 198 

Fig. 3B shows the total protein content of the 3 species: this ranged from 159 to 211 199 

µgProt mgOM–1, but none of the differences were significant (F27,2 = 2.98, p = 0.0668). 200 

Values of total lipids are shown in Fig. 3C and range between 179 and 448 µgLip 201 

mgOM–1. All the echinoderm species had high lipid concentrations, the highest value being 202 
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found in the holothurian. Both the holothurian and the crinoid had significantly higher 203 

concentrations of total lipids than the ophiuroid (F22,2 = 21.14, p < 0.001). 204 

Fatty acid analyses 205 

The total concentration of FFAs was significantly higher in the holothurian than the other 206 

2 studied species ( ). In fact, the difference is around one order of magnitude higher in this 207 

organism than the sessile crinoid and the ophiuroid. 208 

The proportions of the different groups of FFA in the 3 species are shown in . 209 

Except for the crinoid, polyunsaturated (PU)FAs were the most prominent FFAs found in this 210 

study, while saturated (S)FAs generally showed the lowest proportions of the totals. In the 211 

holothurian there was an increasing gradient from SAFA to mono-unsaturated (MU)FA to 212 

PUFA. The different FFAs were quite balanced in the sessile crinoid. In the ophiuroid, PUFAs 213 

were especially abundant. 214 

In the 3 species, the 20:4(n-6) was the most prominent FFA ( ). Almost 30% of the 215 

FFA in the ophiuroid is 20:4(n-6), being more than 15% in the other 2 echinoderm species. The 216 

16:1(n-9) was abundant in holothurian and crinoid, but almost not present in the ophiuroid. The 217 

proportions (in%) of 22:6(n-3) had very asymmetric values among the 3 studied species, being 218 

very abundant in holothurian but only slightly above 0% and 5% in the other 2 species. The 219 

22:1(n-9) —derived from the 18:1(n-9)—represents around 10% in the sessile crinoid, but was 220 

almost non-existent in the other 2 species. The 24:1(n-9), derived from the 22:1(n-9), was only 221 

present in moderate amounts in the holothurian and the crinoid. Long-chain FFAs, e.g. 24:4(n-6) 222 

and 24:5(n-3), were especially notable in the ophiuroid. 223 

The 3 species exhibited significant species-specific differences in FA composition 224 

(ANOSIM, p < 0.01). The PCA applied to the different FFAs clearly distinguishes the 3 different 225 

species ( ); the same result appears on the MDS analysis taking into account 40% similarity 226 

(data not shown). The first 2 principal components (PC1 and PC2) accounted for 34.6% and 227 

40.7% of the FA variation, respectively. For the crinoid and the ophiuroid, the FAs that mainly 228 

separate these species were the 20:2 (abundant in the ophiuroid at 11.5%) and the 22:1 (abundant 229 

in the crinoid at 9.9%). The holothurians were significantly different from the other 2 species, 230 

even though the most abundant FAs were the same in all 3 species: – 20:4(n-6) and 20:5(n-3). 231 

From the SIMPER analysis, there was 80.18% dissimilarity between the holothurian and 232 

the crinoid and 89.95% dissimilarity between the holothurian and ophiuroid. The FA 22:6 233 

contributed 10.61 and 10.14% to the dissimilarity, respectively. Other FAs making major 234 

contributions to the 2 dissimilarities were 20:4(n-6) (contributing 9.48 and 8.91%, respectively), 235 

16:0 (6.08 and 6.54%), and 16:1 (6.05 and 6.32%). The dissimilarity between crinoid and 236 

ophiuroid was 50.95%, mainly due to the FAs 16:0 (9.29% contribution), 20:4(n-6) (8.65%), 237 

16:1 (6.22%) and 22:1 (6.0%). 238 

DISCUSSION 239 

The present study shows that, although the trophic position of the 3 echinoderm species 240 

seems to be similar, there are significant differences among the holothurian (Rhipidothuria 241 

racovitzai), the crinoid (Dumetocrinus antarcticus), and the ophiuroid (Ophiura carinifera) 242 

storage and mobilization of lipids and carbohydrates in spring. 243 
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Carbon stable isotopes corroborate the fact that the source of food are the recurrent 244 

phytoplankton blooms (Jacob et al. 2006, Mintenbeck et al. 2007, Mincks et al. 2008, Elias-Piera 245 

et al. 2013). Such primary productivity may arrive almost intact to the bottom (to the continental 246 

platform, 300–400 m depth; Rossi et al. 2013) and possibly in large quantities to the deep sea 247 

(Shimanaga & Shiriyama 2000). The trophic position of the 3 organisms is quite similar to other 248 

suspension-feeding organisms (e.g. Antarctic gorgonians), having similar diets (Elias-Piera et al. 249 

2013). The mixture of phytoplankton and reworked material (in which rotifers, copepods, ciliates 250 

and other fauna may be living) could be responsible for the elevated 15N values. These high 251 

values are also present in holothurians of shallow warm temperate seas (Grall et al. 2006, Carlier 252 

et al. 2007), and other deep-sea holothurians (Fanelli et al. 2011). 253 

Of the FFAs found in the 3 species, the most dominant is the 20:4(n-6), with the 18:1(n-254 

9) and longer-chained (C24) FAs also non-negligible. These fatty acids have been identified with 255 

an omnivorous diet (Graeve et al. 2001, Suhr et al. 2003, Würzberg et al. 2011), which is in line 256 

with the 15N values. The omnivore/carnivore diet is also evidenced by the 20:1 and 22:1 257 

(Drazen et al. 2008). This seems to confirm that these organisms feed not only on the microalgae 258 

found in the food banks, but also on the associated biota – i.e.micro-organisms (Howell et al. 259 

2003). The 20:4 and 20:5 FAs are abundant in various species of echinoderms (Ginger et al. 260 

2000, Graeve et al. 2001, Howell et al. 2003, Drazen et al. 2008, Galloway et al. 2013, Corsolini 261 

& Borghesi 2017), being typical compounds of membrane lipids in marine organisms (Corsolini 262 

& Borghesi 2017). 263 

The amount of energy stored (in the form of lipids) is high or very high in the 3 species 264 

compared to other echinoderms in deep sea areas (Drazen et al. 2008). These values demonstrate 265 

a high capability to accumulate high quality energetic molecules that will be used to face 266 

starvation or/and reproductive periods in a highly seasonal environment. The capability to store 267 

energy will depend on the different life cycles and the different trophic guilds, which, in this 268 

case, can be considerably different between the 3 groups. 269 

Reproduction features are, in fact, one of the key points in understanding energy storage 270 

in marine invertebrates (Rossi et al. 2017). The lower values of lipids found in O. carinifera (in 271 

the present study) compared with the holothurian may be partly explained by investment in the 272 

gonadal output of large eggs during this period. Interestingly, gamete production in this 273 

ophiuroid species takes a considerable amount of time, and is different depending on the year 274 

cycle considered (Grange et al. 2004). We suggest that brittle stars mainly invest energy stored 275 

after the window of primary production as reproductive output. The large amount of PUFA may 276 

also be an indicative marker, as these fatty acids are related to the development of membranes, 277 

nervous tissues and early stage development, transferred from mother to the offspring (Bell & 278 

Sargent 1996, Viladrich et al. 2017). Sessile and low mobility animals living in deep waters may 279 

adjust their growth and reproduction according to temporally and spatially variable food 280 

availability (Yasuda et al. 2016). Organisms in the deep sea can thus exhibit temporal and spatial 281 

changes in the diet and in reproductive patterns depending on the presence of food banks (Galley 282 

2003, Galley et al. 2008). 283 

Mobility to search for food to achieve the energy storage needed for movement and 284 

reproduction is an important quality for at least the ophiuroid and the holothurian. The 285 

eurybathymetry of O. carinifera allows this species to inhabit both shallow areas and deep zones 286 

(Brey & Gerdes 1998, Sands et al. 2013, Ambroso et al. 2016). The same species in different 287 

Weddell Sea areas may display very different lipid concentrations, depending on the 288 
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environmental conditions (Elias-Piera et al. 2013). For example, the FA markers in King George 289 

Island and Larsen area A (Antarctic Peninsula) were very similar, and these 2 sites have a strong 290 

seasonal pattern of primary productivity blooms (Elias-Piera 2014, Sañé et al. 2011). However, 291 

in the Larsen areas B and C, the amounts of energy stored (and markers of diatom origin) were 292 

represented in higher amounts, demonstrating a link between food source and potential 293 

accumulation at higher trophic levels, as well as a differential capability to store energy within a 294 

single species (Elias-Piera 2014). 295 

R. racovitzai has not only the highest amount of total lipids, but that its carbohydrate and 296 

FFAs stores are also significantly higher than in the other 2 echinoderms. Carbohydrates are 297 

labile molecules that can be readily incorporated into the Krebs cycle to satisfy metabolic energy 298 

demand. A high concentration of carbohydrates in suspension feeders is related to periods in 299 

which there is a high metabolic demand (Rossi et al. 2006b). This is interesting, since we find 300 

that the FFAs also have a higher concentration in this species than the other 2 echinoderms. Most 301 

lipid components that can be considered energy reserves may be oxidised to obtain FFAs (Gurr 302 

et al. 2002); those FFAs can be beta-oxidised providing highly efficient energy sources (i.e. a 303 

high ATP/FA relationship; Sargent et al. 1988). This means that, among the 3 studied 304 

echinoderms, the holothurian seems to be the more metabolically active during the spring period 305 

studied (both carbohydrates and FFAs are significantly higher). In this time of the year (and in 306 

this area), sediments are quite poor in labile organic material (Isla et al. 2011). We suggest that 307 

holothurians are capable of moving, locating, and grazing directly on fresh (and patchily 308 

distributed) new green carpets, produced during the first spring blooms, and on the chlorophyll a 309 

(primary productivity) below the sediment surface. However, this movement has a metabolic 310 

cost in terms of respiration and energy mobilization. Thus, the difference in energy storage, but 311 

especially in mobilizable molecules, may be thus partly explained because of this behaviour. In 312 

deep waters, holothurians may digest up to 63% of the biopolymeric carbon found in the 313 

surrounding sediments (especially proteins, but also lipids and carbohydrates) (Amaro et al. 314 

2010), so the transfer of organic matter is quite efficient. The deposit feeder can select, ingest 315 

and assimilate the available organic matter (Hudson et al. 2004) using foraging and digestion 316 

strategies, which can involve 2 cases: a particle selection where the animal chooses food-rich 317 

matter during the capture of particles and ingestion (Levin et al. 1997, Billett et al. 2001, 318 

Purinton et al. 2008) or a selective assimilation where the animal digests and/or assimilates a 319 

subset of organic matter in its gut (Penry & Jumars 1990, Purinton et al. 2008). In Protelpidia 320 

murrayi, Bathyplotes bongraini and Molpadia musculus, the second case occurs, increasing the 321 

selective digestion and/or assimilation due to the selectivity of phytodetritus clumps during 322 

ingestion (Purinton et al. 2008). 323 

D. antarcticus cannot choose the ingested material, being a sessile suspension feeder. 324 

This echinoderm is present in large numbers in the Antarctic Peninsula continental platform 325 

(Larsen) and deep areas (Gutt et al. 2011, Eléaume et al. 2012). This crinoid intercepts the 326 

particles by expanding its complex branches to the main flux (Macurda & Meyer 1974). The 327 

reproduction of these organisms in deep waters is completely unknown: no cycle of gonadal 328 

development or gonadal output observation has been made so far. Based on other Antarctic 329 

suspension feeding organisms such as gorgonians (Orejas et al. 2007), this strategy may also 330 

accumulate large quantities of lipids (Elias-Piera et al. 2013) to produce gametes that will be 331 

released in summer–autumn. However, this hypothesis needs to be tested in further research, 332 

since we did not observe any sexual product in the D. antarcticus collected. The amount of labile 333 

macromolecules ready to be mobilised (carbohydrates and FFAs found in the tissues) was low, 334 
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and it is possible that the stalked crinoids may simply use the reserves accumulated in summer–335 

autumn and maintained through the resuspension processes in winter, to survive until a new set 336 

of phytoplankton blooms bring food to their filter organs. 337 

Interestingly, related to the fact that the samples were collected at the beginning of 338 

spring, the 3 echinoderms contained long-chain FFAs. These molecules are considered of high 339 

energetic content (Dalsgaard et al. 2003), and may be a key factor to face seasonal (winter) food 340 

constraints in benthic suspension feeders in Antarctica (Servetto et al. 2017). The observed lipids 341 

and proteins may indicate a clear tendency toward a mechanism of energy accumulation instead 342 

of growth (Elias-Piera et al. 2013), which has been demonstrated to be very slow in the few 343 

suspension-feeding organisms analysed in Antarctic waters (Martínez-Dios et al. 2016). Deep 344 

sea waters in Antarctica are one of the less studied environments worldwide. The strong 345 

seasonality also affects these remote areas, in which the abundance of different organisms is not 346 

negligible (Brandt et al. 2007a,b). This may be due to an accumulation of labile material that 347 

possibly remains intact for months, as mentioned in the ‘Introduction’. In the Orleans Submarine 348 

Canyon (Brandsfield Strait, Antarctic Peninsula), a high amount of lipids was detected in the 349 

sediments, being almost 2 orders of magnitude higher relative to the shallower water sediments 350 

(S. Rossi unpubl. data). In fact, downslope flows occur in this area continuously (Baines & 351 

Condie 1998), fueling the deeper areas with a high quality of organic matter in productive 352 

periods. Deep zones in these areas of the Southern Ocean may thus be richer than other areas of 353 

the world in which the primary productivity is high, but the low temperature in deep sea 354 

decreases the metabolism of the associated biota and helps to preserve the organic matter 355 

(Mincks et al. 2005, Isla et al. 2006b). The quantity of lipids accumulated in Antarctic organisms 356 

seems to be, in general, elevated compared to other areas of the world (Gili et al. 2006b, Elias-357 

Piera et al. 2013, Elias-Piera 2014, Servetto et al. 2017). In other cold seas, the response of the 358 

organisms to such phytoplankton blooms is similar, the accumulation of lipids being an 359 

important factor for their survivorship (Parrish et al. 2009). It is thus not surprising that the 3 360 

studied echinoderms store a high amount of lipids, even at this time of the year, when the sources 361 

of food become scarcer (Isla et al. 2011). The high diversification of sea cucumbers in these 362 

deep-sea polar waters (O’Loughlin et al. 2011) may be partially explained by this high energetic 363 

content and a very stable environment that stimulates diversification and complex interactions 364 

between organisms (Gili et al. 2006b). A variable response to a phytoplankton bloom with 365 

respect to phenology, even within taxonomic orders, will depend on feeding behavior and 366 

gonadogenesis of the species (Parrish et al. 2009). 367 

Climate change is expected to alter the relative contribution of food sources for benthic 368 

organisms (Rossi et al. 2017, Gaillard et al. 2017), so it will be essential to understand how 369 

expected alterations in available organic matter affect deep-sea communities and their 370 

adaptations. The use of indirect tools (biomarkers) may help obtain a clearer picture of what will 371 

happen in the coming decades to this rich, pristine but fragile area of the world. 372 
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            664 

Fig. 1. Sampling area (red pin at 70°7.88’S, 11°21.56’W) around 1500 m depth in the Weddell 665 

Sea (ANT XXI-2 Polarstern cruise) 666 

                             667 

 668 

 669 

   670 

Fig. 2. Stable isotope values (13C versus 15N, in ‰) of the 3 species of echinoderms 671 

Rhipidothuria racovitzai, Dumetocrinus antarcticus and Ophiura carinifera from the Weddell 672 

Sea at 1500 m depth. Data are means ± SD 673 

 674 

 675 

 676 
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Fig. 3. Biochemical analyses. (a) Carbohydrate 

(CHO), (b) protein (Prot), and (c) lipid (Lip) 

content compared to organic matter (µg 

mgOM1) in the 3 species of echinoderms 

Rhipidothuria racovitzai, Dumetocrinus 

antarcticus and Ophiura carinifera from the 

Weddell Sea at 1500 m depth. Data are means 

± SD 

 

Fig. 4. Total concentration of free fatty acid 

content compared to organic matter (µgFFA 

mgOM1) of 3 species of echinoderms 

Rhipidothuria racovitzai, Dumetocrinus 

antarcticus and Ophiura carinifera from the 

Weddell Sea at 1500 m depth. Data are means 

± SD 

 

Fig. 5. Proportions (%) of the different groups 

of free fatty acids (SAFA: saturated; MUFA: 

mono-unsaturated; PUFA: polyunsaturated) of 

3 species of echinoderms Rhipidothuria 

racovitzai, Dumetocrinus antarcticus and 

Ophiura carinifera from the Weddell Sea at 

1500 m depth. Data are means ± SD 
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 677 

Fig. 6. Free fatty acid (FAA) composition (as a% of the total FFAs) of 3 species of echinoderms 678 

Rhipidothuria racovitzai, Dumetocrinus antarcticus and Ophiura carinifera from the Weddell 679 

Sea at 1500 m depth. Data are means ± SD 680 

 681 

 682 

 683 

Fig. 7. Principal component analysis (PCA) of the representative fatty acids in the 3 species of 684 

echinoderms Rhipidothuria racovitzai, Dumetocrinus antarcticus and Ophiura carinifera from 685 

the Weddell Sea at 1500 m depth 686 


