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Abstract

Zooplankton are critical trophic links and important modifiers of organic carbon cycles, 

yet are poorly characterized for much of the Arctic’s Beaufort Sea, particularly in mesopelagic 

(> 200 m) waters.

Zooplankton were sampled with 150 and 505 |im mesh nets in the upper 200 m in 

sections of the Beaufort Sea between Barrow Canyon and the Mackenzie River during August 

and September 2010-2013 to characterize the species composition, abundance, and biomass of 

epipelagic Beaufort Sea zooplankton communities. I observed 106 taxonomic zooplankton 

categories during four field seasons across both mesh sizes; copepods exhibited the highest 

species richness (38 species), followed by cnidarians (16 species) and amphipods (14 species). 

Average holozooplankton abundance ranged from 1110-3880 ind. m" in the 150-^m net and 47­

215 ind. m" in the 505-^m net. Average holozooplankton biomass ranged from 23.8-76.9 mg
3 3dry-weight (DW) m" and 13.9-57.6 mg DW m" in the 150-^m and 505-^m nets, respectively. 

Spatial structure of zooplankton communities reflected a blending of across- and along-shelf 

temperature and salinity gradients that were driven by relative contributions of different water 

mass types.

To characterize mesopelagic zooplankton communities of the Beaufort Sea, I collected 

stratified zooplankton samples and physical oceanographic data at stations along the Beaufort 

Sea slope during August 2013. I documented 93 taxonomic categories; greatest diversity was 

observed in the copepods (48 species), followed by the cnidarians (10 species) and amphipods (8 

species). Distinct zooplankton communities were associated with the three main water masses in 

the study region: the Polar Mixed Layer (PML), Arctic Halocline Water (AHW), and Atlantic
3 3Water (AW). Average abundance and biomass were highest (1150 ind. m" and 27.1 mg DW m" , 

respectively) in the PML (0-50 m) and declined with depth, to a minimum in the 500-1000 m
3 3layer of AW (15 ind. m" and 0.6 mg DW m" ). Conversely, species richness increased with 

depth. Community structure was highly correlated with salinity and depth, both in terms of 

abundance (Spearman correlation (p) = 0.84, p  < 0.01) and biomass (p = 0.81 ,p  < °.01).

Zooplankton communities in the Beaufort Sea exhibit structure along three axes: along­

shore, across-shore, and depth-related. Community structure along these axes reflects 

hydrographic gradients created by different water masses and physical factors in the study
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region. This work provides a contemporary benchmark for Beaufort Sea zooplankton community 

species composition, abundance, and biomass from which future change may be assessed.
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General Introduction

Zooplankton are critical components of the marine ecosystem, both in terms of sheer 

numerical dominance in the global ocean (Schminke, 2007) and in terms of the ecological roles 

they can play. Zooplankton serve as trophic links between primary producers and upper trophic 

levels (e.g., Moore et al., 2010), contribute to carbon and nitrogen cycling, and modulate the flux 

of organic material to the seafloor (del Giorgio & Duarte, 2002; Robinson et al., 2010; Alcaraz et 

al., 2010). Arctic zooplankton have a suite of finely-tuned physiological, reproductive, and 

energetic adaptions to life in a harsh and seasonally pulsed environment (Clarke & Peck, 1991; 

Hagen & Auel, 2001). It is well established that the Arctic Ocean is currently undergoing 

dramatic changes in sea ice cover, temperature, and carbonate mineral saturation states (Serreze 

et al., 2007; Bates et al., 2009; Stroeve et al., 2012; Bates et al., 2013) and that the Arctic marine 

system will experience an amplification of climate change signals when compared to lower 

latitudes (Serreze & Barry, 2011). It is less certain how Arctic marine zooplankton communities 

will respond to changes in climate; however, it is likely that zooplankton will be among the first 

responders to climate change because they are poikilotherms and have relatively short life spans 

(Hays et al., 2005; Richardson, 2008). Efforts to document the responses of Arctic marine biota 

to climate change include only nine reports of planktonic response, of which just four concern 

zooplankton (Wassmann et al., 2011). The paucity of consistent baseline data for many Arctic 

ecosystems is one of the main challenges of quantifying and documenting zooplankton 

community response to climate change.

Zooplankton communities are influenced by the physical and chemical oceanographic 

features of their environment; as a result, distinct species assemblages are often associated with 

different water masses (e.g., Grainger, 1965, Ashjian et al., 2003; Lane et al., 2008; Hopcroft et 

al., 2010; Questel et al., 2013; Ershova et al., 2015). The Beaufort Sea is characterized by 

extreme environmental gradients that are reflected in the biological community. These gradients 

can be viewed along three major axes: across-shelf, along-shelf, and depth-related (e.g.,

Grainger, 1965; Darnis et al., 2008; Walkusz et al., 2010, 2013). Inshore waters of the Beaufort 

Sea are under strong influence of freshwater discharge from many river systems along the coast,
3 1notably the Colville River (15 km yr mean annual discharge) in the western Beaufort and the 

large Mackenzie River (308 km3 yr-1 mean annual discharge) in the east (Arnborg et al., 1967; 

Millot et al., 2003). The Mackenzie River inputs substantial amounts of freshwater and terrestrial
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material to the nearshore environment of the Beaufort Sea (Millot et al., 2003; Dunton et al., 

2006) in a plume that can extend over large portions of the Alaskan and Canadian sectors of the 

Beaufort shelf dependent on physical forcing (Carmack et al., 1989; MacDonald et al., 1989; 

Dunton et al., 2006). Seasonal pulses of freshwater to the nearshore environment produce 

estuarine conditions that stand in stark contrast to the more oceanic conditions encountered 

offshore.

In the western Beaufort, complex bathymetry around Barrow Canyon and the influence 

of the Chukchi Sea domain produce unique oceanographic conditions that impact biological 

communities (Okkonen et al., 2009; Ashjian et al., 2010). The shelf-break and slope of the 

Beaufort Sea fall under influence of Pacific origin waters in the form of a narrow and seasonally 

variable jet, known as the Beaufort Shelf-break Current, flowing eastward along the shelf-break 

(Pickart, 2004; Spall et al., 2008; Nikolopoulos et al., 2009). Moving eastward, shelf waters and 

biota come under increasing influence of the Mackenzie River (Grainger & Grohe, 1975; 

Carmack et al., 1989; Darnis et al., 2008; Walkusz et al., 2010), which provides a general 

demarcation between the relatively narrow Alaskan Beaufort Shelf and the wider Canadian 

Mackenzie Shelf. Shelf waters are influenced by freshwater input, freezing and melting 

processes, and cross-shelf exchange mechanisms, such as mesoscale eddies and wind-driven 

upwelling events (Carmack & MacDonald, 2002; Llinas et al., 2009). Upwelling events can 

bring deep water masses from the Beaufort Sea slope onto the shelf, along with associated 

nutrients and biota (Mathis et al., 2012; Pickart et al., 2013a; Pickart et al., 2013b).

A generalized description of water masses present in the Canada Basin along the 

Beaufort Sea slope illustrates vertical oceanographic gradients that are encountered by biological 

communities and characterizes deep water masses that may be upwelled onto the shelf (e.g., 

McLaughlin et a l, 2005). Shallow waters (0-50 m) of the offshore Beaufort Sea are comprised of 

the Polar Mixed Layer (PML), which is modified by freshwater input, atmospheric exchange, 

and freezing and melting processes (Carmack et al., 1989; Lansard et al., 2012). Below the PML 

lies Arctic Halocline Water (AHW), extending from approximately 50-200 m, followed by 

warmer and saltier Atlantic Water (AW) beginning around 200-300 meters (Aagaard et al., 1981; 

Codispoti et al., 2005; Codispoti et al., 2009). This system of vertically-layered water masses is 

typical of the Arctic and produces a vertical gradient of environmental conditions that host
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different biological communities (Blachowiak-Samolyk et al., 2007; Kosobokova & Hopcroft, 

2010; Kosobokova et al., 2011).

The oceanographic environment and planktonic communities of the Beaufort Sea have 

been sampled sporadically over the past six decades. Early efforts to document zooplankton in 

the Alaskan Beaufort Sea were conducted during the USS Burton Island cruises in 1950 and 

1951 (Johnson, 1956; Hand, 1961). The Burton Island cruises covered a wide geographical range 

and sampled the Chukchi and Beaufort seas, as well as waters of the Canada Basin; however, 

relatively few stations were sampled on the Beaufort shelf itself compared to offshore waters.

The Western Beaufort Sea Ecological Cruise (WEBSEC) program sampled the western and 

central Alaskan Beaufort in the 1970s (Hufford et al., 1974; McConnell, 1977; Hopcroft et al., 

2012), followed by the Outer Continental Shelf Environmental Assessment Program (OCSEAP) 

(Horner, 1978; Horner, 1979; Horner, 1980). These programs had relatively broad spatial 

coverage of the Beaufort shelf; however, the coarse mesh (>333 |im) used resulted in a bias 

towards larger-bodied zooplankton taxa while neglecting numerically important small-bodied 

genera such as Triconia, Oithona, and Pseudocalanus. It is particularly notable that low 

taxonomic resolution reported during most OCSEAP Beaufort studies renders those data of 

limited use. Grainger (1965; 1975) and Mohammed & Grainger (1974) reported on sampling 

conducted east of the US-Canada border in coastal Canadian waters. The Canadian Beaufort was 

also sampled in the 1980s with the Northern Oil and Gas Action Program (NOGAP2) (Hopky et 

al., 1994a; Hopky et al., 1994c; Hopky et al., 1994b).

More recent efforts in the Alaskan Beaufort include the Shelf-Basin Interactions (SBI) 

program (Lane et al., 2008) and Bowfest (Ashjian et al., 2010); these programs focused on 

waters in the western Beaufort around Barrow Canyon. Other modern efforts include the 2002 

R/VMirai cruise in the Chukchi and Beaufort seas, the CCGS Nahidik cruises (Walkusz et al., 

2010; Walkusz et al., 2012; Walkusz et al., 2013), the CASES program (Darnis et al., 2008), and 

the Beaufort Regional Environmental Assessment (BREA) in Canadian waters. In summary, 

most modern efforts in Alaskan waters focus on the western Beaufort around Barrow Canyon, 

while Canadian efforts focus on waters of the Mackenzie Shelf, resulting in a modern data gap 

for zooplankton communities of the central and eastern Alaskan Beaufort Shelf. Additionally, 

efforts to characterize the zooplankton communities of the Beaufort Sea have focused on 

epipelagic waters (0-200 m), neglecting the poorly-studied mesopelagic realm. Studies
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documenting vertical structure of the Arctic’s marginal seas are generally scarce (Kosobokova et 

al., 1998; Arashkevich et al., 2010; Walkusz et al., 2013) and are entirely lacking for the deeper 

mesopelagic communities of the Beaufort Sea slope. Mesopelagic zooplankton communities are 

modifiers of sinking organic material (Robinson et al., 2010), and represent considerable species 

diversity in the Arctic’s basins (e.g. Kosobokova et al. 2011).

This thesis attempts to fill the modern data gap for zooplankton communities on the 

Beaufort Sea shelf and slope by documenting the species composition, abundance, and biomass 

of the zooplankton communities in the Beaufort Sea survey areas during August and September 

from 2010-2013. It will characterize the zooplankton community along the three spatial axes 

(across-shelf, along-shelf, and depth-related) and relate the physical oceanographic environment 

to the observed community structure. This work serves as a modern benchmark for zooplankton 

community composition, abundance, and biomass from which future change may be gauged, and 

represents the first depth-stratified examination of Beaufort Sea zooplankton communities 

ranging from the surface to 1000 meters in depth.
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1. The epipelagic zooplankton communities of the Beaufort Sea during 2010-13 and their 
relationship to hydrography1

Abstract

Zooplankton are poorly characterized for large portions of the Arctic’s Beaufort Sea,

despite their ecological and trophic importance. Biological, chemical, and physical

oceanographic data were collected on the Beaufort Sea shelf between Point Barrow and the

Mackenzie River during August and September from 2010-2013. Data were collected along

cross-shelf transects ranging from the 20 m isobath to the 1000 m isobath with 150- and 505-^m

nets; here we present data from the upper 200 m of the water column as the epipelagic

community. Annual averages of holozooplankton abundance and biomass ranged from 1110­
-3 -33880 ind. m" and 23.8-76.9 mg DW m" in the 150- |im net, while the 505-^m net ranged from

-3 -347-215 ind. m" and 13.9-57.6 mg DW m" , respectively. The zooplankton community was 

decidedly Arctic in faunal character during all field seasons, although Pacific expatriates were 

observed in extremely low abundances. The community was dominated in abundance and 

biomass by Arctic copepods, including Calanus glacialis, Calanus hyperboreus, Metridia longa, 

Oithona similis, Triconia borealis, Microcalanuspygmaeus, and the Pseudocalanus species 

complex; this group contributed 45-81% of the abundance and 52-64% of the biomass in the 

150-^m net, and 42-92% of the abundance and 44-63% of the biomass in the 505-^m net. 

Zooplankton community structure reflected a blending of across-shelf and along-shelf gradients 

representative of the underlying hydrographic conditions. Community structure from the 150-^m 

net was most strongly related to temperature and salinity averaged over the upper 100 m in terms 

of abundance (Spearman correlation (p): 0.53, p  < 0.01) and biomass (p = 0.49, p  < 0.01). 

Community structure in the 505-^m net was best related to temperature averaged over the upper 

200 m in terms of abundance (p = 0.57, p  < 0.01) and biomass (p = 0.50, p  < 0.01). This study 

serves as a contemporary benchmark for zooplankton communities of the Beaufort Sea and may 

be used to assess future change as the Beaufort Sea undergoes rapid environmental change and 

increased oil and gas exploration.

1 Smoot, C. and Hopcroft, R.R. The epipelagic zooplankton communities of the Beaufort Sea during 2010-13 and 
their relationship to hydrography. Prepared for submission in Journal of Plankton Research.
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Introduction

Zooplankton are important trophic intermediaries in marine systems; in the Beaufort Sea, 

zooplankton communities connect the highly seasonal pulse of primary production to upper 

trophic levels, such as fish and marine mammals, that are of cultural and ecological significance 

(Lowry et al., 2004; Walkusz et al., 2011). It is well established that the Arctic Ocean is 

undergoing changes in sea ice cover, temperature, and carbonate mineral saturation states 

(Serreze et al., 2007; Bates et al., 2009; Stroeve et al., 2012; Bates et al., 2013); it is less certain 

how Arctic marine zooplankton communities will respond to these changes. Zooplankton will 

likely be among the first responders to climate change due to their poikilothermic nature and 

relatively short lifespans (Hays et al., 2005; Richardson, 2008). The paucity of consistent 

baseline data for many Arctic ecosystems is one of the main challenges of quantifying and 

documenting zooplankton community response to climate change (e.g., Wassmann et al., 2011); 

therefore, as the Beaufort Sea undergoes rapid environmental change, concurrent with industrial 

development, it is critical to monitor its biological communities. This work contributes to a 

multi-year and multi-disciplinary effort to characterize the physical and biological oceanography 

of the Beaufort Sea, and serves as a spatially comprehensive assessment of contemporary 

epipelagic zooplankton communities in the Beaufort Sea.

The Beaufort Sea is a seasonally ice-covered interior sea of the Arctic Ocean. Early 

efforts to characterize the physical oceanography and zooplankton communities of the Beaufort 

Sea include Johnson’s (1956) work on the USS Burton Island cruises. The Burton Island cruises 

spanned the Beaufort and Chukchi Seas and southern Canada Basin; however, relatively few 

samples were collected from the Alaskan Beaufort shelf. The Western Beaufort Sea Ecological 

Cruise (WEBSEC) program in the 1970s (Hufford et al., 1974; McConnell, 1977; Hopcroft et 

a l, 2012) and the Outer Continental Shelf Environmental Assessment Program (OCSEAP) 

(Horner, 1978; Horner, 1979; Horner, 1980) provided better spatial coverage of the Alaskan 

Beaufort shelf; however, the coarse mesh (>333 |im) used in these programs resulted in a bias 

toward larger bodied taxa while completely excluding small-bodied and numerically dominant 

taxa. Data from OCSEAP do not provide species-level taxonomic resolution; rather, organisms 

were grouped into broad taxonomic categories, thus rendering its data of limited use. Very 

shallow (< 10 m) nearshore stations of the Beaufort Sea in the vicinity of Prudhoe Bay were also 

sampled by Horner and Murphy (1985) during the winter ice-covered period. Early efforts in the
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Canadian Beaufort include Grainger (1965, 1975) and Mohammed & Grainger (1974). The 

Canadian Beaufort was also extensively sampled by the Northern Oil and Gas Action Program 

(NOGAP2) in the 1980s (Hopky et al., 1994a; Hopky et al., 1994c; Hopky et al., 1994b). These 

early efforts provide important historical perspective; however, gear biases, inadequate 

taxonomic resolution of key groups, and limited spatial coverage preclude rigorous comparisons 

between many data sets, and highlight the paucity of consistent baseline ecological data for 

zooplankton communities of the Beaufort Sea. More recent efforts in the Alaskan Beaufort Sea 

have focused on the oceanographically complex area around Barrow Canyon (e.g. Lane et al. 

2008, Ashjian et al. 2010), while Canadian efforts include the 2002 R/VMirai cruise in the 

Chukchi and Beaufort Seas, the CCGS Nahidik cruises (Walkusz et al., 2010; Walkusz et al., 

2012; Walkusz et al., 2013), the Canadian Arctic Shelf Exchange Study (CASES) (Darnis et al., 

2008), and the Beaufort Regional Environmental Assessment (BREA). As a result, a large 

contemporary data gap exists for much of the central and eastern Alaskan Beaufort Sea.

Zooplankton communities are associated with water masses and their underlying 

hydrographic properties (e.g., Darnis et a l, 2008; Lane et a l, 2008; Hopcroft et a l, 2010; 

Ershova et al. 2015); as a result knowledge of the underlying physical oceanographic conditions 

can provide insight into likely faunal assemblages. Understanding zooplankton assemblages and 

their hydrographic associations is particularly critical in light of a rapidly changing Arctic. The 

volume of Pacific water flow through Bering Strait into the Arctic has increased in recent years 

(Woodgate et al., 2012), upwelling events have increased in frequency and strength in the 

Beaufort Sea (Pickart et al., 2013), and modelling efforts suggest that Mackenzie River 

discharge, along with other Arctic rivers, may increase in a warming climate (Nijssen et al., 

2001; Nohara et al., 2006). Changes in these physical parameters can impact biological 

communities; therefore, knowledge of faunal associations can provide insight into shifts in 

community structure that may result from environmental forcing. Given the trophic importance 

of zooplankton, changes in community structure have the potential to reverberate throughout 

Arctic food webs. This study identifies the species composition, abundance, and biomass of the 

contemporary Beaufort Sea shelf zooplankton communities, relates community structure to 

underlying hydrography, and characterizes broad-scale community patterns as this region 

experiences a period of rapid environmental change and increasing commercial activities.

7



Methods 

Study region

The Beaufort Sea is a seasonally ice-covered interior shelf sea of the Arctic Ocean. The 

Alaskan Beaufort is bounded on the west by Barrow Canyon, where the shelf is relatively narrow 

(~80 km), and in the east by Mackenzie Canyon, where it widens slightly in Canadian waters. 

Near-shore and surface waters of the Beaufort Sea are profoundly influenced by seasonally 

variable freshwater input, both in the Alaskan and Canadian sectors. The Alaskan sector of the 

Beaufort Sea receives freshwater input from numerous small rivers, the largest of which is the 

Colville River. The Canadian sector is dominated by input from the large Mackenzie River 

(Dunton et al., 2006). The mean Mackenzie River freshwater discharge is approximately 308
3 -1km yr" at the mouth (Millot et al., 2003) and the plume can extend over large portions of the 

Alaskan and Canadian sectors of the Beaufort shelf and slope depending on physical forcing 

(Carmack et a l, 1989, Dunton et a l, 2006, MacDonald et a l, 1989). By comparison, the 

Colville River and the Sagavanirktok River are the two largest rivers draining into the Beaufort
3 -1 3 -1Sea from Alaska’s North Slope and discharge approximately 15 km yr and 2 km yr" , 

respectively (Arnborg et al., 1967; Rember & Trefry, 2004). Together, sea ice meltwater and 

riverine input create highly freshened conditions in surface waters of Beaufort shelf during 

summer months (Carmack et al., 1989; Dunton et al., 2006).

Pacific-influenced waters east of Barrow Canyon form a seasonally variable Beaufort 

Shelf-Break Jet (BSJ) flowing eastward along the Beaufort shelf break. In summer months this 

jet is surface intensified and carries buoyant Alaska Coastal Water (ACW), while in spring and 

winter months transformed winter water is transported in a subsurface jet (Pickart et al., 2005; 

Nikolopoulos et al., 2009). ACW is seasonally variable and is generally characterized by warm 

(0-10°C) and freshened (< 32) water (Codispoti et al., 2005). Cross-shelf exchange is common in 

the Beaufort Sea and can exert a strong structuring force on biological communities. Mesoscale 

eddies can carry shelf waters and biota into the basin (Llinas et al., 2009), and winds produced 

by variations in the Beaufort High, as well as storms generated by the Aleutian Low, can cause 

reversal of the BSJ, resulting in upwelling events. During upwelling events, slope waters from 

intermediate depths (i.e., Arctic Halocline Water (AHW) and Atlantic Water (AW)) can move 

onto the Beaufort shelf, transporting nutrients and biota from depth (Pickart et al., 2009; Pickart 

et al., 2011; Mathis et al., 2012). The hydrographic characteristics and relative influence of
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freshened surface waters, resident shelf waters, deeper intermediate waters, and waters of 

Pacific-origin subsequently shape the composition and distribution of Beaufort Sea zooplankton 

communities.

Sample collection and processing

Data were collected during four field seasons during August and September of 2010-13 

(Table 1.1), primarily during daylight hours. Due to differences in station locations between 

surveys, we present zooplankton community structure and species composition relative to water 

mass type, rather than in terms of inter-annual differences. Oceanographic data were sampled 

along cross-shelf transects at stations ranging from 20 m to 1000 m in depth from Point Barrow 

to the Mackenzie River (Fig. 1.1). Here we focus on observations from the epipelagic realm (0­

200 m).

Physical oceanographic data were collected with a Seabird SBE25 CTD, and averaged 

into 1-m vertical intervals. Chlorophyll-a and macro-nutrient samples were collected with a 6 

Niskin bottle SBE-55 rosette attached to the CTD. Water samples for chlorophyll-a and macro­

nutrient analysis were taken at the surface, 10, 20, 30, 40, and 50 m; when stations were 

shallower than 50 m, the deepest water sample was collected approximately three meters from 

the sea floor. Water for chlorophyll-a analysis was filtered under low pressure onto Whatman 

GF/F filters; filters were then frozen at -40 °C for post-cruise analysis following Parsons et al. 

(1984). In 2013, 20 ^m polycarbonate filters and Whatman GF/F filters were used to size 

fractionate cells. Nutrient samples were filtered with 0.45 |im cellulose-acetate filters and frozen 

immediately at -40°C for post-cruise analysis following the methods of  Gordon et al. (1993).

Smaller zooplankton were collected with a vertically-hauled twin-ring 60-cm diameter 

net fitted with 150-^m mesh at all stations in 2010 and 2011. In 2012 and 2013, the twin-net was 

used at shallow stations, while a Hydrobios Midi-Multinet (150-^m mesh nets; mouth aperture: 

0.25 m ) was used at stations greater than 50 m depth to collect vertically-stratified samples. 

Larger, more mobile zooplankton were targeted with a 60-cm Bongo net fitted with 505-^m 

mesh hauled obliquely at approximately two knots. All nets were outfitted with annually- 

calibrated General Oceanics flowmeters to estimate volume of water filtered. Samples were 

preserved in 10% buffered formalin and returned to the laboratory for processing.

During laboratory processing, samples were subsampled using a Folsom splitter until a 

given aliquot contained approximately 100 individuals of the most abundant taxa. Increasingly
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larger fractions were examined for less abundant taxa. Organisms were identified, enumerated, 

measured, and staged (when appropriate) to determine species composition, abundance, and 

biomass. Measurements were completed using the ZoopBiom program (Roff & Hopcroft, 1986). 

The weight of measured animals was predicted from species-specific length-weight relationships 

(Questel et al., 2013) or from relationships of morphologically similar species. Typically, 400­

600 animals were measured within each sample. Organisms were identified to lowest taxonomic 

level possible. Data from stratified samples were integrated to produce a single stratum over the 

upper 200 m for these analyses.

Data processing and statistical analyses

Analyses were performed separately for both abundance and biomass using 4th root- 

transformed data pooled across all years for each mesh size. Community associations were 

assessed using the Bray-Curtis similarity index (Bray & Curtis, 1957) and community structure 

was subsequently explored with cluster analysis and non-parametric Multi-Dimensional Scaling 

(nMDS) using PRIMER (v6) (Clarke & Warwick, 2010). Statistical significance of clusters was 

assessed using the SIMPROF routine. Taxa that contributed to community similarity were 

identified using Primer’s SIMilarity PERcentage (SIMPER) routine. Finally, we related the 

observed biological community patterns to a suite of explanatory environmental variables using 

Primer’s BEST bio-env routine. The BEST routine relates matrices of multidimensional 

biological and environmental data using both forward-selection and backward-elimination 

techniques (Clarke & Warwick, 2010).

Results

Oceanographic conditions

Temperature and salinity averaged over the upper 200 m of the water column reveal the 

dominant hydrographic features experienced by the zooplankton communities sampled by our 

nets in the epipelagic realm of the Beaufort Shelf (Fig. 1.2). On average, the western Beaufort 

sampled in 2011 experienced much warmer temperatures (5-6 °C) than other survey years, due to 

strong influence of ACW near Point Barrow. Midshelf stations from 2011 were characterized by 

warm (~3 °C) temperatures and lower salinities (~30), once again likely due to influence of 

ACW. Inshore stations from 2012 were also characterized by warm (~4 °C) and fresh (~26) 

waters. Stations from 2010, eastern inner-shelf and shelf-break stations from 2011, shelf-break
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and slope stations from 2012, and the majority of stations from 2013 were characterized by cold 

(0-2 °C) temperatures and salinities ranging from 30-33 °C. Surface waters of the region were 

variably influenced by meltwater and riverine input in all field seasons; the freshest surface 

waters were observed in the vicinity of the Mackenzie River in 2013. Additionally, AW intruded 

into the upper 200 m of the water column at shelf-break and slope stations in 2011 and 2012 

(Fig. 1.3). These years also exhibited upwelling favorable winds during the survey period.

Chlorophyll-a and macro-nutrients

Surface nitrate was generally depleted throughout the study region during all surveys, 

while phosphate and silicate were typically low but non-limiting (Fig. 1.4). Higher nitrate and 

phosphate concentrations were observed most frequently with increasing depth during all 

surveys, except 2010 when phosphate concentration was unrelated to depth. In 2013 we observed 

elevated silicate levels in surface waters of the study region, with highest concentrations at 

stations closest to the mouth of the Mackenzie River. Chlorophyll-a concentration was also
-3generally low (always < 2.5, and typically <0.5 mg m" ) throughout the region in all surveys, and 

similarly, peak concentrations were observed in subsurface waters (Fig. 1.4). Depletion of both 

nutrients and chlorophyll-a indicates that all sampling periods occurred after the summer 

phytoplankton bloom. Nutrient data were not available for the 2011 field season, nor were 

complete chlorophyll-a or fluorescence datasets.

Zooplankton 

General patterns

We observed 106 taxonomic categories over the course of the four field seasons in the 

two mesh sizes (Tables 1.2, 1.3). Copepods exhibited the highest diversity (38 species), followed 

by the cnidarians (16 species) and amphipods (14 species). We also observed 5 euphausiid, 4 

ctenophore, 3 chaetognath, 2 cladoceran, 2 pteropod, and 2 mysid species. Numerous 

meroplanktonic taxa were observed; abundances were highest in the western Beaufort and in the 

nearshore vicinity of the Mackenzie River, where the meroplankton was dominated by 

polychaete and bivalve larvae. In the 150-^m net, average holozooplankton abundance and
-3 -3biomass ranged from 1110-3880 individuals m" and 23.8-76.9 mg DW m" , respectively (Table

1.1). Average zooplankton abundance and biomass captured in the 505-^m net ranged from 47­
-3 -3215 individuals m" and 13.9-57.6 mg DW m" , respectively (Table 1.1). Copepods dominated in
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terms of abundance and biomass in all years in both nets; however, larvaceans and predators, 

primarily cnidarians and chaetognaths, made important contributions that varied both between 

and within years (Fig. 1.5). The community was dominated by the traditional guild of Arctic 

copepods in all sampling regions across all field seasons, including Calanus glacialis, Calanus 

hyperboreus, Metridia longa, Oithona similis, Triconia borealis, Microcalanus pygmaeus, and 

the Pseudocalanus species complex. Numerically, these copepods accounted for 45-81% of 

zooplankton abundance and 52-64% of the biomass in the 150-^m net across all survey years, 

while in the 505-^m net this guild composed 42-92% of the abundance and 44-63% of the 

biomass.

Species-specific patterns

The 150-^m net provides insight to patterns in the numerically dominant small-bodied 

taxa, such as Pseudocalanus spp., Oithona similis, Triconia borealis, and Microcalanus 

pygmaeus. Pseudocalanus species were found across the shelf, with highest abundances 

observed at inshore stations in all survey years. Oithona similis was distributed across the shelf, 

with no immediately apparent spatial pattern; Triconia borealis was also found across the shelf; 

however, it was most abundant in the eastern Beaufort. Microcalanus pygmaeus exhibited 

highest abundances at stations influenced by colder water, and was largely absent from warmer 

waters influenced by ACW (Fig. 1.6). Less dominant taxa also provide insight to habitat 

associations; the ostracod Boroecia maxima and the copepod Heterorhabdus norvegicus were 

largely restricted to stations over the shelf-break and slope that were influenced by deeper 

waters. Euryhaline and freshwater taxa, such as Eurytemora spp., the marine cladocerans Podon 

leuckartii and Evadne nordmanni, and rotifers, were found at freshened stations, mostly in the 

vicinity of the Mackenzie River (Fig. 1.7).

With respect to the 505-^m net, Calanus hyperboreus, considered an oceanic species, 

was present in moderate numbers on the shelf in all years, indicating some degree of shelf-slope 

exchange (Fig. 1.8). Abundances were highest in cooler waters that likely originated offshore. 

Calanus glacialis was present across the shelf in all years, with no obvious spatial pattern. 

Paraeuchaeta glacialis and Metridia longa were largely absent in warmer waters influenced by 

ACW and reached highest abundances at offshore stations or stations influenced by waters 

originating off of the shelf (Fig. 1.8). Euphausiids were found in low numbers throughout the 

entire survey area (Fig. 1.9a,b). Thysanoessa raschii and Thysanoessa inermis were the most
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common euphausiid species, although Thysanoessa longipes was encountered in extremely low
-3abundances (< 0.01 ind. m ") in offshore waters. Two notable expatriate euphausiids were 

encountered in the study region; one individual of the Atlantic-affinity Meganyctiphanes 

norvegica was observed at an offshore station in 2012 captured in a midwater trawl and one 

individual of the Pacific-affinity Thysanoessa spinifera was observed at an inshore station in 

2013. Juvenile euphausiid distribution was extremely patchy and abundances were generally 

low; juvenile stages were encountered most frequently in the western Beaufort and were not 

encountered in the eastern Beaufort in 2013.

We observed several Pacific expatriate copepod species in the study region in extremely 

low abundances (<1 ind. m-3) in both nets; namely Neocalanus cristatus, Eucalanus bungii, and 

Metridiapacifica. Neocalanus flemingeri and Neocalanusplumchrus were observed at only a 

few stations across all survey years. Pacific taxa were observed most frequently at western 

Beaufort stations influenced by ACW sampled in 2011, but were encountered as far east as the 

Mackenzie River region sampled in 2013. Aside from the portion of the western Beaufort that 

was influenced by ACW in 2011, presence of Pacific expatriates generally followed the 

described path of the Beaufort Shelf-break Jet (e.g. Nikolopoulos et al., 2009), with the 

exception of the 2013 survey year, when Pacific taxa were found across the entire study region 

(Fig. 1.9c).

Community structure and relation to hydrography 

150-^m net

The zooplankton community exhibited complex structure that represents a mixing of 

along- and across-shelf gradients and the underlying hydrographic conditions. Four major 

community groupings were present when community similarity was assessed with abundance 

(Fig. 1.10). All station groupings exhibited high abundances of calanoid nauplii, Oithona similis, 

and the Pseudocalanus spp., with differences of relative contributions of dominant taxa and less 

common taxa serving to differentiate community groupings (Table 1.4). Group 1 consisted of 

stations from 2011 under strong ACW influence and was characterized by high abundances of 

the larvacean Fritillaria borealis, meroplanktonic larvae, and the neritic chaetognath Parasagitta 

elegans. Group 2 consisted of stations from the mid-shelf in 2011; these stations exhibited high 

abundances of the larvaceans Fritillaria borealis and Oikopleura vanhoeffeni, the hydrozoan
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Aglantha digitale, and lower abundances of the key copepod species when compared to other 

groups. Group 3 included stations from 2010, 2011, 2013; these stations were characterized by 

high abundances of Oithona similis and Pseudocalanus spp., as well as more oceanic taxa, 

including Calanus hyperboreus and Microcalanus pygmaeus, reflecting the influence of cold 

offshore waters at these stations. Finally, Group 4 included stations from 2011, 2012 and 2013. 

These stations exhibited high abundances of the copepods Triconia borealis, Calanus glacialis, 

Microcalanus pygmaeus, and Calanus hyperboreus. This group exhibited additional internal 

structure, with stations separating largely according to location relative to the shelf-break and 

relative influence of the freshened surface lens and offshore waters (Fig. 1.11). Within Group 4, 

the “upwelling/weak plume” group consisted of inshore stations that were more faunally similar 

to offshore stations than other inshore stations. This more oceanic faunal character, combined 

with prevailing easterly winds during the study period and the cold (< 0°C) and saline (~32) 

waters at these stations in this group (Fig. 1.12), suggests that upwelling occurred during the 

study period, bringing waters and biota from offshore to the nearshore stations.

When considering pooled data from all field seasons, the structure in the zooplankton 

community according to abundance was correlated with temperature and salinity averaged over 

the upper 100 m (Spearman correlation (p): 0.53,p  <0.01). The addition of station depth to the 

model did not improve the relationship, nor did the use of different layers of the water column 

(Table 1.5). Individual analyses of 2010, 2012, and 2013 datasets showed that the addition of 

chlorophyll-a, macro-nutrients, and fluorescence did not improve BEST models, suggesting the 

absence of such data for 2011 was inconsequential. The community structure according to 

biomass was very similar to that observed according to abundance, despite the fact that these 

metrics emphasize a different suite of species. A small number of stations were shuffled 

between groups and analysis using biomass data produced more outliers (Fig. 1.13), but overall 

community structure was consistent with that observed using abundance data. The combination 

of temperature and salinity averaged over the upper 100 m of the water column was the best 

explanatory variable for the observed community structure according to biomass (p= 0.49, p  

<0.01). Once again, the use of station depth and different depth layers did not improve the 

relationship (Table 1.5).
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505-^m net

Community structure sampled with the 505-^m net was generally similar to that observed 

in the 150-^m net, regardless of whether abundance (Fig. 1.14) or biomass (Fig. 1.15) was used 

to assess community similarity, although more unique community groupings were identified. 

Seven major community groupings were identified. Calanus species and Aglantha digitale were 

important contributors to all community groupings (Table 1.6). Large-scale community structure 

was preserved across both mesh sizes and both community metrics (abundance and biomass); 

however, community structure in the 505-^m net was more heterogeneous than that observed in 

the 150-^m net. The same four groups described in the multivariate analysis of 150-^m data can 

be identified in multivariate analysis of the 505-^m data. Group 1 was characterized by high 

abundances of the hydrozoan Aglantha digitale, Calanus glacialis, meroplanktonic larvae, 

pteropods, and juvenile euphausiids. Group 2 was characterized by high abundances of Aglantha 

digitale, Oikopleura vanhoeffeni, and Fritillaria borealis. Calanus glacialis, Oikopleura 

vanhoeffeni, and Calanus hyperboreus characterized Group 3. Group 4 was characterized by 

Calanus glacialis, Metridia longa, and Calanus hyperboreus. The remaining groups generated 

by multivariate analysis of the 505-^m data consisted of a few stations each; Group 5 consisted 

of stations from 2011 in the western Beaufort that were more faunally similar to offshore stations 

and stations influenced by colder water. Group 6 consisted of inshore stations from 2012, and 

was characterized by higher abundances of Calanus glacialis. Finally, Group 7 consisted of 

stations from 2010 and 2011 on the inner- and mid- shelf and was characterized by Calanus 

glacialis, Calanus hyperboreus, hydrozoans, and hyperiid amphipods. Community structure in 

the 505-^m net according to abundance was correlated to temperature averaged across the upper 

200 m (p = 0.57, p  <0.01). The addition of salinity and station depth, alone or in combination, 

did not improve the model, nor did the use of different water layers (Table 1.7). Community 

structure according to biomass was best explained by temperature averaged over the upper 200 m 

of the water column (p =0.50, p  < 0.01). Once again, the addition of other variables (salinity, 

station depth) or the use of different depth layers did not improve the model (Table 1.7).

Discussion

Our surveys provide a spatially comprehensive assessment of the zooplankton 

communities of the Alaskan Beaufort Sea; however, this spatial coverage comes at the expense
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of the ability to quantify inter-annual variability in the community, because very few locations 

were sampled repeatedly. Our multivariate analyses indicate that, while there is likely an element 

of inter-annual variability in our data set, hydrographic conditions play a considerable role in 

structuring epipelagic zooplankton communities, both within and across years. With respect to 

the 150-^m net, western stations from 2013 clustered with stations from 2010 and 2011 that 

experienced similar hydrographic conditions, indicating that physical parameters, rather than the 

survey year itself were driving much of the observed community structure.

Given that nMDS stress increases with the number of points in a dataset (Clarke & 

Warwick, 2010), the relatively high 2-dimensional (2D) stress values (2D stress: 0.21 and 0.19 

for abundance and biomass, respectively) of nMDS plots for the 150-^m net are not surprising. 

Stress is reduced with increasing dimensionality of ordination; therefore, lower three­

dimensional (3D) values (3D stress: 0.13 for both abundance and biomass) are expected. The 

general agreement between the dendrogram produced from hierarchical clustering and the 2D 

nMDS plots suggests that the 2D representation of our multidimensional dataset is reasonable, 

even if some distortion is caused during the compression of the dataset from three dimensions to 

two dimensions.

Community structure

In the Arctic, zooplankton communities are tied to the underlying hydrographic 

conditions; this relationship has been observed in the Chukchi Sea (Hopcroft et a l, 2010; 

Matsuno et al., 2011; Questel et al., 2013; Ershova et a l, 2015), the Canadian Beaufort 

(Walkusz et al., 2010), the Canada Basin (Kosobokova & Hopcroft, 2010), and now in the 

Alaskan Beaufort. The community groupings described in the present study reflect underlying 

hydrographic conditions and processes in the region and allow some general characterizations of 

gradients across the Beaufort shelf as a whole. The Beaufort Sea around Barrow Canyon 

represents a transitional zone between the Pacific-affinity, benthic-rich Chukchi Sea and the 

Beaufort Sea, as reflected in its relatively high abundances of meroplanktonic larvae and Pacific 

expatriate taxa when compared to the rest of the Beaufort. High abundances of meroplankton in 

the western Beaufort were likely swept into the region from Chukchi Sea via the ACW entering 

around Point Barrow.

The western Beaufort exhibited highest abundances of Pacific-derived taxa (e.g., 

Neocalanus spp.), demonstrating the hydrographic connectivity between the subarctic Pacific,
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the Chukchi Sea, and the Beaufort Sea. In contrast, the central and eastern Beaufort are more 

traditionally Arctic in faunal character, with the influence of the Chukchi Sea and Pacific-derived 

waters increasingly weakened towards the Mackenzie River. The eastern Beaufort near the 

Mackenzie River is generally more estuarine than the rest of the Alaskan Beaufort, although 

conditions at specific locations likely vary seasonally as well as from year to year depending on 

the extent of the river plume. Estuarine species assemblages include Eurytemora spp., 

Limnocalanus spp., and rotifers, as demonstrated by our study and others from the Canadian 

Beaufort (e.g. Walkusz et a l, 2010; Hopky et a l, 1994,a,b,c), as well as other marginal Arctic 

seas influenced by major riverine input (e.g. Abramova & Tuschling, 2005).

Across-shelf gradients associated with the Mackenzie River plume extent have been 

recognized in the Canadian Beaufort. Walkusz et al. (2010) report ecological zones associated 

with intensity of the Mackenzie River plume, noting an “intense plume” assemblage, a “diffuse 

plume” assemblage, and an “offshore” assemblage. Our findings mirror this description; stations 

from the 2013 survey year exhibit internal structure associated with location relative to the shelf- 

break and the degree of freshwater influence. In both our work and that of Walkusz et al. (2010), 

the “intense plume” assemblage is characterized by euryhaline and brackish water taxa, such as 

cladocerans, Eurytemora spp., and Limnocalanus spp. The “diffuse plume” grouping represents a 

transitional group, with euryhaline, neritic, and some oceanic taxa; the “offshore” assemblage is 

primarily composed of oceanic taxa. The across-shelf transition from neritic to more oceanic taxa 

is also evident beyond the river plume extent; Grainger (1965) reported species assemblages 

associated with Arctic surface waters and coastal surface waters. Similarly, Darnis et al. (2008) 

report a distinct off-shelf assemblage and a neritic assemblage. In all of these surveys, including 

the present one, Pseudocalanus species usually typify neritic shelf assemblages, while the 

oceanic Calanus hyperboreus and Microcalanus pygmaeus are characteristic of offshore 

assemblages.

Localized physical processes, such as upwelling, may blur the gradients described above. 

For example, in 2013 the inshore “upwelling/weak plume” stations within Group 4 were more 

faunally similar to offshore stations than to other inshore stations (see Fig. 1.11). The more 

oceanic faunal character of these stations (e.g., elevated abundances of Calanus hyperboreus, see 

Fig. 1.8) stands in contrast to the neritic faunal character that would be expected based on the 

inshore location of these stations. Prevailing easterly winds during the survey, as well as colder
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(< 0 °C) and more saline (~32) waters at these stations (see Fig. 1.12), lend further support that 

upwelling was occurred during our survey. In summary, along-shelf gradients in the Beaufort 

Sea represent a transition from Pacific and Chukchi influenced waters in the western Beaufort, to 

more traditionally Arctic conditions in the central Beaufort, to an estuarine environment in the 

eastern Beaufort. This gradient is reflected in the zooplankton community. Across-shelf 

gradients represent a transition from neritic assemblages typified by Pseudocalanus spp. to more 

oceanic assemblages typified by Calanus hyperboreus and Microcalanus pygmaeus. The region 

around the Mackenzie River represents an extreme example of across-shelf gradients, with a 

“plume” assemblage, characterized by euryhaline copepods such as Eurytemora spp., in addition 

to the traditional neritic and oceanic assemblages. These gradients intersect and can be modified 

by localized processes, such as upwelling.

Regional comparison

Our results indicate that zooplankton abundance and biomass in the Beaufort Sea can 

rival, and even surpass, those reported in the Chukchi (Hopcroft et al., 2010; Questel et al., 2013; 

Ershova et al., 2015) and that diversity in the epipelagic realm of the Beaufort Sea is similar to 

that observed in the shallow Chukchi Sea, despite distinct faunal differences between the mostly 

Arctic-affinity Beaufort and mostly Pacific-affinity Chukchi Sea. The influence of Pacific-origin 

waters is revealed by the presence of subarctic copepods that occur predominantly in the western 

Beaufort. The penetration of Pacific expatriate taxa into the Beaufort Sea has been previously 

recorded by Johnson (1956) and across the Chukchi Plateau and into Central Basin (Hopcroft et 

al., 2005; Nelson et al., 2009; Kosobokova & Hopcroft, 2010; Nelson et al., 2014), reflecting the 

penetration of these taxa well into the Arctic Ocean proper. We report low numbers of 

euphausiids; net avoidance and aggregation near the bottom (Coyle & Pinchuk, 2002) may 

partially explain these results, although it has also been suggested euphausiids populations are 

not self-sustaining in the Pacific-Arctic (Berline et al., 2008). Our results are also consistent with 

species inventories from the epipelagic realm in the Canada Basin (Kosobokova & Hopcroft, 

2010; Hunt et al., 2014), although we report higher abundances of neritic taxa, as would be 

expected given our shelf emphasis. High abundances of euryhaline taxa in the vicinity of the 

Mackenzie River are consistent with influence of major river systems (Abramova & Tuschling, 

2005; Walkusz et al., 2010), as noted previously.
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Historical context and future outlook

It is notable that the species composition of the major players of the Beaufort Sea 

mesozooplankton community appear to have remained relatively stable over the past decades; 

historical studies (e.g., Johnson, 1956; Grainger, 1975; Grainger & Grohe, 1975; McConnell, 

1977; Hopky et a l, 1994a,b,c) show a clear dominance of the key Arctic copepods also reported 

in this study, as do other contemporary studies (e.g., Lane et al., 2008) . Our results, as well as 

others in the western Arctic (Ashjian et al., 2003; Hopcroft et al., 2005; Lane et al., 2008; 

Kosobokova & Hopcroft, 2010), suggest increased zooplankton standing stock in the modern 

Arctic when compared to early work, although we note there is quite a large range in 

abundances. Other caveats include methodological differences that may have resulted in an 

underestimate of historical abundance and biomass (see Ashjian et a l, 2003; Hopcroft et al.,

2008). Nonetheless, available data point to an upward trend in abundances of several key 

copepod species in the Beaufort Sea region. Concomitant with this apparent increase, the Arctic 

has undergone rapid declines in sea ice extent and thickness (Comiso, 2002; Serreze et al., 2007; 

Kwok & Rothrock, 2009). Loss of sea ice increases the area of open water available for 

phytoplankton production (e.g., Arrigo et a l, 2008), thereby increasing resources available to 

herbivorous copepod grazers that dominate the Beaufort Sea ecosystem, and potentially 

accelerating life cycles due to higher water temperatures (e.g., Ringuette et a l, 2002). Increased 

resource availability could result in increased zooplankton abundance. Average abundances of 

the key herbivore Calanus glacialis and the small-bodied omnivore Oithona similis seem to have 

increased over the past decades in the Beaufort Sea region (Fig. 1.16); however, additional data 

are needed to rigorously assess this trend. Other groups, such as the microcalanids 

(Microcalanuspygmaeus and Pseudocalanus spp.) and larvaceans, do not show a clear trend 

(Fig. 1.16). We note that the difficulties associated with collection and preservation of larvaceans 

(see Hopcroft, 2005) make comparisons particularly challenging, as they are very likely 

underrepresented in all of the above-mentioned collections, including the present study. The key 

Arctic Calanus species undergo extensive seasonal vertical migration; the timing of this seasonal 

migration, diapause, and reproduction are tightly coupled to the timing of the spring/summer 

phytoplankton bloom and can vary across the Arctic (Daase et al., 2013). While the current and 

near-future climate environment may favor a prolonged bloom that Calanus spp. will still be able 

to exploit (e.g. Lavoie et al., 2010), extreme shifts in bloom phenology could result in a
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mismatch between the timing of Calanus spp. reproduction and the highly pulsed food 

environment that these Arctic copepods are physiologically fine-tuned to exploit (e.g., S0reide et 

a l, 2010, Leu et al., 2011). This could result in a future environment that is more favorable to 

small-bodied copepod species (e.g., Pseudocalanus spp. and Oithona similis) (Daufresne et al.,

2009) or subarctic species (Falk-Petersen et al., 2006). Such shifts would have the potential to 

profoundly impact Arctic food webs and energy flow (e.g., Falardeau et a l, 2014).

In addition to large-scale changes in sea ice extent and phenology, more localized 

impacts of climate change may impact Beaufort Sea zooplankton communities on seasonal and 

annual time scales. Changes in relative influence of different water masses on the Beaufort shelf 

have the potential to actuate changes in zooplankton community structure and magnitude; more 

frequent upwelling events (e.g. Pickart et a l, 2013) could bring the large-bodied and lipid-rich 

copepod Calanus hyperboreus onto the shelf more often or in higher abundances, providing high 

quality food for upper trophic levels utilizing the shelf environment. Upwelling events can also 

bring AHW that is under-saturated with respect to aragonite from the slope onto the shelf 

(Mathis et al., 2012), resulting in unfavorable conditions for marine calcifiers, such as the 

pteropod Limacina helicina. Conversely, increased freshwater input from river systems along 

the coast may create conditions more beneficial to neritic and euryhaline taxa than to oceanic 

taxa.

Continued efforts to survey Beaufort Sea zooplankton communities as the region 

undergoes environmental change will be critical in efforts to quantify community shifts and 

inform process-based examinations of the region. Efforts to quantify change associated with a 

warmer climate [i.e. Intergovernmental Panel on Climate Change (IPCC, 2014)] or 

anthropogenic activities must necessarily consider the natural variability of the biological system 

of the Beaufort Sea; therefore, future efforts to quantify inter-annual variability in zooplankton 

communities of the Beaufort Sea would be particularly valuable. The interplay between climate 

change and zooplankton communities is complex and likely species-specific; therefore, robust 

datasets are needed to assess any future change. This work describes broadscale gradients across 

and along the Beaufort shelf, highlights faunal associations driven by underlying hydrographic 

characteristics, and provides a modern characterization of epipelagic zooplankton communities 

in the Beaufort Sea that may be used to assess future change.
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Figure 1.1. Beaufort Sea study area with stations indicated for each field season 2010-13.
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Figure 1.2. Mean temperature (°C) and salinity in the upper 200 m along the Beaufort Sea 
shelf during 2010-2013.
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Figure 1.3. Temperature -  salinity diagrams from the upper 200 m of the Beaufort Sea 
shelf during summer 2010-2013. Color represents depth interval. Grey lines & numbers 
represent isopycnals. ACW  = Alaska Coastal Water, AW  = Atlantic Water, MRW  = Mackenzie 
River Water, M W  = Melt Water.
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Figure 1.4. Inorganic macro-nutrient (phosphate, nitrate, silicate) and chlorophyll-a 
concentrations in the study area of the Beaufort Sea during 2010-13. Data at target depths 
offset slightly to facilitate comparison.
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Figure 1.5. The relative contribution of major zooplankton taxonomic groups in terms of 
abundance and biomass in the Beaufort Sea during 2010-13 for the 150- and 505-^m nets.
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3
Figure 1.6. Abundance (ind. m" ) of dominant copepod taxa in the 150-^m net in the 
Beaufort Sea during 2010-2013.
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Figure 1.7. Abundance (ind. m- ) of selected taxa from the 150-^m net in the Beaufort Sea 
during 2010-2013.
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-3Figure 1.8. Abundance (ind. m" ) of dominant copepods from the 505-^m net in the 
Beaufort Sea during 2010-2013.
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Figure 1.9. Expatriate zooplankton taxa in the Beaufort Sea during 2010-13. A) Juvenile 
euphausiid abundance (ind. m" ) from the 150- and 505-^m nets. B) Euphausiid abundance (ind.3
m" ) from the 505- |im net. Square and triangle indicate presence of Meganyctiphanes norvegica 
and Thysanoessa spinifera, respectively. C) Presence of Pacific expatriate copepods from the 
150- and 505-^m nets.
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Figure 1.10. Beaufort Sea zooplankton community structure for 150-^m net abundance 
data from 2010-13. Shapes indicate year. Colors indicate faunal grouping. A) Bray-Curtis 
sample similarity as determined by hierarchical clustering on species abundance. Dotted red lines 
connect samples that are not statistically unique (SIMPROF, p  < 0.05). B) Spatial distribution of 
observed community groups. C) Non-parametric Multidimensional Scaling (nMDS) of 
zooplankton community overlain with observed groupings.
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Figure 1.11. Beaufort Sea zooplankton community structure within Group 4 for 150-^m 
net abundances from 2010-13. Upper panel shows spatial distribution of clusters depicted in 
lower panel
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Figure 1.12. Environmental conditions at Lines A1 and A2 within Faunal Group 4 in the 
Beaufort Sea during August 2013. Upper left: Station map for 2013 sampling. Stations of 
interest are enlarged. Upper right: alongshore component of wind velocity during August 2013 
survey. Data source: NOAA/ESRL/GMD Baseline Observatories, National Oceanic and 
Atmospheric Administration, Oceanic and Atmospheric Research Earth System Research 
Laboratory, Global Monitoring Division (Barrow Meteorological Station). Black bar indicates 
wind data are not available. Lower panel: Oceanographic conditions (T, S) along Lines A1 and 
A2.
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Figure 1.13. Beaufort zooplankton community structure for the 150-^m net biomass data 
from 2010-13. Shapes indicate year. Colors indicate faunal grouping. A) Bray-Curtis sample 
similarity as determined by hierarchical clustering. Dotted red lines connect samples that are not 
statistically unique (SIMPROF, p  < 0.05). B) Spatial distribution of observed community 
groups. C) Non-parametric Multidimensional Scaling (nMDS) of zooplankton community 
overlain with observed groupings.
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Figure 1.14. Beaufort zooplankton community structure for the 505-^m net abundance 
data from 2010-13. Shapes indicate year. Colors indicate faunal grouping. A) Bray-Curtis 
sample similarity as determined by hierarchical clustering. Dotted red lines connect samples that 
are not statistically unique (SIMPROF,p  < 0.05). B) Spatial distribution of observed community 
groups. C) Non-parametric Multidimensional Scaling (nMDS) of zooplankton community 
overlain with observed groupings.

34



20

Mackenzie
„  RiverB

Figure 1.15. Beaufort zooplankton community structure for the 505-^m net biomass data 
from 2010-13. Shapes indicate year. Colors indicate faunal grouping. A) Bray-Curtis sample 
similarity as determined by hierarchical clustering. Dotted red lines connect samples that are not 
statistically unique (SIMPROF, p  < 0.05). B) Spatial distribution of observed community 
groups. C) Non-parametric Multidimensional Scaling (nMDS) of zooplankton community 
overlain with observed groupings.
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Figure 1.16. Comparison of average abundances (ind. m- ) of select taxa in the Beaufort Sea 
region over the past 60 years. Trendlines are shown.

Data sources:
1950: USS Burton Island, 120 |im net, stations 3-11, 32, 33, 57, 58, 60, 62, 64, 66; Johnson,
1956
1951: USS Burton Island, 120 jam net, stations 1, 5-11, 17, 20, 22, 31, 32, 36, 37, 38, 63, 64; 
Johnson, 1956
1985-1987: NOGAP2, 85 |im net; Hopky et al., 1994a,b,c 
2002: SBI, 150 |im net; Lane et al., 2006
2009: Nahidik, lower stratum 20-100m, 150 |im net; Walkusz et al., 2013 
2010: Camden Bay, 150 jam net; this study 
2011: Beaufish, 150 |im net; this study 
2012-13: Transboundary, 150 |im net; this study
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Tables

Table 1.1. Mean holozooplankton abundance and biomass for each field season in the 
Beaufort Sea during 2010-2013.

Year Survey
Dates

No.
Stations
150/505

Avg. Abundance 
(Ind. m-3) ± SE

Avg. Biomass 
(mg DW m-3) ± SE

150 505 150 505

2010 09/22­
09/28 22/22 3380 ± 857 214 ± 78 59.7 ± 20.8 17.5 ± 4.5

2011 08/16­
09/03 59/45 1830 ± 338 47 ± 11 23.8 ± 3.6 13.9 ± 3.2

2012 09/21­
09/30 11/14 1110± 124 196 ± 114 76.9 ± 11.7 57.6 ± 28.8

2013 08/13­
08/31 39/39 1910± 187 47 ± 5 40.2 ± 4.9 25.6 ± 2.4

Table 1.2. Average abundance and biomass of Beaufort Sea zooplankton taxa captured by 
the 150-^m net during 2010-2013.* - indicates that a taxon was only observed in abundances <

3 30.01 ind. m" ; biomass <0.01 mg DW m" . NC -  indicates biomass was not calculated.

Abundance (Ind. m-3) Biomass (mg DW m-3)
Calanoida 2010 2011 2012 2013 2010 2011 2012 2013
Aetideopsis minor - - - 0.09 - - - *

Acartia longiremis 6.00 1.57 4.06 6.53 0.03 0.01 0.02 0.03
Acartia bifilosa - * - 1.65 - - - 0.03
Acartia spp. (copepodite) - 8.05 4.85 5.07 - 0.01 0.01 0.01
Augaptilus glacialis - - - * - - - *

Eurytemora herdmani - - - 6.17 - - - 0.06
Eurytemora pacifica - * - - - * - -
Eurytemora richsingi - - - * - - - *

Eurytemora spp. (copepodite) 1.12 0.18 - 62.92 * * - 0.22
Calanus glacialis 508.82 108.92 137.23 42.49 20.36 4.70 43.00 5.70
Calanus hyperboreus 17.36 9.62 0.68 15.11 12.03 9.01 1.98 15.05
Centropages abdominalis * - - 0.40 * - - 0.01
Chiridius obtusifrons - * 0.36 0.31 - * 0.07 0.04
Epilabidocera amphitrites - - - - - - - -
Eucalanus bungi - 0.10 * 0.50 - * 0.01 1.82
Gaetanus tenuispinus - - - 0.02 - - - *

Gaetanus spp. - - - 0.00 - - - *

Heterorhabdus compactus - - - 0.01 - - - *

Heterorhabdus norvegicus - 0.14 0.22 0.88 - 0.05 0.04 0.16
Jashnovia tolli - * 0.23 * - * 0.01 *
Limnocalanus macrurus - - - 1.16 - - - 0.03
Metridia longa 1.47 1.48 17.73 7.87 0.23 0.24 1.55 1.25
Metridia pacifica - 0.34 - - - 0.01 - -
Metridia spp. (copepodite) 15.65 2.30 3.98 1.47 0.07 0.01 0.03 0.01
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Table 1.2, continued

Microcalanus pygmaeus 11.07 13.14 13.99 47.52 0.01 0.02 0.02 0.06
Neocalanus cristatus - * * * - 0.03 0.33 1.87
Neocalanus flemingeri - * 0.10 * - 0.01 0.05 *

Neocalanus plumchrus - * - - - 0.01 - -
Paraeuchaeta glacialis 0.15 0.63 1.55 2.08 0.09 0.61 1.11 1.82
Pseudocalanus acuspes 12.40 0.84 3.06 12.41 0.15 0.01 0.03 0.14
Pseudocalanus mimus - - 2.84 * - - 0.03 *
Pseudocalanus minutus 0.49 6.54 13.28 5.26 0.01 0.10 0.21 0.08
Pseudocalanus newmani 16.37 2.41 10.67 3.27 0.13 0.02 0.07 0.02
Pseudocalanus spp. (male) 5.78 2.75 6.40 3.47 0.03 0.02 0.03 0.02
Pseudocalanus spp. (copepodite) 1419.71 533.51 217.91 557.59 5.72 0.96 0.60 1.99
Scaphocalanus magnus - - - 0.11 - - - 0.08
Scolecithricella minor * 0.15 0.65 1.07 * * 0.01 0.01
Spinocalanus magnus - - - 0.47 - - - *

Tortanus discaudatus - * - 0.15 - * - *

Cyclopoida
Oithona similis 955 .26 213 .33 474.08 483 .45 1.71 0.28 0.59 0.49

Poecilostomatoida
Triconia borealis 103 .81 23. 57 27. 53 88.40 0.16 0.05 0.05 0.14

Harpacticoida
Harpacticoid unk. - 0.17 - 0.15 - * - *
Microsetella norvegica - 0.61 1.57 1.82 - * 0.01 0.01

Nauplii
Harpacticoid nauplii 0.03 0.03 0.03 0.02 - * * *

Calanoid nauplii 512.51 415.54 83.65 245.12 0.54 0.32 0.05 0.15
Cyclopoid nauplii - 0.57 1.07 5.12 - * * *

Appendicularia
Oikopleura vanhoeffeni 132 .14 64. 15 5.67 18.29 2.37 0.86 0.02 0.08
Fritilaria borealis 36.01 412.54 7.18 48.87 * 0.01 * 0.00

Pteropoda
Limacina helicina 58. 78 13. 19 9.20 5.66 0.49 0.62 0.01 0.05
Clione limacina 0.02 0.01 0.18 * * 0.05 1.94 0.02

Chaetognatha
Eukrohnia hamata 0.24 0.05 - 0.10 0.17 0.04 - 0.33
Pseudosagitta maxima - - - 0.07 - - - *

Parasagitta elegans 5.47 11.67 31.36 2.39 1.75 2.05 1.19 0.16
Cladocera

Evadne nordmanni - - - 2.88 - - - 0.07
Podon leuckarti 0.10 0.23 - 31.82 0.33 * - 0.14

Ostracoda
Boroecia maxima - 0.02 0.14 1.51 - * 0.01 0.14

Euphausiacea
Euphausid nauplii - * - 0.01 - * - *

Euphausid calyptopis - 0.33 - - - * - -
Euphausid juvenile 0.06 0.27 - - * 0.03 - -
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Table 1.2, continued

Euphausid furcillia - 0.07 - - - 0.01 - -
Thysanoessa inermis - - 0.19 0.01 - - 1.84 0.08
Thysanoessa longipes - - - * - - - 0.02
Thysanoessa raschii 0.02 0.02 0.06 0.04 * 0.06 0.46 0.19

Mysidae
Mysis spp. - 0.02 - 0.01 - 0.30 - 0.01
Mysis oculata 0.02 - - * - - 0.01

Decapoda
Hippolytidae * 0.03 0.01 * 0.01 0.04 0.02 0.02
Pandalidae - 0.01 * 0.01 - * 0.01 -

Cumacea 0.03 - - 0.00 0.03 - - *

Amphipoda
Amphipod unk. - 0.14 0.08 0.07 - 0.21 0.05 0.05
Apherusa glacialis - * - 0.01 - * - *

Gammarus wilkitzkii - - 0.01 - - - * -
Cyphocaris challengeri - - - 0.01 - - - 0.04
Hyperia galba/medusarum 0.24 0.04 0.03 * 0.08 0.01 * 0.01
Hyperoche medusarum * - - - 0.01 - - -
Onisimus spp. - - - 0.01 - - - *
Themisto abyssorum 0.09 0.12 0.17 0.95 0.13 0.12 0.57 0.90
Themisto libellula 0.01 0.18 0.28 0.27 0.42 0.10 0.70 0.37

Isopoda - 0.01 0.22 0.22 - * * *

Siphonophora
Dimophyes arctica - * - 0.02 - * - 3.43

Hydrozoa
Aeginopsis laurentii 1.00 0.28 * 0.21 0.51 0.13 * 0.09
Aglantha digitale 53.92 18.44 24.93 13.07 5.06 1.88 0.69 4.68
Catablema vesicarium - * - - - * - -
Cyanea capillata * - - - 1.92 - - -
Euphysa flammea - - - * - - - *
Halitholus cirratus 0.24 - - 0.03 16.54 - - 0.21
Melicertum octopunctata - 0.01 - - - 0.01 - 0.04
Obelia longissima - 0.17 - 0.24 - 0.01 - 0.09
Ptychogena lactea - 0.05 - 0.07 - * - *
Sarsia tubulosa 0.02 - - - 0.25 - - -
Tiaropsis multicirrata - * - - - 0.01 - -

Ctenophora
Mertensia ovum 0.13 0.07 0.13 0.01 0.45 0.30 0.50 0.19

Polychaeta
Tomopteris septentrionalis - - - 0.01 - - - 0.03

Rotifera - - - 73.91 - - - NC
Meroplankton

Barnacle cypris 14. 89 9.33 0.23 0.06 0.22 0.22 * *

Barnacle nauplii 2.30 2.36 0.05 0.47 * * - *

Bipinaria 0.44 6.73 0.49 2.35 * 0.01 * *
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Table 1.2, continued

Bivalve larvae 42.13 58.10 32.63 25.00 0.01 0.02 0.01 0.04
Brachyuran zoea 0.12 0.16 0.01 * 0.03 0.01 *

Cyphonautes - - 0.57 0.36 - - * 0.10
Echinoderm larvae 2.28 50.38 1.38 1.64 * * * *

Gastropod larvae - 3.92 3.52 1.02 0.04 * * *

Megalopa * 0.01 0.05 * 0.00 * 0.04 *

Ophiuroid larvae * 2.60 - - * * - -
Pagurid zoea - 0.04 0.03 0.05 - 0.03 * *

Polychaete larvae 55.17 39.38 4.67 99.32 0.57 0.13 0.02 0.23

Table 1.3. Average abundance and biomass of Beaufort Sea zooplankton taxa captured by 
the 505-^m net during 2010-2013. * - indicates that a taxon was only observed in abundances < 
0.01 ind. m-3; biomass <0.01 mg DW m-3. NC -  indicates biomass was not calculated.

Abundance (Ind. m-3) Biomass (mg DW m-3)
2010 2011 2012 2013 2010 2011 2012 2013

Calanoida
Aetideopsis minor - - - * - - - *
Acartia longiremis * * 0.01 0.01 * * * *

Acartia bifilosa - - - 0.04 - - - *
Calanus glacialis 166.54 21.43 179.95 21.74 10.21 3.38 45.71 4.90
Calanus hyperboreus 7.43 6.48 0.42 11.28 3.10 6.57 0.83 10.04
Chiridius obtusifrons - 0.01 0.07 0.09 - * 0.01 0.02
Epilabidocera amphitrites - * - - - * - -
Eucalanus bungi - * * * - * * *
Gaetanus brevispinus - - - * - - - *

Gaetanus tenuispinus - - * 0.02 - - * *

Heterorhabdus compactus - - * 0.05 - -
Heterorhabdus norvegicus - - 0.03 0.23 - - * 0.04
Jashnovia tolli * - * 0.01 * - * *

Limnocalanus macrurus - * - 1.86 - * - 0.05
Metridia longa 0.60 0.73 8.30 4.10 0.12 0.20 0.67 0.61
Metridia pacifica - 0.17 - * - 0.01 - *
Metridia spp. 0.06 - 0.01 0.02 * - * *

Neocalanus cristatus - 0.00 0.04 0.01 - 0.02 0.22 0.10
Neocalanus flemingeri - 0.03 - - - 0.02 - -
Neocalanus plumchrus - - * * - - * 0.01
Paraeuchaeta glacialis 0.09 0.35 0.52 1.22 0.09 0.43 0.26 0.60
Pseudocalanus acuspes 1.10 * - 0.00 0.02 * - *

Pseudocalanus mimus - 0.01 - - - * - -
Pseudocalanus minutus 0.07 0.70 1.39 0.63 * 0.01 0.03 0.01
Pseudocalanus newmani 0.14 - - - * - - -
Pseudocalanus spp. (male) - - * 0.01 - - * *

Pseudocalanus spp. (copepodite) 0.62 0.28 0.07 0.43 0.01 0.01 * 0.01
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Table 1.3, continued

Scaphocalanus magnus - - - 0.05 - - - 0.03
Scolecithricella minor * * 0.01 0.04 * * * *

Tortanus discaudatus - * - - - * - -
Appendicularia

Oikopleura vanhoeffeni 14. 19 11. 39 0.03 0.65 0.55 0.71 - 0.02
Fritilaria borealis 0.80 1.23 - 0.05 * * - -

Pteropoda
Limacina helicina 1.64 0.39 0.08 0.28 0.02 0.01 0.87 1.75
Clione limacina 0.01 0.01 0.12 * 0.01 0.02 * *

Chaetognatha
Eukrohnia hamata 0.11 - - 0.09 0.17 - 4.58 0.11
Pseudosagitta maxima - - - 0.02 - - - *
Parasagitta elegans 0.46 0.94 2.93 0.47 0.67 0.60 - 0.78

Cladocera
Evadne nordmanni 0.01 - - * * - - *

Podon leuckarti - * - 0.11 - * * *

Ostracoda
Boroecia maxima * * 0.02 0.43 * * - 0.08

Euphausiacea
Juvenile euphausiids (all stages) 0.04 0.54 * * * 0.06 0.45 *
Meganyctiphanes norvegica - - Trace - - - 0.15 -
Thysanoessa inermis * * 0.10 0.06 * * 1.24 0.64
Thysanoessa longipes - - * * * * 0.87 *
Thysanoessa raschii * 0.10 0.18 0.10 * 0.39 0.01 0.83
Thysanoessa spinifera - - - 0.02 - - - 0.15

Mysidae
Boreomysis arctica - - - * - - - *
Mysis oculata 0.03 0.02 0.01 * - 0.10 * 0.03

Decapoda
Hippolytidae 0.08 0.01 * 0.01 0.74 0.01 - 0.01
Pandalidae * * * 0.01 0.01 * - 0.03
Eulas spp. - - * * - - * 0.04
Sabinea septemcarinata - - - * - - - 0.02

Cumacea 0.01 * * * 0.01 - * *

Amphipoda
Amphipod unk. 0.01 * * 0.01 0.01 - * 0.01
Argissa hamatipes - - - * - - - *
Apherusa glacialis * * * 0.01 - * - 0.02
Gammarus wilkitzkii 0.04 * * - 0.03 * * -
Eusirus holmi - - - * - - - *
Hyperia galba/medusarum 0.02 0.01 - * 0.01 * 0.02 *

Hyperoche medusarum 0.01 * - * 0.16 * - *

Monoculoides schneideri - - - * - - - *

Onisimus spp. * * * * * * - *

Themisto abyssorum 0.05 0.11 0.05 0.57 0.11 0.08 - 1.11
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Table 1.3, continued

Themisto libellula 0.01 0.01 0.01 0.07 0.46 0.18 - 0.76
Pardalisca cuspidata - - - * - - - *

Phoxocephalidae - - - * - - - 0.01
Syrrhoe spp. - - - * - - - *

Isopoda
Munnopsis typica - - - *

Siphonophora
Dimophyes arctica * * * 0.01 - * 0.20 *

Hydrozoa
Aeginopsis laurentii 0.08 0.20 0.01 0.10 0.08 0.35 - 0.09
Aglantha digitale 19.52 1.16 1.67 2.17 1.11 0.72 1.50 1.18
Bougainvillia superciliaris 0.01 - - 0.00 - - - *
Catablema vesicarium - * - 0.01 0.12 * - 0.13
Cyanea capillata - * - -
Eumedusae birulai - - - * - - - *

Euphysa flammea * - - *
Halitholus cirratus * * - 0.05 * * - 0.39
Melicertum octopunctata * 0.01 - * * * - -
Obelia longissima 0.01 * - 0.01 * * - *
Ptychogena lactea * * - - 0.01 * - *
Sarsia princeps - - - * - - - 0.01
Sarsia tubulosa - - - * - - - 0.01
Tiaropsis multicirrata * - - * * - - *

Ctenophora
Bolinopsis infundibulum - - - * - - - 0.27
Beroe cucumis 0.01 * * * 0.13 0.02 - 0.06
Beroe abyssicola - - - * - - - 0.02
Mertensia ovum 0.06 * 0.11 0.01 0.27 * 0.06 0.56

Polychaeta
Tomopteris septentrionalis - - - * - - - *

Meroplankton
Barnacle cypris - 0.02 - - * * - -
Barnacle nauplii - 0.04 - 0.01 * * - *
Echinoderm larvae 0.04 - - 0.02 * - - *

Megalopa - 0.02 * - - * 0.20 -
Ophiuroid larvae - 0.01 - - - - - -
Pagurid zoea 0.01 0.06 - * * * - *

Polychaete larvae 0.01 0.02 0.01 0.06 * * * *
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Table 1.4. Key taxa and their contribution to the first 90% of community similarity for community groupings for the 150-^m
net abundance data from 2010-13.

Group Similarity
(%)

Description Taxa (% Contribution)

1 64.4 Strong ACW 
(T > 4°C)

Oithona similis (11.96) 
Pseudocalanus spp. (11.08) 
Calanoid nauplii (9.66) 
Fritillaria borealis (8.43) 
Bivalve larvae (7.58) 
Parasagitta elegans (6.35)

Calanus glacialis (6.29) 
Limacina helicina (5.23) 
Aglantha digitale (5.18) 
Polychaeta larvae (3.89) 
Acartia spp. (3.22)

Gastropod larvae (3.21) 
Barnacle cypris (2.92)
Triconia borealis (2.32) 
Acartia longiremis (2.28) 
Echinoderm larvae (1.61)

2 70.9 Weak ACW 
(T 3-4 °C)

Calanoid nauplii (10.93)
Fritillaria borealis (10.6) 
Oikopleura vanhoeffeni (10) 
Oithona similis (8.61) 
Aglantha digitale (6.86) 
Polychaeta larvae (6.56)

Pseudocalanus spp. (6.19) 
Bivalve larvae (5.28)
Calanus glacialis (5.22) 
Triconia borealis (4.53) 
Limacina helicina (3.96)

Acartia spp. (3.15) 
Bipinaria (3.01) 
Aeginopsis laurentii (2.56) 
Barnacle cypris (1.89)
Acartia longiremis (1.62)

3 68 .6 Cool Waters 
(T 0-3°C)

Calanoid nauplii (11.48)
Oithona similis (11.36) 
Pseudocalanus spp. (9.54) 
Oikopleura vanhoeffeni (8.95) 
Triconia borealis (7.7)

Calanus glacialis (7.65) 
Polychaeta larvae (6.98) 
Fritillaria borealis (6.22) 
Aglantha digitale (4.62) 
Calanus hyperboreus (3.94)

Limacina helicina (3.92) 
Bivalve larvae (3.67) 
Microcalanus pygmaeus (3.14) 
Metridia longa (2.45)

4 64.9 Cool Waters 
FW influence 

(T 0-3°C)

Oithona similis(9.6) 
Pseudocalanus spp. (9.45) 
Calanoid nauplii (7.81) 
Triconia borealis (6.21) 
Calanusglacialis (5.72) 
Microcalanuspygmaeus (5.11) 
Polychaeta larvae (4.86) 
Calanus hyperboreus (3.63) 
Aglantha digitale (3.6)

Metridia longa(3.22) 
Pseudocalanus minutus (3.01) 
Parasagitta elegans (2.77) 
Fritillaria borealis (2.74) 
Oikopleura vanhoeffeni (2.61) 
Bivalve larvae (2.52)
Limacina helicina (2.42) 
Pseudocalanus spp. (male) (2.17) 
Pseudocalanus acuspes (1.93)

Paraeuchaeta glacialis(1.89) 
Synchaeta spp. (1.69) 
Eurytemora spp. (1.59) 
Themisto abyssorum (1.52) 
Pseudocalanus newmani (1.44) 
Podon leuckartii (1.41) 
Metridia spp. (C1-3) (1.28)



Table 1.5. Relationship between 150-^m zooplankton and abiotic factors over different 
depth intervals during 2010-2013. Temperature (T) and salinity (S) averages, and station 
depth (m) (D). * Indicates best variable combination explaining observed zooplankton 
community structure.

Abundance Biomass

Bottom # Var. # Var.
2 T,S D,T D,S 2 T,S D,T D,S

0.45 0.31 0.15 0.44 0.31 0.18
3 D,T,S 3 D,T,S

0.35 0.35
200m average

2 T,S D, T D,S 2 T,S D,T D,S
0.5 0.37 0.15 0.47 0.35 0.19

3 D,T,S
0.41

3 D,T,S
0.4

100m average
2 T,S D,T D,S 2 T,S D,T D,S

0.53* 0.36 0.17 0.49* 0.34 0.2
3 D,T,S

0.43
3 D,T,S

0.4
50m average

2 T,S D,T D,S 2 T,S D,T D,S
0.51 0.31 0.21 0.45 0.29 0.23

3 D,T,S
0.39

3 D,T,S
0.36

Surface
2 T,S D,S D,T 2 T,S D,S D,T

0.35 0.22 0.15 0.31 0.25 0.14
3 D,T,S

0.27
3 D,T,S

0.26
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Table 1.6. Key taxa and their contribution to the first 90% of community similarity groupings for the 505-^m net abundance
data from 2010-13.

Group Similarity
(%)

Description Taxon (% Contribution)

1 49.5 ACW 
(T > 4°C)

Aglantha digitale (17.21) 
Calanus glacialis (16.44) 
Decapod larvae (13.97) 

Fritillaria borealis (10.21)

Pagurid zoea (7.02) 
Megalopa (6.28)

Parasagitta elegans (5.6) 
Paraeuchaeta glacialis (9.51)

Pseudocalanus minutus (3.59) 
Limacina helicina (2.54) 

Euphausiid juveniles (2.52) 
Calanus hyperboreus (6.47)

2 61.8 ACW 
(T > 4°C)

Aglantha digitale (20.97) 
Oikopleura vanhoeffeni (18.22) 

Fritillaria borealis (9.86)

Aeginopsis laurentii (9.36) 
Clione limacina (4.44) 
Calanus glacialis (8.3)

Metridia longa (3.96) 
Themisto abyssorum (3.89) 

Barnacle cypris (1.91)
3 58.9 Cool Waters 

(T 0-3°C)
Calanus glacialis (20.05) 

Oikopleura vanhoeffeni (15.99) 
Calanus hyperboreus (12.72) 

Aglantha digitale (12.42)

Parasagitta elegans (5.59) 
Metridia longa (4.98) 

Aeginopsis laurentii (4.61) 
Fritillaria borealis (3.98)

Paraeuchaeta glacialis (2.66) 
Limacina helicina (2.19)

4 62.5 Cool Waters 
(T 0-3°C) 

Freshwater

Calanus glacialis (16.27) 
Metridia longa (10.72) 

Calanus hyperboreus (10.36) 
Aglantha digitale (7.96) 

Paraeuchaeta glacialis (7.13) 
Parasagitta elegans (6.16)

Themisto abyssorum (5.18) 
Pseudocalanus minutus (4.47) 

Limacina helicina (3.35) 
Themisto libellula (3.35) 

Thysanoessa raschii (3.31) 
Boroecia maxima (2.06)

Oikopleura vanhoeffeni (2.03) 
Thysanoessa inermis (1.96) 

Heterorhabdus norvegicus (1.85) 
Limnocalanus macrurus (1.52) 

Pseudocalanus spp. (1.51) 
Neocalanus cristatus (1.22)

5 65 .8 ACW 
(T > 4°C)

Calanus glacialis (17.14) 
Parasagitta elegans (12.26) 

Pseudocalanus minutus (9.19) 
Euphausiid juvenile (8.09) 

Calanus hyperboreus (6.15) 
Pseudocalanus spp. (5.43)

Pagurid zoea (4.11) 
Aglantha digitale (4.61) 
Metridiapacifica (4.37) 

Megalopa (3.41) 
Themisto libellula (3.39) 
Barnacle nauplii (3.00)

Thysanoessa raschii (2.65) 
Barnacle cyprus (2.22) 
Decapod larvae (1.94)

Limacina helicina (1.92) 
Melicertum octocostatum (1.75)

6 59 .7 ACW (T > 4°C) 
Shelfbreak

Calanus glacialis (50.39) 
Mertensia ovum (11.81)

Aeginopsis laurentii (11.69) 
Pseudocalanus spp. (11.03)

Parasagitta elegans (8.13) 
Megalopa (7.9)

7 55 .9 Shelf Calanus glacialis (21.9) 
Calanus hyperboreus (11.81) 

Aglantha digitale (large) (11.71)

Clione limacina (11.06) 
Themisto abyssorum (9.93) 

Aglantha digitale (9.93)

Themisto libellula (7.9)



Table 1.7. Relationship between 505-^m zooplankton and abiotic factors over different 
depth intervals during 2010-2013. Temperature (T) and salinity (S) averages, and station 
depth (m) (D). * Indicates best variable combination explaining observed zooplankton 
community structure.

Abundance Biomass
Bottom # Var # Var.

1 T S D 1 T S D
0.43 0.13 -0.01 0.43 0.13 -0.01

2 T,S D,T D,S 2 T,S D,T D,S
0.46 0.33 0.03 0.46 0.33 0.03

3 D,T,S
0.32

3 D,T,S
0.32

200 m average
1 T S D 1 T S D

0.57* -0.01 -0.01 0.50* 0.06 0.04
2 T,S D,T D,S 2 T,S D,T D,S

0.44 0.37 -.04 0.42 0.36 0.01
3 D,T,S

0.31
3 D,T,S

0.31
100 m average

1 T S D 1 T D S
0.56 0.01 -0.01 0.49 0.04 -0.02

2 T,S D,T D,S 2 T,S D,T D,S
0.48 0.37 -0.02 0.42 0.36 0.01

3 D,T,S
0.34

3 D,T,S
0.31

50 m average
1 T S D 1 T S D

0.45 0.18 -0.01 0.47 0.12 0.04
2 T,S D,T D,S 2 T,S D,T D,S

0.49 0.316 0.05 0.38 0.33 0.05
3 D,T,S

0.33
3 D,T,S

0.28
Surface

1 T S D 1 S T D
0.17 0.12 -0.03 0.11 0.06 0.04

2 T,S D,T D,S 2 T,S D,T D,S
0.23 0.08 0.03 0.11 0.05 0.04

3 D,T,S
0.13

3 D,T,S
0.07
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2. The vertical distribution of Beaufort Sea zooplankton in relation to water masses 

Abstract

We collected stratified zooplankton samples at stations along the Beaufort Sea slope 

during August 2013 to characterize the vertical structure of zooplankton communities from the 

surface to 1000 meters depth. We documented 93 taxonomic categories; the greatest diversity 

was observed in the copepods (48 species), followed by the cnidarians (9 species) and 

amphipods (8 species). Distinct zooplankton communities were associated with the three main 

water masses in the study region: the Polar Mixed Layer (PML), Arctic Halocline Water (AHW), 

and Atlantic Water (AW). Average abundance and biomass were highest (1160 ind. m-3 and 30.6 

mg DW m , respectively) in the PML, where the community was dominated by Arctic 

copepods. Arctic copepods, including Calanus glacialis, Calanus hyperboreus, Oithona similis, 

Metridia longa, Triconia borealis, Microcalanus pygmaeus, and the Pseudocalanus species 

complex, contributed upwards of 90% of copepod abundance and biomass in the PML. The 

AHW (50-100 and 100-200 m) communities were also dominated by Arctic copepods, but
-3exhibited markedly lower average abundances (218 and 102 ind. m ") and biomasses (8.6 and 5.1 

mg DW m-3). The AW (200-300, 300-500, 500-1000 m) communities exhibited the lowest 

average abundances and biomasses: average abundance ranged from 127 ind. m-3 in the 200-300 

m layer to 15 ind. m-3 in the 500-1000 m layer. Average biomass was 8.0 and 0.6 mg DW m-3 in 

the 200-300 and 500-1000 m layers, respectively. Mesopelagic copepods, including the 

spinocalanids and aetideids, were important contributors in the Atlantic layer, which exhibited 

the highest species richness of the three water masses. Community structure was highly 

correlated with salinity and depth, both in terms of abundance (Spearman correlation (p): 0.84, p  

< 0.01) and biomass (p = 0.81 , p  < 0 .01). We report similar species composition but higher 

biomass when compared to corresponding depth intervals in the interior basins, likely due to 

elevated coastal production compared to the deep basins

2

2 Smoot, C. and Hopcroft, R.R. The vertical distribution of Beaufort Sea zooplankton in relation to water masses. 
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Introduction

In addition to their widely recognized role as tropic intermediaries, zooplankton play an 

important role in processing and repackaging organic material as it sinks through the water 

column. Mesopelagic zooplankton fragment and aggregate particles via feeding and fecal pellet 

production; these modifications can influence remineralization and sinking rates, thereby 

impacting deeper waters and benthic communities (Dilling et al., 1998; Wilson et al., 2010; 

Robinson et al., 2010). Omnivory and carnivory generally increase in importance with depth 

(Auel & Hagen, 2002; Yamaguchi et al., 2002; Blachowiak-Samolyk et al., 2007; Darnis et al., 

2008; Wilson et al., 2010). Aetideids in the Greenland Sea can consume upwards of 40% of 

vertical carbon flux (Auel, 1999), and although the simplified classical food chain depicts 

zooplankton as a uniform group, extensive trophic interactions take place between zooplankters. 

Euchaetidae are known to be voracious carnivores, exerting predation pressure not only on other 

copepods, but on fish eggs and larvae as well (Yen, 1983; Yen, 1987; Auel, 1999). Therefore, 

zooplankton interactions may influence the flux and remineralization of organic matter, as well 

as trophic transfer.

Despite their important ecological and biogeochemical roles, mesopelagic communities 

are less studied than their epipelagic counterparts due to the inherent logistical demands and 

costs associated with deep-water sample collection and multi-layer sample processing. Vertical 

examinations of zooplankton communities have been done in the Arctic’s basins (e.g., Hopkins, 

1969; Mumm, 1991; Kosobokova & Hirche, 2000; Auel & Hagen, 2002, Hopcroft et al., 2005; 

Kosobokova & Hopcroft, 2010), Fram Strait and the Greenland Sea (Blachowiak-Samolyk et al., 

2007; Laakmann et al., 2009), and for key copepods in the Amundsen Gulf (Darnis & Fortier, 

2014). These efforts have inventoried mesopelagic taxa and demonstrated distinct communities 

associated with different water masses (Auel & Hagen, 2002; Kosobokova et al., 2011; 

Kosobokova, 2012), as well as vertical partitioning of the water column by congeners (Auel, 

1999; Laakmann et al., 2009; Kosobokova & Hopcroft, 2010). Depth-stratified examinations of 

zooplankton communities have been carried out for other marginal Arctic seas (Eilertsen et al., 

1989; Kosobokova et al., 1998; Arashkevich et al., 2002) but only with a coarse two-layer 

resolution of the epipelagic realm for two transects in the Canadian Beaufort Sea (Walkusz et al., 

2013).
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Historical efforts to document zooplankton in the Beaufort Sea are fragmented and 

hampered by gear biases (e.g. Johnson, 1956; McConnell, 1977), and focus on the epipelagic 

waters of the shelf. More recent efforts in the Alaskan and Canadian Beaufort have documented 

the influence of physical processes on zooplankton communities (Lane et al., 2008; Darnis et al., 

2008; Walkusz et al., 2010; Walkusz et al., 2013), but also focus on the epipelagic realm. This 

study focuses on the mesopelagic realm of the Beaufort slope.

Methods 

Study region

The Beaufort Sea is a seasonally ice-covered marginal shelf sea of the Arctic Ocean, 

characterized by a relatively narrow shelf and an extremely abrupt and steep continental slope. 

Complex physical oceanographic processes, including upwelling, eddy formation, and river 

plumes shape the water masses present on the shelf and slope (e.g., Carmack et al., 1989; 

Williams & Carmack, 2008; Williams et a l, 2008). Distinct vertical layering of Arctic water 

masses is nonetheless apparent. The Polar Mixed Layer (PML) extends from the surface to 

between 25-50 m and is modified by freshwater input, atmospheric exchange, and freezing and 

melting processes (Carmack et al., 1989; Lansard et al., 2012). Large amounts of freshwater and 

terrestrial material enter the Beaufort Sea via the Mackenzie River plume, the extent and location 

of which is subject to physical forcing (MacDonald et al., 1998; Mulligan et al., 2010). The 

plume, along with meltwater, can form a buoyant freshwater lens that extends across much of the 

shelf and slope in summer months. Below the PML lies Arctic Halocline Water (AHW), 

extending from 50 to approximately 200 m. Additional structure within AHW is recognized and 

is often referred to as Bering Sea Summer Water and Bering Sea Winter Water (MacDonald et 

al., 1989). Below the AHW is warmer and saltier Atlantic Water (AW) that begins between 200 

and 300 m (Codispoti et al., 2005).

Sample collection and processing

Physical, chemical and biological oceanographic data were collected along cross-shelf 

transects at stations ranging from 20 to 1000 m in depth during August 2013 as part of a multi­

year, inter-disciplinary effort to characterize the physics and biology of the Beaufort Sea. Here 

we focus on the Beaufort slope (Fig. 2.1). Physical oceanographic data were sampled to a depth 

of 600 m with a Seabird SBE25 CTD, averaged into 1-m vertical intervals. An average value for
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each parameter (T, S) was calculated for each zooplankton sampling interval. Physical data (T,

S) for water depths below 600 m were obtained from CTD casts conducted in the same region in 

2014 with a Seabird SBE911 CTD. Water samples for chlorophyll-a and macro-nutrient analysis 

were collected with a 6-Niskin bottle SBE55 rosette attached to the CTD. Water samples were 

taken at the surface, 10, 20, 30, 40, and 50 m. Water for chlorophyll-a analysis was size- 

fractionated under low pressure onto Whatman GF/F filters and 20 ^m polycarbonate filters, 

then frozen at -40 °C for post-cruise analysis following the methods of  Parsons et al. (1984). 

Water for macro-nutrient analysis was filtered through 0.45 |im cellulose acetate filters and 

frozen immediately at -40°C for post-cruise analysis (Gordon et al., 1993).

Zooplankton were sampled with a vertically-hauled Hydrobios Midi-Multinet (mouth 

aperture: 0.25 m2) fitted with 150-^m mesh nets and programmed to collect stratified samples at 

the following depths: 0-50, 50-100, 100-200, 200-300, 300-500, 500-1000 m. Samples were 

preserved in 10% buffered formalin. During laboratory processing, samples were subsampled 

using a Folsom splitter until a given aliquot contained approximately 100 individuals of the most 

abundant taxa. Increasingly larger fractions were examined for larger and less abundant taxa. 

Organisms were identified, enumerated, measured, and staged (when appropriate) to determine 

community composition, abundance, and biomass. Measurements were completed using the 

ZoopBiom program (Roff & Hopcroft, 1986) with the biomass of organisms predicted from 

species-specific length-dry-weight (DW) relationships derived from the literature or from 

morphologically similar species (Questel et al., 2013). Typically, 400-600 organisms were 

measured in each sample. Organisms were identified to species level when possible; 

indistinguishable early copepodite stages of congeneric species were grouped together.

Data processing and statistical analyses

Samples were collected primarily during the extended daylight hours of the Arctic 

summer; however, five stations fell during the short dark period. The literature suggests that 

synchronized diel vertical migration (DVM) is muted at this time of year (Cottier et al., 2006; 

Wallace et al., 2010). We compared day and night species abundances of individual species 

within each sampling interval (Wilcoxon test, p  <0.05). These analyses revealed no significant 

differences between day and night abundances of dominant species, with the exception of 

Metridia longa in the 0-50 m layer. Therefore, all data were pooled.
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Analyses were performed separately for 4th root transformed abundance and biomass 

data. Community similarity was assessed using the Bray-Curtis similarity index (Bray & Curtis, 

1957) and community structure was explored with a hierarchical clustering routine and Non- 

parametric Multi-Dimensional Scaling (nMDS) conducted in Primer (v6) (Clarke & Warwick, 

2010). Statistical significance of clusters was assessed using the SIMPROF routine. Differences 

in the zooplankton community between water masses were assessed with a PERMANOVA using

10,000 unrestricted permutations of raw data; this method has been shown to be robust to 

heterogeneous dispersions and unbalanced designs that are often encountered in ecological 

datasets (Anderson & Walsh, 2013). Indicator species were identified for each community 

grouping using the Indicator Value (IndVal) function (Dufrene & Legendre, 1997) in R ’s labdsv 

software package (http://cran.r-project.org/web/packages/labdsv/index.html). Indicator Value 

analysis identifies indicator species based on both specificity and fidelity to a given grouping; 

thus the Indicator Value for a given species is maximized (1.0) when individuals of a species are 

observed at all sites of only one grouping. Significance of Indicator Values was assessed with 

Monte Carlo randomization using 10,000 permutations. We classified zooplankton taxa into 

trophic guilds based on published literature (Boxshall, 1985; Nishida & Ohtsuka, 1996; 

Mauchline et al., 1998; Matsuura & Nishida, 2000; Turner et al., 2001; Haro-Garay, 2003;

Darnis et al., 2008; Homma & Yamaguchi, 2010) to explore broadscale trophic patterns 

associated with depth; however, we acknowledge that feeding modes of zooplankters are quite 

flexible and often vary across developmental stages. Finally, we related the observed biotic 

community patterns to abiotic variables using Primer’s BEST bio-env routine. The BEST routine 

relates matrices of multidimensional biological and environmental data using both forward- 

selection and backward-elimination techniques (Clarke & Warwick, 2010).

Results 

Oceanographic conditions

The study region was highly stratified and characterized by three primary water masses: 

the Polar Mixed Layer (PML), Arctic Halocline Water (AHW), and Atlantic Water (AW). A thin 

(~10 m) and pronounced freshwater lens resulting from a mixture of Mackenzie River water and 

sea ice meltwater was present in the study region (Fig. 2.2a). Zooplankton samples did not 

resolve the freshwater lens and, therefore, represent the entire PML (0 -  50 m). The PML was
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characterized by a wide range of salinities (12-33) and temperatures (-1 to 9° C). AHW was 

characterized by colder (< 0° C) temperatures and salinity of approximately 33. At around 200 

m, temperature and salinity increased, signaling the transition into waters of Atlantic origin. AW 

was characterized by high salinities and above-zero temperatures. Nonparametric 

multidimensional scaling of mean salinity and temperature in each of the zooplankton sampling 

intervals divided the intervals and stations by water mass type. The 0-50 m interval was 

characterized by the PML, the 50-100 and 100-200 m intervals were within AHW, and intervals 

below 200 m were all within Atlantic origin water (Fig 2.2b).

Chlorophyll-a and macro-nutrients

Inorganic macro-nutrients (silicate, nitrate, phosphate) were largely depleted in the upper 

water column during the survey period (Fig. 2.3). Silicate concentrations were elevated in 

surface waters at stations closest to the Mackenzie River. Nitrate was depleted in the upper 30 m, 

with highest concentrations observed at 40-50 m. Phosphate concentrations showed a similar 

pattern, exhibiting a subsurface maximum. Chlorophyll-a concentrations were generally low, 

both in the smaller (GFF) and larger (20 |im) size fractions. Overall, low macro-nutrient and 

chlorophyll-a concentrations indicate that sampling occurred after the seasonal phytoplankton 

bloom.

Zooplankton 

General patterns

We observed 93 taxonomic categories, including 48 copepod species, 9 hydromedusae, 8 

amphipod, 3 polychaete, 3 chaetognath, 2 cladoceran, 2 euphausiid, 2 ctenophore, 1 pteropod, 

and 1 siphonophore species (Table 2.1). We also documented various groups of meroplankton, 

the most common of which were polychaete and bivalve larvae. Average abundance and biomass 

declined with depth, with the exception of a slight increase in both parameters observed in the 

transition to Atlantic Water (200-300 m). In contrast, species richness increased with depth, with 

a maximum in the 300-500 and 500-1000 m layers (Table 2.2). Species composition was 

generally characteristic of Arctic waters, with the exception of several Pacific expatriates, 

including Neocalanus cristatus, Eucalanus bungii, Metridia pacifica, and Pseudhaloptilus
-3pacificus. These taxa were present in extremely low abundances (< 1 ind. m ), but reflected the 

influence of Pacific-origin waters far into the Arctic. Copepods were dominant in all sampling
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intervals in terms of abundance and biomass, although their relative importance in terms of 

biomass declined with depth, as other groups, such as the ostracods, became important 

contributors (Fig. 2.4). The zooplankton community separated according to water mass (Fig.

2.5); each water mass hosted a significantly different zooplankton community (PERMANOVA; 

p  < 0.001), regardless of whether abundance or biomass were used in analysis. Similarly, 

community structure was most highly correlated with salinity and depth, whether considered in 

terms of abundance (Spearman correlation (p): 0.84, p  < 0.01) or biomass (p = 0.81 , p < a m y  

The addition of temperature did not improve the model (Table 2.3).

W ater mass communities
-3Average abundance and biomass in the PML (0-50 m) were 1150 individuals m" and

-327.1 mg DW m" , respectively. We observed 42 taxa in the PML; of these taxa, seven were 

restricted to this layer and reflect the heavily freshened nature of the surface waters. These taxa 

include Acartia bifilosa, Eurytemora herdmani, Eurytemora richsingi, Limnocalanus macrurus, 

Podon leuckartii, Evadne nordmanni, and rotifers. Rotifers in the surface layer were largely of 

the genus Synchaeta; however, this group was under-sampled due to the mesh size used in this 

study. Eurytemora spp. was an indicator species (IndVal: 0.79,p  < 0.001) of the freshwater 

influenced PML (Fig. 2.6a). Together, rotifers and cladocerans made significant numerical 

contributions to the community in the PML; however, their contribution to biomass was 

negligible. Herbivory and omnivory were the dominant feeding modes of the holozooplankton in 

the PML (Fig. 2.7); omnivorous Oithona similis dominated numerically, while large-bodied 

Calanus species dominated herbivorous biomass.

Arctic Halocline Waters (50-100 and 100-200 m) were characterized by marked
-3 -3decreases in average abundance (218 and 102 ind. m ") and biomass (8.6 and 5.1 mg DW m ") 

when compared to the overlying PML. We observed 47 taxa in the 50-100 m layer and 51 taxa in 

the 100-200 m layer. Three taxa were found exclusively in these layers; these taxa included the 

amphipods Cyphocaris challengeri and Hyperia spp., and the copepod Metridia pacifica. We 

note that these taxa, specifically the amphipods, may not actually be restricted to these layers but 

appear artificially scarce due to net avoidance. The community was characterized by higher 

abundances of the copepods Paraeuchaeta glacialis, Microcalanus pygmaeus, and Metridia 

longa. Metridia longa was identified as an indicator species (IndVal: 0.44, p  < 0.001) for AHW 

(Fig 2.6b). Predatory biomass increased in AHW (Fig 2.7), driven largely by the chaetognath
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Parasagitta elegans. The mesopelagic copepod Spinocalanus antarcticus emerged within this 

layer in low numbers.

Average abundance and biomass were lowest in the Atlantic layer (200-300, 300-500,
-3500-1000 m), where abundance values ranged from 127 ind. m" in the 200-300 m layer to 15 

ind. m-3 in the 500-1000 m layer. Biomass ranged from 8.0 mg DW m-3 in the 200-300 m layer to
-30.6 mg DW m" in the 500-1000 m layer. The Atlantic layer exhibited the highest species 

richness, at 49, 58, and 58 taxa found in the 200-300, 300-500, and 500-1000 m layers, 

respectively. Twenty-five taxa were observed exclusively in the Atlantic layer, including the 

copepods Spinocalanus longicornis, Scaphocalanus brevicornis, and Neomormonilla minor, and 

the decapod Hymenodora glacialis. Spinocalanus longicornis was identified as an indicator 

species (IndVal: l .0,p  < 0 .001) for the Atlantic layer (Fig 2.6c). Mesopelagic copepods, 

including the species mentioned above and members of the Aetideidae, were important 

numerical contributors in this layer. Relative numerical contribution of predators peaked in AW 

(Fig. 2.7). Predatory biomass in the Atlantic layer was dominated by the chaetognath Eukrohnia 

hamata and cnidarians, including both siphonophores and hydrozoan medusae. Additionally, the 

large decapod Hymenodora glacialis contributed to high predatory biomass in AW.

Contributions from omnivores, including copepods well adapted to utilize refractory material 

such as Triconia borealis and Spinocalanus spp., were also important in AW.

Arctic guild of copepods

The copepods, dominant in all depth layers, were primarily composed of an Arctic guild 

of taxa that included Calanus glacialis, Calanus hyperboreus, Metridia longa, Oithona similis, 

Triconia borealis, Microcalanus pygmaeus, and the Pseudocalanus species complex. This group 

has long been recognized as dominant in Arctic surface waters (e.g. Grainger, 1965) and is 

therefore referred to as the Arctic guild of copepods, despite the fact that some members are also 

present outside of the Arctic. This group accounted for upwards of 60% of copepod abundance 

and biomass in all sampling intervals, although relative contribution declined with depth. The 

relative contribution of this taxon guild to copepod abundance and biomass peaked in the 0-50 

and 50-100 m layers, respectively (Fig. 2.8). Within the Arctic taxon guild, small-bodied 

Oithona similis, Triconia borealis, Microcalanus pygmaeus, and Pseudocalanus spp. dominated 

numerically. Oithona similis and Pseudocalanus spp. dominated the surface layer, giving way to 

Triconia borealis and Microcalanus pygmaeus with increasing depth. In terms of biomass, large-
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bodied Calanus glacialis, Metridia longa, and Calanus hyperboreus dominated all sampling 

depths, peaking in the PML, AHW, and AW, respectively (Fig. 2.9).

Mesopelagic copepods

Although present in lower abundances than the dominant guild of copepods, mesopelagic 

copepod families, such as Aetideidae, Heterorhabdidae, Scolecitrichidae, Spinocalanidae, and 

Euchaetidae, occurred in AHW and became important contributors in the Atlantic layer (Fig.

2.8). Within these families, congeners displayed different depth preferences, even within water 

masses (Fig. 2.10). Within the Aetideids, Chiridius obtusifrons exhibited a wide depth range, 

occurring in all sampling intervals below 50 m. Aetideopsis species occurred in sampling 

intervals below 200 m, and Chiridiella reductella was only encountered in the deepest sampling 

interval (500-1000 m). The two Heterorhabdid species observed in the study area exhibited 

vertical partitioning in the water column, with Heterorhabdus norvegicus peaking between 200 

and 300 m, and Paraheterorhabdus compactus peaking in the 300-500 m interval. Spinocalanus 

and Paraeuchaeta species exhibited similar patterns within their respective genera.

Discussion

Depth-associated patterns and species inventory

Our results are consistent with the general depth-associated patterns of abundance, 

biomass, and species diversity observed in vertical examinations of zooplankton communities in 

the Arctic’s basins (Hopkins, 1969; Mumm, 1991; Auel & Hagen, 2002; Kosobokova & 

Hopcroft, 2010; Kosobokova et al., 2011). Abundance and biomass are concentrated in the 

upper layer of the water column and decrease with depth, while species richness increases with
-3depth as mesopelagic genera appear. Our estimate of abundance in the PML (1150 ind. m ") is 

consistent with those reported for the Canada Basin by Kosobokova & Hopcroft (2010) (1170 

ind. m-3 for 0-25 m and 1310 ind. m-3 for 25-50 m). Biomass estimates are also similar, with 

values of 27 mg DW m-3 (this study) and 21 and 38 mg DW m-3 for the 0-25 and 25-50 m 

intervals, respectively (Kosobokova & Hopcroft, 2010). These abundance estimates are higher 

than that reported in Auel & Hagen (2002) for the Nansen Basin (268 ind. m-3 in the 0-50 m 

layer), and likely reflect the fact that numerically important small-bodied taxa were less abundant 

in that region. We report higher average biomass values for mesopelagic layers between 100 and 

500 m than reported for both the Canadian (Kosobokova & Hopcroft 2010) and Nansen basins
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(Auel & Hagen 2002), consistent with the expectation that continental slopes are more 

productive than the deep basins (Ashjian et al., 2003; Kosobokova & Hirche, 2009; Kosobokova 

& Hopcroft, 2010) (Table 2.4). In contrast, average biomass in the 500-1000 m interval was 

relatively similar across these studies. Finally, we observed a slight increase in abundance and 

biomass in the transition to Atlantic waters (200-300 m), as did Kosobokova and Hopcroft

(2010) in the Canadian Basin. This is likely due to the fact that this layer represents a transitional 

zone and therefore is inhabited by the large-bodied Calanus species, as well as mesopelagic 

species, such as Spinocalanus longicornis.

The species composition of the Beaufort Sea slope is in agreement with studies from the 

Canada Basin (Kosobokova & Hopcroft, 2010; Hunt et al., 2014); all confirm the dominance of a 

low diversity guild of Arctic copepod taxa in the epipelagic realm that gives way to increased 

contributions from mesopelagic taxa at depth. The presence of euryhaline taxa, such as 

Eurytemora spp. and rotifers, within the PML in our study represents an important departure 

from species inventories from the Arctic’s basins. These euryhaline taxa reflect the dynamic 

nature of the shelf environment that can be profoundly influenced by seasonal freshwater inflow. 

The presence of rotifers in surface layers is characteristic of major river outflows, and is 

consistent with observations from the Laptev Sea, which is heavily influenced by numerous 

Siberian rivers (Abramova & Tuschling, 2005).

We report fewer taxa (93) than the 111 reported by Kosobokova and Hopcroft (2010) in 

the Canada Basin, likely due to our more limited sampling depth, and the use of subsampling 

rather than processing 100% of every sample. Thus, we did not encounter the multiple Lucicutia 

and Mimocalanus species that are largely restricted to depths below 1000 m. Extremely low 

abundances of subarctic epipelagic copepods (e.g., Neocalanus spp.) have been documented 

across the Chukchi Plateau and into Central Basin (Hopcroft et al., 2005; Kosobokova & 

Hopcroft, 2010); our results demonstrate the penetration of these taxa into the eastern portion of 

the Alaskan Beaufort Sea. We also observed Pseudhaloptiluspacificus, a mesopelagic subarctic 

copepod, at one station in our survey in the 300-500 m layer. Kosobokova and Hopcroft (2010) 

also observed this copepod in low numbers in the Canada Basin, noting that it is also likely a 

Pacific expatriate despite the lack of a mechanistic explanation for the transport of deep-water 

copepods through the shallow Bering Strait. In contrast, Atlantic expatriates (e.g., Calanus
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finmarchicus) were not observed in our study region, and have rarely been observed past the 

Lomonosov Ridge (Thibault et al., 1999; Kosobokova & Hirche, 2000).

Community structure

We observed community structure similar to other depth stratified examinations in the 

Arctic, characterized by gross community separation according to water mass and additional 

internal structure within water masses (Auel & Hagen, 2002; Kosobokova & Hopcroft, 2010; 

Kosobokova et al., 2011). The community in the Polar Mixed Layer was composed of a fairly 

low-diversity group of Arctic copepods, and in the case of our study area, numerical 

contributions of euryhaline taxa. Carmack et al. (1989) note that exchange between the shelf 

environment and the offshore environment occurs primarily in waters above the halocline. 

Contributions from euryhaline taxa in the PML highlight this phenomenon; abundance of 

euryhaline taxa, such as Eurytemora spp., varied across the upper layer of the survey area due to 

variations in the extent of the freshwater lens. Additionally, the 0-50 m layer showed the highest 

variability in abundance and biomass among stations (see Table 2.2.), as has been observed in 

the Canada Basin (Kosobokova & Hopcroft, 2010). Thus, a given depth interval is not 

necessarily homogenous, especially when considering the upper layers of the hydrographically- 

dynamic shelf and slope. Despite these nuances, differences in community composition along a 

depth gradient were generally more pronounced than differences between shelf-break and slope 

stations. This trend also holds true on the basin-level scale; depth related differences were 

pronounced than those associated with latitudinal or longitudinal changes (Auel & Hagen, 2002).

Below the variable PML, the traditional guild of Arctic copepods also dominated Arctic 

Halocline Water; however, species richness increased as mesopelagic genera started to appear. 

The relative contribution of the dominant Arctic group of copepods reached a minimum in 

Atlantic Water, where mesopelagic copepods became significant contributors to the community. 

This general pattern is consistent with previous depth stratified examinations in the Arctic 

(Kosobokova & Hirche, 2000; Auel & Hagen, 2002; Kosobokova & Hopcroft, 2010; 

Kosobokova et al., 2011), as is the pattern of increased omnivory and carnivory with depth. Our 

results also mirror observations of increased contributions from cnidarians and amphipods with 

depth and a peak in ostracod contribution at intermediate depths (Kosobokova & Hopcroft, 2010; 

Kosobokova et al., 2011). Kosobokova et al. (2011) report presence of amphipod taxa that are 

traditionally considered to be ice-associated within the pelagic realm; we also documented
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several of such species within the water column, such as Apherusa glacialis and Eusirus holmi, 

supporting the previous authors’ conclusion that these species may be considered pelagic 

transients. We also observed vertical partitioning of the water column by congeneric species, 

contributing to additional community structure within water masses, as reported by Auel (1999), 

Kosobokova and Hirche (2000), Laakmann et al. (2009), and Kosobokova and Hopcroft (2010). 

Depth ranges for species observed here were largely consistent with those studies, with many 

species exhibiting vertical ranges that span multiple water masses. This is not surprising, given 

that water mass boundary depths are not absolute.

In summary, zooplankton communities of the Beaufort Sea slope are similar in species 

composition, structure, and diversity to the communities in the Arctic’s interior basins, with the 

exception of increased contributions from euryhaline and neritic taxa in surface waters, which 

can vary depending on the degree of exchange between the shelf and slope. Additionally, 

average biomass in the sampled depth intervals between 100 and 500 m seems to be higher than 

those reported from similar intervals in the basin, likely due to the location of our study area 

relative to the more productive continental shelf. Expected increases in pelagic production on 

continental shelves due to reduced ice cover with ongoing climatic changes (e.g., Arrigo et a l, 

2008), may result in increased export production to mesopelagic water layers of the Beaufort 

Sea. This, in turn, may support higher mesopelagic zooplankton biomass, and has implications 

for trophic interactions, particle flux, and biogeochemical cycles. Further studies are needed to 

solidify our understanding of these communities, their role in biogeochemical cycles, seasonal 

and inter-annual variability, and processes such as diel vertical migration (DVM) and seasonal 

vertical migration (SVM). At the community level, faunal differences associated with diel 

cycling are small compared to faunal differences associated with water mass (Rabindranath et 

al., 2011); however, DVM and SVM of zooplankton species represent a significant movement of 

biomass through the water column. Thus, these movements have implications for upper trophic 

levels that utilize these animals as prey (Fortier et al., 2001; Darnis & Fortier, 2014). Due to 

logistical constraints we were unable sample in a manner to document patterns of DVM or SVM. 

Given that DVM and SVM can vary not only in time and space (Daase et al., 2013), but also at 

the level of the individual (Hays et al., 2001), future studies examining DVM and SVM in the 

Alaskan Arctic would be warranted.
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We provide a general characterization of vertical zooplankton community structure of the 

Beaufort Sea slope that may be used as a backdrop against which more nuanced changes in 

vertical distribution patterns may be viewed. Given that assessment of mesopelagic zooplankton 

communities in the Arctic is still relatively rare compared to the epipelagic realm, this work 

makes an important contribution to the emerging library of surveys of mesopelagic zooplankton 

throughout the Arctic Ocean.
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Figures

Figure 2.1. Station locations for 2013 Beaufort Sea stratified zooplankton sampling.

Figure 2.2. Oceanographic profiles from all 2013 Beaufort Sea slope stations. Depths below 
600 m use data from 2014 cruise in same region, but show no apparent offset in value. A) 
Temperature and salinity profile for 2013 stations. B) Non-parametric Multidimensional Scaling 
(nMDS) plot of averaged T, S for each zooplankton sampling interval.
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Figure 2.3. Inorganic nutrient (silicate, nitrate, phosphate) and chlorophyll-a 
concentrations in the upper 50 m of the Beaufort Sea August 2013. Chlorophyll size- 
fractions are offset 1 m to prevent overlap.
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Figure 2.4. Contribution of major taxonomic groups to abundance and biomass of the 
zooplankton community within each sampling interval during August 2013. Water masses 
are noted.
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Figure 2.5. Zooplankton community structure in the Beaufort Sea during August 2013.
Upper Panel is based on abundance; lower panel is based on biomass. A) Hierarchical clustering 
of Bray-Curtis sample similarity. Dotted lines connect samples that are not statistically unique 
(SIMPROF, p<0.05). B) Non-parametric Multidimensional Scaling (nMDS) of zooplankton 
community abundance overlain with observed clusters.
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3
Figure 2.6. Abundance (ind. m" ) of indicator species in the Beaufort Sea superimposed on 
nMDS plots decomposed by water masses for August 2013. A) PML B) AHW c ) AW
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Figure 2.7. Contribution of holozooplankton trophic guilds to abundance and biomass 
within each sampling stratum  for the Beaufort Sea during August 2013. Water masses are 
noted.

Figure 2.8. Contribution of major copepod groups to abundance and biomass within each 
sampling stratum interval for the Beaufort Sea during August 2013. Water masses are noted.
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Figure 2.9. Contribution of dominant guilds of Arctic copepods to abundance and biomass 
within each sampling stratum for the Beaufort Sea during August 2013. Water masses are 
noted.
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Figure 2.10. Generalized vertical distribution of select copepod species in each sampling 
stratum in the Beaufort Sea during August 2013. Based on mean of all stations. A) 
Spinocalanidae B) Euchaetidae C) Aetideidae D) Heterorhabdidae E) Scolecitrichidae
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Tables

Table 2.1. Mean abundance and biomass over the entire water column for taxa observed at 
2013 Beaufort Sea stations. Trophic guilds are indicated. O = omnivore, P  = predator, H  = 
herbivore. * indicates sampling interval where taxon was most abundant. Water masses and 
depth intervals (m) are noted. Observed indicates that taxon was encountered only a few times. -  
indicates average biomass <0.0001. NC indicates biomass was not calculated.

PML AHW AW

Guild Taxon
Avg. 

Abund. 
(ind. m-3)

Avg.
Biomass

(mg DW m-3)
0-50

50-100

100-200

200-300

300-500

500-1000

Calanoida
O Acartia bifilosa 0.034 0.0003 *

O Acartia longiremis 0.478 0.0028 *

O Acartia spp. (copepodite) 0.215 0.0003 *

P Aetideopsis minor 0.010 0.0011 *

P Aetideopsis rostrata 0.004 - *

O Augaptilus glacialis 0.005 0.0024 *

O Eurytemora herdmani 0.368 0.0039 *

O Eurytemora richsingi 0.005 - *

O Eurytemora spp. (copepodite) 5.943 0.0129 *

H Calanus glacialis 6.513 1.5557 *

H Calanus hyperboreus 3.363 5.0118 *

P Chiridiella reductella Trace - *

O Chiridius obtusifrons 0.414 0.0365 *

H Eucalanus bungii Observed - *

P Gaetanus brevispinus 0.007 0.0029 *

P Gaetanus tenuispinus 0.090 0.0139 *

P Gaetanus spp. (copepodite) 0.047 0.0007 *

O Haloptilus acutifrons 0.011 0.0010
P Heterorhabdus norvegica 0.960 0.1107 *

H Jaschnovia tolli 0.026 0.0016 *

C Limnocalanus macrurus 0.068 0.0019 *

O Metridia longa 3.702 0.4940 *

O Metridia pacfica Observed -
O Metridia spp. (copepodite) 2.639 0.0180 *

O Microcalanus pygmaeus 18.640 0.0215 *

H Neocalanus cristatus 0.012 0.0816 *

P Paraeuchaeta glacialis 1.135 0.5840 *

P Paraeuchaeta barbata 0.001 0.0066 *

P Paraeuchaeta polaris Observed 0.0005 *

P Paraheterorhabdus compactus 0.024 0.0039 *

H Pseudhaloptilus pacificus Observed - *
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Table. 2.1, continued

H Pseudocalanus acuspes 0.514 0.0054 *

H Pseudocalanus newmani 0.225 0.0012 *

H Pseudocalanus mimus 0.006 0.0001 *

H Pseudocalanus minutus 0.814 0.0119 *

H Pseudocalanus spp. 
(copepodite) 39.527 0.1350 *

H Pseudocalanus spp. (male) 0.427 0.0025 *

O Scaphocalanus magnus 0.181 0.0646 *

O Scaphocalanus brevicornis 0.106 0.0031 *

O Scolecithricella minor 1.063 0.0058 *

O Spinocalanus elongatus 0.003 - *

O Spinocalanus horridus 0.031 0.0010 *

O Spinocalanus longicornis 2.552 0.0175 *

O Spinocalanus antarcticus 0.544 0.0149 *

O Spinocalanus spp. (copepodite) 0.046 0.0004 *

O Tharybis groenlandica Observed - *

O Temorites brevis 0.031 0.0007 *

P Tortanus discaudata 0.026 0.0014 *

O Undinella oblonga 0.001 0.0001 *

Monstrilloida
Pa Monstrilla spp. Observed - *

Cyclopoida
O Oithona similis 87.520 0.0854 *

Poecilostomatoida
Atrophia glacialis 0.007 - *

O Triconia borealis 32.616 0.0497 *

Harpacticoida
Harpacticoid unk. 0.038 0.0001 *

O Microsetella norvegica 0.494 0.0017 *

Mormonilloida
P Neomormonilla minor 0.303 0.0020 *

Copepod Nauplii
H Calanoid nauplii 56.426 0.0389 *

H Cyclopoid nauplii 1.467 0.0002 *

Appendicularia
O Fritillaria borealis 5.232 0.0002 *

O Oikopleura vanhoeffeni 1.131 0.0101 *

Chaetognatha
P Eukrohnia hamata 0.354 0.1120 *

P Parasagitta elegans 0.632 0.1492 *

P Pseudosagitta maxima 0.078 0.0052 *

Pteropoda
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Table 2.1, continued

H Limacina helicina 0.266 0.0303 *

Cladocera
P Evadne nordmanni 0.069 0.0008 *

P Podon leuckartii 5.502 0.0203 *

Ostracoda
O Boroecia maxima 2.051 0.2398 *

Mysidae
O Mysis spp. 0.001 0.0064 *

O Mysis oculata 0.001 0.0190 *

Euphausiacea
H Thysanoessa inermis 0.003 0.0235 *

H Thysanoessa raschii 0.010 0.0154 *

Decapoda
O Hymenodora glacialis 0.001 0.0042 *

Amphipoda
Amphipod unk. 0.043 0.0308

O Apherusa glacialis 0.001 0.0053 *

P Cyphocaris challengeri 0.002 0.0164 *

P Eusirus holmi 0.001 0.0590 *

P Hyperia galba/medusarum 0.001 0.0044 *

H Onisimus spp. 0.005 0.0004 *

P Themisto abyssorum 0.305 0.1255 *

P Themisto libellula 0.065 0.2073 *

H Scina spp. Observed - *

Isopoda
O Isopoda (parasitic) 0.047 - *

Siphonophora
P Dimophyes arctica 0.102 0.0169 *

Siphonophora unk. 0.009 0.0010 *

Ctenophora
P Beroe cucumis 0.001 0.0110 *

P Mertensia ovum 0.001 0.0035 *

Hydrozoa
P Aglantha digitale 1.649 0.5781 *

P Obelia longissima 0.036 0.0064 *

P Aeginopsis laurentii 0.014 0.0097 *

P Sarsia tubulosa Observed - *

P Melicertum octopunctata 0.001 - *

P Halitholus cirratus 0.001 0.0028 *

P Ptychogena spp. 0.001 - *

P Sminthea arctica Observed - *
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Table 2.1, continued

P Botrynema brucei Observed - *

Annelida
O Tomopteris septentrionalis 0.012 0.0030 *

O Pelagobia longicirrata 0.001 - *

O Typhoscolex muelleri Observed - *

Rotifera
H Synchaeta spp. 20.460 NC *

Meroplankton
Gastropod larvae 0.087 0.0001 *

Cyphonautes 0.024 - *

Polychaete larvae 7.908 0.0188 *

Echinoderm larvae 0.122 - *

Bipinaria 0.277 0.0003 *

Megalopa 0.005 0.0069 *

Bivalve larvae 0.581 0.0002 *

Decapod zoea 0.028 0.0003 *

Barnacle cypris 0.028 0.0001 *

Barnacle nauplii 0.059 - *
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Table 2.2. Mean abundance, biomass and species richness of the zooplankton community in 
each sampling strata for the Beaufort Sea during August 2013. Water masses are noted.

Water
Mass

Sampling 
Interval (m)

Average abundance 
(Ind. m-3)

Average biomass
(mg DW m-3) Species Richness

PML 0-50 1150± 83 27.1 ± 3.0 42
AHW 50-100 218 ± 43 8.6 ±1.3 47
AHW 100-200 102 ± 14 5.1 ± 0.7 51
AW 200-300 127 ± 22 8.0 ± 1.2 49
AW 300-500 76 ± 20 3.3 ±0.5 58
AW 500-1000 15 ± 8 0.6 ± 0.1 58

Table 2.3. Relationship between zooplankton community structure and environmental 
variables during August 2013, as revealed by BEST analysis for Temperature (T), Salinity 
(S), and Depth (D). * Indicates best variable combination explaining observed zooplankton 
community structure.

No.
Variables

BEST variable combinations 
(Spearman Rank Correlation)

Abundance
2 S,D S,T T,D

0.84* 0.67 0.58
3 S,D,T

0.78
Biomass

2 S, D T,D S,T
0.81* 0.62 0.62

3 S, T, D
0.77
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Table 2.4. Comparison of average biomass (mg DW m" ) in zooplankton sampling intervals 
from the Beaufort slope and the Arctic’s basins.

3

Biomass (mg DW m-3)

Layer
(m)

This
study

Kosobokova 
& Hopcroft, 

2010

Auel & 
Hagen, 

1999
0-25

27.1
21

20.9
25-50 38
50-100 8.6 8.8

3.3
100-200 5.1 2.6
200-300 8 3.8

0.6
300-500 3.3 2.2
500­
1000 0.6 0.8 0.5
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General Conclusion

Structure in pelagic marine communities is generated through a complex blending of 

abiotic and biotic variables that operate and interact on different spatial and temporal scales 

(Angel, 1993). Species pools are shaped by geological history, large-scale circulation regimes, 

and zoogeographical barriers. At a finer scale, species composition and diversity are influenced 

by these factors, as well as by more localized physical forcing factors, such as freshwater 

influence, depth, stratification, upwelling events, and other physical parameters. These factors 

combine to form ecological zones that are inhabited by a characteristic assemblage of species 

(e.g., Lane et al., 2008; Walkusz et al., 2010; Kosobokova et a l, 2011). Within these ecological 

zones, fine-scale community structure is influenced by complex biological interactions, including 

competition, predation, and partitioning of resources (e.g., Auel, 1999).

The findings herein present a shelf-scale examination of zooplankton communities of the 

Beaufort Sea and demonstrate that zooplankton communities are shaped by the distribution of 

water masses and their associated physical properties. Distinct zooplankton communities were 

associated with different epipelagic physical habitats produced by hydrographic conditions in the 

Beaufort Sea from 2010-13. A low-diversity guild of Arctic copepods dominated the community 

in all zones for all field years. The relative contribution of individual species within this guild, as 

well as other less abundant taxa, resulted in a zooplankton community whose faunal character 

reflected the underlying oceanography of its respective ecological zone. Generally, the western 

Beaufort around Point Barrow represents a transitional zone between the Pacific-affinity 

communities of the Chukchi Sea and the more Arctic faunal character of the Beaufort Sea. 

Moving eastward along the shelf, Pacific influence diminishes substantially. The eastern 

Beaufort is more estuarine in faunal character due to the influence of the Mackenzie River. These 

along-shelf gradients intersect across-shelf gradients transitioning from neritic environments 

dominated by Pseudocalanus spp., to more oceanic environments dominated by species such as 

Calanus hyperboreus and Microcalanus pygmaeus. The Mackenzie River causes additional 

across-shelf structure associated with the plume extent and the existence of plume-associated 

assemblages that include euryhaline and brackish species. These broad gradients can be 

disrupted on a more local scale by events such as upwelling or eddy formation.

Oceanic communities exhibited depth-associated community gradients, resulting in 

distinct zooplankton assemblages in the three vertically layered water masses in the Beaufort
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Sea. The traditional guild of Arctic copepods dominates surface layers, giving way to 

contributions from mesopelagic genera at depth. Abundance and biomass were highest in surface 

layers; however, mesopelagic layers contained higher species diversity. Within a given water 

mass, zooplankton communities exhibited internal structure associated with species-specific 

depth preferences and vertical partitioning of the water column by congeners. Finally, depth- 

associated gradients intersect with both along- and across-shelf gradients, resulting in 

heterogeneous hydrography and biology within a given depth interval. This intersection is 

particularly pronounced in the upper portion of the water column where exchange between the 

inshore and offshore environments occurs (Carmack et al., 1989).

This work provides the most spatially comprehensive survey of epipelagic zooplankton 

communities of the Beaufort Sea to date; my results provide a modern reference point for 

community composition and magnitude, and may be compared with future community 

assessments as the Arctic continues to experience climate change and increased industrial 

activity. Additionally, these results provide the first detailed examination of mesopelagic 

communities of the Beaufort Sea slope ranging from the surface to 1000 m depth. This work 

highlights the complexity of the Beaufort Sea ecosystem, provides a framework from which 

future work to assess inter-annual variability and seasonal evolution in Beaufort Sea zooplankton 

communities may be viewed, and provides foundational information from which more process- 

oriented studies may be developed.
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