Author's Accepted Manuscript

A new species of Eualus Thallwitz, 1891 and new record of Lebbeus antarcticus (Hale, 1941) (Crustacea: Decapoda: Caridea: Hippolytidae) from the Scotia Sea

Verity Nye, Jon Copley, Katrin Linse

PII: S0967-0645(13)00041-6
DOI: http://dx.doi.org/10.1016/j.dsr2.2013.01.022
Reference: DSRII3271
To appear in: Deep-Sea Research II

Cite this article as: Verity Nye, Jon Copley and Katrin Linse, A new species of Eualus Thallwitz, 1891 and new record of Lebbeus antarcticus (Hale, 1941) (Crustacea: Decapoda: Caridea: Hippolytidae) from the Scotia Sea, Deep-Sea Research II, http://dx.d oi.org/10.1016/j.dsr2.2013.01.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A new species of Eualus Thallwitz, 1891 and new record of Lebbeus antarcticus (Hale, 1941) (Crustacea: Decapoda: Caridea: Hippolytidae) from the Scotia Sea

Verity Nye ${ }^{\mathrm{a}^{*} \mathrm{I}}$, Jon Copley ${ }^{\text {al }}$, Katrin Linse ${ }^{\mathrm{bI}}$
${ }^{\text {a }}$ Ocean \& Earth Science, National Oceanography Centre, University of Southampton Waterfront Campus, European Way, Southampton, S014 3㲽ZH, UK
${ }^{\mathrm{b}}$ British Antarctic Survey, High Cross, Madingley, Cambridge, CB3 OET
*Corresponding author. Tel.: +440 2380596614.
vn205@noc.soton.ac.uk
jtc@soton.ac.uk
kl@bas.ac.uk

Abstract

Eleven specimens representing two hippolytid genera, Eualus Thallwitz, 1891 and Lebbeus White, 1847, were sampled recently from the Scotia Sea (1517-2598箒m). Seven specimens are described and illustrated as Eualus amandae sp. nov., and its morphology is compared with those of previously described species. Four female specimens, morphologically consistent with Lebbeus antarcticus (Hale, 1941), are described and illustrated to supplement previous descriptions of this rarely collected bathyal species. Partial COI mtDNA and 18 ※... 5 rDNA sequences were generated for both species. Only limited DNA sequences are available for the Hippolytidae. COI phylogenetic trees are presented to illustrate that the new species is genetically distinct from all other species in GenBank. This record enhances existing knowledge of Antarctic invertebrate biodiversity and species richness of decapod crustaceans in the Southern Ocean.

Keywords

Biodiversity, Deep-Sea, Hydrothermal vents, Southern Ocean, Phylogenetics, Polar

1. Introduction

Knowledge of the distribution of decapod crustaceans from the Southern Ocean has increased considerably in recent years (e.g. Raso et al., 2008; Rogers et al., 2012; Thatje and Arntz, 2004; Thatje and Lörz, 2005). Caridean shrimps cover the largest known bathymetric range of the Southern Ocean decapod fauna, distributed from the intertidal zone to the deep sea (Gorny, 1999). They are one of few groups of decapod crustaceans found south of the Antarctic Convergence (Arntz et al., 1999; Kirkwood, 1984; Thatje and Arntz, 2004; Yaldwyn, 1965), where they are represented by at least five families, nine genera and ten species (Boschi and Gavio, 2005). The caridean family Hippolytidae Spence Bate, 1888 is the most diverse decapod family south of the Antarctic Convergence (Boschi and Gavio, 2005; Gorny, 1999), represented to date by three species: Chorismus antarcticus (Pfeffer, 1887); Eualus kinzeri Tiefenbacher, 1990; Lebbeus antarcticus (Hale, 1941).

During a recent research cruise to the East Scotia Ridge and Kemp Caldera, Scotia Sea, a novel species of the hippolytid genus Eualus Thallwitz, 1892 was discovered and several specimens of Lebbeus antarcticus (Hale, 1941) were also sampled. The aims of this paper were to: (1) describe the new species and compare its morphology with those of previously described species; (2) describe and illustrate the new specimens of L. antarcticus to supplement previous descriptions (based on single or incomplete specimens) of this rarely collected bathyal species (Hale, 1941; Komai et al., 1996; Ward, 1985; Zarenkov, 1970); (3) use the COI mtDNA region to determine if the species are genetically distinct from other hippolytid species in the GenBank database. This record enhances existing knowledge of Antarctic invertebrate biodiversity and species richness of decapod crustaceans in the Southern Ocean.

2. Materials \& Methods

2.1 Sample collection

The specimens were collected during the RRS James Cook cruise 042 (JC42) in January-February 2010 to the Scotia Sea (Fig. 1). All specimens were collected using sampling equipment attached to, or deployed by, the Remotely Operated Vehicle (ROV) Isis. Sampling data are summarised in Table 1.

2.2 Morphology

Prior to fixation, a pereopod was removed from each specimen for subsequent molecular analysis. Specimens were fixed in 10% neutralised formalin and then transferred to 75% Industrial Methylated Spirits. Individuals were measured to the nearest 0.1 mm using Vernier callipers. Postorbital carapace length (CL) was measured from the posterior margin of the orbit to the posterior margin of the carapace and is used herein as an indication of specimen size. Individuals were sexed under a dissecting microscope. Illustrations were prepared with the aid of a cameral lucida mounted onto a Leica MZ8 stereomicroscope, scanned and inked digitally using a WACOM ${ }^{\text {TM }}$ digitiser and Adobe ${ }^{\circledR}$ Illustrator ${ }^{\circledR}$ software. Specimens were deposited in the invertebrate collection at the Natural History Museum, London
(NHMUK). Morphological terminology generally follows Komai and Hayashi (2002) and Komai et al. (2012).

2.3 Molecular

A pereopod from each specimen was immediately placed in 100% ethanol for molecular analysis. Genomic DNA was isolated from the pereopods. DNA was extracted with the DNeasy Tissue Extraction Kit (Qiagen, Crawley, West Sussex, United Kingdom) as directed by the manufacturer. Reactions were performed in $10 \mu \mathrm{l}$ volumes, containing $0.5 \mu \mathrm{l}$ of each primer (forward and reverse) at a concentration of $10 \mathrm{nmol}, 5 \mu \mathrm{l}$ of Qiagen 10x PCR buffer, $1.5 \mu \mathrm{l}$ of $\mathrm{MgCl} 2(25 \mathrm{mM}), 1 \mu \mathrm{dNTPs}$ (2 nmol , Bioline), $0.25 \mu \mathrm{l}$ of Taq ($5 \mathrm{U} / \mu \mathrm{l}$) and $1 \mu \mathrm{l}$ of DNA template ($\sim 30 \mathrm{ng}$). Partial 18S rDNA ($\sim 580 \mathrm{bps}$) was amplified using SSUA NSF4 (Hendriks et al., 1989; NSF4 5'-CTGGTTGATYCTGCCAGT-3') and SSUA NSR581 (Wilmotte et al., 1993 SSUA NSR581 5'ATTACCGCGGCTGCTGGC-3') under the following conditions: Initial denaturation at $96^{\circ} \mathrm{C}$ for 0.5 minute, followed by 40 cycles of $94^{\circ} \mathrm{C}$ for 0.5 min , $55^{\circ} \mathrm{C}$ for $0.5 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1 min , and a final extension of 5 min at $72^{\circ} \mathrm{C}$. Partial COI mtDNA ($\sim 700 \mathrm{bps}$) was amplified using LCO 1490 and HCO 2198 (Folmer et al., 1994; LCO 1490 5'-GGTCAACAAATCATAAAGATATTGG-3' HCO 2198 5'-TAAACTTCAGGGTGACCAAAAAATCA-3') under the following conditions: Initial denaturation at $94^{\circ} \mathrm{C}$ for 5 minutes, followed by 5 cycles of $94^{\circ} \mathrm{C}$ for 1 min , $45^{\circ} \mathrm{C}$ for $1.5 \mathrm{~min}, 72^{\circ} \mathrm{C}$ for 1.5 min , then 30 cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 50^{\circ} \mathrm{C}$ for 1 min , $72^{\circ} \mathrm{C}$ for 1 min , and a final extension of 5 min at $72^{\circ} \mathrm{C}$.

DNA sequencing was performed at LGC Berlin Germany. All sequences were edited and proofread in CodonCode Aligner Version 3.5.6 (CodonCode Corporation 2006). Sequence quality was evaluated using "Phred" quality scores, excluding sequences with values <300 (Ewing et al., 1998a, b). Electropherograms were also manually examined for sequencing errors and, where possible, variable positions were confirmed by reference to the corresponding reverse sequences. The partial 18 S sequences were blast search (blastn) to find the closest matching sequences. The partial COI mtDNA were checked for open-reading frames and blast searched (tblastx) to assess gene homology. The edited partial COI mtDNA ($650-685 \mathrm{bps}$) were aligned with all hippolytid species available in GenBank (Table 2). If numerous COI sequences were available for a species, a maximum of six sequences were randomly selected for the alignment. Alvinocaris longirostris Williams and Chace, 1982 was selected as outgroup taxa for the COI dataset based on the affinity of alvininocaridids with the Hippolytidae, following Nye et al. (2012).

The COI dataset was aligned with reference to its protein translation and then manually adjusted by eye using Se-Al v2.0a11 (Rambaut, 2002). The analysed alignment of 52 taxa was truncated to 657 basepairs which were analysed per individual codon position for chi-square of likelihood scores, constant, variable and parsimony informative sites. ModelTest v 3.7 (Posada and Crandall, 1998) was used to infer the best-fitting evolutionary model for the COI locus with a second-order Akaike Information Criterion correction (AICc) employed. Bayesian analyses were conducted using MrBayes v3.1.2 (Ronquist and Huelsenbeck, 2003). The Bayesian analysis was conducted by computing 10 million Markov chain Monte Carlo generations in two parallel runs, each with three cold chains and one hot chain. The initial 10% of each analysis was discarded as burn-in. Convergence was assessed
using TRACER v1.5 (Rambaut and Drummond, 2009) and all spilt frequencies were observed to be <0.01 before analyses were terminated.

3. Taxonomy

Order DECAPODA Latreille, 1802
Infraorder CARIDEA Dana, 1852
Superfamily ALPHEOIDEA Rafinesque, 1815 Family HIPPOLYTIDAE Spence Bate, 1888
3.1 Genus Eualus Thallwitz, 1892

Eualus amandae sp. nov.
(Figures 2-6)

3.1.2 Material examined

Holotype: female (CL 10.1 mm), [NHMUK 2012.1523]. JC42 (RRS James Cook and ROV Isis), Isis dive \#152, site JC-42-5-15, Kemp Caldera, Scotia Sea, $59^{\circ} 41^{\prime}$ S, $28^{\circ} 21^{\prime} \mathrm{W}, 1517 \mathrm{~m}, 11$ February 2010, suction sampler.

Paratypes: three females (CL 5.0-9.5 mm, [NHMUK 2012.1525, 2012.1526, 2012.1528], two males (CL 5.7-6.0), [NHMUK 2012.1524, 2012.1527]. Same data as holotype. One male (CL 6.5 mm), [NHMUK 2012.1522]. JC42 (RRS James Cook and ROV Isis), Isis dive \#145, site JC-42-4-15, E9, Scotia Sea. $60^{\circ} 02^{\prime}$ S, $29^{\circ} 58^{\prime} \mathrm{W}, 2401$ m, 04 February 2010, suction sampler.

3.1.3 Description

Body (Fig. 2) moderately slender, integument glabrous.
Rostrum (Fig. 2, 3A-B, 4A) straight, slightly descending, directed forward; not reaching, reaching, or exceeding distal margin of first segment of antennular peduncle, but not reaching distal margin of second segment; 0.4-0.6 times carapace length. Dorsal margin armed with 5-9 teeth, including 4-6 on rostrum proper and 1-3 postrostral teeth along midline of the carapace; posteriormost tooth arising at 0.1-0.2 CL. Ventral margin with blade becoming somewhat deeper distally, with $0-4$ teeth in distal 0.3; ventral blade less developed in males (Fig. 4A).

Carapace (Fig. 2, 3A-B, 4A) with low median portrostral carina extending 0.3 of carapace; dorsal profile in lateral view slightly convex. Orbital margin concave; suborbital lobe bluntly triangular, not reaching antennal tooth. Antennal tooth moderately strong, acute. Pterygostomial tooth small. Anterolateral margin between antennal tooth and pterygostomial tooth slightly sinuous.

Abdomen (Fig. 2) dorsally rounded, posterodorsal margin of third somite produced. Pleura of anterior four somites broadly rounded, unarmed marginally; fifth pleuron bearing one moderately strong posteroventral tooth and one moderately strong posterolateral tooth (Fig. 3C). Sixth somite approximately 1.8 times longer than fifth,
2.5 times longer than deep, with small posteroventral tooth; posterolateral process terminating in small tooth.

Telson (Fig. 4 B-C) damaged badly in all but two specimens [NHMUK 2012.1524, 2012.1527]. Length approximately 5 times anterior width, 1.1-1.2 times longer than sixth abdominal somite in dorsal midline; lateral margins parallel in anterior third, tapering posteriorly, bearing 3 dorsolateral spines on each side; posterior margin rounded, with 2 pairs of lateral spines (mesial pair longer) and 7-8 median spines.

Uropods (Fig. 4B) with broad rami exceeding distal margin of telson; exopod with distinct transverse suture, bearing small fixed spine and one moveable spine at distolateral angle; endopod shorter and narrower than exopod; posterolateral projection of protopod triangular with acute tip.

Eyes (Fig. 2, 3A-B, 4A) subpyriform with stalk narrowing proximally; cornea distinctly wider than stalk, its maximum width 0.1 times CL, darkly pigmented; ocellus apparently absent.

Antennular peduncles (Fig. 2, 3A-B, 4A) not quite extending to base of dorsolateral tooth of antennal scale. First segment longer than distal two segments combined, reaching 0.6-0.7 of antennal scale, with ventrolateral tooth, ventromesial margin armed with one prominent subdistal tooth; stylocerite not reaching, reaching, or exceeding slightly beyond distal margin of first segment of antennular peduncle, terminating in acute point, mesial margin sinuous. Second segment less than half length of first, with strong distolateral tooth. Third segment approximately half length of second, with small dorsodistal tooth. Lateral flagellum with thickened aesthetascbearing portion approximately 0.5 times CL.

Antenna (Fig. 2, 3D) with bascicerite bearing small, acute ventrolateral tooth; carpocerite reaching to distal 0.6 of antennal scale. Antennal scale approximately 0.6 times CL, 3.0 times longer than wide; lateral margin straight; distolateral tooth falling short of rounded distal lamella of blade.

Mouthparts (Fig.5) similar to those of other species of the genus, no specific characters. Mandible (Fig. 5A) composed of stout molar, flattened incisor and biarticulate palp; molar process subcylindrical with obliquely truncate grinding surface and area of dense setae distally; incisor process bearing four distal serrations; palp curved, shorter than incisor, distal article bearing several long setae (Fig. 5B).

Maxillule (first maxilla) (Fig. 5C) with well-developed endites; coxal endite bearing numerous long setae; basial endite with several rows of spines and stiff setae along the mesial margin; palp curved weakly, bilobed, bearing three distal setae.

Maxilla (second maxilla) (Fig. 5D) with bilobed upper endite, fringed with many setae, flanked by a well-developed palp with two distal setae; lower endite reduced, with several long setae; scaphognathite well developed, with rounded posterior lobe, fringed with numerous setae.

First maxilliped (Fig. 5E) with well-developed endites fringed with setae; palp biarticulate; exopod with caridean lobe; epipod large, bilobed.

Second maxilliped (Fig. 5F) with broad ultimate segment fringed with stiff setae; ischial segment with excavated mesial margin; exopod and epipod well-developed, epipod with podobranch present.

Third maxilliped (Fig. 5) moderately elongate and slender, exceeding antennal scale by approximately 0.6 of ultimate segment. Antepenultimate segment somewhat flattened proximally, approximately 0.9 times as long as two distal segments combined; distolateral and dorsodistal margins armed with a small tooth; small spine at ventrodistal angle (Fig. 5H); lateral surface with row of spiniform setae on blunt ridge parallel to dorsal margin. Ultimate segment approximately 2.8 times longer than penultimate segment, with dense tufts of setae; tapering distally, with short row of corneous spines distomesially and distolaterally (Fig. 5I).

Branchial formula summarised in Table 3.
First pereopod (Fig. 6A) moderately stout, extending to distal margin of antennal scale. Chela (Fig. 6B) approximately twice as long as carpus; dactylus approximately 0.6 times as long as palm, weakly curved distally, terminating in two darkly pigmented corneous claws; fixed finger terminating in one.

Second pereopod (Fig. 6C) distinctly more slender than first, extending beyond distal margin of antennal scale by approximately length of chela and 0.6 length of carpus. Chela small with subcylindrical palm; dactlyus terminating in two darkly pigmented corneous claws; fixed finger terminating in one. Carpus composed of seven articles.

Third to fifth pereopods (Fig. 6D-H) similar in structure, long and slender. Third pereopod (Fig. 6D) dactylus approximately 0.1 length propodus, terminating in acute unguis and armed with seven darkly pigmented accessory spinules on flexor margin, (Fig. 6E); carpus approximately 0.5 as long as propodus; propodus with two rows of ventral accessory spinules; merus armed with one lateral spine.

Fourth pereopod (Fig. 6F) dactlyus with 8 darkly pigmented accessory spinules on flexor margin; propodus with 2 rows of ventral flexor spinules; merus armed with one lateral spine.

Fifth pereopod (Fig. 6G) dactlyus with eight darkly pigmented accessory spinules on flexor margin (Fig. 6H); propodus with two rows of ventral flexor spinules; merus armed with one lateral spine.

Female pleopods similar to those of other species of the genus, without distinctive feature. In males, first pleopod with endopod (Fig. 4D) elongate subtriangular, bearing setae on lateral margin; appendix interna terminal, elongate, approximately less than half length of endopod. Second pleopod with appendix masculina (Fig. 4E) of similar length to appendix interna, bearing several long setae.

3.1.4 Colouration in life Unknown.

3.1.5 Distribution

Known only from non-hydrothermal areas in the Kemp Caldera and on the E9 segment of the East Scotia Ridge, Scotia Sea, 1517-2401 m (see Table 1).

3.1.6 Etymology

The new species is named after Dr Amanda J. Tyler.

3.1.7 Remarks

Eualus amandae sp. nov. belongs to the group of Eualus species characterised by the possession of epipods on the anterior three pairs of pereopods. It is morphologically most similar to: E. avinus (Rathburn, 1899); E. berkeleyorum Butler, 1971; E. dozei A. Milne-Edwards, 1891; E. horii Komai and Hayashi, 2002; E. lineatus Wicksten and Butler, 1983; E. macilentus (Krøyer, 1841); E. spathulirostris (Yokoya, 1933); E. subtilis Carvacho and Olson, 1984. Shared characters include the rostrum extending beyond distal extremity of the eye but not reaching distal margin of antennular peduncle, and the presence of a pterygostomial tooth.

The new species differs from all of these species (and other congeneric species) by the presence of two teeth on the posterolateral margin of the fifth pleura. Additional characters differentiating Eualus amandae sp. nov. from each species are discussed below.

Eualus amandae sp. nov. is similar to E. berkeleyorum in the unarmed margin of the fourth abdominal pleuron. It is distinguished easily from this species by the straight, slightly descending rostrum (versus strongly arched), armed with 5-9 (versus 12-14) dorsal teeth, the anterolateral margin of the carapace (slightly sinuous versus sinuous), and presence of a single spine (versus 4-5) on the meri of the third and fourth pereopods.

Eualus amandae sp. nov. is distinguished from E. avinus, E. horii, E. lineatus, E. macilentus, E. spathulirostris and E. subtilis by the lack of armature on the fourth pleuron (versus armed with a tooth) and presence of a single (versus multiple) meral spines on the third pereopod. The new species is separated further from E. avinus, E. macilentus and E. spathulirostris by the dorsal margin (straight versus convex) and armature of the rostrum in the former two species (5-9 dorsal teeth, versus 12-14 and 11-14 respectively).

Eualus amandae sp. nov. differs further from E. horii in the presence (versus absence) of a postrostral carina, and the proportionally longer sixth abdominal somite (1.8 times longer than fifth, versus 1.6-1.7 times) and telson (length five times anterior width, versus 2.8 times). Moreover, Eualus horii and E. lineatus possess a dorsal tooth on the stylocerite (this character us easiest to use for differentiation), absent in E. amandae sp. nov. The new species is distinguished further from E. subtilis by the presence of a suborbital lobe, and from E. subtilis and E. lineatus by differences in the armature of the antenullar peduncles.

Eualus amandae sp. nov. is separated from E. dozei by the unarmed fourth abdominal pleuron, armature of the rostrum (5-9 dorsal teeth, 1-3 postrostral, versus three dorsal, none postrostral), and presence (versus absence) of a suborbital lobe.

To date, 36 species of Eualus (one of which has two subspecies) have been described, distributed primarily in cold and temperate waters of the world oceans at shallow to bathyal depths (De Grave and Fransen, 2011). Eualus amandae sp. nov. is the second member of the genus to be recorded from the Southern Ocean. Eualus kinzeri Tiefenbacher, 1990 was described from the Weddell Sea, from 673-782 m water depth (Arntz and Gorny, 1991; Tiefenbacher, 1990). Since then, it has been recorded north of the Antarctic Convergence, from the Magellan region in the waters around the southern islands off the eastern mouth of the Beagle Channel (Arntz et al., 1999).

The new species is distinguished readily from Eualus kinzeri by the presence of two teeth on the posterolateral margin of the fifth pleura. Further differences between these two Antarctic species include: proportionally shorter rostrum (not reaching distal margin of second segment of antennular peduncle, versus reaching beyond antennular peduncle) and armature of the ventral margin ($0-4$ versus $6-9$ teeth), and the small (versus well developed) pterygostomial tooth.

3.2 Genus Lebbeus White, 1847

Lebbeus antarcticus (Hale, 1941)
(Figures 7-10)
Spirontocaris antarcticus Hale, 1941: 267, figures 5, 6.
Lebbeus antarctica: Zarenkov, 1968: 161; Hayashi, 1992: 109 (table).
Lebbeus antarcticus: Kirkwood, 1984: 27, figure 39; Ward, 1985: 58, figures 1-3;
Komai et al., 1996: 195, figure 8; Komai et al., 2012: 25 (table).

3.2.1 Material examined

Female (CL 15.4 mm), [NHMUK 2012.1529]. JC42 (RRS James Cook and ROV Isis), Isis dive \#133, site JC-42-3-15, E2, Scotia Sea, $56^{\circ} 05^{\prime} \mathrm{S}, 30^{\circ} 19^{\prime} \mathrm{W}, 2598 \mathrm{~m}, 23$ January 2010, baited trap. Two females (CL 13.4, 15.2 mm), [NHMUK 2012.1531, 2012.1530]. JC42 (RRS James Cook and ROV Isis), Isis dive \#135, site JC-42-3-18, E2, Scotia Sea, $56^{\circ} 05^{\prime}$ S, $30^{\circ} 19^{\prime}$ W, $2139 \mathrm{~m}, 25$ January 2010, baited trap. Female (CL 12.0 mm), [NHMUK 2012.1532]. JC42 (RSS James Cook and ROV Isis), Isis dive \#140, site JC-42-4-7, E9, Scotia Sea, $60^{\circ} 02^{\prime}$ S, $29^{\circ} 58^{\prime}$ W, 2402 m, 30 January 2010, biobox.

3.2.2 Description

Body (Fig. 7) moderately robust, integument glabrous.
Rostrum (Fig. 7, 8A-B) straight, directed forward, reaching to distal one-third of first segment of antennular peduncle but not to distal margin of first segment of antennular peduncle, 0.3-0.4 times carapace length. Dorsal margin armed with 5-6 teeth, including 3 on rostrum proper and 2-3 postrostral teeth along midline of the carapace, posteriormost tooth arising at 0.2-0.3 CL. Ventral margin armed with 1-2 teeth in distal 0.2 , ventral lamina poorly developed.

Carapace (Fig. 7) with low but distinct median portrostral carina extending at least one-third of carapace; dorsal profile in lateral view convex. Supraorbital tooth moderately strong, arising posterior to rostral base, slightly ascending, not reaching
tip of suborbital lobe and antennal tooth; deep U-shaped notch inferior to base of supraorbital tooth. Orbital margin weakly concave; suborbital lobe bluntly triangular. Antennal tooth well-developed, acute, reaching tip of suborbital lobe. Pterygostomial tooth small, not reaching antennal tooth. Anterolateral margin between antennal tooth and pterygostomial tooth strongly sinuous with deep excavation below antennal tooth.

Abdomen (Fig. 7) dorsally rounded. Second somite with transverse groove on tergum, forming low ridge posteriorly; posterodorsal margin of third somite produced. Pleura of anterior three somites broadly rounded, unarmed marginally; fourth pleuron (Fig. 8C), with or without small posteroventral tooth (tooth present in two specimens); fifth pleuron bearing moderately strong posteroventral tooth (Fig. 8C). Sixth somite approximately 1.5-1.7 times longer than fifth, 1.9-2.0 times longer than deep, with small posteroventral tooth; posterolateral process terminating in small, acute tooth.

Telson (Fig. 7, 8D-E), length 3.6-3.9 times anterior width, 1.2-1.5 times longer than sixth abdominal somite in dorsal midline; lateral margins parallel in anterior third, tapering posteriorly, bearing 3-5 dorsolateral spines on each side; posterior margin obtusely triangular, with two pairs of lateral spines (mesial pair longer) and 4-7 median spiniform setulose setae.

Uropods (Fig. 8D) with broad rami exceeding distal margin of telson; exopod with distinct transverse suture, bearing small fixed spine and 1-2 moveable spines at distolateral angle; endopod shorter and narrower than exopod; posterolateral projection of protopod triangular with acute tip.

Eyes (Fig. 7, 8A-B) subpyriform with stalk narrowing proximally; cornea distinctly wider than stalk, its maximum width 0.1 times CL; ocellus absent.

Antennular peduncles (Fig. 7, 8A-B) extending to base of dorsolateral tooth of antennal scale. First segment longer than distal two segments combined, reaching midlength of antennal scale, dorsodistal margin armed with 2-4 slender teeth (variable within specimens), ventromesial margin armed with 1 prominent subdistal tooth; stylocerite reaching at least two-thirds along first peduncular segment to just falling short of distolateral angle of first peduncular segment , terminating in acute point, mesial margin sinuous. Second segment approximately 0.4 length of first segment, with strong distolateral tooth. Third segment less than half as long as second, with small dorsodistal tooth. Lateral flagellum with thickened aesthetasc-bearing portion approximately 0.4 times CL.

Antenna (Fig. 7, 8F) with bascicerite bearing small, acute ventrolateral tooth; carpocerite reaching midlength to 0.6 of antennal scale. Antennal scale approximately 0.6 times CL, three times longer than wide; lateral margin straight; distolateral tooth falling short of rounded distal lamella of blade.

Mouthparts (Fig. 9) similar to those of other species of the genus, no specific characeters. Mandible (Fig. 9A-B) composed of flattened incisor, stout molar and biarticulate palp; incisor process bearing four distal serrations and several fine setae on mesial margin; molar process subcylindrical with obliquely truncate grinding surface and area of dense setae distally; palp curved, shorter than incisor, basal article broad with few short setae, distal article bearing numerous long setae.

Maxillule (first maxilla) (Fig. 9C) with well-developed endites; coxal endite bearing numerous long setae; basial endite with row of spines and several rows of stiff setae along the mesial margin; palp curved weakly, slightly bilobed, bearing two distal setae.

Maxilla (second maxilla) (Fig. 9D) with bilobed upper endite, fringed with many setae, flanked by a well-developed palp with two distal setae; lower endite reduced, bearing several long setae; scaphognathite well developed, with rounded posterior lobe, fringed with numerous setae on all margins.

First maxilliped (Fig. 9E) with well-developed endites fringed with setae; palp biarticulate; exopod with caridean lobe; epipod large, bilobed.

Second maxilliped (Fig. 9F) with broad ultimate segment fringed with stiff setae; ischial segment with excavated mesial margin; exopod and epipod well-developed, epipod with podobranch present.

Third maxilliped (Fig. 9G) exceeding antennal scale by half length of ultimate segment. Antepenultimate segment approximately 0.7 times as long as two distal segments combined; armed with a small tooth and two long spiniform setae on distolateral and dorsodistal margins, with a small spine at ventrodistal angle (Fig. 9H); lateral surface bearing row of spiniform setae on blunt ridge parallel to dorsal margin. Ultimate segment approximately 2.5 times longer than penultimate segment, with dense tufts of setae; tapering distally, with short row of corneous spines distomesially and distolaterally (Fig. 9I).

Branchial formula summarised in Table 4.
First pereopod (Fig. 10A) moderately stout, extending to distal margin of antennal scale. Chela (Fig. 10B) approximately 1.5 as long as carpus; dactylus approximately 0.5 times as long as palm, strongly curved distally, terminating in two corneous claws; fixed finger terminating in one.

Second pereopod (Fig. 10C) distinctly more slender than first, extending beyond distal margin of antennal scale by approximately 0.2 length of carpus. Chela small; dactlyus terminating in two corneous claws; fixed finger terminating in one corneous claw. Carpus composed of 6-9 articles (left/right: $8 / 8,7 / 7,9 / 7,7 / 5$).

Third to fifth pereopods (Fig. 10D-G) similar in structure, long and slender, decreasing in length and stoutness posteriorly. Third pereopod (Fig. 10D) overreaching antennal scale by approximately 0.9 length of propodus; dactylus approximately 0.1 length propodus, terminating in acute unguis and armed with seven accessory spinules on flexor margin, distalmost spinule distinctly larger than others, making dactylus tip appear biunguiculate (Fig. 10E); carpus approximately 0.6 as long as propodus; propodus with two rows of ventral accessory spinules; merus armed with 5-8 lateral spines.

Fourth pereopod (Fig. 10F) overreaching antennal scale by approximately 0.6 length of propodus; dactlyus with seven accessory spinules on flexor margin; propodus with two rows of ventral flexor spinules; merus armed with 3-6 lateral spines.

Fifth pereopod (Fig. 10G) overreaching antennal scale by approximately 0.2 length of propodus; dactlyus with seven accessory spinules on flexor margin; propodus with two rows of ventral flexor spinules; merus armed with one lateral spine.

Female pleopods similar to those of other species of the genus, without distinctive feature.

3.2.3 Colouration in life

Carapace red-orange, becoming paler dorsally, translucent. Abdomen pale with scattered red chromatophores. Rostrum and cephalic appendages pale red-orange. Cornea darkly pigmented. Third maxilliped red-orange; corneous spinules on ultimate article darkly pigmented. Pereopods red-orange; chelae of anterior two pairs terminating in darkly pigmented claws; dactlyi of posterior three pairs pale, with darkly pigmented corneous spines and ungui. Gills white.

3.2.4 Distribution

Known previously from Antarctic waters, $450-920 \mathrm{~m}$: Terre Adélie, $66^{\circ} 21^{\prime} \mathrm{S}$ $138^{\circ} 28^{\prime} \mathrm{E}, 63^{\circ} 53^{\prime} \mathrm{S} 114^{\circ} 01^{\prime} \mathrm{E}, 67^{\circ} 45^{\prime} \mathrm{S} 147^{\circ} 10^{\prime} \mathrm{E}$ (Hale, 1941; Zarenkov, 1968, 1970); Lützow-Holm Bay, $69^{\circ} 10^{\prime} \mathrm{S}, 37^{\circ} 30^{\prime} \mathrm{E}$ (Nunanami et al., 1984); from Weddell seal stomachs, Jones Ice Shelf East, $67^{\circ} 30^{\prime} \mathrm{S}, 67^{\circ} 00^{\prime} \mathrm{W}$, and Bagnold Point, $67^{\circ} 02^{\prime} \mathrm{S}$, $67^{\circ} 29^{\prime}$ W (Ward, 1985); southeastern Weddell Sea, Halley Bay and Vestkapp (Arntz and Gorny, 1991); Lararev Sea (Gorny et al., 1992); Prtyz Bay, $69^{\circ} 12^{\prime} \mathrm{S}, 75^{\circ} 30^{\prime} \mathrm{E}$ (Komai et al., 1996). Also recorded north of the Antarctic Convergence: off Patagonia and Tierra del Fuego "from stations well below 1000 m" (Arntz et al., 1999); off Chile $22^{\circ} 48^{\prime} \mathrm{S}, 70^{\circ} 42^{\prime} \mathrm{W}, 1775 \mathrm{~m}$ (Guzmán and Quiroga, 2005; this record is questionable).

The present specimens are from the periphery of diffuse-flow vent fields on the E2 and E9 segments of the East Scotia Ridge, East Scotia Sea, 2139-2598 m (Table 1).

3.2.5 Remarks

Several specimens of Lebbeus antarcticus have been described previously. Some minor differences are apparent when the present specimens are compared with previous descriptions. In the original description of the male holotype, Hale (1941) stated that the rostrum is half as long as the rest of the carapace; it is 0.3-0.4 times the carapace length in the present specimens. The number of rostral and post-rostral teeth documented in this study (see above) differ from those in the single specimens studied by Hale (1941) and Komai et al. (1996), but fall within the range for the species (Ward, 1985).

The specimens studied to date have exhibited variation in the armature of the fourth abdominal pleura, with either the presence (Ward, 1985) or absence (Hale, 1941; Komai et al., 1996) of a posteroventral tooth. Based on the evidence available at the time, Komai et al. (1996) suggested that this feature may be sexually dimorphic. The
present specimens, however, exhibit variation in this feature and are all female. The sixth abdominal somite in the specimen of Komai et al. (1996) is 1.8 times longer than the fifth somite; it is approximately 1.5-1.7 times longer in the present specimens.

The proximal segment of the antennular peduncle has been shown to bear two (Hale, 1941; Komai et al., 1996) or three (Ward, 1985) teeth on the dorsodistal margin, compared with 2-4 in the present specimens. The specimen described by Komai et al. (1996), and those described herein, differ from those in Hale (1941) and Ward (1985) in the longer third maxilliped (exceeding antennal scale by half length of ultimate segment versus reaching slightly beyond antennal scale). The armature of the antepenultimate segment of this appendage consists of a small distolateral tooth in the specimen of Komai et al. (1996), whereas the present specimens are armed with a small tooth and two long spiniform setae on the distolateral and dorsodistal margins, and a small ventrodistal spine.

The division of the carpus of the second pereopod into seven articles is a diagnostic feature of Lebbeus (Hayashi, 1992; Holthuis, 1993). Three of the present specimens are peculiar in exhibiting variation in the number of articles of the carpus of the second pereopod (left/right: $8 / 8,9 / 7,7 / 5$). All four specimens, however, conform to the other diagnostic characters of the genus, as defined by Hayashi (1992). Moreover, the description given herein is consistent with previous descriptions of L. antarcticus in all other respects. Given the sampling location, and morphological similarities with the specimens described previously, the most conservative approach is to assign these specimens to L. antarcticus, while acknowledging that the number of carpal articles on the second pereopod is variable within this genus. Variation in the number of carpal articles of the second pereopod in species of Lebbeus has been described previously by Chang et al. (2010). Review of the literature describing Lebbeus species indicates that the number of carpal articles is fairly consistent; however the character is not absolutely reliable for generic diagnosis.

4. Molecular results

Partial sequences of the COI mtDNA (650-685 bp) and 18 S rDNA (519-531 bp) regions were amplified from five specimens of Eualus amandae sp. nov. and four specimens of Lebbeus antarcticus (Table 2). Partial sequences of COI and 18S were identical amongst specimens of E. amandae sp. nov. and distinct from all those in GenBank. The nearest match for E. amandae sp. nov. COI was E. gaimardii gaimardii voucher EG01CN0506 with 82% maximum identity (mi) over 93% of query coverage (qc), and for 18 S to E. gaimardii isolate KC3056 with 99% mi over 96% qc. Partial sequences of COI and 18 S were identical amongst L. antarcticus specimens and distinct from those of E. amandae sp. nov. and all species in GenBank. The closest match for L. antarcticus for COI was L. carinatus isolate IcP02-1 with 95% mi over 87% qc and for 18S it was Thoralus cranchii voucher ULLZ6969 with 99% mi over 100% qc, followed by E. gaimardii isolate KC3056 with 99% mi over 94\% qc.

The COI dataset had 374 constant, 51 variable and 232 parsimony informative sites. The third codon position was particularly variable: it had seven constant, one variable and 211 parsimony informative sites. The CO1 dataset strongly rejected base compositional heterogeneity at the $3^{\text {rd }}$ codon positions ($\chi^{2}=329, p>0.01$), and nearly every site at the $3^{\text {rd }}$ codon position was parsimony informative ($211 / 219$ sites), suggesting substantial saturation as well as potentially erroneous phylogenetic signal due to the highly heterogeneous base composition. Consequently the Bayesian COI phylogeny was estimated in two different ways: (1) evolutionary rate parameters estimated separately ('partitioned') for codon positions ($1+2$) and 3 (each partition GTR $+\mathrm{I}+\mathrm{G}$), in order that the phylogenetic signal from the highly variable $3^{\text {rd }}$ codon positions is weighted equally with the less variable $1^{\text {st }}$ and $2^{\text {nd }}$ codons (Shapiro et al., 2006), and (2) translating $3^{\text {rd }}$ codon position DNA into purines (A and $G=R$) and pyrimidines (C and $\mathrm{T}=\mathrm{Y}$; ' RY ' coding). MrBayes was run subsequently for the RY coded third position dataset and the unchanged dataset. The resulting topologies are shown in Fig. 11.

The two treatments of the COI dataset yielded different clade groupings with weak support on branches other than species groups, including Eualus amandae sp. nov. and Lebbeus antarcticus (Fig. 11). In both treatments, significant support (1/0.99 Baysian posterior probabilities) is found for the sister grouping of L. antarcticus, L. laurentae and L. virentova (Fig. 11). The Eualus affinity is not resolved by these analyses, as expected for a limited dataset of this kind, although the phylogenetic position is similar with both dataset treatments, suggesting this is independent of base composition heterogeneity.

5. Discussion

Morphological analysis of Eualus amandae sp. nov. reveals it to be a new species in the genus Eualus, distinguished from all other Eualus species by the presence of two teeth on the posterolateral margin of the fifth pleura (section 3.1.7). Consistency in partial sequences of the COI mtDNA gene between specimens and significant support for the species clade in the Baysian analyses confirms that they belong to a single species. The presence of fixed and unique mutations in the sequences indicates that they are genetically distinct from all other species in GenBank.

Morphological study of four specimens of Lebbeus antarcticus suggests that one of the defining features for this species (number of carpal articles of the second pereopod) is variable within and between individuals (section 3.2.5). Consistency in partial sequences of COI mtDNA between individuals and support for the species clade in the Baysian analyses confirms that they belong to a single species. Unique and fixed mutations within the sequences indicate that they are genetically distinct from all other species in GenBank. Additional sequences of L. antarcticus from other Antarctic locations, however, were not available for comparison.

5.1 Conclusions

This study reveals the presence of a new species, Eualus amandae sp. nov., and new records of Lebbeus antarcticus from the Scotia Sea. These findings enhance existing knowledge of the biodiversity and distribution of caridean shrimps in the Southern Ocean.

Acknowledgements

The authors thank the master and ship's company, the UK National Marine Facilities staff, and fellow scientists on the $42^{\text {nd }}$ voyage of RRS James Cook. Elaine Fitzcharles and Jennifer Jackson provided support in the molecular lab and advice on molecular analysis respectively. Veerle Huvenne and Alastair Graham provided the maps. This work benefitted from S. De Grave and two anonymous referees who gave valuable comments for the improvement of this paper. V. Nye was supported by a UK NERC award (NE/F017774/1) to J. Copley, P. Tyler, K. Stansfield, B. Murton and D.
Connelly. K. Linse was supported by the British Antarctic Survey Polar Science for Planet Earth Programme as well as part of the ChEsSo research programme, both funded by a UK NERC Consortium Grant (NE/DO1249X/1). The funding sources had no involvement in the study design, the collection, analysis and interpretation of data, in the writing of the article and in the decision to submit the article for publication. This is a ChEsSo publication.

References

Arntz, W.E., Gorny, M., 1991. Shrimp (Decapoda, Natantia) occurrence and distribution in the Eastern Weddell Sea, Antarctica. Polar Biol. 11(3), 169-177.

Arntz, W.E., Gorny, M., Soto, R., Lardies, Retamal, M., Wehrtmann, I.S., 1999. Species composition and distribution of decapod crustaceans in the waters off Patagonia and Tierra del Fuego, South America. Sci. Mar. 63, 303-314.

Boschi, E.E., Gavio, M.A., 2005. On the distribution of decapod crustaceans from the Magellan Biogeographic Province and the Antarctic region. Sci. Mar. 69, 195-200.

Butler, T.H., 1971. Eualus berkeleyorum n. sp., and records of other caridean shrimps (Order Decapoda) from British Colombia. J. Fish. Res. Board Can. 28 (10), 16151620.

Carvacho, A., Olson, R., 1984. Nuevos registros para la fauna carcinologica del noreste de Mexico y descripcion de una nueva especie: Eualus subtilis, n.sp. (Crustacea: Decapoda: Natantia). Southwest. Nat. 29 (1), 59-71.

Chang, S.-I., Komai, T., Chan T.-Y., 2010. First record of the hippolytid shrimp genus Lebbeus White, 1847 (Decapoda: Caridea) from Taiwan, with the description of three new species. J. Crust. Biol. 30 (4), 727-744.

Dana, J.D., 1852. Crustacea. Part I. United States Exploring Expedition. During the years $1838,1839,1840,1841,1842$. Under the command of Charles Wilkes, U.S.N., Vol. 13. C. Sherman, Philadelphia.

De Grave, S.F., Fransen, C.H.J.M., 2011. Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool. Meded. 89, 195-589.

Ewing, B., Hillier, L., Wendl, M., Green, P., 1998a. Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8 (3), 175-185.

Ewing, B., Green, P., Wendl, M.C., Green, P., 1998b. Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8 (3), 186-194.

Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3 (5), 294-297.

Gorny, M., 1999. On the biogeography and ecology of the Southern Ocean decapod fauna. Sci. Mar. 63, 3637-382.

Gorny, M., Arntz, W.E., Clarke, A., Gore, D.J., 1992. Reproductive biology of caridean decapods from the Weddell Sea. Polar Biol. 12 (1), 111-120.

Guzmán, G., Quiroga, E., 2005. New records of shrimps (Decapoda: Caridea and Dendrobranchiata) in deep waters off Chile. Gayana 69 (2), 285-290.

Hale, H.M., 1941. Decapod Crustacea. B.A.N.Z. Antarctic Research Expedition 19291931 under the command of Douglas Mawson, Kt. O.B.E., B.E., D.Sc., F.R.S. Reports-Series B (Zoology and Botany) 4 (9), 259-285.

Hayashi, K.-I., 1992. Studies on the Hippolytid shrimps from Japan-VIII. J. Shimonoseki Univ. Fish. 40 (3), 107-138.

Hendriks, L., Goris, A., Neefs, J., Van de Peer, Y., Hennebert, G., De Wachter, R., 1989. The nucleotide sequence of the small ribosomal subunit RNA of the yeast Candida albicans and the evolutionary position of the Fungi among the eukaryotes system. Appl. Microbiol. 12 (3), 223-229.

Holthuis, L.B., 1993. The recent genera of the caridean and stenopodidean shrimps (Crustacea, Decapoda), with an appendix on the Order Amphionidacea. National Natuurhistorisch Museum, Leiden.

Kirkwood, J., 1984. A guide to the Decapoda of the Southern Ocean. ANARE Res. Notes 11, 1-47.

Komai, T., Hayashi, K.-I., 2002. A new species of the hippolytid shrimp genus Eualus Thallwitz, 1891 (Crustacea: Decapoda: Caridea) from Toyama Bay, the Sea of Japan. P. Biol. Soc. Wash. 115 (2), 382-390.

Komai, T., Takeuchi, I., Takeda, M., 1996. Deep-sea shrimp (Crustacea: Decapoda: Caridea) from the Antarctic Sea collected during the Jare-35 cruise. Proc. NIPR Symp. Polar Biol. 9, 179-206.

Komai, T., Tsuchida, S., Segonzac, M., 2012. Records of the hippolytid genus Lebbeus White, 1847 (Crustacea: Decapoda: Caridea) from hydrothermal vents in the Pacific Ocean, with descriptions of three new species. Zootaxa 3421, 35-63.

Krøyer, H., 1841. Udsigt over de nordiske arter af slægten Hippolyte. Naturh. Tidsskr. 3, 570-579.

Latreille, P.A., 1802. Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes. F. DuFart, Paris.

Leach, W.E., 1814. Crustaceology, in: Brewster, D. (Ed.), The Edinburgh Encyclopaedia. A. Balfour, Edinburgh, pp. 383-437.

Milne-Edwards, A., 1891. Mission Scientifique du Cap Horn. 1882-1883, Tome VI Zoologie, Crustacés. Gauthier-Villars, Paris.

Nunanami, H., Kosaka, M., Hoshiai, T., 1984. Distribution of carnivorous benthic invertebrates in the northeastern part of Lützow-Holm Bay, Antarctica. Mem. Natl. Inst. Polar Res. 32, 105-111.

Nye, V., Copley, J., Plouviez, S., Van Dover, C.L., 2012. A new species of Lebbeus (Crustacea: Decapoda: Caridea: Hippolytidae) from the Von Damm Vent Field, Caribbean Sea. J. Mar Biol. Assoc. UK. doi:10.1017/S0025315412000884.

Pfeffer, G., 1887. Die krebse von süd-Georgien nach der Ausbeute der Deutschen Station 1882-83. Jahr. der Hamburgischen Wissen. Anstalten 4, 43-150.

Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14 (9), 817-818.

Rafinesque, C.S, 1815. Analyse de la Nature ou Tableau de l'univers et des corps organisés: 1-224. Aux dépens de l'auteur, Palermo.

Rambaut, A., 2002. Se-Al: Sequence alignment editor, Version 2.0a11, available at http://tree.bio.ed.ac.uk/softeware/sea/.

Rambaut, A., Drummond, A.J., 2009. Tracer v1.5, Available from http://tree.bio.ed.ac.uk/software/tracer/.

Raso, G., Muñoz, G., Manjón-Cabeza, M., 2008. First record of Munidopsis albatrossae (Crustacea: Decapoda: Galatheidae) from Antarctic waters. Polar Biol. 31 (10), 1281-1285.

Rathburn, M.J., 1899. List of Crustacea known to occur on and near the Pribilof Islands, in: Jordan, D.S., (Ed.), The Fur Seals and fur-seal Islands of the North Pacific Ocean, Part 3. Govt. Printing Office, Washington, pp. 555-557.

Rogers, A.D., Tyler, P.A., Connelly, D.P., Copley, J.T., James, R., Larter, R.D., Linse, K., Mille, R.A., Garabato, A.N., Pancost, R.D., Pearce, D. A., Pulunin, N.V.C., German, C.R., Shank, M. T., Boersch-Supan, P.H., Aker, B.J., Aquilina, A., Bennett, S.A., Clarke, A., Dinley, R.J.J., Graham, A.G.C, Green, D.R.H., Hawkes, J.A., Hepburn, L., Hilário, A., Huvenne, V.A.I., Marsh, L., Ramirez-Llodra, E., Reid, W.D.K., Roterman, C.N., Sweeting, C.J., Thatje., S., Zwirglmaier, K., 2012. The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biol. 10, doi:10.1371/journal.pbio.1001234.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19 (12), 1572-1574.

Shapiro, B., Rambaut, A., Drummond, A.J., 2006. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol. Biol. Evol. 23 (1), 7-9.

Spence Bate, C., 1888. Report on the Crustacea Macrura collected by the Challenger during the years 1873-76, in: Thomson, C.W., Murray, J. (Eds.), Report of the Scientific Results of the voyage of H.M.S. Challenger during the years 1873-76 under the command of Captain George S. Nares and Captain Frank Tourle Thomson. Zoology, London, pp.1-942.

Tiefenbacher, L., 1990. Eualus kinzeri, a new hippolytid shrimp from the Weddell Sea (Antarctica). Spixiana 13 (2), 117-120.

Thallwitz, J., 1891. Über einige neue indo-pacifische. Crustaceen. Zool. Anz. 14, 96103.

Thatje, S., Arntz, W.E., 2004. Antarctic reptant decapods: more than a myth? Polar Biol. 27 (4), 195-201

Thatje S, Lörz A.-N. 2005. First record of lithodid crabs from Antarctic waters off the Balleny Islands. Polar Biol. 28 (4), 334-337.

Ward, P., 1985. New records of Lebbeus antarcticus (Hale) (Crustacea: Decapoda) from the Antarctic Peninsula. Brit. Antact. Surv. B. 69, 57-63.

White, A., 1847. List of the specimens of Crustacea in the collection for the British Museum, London. British Museum, London.

Wicksten, M.K., Butler, T.H., 1983. Description of Eualus lineatus new species, with a redescription of Heptacarpus herdmani (Walker) (Caridea: Hippolytidae). P. Biol. Soc. Wash. 96 (1), 1-6.

Williams, A.B., Chace, F.A. Jr. 1982. A new caridean shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift. J. Crust. Biol. 2 (1), 136-147.

Wilmotte, A., Van der Auwera, G., De Wachter, R., 1993. Structure of the 16S ribosomal RNA of the thermophilic cynobacterium Chlorogloeopsis HTF ('Mastigocladus laminosus HTF') strain PCC7518, and phylogenetic analysis. FEBS
Lett. 317 (1-2), 96-100.
Yaldwyn, J.C., 1965. Antarctic and Subantarctic decapod Custacea, in: Van Mieghaem, J., van Oye, P. (Eds.), Biogeography and Ecology in the Arctic. W. Junk Publ., The Hague, pp. 324-332.

Yokoya, Y., 1933. On the distribution of decapod crustaceans inhabiting the continental shelf around Japan, chiefly based upon the materials collected by S. S. Sôyô-Maru, during the year 1923-1930. J. Coll. Agr. Tokyo Imp. Univ. 12, 1-226.

Zarenkov, N.A., 1968. Crustacea Decapoda collected in the Antarctic and Antiboreal regions by the Soviet Antarctic Expedition. Issled. Fauny Morei 6 (11), 153-199.

Zarenkov, N.A. 1970. Crustacean Decapoda collected by the Soviet Antarctic expeditions in the Antarctic and antiboreal regions. Biol. Rep. Soviet. Antarct. Exped. (1955-1958) 4, 153-201.

Figure legends

Fig. 1. Map showing sampling locations E2, E9, and Kemp Caldera in the Scotia Sea. Dashed line represents the Antarctic Convergence.

Fig. 2. Eualus amandae sp. nov., holotype, female (Carapace length 10.1 mm), [NHMUK 2012.1523], from Kemp Caldera, Scotia Sea, 1517 m. Entire animal, lateral view. Scale bar $=5 \mathrm{~mm}$.

Fig. 3. Eualus amandae sp. nov., holotype, female (Carapace length 10.1 mm), [NHMUK 2012.1523], from Kemp Caldera, Scotia Sea, 1517 m: A, anterior part of carapace and cephalic appendages, lateral view; B , same, dorsal view; C , posterolateral margins of right pleura of fourth and fifth abdominal somites, lateral view; D, left antennal peduncle and scale, ventral view. Scale bars $=2 \mathrm{~mm}$.

Fig. 4. Eualus amandae sp. nov., paratype, male (Carapace length 6.0 mm), [NHMUK 2012.1524], from Kemp Caldera, Scotia Sea, 1517 m: A, anterior part of carapace and cephalic appendages, lateral view; B , telson and left uropod, dorsal view; C , posterior part of telson, dorsal view; D, endopod of first left pleopod, ventral view; E, appendix masculina and appendix interna of left second pleopod, mesial view. Scalebars: A, B $=2 \mathrm{~mm} ; \mathrm{C}-\mathrm{E}=1 \mathrm{~mm}$.

Fig. 5. Eualus amandae sp. nov., A-F, holotype, female (Carapace length 10.1 mm), [NHMUK 2012.1523], from Kemp Caldera, Scotia Sea, 1517 m; G-I, paratype, male (Carapace length 6.5 mm), [0499 add registration no.], same data: A, left mandible, ventral view; B, same, palp and incisor process; C, left maxillule (first maxilla), ventral view; D, left maxilla (second maxilla), ventral view; E, left first maxilliped, ventral view; F , left second maxilliped, ventral view; G , right third maxilliped, lateral view; H, same, distal part of antepenultimate segment, lateral view; I, distal part of ultimate segment of right third maxilliped, dorsal view. Scale bars $=A, C-G=2 \mathrm{~mm}$; $\mathrm{B}, \mathrm{H}-\mathrm{I}=1 \mathrm{~mm}$.

Fig. 6. Eualus amandae sp. nov., A-B, G-H, paratype, female (Carapace length 7.6 mm), [NHMUK 2012.1526], from Kemp Caldera, Scotia Sea, 1517 m; C, F, paratype, male (Carapace length 6.5 mm), [0499 add registration no.], same data; D. E, paratype, male (Carapace length 6.5 mm), [NHMUK 2012.1522], same data: A, right first pereopod, lateral view; B, same, carpus, mesial view; C, left second pereopod, lateral view; D, right third pereopod, lateral view; E, same, dactylus and distal part of propodus, lateral view; F, left fourth pereopod, lateral view; G, left fifth pereopod, lateral view; H, same, dactylus and distal part of propodus, mesial view. Scale bars: A, C-D, F-G $=2 \mathrm{~mm} ; B, E, H=1 \mathrm{~mm}$.

Fig. 7. Lebbeus antarcticus (Hale, 1941). Female (Carapace length 13.4 mm), [NHMUK 2012.1531], from the E2 segment of the East Scotia Ridge, Scotia Sea, 2139 m . Entire animal, lateral view. Scale bar $=5 \mathrm{~mm}$.

Fig. 8. Lebbeus antarcticus (Hale, 1941). Female (Carapace length 13.4 mm), [NHMUK 2012.1531], from the E2 segment of the East Scotia Ridge, Scotia Sea, 2139 m : A, anterior part of carapace and cephalic appendages, dorsal view; B, same, lateral view; C, posterolateral margins of right pleura of fourth and fifth abdominal
somites, lateral view; D, telson and left uropod, dorsal view; E, posterior part of telson, dorsal view; F, left antennal peduncle and scale, ventral view; G, coxae of right first to fourth pereopods, showing presence of epipod on third pereopod and corresponding setobranch on fourth pereopod, lateral view. Scale bars $=2 \mathrm{~mm}$.

Fig. 9. Lebbeus antarcticus (Hale, 1941). Female (Carapace length 13.4 mm), [NHMUK 2012.1531], from the E2 segment of the East Scotia Ridge, Scotia Sea, 2139 m . Left mouthparts: A, mandible, ventral view; B, same, palp and incisor process; C, maxillule (first maxilla), dorsal view; D, maxilla (second maxilla), ventral view; E, first maxilliped, ventral view; F, second maxilliped, ventral view; G, third maxilliped, lateral view; H, same, distal part of antepenultimate segment, lateral view; I, distal part of ultimate segment of third maxilliped, dorsal view.
Scale bars: A-F, G-H = $1 \mathrm{~mm} ; \mathrm{G}=2 \mathrm{~mm}$.
Fig. 10. Lebbeus antarcticus (Hale, 1941). Female (Carapace length 13.4 mm), [NHMUK 2012.1531], from the E2 segment of the East Scotia Ridge, Scotia Sea, 2139 m . Left pereopods: A, first pereopod, lateral view; B, same, chela and carpus, mesial view; C, second pereopod, lateral view; D, third pereopod, lateral view; E, same, dactylus and distal part of propodus, lateral view; F , fourth pereopod (incomplete), lateral view; G, fifth pereopod, lateral view. Scale bars: A-D, F-G $=2$ $\mathrm{mm} \mathrm{E}=1 \mathrm{~mm}$.

Fig. 11. Bayesian analysis of cytochrome oxidase I of Lebbeus and Eualus. A, $3^{\text {rd }}$ codon positions RY coded; B, Gene partitioned into codon positions (1+2) and 3 (each partition GTR $+\mathrm{I}+\mathrm{G}$). Bayesian posterior probabilities shown on branches.

Table 1. Sampling data

Species	NHMUK Reg. no.	Site	Area	Latitude (S)	Longitude (W)	Depth (m)	Date	Dive no.	Method
Eualus amandae sp. nov.	2012.1522	$\begin{aligned} & \text { JC42-4- } \\ & 15 \end{aligned}$	E9	$60^{\circ} 02.580$	$29^{\circ} 58.837$	2401	04/02/2010	145	Suction sampler
Eualus amandae sp. nov.	2012.1523	$\begin{aligned} & \text { JC42-5- } \\ & 15 \end{aligned}$	Kemp Caldera	$59^{\circ} 41.973$	$28^{\circ} 21.01$	1517	11/02/2010	152	Suction sampler
Eualus amandae sp. nov.	2012.1524	$\begin{aligned} & \text { JC42-5- } \\ & 15 \end{aligned}$	Kemp Caldera	$59^{\circ} 41.973$	$28^{\circ} 21.01$	1517	11/02/2010	152	Suction sampler
Eualus amandae sp. nov.	2012.1525	$\begin{aligned} & \text { JC42-5- } \\ & 15 \end{aligned}$	Kemp Caldera	$59^{\circ} 41.973$	$28^{\circ} 21.01$	1517	11/02/2010	152	Suction sampler
Eualus amandae sp. nov.	2012.1526	$\begin{aligned} & \text { JC42-5- } \\ & 15 \end{aligned}$	Kemp Caldera	$59^{\circ} 41.973$	$28^{\circ} 21.01$	1517	11/02/2010	152	Suction sampler
Eualus amandae sp. nov.	2012.1527	$\begin{aligned} & \text { JC42-5- } \\ & 15 \end{aligned}$	Kemp Caldera	$59^{\circ} 41.973$	$28^{\circ} 21.01$	1517	11/02/2010	152	Suction sampler
Eualus amandae sp. nov.	2012.1528	$\begin{aligned} & \text { JC42-5- } \\ & 15 \end{aligned}$	Kemp Caldera	$59^{\circ} 41.973$	$28^{\circ} 21.01$	1517	11/02/2010	152	Suction sampler
Lebbeus antarcticus	2012.1529	$\begin{aligned} & \text { JC42-3- } \\ & 15 \end{aligned}$	E2	$56^{\circ} 05.307$	$30^{\circ} 19.094$	2598	23/01/2010	133	Baited trap
Lebbeus antarcticus	2012.1530	$\begin{aligned} & \text { JC42-3- } \\ & 18 \end{aligned}$	E2	$56^{\circ} 05.324$	$30^{\circ} 19.107$	2139	25/01/2010	135	Baited trap
Lebbeus antarcticus	2012.1531	$\begin{aligned} & \text { JC42-3- } \\ & 18 \end{aligned}$	E2	$56^{\circ} 05.324$	$30^{\circ} 19.107$	2139	25/01/2010	135	Baited trap
Lebbeus antarcticus	2012.1532	JC42-4-7	E9	$60^{\circ} 02.568$	$29^{\circ} 58.89$	2402	30/01/2010	140	Biobox

Table 2. Taxonomy, voucher catalogue numbers and GenBank accession numbers for gene sequences used herein.

Taxa	Voucher nos.	$\begin{aligned} & \text { GenBank accession nos. } \\ & \hline \text { COI } \end{aligned}$
Alvinocarididae Christoffersen, 1986		
Alvinocaris longirostris Kikuchi and Ohta, 1995	-	AB222050
Hippolytidae Spence Bate, 1888		
Eualus amandae sp. nov.	2012.1522	TBA
Eualus amandae sp. nov.	2012.1523	TBA
Eualus amandae sp. nov.	2012.1524	-
Eualus amandae sp. nov.	2012.1525	TBA
Eualus amandae sp. nov.	2012.1526	TBA
Eualus amandae sp. nov.	2012.1527	TBA
Eualus amandae sp. nov.	2012.1528	-
Eualus avinus (Rathburn, 1899)	SQB213A	DQ882065
Eualus avinus	SQB213B	DQ882064
Eualus avinus	SQB213C	DQ882063
Eualus barbatus (Rathburn, 1899)	SQC11A	DQ882066
Eualus barbatus	SQC11B	DQ882067
Eualus barbatus	SQC9A	DQ882069
Eualus barbatus	SQC9B	DQ882070
Eualus barbatus	SQC9C	DQ882068
Eualus biunguis	SQE11A	DQ882074
Eualus biunguis (Rathburn, 1902)	SQE11B	DQ882073
Eualus biunguis	SQE13A	DQ882072
Eualus biunguis	SQE13B	DQ882071
Eualus cranchii (Leach, 1817)	JSDUK185	JQ306050
Eualus fabricii (Krøyer, 1841)	BSM	FJ581627
Eualus fabricii	L90	FJ581628
Eualus gaimardii gaimardii	DPA12	DQ882075
Eualus gaimardii gaimardii	JSD	JQ305958
Eualus gaimardii gaimardii	EG01CN0506	FJ581629
Eualus macilentus (Krøyer, 1841)	BSM07T11-04	FJ581635
Eualus macilentus	BSM07T11-05	FJ581634
Eualus macilentus	EM01CN0606	FJ581633
Eualus macilentus	EM02CN0606	FJ581632
Eualus macilentus	TE-004T141	FJ581630
Eualus macilentus	TE-004T21	FJ581631
Eualus suckleyi (Stimpson, 1864)	SQJ242A	DQ882076
Eualus suckleyi	SQJ242B	DQ882077
Eualus suckleyi	SQJ39	DQ882078
Hippolyte inermis Leach, 1816	CCDB 2783	JF794740
Hippolyte obliquimanus Dana, 1852	CCDB 2033	JF794736
Hippolyte williamsi Schmitt, 1924	CCDB 2382	JF794738
Lebbeus antarcticus (Hale, 1941)	2012.1529	TBA
Lebbeus antarcticus	2012.1530	TBA
Lebbeus antarcticus	2012.1531	TBA
Lebbeus antarcticus	2012.1532	TBA
Lebbeus groenlandicus (Fabricius, 1775)	DPA06	DQ882084
Lebbeus groenlandicus	SPE26A	DQ882083

Lebbeus groenlandicus	SPE26B	DQ882082
Lebbeus groenlandicus	TE-004T141	FJ581737
Lebbeus laurentae Wicksten, 2010	-	AF125421
Lebbeus polaris (Sabine, 1824)	TE-004T181	FJ581738
Lebbeus polaris	LP01	FJ581739
Lebbeus virentova Nye et al., 2012	-	JQ837266
Lysmata pederseni Rhyne and Lin, 2006	-	EU135869
Lysmata wurdemanni (Gibbs, 1850)	-	EU135867
Spirontocaris spinus (Sowerby, 1805)	FC-DPA10	DQ882163
Thor amboinensis (De Man, 1888)	-	JQ180245

TBA: To be added.

Table 3. Eualus amandae sp. nov. Branchial formula

Thoracic somites	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$				
	Maxillipeds							Pereopods				
	1	2	3	1	2	3	4	5				
Pleurobranchs	-	-	-	1	1	1	1	1				
Arthrobranch	-	-	-	-	-	-	-	-				
Podobranch	-	1	-	-	-	-	-	-				
Epipods	1	1	1	1	1	1	-	-				
Setobranchs	-	-	-	+	+	+	+	-				
Exopods	1	1	1	-	-	-	-	-				

Table 4. Lebbeus antarcticus (Hale, 1941). Branchial formula

Thoracic somites	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
	Maxillipeds							
	1	2	3	1	2	3	4	5
	-	-	-	1	1	1	1	1
Pleurobranchs	-	-	-	-	-	-	-	
Arthrobranch	-	-	-	-	-	-	-	-
Podobranch	-	1	-	1	1	1	-	-
Epipods	1	1	1	+	+	+	+	-
Setobranchs	-	-	-	-	-	-	-	
Exopods	1	1	-	-	-	-		

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6.

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Fig. 11 A

Fig. 11 B

