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Abstract	

Large-scale changes to predator populations, due mainly to anthropogenic effects, 

have led to a trophic downgrading of our planet. In many ecosystems, we know this 

can result in large-scale ecological changes and phase-shift due to the cascading 

trophic effects between the key players of a food web. However, our knowledge of 

the ways in which predators interact with ecosystems is patchy, largely focused on 

relatively simple food webs and is poorly resolved for complex food webs that 

include large numbers of generalist predator and prey species. Does the return of 

high-trophic level predators hail trophic effects cascading from prey species down to 

the lowest trophic levels in complex marine ecosystems? 

The recovery of Australian (Arctocephalus pusillus doriferus) and long-nosed 

(Arctocephalus forsteri) fur seals after the cessation of sealing in Australia affords a 

unique opportunity to investigate interactions between recolonising predator species 

and complex coastal ecosystems. However, prior knowledge on the diets of these 

recovering predators and of significant trophic interactions involving complex 

temperate ecosystems was lacking. I first reviewed the current body of work utilising 

DNA-based methods for the analysis of predator diets and ecological interactions. 

This review highlights the strength of DNA-based methods for exploratory diet 

analyses in ecosystems lacking prior information on important trophic interactions, by 

providing dietary information at high taxonomic sensitivity and resolution. I therefore 

applied DNA metabarcoding techniques to obtain detailed information on the diets of 

recovering fur seals in complex ecosystems of eastern Australia. 

The diets of both fur seal species at a newly established breeding colony in 

southeastern Australia yielded patterns that were similar to that of breeding colonies 

in the centre of their geographic range, in southern Australia, whereby fur seal diet 

composition varied seasonally with a greater frequency of benthic and demersal prey 

species in diets in the summer months and of pelagic species in the winter months. 

However, these patterns were not observed at non-breeding aggregation (haul-out) 

sites at the species’ current geographic range edge in eastern Australia, where the 

diets of both seal species contained a high prevalence of coastal prey items. The 

convergence of diets, and thus ecological interactions, of two predator species at their 
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range edge correlates with known differences in seal population densities and 

demographics at sites newly recolonised by these predators. 

The frequency of coastal prey in the diets of both fur seal species highlighted 

the need to further assess potential ecological interactions between recolonising 

predators and coastal communities at their range edge. I therefore surveyed reef fish 

communities at newly established haul-out sites in eastern Australia, compared to 

local reference sites that do not harbour fur seal aggregations. Multivariate trait-based 

analyses of reef fish assemblages identified a significant relationship between the 

usage of sites by fur seals and the prevalence of fish functional groups. Schooling fish 

and browsing herbivores were negatively associated with fur seal aggregation sites. 

Additionally, at one fur seal haul-out site, the total abundance of fish was lower and 

there was a greater proportional biomass of smaller fish compared to that of reference 

sites. The potential cascading and indirect effects of coastal predator recolonisations 

on benthic reef communities were then investigated across multiple functional 

components of temperate reef ecosystems. The trophic structure of benthic 

invertebrate assemblages were not significantly different between seal haul-out 

compared to reference sites. However, the abundance of the ecologically important 

herbivore (Centrostephanus rodgersii) was lowest at one haul-out site. There was also 

a trend of decreased macro-algal cover observed at haul-out sites. 

These results provide some evidence for differences between reef fish and 

benthic communities adjacent to fur seal aggregation sites compared to local reference 

sites along the coast. These differences did not, however, correspond to large 

ecological changes in reef community trophic structure or size structure, and 

differences were contingent on the location of the haul-out site sampled. At an early 

stage in the recovery of two predator species, the results of this body of work do 

provide important baseline information and novel insights with which to assess future 

trajectories of change in Australian temperate reefs, and also in complex ecosystems 

with recovering predator populations. Trait-based analyses enabled the development 

of a framework with which to identify potential trophic effects of recovering 

predators on complex ecological communities. Finally, this thesis provides a 

framework with which to continue monitoring trophic interactions and potential 

trophic cascades linking recovering predator populations and complex ecosystems. 
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1 General	Introduction	

 

1.1 On the importance of ecological interactions 

 

“It was a starting place for untangling the complexity of interactions,” said Paine. “If 

all species were created equal, you wouldn't know where to start.” – Yong (2013) 

 

A central question in ecology is that of what factors affect the structure and stability 

of biological communities. This is a question that Darwin himself probably 

considered, as he suggested that species interactions occur within complex networks 

or a ‘tangled bank’ (Darwin 1859). Elton (1927) first introduced the concept of 

trophically bonded species and ecological connectedness. MacArthur (1955) later 

connected community diversity, and trophic diversity, with community stability. 

Menge and Sutherland (1987) proposed a general model of ecological function with 

an interaction web that incorporated not only trophic linkages but also interactions 

between species and their physical environment, and in which the concept of a food 

web is embedded. 

 Nearly a century of research has revealed that ecological interactions between 

species occupying particular functional roles are immensely important in shaping 

ecosystems. Countless natural or anthropogenic-induced examples show that changes 

in primary resource availability, or increased competition for resources or predation 

pressure can subsequently alter the structure and function of ecosystems (reviewed by 

Estes et al. 2016; Terborgh & Estes 2010). Ecologists share a duty in documenting 

and investigating these interactions to enable a deeper understanding of ecosystem 

function, and to protect of important ecosystem processes. Ever-increasing, 

anthropogenic pressures on natural systems bring a sense of urgency to our duty to 

understand and protect important ecological interactions. 
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1.1.1 From bottom-up to top-down processes, and the discovery of keystone 

species 

 

Ecological interactions have been categorised according to two often-competing 

hypotheses. Bottom-up processes occur when resources limit consumers: precisely 

when the net primary productivity and efficiency of energy transport upward through 

trophic levels drive the distributions, abundances and diversity of consumers, with 

flow-on effects up the interaction web (White 1978). Top-down effects occur when 

higher trophic level consumers control the abundance, biomass and/or diversity of 

species at lower trophic levels with flow-on effects down the interaction web 

(Steinberg et al. 1995). The relative importance to ecosystem structure and function 

of both types of processes has been hotly debated for decades. It is now widely 

accepted that both top-down and bottom-up processes interact in structuring 

ecological communities. 

Within this framework of interaction of top-down and bottom-up processes, 

some organisms have been found to exert a particularly strong effect on the structure 

and function of their ecosystem. A major breakthrough in our understanding of how 

biological communities function was Robert Paine’s historic manipulation in the 

1960’s of the predatory seastar, Pisaster ochraceus, on the rocky shores of Makah 

Bay and Tatoosh Island in Washington State, USA. Paine discovered that like the 

keystone of an arch, certain species act as the keystone for an ecological community’s 

structure, whereby their activities and abundances determine community integrity and 

stability (Paine 1969). Keystone species impact their ecosystems in a manner that is 

disproportionately large compared to their abundance or biomass, and their removal 

or reintroduction from their ecosystem has been found to produce unexpected and 

significant consequences for that ecosystem (Paine 1969). Paine also identified that 

these species were typically of higher trophic standing, thus they exert impacts on 

ecosystems from the top-down. 

Many inadvertent and serendipitous ecological experiments have enabled the 

identification of a myriad of keystone effects or strong ecological interactions in 

ecosystems the world over. In addition to Paine’s sea stars, famous cases include 

otters in the northeast Pacific (Estes & Duggins 1995; Estes & Palmisano 1974), fish 

in prairie streams (Power et al. 1985) and in lakes (Carpenter et al. 1985), the effects 
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of cougars and wolves on ungulates and forests (Beschta & Ripple 2009, 2012; 

McLaren & Peterson 1994), foxes in the Aleutians (Bailey 1993), and, fishes and 

urchins in coral reefs (Hughes 1994; Lessios et al. 1984). 

The commonality in these ecosystem-scale experiments was the 

anthropogenic-induced removal or introduction of a species, hitherto unknown to be 

ecologically important, thereby setting off a chain reaction through layers of a food 

web, and destabilising ecosystems in a pattern known as a ‘trophic cascade’ (Paine 

1980; and reviewed by Ripple et al. 2016). These removal and reintroduction events 

essentially served as large-scale perturbation experiments (reviewed by Mills et al. 

1993) and were instrumental in our discovery of the importance of certain species in 

their ecosystems (Pace et al. 1999). Examples exist where these trophic cascades were 

reversed through the removal of invasive species or the reintroduction of an important 

native released from anthropogenic pressure (Beschta & Ripple 2009, 2012; Estes et 

al. 2016; Estes et al. 1978).  

In some cases, the ecological damage was too great, ecological communities 

were already too degraded by anthropogenic activities and were pushed to a tipping 

point beyond which they were driven to ecological melt-down and ecosystem phase 

shifts (i.e., Caribbean coral reefs, Pacific Northwest) (Estes & Palmisano 1974; 

Mumby 2009). A kelp forest, for example, may be reduced to urchin barrens 

following the decline of sea otter populations in the northeastern Pacific (Estes & 

Palmisano 1974). Coral reefs may become dominated by algae if populations of 

grazers catastrophically decline due to overfishing and disease on Caribbean reefs 

(Mumby 2009). The dire warnings from ecosystem phase-shifts around the world 

(Terborgh & Estes 2010) demonstrated that to conserve ecosystem function, it is 

crucial to understand and protect ecological processes, and the key players involved 

(reviewed by Estes et al. 2011). 

 

1.1.2 Context-dependence and the nuances of ecological interactions 

 

The concept of keystone species has been useful in demonstrating that under certain 

conditions some species have particularly strong effects on ecological communities. 

Several types of keystone effects have been identified since the term’s introduction, 

including keystone predators, prey, mutualists, hosts and modifiers (Mills et al. 1993). 
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However, Mills et al. (1993) feared that a keystone vs. non-keystone dualism was too 

simplistic and that it failed to recognize the complexity of ecosystems, as well as the 

temporal and spatial dynamics of interactions. Mills et al. (1993) advocated for the 

study of interaction strengths, a concept developed by MacArthur (1972). Indeed, it 

became apparent that species interactions and trophic cascades varied in strength 

(reviewed by Polis et al. 2000) and sometimes didn’t occur at all (Casey et al. 2017). 

Numerous complementary hypotheses have been proposed to explain the 

occurrences, strengths and context-dependencies of trophic cascades (Polis et al. 

2000; Polis & Strong 1996). First, spatial heterogeneity is expected to weaken trophic 

cascades because prey refugia should reduce predator foraging efficiency (Polis et al. 

2000). Secondly, the trophic diversity of interacting species and the complexity of the 

food web can dampen the strength of trophic cascades (Polis et al. 2000). Competition 

between predators within an ecosystem, or intraguild predation, drives niche shifts 

and therefore adds trophic diversity and complexity to an ecosystem (reviewed by 

Polis & Holt 1992). Additionally, prey diversity is associated with weaker consumer 

effects (Edwards et al. 2010), and thus generalist foraging strategies by predators 

could also be associated with weaker consumer effects. Omnivory, which increases 

trophic diversity and versatility, further dampens the strength of consumer 

interactions by contributing to community stability (McCann & Hastings 1997; Polis 

et al. 2000). Thus, the ecological effects of trophically diverse predators will be 

further dissipated throughout a complex and biodiverse food web (Bellwood et al. 

2006; Polis et al. 2000). 

Thirdly, trophic cascade strength has been linked back to bottom-up processes 

or the productivity of an ecosystem. Trophic cascades were found to be more likely 

where primary productivity and resource quality were strong, and where resources 

were dominated by few species (reviewed by Polis 1999; Polis et al. 2000; Strong 

1992), for example in the highly productive coastal ecosystems of the Northeast 

Pacific. Fourth, the efficiency of energy transfer through an ecosystem, through 

herbivory or predation, is associated with increased trophic cascade strength (Polis 

1999; Polis et al. 2000; Strong 1992). Borer et al. (2005) added that taxonomic 

distinctness and physiological characteristics relating to the efficiency of herbivores 

and predators were the strongest drivers for trophic cascades. In their meta-analysis, 

the strongest cascades occurred in association with invertebrate herbivores and 
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energetically inefficient, endothermic vertebrate predators in temperate marine 

ecosystems (Borer et al. 2005). Thus, the combination of the Northeast Pacific’s 

highly productive, cold-water kelp forests, voracious invertebrate herbivores and 

warm-blooded marine otters bore the characterics for one of the strongest trophic 

cascade cases known to ecologists. By contrast, terrestrial endothermic predators were 

associated with the weakest trophic cascades, as were invertebrate predators and also 

ecosystems where plant defenses decreased herbivore efficiency (Borer et al. 2005).  

Interaction webs are therefore the product of both bottom-up and top-down 

processes (Estes et al. 2016; Power et al. 1985), as well as numerous contextual 

factors (Borer et al. 2005; Casey et al. 2017; Polis et al. 2000) creating variability in 

food web structure. Trophic cascades vary in nature due to the relative strength of 

species interactions, which in turn depend on the diversity and complexity of 

ecological communities, themselves influenced by the strength and diversity of 

primary productivity. Strong interactions resulting in trophic cascades may not 

actually be the rule in complex ecosystems (Casey et al. 2017), however relatively 

few studies have yet explored trophic cascades in complex ecosystems. This thesis 

will thus explore trophic cascade theory in the case of a complex ecosystem 

experiencing the recovery of large predators. 

 

1.2 Large predator ecology in the 21st century 

 

“[A] lot of what we study are apex predators. They matter. We should be asking — 

what are the general consequences going to be when we remove all the sharks from 

the sea? Or conversely, if the great whales recover, what will those effects be? I have 

no idea what the answers are, but these are questions we should be asking. The 

answers change our perception of the whole system from the top down.” 

– Robert Paine (2013) 

Large predators naturally fit the criteria for strong interactors. As a result of their size, 

lower numbers, metabolic and spatial needs, they often have the highest per capita 

strength of interaction in a food web (Borer et al. 2005; Ripple et al. 2016; Terborgh 

& Estes 2010). A large number of studies have identified that predators are capable of 

causing strong interactions within ecosystems, both aquatic and terrestrial (Estes et al. 

2016; Heithaus et al. 2012; Ripple et al. 2016). Interactions between species can be 
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trophically direct, or consumptive, between predators and prey, or indirect involving 

one or more intervening or subsequently affected species (Estes et al. 2016). 

Behavioural responses of prey and competing species to predators can often be as 

important as the direct trophic interaction itself (Brown & Kotler 2004; Prugh et al. 

2009). The presence of an apex predator in an ecosystem can alter the distributions 

and foraging behaviour of prey species, as has been demonstrated in the relationship 

between wolves, elk foraging behaviour and the recovery of vegetation along stream 

banks in Yellowstone National Park (Ripple & Beschta 2004, 2007). At an ecosystem 

scale, predators are capable of creating a landscape of fear, a phenomenon found in 

both terrestrial and aquatic ecosystems at opposites ends of the world (Madin et al. 

2011; Ripple & Beschta 2004; Wirsing & Ripple 2010). 

 Decades of work inspired by the likes of Paine are beginning to bring answers 

to the question he posited in the above quote. Roman et al. (2014) revealed the role of 

great whales as important ocean ecosystem engineers in their roles as consumers, prey 

for apex predators, detritus as whale falls, as important forms of material storage, and 

as physical vectors for nutrient cycling. Evidence for strong ecological effects of large 

sharks is also emerging. Research across multiple ocean basins is indicating that 

declines in the abundances of large sharks is associated with mesopredator release, or 

an increase in abundance of smaller-bodied predators, including smaller sharks and 

rays (Ferretti et al. 2010; Myers et al. 2007). Tiger sharks influence the distribution 

and foraging behaviour of dugongs and sea turtles with flow on effects for seagrass 

cover (Heithaus et al. 2008; Heithaus et al. 2012; Wirsing et al. 2007a, b), thus 

playing a role similar to wolves in North American terrestrial ecosystems (Wirsing & 

Ripple 2010).  

The ecological roles of many groups of predators are poorly resolved, despite 

their potential importance to ecosystem processes (Estes et al. 2016). The ecological 

roles of predators are a relatively recent focus of the scientific community (Ripple et 

al. 2016), and effectively date back to Paine (1969). Well before that time, humans 

have greatly affected and modified ecosystems globally, and the scientific community 

is facing a race against time in understanding the natural roles of predators within 

ecosystems that range from pristine to degraded. This task is becoming even more 

difficult as predator populations themselves are being negatively impacted by human 

activities (Estes et al. 2011). 
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1.2.1 On trophic downgrading: the state of the world’s large predators 

 

Large carnivores face tremendous threats including range reduction, population 

reduction or eradication, worldwide (reviewed by Dulvy et al. 2014, McCauley et al. 

2015, and Ripple et al. 2014). Large predators are arguably among the most 

threatened and endangered functional group of taxa across the world’s ecosystems 

(reviewed by Estes et al. 2011, Pimm et al. 2014, and Ripple et al. 2014). Examples 

span terrestrial and marine ecosystems: from canids, bears, big cats and birds of prey 

on land to cetaceans, pinnipeds, chondrichthyans and osteichthyans in the water 

(Ceballos & Ehrlich 2002; IUCN 2017; Myers & Worm 2003; Ripple et al. 2014). 

Large carnivores are the unfortunate victims of targeted elimination either because of 

perceived threats (eg., sharks, bears, wolves) or for commercial gain (eg., fur from 

seals or otters, products from whales) (McCauley et al. 2015; Ripple et al. 2014). 

Large predators can directly compete with humans for resources (food, space) 

whereby they suffer from habitat fragmentation and loss, as well as a reduction in 

preferred food (McCauley et al. 2015; Ripple et al. 2014). Predators can also become 

indirectly targeted, by becoming fisheries bycatch in aquatic systems (Dulvy et al. 

2014). 

Large predators occupy the highest levels of food web structure within 

ecosystems and coupled with their size, require large geographic ranges and freedom 

of movement across this range in order to meet their energy requirements (Estes et al. 

2016; Ripple et al. 2014). Additionally, species in this ecological group are generally 

K-selected species, sharing broad characteristics such as being slow-growing, slow-

maturing taxa and with slow-population doubling times (Cardillo et al. 2005). These 

characteristics not only bring them in direct contact and competition with humans, but 

also intensify their vulnerability to human activities (Cardillo et al. 2004). 

Increasing awareness, education and conservation efforts both local and global 

bring some hope (i.e., Large Carnivore Initiative, “LCI”) (IUCN 2017; LCI 2017; 

Magera et al. 2013; McCauley et al. 2015). This is reflected in the conservation and 

protective legislation of most of the world’s developed nations (eg., the United States 

Congress’ Marine Mammal Protection Act, 1972; the Australian Government’s 

Environment Protection and Biodiversity Conservation Act, 1999) , and in the 



 

 8 

signatures of global initiatives such as the IUCN (2017). However, protection efforts 

are not necessarily ecologically representative (Pimm et al. 2014). These efforts are 

also recent in the context of the life histories of these species, and species protection 

alone will likely be insufficient in accounting for longer-term anthropogenic and 

environmental stressors. 

Ecological research in the 21st century must contend with a past legacy of 

anthropogenic impacts on natural systems, ongoing competition for resources, and 

also a future of potentially critical environmental changes to predator populations and 

their ecosystems (McCauley et al. 2015). The widespread trophic downgrading of 

ecosystems can nonetheless be reversed or managed through novel and deliberate 

actions (Ripple et al. 2014). Much of our knowledge of natural systems is contingent 

on specific environmental circumstances that are changing. In a changing world, the 

accurate identification of key ecosystems processes and players, and of the role of 

vulnerable functional groups within interactions webs, may provide information that 

is key to conserving ecosystems and potentially reversing their degradation. 

 

1.2.2 On pinnipeds and trophic upgrading 

 

Pinnipeds, which include seals, sea lions and walruses, are common and large 

predators across many ecosystems globally, however they have experienced severe 

population depletion through historical harvesting (IUCN 2017; McCauley et al. 

2015). Many species are now recovering and populations are recolonising ecosystems 

that were historically released from these predators (IUCN 2017; Magera et al. 2013). 

Much like the return of wolves to terrestrial ecosystems, the recovery of pinnipeds in 

marine ecosystems presents opportunities to observe the effects of trophic upgrading, 

put simply – the return of upper-trophic levels to an ecosystem. Predator recoveries 

typically result in prey limitation (Beschta & Ripple 2009; Estes et al. 2016; Ripple et 

al. 2014). Despite large-scale changes in pinniped populations and distributions, their 

role in the dynamic function and structure of affected ecosystems is poorly 

understood (Estes et al. 2016). 

Only seven published studies are known to investigate the ecological influence 

of pinnipeds (reviewed by Estes et al. 2016). Pinniped activity can negatively impact 

prey populations across a range of ecosystems (Boveng et al. 1998; Kelaher et al. 
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2015; Oliver et al. 1983; Power & Gregoire 1978), and can also impact prey 

behaviour, whereby penguins and fish have been observed to be cautious and reduce 

foraging time in the presence of pinnipeds (Ainley & Ballard 2012; Connell 2002; 

Shepherd et al. 2010). One pinniped species was found to significantly modify the 

structure of benthic communities (Oliver et al. 1983). Additionally, evidence for 

localised resource depletion has been found following recolonisation events by 

northern fur seals in the North Pacific (Callorhinus ursinus) (Kuhn et al. 2014).  

The representation among these ecological studies of the 33 extant species of 

pinnipeds and the ecosystems investigated are very small. Of the studies investigating 

direct effects of pinnipeds on prey, they involved two otariid species (Connell 2002; 

Kelaher et al. 2015; Shepherd et al. 2010), walrus, the only extant odobenid species 

(Oliver et al. 1983), and two phocid species (Ainley & Ballard 2012; Boveng et al. 

1998; Power & Gregoire 1978). The results of these studies are also difficult to 

generalize across ecosystems because they have not been repeated and the literature 

on the ecological effects of pinnipeds on food webs remains in its infancy. 

 

1.2.3 Recovering fur seal populations in southeastern Australia 

 

In southeastern Australia, two sympatric seal species, Australian fur seals, 

Arctocephalus pusillus doriferus, and long-nosed fur seals (formerly New Zealand fur 

seals), A. forsterii, are undergoing population and range recovery following historical 

overexploitation and near-extinction (Burleigh et al. 2008; Goldsworthy et al. 2003; 

Kirkwood et al. 2010; Shaughnessy et al. 2001). Australian fur seals are estimated to 

number over ~120,000 based on the 2007-08 census (Kirkwood et al. 2010), however 

pup production for several colonies in Bass Strait was in decline whilst new colonies 

have been identified at the northeastern extent of their range, making total population 

estimates uncertain (McIntosh et al. 2014). Long-nosed fur seal abundance was 

estimated at 97,200 in South Australian waters based on a 2013-14 census 

(Shaughnessy et al. 2015), and these estimates are conservative, as several new 

colonies and haul-out sites are known for this species (McIntosh et al. 2014). 

Fur seals have been returning to New South Wales (NSW, eastern Australia) 

since at least the 1990’s (Shaughnessy et al. 2001). Breeding colonies for both species 
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have recently been established and recognized at Montague Island, NSW, as of a 2014 

pup census (McIntosh et al. 2014), with pup production in NSW accounting for 1% of 

total pup production across Australia. Prior to the establishment of breeding colonies 

in NSW, it was extremely difficult to estimate the populations of largely marine and 

transient species in this location. Thus, accurate fur seal numbers are lacking for this 

region. Several permanent haul-out sites are now also established in NSW, and these 

populations represent the first resident seals in NSW for nearly a century (P. 

Shaughnessy & S. Goldsworthy, SARDI aquatic sciences, pers. comm.), in a region at 

the frontier of the core geographic range of the species in Australian waters.  

Australian and long-nosed fur seals are both generalist and sympatric 

predators, whose ranges partially overlap in Australian waters (Hoskins et al. 2017; 

Page et al. 2005). Both species target benthic and pelagic fish and cephalopods, 

hunting primarily over the continental shelf and shelf edge (Fea et al. 1999; Hoskins 

et al. 2017; Hume et al. 2004; Page et al. 2005). These predators also exhibit niche 

partitioning, whereby Australian fur seal diets are reported as benthopelagic (Arnould 

et al. 2011; Hoskins et al. 2017; Kirkwood et al. 2008), and long-nose fur seal diets 

are mostly pelagic (Baylis et al. 2008; Fea et al. 1999; Harcourt et al. 2002; Hoskins 

et al. 2017). Both species also exhibit spatially specific foraging patterns across their 

geographic range in relation to resource availability (Baylis et al. 2008; Deagle et al. 

2009; Hume et al. 2004; Page et al. 2006). Most diet studies for both fur seal species 

have been conducted at the centre of their geographic range in Bass Strait and South 

Australia, and were conducted at established breeding colonies. 

Little is known about the diets of fur seals at their recolonisation frontier in 

NSW, eastern Australia, an area that is biogeographically distinct from Bass Strait 

and southern Australia (Connell & Irving 2008; Jordan et al. 2010). It is more than 

likely that these species will target similar benthopelagic and pelagic prey according 

to their seasonal availabilities on the east coast of Australia. However, the coast of 

NSW is characterized by significant rocky reef systems and contains the narrowest 

portions of the continental shelf anywhere in Australia (Jordan et al. 2010). Coastal 

ecosystems in this region are thus heavily influenced by the East Australian Current 

(Suthers et al. 2011). The relative importance of coastal versus oceanic sources of 

prey in the diets of both fur seal species are not known at their northeastern range 

edge. Reef associated species have been identified in the diets of Australian fur seals 
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from Bass Strait (Deagle et al. 2009). Fur seals are also suspected to affect reef fish 

assemblages at a colony at their northern range edge, Montague Island, in 

southeastern Australia (Kelaher et al. 2015). 

Australian and long-nosed fur seals likely contribute to a significantly large 

resident biomass of high trophic-level predators in coastal waters of southern 

Australia (Kirkwood & Arnould 2011). The effect of this biomass on coastal 

ecosystems is not well understood. Its possible that despite a high biomass, the trophic 

effects on coastal reefs of these recovering populations could be minimal as they are 

generalist predator species whose diets are known to contain highly mobile oceanic 

prey from open marine systems. Fur seals are also perceived as a threat to commercial 

and recreational fishers, and they have been the subjects of calls for culls, particularly 

to long-nosed fur seals, due to perceived or potential competition for coastal and 

oceanic prey resources (Shaughnessy et al. 2015). Coastal reef communities typically 

harbor site-attached species and many are already vulnerable to fishing (Shepherd et 

al. 2010; Kelaher et al. 2015). As a result, reef fishes are a particular focus of coastal 

zone management through networks of marine protected areas (Halpern 2003). The 

recent and ongoing fur seal recovery in southeastern Australia provides unique 

experimental conditions involving multiple predators with which to test hypotheses 

about the ecological effects of pinnipeds on temperate ecosystems. This is particularly 

salient in a context of rapid recolonisation of the southeastern coast by two large, 

warm-bodied predators, and where trophic interactions with coastal ecosystems are 

unknown. 

 

1.3 Thesis aims and outline 

 

The overarching aim of this thesis was to identify any trophic effects resulting from 

the recovery of two important coastal predators, Australian and long-nosed fur seals, 

on complex, temperate ecosystems in southeastern Australia (Figure 1.1). What do 

these predators eat at their northeastern range edge? Does the return of fur seals to 

coastal ecosystems of southeastern Australia hail direct (consumptive) and indirect 

(non-consumptive) effects cascading from prey species down to the lowest trophic 

levels in complex marine ecosystems? I therefore embarked on a project to determine 

whether the recolonisation of important coastal predators, fur seals, mattered or not to 
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the reef ecosystems of southeastern Australian. Overall, I hypothesised that the 

recovery of fur seals in eastern Australia would result in: (1) important consumptive 

interactions linking fur seals to temperate reefs, which would (2) lead to prey 

limitation, and subsequently (3) release secondary consumers from pressure by 

mesopredators, thereby (4) increasing herbivory on temperate reefs (Figure 1.1). 
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Figure 1.1 Conceptual 
diagram of the aims and 
structure of this thesis. 
Illustrated are hypothetical 
relationships between 
different trophic levels 
from recolonising 
predators, fur seals, to prey 
communities, to mobile 
and sessile benthic 
communities on temperate 
reefs. Groups are 
simplistically symbolized 
by one figurative animal, 
that in reality represents 
more complex prey and 
benthic communities on 
temperate Australian reefs. 
Prey communities are 
symbolized by fish as these 
are the likely primary prey 
of fur seals, however they 
can also include many 
predatory invertebrate 
species. 
 

(a)		Low	seal	
population

(b)	Recovering	seal	
population

Fur seals
(tertiary	
consumers)

Key	prey
(secondary	
consumers)

Herbivores
(primary
consumers)

Kelp	and	
macroalgae
(primary	
producers)

?

Chapter	2.	Review	of	the	uses,	
strengths	and	research	needs	of	
DNA-based	methods	to	explore	
predator	diets		

Chapter	3. Exploratory	diet	analysis	
of	recolonising Australian	and	long-
nosed	fur	seals	in	eastern	Australia,	
using	DNA	metabarcoding

Chapter	4. Assess	direct	predatory	
effects	on	fish	communities	and	
trophic	structure	at	locations	of	fur	
seal	recolonisation

Chapter	5. Investigate	indirect	
effects	on	mobile	and	benthic	
communities	on	temperate	reefs	at	
locations	of	fur	seal	recolonisation
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 In this thesis, I present a four-point research plan for identifying ecological 

interactions between recolonising predators, prey communities and complex 

ecosystems (Figure 1.1). I : (i) undertook an integrative review of the uses and 

strengths of DNA-based methods to explore the diets and ecological roles of high-

order predators (Chapter 2); (ii) investigated the diets of these predators in their 

novel and recolonised location, in eastern Australia, using DNA metabarcoding 

techniques (Chapter 3); I then aimed to (iii) identify whether recent recolonisations 

by coastal predators has produced localised functional changes in fish communities 

(Chapter 4); and to (iv) identify signs of indirect and potentially cascading effects on 

invertebrate and benthic communities at locations of fur seal recolonisation in eastern 

Australia (Chapter 5). 

In an ecosystem where prior information on trophic interactions is lacking, the 

first port of call for understanding species interactions is, commonly, to first identify 

consumptive or predatory relationships. I needed to undertake a detailed and 

exploratory study of the diets of recolonising predators in complex temperate 

ecosystems of eastern Australia. It was important to first assess the appropriate 

method for this task. The priorities for my research were to use a technique of diet 

assessment that was taxonomically sensitive and produced data across a range of 

potentially foraged ecosystems without any prior information about the diets of the 

study animals in those ecosystems. Additionally, due to working on protected species, 

I also valued a method of sampling predator diets that is as non-invasive as possible. 

DNA-based analysis of predator diets satisfies all the aforementioned criteria and is a 

promising method that may revolutionise the way that we model trophic interactions. 

In Chapter 2, I therefore reviewed the current literature using DNA-based methods 

for the assessment of predator diets and applications of this method for exploring 

trophic interactions. This review provides a valuable semi-quantitative synthesis of 

the uses, strengths and future research needs of DNA-based diet analysis across a 

broad range of predators and ecosystems. The review highlights DNA-based methods 

as the most taxonomically sensitive method available and effective for obtaining 

detailed information on ecological interactions in a complex food web, and I therefore 

apply DNA-based techniques to my study system. 

Chapter 3 contains a detailed analysis of the diets of both recolonising 

predator species, Australian and long-nosed fur seals, from the frontier of their 
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expanding range in southeastern Australia. I characterised the diets of both species 

across two locations of recolonisation, one site an established breeding colony and the 

other, a new but permanent haul-out site. Next-generation DNA metabarcoding 

techniques were used to obtain high taxonomic-resolution data on diets and inform 

ecological trait-based analyses of trophic interactions across time and space. This was 

the first DNA-based study to analyse the diets of both predator species at the 

northern-most part of their geographic range, and the first DNA-based analysis of the 

diets of long-nosed fur seals throughout their geographic range. Detailed information 

on the diets of these predators from this location identified an important overlap in the 

diets of these predators at their northeastern range edge, with a particularly high 

prevalence of coastal and reef-associated prey species. 

Chapter 4 investigates direct trophic impacts on reef fish communities 

adjacent to predator aggregation sites. This study included two spatially distinct haul-

out sites each paired with multiple reference sites that do not harbour fur seal 

aggregations. In this chapter, I investigate localised differences in reef community 

metrics, as well as size structure of fish communities, between fur seal aggregation 

sites and local reference sites. This chapter also examines how fish functional traits 

can explain differences fish community composition at locations of fur seal recovery 

in temperate reef ecosystems of eastern Australia, using a fourth-corner model. 

Chapter 5 investigates potential indirect effects on coastal benthic 

communities following the natural recolonisation of discrete locations by fur seals on 

temperate southeast Australian reefs. I aimed to identify and quantify any localised 

differences in macro-invertebrate, cryptic fish and sessile benthic communities 

adjacent to newly recolonised fur seal haul-out sites compared to multiple local 

reference sites without seals. Differences in the trophic structure of invertebrate 

communities were assessed between locations of fur seal recolonisation and reference 

locations, as well as the relationship between invertebrate species assemblages and 

the prevalence of kelps and macroalgae. Additionally, changes in sessile benthic 

invertebrate and macro-algal communities were assessed at locations of fur seal 

recovery. 

A review paper (Chapter 2) and three primary research papers for this thesis 

(Chapters 3–5) were written as separate scientific papers. Chapter 3 has been 

published (Hardy et al. 2017). Chapters 2, 4 and 5 are currently being drafted for 
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submission to scientific peer reviewed journals. These chapters include diverse 

investigations and focal points across coastal reef ecosystems in southeastern 

Australia: from large predators, reef fish, benthic invertebrate to macroalgal 

communities. These chapters are tied together by the common theme of investigating 

the ecological ramifications of predator recovery in complex coastal ecosystems. This 

study uses an ecosystem-scale approach to assess interactions between pinnipeds on 

temperate reefs, providing novel insights at an early stage in the recovery of eastern 

Australian fur seals with significant implications for understanding the ecological 

interactions of in recolonising predators globally.  
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2 Exploring	the	ecological	role	of	predators	through	

genetic	diet	analysis	

 

2.1 Abstract 

 

The accurate identification of trophic interactions between predators and their 

ecosystems enables scientists to understand important ecological processes that 

structure ecosystems. The genetic analysis of predation, through the recovery and 

amplification of diagnostic DNA barcodes from the predator and/or their prey, offers 

taxonomically sensitive techniques for investigating trophic interactions. Genetic 

techniques for the analysis of degraded DNA have undergone rapid changes and 

advancement within the last 20 years, and these techniques are now widely available 

and applicable. Here I reviewed the recent applications of genetic techniques for the 

analysis of predator diets to investigate common themes and advancements for 

ecology, as well as significant limitations and research needs that have been 

highlighted after two decades of direct applications of genetic techniques in the field 

A total of 205 papers dating from 2002–2017 used DNA-based methods to analyse 

the diets of predators, either by identifying the predator and/or the prey. Through 

these studies, genetic techniques and in particular DNA metabarcoding have emerged 

as an excellent tool for the exploration of trophic interactions, particularly in complex 

ecosystems, for generalist predators and in ecosystems for which we have little prior 

knowledge. DNA metabarcoding can inform further analyses of predator trophic and 

foraging ecology, and genetic techniques can be combined with other methods of 

analyses to produce powerful ecological interaction models and insights into a 

predator’s true diet. Several ongoing challenges were identified in this review and do 

currently limit the use of genetic techniques including extracting quantitative 

information beyond frequency of occurrence, and the current paucity of long-term 

predator diet monitoring using genetic techniques. These limitations are the future 

research needs for genetic techniques of diet analysis and their improvement will 

serve to further strengthen a powerful method for ecologists. 
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2.2 Introduction 

 

Predators include the most threatened functional groups across the world’s 

ecosystems (Estes et al. 2011; Ripple et al. 2014) due to range reduction, population 

reduction and competition with people. Predators shape and are shaped by their 

ecosystems. However, our understanding of the ecological roles of predators in 

ecosystems is limited in space and time, there are still entire ecosystems and taxa for 

which little is known about important trophic processes (reviewed by Estes et al. 

2016). Humans also continue to alter interaction webs directly through the removal of 

predators (Ripple et al. 2014) or indirectly through climate change (Hamilton et al. 

2017). Understanding consumptive relationships linking predators to their ecosystem 

enables scientists to assemble food webs, to study and predict the ecological 

consequences of predation and the influence of resources on food webs (Estes et al. 

2013; Goldsworthy et al. 2013). Central to this question is understanding the diets of 

predators, for which a large array of methods and entire disciplines in science have 

been developed to suit the needs of the study systems: from morphological analyses 

of prey hard parts to molecular analyses of predator tissues using biological tracers 

(reviewed by Bowen & Iverson 2013). The trophic “holy grail” is accurate techniques 

for determining prey identities, proportions and ideally biomass consumed by a 

predator (reviewed by Pompanon et al. 2012). 

 Genetic markers are arguably the most universal biological tracers as every 

living organism is made up of them. Technological advances in the study of ancient 

DNA have vastly advanced our ability to extract useable DNA from even the most 

degraded environmental substrates (e.g. “coprolites” or ancient faeces) (Bon et al. 

2012). DNA-based methods thus present powerful and objective tools for exploratory 

diet analysis and the identification of ecological interactions. DNA represents directly 

what is present in the diet (Hargrove et al. 2012), has greater taxonomic resolution 

and sensitivity than traditional morphological techniques (Bowen & Iverson 2013; 

Deagle et al. 2009), requires less prior knowledge about the study system compared to 

other methods and molecular tools (e.g. taxonomic expertise, stable isotopes) 

(Valentini et al. 2009) and can be thus applied to a broad suite of study systems. 

Additionally, DNA-based methods that estimate the relative contribution of prey in 
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predator diets have also very recently been developed (Thomas et al. 2016; Thomas et 

al. 2014). 

 The literature on the genetic analysis of predator diets now spans over 20 

years since genetic methods were first applied in the 1990’s to this purpose (reviewed 

by Symondson 2002). There are several thorough reviews on the technical advances 

and past or current limitations in molecular methods of diet analysis (Table 2.1). 

Several reviews also appraise the advantages and disadvantages of DNA-based 

methods in comparisons with other methods of diet analysis for specific groups of 

predators (Table 2.1). DNA-based methods of diet analysis have evolved rapidly, 

from early bacterial cloning techniques to quantitative polymerase chain reaction 

(qPCR) (Jarman et al. 2002; Sheppard & Harwood 2005; Symondson 2002). The field 

of environmental DNA experienced a dizzying succession of high-throughput 

sequencing (HTS) or next generation sequencing (NGS) technologies in under 20 

years (reviewed by King et al. 2008, Pompanon et al. 2012, Taberlet et al. 2012). The 

development of new HTS and NGS platforms has dramatically improved sequencing 

capacity, enabling effective and rapid sequencing of mixed environmental samples 

(reviewed by Staats et al. 2016). 

There has been a recent surge in the number of publications using DNA-based 

methods to assess predator diets. Beyond methodological reviews, there has been very 

little recent synthesis of the direct applications of DNA-based methods of diet 

analysis (Figure 2.1), and of the contribution of this body of work towards a deeper 

understanding of the ecological roles of predators. The majority of published papers 

are of primary research studies (Figure 2.1). In the context of rapid growth and 

technological development of molecular tools for ecologists, it is all the more 

important to take stock of what has been achieved in the recent development and 

applications of molecular methods for predator diet analysis.  

In this study, I therefore aim to provide an integrative review of the current 

body of work using DNA-based methods for the assessment of predator diets. The 

study aims are threefold: (i) to provide an overview of trends in the recent uptake of 

DNA-based methods for predator diet analysis; (ii) summarise progress to date and to 

appraise the contribution this work has made to understanding the ecological roles of 

predators; and (iii) to identify from recent practical applications of DNA-based 

predator diet analyses, what are critical limitations, advancements and future 
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directions needed to harness the full potential of genetic methods to revolutionise 

trophic ecology. 

Table 2.1 Reviews (n = 14) of DNA-based methods for the analysis of predator diets 
and trophic interactions from 2002–2017. They were categorised either as (i) 
methodological for broad reviews of technical and applied aspects of DNA-based 
analysis of predator diets, or (ii) group-specific for reviews of the methods of 
analysing diets pertaining to particular taxonomic groups. 

Type Author/s (Year) Paper title 

M
et

ho
do

lo
gi

ca
l 

Symondson (2002) Molecular identification of prey in predator diets 

Sheppard and 
Harwood (2005) 

Advances in molecular ecology: tracking trophic 
links through predator-prey food-webs 

Hudson (2008) 

Sequencing breakthroughs for genomic ecology and 
evolutionary biology 

King et al. (2008) 

Molecular analysis of predation: a review of best 
practice for DNA-based approaches 

Valentini et al. 
(2009) 

DNA barcoding for ecologists 

Bucklin et al. 
(2011) 

DNA Barcoding of Marine Metazoa 

Pompanon et al. 
(2012) 

Who is eating what: diet assessment using next 
generation sequencing 

Yoccoz (2012) The future of environmental DNA in ecology 

G
ro

up
-s

pe
ci

fic
 

O'Rorke et al. 
(2012) 

PCR enrichment techniques to identify the diet of 
predators 

Tollit et al. (2006) 

Estimating diet composition in sea lions: Which 
technique to choose? 

Barrett et al. 
(2007b) 

Diet studies of seabirds: a review and 
recommendations 

Bowen and Iverson 
(2013) 

Methods of estimating marine mammal diets: A 
review of validation experiments and sources of bias 
and uncertainty 

Furlong (2015) 

Knowing your enemies: Integrating molecular and 
ecological methods to assess the impact of arthropod 
predators on crop pests 

Adams et al. (2016) 

A century of Chinook salmon consumption by 
marine mammal predators in the Northeast Pacific 
Ocean 
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Figure 2.1 Trends in the number of research articles published from 2002–2016 on 
DNA-based analyses of predator diets by type of paper (n = 199 papers). Brief 
communications included mini-reviews, opinion pieces and letters on the topic of 
genetic analysis of predator diets, typically less than 5 pages. Papers from 2017 (n = 
6) have been excluded from graphical summaries of the data by date because the year 
had not yet ended at the time of writing and thus trends for 2017 were not yet 
representative. 
 

2.3 Data collection and terminology 

 

2.3.1 Definitions 

 

DNA-based methods are used to identify predator and prey through the targeted 

amplification of unique genetic markers or “barcodes” from predator or prey tissues 

(reviewed by King et al. 2008). DNA barcoding is the process by which species can 

be identified from short DNA sequences (Hebert et al. 2003a). When DNA based 

identification of taxa is applied to the mass amplification of DNA barcodes using 

NGS technologies, it is referred to as DNA metabarcoding (Taberlet et al. 2012). 

DNA metabarcoding techniques enable the identification of multiple taxa from a 

single bulk environmental sample containing degraded DNA (reviewed by Staats et 

al. 2016 and Taberlet et al. 2012).  
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The use of the term ‘DNA metabarcoding’ throughout this review refers to the 

bulk amplification and sequencing of group-specific or universal barcodes that are 

then compared to local or global databases. By contrast, I refer to species-specific 

assays or primers for the amplification of DNA from single taxa, and these samples 

can be individually sequenced and verified, or samples can be screened using probes 

or diagnostic PCR. As an alternative to the terms ‘DNA-based methods’ or ‘DNA 

metabarcoding’, these terms are often referred to in the literature as ‘molecular’ or 

‘genetic’ methods/analyses (King et al. 2008; Pompanon et al. 2012; Symondson 

2002). Here, I use the alternative term ‘genetic methods/analysis’ to avoid potential 

confusion with other molecular methods such as fatty acid or stable isotope 

techniques.  

 True predators kill and consume other animals, and here I have taken 

predators to be at least third-order through to fifth-order consumers, that is they must 

consume at least herbivores or above (Terborgh & Estes 2010). For the purposes of 

this review, predators belong to the kingdom Animalia and typically consume 

organisms from that kingdom. Predators from the papers collated in this review 

belonged to the phyla Mollusca, Arthropoda and Chordata. For this review, studies 

were considered if they investigated predation using DNA-based methods primarily to 

genetically identify the prey, but also the predator. Additionally, predator DNA can 

also be amplified to identify the predator, either from their faeces or from the remains 

of their prey. 

 

2.3.2 Literature search 

 

Literature on the analyses of predator diets using DNA-based methods were compiled 

by searching the ISI Web of Science database (2002–July 2017) using the following 

criteria: TOPIC (diet analysis), AND TOPIC (DNA) AND TOPIC (predator or 

carnivore). The literature was searched from 2002 until present, following the early 

review of DNA-based diet assessment by Symondson (2002) and since the initial 

application of quantitative PCR for predator diet analysis by Jarman et al. (2002). We 

selected every article that reviewed or performed diet analyses for predators using 

DNA-based methods to identify the predator and/or prey, and also papers that 

reviewed or undertook any combination of methods of diet analysis that included 
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DNA-based methods. The compilation was supplemented by subsequently searching 

material cited within those articles including published journal articles, namely the 

special issue by Molecular Ecology on the “molecular detection of trophic 

interactions” (2014, vol. 23), as well as unpublished theses. Information was gathered 

from published reviews on DNA-based methods for diet analysis (Bowen & Iverson 

2013; King et al. 2008; Pompanon et al. 2012; Valentini et al. 2009) and the 

references cited therein were searched. A total of 205 papers were collated in this 

review and these are listed in Appendix A. 

The information extracted from the literature first included coarse detail, such 

as the date of the study and the type of paper (i.e., primary research article, review) 

(Figure 2.1). Primary research papers were then searched using a framework of 

questions (Table 2.2). These questions relate to the broad aims of the studies (i.e., 

methodological development/validation or application); to specific details of a study’s 

design, use of comparative methods of diet analysis, method of sampling and also the 

duration of the study (Table 2.2). The specific genetic technique and aim of that 

technique were noted. Additionally, I recorded the predator targeted by a study, as 

well as the location for field-based studies and the method of sampling used (Table 

2.2). These questions aimed to quantify broad trends in the recent applications of 

DNA-based methods for the analysis of predator diets. It must be noted that papers 

from 2017 (n = 6) have been excluded from graphical summaries of the data by date 

because the year had not yet ended at the time of writing and thus trends for 2017 

were not yet representative. These papers were, however, included in any figures that 

illustrated trends irrespective of the date of publication. 

Primary research articles were also qualitatively searched for specific 

conclusions drawn from the development or application of genetic techniques and 

their utility in predator diet analysis. Additionally, the research output was searched 

for discussion of technical limitations and recommendations stemming from the use 

of genetic techniques to answer their research questions. 
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Table 2.2 Framework of queries systematically applied to the reviewed primary research articles.  

Query Categories Additional description 

Aim  

(Figure 2.3) 

(i) Methods 
development/validation 

Primarily develops, optimises and/or validates methods, including assays, 
workflow and/or primer development. Methods are typically validated and 
compared in the laboratory and/or field through small-scale trials. 

Method application: Primarily applies a pre-existing method, and can include some study-specific 
optimisation and methods comparisons 

(ii) exploratory diet description For the exploratory descriptive analysis of predator diets, often in novel species or 
systems 

(iii) ecological investigation Application of DNA-based methods in studies where the main aim is investigating 
an ecological question, often in addition to diet description. Includes: detection of 
invasive species, species of conservation value, targeted fisheries, food web 
parameters and modelling. 

Technical strategy 
(Figure 2.2) 

DNA Metabarcoding Uses universal and group-specific primers to recover the biodiversity of a 
predator's diet 

Targeted predator/prey assay Uses targeted primers or assays to recover the DNA of specific predators and 
specific prey 

Targeted predator Uses targeted primers or assays to identify the predator 

Targeted prey Uses targeted primers or assays to identify specific prey of interest 
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Table 2.2 Queries for review continued.  

Query Categories Additional description 

Study design  
(Figure 2.4) 

Captive Primarily conducts experiments in captivity or a laboratory using samples 
generated from these experiments 

Wild Primarily field-based study using samples from wild animals 

Combination Usess a combination of captive-based experiments and wild-derived samples 

Latitudinal region of 
study  

(Figure 2.5) 

Tropical, subtropical, 
temperate, alpine*, subpolar, 
polar and combination of 
regions 

The latitudinal region studied is ascribed based on the latitude and geographic 
region reported in the study. *Alpine environments largely refer to studies from the 
Himalaya, the high Alps and those conducted in high mountain environments at 
temperate and polar latitudes. 

Study taxa  
(Figure 2.5) 

Class, order, genus and 
species 

Data for Class are reported in this review 

Number of predators 
studied (Figure 2.6) 

1–5 and >5 The number of predators that are the object of the study and of dietary analysis 

Duration of study  
(Figure 2.6) 

Single sample or sampling 
event, seasons (1–3), years 
(1–5), >5 years 

For field-based studies only 

Method of sampling Faeces, regurgitates, whole predator, prey tissues, gut content (lethal/non-lethal) 
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Table 2.2 Queries for review continued. 

Query Categories Additional description 

Comparison of diet 
analysis methods 

(Figure 2.7) 

Direct* Refers to studies that apply genetic and non-genetic methods of diet analysis to 
the same sampling units in order to directly compare the resulting output 

Complementary* Studies using both genetic and non-genetic methods to analyse predator diets, but 
usually in a complementary strategy where genetic methods are used to identify 
tissues that cannot be identified morphologically, or where two methods are 
applied to different sampling units and are not directly comparable 

None Studies using only genetic methods to analyse predator diets 

*Comparative 
method (Figure 2.7) 

Morphology (hard-part analysis), 
stable isotope analysis (SIA), 
acoustic tracking, observation 

For studies using a direct or complementary strategy for integrating DNA-based 
and other methods of diet analysis 
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2.4 The rise of DNA metabarcoding for predation ecology and overview of 

applications 

 

2.4.1 Summary of recent advances and research trends 

 

The earliest applications of genetic techniques for diet analysis in vertebrate systems 

were typically for the identification of predator DNA from faeces, the remains of 

which were assessed using morphological or histological techniques (reviewed by 

Symondson 2002 and Sheppard & Harwood 2005). For invertebrate study systems, 

early applications involved targeting the specific species or genus of prey 

(Symondson 2002). DNA-based methods of diet analyses have since evolved from 

targeted and group-specific PCR-based techniques (Jarman et al. 2002) to DNA 

metabarcoding methods capable of processing complex environmental samples and 

producing large volumes of genetic data (these methods and advances are reviewed 

by Staats et al. 2016 and Taberlet et al. 2012). The most significant recent progress 

relevant to molecular diet analysis includes: advances in sequencing technologies, 

DNA metabarcoding methods and in cost benefit of DNA-based methods (reviewed 

by Hudson 2008, King et al. 2008, and Pompanon et al. 2012). These advances have 

made molecular techniques vastly more accessible to the scientific community (Staats 

et al. 2016; Taberlet et al. 2012; Yoccoz 2012). 

 Technological and methodological developments alongside global initiatives 

for biodiversity barcoding and compiling genetic databases ultimately paved the way 

for large-scale DNA metabarcoding studies (GenBank, http://www.ncbi.nlm.nih.gov; 

EMBL, http:// www.ebi.ac.uk/embl; DDBJ, http://www.ddbj.nig.ac.jp; Consortium 

for the Barcode of Life, CBOL, http://barcoding.si.edu; Barcode of Life Data 

Systems, BOLD, http://www.barcodinglife.org; Moorea BIOCODE 

http://www.mooreabiocode.org/) (reviewed by Bucklin et al. 2011; Valentini et al. 

2009). These databases provide an unambiguous reference that facilitates species 

identification. Global databases also expand scientific horizons – given the known 

number of described species compared with that which are yet to be discovered, 

genetics offers a rapid method of accounting for them (Bucklin et al. 2011). 

 Naturally, a proliferation of applications by ecologists has followed recent 

methodological advances. The number of studies using DNA-based methods for the 
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analysis of predator diets has increased from only a handful in 2002 (Symondson 

2002) to over 200 in 2017, included in this review (Figure 2.1). The bulk of these 

studies have appeared in print within the last decade, roughly tracking the increasing 

affordability and applicability of these methods (Hudson 2008; Yoccoz 2012). These 

studies mainly utilized targeted predator or prey assays in the earlier days (prior to 

2009). The number of studies utilising species-specific methods of identifying prey 

from predation events or predator tissues have remained relatively stable at under 7 

studies per year since 2002 (Figure 2.2). The recent proliferation of molecular diet 

studies almost entirely consists of studies using DNA metabarcoding methods (Figure 

2.2). Additionally, the recent publication of a special issue on “the molecular 

detection of trophic interactions” by Molecular Ecology (Symondson & Harwood 

2014) has no doubt contributed to the recent peak in publications on this topic in 

2014. 

 
Figure 2.2 Trends in the method of molecular diet analysis used by primary research 
articles from 2002–2016 (n = 170). Here, the “method” refers to whether studies used 
DNA metabarcoding techniques or taxon-specific assays to target predator or prey 
DNA, or both (Table 2.2). Another 6 papers from the first half of 2017 utilised only 
DNA metabarcoding methods, but are not included in this graph as they may not be 
representative of 2017 as a whole. 
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Due to ongoing advances in methods of extracting, amplifying and sequencing 

DNA, the development and validation of genetic methods for predator diet analysis 

remains an important contribution of the research output in this field (Fig 2.3). 

Overall, trends in the aims of primary research papers have not yet stabilised, 

concerning the development and validation of methods or their application from 

exploratory diet analysis to more complex ecological questions (Figure 2.3). Studies 

applying pre-existing or well-developed methods to predator diet analysis have been 

conducted ever since these methods have been available (Figure 2.3). However, 

applications towards descriptive diet studies and for complex ecological 

investigations have consistently dominated primary research publications since 2009 

(Figure 2.3). 

 

Figure 2.3 The proportional contribution of primary research papers from 2002–2016 
according to their primary aims: (i) the development and/or validation of molecular 
methods for predator diet analysis; (ii) the application of validated methods for 
exploratory diet analysis; or (iii) the application of validated DNA-based methods in 
studies where the main aim is investigating an ecological question, in addition to diet 
description. 

 

Applications of genetic tools for predator diet analysis include: assays for 

targeted predator or prey species detection (e.g., Jarman & Wilson 2004; Sigler et al. 
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2006); exploring the genetic and biological diversity of predator diets using broad 

molecular barcodes for modern (e.g., Carreon-Martinez et al. 2011; Deagle et al. 

2009; Peters et al. 2014) and ancient predators (Bon et al. 2012). Additionally, the 

genetic analysis of predator diets has been increasingly applied for the monitoring of 

trophic interactions for conservation and management purposes, involving threatened 

or endangered species (e.g., Berry et al. 2017; Hanson et al. 2010; Keskin 2016; 

Wegge et al. 2012), invasive species (e.g, Braid et al. 2012; Côté et al. 2013; Witczuk 

et al. 2013) and for ecosystem-based modelling (e.g, Bartley et al. 2015; Bowser et al. 

2013; Wirta et al. 2015). 

 
2.4.2 From the laboratory to applications in the field 

 

King et al. (2008) identified the need for applications of molecular analysis 

techniques to investigate complex trophic interactions in the field and the authors 

provided a user-friendly guide to do so, still useful for all predators, years after the 

technology reviewed has been superseded. Prior to 2002, the molecular detection of 

prey remains in predator tissues was at the time restricted to arthropod predator-prey 

systems, and was almost exclusively laboratory-based (reviewed by Symondson 2002, 

and Sheppard & Harwood 2005). Jarman et al. (2002) were among the first to develop 

and apply a group-specific PCR-based approach for prey DNA detection in a non-

terrestrial arthropod and wild system, for the detection of krill in Adélie penguin and 

pygmy blue whale faeces. 

The development and validation of methods largely involves captive feeding 

trials, as well as a combination of captive trials and the validation of methods using 

wild samples (Figure 2.4), and these types of studies dominated the research output 

largely until 2009. Studies applying validated methods for exploratory diet analysis 

and the investigation of food webs were almost exclusively based on samples derived 

from wild predators or ecosystems (Figure 2.4), and studies using wild-sourced 

samples now account for the majority of the research output on the molecular analysis 

of predator diets. Several applied studies also used a combination of captive trials and 

wild sources of sampling, usually in order to develop a primer and test its application 

prior to undertaking larger-scale ecological studies (Bobrowiec et al. 2015; Collier et 

al. 2014; Karp et al. 2014; Suzuki et al. 2006).  
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Figure 2.4 The number of primary research papers from 2002–2017 categorised by  
their primary aims: (i) the development and/or validation of molecular methods for 
predator diet analysis; (ii) the application of validated methods for exploratory diet 
analysis; or (iii) the application of validated DNA-based methods in studies where the 
main aim is investigating an ecological question, in addition to diet description. 

 

Applications of DNA-based methods for diet analysis have been biologically 

and geographically diverse (Figure 2.5). Studies spanned 11 Classes of the Kingdom 

Animalia, however, the vast majority of studies involved animals from the Phylum 

Chordata (Figure 2.5a). Nearly half of all studies were conducted on mammals, which 

represent only 2% of Vertebrate diversity in an array of studies that also included 

Arthropods and Molluscs. The coverage of species within the classes recorded is 

likely very patchy. The numbers of studies conducted in terrestrial compared to 

aquatic ecosystems were roughly even. However, 50% of primary research studies 

conducted in the wild were in temperate ecosystems (Figure 2.5b). This review 

therefore highlights a large contribution of temperate ecosystems, and of mammalian 

predatory species in the literature on the molecular analysis of predator diets. This 

trend is likely related to the demand for research in these topic areas. DNA-based 

methods have been applied to the assessment of specific trophic interactions involving 

species of commercial or conservation value, including deleterious interactions 

between native and invasive species (e.g., Kvitrud et al. 2005; Marlow et al. 2015; 

Schreier et al. 2016). 
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Figure 2.5 Proportions of primary research articles according to a) the Class of the 
predator investigated using genetic methods of diet analysis, and b) the latitudinal 
region of the study system for field-based studies only from 2002–2017. 
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Studies typically focused on a single predatory species and the duration of 

molecular diet analysis studies reviewed was generally short. Out of 176 primary 

research articles, 110 involved studying the diet of a single species (Figure 2.6a). Of 

the studies conducted in the field (n = 135), several were conducted from a single 

sample or brief sampling event, more than half were conducted over 1-2 seasons (Fig 

2.6b). Forty-five studies (33%) involved sampling over multiple years (Figure 2.6b), 

however the temporal resolution for the longer-term studies became patchy. These 

details are consistent with the recent development of genetic techniques and thus the 

recent nature of their application. 
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Figure 2.6 The number of primary research articles (from 2002–2017) as a function 
of a) the number of predatory species investigated within each study; b) the duration 
of study. Studies with > 5 targeted predatory species included several studies with 
very large numbers of targeted species, of up 108 targeted predators. 
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2.5 Findings and future perspectives from two decades of applications of 

DNA-based diet analysis 

 

“High-throughput DNA sequencing (HTS) of diets is a rapid way to parameterize 

food webs at enhanced taxonomic resolution, and potentially, to optimize the 

functioning of ecosystem models.” – Berry et al. (2015). 

 

Genetic methods of diet analysis have advantages and disadvantages, many of which 

are common to other methods of diet analysis, and some are unique to genetic 

methods. The strengths and weaknesses of genetic methods of diet analysis have been 

reviewed in particular with regard to methodological advances (King et al. 2008 and 

Pompanon et al. 2012) and for particular study systems or taxa (Barrett et al. 2007b, 

Bowen & Iverson 2013, Furlong 2015). Many of the main gains and limitations of 

DNA-based methods previously highlighted in reviews and primary literature remain 

relevant to current predator diet analyses. Following the recent proliferation of 

applied research, I synthesize the mains strengths of genetic methods for trophic 

ecology in section 2.5.1. The limitations of genetic methods are also the main 

research needs for this field, and in section 2.5.2, I therefore synthesize the limitations 

of genetic methods of diet analysis that are commonly reported in current research, 

and summarise research needs that are outlined in the recent primary literature 

following a growth in direct applications of this method. An overall summary of 

research outputs, limitations and recommendations is provided in Box 1. 

 

2.5.1 Genetic methods for exploratory ecology and complementary to other 

methods 

 

DNA metabarcoding is emerging as a highly suited tool for the exploration of 

predator diets, particularly in the detection of species where traditional methods are 

unreliable (Egeter et al. 2015; Hargrove et al. 2012; King et al. 2008; Peters et al. 

2015). A large number of the reviewed studies applied DNA-based methods alone 

precisely to explore trophic interactions at high taxonomic resolution. This review 

also identified close to 40 studies that directly compared DNA-based methods to other 
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methods of diet analysis, and the latter almost always consisted of morphological 

analyses of prey remains (Figure 2.7). The majority of these comparative studies 

corroborated the recommendation of DNA over morphological methods for improved 

taxonomic resolution and scope of predator diets. Additionally, the vast majority of 

the 176 primary research articles reviewed herein reported improved taxonomic 

resolution and sensitivity of predator-prey interactions compared to previous 

knowledge of those interactions. 

 
Figure 2.7 Number of studies (from 2002–2017) that conducted comparisons between 
DNA-based methods and other methods of diet analysis (‘directly’ or ‘indirectly’), or 
did not undertake a comparison (‘none’) but used genetic techniques to identify the 
predator or prey and then used a single method to analyse predator diets. Direct 
comparisons involved the same methods being applied to all sampling units, whilst 
indirect comparisons featured the application of methods to different sampling units 
(Table 2.2c). SIA = stable isotope analysis. 
 

 Genetic methods were particularly useful in identifying remains that would 

otherwise be unidentifiable (i.e., blood, soft tissues, larvae, eggs). This was proven 

across the breadth of taxa studied, for example in the identification of marine 

mammal tissues in the stomachs of sharks (Porsmoguer et al. 2015; Sigler et al. 

2006), for the identification of highly digested remains in Australian sea lions (Berry 
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et al. 2017; Peters et al. 2014; Peters et al. 2015), in some reptiles (Brown et al. 

2014b; Goiran et al. 2013) and for the identification of blood in bat and spider diets 

(Ito et al. 2016; King et al. 2008). Genetic methods were useful in the identification 

of prey from small arthropod or larval predators (O'Rorke et al. 2013; Paula et al. 

2016; Roura et al. 2012; Sint et al. 2015). 

 DNA-based methods were extremely useful in the identification of ecological 

interactions using either broad metabarcoding approaches or targeted species-specific 

assays. Numerous studies developed species-specific and cost-effective assays that 

could be applied to large sample sizes and large numbers of predatory taxa, for the 

detection of specific species or families of high conservation or commercial interest 

(Fox et al. 2012; Hunter et al. 2012; Schreier et al. 2016). Fox et al. (2012) used a 

TaqMan probe to identify the predation of plaice Pleuronectes platessa eggs in the 

stomachs of 3373 fish, crustacean and cephalopod individuals, effectively assaying 42 

species, representing a monumental effort and largely impossible task had they used 

virtually any other method. Another study also utilised genetic techniques not only to 

identify the prey species of interest, but also used several microsatellite markers to 

identify the origin of prey stock at high spatial resolution (Skaala et al. 2014). 

 With advances in DNA metabarcoding techniques, genetic techniques are 

emerging as a particularly strong and universal method with which to investigate 

trophic interactions in the following cases: (i) ecosystems for which we lack prior 

knowledge, (ii) diverse ecosystems, and (iii) for complex trophic interactions 

involving generalist predators and omnivores, that are likely to consume a broad 

variety of prey. DNA metabarcoding is universally applicable to taxa and ecosystems 

without extensive prior taxonomic knowledge of prey, for example of their 

identifiable remains, particularly useful for deepsea ecosystems and for understudied 

predators (Braid & Bolstad 2014; Deagle et al. 2005; Dunn et al. 2010). DNA 

metarbarcoding techniques have been instrumental in capturing the diversity of prey 

and of trophic interactions in complex ecosystems (Hardy et al. 2017; Razgour et al. 

2011; Wirta et al. 2015). 

 A large number of studies across multiple taxa and ecosystems highlighted the 

benefits of using a combination of methods, including DNA-based methods, as best 

practice to provide the most comprehensive and ecologically relevant information on 

predator diets (Chiaradia et al. 2014; Taguchi et al. 2014; Tollit et al. 2006; Tollit et 
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al. 2009). All methods of diet analysis that sample the predator’s gastro-intestinal 

tract suffer a temporal resolution penalty in exchange for detailed information on prey 

species or abundances (Pompanon et al. 2012). By contrast, other methods can 

provide higher temporal and spatial resolution (e.g., stable isotopes, fatty acids) but 

often at reduced taxonomic information, especially for complex ecosystems (Barrett 

et al. 2007b; Chiaradia et al. 2014). These limitations are thoroughly reviewed and 

discussed in the literature (see Table 2.1). A total of 54 primary research articles, or 

39% of those reviewed, combined DNA-based methods with other methods of 

predator diet analysis, either using complementary or comparative strategies. Other 

methods used to assess predator diets and foraging ecology included visual 

observations, predator tracking using biotelemetry, morphological identification of 

prey remains, stable isotope and fatty acid analyses. Combining complementary 

methods can offset the limitations and potential biases of either method used, and is a 

strong strategy for the investigation of predator diets.  

DNA-based diet analysis techniques can be used to inform strategies for 

predator diet analysis (Tollit et al. 2009), particularly in ecosystems with limited prior 

knowledge of trophic interactions or for complex ecosystems. Two studies directly 

compared DNA-based analysis of predator diet with a higher-temporal resolution 

method of diet analysis, one with the analysis of stable isotope signatures (SIAs) from 

little penguins (Eudyptula minor) (Chiaradia et al. 2014) and Tollit et al. (2006) 

compared DNA-based methods with morphological, stable isotope and fatty acid 

techniques in Steller sea lions (Eumetopias jubatus). Using a controlled feeding trial, 

Chiaradia showed that models incorporating combined DNA-based and SIA 

information provided the best estimates for the known diet consumed by little 

penguins. DNA metabarcoding studies can objectively contribute to building prey 

libraries for the development of tissue corrective factors for further quantitative DNA-

based studies, to identify important species for hard-part analyses in systems where 

prey remains are easily recoverable, and to inform species-specific calibrations for 

fatty acid and stable isotope techniques. Genetic techniques can thus be used to help 

overcome structural uncertainty in food webs, a key limitation to ecosystem 

modelling (Gregr & Chan 2014). The opposite is also true, that other methods of diet 

analysis can also be used to provide additional spatial or temporal context to results 

obtained from DNA-based methods. For those intending to combine methods of diet 
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analysis, the choice of combination of dietary analysis methods is necessarily subject 

to the study system and predator, and the specific aims of the study. 

DNA-based methods offer non-invasive approaches to analysing predator diets 

that are particularly suited to exploratory investigations of species interactions and in 

particular for protected species. Applications of DNA-based methods for predator diet 

analysis used both invasive and non-invasive methods of sampling predator tissues 

(King et al. 2008). The majority of primary research papers based on wild-caught 

samples used predator faeces to analyse their diets (n = 81 of 135). Less than a dozen 

of those studies reported needing to handle the animals to obtain faeces (Brown et al. 

2014b; Duda et al. 2009; McCracken et al. 2012). Sampling methods also included 

the collection of predator gut contents (n = 46), although 5 studies obtained gut 

contents from animals that were: bycatch (Méheust et al. 2015), stranded (Dunshea et 

al. 2013) or killed by hunters (Oehm et al. 2011). Six studies demonstrated non-lethal 

methods of stomach flushing to obtain gut contents (Barnett et al. 2010; Goiran et al. 

2013). Whilst still invasive, the latter represent an obvious methodological 

improvement to lethal sampling. Lethal methods were more common in arthropods, in 

larval phases of animals, and in fishes, compared to other vertebrate taxa. Finally, 

DNA was also obtained in predator regurgitates (Alonso et al. 2014) and from prey 

tissues (Ford et al. 2011; Nystrom et al. 2006). Studies are largely aiming to adopt 

non-invasive and non-lethal methods of sampling from predators and ecosystem. 

 

2.5.2 Challenges and research needs identified through applications of DNA-

based diet analysis 

 

The main challenges highlighted in the reviewed studies included: (i) deficiencies in 

global genetic databases, (ii) lack of accounting for technical and biological biases in 

quantitative information from DNA sequence data, (iii) the influence of secondary 

predation on genetic diet information, and (iv) the current paucity of long-term studies 

mapping trophic interactions, and the temporal resolution of DNA-based methods. 

The vast majority of studies reviewed herein reported significant advances in 

understanding predator-prey interactions within their study systems using DNA-based 

methods, however I would recommend carefully assessing the benefits as well as the 

limitations of DNA-based methods for each prospective case. Where a study’s 
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priorities quantitative information on prey consumption, or longer-term integration of 

diet over time, then other methods exist that are fit for those purposes. The following 

are several limitations to DNA-based methods of diet analysis, some strategies to 

mitigate those limitations and further research needs to address them. 

 

2.5.2.1 Global sequence reference databases and limitations of barcoding 

Bucklin et al. (2011) reviewed the global genetic barcoding effort for all marine 

metazoa, finding that for a ~648 bp region of the mitochondrial cytochrome oxidase c 

subunit I (COI) gene, only roughly 9.5% of all known marine species have been 

barcoded. This effort is likely to be even smaller for other genes that have received 

less attention from barcoding initiatives. Inconsistencies in large-scale barcoding 

efforts for shorter genes are problematic for predator diet analyses that largely use 

digested materials or faeces containing degraded DNA, and thus primarily target 

shorter barcodes and even ‘mini-barcodes’ (Staats et al. 2016). The reviewed primary 

research articles cited data deficiencies for both terrestrial and marine invertebrates 

(Berry et al. 2015; Deagle et al. 2007; Sakaguchi et al. 2017). Even groups that are 

considered well represented in global databases, such as Chordates, have variable 

representation for the genetic diversity within species (Bucklin et al. 2011). 

A significant research need is therefore that of large-scale efforts dedicated to 

improving the coverage of global and local biodiversity, as well as the coverage of 

genes in sequence reference databases (Dunn et al. 2010). Despite deficiencies in 

global sequence reference databases, DNA-based methods remain taxonomically 

sensitive. Significant global and local efforts to sequence the genes of organisms 

across ecosystems are cited in section 2.4.1 and are expected to vastly improve the 

taxonomic resolution of DNA-based investigations of ecological interactions. The use 

of microsatellite DNA paired with detailed reference databases, such as that of 

salmonids, can reveal information at even finer resolution than the species level 

(Hanson et al. 2010; Skaala et al. 2014). Skaala et al. (2014) were able to track source 

populations of Atlantic salmon prey consumed by brown trout. Individual predators 

have been identified from their scats using multiple microsatellite markers (Aryal et 

al. 2014). In the near future, it may be possible to apply next-generation population 

genetics techniques for the analysis of the genetic diversity of within prey species 

consumed by predators, affording highly detailed analyses of food webs.  
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Discrepancies between the taxonomic and genetic classifications of animals 

also limit the accurate identification of species for some groups of animals, due to 

potential misclassifications (Packer et al. 2009). Vital-Rodríguez et al. (2016) were 

aiming to distinguish several closely related predatory fish species, but were unable to 

distinguish them morpholohically or genetically, and indicate that this could be due to 

taxonomic and genetic differences in the classification of their study species. This 

limitation was overcome by considering the genetic diversity within a group of 

animals, usually taken to be > 3% for a given gene to distinguish between species and 

is known as a divergence threshold (Hebert et al. 2003b). However, gene loci used to 

target specific groups or species must be carefully chosen and the gene region must be 

highly conserved for the targeted taxa in order to differentiate between taxa (Jarman 

et al. 2004). Many studies thus use molecular operational taxonomic units (MOTUs 

or OTUs), based on known divergence thresholds between taxa, where reference 

sequences are unavailable but where legitimate prey sequences were identified (Berry 

et al. 2015). Best practice for the accurate differentiation and identification of prey 

species and taxonomic groups is to use multiple redundant primers based on different 

regions of an animals’ genome, thus targeting multiple loci (Valentini et al. 2009).  

 

2.5.2.2 Limitations for certain taxa and ecosystems 

There are of course ecosystems and study taxa for which genetic methods of diet 

analysis are opportunistic at best. Genetic methods rely on both the recovery of 

predator digesta that are representative of their diet, and that produce useable genetic 

information following digestion. One study in this review reported failing to identify 

prey taxa in one reptile (Falk & Reed 2015) and suggested that samples from the 

gastrointestinal tract of Burmese python could be too digested, a problem that could 

be common in reptiles. Additionally, sampling is necessarily opportunistic for deep 

diving marine mammals and cryptic animals, whose digesta are difficult to access and 

if they are accessible – they are unlikely to be representative of that predator’s diet. 

Combined strategies for diet analyses in these taxa and ecosystems are recommended 

to obtain as much information as possible from sampling efforts, especially in cases 

where difficulties in sampling would not bias the ability to retrieve useable DNA from 

digesta. However, DNA-based methods may not be suited to systems where the 

recovery of predator digesta are problematic and where any recovery of such digesta 
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are not likely to be representative of that predator population. Indeed, the 

aforementioned limitations will also affect any methods that sample from such 

predator’s GI tracts in these cases. 

 Studies finding non-significant results and problems from applications of 

DNA-based methods applications are likely to be underrepresented in the literature. 

Largely, this is because those problems are then tackled by a particular laboratory and 

solved, thus publishing the solution. Alternatively, if one method of diet analysis 

failed to produce results then one can assume that another method would have been 

used and published. Non-significant results are useful for ecologists to know where 

genetic methods were particularly limited – for what study systems and animals. 

 Several studies have provided useful group-specific reviews of methods for 

predator diet analysis, including or exclusively reviewing DNA-based methods, for 

marine mammals (Tollit et al. 2006; Bowen & Iverson 2013), seabirds (Barrett et al. 

2007b), and arthropods (O’Rorke et al. 2012; Furlong 2015) (Table 2.1). Reptiles and 

fish are notably absent from these reviews (except where they may feature as prey), 

and prospective users of genetic methods to analyse the diets of predators within these 

taxonomic groupings would benefit considerably from system-specific studies that 

could guide them. 

 

2.5.2.3 Towards quantitative genetic analyses of ecological interactions 

Uncertainties surrounding the quantitative information that can be extracted from 

DNA sequence abundance information remain an ongoing challenge to applications 

of this method (Pompanon et al. 2012). Biological and technical biases exist for 

potentially every step in a genetic analysis workflow, from original DNA copy 

numbers and preservation in samples through to variations in their amplification and 

treatment in bioinformatics pipelines (Deagle et al. 2010; Deagle et al. 2006; Deagle 

et al. 2013; Deagle & Tollit 2006; Thomas et al. 2016; Thomas et al. 2014). DNA 

copy number will inevitably vary between different species and primers may vary in 

their efficiency for amplifying DNA for different species (King et al. 2008; Thomas 

et al. 2016). The age of the sample recovered could also affect DNA abundance that is 

recoverable in samples. At present, the most reliable metric reported by genetic diet 

analysis studies is that of frequency of occurrence. This is also the most common 

metric reported by traditional methods of diet analysis in predators.  
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Information on the magnitude of trophic energy flow, such as the biomass 

exchanged in trophic interactions (the trophic ‘holy grail’), are ultimately necessary to 

accurately model dynamic trophic interaction webs within ecosystems. In certain 

circumstances, the morphological analysis of prey remains offers information on the 

relative size, abundance and biomass of prey (Deagle et al. 2009; Fajardo et al. 2014; 

Taguchi et al. 2014). However, this information is circumstantial and based on the 

consumption of taxonomically identifiable prey remains and their survival through 

digestion (Peters et al. 2014; Peters et al. 2015; Pompanon et al. 2012; Tollit et al. 

2006). This method is largely unreliable for invertebrates, and is limited for 

vertebrates (Bowen & Iverson 2013; Furlong 2015). These limitations can currently 

be overcome by employing diet investigation strategies that combine genetic methods 

with morphological or biochemical methods of diet analysis. 

 There is growing evidence that relative and semi-quantitative information can 

be gleaned from genetic diet analysis. Deagle et al. (2005) showed that the prey 

proportions recovered by genetic screening of samples were roughly consistent with 

prey proportions consumed for Steller sea lions, but they cautioned that the 

information based on raw sequence abundance is semi-quantitative, should be treated 

with caution (Deagle et al. 2010) and can be affected by sequence data filtering 

protocols (Deagle et al. 2013). In a comparison between qPCR and HTS techniques, 

Murray et al. (2011) found highly reproducible results between techniques, but 

recommend sound DNA purification techniques that produce extracts free of 

inhibitors to obtain reproducible quantitative data between genetic methods used. 

Thomas et al. (2014) investigated technical and biological biases that may affect 

semi-quantitative and quantitative information from recoverable prey DNA. Thomas 

et al. (2014) identified biological biases in template DNA copy number as a 

significant source of bias in recoverable quantitative DNA information, and also 

differential digestion rates of prey as a secondary source of bias. Both issues could be 

corrected for based on the biochemical composition of tissues, namely the lipid and 

protein composition of tissues, whereby animals with high muscle density are 

associated with increased levels of mitochondrial DNA (Fernández-Vizarra et al. 

2011; Thomas et al. 2014). 

 Further investigation of correction factors for sources of bias in genetic 

information are needed for the development of quantitative metrics derived from the 
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genetic analysis predator diets (Thomas et al. 2016; Thomas et al. 2014). Tissue-

based correction factors offer solutions that are transferable across ecosystems 

(Thomas et al. 2014), whilst species-specific correction factors offer targeted 

solutions for the study of particular trophic interactions of conservation or commercial 

interest (Thomas et al. 2016). 

 

2.5.2.4 Limitations to taxonomic sensitivity: secondary predation, cannibalism 

and lower trophic-level interactions 

The recovery of genetic information in predator stomach or faecal samples resulting 

from secondary predation, the prey’s prey, is a commonly cited caveat for 

taxonomically-detailed diet information. In arthropod systems, genetic information 

from secondary predation was recoverable for several hours after the predator 

consumed its prey (Sheppard et al. 2005). In arthropod systems, this issue can be 

minimised by waiting several hours before collecting scats. This is obviously 

problematic for vertebrates, and very little research has been conducted to estimate 

the contribution of secondary predation to the genetic information obtained for 

predator diet analysis. One study to date has attempted to estimate this in a vertebrate 

study system by simultaneously sequencing the diets of a high-order predator and an 

important prey item and mesopredator. Bowser et al. (2013) detected the planktonic 

prey of herring in the faeces of adult puffins that had consumed herring, and also in 

the faeces of their chicks. Assessing the persistence of DNA from the predators’ prey 

in samples of the higher-order predator is a key recommendation for further research 

and for analyses of ecological interactions.  

 Secondary predation is an issue that is common, in one way or another, to all 

methods of dietary analysis that derive information from predator tissues. The most 

logical way to mitigate this issue is by obtaining better information on trophic 

interactions throughout food webs. Predators are typically a vulnerable functional 

group across the world’s ecosystems, and therefore the subject of much management 

and conservation effort and research attention (Ripple et al. 2014). However, 

information on trophic interactions involving the middle of complex food webs are 

currently limiting for trophic ecologists. There is therefore a need to conduct genetic 

dietary analyses on omnivores and herbivores (Valentini et al. 2009). For DNA 

metabarcoding of predator diets, it remains important to treat the identification of 
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seemingly rare and novel prey DNA with caution, and to carefully investigate the 

likelihood of these trophic interactions being primary or secondary. 

 The most abundant DNA typically recovered is that of the host, or predator, 

when either universal primers are used to explore diets or when the predator belongs 

to the same taxonomic group as do the target taxa (e.g., fish) (Berry et al. 2015). This 

raises questions surrounding the preferential amplification of predator DNA in such 

circumstances, either due to quantity or relative freshness in comparison to digested 

prey remains. Many studies overcame this issue by using a species-specific blocking 

primer, however they have the potential to introduce biases by screening out portions 

of the diet (Pompanon et al. 2012). Many studies also utilized multiple group-specific 

primers, in addition to universal primers, building redundancy in the amplification 

and identification of sequences (Berry et al. 2015; Jarman et al. 2004; Peters et al. 

2014). Berry et al. (2015) recommended incorporating redundancy in the number of 

sequences obtained, as well as the post-hoc removal of the host predator sequences. 

 Lastly, most DNA-based techniques for predator diet analysis do not allow the 

researcher to positively identify cannibalistic interactions using DNA-based methods 

of analysis (Braley et al. 2010; King et al. 2008). Cannibalism is known to occur 

among some mammals (Iverson et al. 2013), fish and particularly among invertebrates 

(King et al. 2008). Techniques are available to assess cannibalistic interactions within 

species, specifically with the use of DNA microsatellites to identify beyond the 

species (DeWoody et al. 2001; King et al. 2008). It is recommended to utilize such 

techniques where cannibalism is likely to compose a significant portion of a 

predator’s diet or where such interactions are important to elucidate, such as for 

conservation purposes (Iverson et al. 2013). 

 

2.5.2.5 Long-term data and complex ecological investigations 

The majority of studies reviewed involved singular species, and given the recent 

nature of the method, were often the first study to explore that species’ diet with this 

method and most sampled for one or two seasons. These trends are expected of a new 

investigative method for ecology. However, there is a clear issue of the longevity of 

genetic diet data for all predators, as most studies do not have previous genetic data 

with which to compare new results. Long-term datasets for genetic methods of diet 
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analysis are needed to observe dynamic ecological interactions and that are ultimately 

important for understanding ecosystem processes. 

The temporal scale of current DNA-based studies is further compounded by 

the fact that genetic information on predator diets are obtained by sampling from an 

animal’s GI tract (discussed in section 2.5.1), also an issue for morphological analysis 

of prey remains. Sampling from an animal’s GI tract naturally limits studies to within 

days or hours of predation events (Bowen & Iverson 2013; Tollit et al. 2006), 

depending on the study animal. These temporal limitations can be mitigated by 

implementing a rigorous sampling program that both frequently and extensively 

samples from the targeted population of predators, to ensure representative sampling 

of a population across time. Typically, diet studies that use minimally invasive 

strategies of sampling faeces offer the largest sample sizes and most cost-effective 

sampling compared to any other methods of sampling for predator diet estimation 

(Bowen & Iverson 2013). Indeed, taxon-specific probes enable rapid and objective 

screening of very large sample sizes and are extremely cost-effective for large-scale 

detections of specific taxa (Fox et al. 2012; Hunter et al. 2012). Decreasing costs of 

DNA metabarcoding techniques are also enabling researchers to process increasingly 

large amounts of information from mixed samples for more complex ecological 

questions (Taberlet et al. 2012). 

The next steps are to integrate DNA-based methods into new and existing 

long-term monitoring projects for ecological interactions. Syntheses of available diet 

information for certain taxa over long time periods offer important information on 

dynamic ecological interactions. DNA-based methods are likely to be improving the 

detection of ecological interactions (Adams et al. 2016) over the duration of time that 

these interactions have been monitored. Therefore, controlled comparative studies 

also remain important as they will enable researchers to better understand the types of 

information that can be gleaned from different methods and enable stronger syntheses 

of diet information across methods and over time.  
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2.6 Conclusions 

 

Genetic techniques are demonstrably powerful tools for the analysis of ecological 

interactions, food web mapping at high taxonomic resolution and enhancing 

ecosystem modelling. Genetic approaches significantly increase the taxonomic scope 

of dietary analyses and are particularly useful for investigating complex food webs 

and novel ecological interactions for which there is little prior information. The 

results of two decades of DNA-based diet analysis also highlight the benefits of 

combining multiple methods of diet analysis for optimal food web and ecosystem 

modeling in space and time. Genetic tools can be used to inform further research 

using different techniques for the investigation of ecological interactions. Further 

research is required in order to make full use of DNA metabarcoding methods, in 

particular to obtain quantitative information from DNA sequence data for detailed 

food web and trophodynamic modeling. Sophisticated, high-throughput and high-

yield methods are now widely available for the large-scale sequencing of 

environmental samples for the analysis of predator diets and application to complex 

ecological questions. Longer-term applications of these genetic techniques will 

greatly benefit research on predator ecology.  
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3 Assessing	the	trophic	ecology	of	top	predators	across	a	

recolonisation	frontier	using	DNA	metabarcoding	of	

diets	

3.1 Abstract 

 

The populations of many protected, top predator species that were once intensively 

hunted, are rebounding in size and geographic distribution. The cessation of sealing 

along coastal Australia and subsequent recovery of Australian (Arctocephalus pusillus 

doriferus) and long-nosed (Arctocephalus forsteri) fur seals represents a unique 

opportunity to investigate trophic linkages at a frontier of predator recolonisation. We 

characterised the diets of both species across two locations of recolonisation, one site 

an established breeding colony and a new but permanent haul-out site. Using DNA 

metabarcoding, high taxonomic resolution data on diets was used to inform ecological 

trait-based analyses across time and location. Australian and long-nosed fur seals 

consumed 76 and 73 prey taxa, respectively, a prey diversity greater than previously 

reported. We found unexpected overlap of prey functional traits in the diets of both 

seal species at the haul-out site, where we observed strong trophic linkages with 

coastal ecosystems due to the prevalence of benthic, demersal and reef-associated 

prey. The diets of both seal species at the breeding colony were consistent with 

foraging patterns observed in the centre of their geographic range, regarding diet 

partitioning between predator species and seasonal trends typically observed. The 

unexpected differences between sites in this region, and the convergence of both 

predators’ effective ecological roles at the range-edge haul-out site, correlate with 

known differences in seal population densities and demographics at newly recolonised 

locations. This study provides a baseline for the diets and trophic interactions for 

recovering fur seal populations, and from which to understand the ecology of predator 

recolonisation. 
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3.2 Introduction 

 

Pinnipeds are common high trophic-level predators in many ecosystems globally and 

may play a key role in structuring temperate food webs. Pinnipeds have experienced 

severe rates of population depletion globally through historical overexploitation and 

many species are currently recovering (IUCN 2017; Magera et al. 2013; McCauley et 

al. 2015). Nevertheless, most pinniped species are facing new anthropogenic threats 

through climate change and competition for resources with fisheries (Forcada & 

Hoffman 2014; Goldsworthy et al. 2003). Yet, the role of pinnipeds in the dynamic 

structure and function of temperate ecosystems remains a key knowledge gap 

(Connell 2002; Estes et al. 2013). 

In southeastern Australia, two sympatric seal species, Australian fur seals, 

Arctocephalus pusillus doriferus (hereafter AUFS), and long-nosed fur seals 

(formerly New Zealand fur seals), A. forsteri (LNFS), are undergoing population and 

range recovery following historical overexploitation and near-extinction (Burleigh et 

al. 2008; Goldsworthy et al. 2003; Kirkwood et al. 2010; Shaughnessy et al. 2001). A 

breeding colony and several new haul-out sites have recently established in New 

South Wales (NSW, eastern Australia), and these populations represent the first for 

nearly a century at their northeastern range-edge (P. Shaughnessy & S. Goldsworthy, 

SARDI aquatic sciences, pers. comm.). Newly recolonised locations represent a 

frontier for species range recovery and/or expansion, where predator densities are still 

low, affording an opportunity to document predator diets and ecological interactions 

at an early stage of recolonisation. Additionally, frontier populations, due to their low 

densities, may be especially vulnerable within the greater population as they come 

into conflict with anthropogenic activities. 

Knowledge of the diets of these species is based almost entirely on single 

predator studies from the central parts of their geographic ranges: Bass Strait for 

AUFS and, South Australia and New Zealand for LNFS, and the majority are from 

breeding colonies (Deagle et al. 2009; Fea et al. 1999; Gales & Pemberton 1994; 

Harcourt et al. 2002; Kirkwood et al. 2008; Page et al. 2005; Page et al. 2006). These 

studies report a broad diet in both species, and resource partitioning between species, 

whereby AUFS diets are reported as benthopelagic and LNFS as mostly pelagic. Both 
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species exhibit seasonal variations in diet that correlate with prey availabilities and fur 

seal reproductive cycles, namely, a greater prevalence of benthic and demersal prey 

for both fur seal species in the summer compared to winter when adult fur seals 

typically forage further offshore (Arnould et al. 2011; Harcourt et al. 2002; Page et al. 

2005). Diet studies using morphological analyses of prey remains typically identify 

between 20 and 50 prey taxa, mostly bony fishes and cephalopods (Fea et al. 1999; 

Gales & Pemberton 1994; Kirkwood et al. 2008; Page et al. 2005). In contrast, the 

only other DNA-based study (Deagle et al. 2009) from one of the fur seal species 

studied here (AUFS) revealed a total of 62 prey species in only a single season of 

sampling. There is currently no published information on the diets of these species at 

their northern geographic range edge, a frontier for population and range recovery in 

Australia, and an area distinct in its oceanography and biogeography compared to that 

of the rest of their range (Connell & Irving 2008). 

A predator’s diet represents the direct pathway of interaction with their 

ecosystems and forms the basis for understanding food web structure (Pompanon et 

al. 2012; Tollit et al. 2009). Dietary information at high taxonomic resolution (i.e., to 

genus/species) enables accurate identification of key drivers that underpin food web 

processes (Eisenberg et al. 2013; Pompanon et al. 2012). A suite of methods exist to 

study the diets of predators: from traditional morphological analyses of prey remains 

extracted from a predator’s digestive tract to various molecular methods analysing 

chemical signals from predator tissues including stable isotope, fatty acid and DNA-

based methods (Bowen & Iverson 2013). However, many methods of diet analysis 

suffer problems and biases that impede fine-scale taxonomic identification of diet 

components (Bowen & Iverson 2013; Casper et al. 2007; Deagle et al. 2005; King et 

al. 2008; Tollit et al. 1997). DNA-based metabarcoding approaches have proven to be 

taxonomically sensitive, detecting prey items where traditional methods have not, as 

well as enabling higher taxonomic resolution identification of prey requiring 

molecular expertise rather than extensive taxon-specific expertise (Berry et al. 2015; 

Deagle et al. 2009; Peters et al. 2014; Pompanon et al. 2012; Tollit et al. 2009). This 

method is ideally suited to explore predator diets (Leray et al. 2012; Pompanon et al. 

2012), as it enables the identification of the ecological function of prey taxa (i.e., their 

trophic level and the type of ecosystem from which prey were likely obtained) and 

thus to characterise the role of predators in ecosystems (Spitz et al. 2014). 
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We investigated trophic interactions in two sympatric fur seal species in the 

newly recolonised region of eastern Australia, using DNA-based methods to extract 

high taxonomic resolution data from scats obtained from two main sites in this region. 

Our aims were to: (i) characterise the diets of these sympatric predators at a frontier of 

recolonisation and range expansion; (ii) identify important trophic interactions and 

investigate how the ecological function of prey taxa varies between seal species, 

sampling sites, and time in these newly recolonised areas. We expected that the broad 

dietary patterns and prey resource partitioning observed between these seal species in 

southern Australia, would be reflected in their diets in our study region in eastern 

Australia. We therefore hypothesized that diet composition would differ between seal 

species and across time, but that within seal species, diets would be similar across the 

eastern Australian sites.  

 

3.3 Methods 

 

3.3.1 Study populations, sites and sample collections 

 

The study populations of AUFS and LNFS in NSW are at the northeastern range-edge 

of these species’ geographic distributions – an area experiencing rapid population 

growth (McIntosh et al. 2014). To date, the majority of the NSW population of both 

seal species occurs at breeding colonies on Montague Island, whereby breeding 

colonies are defined as locations harbouring the birth of at least 15 or more pups 

within each species (McIntosh et al. 2014). As such, the population of fur seals at 

Montague Island has a relatively large number of adult females, as well as large 

breeding males in eastern Australia, similar to the demographic composition of 

colonies elsewhere in Australia (R. Harcourt, Macquarie University, pers. comm.; N. 

Hardy, pers. obs). Additionally, growing haul-out sites around Jervis Bay (Burleigh et 

al. 2008), and new haul-out sites at the Five Islands Nature Reserve typically harbour 

juvenile and sub-adults of either sexes, and some adult seals (G. Ross, Office of 

Envionrment & Heritage, NSW Government, pers. comm.; N. Hardy, pers. obs) 

(Figure 3.1). There are no ongoing surveys of seals in these areas so accurate 

estimates of population size or gender/size/age structure are not available. 
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Figure 3.1 Fur seal (Arctocephalus pusillus doriferus and A. forsteri) haul-out sites at 
Jervis Bay and Montague Island on the New South Wales (NSW) coast in relation to 
continental shelf (depth contours displayed every 20 m from 20−300 m) and shallow 
to intermediate reef habitat (up to 60 m, shaded in green) (OEH 2015). Water 
temperature data are from the Batemans Marine Park (BMP) moorings north of 
Montague Island (IMOS 2014). Black triangles indicate the locations of seal haul-out 
sites at Jervis Bay. 
 

Sampling occurred in January–April and September 2014 (hereafter the austral 

‘summer’ and ‘winter’ samples, respectively), representing the warmest and coldest 

months of the year in terms of water temperature (data from Batemans Bay, NSW, 

Australia, at 20–60 m depth; Figure 3.1) (IMOS 2014). Sampling locations included: 

colonies at Montague Island (MI, 36° 14.645'S, 150° 13.439'E); and three haul-out 

sites at Jervis Bay (JB) which were: Steamer’s Head (for AUFS, 35° 10.725'S, 150° 

43.895'E), Drum & Drumsticks and Lamond Head (for AUFS & LNFS respectively, 

35° 2.799'S, 150° 50.552'E) (Table 3.1; Figure 3.1). These sites are adjacent to 

extensive networks of complex shallow and intermediate depth rocky reefs (MI and 

JB) (Figure 3.1), a narrow continental shelf influenced by the warm East Australian 

Current and proximal to pelagic waters (MI and JB); MI is particularly close to one of 

the deepest sections of the continental shelf (at 132 m depth) and JB to a large shallow 

and sheltered bay with mixed seasonal estuarine influences (Jordan et al. 2010). 
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We collected a total of 129 faecal samples (nAUFS = 67, nLNFS = 62) across both 

fur seal species at two key locations (MI and JB) and times (Table 3.1). However, 

LNFS are typically absent from JB in the summer months at the time of this study, 

and only a single LNFS sample from this time point and location was 

opportunistically obtained in a predominantly AUFS haul-out site (Table 3.1). Fresh 

faecal samples were collected in zip-lock bags. Each whole scat was homogenised in 

the field using disposable spatulas, creating a mixed substrate, from which a 2 mL 

sub-sample was taken. Whole scats and sub-samples were immediately stored at -

10˚C in a portable freezer (WAECO) for up to 10 days, and later transferred to -20˚C 

freezer facilities for longer-term storage (maximum of 6 months) (Murray et al. 

2011). 

 

Table 3.1 Collection locations, seasons and sample sizes for Australian (AUFS) and 
long-nosed fur seals (LNFS). 

  Seal Species AUFS LNFS 
Location Time period (2014) 

  
Montague Island (MI) Jan-Apr 15 21 

 
Sept 15 17 

Jervis Bay (JB) Jan-Apr 17 1† 

  Sept 13 15 
†Few LNFS are present in JB in the summer; one sample was collected 
opportunistically at a predominantly AUFS haul-out site and confirmed to belong to 
LNFS from DNA analyses. This sample was not included in the statistical analyses, 
but prey items identified in this sample are indicated in Table 3.3 and Table B.1 
(Appendix B). 

 

3.3.2 Molecular analyses 

 

Extractions were carried out on 120–200 mg of scat sub-sample using a QIAmp DNA 

Stool Mini Kit (QIAGEN) as per manufacturer’s instructions. As a result of the 

laboratory optimisation of extraction procedures, we also included an overnight 

digestion (at 55˚C) prior to extraction and we used half an InhibitEX tablet (an 

inhibitor absorption reagent, QIAGEN) per sample in accordance with Deagle et al. 

(2005). DNA was eluted in 50 µL of AE buffer (10 mM) at three dilutions in water 
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(neat, 1:10, 1:100) and stored at -20°C. Quantitative PCR (qPCR) was used to 

optimise the selection of samples and DNA concentration for subsequent fusion 

tagging or single-step PCR. DNA extracts were screened using qPCR to assess the 

DNA quality and quantity, and to detect possible PCR inhibition (Deagle et al. 2009; 

Murray et al. 2011). Four previously designed group-specific primers were used to 

bind directly to and amplify short regions of the 16S mtDNA gene, targeting 

mammals, fishes, cephalopods and crustaceans, and the 12s mtDNA gene for birds 

(Table 3.2). 

All qPCR reactions were carried out in 25µL: 15.4µL of H2O, 1X Taq Gold 

buffer (Applied Biosystems [ABI], USA), 2nM MgCl2 (ABI, USA), 0.4mg/mL BSA 

(Fisher Biotec, Australia), 0.25mM dNTPs (Astral Scientific, Australia), 0.4µM each 

of forward and reverse primers (Integrated DNA Technologies, Australia), 0.6µL of 

1/10,000 SYBR Green dye (Life Technologies, USA) and 0.05U/µL of Taq 

polymerase Gold (ABI, USA) with 2µL of DNA. Each qPCR was run on Applied 

Biosystems® step-ONE qPCR thermocycler (ABI, USA): 95˚C for 5 min, then 40-50 

cycles of 95˚C for 30s, 50–57˚C for 30s (as per primer annealing temperature; Table 

3.2) and 72°C for 45s. This was followed by a 1s melt curve and a 10 min final 

extension of 72˚C. 

After screening samples, each DNA extract was then assigned a unique MID 

(Multiplex IDentifier) tag combination along with the next-generation sequencing 

(NGS) adaptors. Group-specific primers (Table 3.2), MID tags and NGS adaptors 

were bound to target DNA in a single-step PCR reaction, using the same reaction 

conditions as for qPCR. The resulting tagged amplicons were combined in pools of up 

to 5 samples of similar DNA molarity. Amplicon pools were then purified (Agencourt 

AMPure XP beads, Beckman Coulter Life Sciences, NSW, Australia), combined 

again in accordance with their DNA concentrations to produce a single DNA library 

of 60–100 samples for sequencing. Each sequencing library was quantified alongside 

a set of standard synthetic oligonucleotides of known molarity (Bunce et al. 2012) 

before sequencing. Sequencing was performed on an Illumina MiSeq platform (300bp 

V2 Nano kit) using single-end sequencing. 
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3.3.3 Bioinformatics 

 

The sorting, filtering, clustering and identification of sequences were executed using 

specialised software. Samples were demultiplexed, and sequences were assigned to 

the correct sample using the unique MID tag combinations, after which identifiers, 

NGS adaptor sequences and primers were trimmed, in the program Geneious R8.1.5 

(Kearse et al. 2012) leaving just the target sequences. Any sequences that did not 

contain exact matches to both the forward and reverse PCR primers, tags and adaptor 

sequences were discarded, as well as sequences that were significantly shorter than 

the primer product length. Discarded sequences at this stage typically corresponded to 

primer dimer or low quality reads. 

For each sample, target sequences were filtered with FastQ using a maximum 

error of 0.5 and dereplicated into clusters of unique sequences, using 97% similarity 

for clustering, in USEARCH (Edgar 2010). Sequence clusters containing less than 1% 

of the total number of unique sequences detected in the sample were discarded. This 

minimises the risk of erroneous sequences and false positives from sequencing and 

other error, and vastly improves confidence in the subsequent analysis of the 

remaining sequences. Sequence clusters were then queried against the GenBank 

database using the algorithm BLASTn (Basic Local Alignment Search Tool). 
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Table 3.2 Metabarcoding primers for PCR used for dietary analysis of Australian and long-nosed fur seals. 

Target 
amplicon Gene Primer name Sequence (5'-3') 

Product 
size (bp) 

Annealing 
temperature Reference 

Mammal mtDNA 16S Mam16S1 CGGTTGGGGTGACCTCGGA 90 57˚C Taylor et al. (1996) 

Mammal mtDNA 16S Mam16S2 GCTGTTATCCCTAGGGTAACT 

   
Fish mtDNA 16S Fish16S_F GACCCTATGGAGCTTTAGAC 200 54˚C 

F: Deagle et al. 
(2007) 

Fish mtDNA 16S Fish16S_R CGCTGTTATCCCTADRGTAACT 

  

R: Murray D. 
(unpublished) 

Cephalopod mtDNA 16S S_Cephalopoda_F GCTRGAATGAATGGTTTGAC 70 50˚C Peters et al. 2015 

Cephalopod mtDNA 16S S_Cephalopoda_R TCAWTAGGGTCTTCTCGTCC 

   
Crustacea mtDNA 16S Crust16s_F(short) GGGACGATAAGACCCTATA 150 51˚C 

Berry T. 
(unpublished) 

Crustacea mtDNA 16S Crust16S_R(short) ATTACGCTGTTATCCCTAAAG 

   Bird mtDNA 12S Bird12sa CTGGGATTAGATACCCCACTAT 230 57˚C Cooper et al. (1994) 

Bird mtDNA 12S Bird12sh CCTTGACCTGTCTTGTTAGC       
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 The resulting “blasted” sequences were then assigned to taxa, a part of the 

analyses that is necessarily done manually and follows a set of criteria outlined below 

(see also Deagle et al. 2009), and performed in the program MEGAN (MEtaGenome 

ANalyser) (Huson et al. 2007). Reads were reported based on the LCA-assignment 

algorithm parameters of a minimum bit score of 65.0, reports were limited to the top 

10% of matches, and a minimum support of 1 (Huson et al. 2007), whereby the 

program MEGAN returns a shortlist of likely taxonomic assignments based on 

genetic similarity to the sequence. From that list, an assignment was considered 

reliable only when the match was made across the whole of the queried sequence. 

Potential prey identifications were individually investigated by consulting reference 

resources to assess the likelihood of prey assignments. The factors considered prior to 

identification include: (i) ensuring that the identified prey’s geographic distribution 

broadly matched that of the likely SE Australian foraging areas for fur seals, and (ii) 

checking the diversity of closely related species and the presence/absence of voucher 

sequences for these in GenBank to ensure that any other likely prey species were not 

overlooked for want of genetic reference information. A broad range of reference 

databases were consulted and include: FishBase (Froese & Pauly 2016), Atlas of 

Living Australia (ALA 2016), reference books for coastal and pelagic fishes of 

southeastern Australia (Hutchins & Swainston 1986; Kuiter 2002), the Australian 

Museum (2016) reference base and Redmap (2016), the latter to check for out of 

range species. 

 In addition to this first assessment of the likelihood of the identified taxon 

being encountered by the predator, a further qualitative assessment was made on a 

case-by-case basis to classify the likely pathway of interaction (i.e., primary or 

secondary consumption) in order to remain conservative in our analyses of ecological 

interactions. This was largely based on, and limited by, knowledge of the biology of 

prey, and consisted of a sequential checklist of the following criteria: (i) whether the 

prey taxon was recorded in the literature either at a family-, genus- or species-level, 

and if so, previously corroborated records were generally considered sufficient 

evidence that the prey was likely consumed by the predator. If not, further criteria 

were examined: (ii) the frequency of detection of the taxon and whether it consistently 

occurred with a known mesopredator (i.e., likely secondary predation), or whether it 

appeared as the sole prey item in a sample (i.e., likely primary predation); (iii) the 
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known maximum size and average size of the species identified (FishBase, The 

Australian Museum, Hutchins and Swainston 1986, Kuiter 2000). Whilst DNA does 

not provide information on the actual size of the taxon ingested by the predator, all 

taxa presented as likely primary prey belonged to species that matched size-based 

criteria for consideration as potential prey, based on morphological studies that have 

estimated prey consumed by fur seals can range from 4000 g to 20 g for example 

(Page et al. 2005). Where there was insufficient evidence to support consideration for 

direct consumption of prey, these were considered likely to be the result of secondary 

consumption and were excluded from statistical analyses to reduce the risk of false 

positives influencing the analyses (Table B.2). 

 

3.3.4 Data processing & Statistics 

 

3.3.4.1 Response variables 

This study aimed to evaluate trends in both fine-scale diet using species-level data, 

and secondly to evaluate key trophic interactions for two predator species by 

analysing data based on prey ecological traits. Prey taxa were assigned to collective 

trait-based schemes that including traits relating to trophic niche, the known spatial 

association of prey and a combination of these two traits which we refer to as the 

prey’s “functional trait” (defined in Table 3.3). The spatial attributes do not assume 

exactly where the predator encountered that prey, but rather where that prey species 

most commonly occurs to the best available knowledge, and are thus necessarily 

broad (Table 3.3). Analyses of seal diet composition were then performed at species-

level or trait-based groupings of the data, taken as the presence of identified taxa. 

Additionally, differences in prey species richness were investigated and defined as the 

number of species in a scat sample. 

 

3.3.4.2 Statistical analyses 

All statistical models included three categorical explanatory variables with two levels 

each: seal species (AUFS, LNFS), location (MI, JB) and time sampled (summer, 

winter). For the purposes of statistical analyses, each specific combination of the 

levels of the explanatory variables (species, location and time) can be considered an 
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independent “group” of seals that were sampled, and for which replicate faecal 

samples were collected. As we obtained only one sample from LNFS from the JB 

location in the austral summer, it was not possible to test a fully orthogonal model of 

location, time and species. Instead, differences in diet composition between groups of 

seals were tested by running four reduced models that included explanatory variables 

in combinations where they were replicated: (i) for AUFS, prey assemblage ~ 

location×time; (ii) for LNFS, prey assemblage ~ group (combination of location and 

time, i.e., MI-summer vs. MI-winter); (iii) at MI, prey assemblage ~ seal 

species×time; (iv) at JB, prey assemblage ~ group (combination of seal species and 

time, i.e., AUFS-winter vs. LNFS-winter) (Table 3.4). 

Differences in diet composition were tested using multivariate generalised 

linear models (mvGLMs) and were fitted using a binomial distribution for 

multivariate presence/absence data on species-level and trait-based diet assemblages 

(spatial and functional trait-based grouping of the species-level response variable). 

The mvGLMs were performed in the mvabund package in R version 3.2.4 (R Core 

Team 2017; Wang et al. 2012). Broad trends, overdispersion and outliers in 

multivariate space were checked graphically by non-metric multi-dimensional scaling 

(nMDS) plots (Field et al. 1982) using the vegan package in R (Oksanen et al. 2015), 

whilst normality in multivariate data were checked using quantile-quantile (Q-Q) 

plots (Bates et al. 2015; Wang et al. 2012). 
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Table 3.3 Functional traits of seal prey species used for trait-based analyses. Placement of species into each category was based on detailed 
species knowledge and corroboration from reference material (Collette & Nauen 1983; Froese & Pauly 2016; Hutchins & Swainston 1986; 
Kuiter 2002). 

Functional Trait Category Description 

Trophic Trophic niche Mesopredator, piscivore, omnivore, herbivore, cleaner and unknown 

Spatial Position of prey 
in the water 
column and in 
relation to the 
coast 

Benthic: soft-sediment bottom dweller 
Demersal: associated with the soft-sediment benthos but positioned in the water column 
Reef: any benthic or demersal prey taxon found mostly/exclusively on rocky reefs 
Coastal pelagic: species mostly/exclusively associated with bays, estuaries and shallow 
coastal habitats;  
Continental pelagic: mid- and open-water species known to associate commonly with 
the continental shelf and slope;  
Pelagic (or “true” pelagic): species not known to encounter any coastal or benthic 
structures and associate exclusively with open-water and oceanographic features; 
Unknown: of completely unknown spatial origin 

Functional Trophic 
interaction 

Combination of trophic and spatial traits 
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Model fit was assessed by analysis of deviance, tested using log-likelihood 

ratios (sum-of-LR) and P-values calculated from 999 resampling iterations via PIT-

trap resampling (Wang et al. 2012). For significant interactions between explanatory 

variables in the full model, the differences between levels of these variables were 

tested (Table 3.4). To then identify which response variables (i.e., species or 

functional traits) contributed most to the difference between levels, we performed 

post-hoc univariate tests with adjusted P-values fitted to each response variable (i.e., 

species or functional trait) (Wang et al. 2012). Response variables were ranked based 

on the test statistic and we calculated how many response variables were required to 

capture at least 50% of the deviance explained compared to the full model comprising 

all response variables. The deviance was calculated by taking the ratio of the 

percentage deviance explained by a subset of the response variables and the deviance 

explained by the full model containing all response variables (Guisan & Zimmermann 

2000). Response variables (i.e., taxa) with the highest univariate test statistic, 

significant P-values, and capturing in aggregate at least 50% of the deviance 

explained by the full model therefore had the greatest effect size and were considered 

to have the strongest evidence for an effect of explanatory variables and thus likely to 

be contributing to differences between levels of the explanatory variables. 

Additionally, differences in prey species richness were tested using analysis of 

variance (ANOVA) in the base package stats in R (R Core Team 2017). Trends in the 

data and model assumptions, including homogeneity of variances and normality of 

errors were checked graphically using boxplots, co-plots and quantile-quantile (Q-Q) 

plots. Model validity was assessed by plotting residuals against fitted values. The 

percentage frequency of occurrence (FO%) of prey items was used to graphically 

represent the data using ggplot2 in R (Wickham 2009). Percentage frequency of 

occurrence of a given food item is defined as the number of samples in which that 

food item occurred, expressed as a proportion of the total number of samples that 

contained food (Amundsen et al. 1996; Davis et al. 2015). Thus, the total FO% of 

multiple diet items can exceed 100% due to the occurrence of multiple food items in 

samples. 
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3.4 Results 

 

3.4.1 Overview of sequencing and broad trends 

 

A total of 112 faecal samples passed our quality filtering (no human DNA, sufficient 

quantity and quality of prey DNA) and thus were included in further analyses (nAUFS = 

60, nLNFS = 52; Table 3.1). One additional sample from LNFS from the JB summer 

time point also passed quality filtering, but could not be included in statistical 

analyses at it was the only sample found from that location and time (Table 3.1). The 

taxa identified in this sample are noted with the symbol “†” in Table 3.5 and Table 

B.1 (Appendix B). The sequencing runs produced in excess of 1.8 million DNA 

sequences of target taxa; of which 1.6 million remained in the dataset after quality 

filtering, with an average of over 14,200 target sequences per sample using up to four 

primer sets. Sequence data files are available online (Data Accessibility). 

A total of 436 taxonomic assignments of fish, cephalopod, crustacean and bird 

taxa (AUFS n = 215, LNFS n = 221) met criteria for consideration in analyses as 

likely primary prey of AUFS and LNFS (Table 3.5 and X1). These represented a total 

of 115 individual prey taxa, 34 of which were common to both species, and a total of 

76 and 73 prey taxa identified in AUFS and LNFS samples, respectively (Table 3.5 

and X1). A further 48 taxonomic assignments were made of crustaceans (AUFS n = 

21, LNFS n = 27), belonging to 25 genetically distinct taxa, however these taxa 

appeared in < 20% of samples, almost all were present in samples alongside possible 

mesopredators without any prior information on predation by fur seals on these taxa, 

they are considered likely to be secondary predation (Appendix B, Table B.2). Prior 

to removal from further analyses these taxa represented 10% of all taxonomic 

assignments made. 

Fish were the most prevalent taxonomic group across time and location for 

AUFS, and for LNFS samples from Jervis Bay, whilst both fish and cephalopods were 

equally prevalent across time for LNFS at Montague Island (Figure 3.2). For AUFS 

samples, a total of 59 fish taxa occurred in 92–100% of samples, 16 cephalopod taxa 

occurred in 38–46%, one crustacean species occurred in 23.5% of samples in JB in 

the summer sampling, and no birds were detected (Figure 3.2). A further 13% of 
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AUFS samples contained 14 different crustacean taxa considered likely secondary 

predation (Table B.2). For LNFS samples, 54 fish taxa occurred in 64–100% of 

samples. We found 18 cephalopod taxa in LNFS samples, with cephalopods occurring 

in up to 33% of samples at JB in winter compared to 70–86% of samples at MI 

(Figure 3.2). Additionally, one bird species, the little penguin (Eudyptula minor) was 

identified in one LNFS sample from JB in the winter period. We found 14 different 

crustacean taxa likely to come from secondary predation in ca. 17% of LNFS samples 

(Table B.2). 

 
Figure 3.2 Prevalence of the four broad prey taxa for each seal species (AUFS and 
LNFS), location (MI and JB), and sampling time (Jan-Apr/summer* and Sept/winter 
2014). Percentage frequency of occurrence (FO%) is expressed as a % of samples 
containing each main taxon across predator species, location, and time of sampling. 
No FO% data are available for LNFS at JB in the summer months. 
 

3.4.2 Trophic, spatial and functional attributes of prey items 

 

Mesopredators were the most common prey by trophic trait, found in 75–100% of 

samples of either seal species at any location or time (Figure 3.3). Analysis of diet 

composition in both fur seals by spatial traits showed that in samples from MI, 

benthic and demersal prey were more common in the summer compared to winter, 
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whilst coastal and continental pelagic prey were dominant in the winter samples 

(Figure 3.4, Appendix B, Table B.3). AUFS typically had greater FO% of benthic 

prey compared to LNFS at any time and location, whilst the most prevalent spatial 

traits in the diet of LNFS at MI were pelagics (Figure 3.4). Samples from JB were not 

significantly different based on prey spatial traits for all combinations of seal species 

and sampling time (Table B.3), and were characterised by primarily benthic, demersal 

and reef-associated prey taxa (Figure 3.4). This pattern was also observed for 

functional trait analyses (Table 3.4, Figure 3.5). Reef species and especially reef 

mesopredators were significantly more prevalent in JB samples, occurring in 23–35% 

of samples, while these prey traits were rare in MI samples for either species (FO% < 

10% at MI) (Figure 3.5). As the functional trait includes both the trophic and spatial 

attributes of the prey taxa, encapsulating both trophic and spatial trait analyses, we 

present the results of the functional trait analyses in more detail (Figure 3.5). 

 
Figure 3.3 Summary of percentage frequency of occurrence (FO%) of trophic traits in 
the diets of sympatric eastern Australian fur seals, AUFS and LNFS.  
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Figure 3.4 Percentage frequency of occurrence (FO) of spatial groups across seal 
species, location and sampling time. Different letters denote significant differences in 
the prey assemblage between pairwise treatment groups. 

 

For analyses of the prey assemblage by functional traits, AUFS prey 
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to winter samples from MI which had a higher FO% of coastal pelagic invertivores 

and continental pelagic mesopredators (Figure 3.5). Prey functional traits in AUFS 

diets at JB were not significantly different between sampling times. However, 

functional trait analyses for LNFS revealed that prey composition was significantly 

different for all combinations of location and sampling time (Table 3.4, Figure 3.5). 

LNFS samples from MI, contained significantly greater FO% of demersal 

mesopredators and omnivores, and coastal pelagic herbivores in summer samples 

compared to winter (Figure 3.5). LNFS samples from winter contained a greater FO% 

of pelagic mesopredators or prey of unknown trophic guild at MI, compared to greater 

FO% of demersal omnivores, reef planktivores and reef herbivores at JB (Figure 3.5). 

 

3.4.3 Key prey species trends 

 

Primary and secondary prey taxa are presented in separate tables (Table 3.5, B.1 and 

B.2). Species richness varied from 1 up to 13 taxa identified as potential primary prey 

in samples. For AUFS samples, species richness was broadly stable with an average 

of 3.6 (±0.4 SE) species per sample (Appendix B, Table B.4). For LNFS, richness per 

sample for LNFS was significantly greater in summer, with average richness of 5.7 

(±0.5 SE) species compared to 3.2 (±0.4 SE) species in the winter samples, but there 

was no difference between winter samples from either location (Table B.4). 

For AUFS and LNFS, 12 and 13 prey taxa, respectively, were encountered in 

over 20% of samples for a given location or sampling time (in bold in Table 3.5), and 

were considered common prey taxa. Virtually all combinations of the levels of 

explanatory variables (predator species, location and sampling time) were 

significantly different when the prey assemblage was analysed at the species level, 

with the exception of diet composition for AUFS from MI and JB sampled in winter, 

which were not significantly different even at the species level (Table 3.4 and 3.5). 

For AUFS from winter, seal diets consisted mainly of forage fish and continental 

pelagics, Australian sardine (Sardinops sagax) and jack mackerel (Trachurus sp.) 

(Tables 3.5). In summer, MI samples for AUFS had greater FO% of a taxon assigned 

to the family Monacanthidae (unknown Monacanthidae) and of Octopus sp. in 

summer (Tables 3.5). Species composition in AUFS diets from JB contained greater 
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FO% of less common and reef-associated taxa such as slipper lobster (Crenarctus 

crenatus), silver trevally (Pseudocaranx georgianus), a bream species 

(Acanthopagrus sp.), in the summer compared to winter samples; whilst JB samples 

from the winter had greater FO% of Australian sardine (Sardinops sagax) (Tables 

3.5). 

For LNFS, species composition within samples was significantly different for 

all combinations of location and time (Table 3.4 and 3.5). Differences between 

locations were due to greater FO% of the cephalopod red flying squid and king gar 

fish at MI, and at JB greater FO% of the reef-associated mado (Atypichthys strigatus), 

marblefish (Aplodactylus sp.), puller (Chromis sp.) and bastard trumpeter (Latridopsis 

forsteri) (Table 3.4 and 3.5). For MI samples, species composition in the diets of 

LNFS varied in time due to greater FO% of several cephalopod taxa with a peak in 

their prevalence in summer (Table 3.5).  

Several previously rarely recorded or unrecorded taxa, such as mado, puller 

and silver sweep (Scorpis lineolata) (Table 3.5) were relatively common in samples 

from this study. They were all found together in at least one sample with no other taxa 

present, and as planktivores, it is improbable that they were consuming each other, 

and so they are likely to be primary prey items in eastern Australian fur seals. Several 

prey were only identified to genus or family level and each represented sequences 

from a single prey species, all of which were from taxa previously recorded as AUFS 

or LNFS prey (e.g., Monacanthidae, Macrouridae, Myctophidae, Sillangidae, 

Sepiidae) (Table 3.5 and B.1). Several taxa identified to sub-order, order or super-

order include, respectively, unknown- Osmeriformes, Oegopsida and Decapodiformes 

(Table 3.5 and B.1), due to sequences having < 90% similarity to any existing 

sequences in Genbank. These taxa were included in analyses as they belong to 

taxonomic groups known to be consumed by fur seals, with the caveat that without 

better coverage of these groups in reference databases it is not possible to determine 

whether these taxa occur in samples due to primary or secondary predation. 
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Table 3.4 Analysis of deviance for multivariate generalised linear models (mvGLM) of species-level analyses and functional trait analyses of 
prey composition between fur seal species, locations and time points sampled, tested on four models. Where significant interactions occurred in 
the full model, reduced models tested the differences between levels of explanatory variables. Significance denoted by: *P < 0.05, **P < 0.01, 
***P < 0.001. AUFS = Australian fur seal; LNFS = long-nosed fur seal; MI = Montague Island; JB = Jervis Bay. 

  Response variables SPECIES FUNCTIONAL 
MODELS Factors R.df Df.diff Dev P-value R.df Df.diff Dev P-value 

(i) AUFS Intercept 59       59       

 

Time 58 1 106.53 0.051 58 1 34.43 0.044* 

 
Location 57 1 133.91 0.002** 57 1 32.34 0.065 

 

Time×Location 56 1 37.85 0.010** 56 1 22.32 0.084 

AUFS in Summer Intercept 31       - - - - 

 

Location (Summer) 30 1 84.09 0.021* - - - - 

AUFS in Winter Intercept 27 
   

- - - - 

 

Location (Winter) 26 1 68.68 0.104 - - - - 

AUFS at MI Intercept 29 
   

- - - - 

 

Time (MI) 28 1 92.51 0.003** - - - - 

AUFS at JB Intercept 29 
   

- - - - 
  Time (JB) 28 1 81.59 0.021* - - - - 
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Table 3.4 Continued. AUFS = Australian fur seal; LNFS = long-nosed fur seal; MI = Montague Island; JB = Jervis Bay. 

  Response variables SPECIES FUNCTIONAL 
MODELS Factors R.df Df.diff Dev P-value R.df Df.diff Dev P-value 

(ii) LNFS Intercept 51       51       

 
Group (Location+Time) 49 2 294.55 0.001** 49 2 125.93 0.001** 

LNFS in Winter Intercept 29 

   

30 

   

 

Location (Winter) 28 1 94.66 0.003** 29 1 44.48 0.014* 
LNFS at MI Intercept 35 

   

35 

   

 

Time (MI) 34 1 120.20 0.001** 34 1 47.52 0.008* 

(iii) MI Intercept 64       64       

 
Time 63 1 188.00 0.001** 63 1 70.08 0.001** 

 

Seal sp. 62 1 228.93 0.001** 62 1 92.90 0.001** 

 
Seal sp.×Time 61 1 22.83 0.043* 61 1 15.02 0.296 

MI in Summer Intercept 35       - - - - 

 
Seal sp. (Summer) 34 1 142.75 0.001** - - - - 

MI in Winter Intercept 27 

   

- - - - 

 
Seal sp. (Winter) 26 1 107.56 0.001** - - - - 

(iv) JB Intercept 45       45       

 
Group (Seal sp.+Time) 43 2 204.78 0.003** 43 2 56 0.104 
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Figure 3.5 Percentage 
frequency of 
occurrence (FO%) of 
functional traits across 
predator species (AUFS 
and LNFS), location 
(MI and JB), and 
sampling time (Jan-
Apr/summer* and 
Sept/winter 2014). 
Different letters denote 
significant differences 
in the prey assemblage 
between pairwise 
combinations of 
explanatory variables: 
seal species, location, 
and time. *No FO% 
data are available for 
LNFS at JB in the 
summer months.
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Table 3.5 Taxonomic assignment and percentage frequency of occurrence (FO%) for samples of Australian (n = 60) and long-nosed (n = 53) fur 
seals for prey items occurring in ≥ 10% of samples. In bold, we highlight the species that occurred in 20% of samples for at least one given 
location or time sampled. Infrequent taxa occurring in < 10% of samples are presented in Table B.1 (Appendix B). *Trophic traits: PR = 
predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = omnivore; UN = unknown. 
   Australian fur seal Long-nosed fur seal 
   JB MI JB MI 
Class/Family Genus species (Common Name) Trophic* & Functional 

Trait 
Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Actinopterygii  
       

Congridae Gnathophis sp. (conger eel) PR, Benthic Predator 5.88 0.00 13.33 6.67 6.67 0.00 0.00 
Belonidae Ablennes hians (flat needlefish) PI, Pelagic Piscivore 0.00 0.00 0.00 0.00 0.00 42.86 0.00 
Hemiramphidae Hyporhamphus melanochir 

(southern sea garfish) 
HE, Coastal Pelagic 
Herbivore 0.00 0.00 0.00 0.00 0.00 47.62 5.88 

Scomberesocidae Scomberesox saurus (king gar) PI, Pelagic Piscivore 0.00 0.00 6.67 0.00 6.67 19.05 23.53 
Berycidae Beryx decadactylus (imperador) PR, Demersal 

Predator 29.41 15.38 0.00 6.67 0.00 0.00 0.00 

Trachichthyidae Unknown Trachichthyidae (roughies) UN, Demersal 
Unknown 0.00 0.00 0.00 0.00 13.33 0.00 0.00 

Coryphaenidae Coryphaena hippurus (mahi mahi) PR, Pelagic Predator 0.00 0.00 13.33 0.00 0.00 4.76 0.00 
Clupeidae Sardinops sagax (australian 

sardine) 
IN, Coastal Pelagic 
Invertivore 11.76 0.00 0.00 26.67 0.00 4.76 5.88 

Macrouridae Unknown Macrouridae (whiptails) PR, Demersal Predator 0.00 0.00 0.00 13.33 0.00 0.00 0.00 
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Table 3.5 Taxonomic assignment table continued. *Trophic traits: PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. 

   
Australian fur seal Long-nosed fur seal 

   
JB MI JB MI 

Class/Family Genus species (Common Name) Trophic* & Functional 
Trait 

Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Ophidiidae Genypterus blacodes (ling, pink 
cusk-eel) 

PR, Demersal Predator 0.00 0.00 0.00 20.00 0.00 0.00 0.00 

Aplodactylidae Aplodactylus sp. (marblefishes) HE, Reef Herbivore 0.00 0.00 0.00 0.00 26.67 0.00 0.00 
Carangidae Trachurus declivis (common jack 

mackerel) 
PR, Continental Pelagic 
Predator 23.53 30.77 13.33 66.67 0.00 4.76 11.76 

 Pseudocaranx georgianus (silver 
trevally) 

PR, Reef Predator 11.76 0.00 0.00 0.00 13.33 0.00 0.00 

Gempylidae Rexea sp. (gemfish) PR, Continental Pelagic 
Predator 0.00 15.38 0.00 0.00 0.00 0.00 0.00 

 Thyrsites atun (barracouta) PR, Demersal Predator 0.00 7.69 0.00 0.00 13.33 4.76 0.00 
Kyphosidae Atypichthys strigatus (mado) PL, Reef Planktivore 11.76 7.69 0.00 6.67 26.67 0.00 0.00 
Latridae Latridopsis forsteri (bastard 

trumpeter) 
IN, Reef Invertivore 0.00 0.00 0.00 6.67 13.33 0.00 0.00 

Nomeidae Cubiceps sp. (drift fish) PR, Demersal Predator 0.00 0.00 0.00 0.00 0.00 4.76 11.76 
Pomacentridae Chromis sp. (puller) OM, Demersal 

Omnivore 0.00 0.00 0.00 0.00 20.00 0.00 0.00 

Pomatomidae Pomatus saltatrix (bluefish/tailor) PI, Pelagic Piscivore 0.00 0.00 0.00 0.00 0.00 23.81 0.00 
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Table 3.5 Taxonomic assignment table continued. *Trophic traits: PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. † Prey items found in the single LNFS sample from JB in Jan-Apr (Sillangidae). 

   
Australian fur seal Long-nosed fur seal 

   
JB MI JB MI 

Class/Family Genus species (Common Name) Trophic* & Functional 
Trait 

Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Scombridae Scomber australasicus (spotted chub 
mackerel) 

PR, Pelagic Predator 17.65 7.69 13.33 20.00 0.00 14.29 5.88 

Scorpididae Scorpis sp. (sweep) PL, Reef Planktivore 5.88 0.00 0.00 6.67 20.00 0.00 5.88 
Serranidae Caesioperca sp. (butterfly/barber 

perch) 
PL, Reef Planktivore 0.00 15.38 0.00 13.33 0.00 0.00 0.00 

Sillaginidae † Sillago flindersi (eastern school 
whiting) 

IN, Benthic Invertivore 0.00 7.69 0.00 0.00 13.33 0.00 11.76 

Sparidae Acanthopagrus sp. (bream sp.) PR, Reef Predator 11.76 0.00 0.00 0.00 0.00 0.00 0.00 
Platycephalidae Neoplatycephalus richardsoni (tiger 

flathead) 
PR, Benthic Predator 17.65 7.69 20.00 6.67 6.67 4.76 5.88 

Monacanthidae Nelusetta ayraudi (ocean jacket) PR, Continental 
Pelagic Predator 47.06 38.46 40.00 60.00 20.00 28.57 11.76 

 Unknown Monacanthidae 
(leatherjackets) 

OM, Demersal 
Omnivore 5.88 0.00 60.00 0.00 0.00 9.52 0.00 

Tetraodontidae Lagocephalus sp. (rabbitfishes) IN, Pelagic Invertivore 0.00 0.00 0.00 0.00 0.00 14.29 0.00 
Cephalopoda  

       
Loliginidae Sepioteuthis australis (southern 

calamari squid) 
PR, Demersal Predator 5.88 15.38 6.67 0.00 20.00 71.43 5.88 
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Table 3.5 Taxonomic assignment table continued. *Trophic traits: PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. 
   Australian fur seal Long-nosed fur seal 

   JB MI JB MI 
Class/Family Genus species (Common 

Name) 
Trophic* & Functional 
Trait 

Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Octopodidae Octopus maorum (maori 
octopus) 

IN, Benthic Invertivore 5.88 7.69 6.67 20.00 0.00 4.76 0.00 

 Octopus sp. IN, Benthic Invertivore 0.00 7.69 26.67 6.67 6.67 9.52 0.00 
Enoploteuthidae Enoploteuthis galaxias (galaxy 

squid) 
UN, Pelagic Unknown 0.00 0.00 0.00 0.00 0.00 19.05 0.00 

Ommastrephidae Nototodarus gouldi (red 
arrow squid) 

PR, Pelagic Predator 17.65 15.38 26.67 13.33 20.00 57.14 35.29 

 Nototodarus sp. (arrow squid) PR, Pelagic Predator 0.00 0.00 0.00 0.00 0.00 14.29 0.00 
 Ommastrephes bartramii (red 

flying squid) 
PR, Pelagic Predator 0.00 0.00 0.00 0.00 0.00 4.76 23.53 

 Todarodes filipovae 
(fillipova's squid) 

UN, Pelagic Unknown 0.00 0.00 0.00 0.00 0.00 0.00 11.76 

Sepiidae Sepia apama (giant cuttlefish) PR, Reef Predator 0.00 0.00 0.00 0.00 13.33 0.00 0.00 
Oegopsida Unknown Oegopsida (squid) UN, Unknown 17.65 0.00 6.67 0.00 6.67 4.76 17.65 
Decapodiformes Unknown Decapodiformes UN, Unknown 5.88 0.00 0.00 0.00 0.00 42.86 35.29 
Malacostraca  

       
Scyllaridae Crenarctus crenatus (slipper 

lobster) 
IN, Benthic Invertivore 23.53 0.00 0.00 0.00 0.00 0.00 0.00 
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3.5 Discussion 

 

The recent recolonisation of the coast of southeastern Australia (NSW) by Australian 

(AUFS) and long-nosed (LNFS) fur seals affords a unique opportunity to investigate 

trophic interactions in two sympatric, recolonising predators. Using taxonomically 

sensitive DNA metabarcoding methods to analyse diets, we identified a greater than 

expected diversity of prey items within the diets of both predator species and we 

provide baseline dietary information for two recolonising predators in the eastern 

Australian region. These methods enabled the identification of the ecological function 

of prey taxa and novel areas of differentiation and overlap in the diets of recolonising 

predators, affording greater characterisation of trophic interactions occurring within 

these temperate food webs.  

Diet composition at the species level was different between predator species 

and locations, whilst there was considerable overlap in prey functional traits in the 

diet of both seal species at the range-edge haul-out site, with the most prevalent traits 

being benthic, demersal and reef-associated prey at this location (Figure 3.6). This 

result was unlike that of the diet composition of both seal species from the breeding 

colony, which exhibited a greater prevalence of prey from continental pelagic and true 

pelagic functional traits overall, and also a spike in benthic and demersal prey in the 

summer samples. At the breeding colony, diet composition also varied between 

predators (Figure 3.6), as expected from studies in these species from the centre of 

their geographic range. The hypothesis that diets would differ between seal species 

and seasons was thus supported at the breeding colony but not at the haul-out site. 

These data support the notion that there may be stronger trophic linkages for both seal 

species with coastal ecosystems at the haul-out site as compared to the more 

established breeding colony in eastern Australia. 
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Figure 3.6 Conceptual diagram depicting changes in food web interactions for both 
Australian (AUFS) and long-nosed (LNFS) fur seals at (i) Jervis Bay and (ii) 
Montague Island, over time from summer (Jan-Apr, dashed polygon) to winter (Sept, 
solid polygon) samples. Only key prey traits are illustrated based on known spatial 
association with submerged habitats and coastal and continental shelf structures. 
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3.5.1 Ecological interactions of eastern Australian fur seals 

 

Differences in diet composition at the species- and functional trait levels observed 

between predator species at the breeding colony (MI) were consistent with broad 

trends observed in the centre of their range (Deagle et al. 2009; Gales & Pemberton 

1994; Harcourt et al. 2002; Kirkwood et al. 2008; Page et al. 2005). The main prey 

for AUFS were from benthic and demersal food webs, as well as from pelagic food 

webs over continental shelf waters from both the breeding colony (MI) and the haul-

out site (JB); whilst for LNFS, the main prey for samples from the breeding colony 

(MI) were broadly pelagic (Figure 3.6). Temporal differences evident in the diet of 

both seal species at the breeding colony (MI) were also consistent with trends 

observed at other breeding colonies (Arnould et al. 2011; Harcourt et al. 2002; Page 

et al. 2005), with greater prevalence of benthic and demersal prey in the summer 

samples and pelagic prey in the winter samples (Figure 3.6). Summer is also the time 

of year when females are nursing young pups and are known to forage closer to 

breeding colonies, possibly contributing to these population-level trends in diets at MI 

(Harcourt et al. 2002; Kirkwood & Arnould 2011; Page et al. 2005; Page et al. 2006).  

At the range-edge haul-out site (JB), however, the diets of both seal species 

were unexpectedly similar to each other and exhibited patterns atypical of other sites. 

The diet composition of LNFS samples from JB was more similar to AUFS samples 

from this location than to their own kind from the breeding colony (MI) (Figure 3.6), 

only several hundred kilometres away. Despite some differences in prey at the species 

level, our findings indicate that both fur seal species functionally overlap at this 

location, with prevalent trophic interactions with coastal ecosystems due to the 

dominance of benthic, demersal and especially reef-associated prey in their diets. 

Interestingly, the most common prey trait for AUFS at JB were still continental 

pelagic mesopredators, whilst pelagic prey were rare in LNFS from JB with the 

exception of N. ayraudi, contrary to what would be expected from studies from 

elsewhere for LNFS, mostly based at breeding colonies (Harcourt et al. 2002; 

Kirkwood & Arnould 2011; Page et al. 2005; Page et al. 2006), and contrary to what 

we observed in their diets at MI. 
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Reef fishes are a particular focus of coastal zone management due to their 

susceptibility to localised depletion from fishing and the need to mitigate 

anthropogenic effects through strategies including networks of marine protected areas 

(MPAs) (Kelaher et al. 2015). Although direct trophic effects of pinnipeds on reef 

communities are not well known, reef-associated prey are occasionally found in the 

diets of AUFS elsewhere in Australia (Deagle et al. 2009; Page et al. 2005). Fur seals 

are also suspected to affect reef fish assemblages at Montague Island, where their 

densities in eastern Australia are highest (Kelaher et al. 2015). Additionally, concerns 

about the trophic impacts of large predators on coastal reefs by local human 

communities and marine resource users are usually related to the densities of 

predators (i.e., the more seals the greater the concern) (Michelle Voyer, University of 

Technology Sydney, pers. comm.). The results of this study instead highlight the 

possibility that range edge and haul-out sites may experience greater trophic 

interactions between seals and coastal ecosystems. 

Differences in predator diets may be influenced by site-specific differences in 

prey assemblages (Cherel & Hobson 2007; Deagle et al. 2009; Gales et al. 1993). 

Jervis Bay is a large coastal embayment, whereas Montague Island is a unique 

offshore island, 2˚ latitude further south, and may be more heavily influenced by 

oceanographic features that drive the distributions of highly mobile prey (Kelaher et 

al. 2015; Suthers et al. 2011). This influence may partially explain the greater 

prevalence of pelagic prey items in both fur seal species at Montague Island. 

However, both sites are positioned on a narrow continental shelf of ca. 20 km, 

proximal to a strong western boundary current that strongly affects prey distributions 

and availabilities, and both sites are associated with extensive networks of shallow 

and intermediate rocky reefs (Jordan et al. 2010). 

It is more likely that the broad dietary patterns observed here are driven by 

differences in fur seal population demographics and densities between recolonised 

sites. The age cohorts and sex of fur seals differ between breeding colonies and haul-

out sites, the latter consisting mainly of juvenile and sub-adult seals (Burleigh et al. 

2008; R. Harcourt, Macquarie University, pers. comm.), differences that are known to 

influence foraging strategies of seals (Fowler et al. 2006; Lowther et al. 2013; Page et 

al. 2006). Juveniles have been found to make shorter, shallower and near-shore dives 

compared to adults in another otariid species, the Australian sea lion (Fowler et al. 
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2006; Lowther et al. 2013; Page et al. 2006). Additionally, density-mediated effects 

could be occurring at the breeding colony, observed in other recovering pinniped 

populations, such as northern fur seals (Kuhn et al. 2014), such that increasing 

population density, intra- and inter-specific competition between predator species, 

could lead to localised resource depletion at the breeding colony compared to a less 

established haul-out site over time. This raises the question of whether certain 

demographic and frontier cohorts of seals, particularly younger cohorts, may be more 

likely to forage in and impact shallower, near-shore reef communities before 

competition drives foraging effort further offshore, and importantly how long this 

effect might be observable. The ongoing NSW fur seal population recovery provides a 

unique opportunity to test these hypotheses for further research using a gradient of 

recolonising fur seal densities and demographics, as several more haul-out sites have 

become established since the commencement of this study. 

The majority of prey taxa identified in this study were generalist 2nd or 3rd 

trophic-level mesopredators: invertivores, piscivores or generalist mesopredators. 

Prey included wide-ranging, generally schooling prey items that occur in a range of 

ecosystems. This observation confirms that both seal species are functionally 4th 

trophic-level generalist predators in the recently colonised east coast ecosystems and 

throughout their range (Goldsworthy et al. 2013). The direct trophic impact of these 

seals will therefore be felt primarily towards the middle of the food web, while 

indirect effects are expected for lower trophic levels through mesopredator release 

feedback mechanisms (Estes et al. 2016; Prugh et al. 2009). However, detailed 

information on prey diets, trophic linkages and dynamics are lacking and currently 

limit further interpretation of local food webs. Whole ecosystem trophodynamic 

modeling, such as performed for South Australia (Goldsworthy et al. 2013), is 

required to further evaluate at all trophic levels, the complex interactions between 

recolonising predators and eastern Australian ecosystems. 

We also observed a previously known trophic linkage between long-nosed fur 

seals and little penguins. Predation of little penguins is known to occur in both fur 

seal species, but is more common in LNFS (Gales & Pemberton 1994; Page et al. 

2005) and has been observed at Montague Island where little penguins nest (M. A. 

Coleman pers. obs.). A relatively high frequency of occurrence of their remains has 

been recorded in the scats and regurgitates of male LNFS in South Australia (~20% of 
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samples)round (Page et al. 2005) and in Victoria (up to 60% of samples) (R. 

McIntosh, Philip Island Nature Parks, pers. comm.). In contrast, we only found little 

penguin remains in a single scat in one season and at one location, the haul-out site at 

Jervis Bay (< 7% of samples) and none have yet been detected at Montague Island, a 

breeding colony. Given concerns about the potential impacts of recovering fur seal 

populations on little penguin populations elsewhere throughout their range, further 

monitoring of the degree of trophic interaction is warranted.  

 

3.5.2 Recommendations for further work on DNA-based methods and predator 

diet analysis 

 

High-taxonomic resolution was fundamental in identifying key trophic interactions of 

these recolonising predator species by enabling the identification of broader patterns 

in these predators’ diets based on prey ecological traits. The number of prey species 

identified in the diets of either predator in this study, using DNA-based methods 

targeting four taxonomic prey groups, so far represents the highest number recorded 

in any study for either AUFS or LNFS, despite other studies typically employing 

greater sampling effort. Between 20 and 42 individual species are typically identified 

for either AUFS or LNFS in studies from Australia and New Zealand, with sampling 

efforts ranging from several hundred to over 1250 scats over multiple seasons, for 2–9 

years of sampling effort (Fea et al. 1999; Gales & Pemberton 1994; Kirkwood et al. 

2008; Page et al. 2005). A DNA-based study of AUFS diet from Bass Strait identified 

54 bony fish, 4 cartilagenous fish, 4 cephalopods and one bird species in only one 

season (n = 90 scats) (Deagle et al. 2009), similar to the numbers found in the present 

study. 

 Differences in prey diversity can be influenced by study location, as a function 

of latitude and oceanographic parameters, and further studies directly comparing these 

methods across locations are warranted. However, geographic differences (Stuart-

Smith et al. 2013) are not sufficient to explain the differences observed in prey 

diversity between DNA-based and morphological studies in these locations. DNA-

based studies are known to be currently the most taxonomically sensitive method for 

diet analysis for marine predators (Berry et al. 2015; Casper et al. 2007; Deagle et al. 
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2009; Tollit et al. 2009), and aspects of predator diets may be overlooked by 

restricting diet investigations to morphological methods alone (Berry et al. 2015; 

Deagle et al. 2009). This method enabled this study to rapidly capture the breadth of 

these predator diets in novel locations. 

At present, the use of multiple primers for DNA metabarcoding, to produce 

detailed taxonomic information on diet, incurs the loss of prey relative abundance 

information (Berry et al. 2015; Deagle et al. 2009), information that is crucial to 

assessing the relative importance of prey observed (Chapter 2). Biological and 

technical biases are known to affect sequence abundances and therefore sequence 

proportions recovered within samples and between primer sets (Deagle et al. 2006; 

Deagle et al. 2013; Thomas et al. 2014). Three recent studies have addressed these 

biases and offer solutions in the form of quantifying technical biases (Deagle et al. 

2013), and in developing DNA correction factors either based on prey tissue 

composition or specific species (Thomas et al. 2016; Thomas et al. 2014). These 

developments will likely enable further breakthroughs to confidently using relative 

abundance or biomass information from DNA-based studies. However, further 

research and development of corrective factors across different predator species and 

ecosystems are needed before they can be more broadly applied. Additionally, whilst 

proportions of prey sequences observed for the same primer were found to be stable 

across sequencing runs from within the same laboratory group (Deagle & Tollit 

2006), we caution that raw sequence abundances are contingent on accurate 

replication of library build conditions, will necessarily vary across laboratories, and 

are not comparable between primers. Due to the use of multiple DNA primer sets in 

this study to target multiple taxonomic groups, we conservatively analyse only 

presence data at high taxonomic resolution. 

 A second issue is that of secondary predation or the recovery of DNA not only 

from fur seal prey taxa but also from the taxa that the prey themselves consumed and 

that could, in theory, survive digestion twice (King et al. 2008; Sheppard & Harwood 

2005). In practice, this has not, to our knowledge, been experimentally tested in any 

vertebrate predator for any method of diet analysis and secondary predation is a little 

understood issue common to all methods of diet analysis sampling predator tissues 

and faeces. Evaluating the extent to which trace amounts or greater quantities of 

material originating from secondary consumption is present in predator tissues would 
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require complex multi-trophic level captive feeding trials for each method of diet 

analysis. In the absence of such a study, present studies employ a weight of evidence 

approach outlined in the methods and rely on sound biological interpretation and prior 

knowledge of the system to increase confidence in prey identifications. This process 

is currently done manually and for most prey items detected it is relatively 

straightforward. Some of the lower taxonomic resolution taxa found here could in fact 

be secondary predation (e.g., unknown Decapodiformes), however, they could also 

represent species for which reference material is lacking in global genetic databases 

for entire taxonomic groups. Indeed poorly resolved taxonomy and a paucity of 

reference material are limiting factors in genetic analyses, particularly for certain 

taxonomic groups such as cephalopods and crustaceans (Berry et al. 2015). Our 

methods were careful to balance the risks of false negatives concerning legitimate 

prey items and also conservative towards false positives arising from contamination 

and potential secondary predation. Finally, through stringent quality control and 

manual curation of the prey database we are certain that these prey were ultimately 

consumed, and their relative importance will become clearer through longer-term 

research. 

 

3.6 Conclusions 

 

The results of this study provide a much-needed prey database for recolonising 

eastern Australian fur seal populations that can inform future work on their diet, 

trophic interactions and ecosystem trophodynamics. The differences observed in 

trophic linkages for predators at the haul-out site compared to the breeding site also 

highlight the need to further investigate different demographic and frontier cohorts of 

seals in recovering populations, which could result in different considerations for 

coastal management targeted to different cohorts of seals. We recommend continued 

research on seal diets in eastern Australia, a location at the frontier for the population 

and range recovery of two large-bodied predators, to provide valuable insights on the 

trophodynamics of similar predator recolonisations in temperate coastal ecosystems. 

Importantly, parallel sampling and analysis of the diets of mesopredators and lower 

trophic levels using complimentary multi-disciplinary and DNA-based methods will 

enable better resolution of trophic interactions across whole ecosystems. 
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Reconstruction of ecosystem-scale trophodynamics will be essential to managing the 

recovery of protected species and the marine resources they depend on. 

 

3.7 Data Accessibility 

Metabarcoding data (raw FASTQ files and filtered FASTA files) are available from 

the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.2tk0q. 
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4 Trait-based	analyses	inform	the	relationship	between	

fur	seal	aggregation	sites	and	coastal	fish	community	

composition	

 

4.1 Abstract 

 

Despite large-scale changes in pinniped populations in the last century, relatively little 

is known about how these predators are affecting ecological communities. Sympatric 

predator populations, of Australian (Arctocephalus pusillus doriferus) and long-nosed 

(Arctocephalus forsteri) fur seals, are rebounding in eastern Australia following the 

cessation of sealing, and their diets have been shown to include nearshore coastal prey 

at their recolonisation frontier. Here, I used a trait-based approach to evaluate 

differences in fish assemblages at two recently recolonised sites harbouring fur seal 

aggregations (haul-out sites) compared to multiple local reference sites without seals. 

Trait-based analyses revealed that fish community composition differed between seal 

haul-out vs. reference sites, and that they differed in relation to fish functional traits, 

as well as the locations of the haul-out site. The prevalences of schooling fish and 

browsing herbivores were negatively correlated with haul-out sites, whilst the 

presence of mesopredators, as well as fish that formed pairs or small groups, were 

more common near haul-out sites. The total abundance and the proportional biomass 

of fish of different size classes were significantly different between one of the haul-

out sites and reference sites. These results provide evidence for differences between 

reef fish communities adjacent to and away from fur seal aggregation sites. These 

differences did not, however, correspond to large ecological differences in reef 

community trophic structure or size structure, and differences were contingent on the 

location of the haul-out site sampled. At an early stage in the recovery trajectories of 

these fur seal populations, these results provide a baseline understanding for fish 

community composition in the context of natural recolonisation by large predators. 
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4.2 Introduction 

 

Understanding how the recovery of predators affects prey communities at a functional 

level helps to identify critical trophic linkages and to predict flow-on effects within 

ecosystems. Large-scale changes to predator populations globally have led to a 

‘trophic downgrading’ of our planet (reviewed by Ripple et al. 2014), whereby the 

disappearance of upper trophic levels can lead to cascading ecological effects. When 

predator populations return, however, unique opportunities arise to observe a potential 

reversal in the changes that may have resulted from their removal or local extinction. 

The recovery of predators typically results in prey limitation (Beschta & Ripple 2009; 

Estes et al. 2016; Ripple et al. 2014). However, it has been estimated that the 

ecological influences of over 90% of species of oceanic megafauna are largely 

unknown (reviewed by Estes et al. 2016). 

Globally, pinnipeds have experienced large-scale population declines and 

alterations in geographic distributions, primarily due to harvesting (reviewed by Estes 

et al. 2016). Following protection and the cessation of harvesting, many seal species 

are also experiencing recovery (IUCN 2017; McCauley et al. 2015). Pinnipeds 

negatively impact prey populations (Boveng et al. 1998; Kelaher et al. 2015; Power & 

Gregoire 1978), but can also impact prey behaviour, as fish have been observed to be 

more cautious and reduce their time spent foraging in the presence of pinnipeds 

(Connell 2002; Shepherd et al. 2010). However, the functional role that pinnipeds 

may play in the their ecosystems remains poorly understood and may vary in different 

ecosystems (Bowen 1997; Estes 2009; Estes et al. 2016). Understanding the role of 

recovering populations of pinnipeds in structuring fish communities, whether 

significant or not, is required to ensure that marine management strategies account for 

interactions between these recovering predators and coastal ecosystems. 

Cessation of harvesting and legal protection have promoted the recovery of 

two pinniped species on the coast of southeastern Australia, providing a unique 

opportunity to investigate relationships between these generalist-predators and 

complex prey communities at newly recolonised habitats. After more than a century 

of harvesting (Simon Goldsworthy, pers. comm., SARDI), Australian fur seals, 

Arctocephalus pusillus doriferus (hereafter AUFS), and long-nosed fur seals 

(formerly New Zealand fur seals), A. forsterii (LNFS), have recently re-established a 
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breeding colony and several non-breeding aggregation (hereafter ‘haul-out’) sites 

across 500 km of the coastline of southern New South Wales (NSW, eastern 

Australia) (McIntosh et al. 2014; Shaughnessy et al. 2001). Both fur seal species 

associate with the coast and both have broad diets spanning benthic to pelagic 

ecosystems, but typically exhibit resource partitioning (Arnould et al. 2011; Deagle et 

al. 2009; Harcourt et al. 2002; Page et al. 2005). Recent research on these recovering 

species from their northeastern range-edge revealed that the diets of both species 

converged in eastern Australian haul-out sites, with a particularly high prevalence of 

coastal reef-associated and benthic prey species (Hardy et al. 2017). It is not known 

how coastal fish communities may change in response to ongoing and natural 

predator recolonisation in eastern Australia, nor what the flow-on ecological effects 

might be on a complex marine ecosystem.  

The use of a framework of analyses based on species’ traits can improve our 

knowledge of the relationships between predators, their prey and their ecosystems as 

specific ecological and/or biological traits of the study species are used to inform 

statistical analyses (Luck et al. 2012; Spitz et al. 2014). A trait-based approach is also 

more likely to detect differences in ecological communities that would otherwise be 

missed when assessing overall community diversity indices, because biological and 

ecological changes are often trophically or functionally driven (Babcock et al. 2010; 

Coleman et al. 2015; Stuart-Smith et al. 2013). For example, the loss a predator that 

preys on herbivores will release those herbivores from predation pressure, and this 

will have ecological rammifications which are fundamentally linked to an animal’s 

functional trait of being a herbivore rather than being due to that unique species.  

Furthermore, trait-based analyses of ecological interactions may enable us to 

make sense of otherwise complex interacting webs of species, where we may have 

multiple species of herbivores and where their impact as a functional whole might be 

significant in an ecosystem when individual species may not have a significant effect. 

Species traits may therefore help to understand how complex assemblages of species 

respond to changing environmental conditions (Brown et al. 2014a; McGill et al. 

2006). Thus, analyses of ecological communities can go beyond a taxonomic 

understanding towards a functional understanding of community ecology using trait-

based analyses, however this is difficult to do in a coherent model using conventional 

multivariate statistics (Brown et al. 2014a; Spitz et al. 2014). The fourth-corner 
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solution developed by Brown et al. (2014a), and used in this study, enables 

researchers to combine and analyse in a single model: the relationships between 

species abundances or occurrences, to the environment in which they occur and their 

traits (Figure 4.1) (Brown et al. 2014a; Dray & Legendre 2008; Legendre et al. 1997; 

Spitz et al. 2014). 

 

Figure 4.1 Graphical representation of the model-based solution to the fourth-corner 
problem (Brown et al. 2014b). The goal is to predict species occurrences (Y, 1st 
corner) as a function of predictor variables for the environment (X1, 2nd corner), 
species traits (X2, 3rd corner) and their interaction (X1*X2, 4th corner) (Brown et al. 
2014a; Dray & Legendre 2008; Legendre et al. 1997; Spitz et al. 2014). Details for 
species traits are provided in Table 4.2. The matrix of coefficients for the interaction 
between X1 and X2 is the fourth-corner (Brown et al. 2014b) (Figure 4.5) and 
coefficients for the mains effects of traits and environmental variables are the second 
and third corner (Figure 4.6). 

 

The objective of this study was to investigate localised differences in fish 

community composition, specifically relating to the ecological function of fish 

communities, in the context of recent fur seal recovery. Included in this study were 

two spatially distinct haul-out sites each paired with multiple reference sites that do 

not harbour fur seal aggregations, and these sites were used as proxies for locations 

harbouring frequent seal use and sites diffuse or little use by seals. Thus using an 
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asymmetrical design, I aimed to investigate localised differences in reef community 

metrics, including size structure of fish communities, and abundances and biomass of 

fish, between fur seal aggregation sites and reference sites. I also examine how fish 

functional traits may explain the relationship between fish community composition 

and locations of fur seal recovery in temperate reef ecosystems of eastern Australia 

(Table 4.1). For the latter, I use a fourth-corner model to identify trait-level 

differences in fish community composition, and also the strength of interaction 

between predator aggregation sites and particular functional groups within fish 

communities (Figure 4.1). It was expected that following the recent recovery of fur 

seals on temperate reefs I would observe trait-level differences, specifically reduced 

prevalences of mesopredators at haul-out sites, and differences in fish community size 

structure, whereby fish communities adjacent to haul-out sites would be composed of 

greater abundances and biomass of smaller fish compared to local reference sites. 

 

4.3 Methods 

 

4.3.1 Study sites and system 

 

Jervis Bay, in eastern Australia, supports the two of the northernmost haul-out 

sites in use year-round by both Australian and long-nosed fur seals. This location 

represents the frontier for population and geographic range recovery in these species, 

at the time of study. Haul-out sites are non-breeding locations where pinnipeds come 

ashore to rest in between foraging trips (Burleigh et al. 2008). Whilst fur seal foraging 

strategies vary widely among species, individuals and locations, fur seals in NSW are 

known to forage locally as well as offshore (M. Salton, Macquarie University, pers. 

comm.), however data for the foraging distribution of the study population of seals ar 

currently unpublished. Additionally, previous work analysing the diets of fur seals 

from Jervis Bay found a large component of their diets to consist of coastal reef fish 

at this location (Hardy et al. 2017). The coast of Jervis Bay is lined with steeply 

sloping subtidal reefs reaching > 200 m in depth within kilometres of the coast 

(Jordan et al. 2010). Seal population densities in this frontier location are currently 

relatively low, and according to optimal foraging theory it is expected that predators 
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will exhaust resources locally prior to foraging further afield (Ashmole 1963; Birt et 

al. 1987; Orians & Pearson 1979). It is therefore likely that fur seals would begin 

foraging search patterns close to their point of departure, particularly haul-out sites. 

The Jervis Bay haul-out sites are occupied by 30 to several hundred individual 

seals, with peak abundance in the winter and early spring (June-September) (Burleigh 

et al. 2008). Two haul-out sites were surveyed in Jervis Bay, NSW, Australia, these 

were: Drum & Drumsticks in North Jervis Bay (35° 2.799'S, 150° 50.552'E) and 

Steamer’s Head in South Jervis Bay (35° 10.725'S, 150° 43.895'E) (sites labelled N-

HO and S-HO in Figure 4.2). In South Jervis Bay, the haul-out site has been in regular 

use for ca. 15 years, whilst in North Jervis Bay, the haul-out has been in regular use 

for ca. 5–8 years at the time of the study, but with greater numbers of seals in the 

north compared to the south since the complete closure of the northern headlands to 

the public as part of the Department of Defense Beecroft Weapons Range in 2009 

(Burleigh et al. 2008). 

 

Figure 4.2 Locations of fur seal haul-out sites (N-HO & S-HO) and local reference 
sites (N-RF1 to -RF3, S-RF1 to -RF3) in North and South Jervis Bay, NSW, 
Australia. Illustration includes depth contours along the continental shelf in 20 m 
intervals from 0–240 m and shallow to intermediate reef habitat (up to 60 m, shaded 
in green) (OEH 2015). 
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Table 4.1 Summary of statistical analyses, models tested and datasets used for these analyses. Asterisks denote interactions performed under the 
full model. Abbreviations in parentheses are referred to in the results (Figure 4.3, Appendix C, Table C.2). 

Question Response variable Statistical analyses 

1) How did reef fish community parameters vary in 

relation to region and site? (Figure 4.3) 

(a) Fish species richness (SPR) GLM (Poisson) 

(b) Fish community Shannon-Wiener diversity index (H) LM (normal) 

(c) Fish community evenness (E) LM (normal) 

(d) Total abundance of prey fish species (Tabun_prey) GLM (Poisson) 

(e) Total biomass of prey fish species (Tbiom_prey) GLM (negbin) 

2) Did the proportional abundances or biomass of fish 

within each size class vary according to site type within 

each region? (Figure 4.4) 

Proportional abundance and biomass of fish size classes 

(2.5–62.5 cm) 

Kolmogorov-

Smirnov test 

3) How do fish functional traits (X1) explain the 

differences in fish species prevalence (Y) between 

region and site (X2 = region*site) (Figures 4.5–4.8, 

Appendix C, Figures C.1 and C.2) 

Fish species presence absence (Y) 
Fourth-corner 

analyses 
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Data were collected from fur seal haul-out sites and reference sites that do not 

harbour seal aggregations. For each haul-out site, three local reference sites that are 

not used by fur seals for hauling-out were selected (Figure 4.2) using an asymmetrical 

design (Underwood 1994). Reference sites were focused on a localised radius of 2–10 

km from the haul-out sites to test for localised differences between haul-out sites and 

reference sites, without confounding the study across a latitudinal gradient. Data on 

localized movements and geographical resource use by these populations of seals are 

unplushied (Marcus Salton, pers. comm., Macquarie University). The distance of 2 

km from haul-out sites does not wholly exclude the presence of seals at reference 

sites, however as seals are not known to aggregate at any of the reference sites 

(Marcus Salton, pers. comm., Macquarie University) and thus any use of reference 

sites by fur seals assumed to be diffuse or transitory in this study. The sampling 

design for this study is therefore preliminary and changes could be recommended as 

further information becomes available for the potential foraging distribution of these 

predators. Reference sites were selected based on similar aspect (ENE to E facing for 

northern sites and S facing for southern sites) and similar habitat complexity (large 

boulder fields of generally > 25˚ slope) to their respective haul-out sites. Altogether, 

one haul-out site and three local reference sites were surveyed in each of two regions 

(North and South Jervis Bay) (Figure 4.2).  

 

4.3.2 Data collection and processing 

 

Surveys were conducted over a 14-day period in the austral spring (Nov–Dec) 2014, 

immediately following the peak in local seal abundances, to collect data at a time 

when the potential trophic pressure of these predators was expected to be the most 

acute and therefore more likely to be observed. Data on the diversity, abundances and 

sizes of fish were collected from shallow subtidal reefs at depths of 10–18 m by 

SCUBA divers using standard Reef Life Survey (RLS) visual census techniques 

described in Edgar and Stuart-Smith (2014) and in the RLS methods manual 

(https://reeflifesurvey.com/wp-content/uploads/2015/07/NEW-Methods-

Manual_150815.pdf). Using RLS methods, data on the identity, abundance and size 

estimates for all fishes were collected along a 50´10 m transect (500 m2 area). The 

majority of taxa were recorded to species-level, and unidentified taxa (<0.01% of 



 

 94 

records) were classified at genus or family level. This survey method also records any 

large mobile and demersal invertebrates occurring on transects (i.e., cuttlefish), and 

they are included in analyses, however occurrences were rare. Overall, divers 

conducted 8 replicate transect surveys at each site (n = 8) using a random stratified 

design to sample evenly across the depth range, and data were collected for a total of 

64 transects.  

 Fish species observed in this study were classified in relation to three traits; 

gregariousness, trophic group and seal prey status (Table 4.2). Traits for 

gregariousness and trophic group were assigned based on Ferrari et al. (2017) and 

Stuart-Smith et al. (2013) (Table 4.2, Appendix C, Table C.1). Species were 

categorized as seal prey using prior knowledge of the species, genera and families 

found in the diets of Australian and long-nosed fur seals from NSW (Hardy et al. 

2017), Bass Strait (Deagle et al. 2009; Gales & Pemberton 1994; Kirkwood et al. 

2008; Lake 1997) and New Zealand (Fea et al. 1999) (Table 4.2, Appendix C, Table 

C.1). Data on fish abundance and sizes were used to calculate fish biomass for each 

species and size class through the RLS data portal using known estimates relating fish 

size to weight for individual species. Additionally, the abundances and biomass data 

of all fish species were summed for each size class to conduct trait-based analyses.  

 

Table 4.2 Functional traits of fish species used for trait-based modelling. 
Classification of fish traits for gregariousness and trophic group were sourced from a 
database developed by Stuart-Smith et al. (2013) and Ferrari et al. (2017), with the 
exception of the “seal prey” trait based on dietary information on fur seals for 
southeastern Australia and the local area (Hardy et al. 2017). 

Functional Trait Category Type Description 

Trophic group Trophic 
niche 

Factor Browsing herbivore, scraping 
herbivore, omnivore, benthic 
invertivore, cleaner, planktivore, 
mesopredator 

Gregariousness Behaviour Ordered 
factor 

Index from 1–3, representing solitary, 
paired to sometimes forming 
groups/small schools, always schools, 
respectively 

Seal prey item Trophic 
interaction 

Binomial 
factor 

Index of 0 and 1, representing 1 - a 
known or probable prey item at the 
family level, and 0 - not encountered in 
fur seal diet 
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4.3.3 Statistical models and analyses 

 

Throughout the analyses summarised in Table 4.1, I assessed the significance of two 

categorical explanatory variables region (levels: North JB, South JB) and site type 

(levels: seal haul-out, reference) on various univariate and multivariate measures of 

assemblage structure (Table 4.1). In all cases, differences between site types were 

based on the comparison between the mean for all transects at each haul-out site and 

the mean for all transects at reference sites within both study regions. 

Firstly, statistical differences between regions and site types were tested for 

the following univariate reef community metrics calculated per transect: (a) species 

richness calculated as the total number of unique fish and macro-invertebrate species 

observed; (b) the Shannon-Weiner diversity index; and (c) reef community evenness 

calculated by dividing the diversity index by species richness; (d) the total abundance 

and (e) the total biomass of fish species classified as seal prey (Table 4.1). Statistical 

analyses for these univariate metrics were performed in the packages stats and MASS 

(version 7.3-47) (Ripley et al. 2002) in R (version 3.4.1) (R Core Team 2017), for 

linear and generalised linear models respectively (Table 4.1).  Secondly, variations in 

size structure of fish communities between site type were tested for each region using 

the Kolmogorov-Smirnov (KS) test (Lopes et al. 2007) and using data for the 

proportional abundances and biomass of fish within each size class (Table 4.1). To 

standardise for overall differences in abundance or biomass between replicate 

transects, the data for abundance and biomass of fish within each size class are 

expressed as a proportion of the total number or biomass of fish observed within each 

transect. 

Thirdly, I aimed to investigate how fish functional traits may explain 

differences in fish assemblage composition in relation to region and site type. Fish 

functional traits relate to both their suitability as seal prey and also their relationship 

to reef ecosystems (Table 4.2). I used a fourth-corner model, a multivariate statistical 

technique, to predict the probability of occurrence of different fish species as a 

function of explanatory variables for the environment here regions and site type (X1), 

species traits (X2) and their interaction (X1* X2), where the matrix of coefficients for 
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the interaction between the species traits and explanatory variables is known as the 

fourth-corner solution (Figure 4.1) (Brown et al. 2014a). These coefficients for all 

trait-environment interactions are presented using a (GLM)-LASSO model (Brown et 

al. 2014a), where the strength and direction of the interactions are illustrated. Where 

significant interactions between environmental variables (region, site type) and traits 

are observed, the occurrences of fish species with these traits are interpreted as either 

negatively or positively correlated with certain environmental variables. The relative 

strength of the relationship between environmental variables and traits can also be 

compared between traits using this technique. The analytical routines for the fourth-

corner analysis were performed using the package mvabund (version 3.12.3) (Wang et 

al. 2012) in R software (R Core Team 2017). 

The model was fitted to data on fish species presence/absence using the 

function traitglm and using a LASSO penalty, specifying the fitting method as 

‘glm1path’, a method of penalised likelihood that imposes a constraint on estimates of 

model parameters (Brown et al. 2014a; Hastie et al. 2009; Warton et al. 2015). This 

constraint effectively shrinks coefficients to zero when they are not statistically 

significant, providing a combined approach for model selection and parameter 

estimation to evaluate the magnitude and significance of an explanatory variable 

(Brown et al. 2014a; Hastie et al. 2009; Warton et al. 2015). Interaction plots were 

constructed to visualise the probabilistic relationship between environmental variables 

(region, site type) and the traits of fish. To determine species-level variations in the 

fish assemblage not explained by traits, a single predictive model was fitted for all 

species presence/absences at all site types and regions using a traitglm. This is the 

equivalent to fitting a multivariate species distribution model (SDM).  

Broad trends, overdispersion and outliers in multivariate space were checked 

graphically by non-metric multi-dimensional scaling (nMDS) plots (Field et al. 1982) 

using the vegan package in R (Oksanen et al. 2015). An outlier in this dataset would 

consist for example of a replicate (transect) that contained a single or few species, 

especially a large numbers of these species, that were not observed in any other 

replicate. Such an outlier would have exceptionally large dissimilarity with other 

replicates that it would appear graphically as a point so distant that the rest of the 

assemblage would be tightly clustered. Model fit was assessed by plotting residuals 

against fitted values and plotting quantile-quantile (Q-Q) plots. The ggplot2 package 
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in R was used to create all graphical illustrations (version 2.2.1) (Wickham 2009). 

The data on fish species assemblages were transformed to presence/absence to meet 

the assumptions of the fourth-corner model for trait-based analyses. The model was 

also intended to be tested on abundance and biomass estimates across the assemblage 

of reef species observed, however a tweedie distribution was required and this is not 

yet available for the traitglm function in mvabund (D. Warton, Stats Central, 

University of New South Wales, pers. comm.), and so was not done in the present 

study. 

 

4.4 Results 

 

4.4.1 Fish community summary metrics and fish community size structure at 

seal haul-out sites 

 

Fish species richness was significantly higher at the haul-out site in North JB (average 

of 30 species/500 m2, ± 2 SE) compared to reference sites and to the haul-out site in 

South JB, that were not significantly different from each other (average of 24–27 

species/500 m2, ± 1 SE) (Figure 4.3, Appendix C, Table C.2). The Shannon-Wiener 

diversity index was not statistically different between haul-out sites and reference 

sites within each region (H = 1.64 per 500 m2 ± 0.04 SE) (Figure 4.3, Table C.2). 

There were no discernible differences in fish community evenness (E = 0.51 per 500 

m2 ± 0.01 SE) between the haul-out and reference sites or regions, and no interaction 

between these explanatory variables (Figure 4.3, Table C.2). 

 Total abundance of seal prey species was significantly lower at the haul-out 

site compared to reference sites in South JB (mean abundance: South HO = 176 ± 16 

vs. South RF’s = 330 per 500 m2 ± 42) but not in North JB (Figure 4.3, Table C.2). 

For total biomass of seal prey species, biomass was lower at the South JB haul-out 

site compared to the reference sites, however this was not statistically significant in 

either North or South JB (Figure 4.3, Table C.2). Proportional abundances or biomass 

of fish were slightly higher for the smaller size classes (2.5–10 cm) at haul-out sites 

and higher in the larger size classes at reference sites (12.5–62.5 cm) (Figure 4.4). 
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However, this trend was only statistically significant for the proportional biomass of 

fish between the haul-out and reference sites in South JB (Figure 4.4). 

  

4.4.2 Trait-based analyses of fish community response to seal haul-out sites   

 

A total of 85 fish species and one mobile invertebrate were observed on surveys, and 

could be assigned traits (Table C.1). Of these fish species, 55% of surveyed species 

were benthic invertivores, 18% were browsing herbivores, 13% mesopredators, 9% 

were planktivorous species, 3% omnivores and 1% cleaner species (Appendix C, 

Table C.3). Cleaner species (n = 1) and omnivores (n = 3) were rare in this study, and 

were thus excluded from trait-based analyses, as inferences could not be made on 

their occurrences in this study. Regarding the gregariousness of fish species, 22% 

were schooling species, 25% occurred in pairs or small groups and 38% were solitary 

species (Table C.1). Thirdly, 74% of all recorded fish species were classified as 

potential seal prey according to previous diet work on southeast Australian fur seals, 

whilst 26% have not been recorded in fur seal diets (Table C.1). 
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Figure 4.3 
Comparisons for North 
and South JB between 
site types, fur seal 
haul-out sites and 
reference sites, of 
summary indices for 
reef fish communities: 
a) species richness 
across all fish species 
(SPR); b) Shannon-
Wiener Diversity Index 
(H); c) community 
evenness (E); d) total 
abundance of seal prey 
species; and e) total 
biomass of seal prey 
species. All values are 
presented for an area of 
500 m2. Error bars 
represent standard 
errors and asterisks 
represent significant 
differences between 
site types and regions. 
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Figure 4.4 Fish size class distribution per 500 m2 area by: a) abundance and b) biomass 
normalised for the total abundance and biomass within each site type. Proportional 
abundance and biomass are reported as percentages with standard error bars (KS-test for 
proportional abundance: DNorthJB = 0.1539, p = 0.9992; DSouthJB = 0.2308, p = 0.8793; for 
proportional biomass: DNorthJB = 0.1539, p = 0.9992; DSouthJB = 0.6154, p = 0.0127). 
Asterisks denote significant differences between site types. 
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The results of the fourth-corner model revealed that the probability of occurrence 

of fish species varied between seal haul out and reference sites (site type), between North 

JB and South JB (region), and between traits (Figure 4.5). Differences were also 

explained by interactions between environmental variables and certain fish functional 

traits (Figure 4.6). Coefficients for the model’s main effects (Figure 4.5) revealed that the 

traits for seal prey (level “yes”) and trophic groups (level “browsing herbivore”) were 

important predictors of fish community assemblage, as were the variables for region and 

the haul-out vs. reference sites (site type). There was a greater probability of occurrence 

of seal prey species in general across all sites and regions simply because most species 

(~74%) were found to be known or likely seal prey items (Figure 4.5). Therefore known 

and likely seal prey species were common in both haul-out sites and reference sites, and 

prevalence as a metric for this trait was not sufficient to differentiate between regions and 

site types (Figure 4.6 and 4.7). The prevalence of browsing herbivores in general was also 

slightly higher compared to other trophic groups across all sites and regions (Figure 4.5 

and 4.7). However, the results of the interaction between trophic groups and 

environmental variables showed that, despite a generally higher prevalence of browsing 

herbivores within the fish community, they were negatively correlated with haul-out sites 

(Figure 4.6 and 4.7). Schooling fish were also negatively correlated with haul-out sites, 

whilst mesopredators and fish species that formed pairs or small groups were positively 

correlated with haul-out sites (Figure 4.6 and 4.7). 

Species-level variations between sites and region were observed (Appendix C, 

Figure C.1 and C.2), however the assemblages between site types and regions remained 

closely clustered even when traits were ignored (Figure 4.8). There was a negative 

correlation between haul-out sites and several schooling fish species, including Pempheris 

affinis, P. analis and Trachurus novaezealandiae, and also the browsing herbivore 

Olithops cyanomelas (Figure C.1 and C.2). Several species known to form pairs or small 

groups, including Upeneichthys lineatus, Enoplosus armatus, Meuschenia trachylepis, 

were positively correlated with haul-out sites. Additionally, the browsing herbivore, 

Girella tricuspidata, and two benthic invertivore species Pagrus auratus and 

Hypoplectrodes maccullochi were positively correlated with haul-out sites (Figure C.1 

and C.2). Species prevalences are presented, whereby species are ranked by how common 

or uncommon they were in the study locations overall (Appendix C, Figure C.3 and C.4). 
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Figure 4.5 Standardised coefficients from the GLM-LASSO model for the relationship 
between the main effects terms and fish species assemblage (2nd and 3rd corners of the 
model). Colours denote statistical significance of traits, region and site type in explaining 
fish prevalences. Darker colours describe the strength of effect, whereby red indicates a 
positive relationship, whilst blue a negative relationship. 
 

Coefficients

M
ai

n 
Ef

fe
ct

s

Region: South

SiteType: Haul−out

TrophicGroup: Benthic Invertivore

TrophicGroup: Browsing Herbivore

TrophicGroup: Mesopredator

TrophicGroup: Planktivore

Gregariousness: Solitary

Gregariousness: Pairs

Gregariousness: Schools

SealPrey: yes

 

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4



 

 103 

 

Figure 4.6 The fourth-corner modelling results displayed for standardised coefficients for 
all explanatory variable-trait interaction terms (X1*X2) from the GLM-LASSO model. 
Colours denote significant interactions between levels of each trait, the region sampled 
and site type, whereby darker colours describe the strength of effect. Red indicates a 
positive relationship, whilst blue a negative relationship.  
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Figure 4.7 Comparison of the predicted 
probability of presence of groups fish at 
both site types (reference, seal haul-out) and 
for both regions (North: red lines, South: 
blue lines) of a) seal prey versus non-prey; 
b) trophic groups for seal prey species vs. c) 
trophic groups for non-prey; d) levels of 
gregariousness for seal prey species vs. e) 
levels of gregariousness for non-prey 
species. 
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Figure 4.8 3D nMDS ordination for presence/absence data of fish species 
assemblages represented as centroids for each region (North, South) and site type 
(HO: seal haul-out, RF: references), illustrated in 2D. 

 

4.5 Discussion  

 

The potential functional effects of recovering fur seals along the coast of Australia, 

and elsewhere, are largle unknown. The early detection of differences in ecological 

communities following the recovery of large predators may help to understand 

trajectories of change in ecological communities. The fourth-corner modelling 

approach used here allowed for the exploration of functional and localised differences 

in reef fish community composition in the context of local fur seals recolonisation. 

This statistical technique provided a trait-based explanation to the interactions 

between fish species composition and locations of fur seal recovery. Correlations 

were identified between haul-out sites and certain fish grouped by traits, namely a 

lower occurrences of schooling fish and herbivorous fish at seal haul-out sites, 

however effect sizes were small. The total abundance and the proportional biomass of 

fish of different size classes were significantly different, namely with greater 

proportional abundance and biomass of smaller fish at one of the haul-out sites and 

associated reference sites, in South Jervis Bay. Some differences identified were 
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contingent on the location of fur seal recovery, which have different recolonisation 

histories. 

This study identified correlations between reef community composition and 

locations of fur seal recolonisation, and this relationship could be explained by the 

traits of reef fish species. In contrast, there were no discernible differences in broader 

reef community indices, such as the Shannon-Wiener diversity index or reef 

community evenness, between seal haul-out sites and reference sites in this study. 

Although species richness was found to be higher at the northern haul-out site than 

nearby reference sites, the number of species observed and the values for other 

indices in this study were consistent with prior observations on temperate reefs in 

southern Australia, using underwater visual census methods (Coleman et al. 2015; 

Stuart-Smith et al. 2013). It is unlikely that the return of two native predator species 

will affect the beta-diversity and evenness of an ecosystem within only two decades, 

if at all, relative to other more significant ecological disturbances to ecosystems such 

as anthropogenic extractive activities (Babcock et al. 2010; Edgar & Barrett 1999), 

rather it is more likely that the prey community will be affected functionally 

(Coleman et al. 2015). 

A lower probability of occurrence was observed for browsing herbivores at 

seal haul-out sites, whilst greater probability of occurrence was detected for 

mesopredators, regardless of whether or not these groups were also known to be seal 

prey items. Additionally, the probability of occurrence of seal prey items was not 

significantly different between locations of fur seal recolonisation. Mesopredators 

were expected to be rarer at haul-out sites because diet assessments of fur seals at this 

location showed they predominantly ate higher trophic-level fish (Hardy et al. 2017). 

The lack of a strong negative relationship between mesopredatory fishes adjacent to 

fur seal haul-out sites, may be due to the functional complexity of these ecosystems 

(Casey et al. 2017; Edwards et al. 2010), as this study surveyed 85 species of fish 

many of which are also generalist mesopredators, invertivores and omnivores. Prey 

diversity and trophic complexity, such as omnivory, intraguild predation and 

competition, are known to reduce the strength of cascading trophic effects (Bellwood 

et al. 2006; Polis et al. 2000). The diverse diet of fur seals and the complexity of 

Australian temperate ecosystems may result in similarly diverse and therefore weaker 
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trophic relationships between these recovering predators and reef ecosystems, as 

predicted by Paine (1969). 

Species-level variations in mesopredators and benthic invertivores were not 

necessarily associated with haul-out sites in the same way. Several fish species that 

are important reef mesopredators and benthic invertivores were observed at sites in 

this study, and that also occur in the diets of fur seals, including Pagrus auratus 

(snapper) and Achoerodus viridus (blue groper), and other Labrids (Deagle et al. 

2009; Hardy et al. 2017). The mesopredator, Pagrus auratus, and benthic invertivore, 

Hypoplectrodes maccullochi were actually more common at haul-out sites. Several 

species of the Pempheridae family, mostly schooling fish and benthic invertivores, 

were less common at haul-out sites. Whilst the diets of fur seals more commonly 

contained mesopredators than any other trophic group (Chapter 3), other trophic 

groups were also consumed and it is unlikely that fur seals select prey purely based on 

trophic groups.  

Schooling fish were less common at haul-out sites, the prevalence of fish 

known to form small groups or pairs was higher at haul-out sites. Several species of 

schooling fish were found to be less common at haul-out sites compared to reference 

sites, Pempheris affinis, P. analis and Trachurus novaezealandiae, and these species 

are relatively common seal prey items (Hardy et al. 2017; McIntosh et al. 2006; Page 

et al. 2005). Empirically, a large number of seal prey identified throughout the 

geographic range of Australian and long-nosed fur seals are also known to be 

schooling fish. The lower prevalence of schooling fish at haul-out sites in this study 

could suggest localised avoidance of such sites by schooling fish, and thereby 

affecting fish community composition around fur seal haul-out sites. 

The total abundance of fish classified as likely seal prey species was found to 

be significantly lower at the haul-out site from South Jervis Bay, and no differences 

between sites were detected in total biomass of fish classified as seal prey. Subtle 

differences were also observed in the size distribution of reef fish communities at 

haul-out sites compared to reference sites. The proportional abundances or biomass of 

the smaller fish size classes (2.5–10 cm) appeared to be greater at haul-out sites, 

whilst the proportional abundance or biomass of larger fish size classes (> 12.5 cm) 

appeared to be greater at the reference sites. This pattern was only statistically 

significant for proportional biomass of fish from South Jervis Bay. For the haul-out 
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site in South Jervis Bay, a lower total abundance of fish was detected in general in 

this region as well as a slight skew in the size structure of the fish community, 

whereby the proportional biomass of larger size classes of fish was greater at the 

South Jervis Bay reference sites compared to the haul-out site. 

Overall, the effect sizes observed in this study were relatively small (typically 

< ±5%) in terms of the actual differences in probability of occurrence in different 

functional groups of fish between the types of sites, as well as the differences in size 

structure of fish communities. It is an important finding to detect that there were few 

signs in the fish community of significant ecological changes at fur seal haul-out sites, 

and that those that were detected were at the haul-out site with the longest duration of 

fur seal recolonisation, in South Jervis Bay. This provides partial evidence to support 

further investigations into localized changes in reef fish communities adjacent to 

predator aggregation sites. However, several limitations of this study would need to 

be accounted for in future investigations of the hypotheses tested in this study. 

Since this study was conducted, several new year-round haul-out sites have 

been established further north along the coast of NSW. As this is a study based on a 

natural experiment, a larger scale study incorporating at least a third, if not several 

more haul-out sites paired with appropriate reference sites is crucial to determining 

with confidence whether reef communities adjacent to haul-out sites differ from other 

reefs. Secondly, this kind of study needs at least several years of replication, as this 

study was conduced over just one season, the result scan only be taken as preliminary. 

Without many measurements of reef communities at locations prior to fur seal 

recolonisation, space for time substitution studies, such as this one, must exercise 

caution in identifying significant results and ideally need to identify a trajectory of 

change over time in reef communities that would be consistent with fur seal 

recolonisations and hypotheses of prey limitation.  

Furthermore, the future and likely expansion of fur seal haul-out sites as well 

as likely niche partitioning that will occur with mature populations of seals will need 

to be taken into account in future studies. Due to the geographic uniqueness of both 

locations of fur seal aggregations in NSW at the time of study, being Montague Island 

and Jervis Bay, it was difficult to replicate across haul-out sites and also reference 

sites at Jervis Bay are likely to be too close to the haul-out sites if their usage by seals 

increases, which is probable. Fourth, the multivariate (multi-species) abundance and 
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biomass data in this study were overdispersed and had to be transformed to 

presence/absence in order to fit trait-based models for analyses. However, the effect 

of a predator would have to be very strong in order for these analyses to yield 

significant results and thus the results of this study are likely to be very conservative. 

I would therefore recommend greater replication over the depth gradient surveyed 

(10–18 m) to increase the power of the analyses when using abundance and biomass 

data. Additionally, the statistical package mvabund used in this study (R Core Team 

2017; Wang et al. 2012), does not yet allow for the use of “quasi” distributions to 

account for overdispersed data, however this function will probably be available in 

the near-future and enable complex analyses of noisy ecological data. 

Data on the precise geographic locations where the Jervis Bay fur seals forage 

are currently unpublished (Marcus Salton, pers. comm., Macquarie University). 

However, these data and continued monitoring of fur seal foraging activity in the area 

using animal-borne telemetry equipment are crucial to properly assessing what spaces 

and potentially even specific reefs these recovering predators may actually be using. 

Additionally, a recent diet study identified a frequent convergence of diets of both 

Australian and long-nosed fur seals on coastal reefs in animals from Jervis Bay 

(Hardy et al. 2017; Chapter 3). However, replication of the seasons sampled over 

years, using both high-taxonomic resolution methods of analysis (i.e., DNA 

metabarcoding) and also metods that integrate diet data over greater temporal scales 

(i.e., stable isotope analysis) would be useful to understand the relative importance of 

different ecosystems from the coast to the open oceanover time in these predators. 

The natural recolonisation of eastern Australian temperate reefs by fur seals is 

relatively recent (≤ 15 years) (T. Lynch, CSIRO, Tasmania, pers. comm.; Burleigh et 

al. 2008). It may take decades for direct effects on food webs on temperate reefs to 

become apparent (Babcock et al. 2010; Barrett et al. 2007a), particularly with the 

recovery of a low density of two generalist predators. The strongest effects observed 

in this study were from the haul-out site associated with longest duration of use by fur 

seals, at South Jervis Bay (ca. 15 years) compared to the North (ca. 5–8 years, at time 

of the study in 2014). On this basis, I would recommend further investigation of reef 

assemblages from fish down to benthic assemblages in the study area. This is the 

subject of further investigation presented in a subsequent chapter in this thesis. 
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4.6 Conclusions 

 

At an early stage in the recovery trajectories of two predator populations, these results 

shed light on poorly understood functional interactions between complex fish 

communities and locations of fur seal recovery. Using an asymmetrical experimental 

design and trait-based analyses, I identified a negative correlation between the 

prevalence of herbivorous fishes and locations of fur seal recovery, and a positive 

correlation between these locations and the prevalence of mesopredators. 

Additionally, schooling fish were less common at one haul-out site with a longer 

duration of use by fur seals. At this haul-out site, I also observed a lower total 

abundance of fish and reduced abundances of larger fish. However, the size and 

strength of any localised effects of recovering fur seals on reef fish community 

composition in southeastern Australia currently appeared to be minimal. These results 

provide information to support further research of the flow-on trophic effects of 

predator recovery on ecological communities, the subject of subsequent work in this 

thesis. Finally, ongoing monitoring of ecological communities is recommended to 

understand and conserve important ecological processes, in the context of recovering 

predator populations as well as anthropogenic pressure on coastal communities.  
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5 Investigating	indirect	effects	of	predator	recolonisation	

on	benthic	reef	communities	

 

5.1 Abstract 

 

Changes to high trophic level predator populations can alter ecological communities 

through trophic cascades. Two large predators, Australian (Arctocephalus pusillus 

doriferus) and long-nosed (Arctocephalus forsteri) fur seals, are recovering from near 

extinction on eastern Australian temperate reefs. Reef-based, higher trophic-level fish 

species are prevalent in the diets of these predators and negative impacts on fish 

abundances have been observed at recently recolonised sites in eastern Australia. 

However, very little is known about the potential for cascading, indirect effects on 

temperate reef food webs following recovery of their populations. This study aimed to 

quantify differences in benthic communities adjacent to newly recolonised fur seal 

haul-out sites compared to reference sites without seals. The overall trophic structure 

of benthic invertebrates was not significantly different between seal haul-out and 

reference sites. Abundances of the key herbivorous urchin, C. rodgersii, were lower 

adjacent to one of the seal haul-out sites compared to reference sites. The percentage 

cover of canopy-forming kelp and foliose macroalgae was lowest at haul-out sites 

compared to reference sites. Additionally, a negative correlation was observed 

between C. rodgersii abundances and the percentage cover of foliose macroalgae at 

haul-out sites. These results suggest that the abundances of C. rodgersii and the cover 

of foliose macroalgae are different at seal haul-out sites as compared to reference 

sites, providing early evidence for indirect effects of predator recovery on temperate 

reef ecosystems. However, longer term monitoring of eastern Australian temperate 

reef communities will be necessary to fully understand the community level 

implications of fur seal population recovery. 
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5.2 Introduction 

 

Trophic cascades are triggered by changes to the abundances of strongly interacting 

predators (Paine 1969). In many examples, predators directly affect the abundances of 

their prey via consumption, as well as influencing their behaviour and other biological 

traits by virtue of being present (e.g. for wolves, fish and sharks) (Brown & Kotler 

2004; Madin et al. 2011; Wirsing & Ripple 2010). Furthermore, impacts are known as 

“indirect effects” when the direct effects of predators on a food web successively 

progress through lower trophic levels (Pace et al. 1999), and this can lead to 

widespread ecological change.  

 The strength of trophic cascades is thought to be related to the intensity of 

interaction between species, and attenuated by the complexity of and functional 

redundancy within the food web (Polis & Holt 1992; Terborgh & Estes 2010). In 

three-tiered ecosystems, predator removal generally results in the release from 

predation pressure of herbivores, the subsequent degradation of vegetation and an 

ecosystem phase-shift. A kelp forest, for example, may be reduced to urchin barrens if 

sea otter populations decline in the northeastern Pacific (Estes & Palmisano 1974). 

The recovery of predators in these ecosystems typically results in the reversal of these 

ecosystem changes (Beschta & Ripple 2009; Estes & Palmisano 1974).  

Much of our current understanding of trophic cascades involving large 

animals comes from inadvertent anthropogenic experiments involving the removal of 

predators and/or their natural or assisted reintroduction and recovery (Estes et al. 

2016; Ripple et al. 2014). Our understanding of trophic cascades is particularly well 

documented under specific conditions involving strong interactions among diet 

specialists and in simpler three-tiered systems (Terborgh & Estes 2010). However, for 

marine environments where trophic networks consist of multiple and often-wide 

ranging, generalist predators and diverse prey assemblages, the trajectories of 

ecological change are often less clear and these ecosystems may not necessarily 

experience strong trophic structuring and therefore trophic cascades (Casey et al. 

2017; Polis et al. 2000). The recent recovery of two generalist predator species, 

Australian (Arctocephalus pusillus doriferus) and long-nosed (Arctocephalus forsteri) 

fur seals, on temperate reefs of southern Australia presents a compelling natural 

experiment to examine how higher trophic processes influence these ecosystems. 



 

 113 

Australian fur seals (hereafter AUFS), and long-nosed fur seals (formerly New 

Zealand fur seals) (hereafter LNFS), have recovered in numbers and geographic range 

since the cessation of commercial sealing in Australian waters (Goldsworthy et al. 

2003; Kirkwood et al. 2010; McIntosh et al. 2014). These pinniped species are known 

to be 4th order predators on coastal and offshore ecosystems (Goldsworthy et al. 2013; 

Hardy et al. 2017), and also target reef associated prey species (Deagle et al. 2009; 

Hardy et al. 2017). Several fish species that are reef mesopredators and consume 

benthic invertebrates (invertivores) occur in the diets of fur seals, including Pagrus 

auratus (snapper) and Achoerodus viridus, and other Labrids (Deagle et al. 2009; 

Hardy et al. 2017). Negative correlations have been identified between fur seal 

prevalence and fish abundances at an established breeding colony in eastern Australia 

(Kelaher et al. 2015). Subtle differences in fish community composition and size 

distribution were detected adjacent to recently recolonised fur seal haul-out sites 

(Chapter 4). In Chapter 4, reduced total abundance of fish and reduced biomass of 

larger fish size classes were observed adjacent to one fur seal aggregation site, in 

particular. 

Indirect and potentially cascading effects stemming from pinniped population 

recovery on lower trophic levels are likely to be even more cryptic or take more time 

to occur than direct effects (Babcock et al. 2010; Barrett et al. 2009). Yet, 

investigating these potential effects early in the recovery of fur seals may allow 

researchers to establish baseline information on reef community composition and 

assess possible trajectories of change in the future in relation to the likely expansion 

of fur seal aggregation sites over the course of their recovery, and could also enable 

an understanding of whether these predators can trigger phase shifts in marine 

ecosystems (Estes et al. 2016). Recent changes in abundances and distributions of 

important herbivores in Australia have triggered ecosystem phase-shifts on temperate 

reefs (Andrew 1991; Ling et al. 2009). In particular, the long-spined sea urchin 

(Centrostephanus rodgersii) has experienced both a range expansion due to both 

ocean warming and release from predation by overharvested lobster (Ling et al. 

2009). Increases in abundances and sizes of C. rodgersii resulted in overgrazing, the 

reduction of kelp beds and phase-shifts to urchin barrens on affected temperate reefs 

in southern Australia (Kriegisch et al. 2016; Ling et al. 2009). These changes have 

highlighted the fragility of macro-algal canopies to urchin herbivory on Australian 
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temperate reefs. However, it is unknown whether the rapid recovery of 4th order 

predators, such as fur seals, may indirectly affect interactions between urchins and 

kelp forests, via the direct effects of seal predation on fish that eat urchins from 

recruitment to mature phases, for example, or other herbivorous invertebrates, or 

whether other functional groups may be affected. 

Whilst, differences in fish communities were subtle and mainly identified at 

one haul-out site in Chapter 4, I identified a negative correlation between the 

prevalence of herbivorous fishes and seal haul-out sites, and an unexpected positive 

correlation between mesopredator prevalence and haul-out sites overall, leading to a 

testable hypothesis that benthic communities at haul-out sites may be characterized by 

higher cover of canopy-forming kelps and erect macroalgae (hereafter both are 

referred to as ‘foliose macroalgae’) compared to reefs without seals. However in 

preliminary observations, benthic reef communities adjacent to fur seal haul-out sites 

appeared to consist of urchin barrens (Brendan Kelaher, pers. comm., Southern Cross 

Univeristy). It remains possible that reef fish mesopredators and benthic invertivores 

may have reduced foraging efficiency on herbivorous invertebrates adjacent to fur 

seal haul-out sites. A greater abundance of herbivorous invertebrates, particularly of 

C. rodgersii, and lower prevalence of foliose macroalgae, would provide compelling 

evidence for lower levels of predation on benthic invertebrates adjacent to haul-out 

sites (i.e., “mesopredator release”). 

I first aimed to test for localised differences in the composition of sessile 

benthic communities between locations of fur seal recolonisation and reference sites, 

where the cover of foliose macroalgae, and the cover of encrusting algae were 

expected to be different between seal haul-out and reference sites (Table 5.1). I then 

investigated whether the trophic structure and the species assemblages of mobile 

benthic communities differed between locations of fur seal recolonisation and 

reference sites, in a pattern consistent with a mesopredator release scenario described 

above, or conversely that reflect the prevalences of mesopredators and herbivorous 

fishes observed in Chapter 4. Additionally, I tested for differences in the abundances 

of benthic invertivores and an urchin, C. rodgersii, at locations of fur seal 

recolonisation. Finally, I focused on the relationship between C. rodgersii and the 

cover of canopy-forming macroalgae and locations of fur seal recolonisation. 
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Table 5.1 Summary of hypotheses and statistical analyses 

Question Response variable Statistical analyses 

Sessile benthic community:  
Percent cover of sessile benthic 

organisms (benthic_%cover) 

mvGLM (Poisson, 

link=cloglog) 1) How did sessile benthic community composition vary by region and 

site type? 

Mobile benthic community: Benthic invertebrates & cryptic fish: 
 

2) How did benthic invertebrate and cryptic fish assemblages and trophic 

structure vary by site type, region and macroalgae cover? 

Benthic invertebrate and cryptic 

fish species assemblage 

(presence/absence data) 

Fourth-corner 

analyses using 

traitglm (binomial) 

3) Did abundances of benthic invertivores vary according to site type and 

region? 

Abundance of benthic 

invertivores 
GLM (Poisson) 

4) Did the abundance of the long-spined sea urchin, C. rodgersii, vary 

according to site type, region and macroalgae cover? 
Abundance of C. rodgersii GLM (negbin) 
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5.3 Methods 

 

5.3.1 Study sites & system 

 

Jervis Bay (JB), NSW, includes the newest haul-out sites for two recovering 

Australian and long-nosed fur seals in eastern Australia (Burleigh et al. 2008). This 

location represents the frontier for the natural recolonisation of the east Australian 

coast by these pinniped species. At this location in eastern Australia, I previously 

observed a high prevalence of reef prey species in the diets of both species of 

recolonising fur seals (Chapter 3; Hardy et al. 2017); as well as correlations between 

seal haul-out sites and fish community composition (Chapter 4). 

Two haul-out sites were surveyed in Jervis Bay (JB), NSW, Australia: Drum 

& Drumsticks in North JB (35° 2.799’S, 150° 50.552’E) and Steamer’s Head in South 

JB (35° 10.725’S, 150° 43.895’E) (sites labelled N-HO and S-HO in Figure 4.2, 

Chapter 4). The JB haul-out sites typically harbours 30 to several hundred individual 

seals, with peak abundances in the winter and early spring, at the time of writing 

(June-September) (Burleigh et al. 2008; N. Hardy, pers. obs.). The data for this study 

and those described in the previous chapter were collected during the same sampling 

expedition conducted in the austral spring (Nov-Dec) 2014, immediately following 

the peak in abundance of seals locally. The haul-out sites differed in the duration of 

time since recolonisation by fur seals. The South JB haul-out site has been in regular 

use for ca. 15 years, whilst the North JB haul-out site has been in regular use for ~5–8 

years at the time of sampling. However, greater numbers of seals haul-out in North JB 

compared to South JB since the complete closure of the northern headlands to the 

public as part of the Department of Defence’s Beecroft Weapons Range in 2009 (T. 

Lynch, pers. comm., CSIRO, Tasmania; Burleigh et al. 2008). 

Data on invertebrate and benthic communities were collected from two types 

of sites: (i) fur seal haul-out sites, and (ii) reference sites that do not harbour seal 

aggregations. For both haul-out sites, three local reference sites were selected along 

the northern and southern coasts of JB. Altogether, this asymmetrical design 

(Underwood 1994) included four sites in each region of North and South JB (Figure 

4.2, Chapter 4): one haul-out site and three reference sites for each region. The spatial 

sampling design is described in detail in Chapter 4 (section 4.3.1). At each site, 8 
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replicate transect surveys were conducted using a random stratified design to sample 

evenly across the depth range (sampling methods are described below). 

 

5.3.2 Data collection & processing 

 

Data on invertebrate and benthic community assemblages were collected from 

shallow subtidal reefs at depths of 10–18 m by SCUBA divers using standard Reef 

Life Survey (RLS) visual census techniques described in Edgar and Stuart-Smith 

(2014) and in the RLS methods manual (http://reeflifesurvey.com/wp-

content/uploads/2015/07/NEW-Methods-Manual_150815.pdf, accessed April 2014). 

Using RLS methods, divers collected data on the diversity and abundances of benthic 

mobile invertebrates (> 2.5 cm) and cryptic benthic fish species along a 50´2 m 

transect (100 m2 area). For benthic mobile invertebrate and cryptic fish species, the 

majority of taxa were recorded to species level, but unidentified taxa (<0.01% of 

records) were classified usually at family level. Divers then took 25 photo-quadrats of 

0.25 m2 along the 50 m transects (6.25 m2 area per transect) to collect data on the 

community composition of sessile benthic taxa.  

 Benthic mobile invertebrates and cryptic fish were assigned trophic group 

traits based on available information found in reference materials. A broad range of 

reference databases were consulted, such as FishBase (Froese & Pauly 2016), 

SeaLifeBase (Pauly & Palomares 2017), Atlas of Living Australia (ALA 2016), and 

the Australian Museum (2016) reference base (Appendix D, Table D.1). In addition, 

the total abundance of the urchin, C. rodgersii, was calculated for analysis. 

 Photo-quadrat images were uploaded into CoralNet 

(https://coralnet.ucsd.edu/), an online repository and resource for benthic image 

analysis that facilitates annotation of benthic survey images (Beijbom et al. 2015). 

CoralNet software randomly overlaid 25 points on each image and the taxon or 

substratum beneath each point was identified into one of 11 morpho-families 

according to the Collaborative and Automated Tools for Analysis of Marine Imagery 

classification scheme (CATAMI) version 1.2 (Appendix D, Table D.2) (Althaus et al. 

2015). The percentage cover of each category in each quadrat was calculated as the 
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proportion of the number of points overlying that category. The percentage cover of 

each morpho-taxa was then averaged across all quadrats within each transect. 

 

5.3.3 Statistical models and analyses 

 

5.3.3.1 Benthic community composition 

Localised differences in benthic community composition between site type and 

regions were tested using data on the percentage cover of 11 different morpho-

families (Table D.2). Differences in benthic community assemblage composition were 

tested using multivariate generalised linear models (mvGLMs) fitted with the 

manyglm function in the mvabund package in R (R Core Team 2017; Wang et al. 

2012), using a Poisson distribution and cloglog link for percentage data. An offset 

term was used to weight the total percentage of each morpho-family. Broad trends, 

overdispersion and outliers in multivariate space were checked graphically by non-

metric multi-dimensional scaling (nMDS) plots (Field et al. 1982) using the vegan 

package in R (Oksanen et al. 2015). Normality in multivariate data were checked 

using quantile-quantile (Q-Q) plots, multivariate homoscedasticity was checked by 

plotting Dunny-Smith residuals against fitted linear predictor values (Bates et al. 

2015; Wang et al. 2012). 

Model fit was assessed by analysis of deviance, tested using log-likelihood 

ratios (sum-of-LR) and p-values calculated from 999 iterations via PIT-trap 

resampling (Wang et al. 2012). To then identify which response variables (i.e., 

species) expressed significant effects between regions and site type, post-hoc 

univariate tests were performed with adjusted p-values fitted to each response variable 

(Wang et al. 2012). Response variables were ranked based on the test statistic and I 

calculated how many response variables were required to capture at least 50% of the 

deviance explained compared to the full model comprising all response variables (as 

per section 3.3.4.2, Chapter 3). The deviance was calculated by taking the ratio of the 

percentage deviance explained by a subset of the response variables and the deviance 

explained by the full model containing all response variables (Guisan & Zimmermann 

2000). Response variables with the highest univariate test statistic, significant p-

values, and capturing in aggregate at least 50% of the deviance explained by the full 
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model therefore had the greatest effect size and were considered to have the strongest 

evidence for an effect of explanatory variables and thus likely to be contributing to 

differences between levels of the explanatory variables. The ggplot2 package in R 

was used to create all graphical illustrations (version 2.2.1) (Wickham 2009). 

 

5.3.3.2 Analyses of invertebrate assemblage and trophic structure 

I then aimed to investigate whether invertebrate assemblages and the trophic structure 

of invertebrate communities differed between three environmental variables: (i) site 

types, haul-out sites and references, (ii) whether these differences were common to 

both regions, North and South JB, and (iii) whether patterns in the assemblage were 

influenced by the cover of foliose macroalgae found on the benthos. The relationship 

between the invertebrate species assemblage, the trophic traits of invertebrates, site 

type, region and the prevalence of macroalgae, was evaluated using a trait-based 

multivariate analysis technique, the fourth-corner model (Fig. 4.1) (Brown et al. 

2014a). 

I used a fourth-corner model to predict the probability of occurrence of 

different invertebrate species as a function of explanatory variables for the 

environment (here regions, site type and macroalgae; X1), species traits (X2) and their 

interaction (X1* X2), where the matrix of coefficients for the interaction between the 

species traits and explanatory variables is known as the fourth-corner solution (Figure 

4.1) (Brown et al. 2014b). Analytical routines for the fourth-corner analysis, model 

fit, selection and assessment, are described in section 4.3.3 (Chapter 4), and were 

performed using the package mvabund (version 3.12.3) (Wang et al. 2012) in R 

software (version 3.4.1, R-Core Team 2017). The model was fitted to data on 

invertebrate species presence/absence using the function traitglm and using a LASSO 

penalty, specifying the fitting method as ‘glm1path’ (Brown et al. 2014a; Hastie et al. 

2009; Warton et al. 2015). The generalised linear model (GLM)-LASSO model 

effectively shrinks coefficients to zero when they are not statistically significant, and 

these are presented graphically to evaluate the magnitude and significance of an 

explanatory variable, and interactions between traits and explanatory variables 

(Brown et al. 2014b). Where significant interactions between environmental variables 

(region, site type, macroalgae) and invertebrate trophic traits are observed, I 

interpreted that the occurrences of invertebrate species with these traits are either 
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negatively or positively correlated with certain environmental variables. The relative 

strength of each trait and environmental variable could also be compared, as main 

effects for the models and predictors of the species assemblage.  

A single predictive model was fitted to all species presence/absences at all site 

types, regions and values of macroalgae using a traitglm (described in section 4.3.3, 

Chapter 4). By excluding the trait input from the model, species-level variations in 

the invertebrate assemblage that were not explained by traits could then be 

determined. This is the equivalent to fitting a multivariate species distribution model. 

Broad trends, overdispersion and outliers in multivariate space were checked 

graphically by non-metric multi-dimensional scaling (nMDS) plots (Field et al. 1982) 

using the vegan package in R (Oksanen et al. 2015), see also section 4.3.3 (Chapter 

4). Model fit was assessed by plotting residuals against fitted values and plotting 

quantile-quantile (Q-Q) plots. 

Due to their ecological relevance, I also focused on trends in the abundances 

of benthic invertivores as a trophic group and of the ecologically important herbivore, 

C. rodgersii. Differences in benthic invertivore abundances were also tested between 

regions and site type using a GLM fitted with negative binomial distribution. The 

relationship between the total abundances of C. rodgersii and the explanatory 

variables of regions, site type and macroalgae was tested using a GLM fitted with 

negative binomial distribution, to account for overdispersion in the count data. These 

analytical routines were performed in the MASS package in R (version 7.3-47) (Ripley 

et al. 2002). The graphics package (R Core Team 2017) was used to plot residuals 

and assess model assumptions of homoscedasticity and normality. For both analyses 

of benthic invertivore and C. rodgersii abundances, the full models including all 

explanatory variables were simplified using backwards selection following the 

parsimony principle, and tested using Chi-square test on likelihood ratios, and using 

the Akaike Information Criterion (AIC) value comparison to determine the best fitting 

model of those tested (Buckland et al. 1997). 
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5.4 Results 

 

5.4.1 Sessile benthic community composition 

 

Benthic community composition varied between haul-out and reference sites, and 

these trends also varied according to the region sampled (Table 5.1, Figure 5.1a). 

Benthic community composition was similar across all reference sites in both North 

and South JB (Figure 5.1a and Figure 5.2). Community composition varied between 

haul-out sites and reference sites within regions (Figure 5.1a and 5.2). The reef 

community composition of both haul-out sites was also significantly different from 

each other (Figure 5.1a and 5.2). In South JB, the percentage cover of kelp was lower 

at the haul-out site compared to reference sites, whilst this was not significantly 

different between haul-out sites and reference sites at North JB (Figure 5.2). The 

percentage cover of encrusting algae and non-canopy forming macroalgae did not 

differ in South JB (Figure 5.2). In North JB, the percentage cover of encrusting algae 

was higher at the haul-out site compared to reference sites, whilst the percentage 

cover of non-canopy forming macroalgae was lower at the haul-out site compared to 

reference sites (Figure 5.2). Additionally, in South JB, the percentage cover of 

sponges was higher at the haul-out site compared to reference sites (Figure 5.2). 
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Table 5.2 Results of the multivariate generalised linear model (mvGLM) for the relationship between regions and site type, seal haul-outs and 
reference sites, and the benthic community composition (percentage cover of benthic morpho-taxa). These results are illustrated in Figure 5.2. 

Metric Model 
Explanatory 
variables Residual df Df. Diff Deviance Pr(>Dev) 

Benthic Community 
Composition (% cover) 
  

Benthic ~ Region*Site 
type 
 

(Intercept)            63 
   

Region 62 1 45.52 0.001 *** 

Site type 61 1 21.65 0.034* 
Region:Site type 60 1 52.89 0.001 *** 
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Figure 5.1 nMDS 
ordination for: a) 
benthic community 
composition (% 
cover of benthic 
morpho-taxa), and b) 
invertebrate species 
assemblages 
(presence/absence 
data), represented as 
centroids for each 
region (North, South) 
and site type (HO: 
seal haul-out, RF: 
references). 
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Figure 5.2 Percentage cover of benthic 
morpho-families across seal haul-out sites 
and reference sites in north and south JB. 
Error bars represent standard errors. 
Asterisks denote morpho-families that 
contributed significantly to the differences 
between regions and site type. ABMat = 
algal and biotic matrix (Appendix D, Table 
D.2). 
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5.4.2 Macro-invertebrate and cryptic fish community  

 

A total of 36 species were observed on benthic surveys, including 11 cryptic fish 

species and 25 macro-invertebrates (> 2.5 cm). Of these macro-invertebrate and 

cryptic fish species, 22% were mesopredators, 31% were benthic invertivores 

consuming mobile species, whilst 19% were benthic invertivores consuming sessile 

invertebrates, 19% were herbivores and 8% were detritivores or filter feeders (Table 

D.1). Detritivorous and filter-feeding species were numerically rare in this study, and 

were thus excluded from trait-based analyses, as inferences could not be made on 

their occurrences (Table D.1). The most common species in the mobile benthic 

assemblage were: the teleosts and mesopredators, Acanthistius ocellatus and 

Scorpaena cardinalis; a teleost and benthic invertivore, Hypoplectrodes maccullochi; 

a gastropod and benthic invertivore, Cabestana spengleri; and two herbivores, the 

echinoderm C. rodgersii, and gastropod Astralium tentoriformis (Figure D.1, Table 

D.1). 

The results of the fourth-corner analysis revealed that the trophic structure of 

benthic macro-invertebrate and cryptic fish species was not affected by site type 

(haul-out sites compared to references), or the percentage cover of macroalgae 

(Figure 5.3). There was an interaction between the trophic structure of the 

invertebrate assemblage and region, where herbivores were less common in South JB 

generally (Figure 5.3). For invertebrate species occurrences, the percentage cover of 

foliose macroalgae and the region sampled were more important predictors than site 

type. Overall, the percentage cover of foliose macroalgae was negatively correlated 

with species probabilities of occurrence (Figure 5.4). It must be noted that this finding 

was not due to methodological issues of detecting invertebrates amongst foliose 

macroalgae because invertebrate prevalence data are based off visual searches by 

divers, involving under-canopy surveying wherever macroalgae were large enough to 

hide invertebrates, and these data are independent from the photo-quadrat image 

analyses for sessile benthic communities. This result may, however, reflect a simply 

large abundance of certain invertebrates, such as urchins and tent shells, on hard reef 

substrates.  

Species-level variations between site type, cover of macroalgae and regions 

were observed (Figure 5.5). The benthic invertivore, Chironemus marmoratus (fish 
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species), was significantly less common at haul-out sites. The mesopredator, A. 

ocellatus (fish), and benthic invertivore, Dicathais orbita (gastropod), were 

significantly more common at haul-out sites (Figure 5.5). The percentage cover of 

macroalgae was negatively correlated with the probability of occurrence of several 

common rocky subtidal species: two mesopredators, A. ocellatus and Gymnothorax 

prasinus (fish species), the benthic sessiles invertivore, Fromia polypora (seastar), the 

benthic invertivore, H. maccullochi (fish), and the herbivore, A. tentoriformis 

(gastropod) (Figure 5.5). The probability of occurrence of the benthic invertivores 

Cabestana spp. (gastropods) and C. marmoratus (fish), and the herbivore, 

Heliocidaris tuberculata (sea urchin), were positively correlated with the percentage 

cover of macroalgae (Figure 5.5). These patterns simply reflect the micro-habitat 

preferences of these reef species. 

Overall, abundances of benthic invertivores were not significantly different 

between haul-out sites and reference sites (Figure 5.6a). The urchin, C. rodgersii, was 

ubiquitous across study sites analysed and thus differences in the probability of 

occurrence of C. rodgersii according to explanatory variables were not detected 

(Figure 5.5). On average, the abundance of C. rodgersii was lowest at the haul-out 

site in South JB and this was significally different to reference sites, but a difference 

was not observed in North JB (Figure 5.6b). The abundances of C. rodgersii were also 

negatively correlated with the percentage cover of macroalgae at haul-out sites in 

both regions (Figure 5.7, Table 5.3), whilst this relationship was not significant at 

reference sites. This relationship was observed at locations where both C. rodgersii 

abundance and the cover of foliose macroalgae were low (Figure 5.7). 
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Figure 5.3 The fourth-corner 
modelling results displayed for 
standardised coefficients for all 
explanatory variable-trait interaction 
terms (X1*X2) from the GLM-LASSO 
model. Colours indicate significant 
interactions between levels of each 
trait and the environmental variables, 
site type, region sampled and 
percentage cover of macroalgae. 
Darker colours describe the strength of 
effect, whilst red indicates a positive 
relationship, and blue a negative 
relationship. Coefficients have been 
shrunk to zero (white) for non-
significant terms in the GLM-LASSO 
model. 
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Figure 5.4 Standardised coefficients from the GLM-LASSO model for the relationship 
between the main effects terms and invertebrate species assemblage. 
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Figure 5.5 Results of the fourth-corner model fitted for the relationship between species and 
environmental variables, without traits. Standardised coefficients for all species and 
environmental variable interaction from the GLM-LASSO model. 
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Figure 5.6 The comparison between a) mean abundances of benthic invertivores and b) 
mean abundances of the long-spined sea urchin at different site types and regions, error bars 
represent standard errors and asterisks represent significant differences between site types 
and regions. 
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Figure 5.7 The relationship between total abundance of the long-spined sea urchins 
(Centrostephanus rodgersii) and the percentage cover of kelp and macroalgae, between site 
types, seal haul-out (HO) and reference (RF) site, and between regions, North and South JB, 
fitted lines and confidence intervals (95%) are for a generalised linear model with negative 
binomial distribution. 
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Table 5.3 Results of the generalised linear model for the relationship between regions and site type, seal haul-outs and reference sites, and the 
abundances of the long-spined sea urchin (Centrostephanus rodgersii), using a negative binomial distribution. 

Metric/Model Explanatory variables Estimate Std. Error z-value Pr (>|z|) 

Total Abundance C. rodgersii 

(Intercept) 5.322237 0.142866 37.253 <2e-16 *** 

Region (South) 0.160697 0.152870 1.051 0.2932 

T_abun ~ Region + Site Type + 
Macroalgae + Site Type*Macroalgae 
+ Region*Site Type 
  

SiteType (Seal haul-out) 0.361431 0.283791 -1.274 0.2028 

Macroalgae -0.004183 0.003057 -1.368 0.1712  

SiteType (Seal haul-out):Macroalgae 0.018130 0.008221 -2.205 0.0274 *   

Region (South):SiteType (Seal haul-out) 0.620930 0.307205 -2.021 0.0433 *   
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5.5 Discussion 

 

This study aimed to identify differences in coastal reef benthic communities, that 

would be consistent with potential indirect effects stemming from predator recovery, 

adjacent to locations that have been colonised by two high-order predator species, 

Australian and long-nosed fur seals, on temperate reefs of eastern Australia. The 

trophic structure, or prevalences of different trophic groups, of mobile benthic 

communities did not significantly differ between fur seal haul-out and reference sites. 

Species-level variation in mobile benthic communities were observed in relation to 

fur seal haul-out sites, but were best predicted by the percentage cover of canopy-

forming and foliose macroalgae, consistent with micro-habitat preferences in these 

species. Additionally, abundances of the ecologically important herbivore, C. 

rodgersii, were lower adjacent to one of the seal haul-out sites compared to reference 

sites. The percentage cover of canopy-forming and foliose macroalgae were also 

found to be lowest at haul-out sites compared to reference sites. Whilst patterns in C. 

rodgersii abundance and sessile benthic community composition were generally 

similar at all reference sites, patterns at haul-out sites were contingent on the region 

sampled (southern versus northern Jervis Bay). 

In the previous study investigating temperate reef fish communities adjacent 

to locations of fur seal recolonisation (Chapter 4), a negative correlation was 

observed between the prevalences of herbivores and fur seal haul-out sites, whilst a 

positive relationship was observed for mesopredators. The patterns observed in the 

previous chapter are thus not entirely consistent with those of reduced macro-algal 

cover and also lower urchin abundances at haul-out sites observed in the present 

study, unless the lower abundances and prevalences of herbivores at haul-out sites 

actually corresponds with their being larger and also more efficient foragers.  

At both haul-out sites, there was a negative relationship between C. rodgersii 

abundance and the percentage cover of foliose macroalgae, in contrast to reference 

sites where this relationship was weak. This relationship could be consistent with 

localised indirect effects on marine benthic communities adjacent to fur seal haul-out 

sites, where lower cover of foliose macroalgae may occur despite sea urchin 

abundances being lower at haul-out sites, if the size or biomass of urchins adjacent to 

seal haul-out sites is greater (e.g., size specific predation by sea otters on urchins) 
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(Estes & Steinberg 1988). Differences in sizes of urchins at haul-out sites compared 

to reference sites were not examined and warrant further investigation.  

Predation pressure from fur seals on fish mesopredators and invertivores could 

also affect the size structure of urchins (Ling et al. 2009). Differences in reef fish 

community size structure were effectively detected in southern Jervis Bay, whereby 

larger fish size classes were more abundant at reference sites, but not in northern 

Jervis Bay (Chapter 4). Additionally, the presence of seals at haul-out sites could 

promote differences in the foraging behaviour of fish mesopredators and invertivores 

such as reduced foraging time or effort (Connell 2002). Reductions in foraging effort 

have been observed in fish species in the presence of fur seals on temperate reefs 

(Connell 2002), and on coral reefs for herbivorous fish in response to greater 

mesopredator abundances (Madin et al. 2011). A release for urchins from predation 

pressure of larger teleost predators or changes in behaviour by teleost predators could 

be occurring at least in southern Jervis Bay and could partially explain the 

relationship between sea urchins and macroalgae observed at both haul-out sites. 

Surveys of the size structure of sea urchins at these locations could elucidate if this 

were the case. Additionally, surveys targeting the biomass and ideally foraging 

behavior of teleost urchin predators such as P. auratus and A. viridis adjacent to fur 

seal aggregation sites may help to resolve these trophic questions. 

A significant sea urchin predator group, nocturnal lobsters, were not surveyed 

in this study (Ling et al. 2009; Redd et al. 2008), requiring specialised observational 

techniques. Lobsters are known to control the abundances of C. rodgersii and 

promote the recovery of kelp forests from overgrazing on Australian temperate reefs, 

Tasmania (Ling et al. 2009). The larger lobsters are also the most effective predators, 

particularly predating on the larger urchins (Ling et al. 2009). Crustaceans are only 

occasionally consumed by fur seals (Deagle et al. 2009; Hardy et al. 2017; Page et al. 

2005), thus predation pressure on lobsters is not expected in relation to recovering fur 

seals. However, lobsters populations are heavily impacted by overfishing and 

therefore positively affected by protection measures, including marine protected area 

designation over time (Ling et al. 2009; Montgomery & Liggins 2013). Marine 

protected areas have been designated at fur seal colonies and haul-out sites, among 

other sites, along the coast of NSW (Coleman et al. 2015; Kelaher et al. 2015), 

including in Jervis Bay (Coleman et al. 2015). It is therefore likely that marine park 
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protection and conversely the extraction of urchin predations by recreational and 

commercial fisheries would influence urchin and algal abundances (Ling et al. 2009), 

more so than the recovery of large generalist predators. 

In the previous study (Chapter 4), negative correlations were observed for the 

total abundance of fish species known to be seal prey, and for the size structure of fish 

communities adjacent to the haul-out site compared to references, in southern JB. 

This is also the location at which the lowest abundances of sea urchins and foliose 

macroalgae were observed in the present study. Whilst effect sizes were small, 

differences in benthic reef community composition were stronger at the seal haul-out 

(South JB) with the longest history of seal recolonisation and use, ca. 15 years. 

Differences were subtle or not detected at the seal haul-out site with ca. 5–8 years of 

use (North JB). Direct ecological changes to target species abundances and biomass 

are known to take between 5–20 years to manifest, whilst indirect, community-level 

changes can take even longer to manifest at lower trophic levels and in primary 

producers (Babcock et al. 2010; Barrett et al. 2009). These observations correspond to 

an early stage in the recovery of fur seals on temperate reefs in eastern Australia. The 

identification of more significant differences in both reef fish and benthic 

communities adjacent to the haul-out site with a greater duration of use by seals, is 

compelling and warrants further investigation over a longer time scale, in order to 

verify any trajectories of change that would be consistent with predator-mediated 

effects to lower trophic levels following ongoing recovery of fur seals in eastern 

Australia. 

The present study suffers from the same limitations on inference as the 

previous study (Chapter 4). In section 4.5, I offer several recommendations for 

further investigation of the hypotheses tested in these studies. Recommendations to 

address the limitations of this study include: (i) including additional fur seal haul-out 

sites to the north and south of the present study area, as well as (ii) a gradient of 

reference sites sampling according to distance from fur seal haul-out sites and using a 

multiple regression statistical approach to analyse the data; and (iii) increasing the 

sampling effort in both the number of replicate surveys and the temporal scale of the 

project in order to assess any trajectories of ecological change over time in relation to 

both fur seal recovery and the recovery of ecological communities under marine 

protection measures. 
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Finally, with a high diversity of reef species and of trophic relationships on 

Australian reefs (Casey et al. 2017; Chapter 4), a significant knowledge gap exists 

considering our understanding of relationsips between intermediate (i.e., 

mesopredators, invertivores, omnivores) levels of food webs. It is likely that any 

effects on middle trophic level components of these ecosystems could be mitigated by 

trophic complexity or take time to manifest. 

 

5.6 Conclusions 

 

Using trophically and functionally driven metrics, this and the previous chapter may 

be detecting subtle ecological shifts early in the recovery of large predators on 

Australian temperate reefs. I observed a lower abundance of an important reef 

herbivore, the long-spined sea urchin (C. rodgersii) but also a lower prevalence of 

canopy-forming and foliose macroalgae at the fur seal aggregation site with the 

longest duration of use. These data are preliminary and it could take decades of 

monitoring for any conclusive ecological effects to become apparent, particularly at a 

community-level. Additionally, the abundances or biomass of important and strongly 

interacting species may need to pass above or below certain thresholds before phase 

shifts actually occur. Finally, the recovery of large predators on the coast of eastern 

Australia is not occurring in isolation from other factors affecting reef ecosystems. 

Human extractive activities, such as commercial and recreational fishing of temperate 

reef fish and invertebrates, as well as spatial measures for their protection influence 

the structure and composition of temperate reef ecosystems. Combined long-term 

monitoring of coastal ecosystems adjacent to locations of fur seal recolonisation and 

marine protected areas is therefore recommended to develop a sound understanding of 

their relative importance on Australian temperate reefs, with particular focus on 

changes in in populations of urchin predators, especially lobsters, as well as urchin 

populations and macroalgal communities. 
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6 Synthesis	

 

In this thesis, I primarily aimed to investigate the ecological consequences of the recovery of 

two important coastal predators, Australian and long-nosed fur seals, on complex, temperate 

ecosystems in southeastern Australia. I have completed this project having produced many 

answers, but far more questions have arisen from this work than I was able to answer in that 

time. Here, I synthesise what I have achieved in this investigation of recovering predators and 

complex ecosystems. I highlight many exciting questions that have arisen from this work and 

I provide recommendations for monitoring predator recovery and important ecological 

interactions in this and other ecosystems.  

 

6.1 Summary of research and findings 

 

The recovery of two large predators on temperate and coastal ecosystems in southeastern 

Australia raised a number of interesting questions for science. Australian and long-nosed fur 

seals are large, warm-bodied predators, with females weighing up to 120 kg and males up to 

350 kg (Arnould & Warneke 2002), and are rapidly recovering from previous overharvesting 

to well over 100,000 individuals for each species in Australian waters (Kirkwood & Arnould 

2011; Shaughnessy et al. 2015). Kirkwood and Arnould (2011) posited that Australian fur 

seals, and to this I add long-nosed fur seals, are likely to represent a significant resident 

biomass of high trophic-level predators in coastal waters of southeastern Australia. The 

majority of the work on the foraging ecology and diets of these two species comes from the 

centre of their geographic range in Bass Strait and South Australia. 

How then would they interact with coastal ecosystems in eastern Australia? A 

coastline characterized by significant rocky reef systems and the narrowest continental shelf 

anywhere in Australia (Jordan et al. 2010). And, would the recovery of large, warm-bodied 

predators result in cascading effects on prey and coastal communities in eastern Australia? 

Firstly, evidence for top-down forcing between pinnipeds and their prey existed, but was 

often circumstantial (Estes et al. 2016). Further, little was known about the east coast fur 

seals, apart from reports documenting their recovery and very rough population estimates in 
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NSW (Burleigh et al. 2008; Shaughnessy et al. 2001). The first task would be to investigate 

the diets of these newly recovering populations of fur seals in eastern Australia. 

Prior information on trophic interactions between fur seals and east coast ecosystems 

was lacking, which also promised to be a complicated task involving two sympatric 

generalist predators known to forage in biodiverse coastal and pelagic ecosystems. DNA-

based methods for predator diet analysis offered to produce taxonomically sensitive 

information on predator diets, to produce data across a range of potentially foraged 

ecosystems of which we lacked prior knowledge, and importantly offered a minimally 

invasive technique to study the diets of these protected species. In Chapter 2, I undertook a 

systematic review of the recent applications of genetic techniques for predator diet analysis to 

assess recommendations and limitations in the use of genetic techniques for investigating 

ecological interactions. Genetic techniques have emerged as an excellent tool for the 

exploration of trophic interactions, particularly in complex ecosystems, for generalist 

predators and in ecosystems for which we have little prior knowledge. DNA metabarcoding, 

or the mass amplification, sequencing and identification of prey DNA from multiple taxa, 

was particularly appropriate for the aims of this thesis. 

In Chapter 3, I therefore undertook a detailed analysis of the diets of both 

recolonising predator species using DNA metabarcoding techniques. The diets of both 

species were characterized from the frontier of their geographic recolonisation of eastern 

Australia, including from an established breeding colony and from a new but permanent haul-

out site in NSW, across multiple seasons. This study produced an unprecedented diversity of 

prey taxa, identifying over 70 potential prey species for each fur seal species, and the results 

were published (Hardy et al. 2017). Patterns in the diets of both fur seal species at a newly 

established breeding colony in southeastern Australia were similar to that of breeding 

colonies in the centre of their geographic range, in southern Australia. Namely, the likely 

provenance of prey included a broad range of ecosystems in the diets of fur seals from a 

breeding colony, including coastal benthic and demersal prey as well as pelagic prey. The 

breadth of their diet appeared to narrow in the winter when fur seal diets primarily contained 

coastal and offshore pelagic prey. However, these patterns were not observed at a non-

breeding haul-out site at the species’ geographic range edge. The diets of both seal species at 

their range edge contained a high prevalence of coastal and particularly benthic and reef-

associated prey items (Figure 6.1). The convergence of diets, and thus ecological interactions, 
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of two predator species at their range edge correlates with known differences in seal 

population densities and demographics at sites that are newly recolonised by predators. 

Detailed information on the diets of Australian and long-nosed fur seals thus helps to 

provide answers to the first question that I asked in this thesis: how these predators interacted 

with temperate ecosystems of eastern Australia. The first hypothesis of this thesis was also 

accepted: in that important consumptive interactions linking fur seals to temperate reef 

ecosystems were identified. According to optimal foraging theory and in central place 

foragers, such as fur seals, it is commonly expected that predators will exhaust resources 

locally prior to foraging further afield (Ashmole 1963; Birt et al. 1987; Orians & Pearson 

1979). The localized depletion of resources and subsequent increase in foraging effort has 

been observed in a natural recolonisation event by northern fur seals in the Aleutian Islands 

(Kuhn et al. 2014). This led to predictions that I would observe limiting effects on prey 

(mesopredator) populations, the release of secondary consumers from pressure by 

mesopredators, and thereby increasing herbivory on temperate reefs of eastern Australia, a 

pattern observed in other temperate systems (Estes et al. 2016; Ripple et al. 2016). 

Chapters 4 and 5 investigated both direct trophic effects on reef fish communities 

and potential indirect effects on benthic reef communities following the natural 

recolonisation of discrete locations by fur seals on temperate southeast Australian reefs. As it 

is not possible to go back in time and survey reefs prior to the recolonisation of fur seals in 

eastern Australia, and prior data is lacking, these investigations were conducted at two 

spatially distinct fur seal haul-out sites, each paired with multiple reference sites that do not 

harbour fur seal aggregations. I aimed to quantify localized differences in reef fish 

community composition, in the size and trophic structure of fish communities, between fur 

seal haul-out sites and reference sites. I then aimed to identify differences between seal haul-

out sites and references sites in benthic macro-invertebrate and cryptic fish communities, as 

well as sessile benthic communities. I hypothesized that these differences would be consistent 

with increased pressure from fur seals on larger fish and higher-trophic level prey species, 

and a subsequent release from predation of lower-trophic level components of reef 

ecosystems, for example by increasing reef herbviores and decreasing macroalgal cover 

adjacent to fur seal aggregation sites. 

The results of Chapters 4 and 5 provided evidence for differences between reef fish 

and benthic communities adjacent to fur seal aggregation sites compared to local reference 

sites along the coast (Figure 6.1). Interestingly, through multivariate trait-based analyses of 
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reef fish assemblages, I identified that schooling fish and herbivorous fish were less prevalent 

at fur seal haul-out sites compared to reference sites. However, mesopredators occurences 

were greater at haul-out sites compared to reference sites and invertivorous fish occurrences 

were similar at both types of sites. At the haul-out site with a greater history of use by fur 

seals (ca. 15 years), I also observed a lower total abundance of fish compared to reference 

sites, and a lower biomass of larger-sized fish. At the same site, the abundances of an 

ecologically important herbivore, Centrostephanus rodgersii, were also unexpectedly lower 

compared to reference sites. Despite lower average urchin abundances, fur seal haul-out sites 

had lower average cover of canopy-forming kelps and foliose macroalgae compared to 

reference sites. These results lend only partial support to hypotheses of direct effects of fur 

recovering fur seals on reef prey and little support for indirect effects on benthic reef 

communities (Figure 6.1). These differences did not correspond to strong ecological 

differences in reef community trophic structure or size structure, and differences were 

contingent on the location of the haul-out site sampled (Figure 6.1). Additionally, the 

complexity of Australian temperate reef food webs, including the effects of other 

mesopredators and the diversity of the fur seals’ prey base, likely dampen the potential for 

trophic effects linking fur seals to benthic community composition (Figure 6.1). 

At an early stage in the recovery of two high-order predator species, this thesis 

provides important baseline information: (i) on the diets of sympatric predators and important 

trophic interactions in complex temperate ecosystems, (ii) on evidence of subtle direct effects 

on prey communities, and weak indirect effects on benthic coastal ecosystems following the 

recovery of fur seals. This information contributes to addressing a critical knowledge gap 

regarding trophic effects linking pinnipeds, their prey and lower levels of their food webs. 

This work offers important baseline information and novel insights with which to continue 

monitoring ecological interactions in recovering fur seals and assess future trajectories of 

change on Australian temperate reefs. 
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Figure 6.1 Conceptual diagram 
of the findings and structure of 
the three data chapters of this 
thesis. Illustrated are simplified 
communities of predators, 
secondary and primary 
consumers, and primary 
producers. Trophic interactions 
pictured include those identified 
in this thesis or from the 
literature, and unknown 
interactions representing key 
knowledge gaps. Evidence for 
trophic effects were found 
linking fur seals to secondary 
consumer communities, however 
prey are diverse and trophic 
interactions beyond the seal’s 
prey are not clear. Lower 
average abundances of urchins 
were observed at haul-out sites, 
but also lower cover of foliose 
macroalgae. Australian 
temperate ecosystems are 
complex, containing diverse 
guilds of mesopredators, 
invertebrate consumers, 
omnivores, planktivores and 
herbivores.  
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6.2 Significance for Australian temperate ecosystems and wider 

implications 

 

This thesis highlights the need to further investigate frontier predator populations 

rather than considering them peripheral, at the detriment of understanding local food 

web dynamics and conserving ecological processes. The diets, foraging ecology and 

ecological interactions of frontier predator populations can vary greatly from mature 

and established populations, and therefore warrant further research effort.  

 

6.2.1 On the diets and foraging ecology of frontier predator populations 

 

The findings from genetic analyses of the diets of Australian and long-nosed fur seals 

(Hardy et al. 2017; Chapter 3) corroborate our knowledge that these species are 

generalist consumers of fish and cephalopods ranging from shallow coastal to 

epipelagic ecosystems (Harcourt et al. 2002; Kirkwood et al. 2008; Page et al. 2005). 

The results were broadly consistent with dietary analyses in these pinniped species at 

other locations in Australia and using other methods. However, differences in the 

prevalence of shallow coastal, and particularly reef-based prey, were observed in the 

diets of fur seals at haul-out sites compared to breeding colonies, and these 

differences were consistently observed in both species and across two seasons that 

represented nearly 5 months of sampling in a year (Hardy et al. 2017). From the 

results of this thesis and from the centre of their geographic range, we would expect 

fur seals from breeding colonies to largely rely on productive benthic and epipelagic 

prey resources from the continental shelf, slope and offshore waters in eastern 

Australia. Fur seals from haul-out sites appeared to include more coastal and reef-

associated prey than fur seals from the breeding colony in NSW (Hardy et al. 2017). 

The latter finding has been partially supported by preliminary data from a telemetry 

study on fur seals from the same locations studied in this thesis (M. Salton, Macquarie 

University, pers. comm.). 

The differences observed in the diets of fur seals across a recolonisation 

frontier correlate with the demographics and densities of seals at breeding colonies 

compared to haul-out sites. Haul-out sites contain a relatively high proportion of 

juvenile and subadult seals (Burleigh et al. 2008) compared to breeding colonies 
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dominated by adult breeding animals. Juveniles are known to make shorter, shallower 

and near-shore dives in other pinniped species (Fowler et al. 2006; Lowther et al. 

2013; Page et al. 2006). Additionally, seals are known to forage for longer and further 

in established breeding colonies that are at or above carrying capacity, and that have 

locally depleted prey resources (Kuhn et al. 2014). The effects of demographics and 

densities on foraging effort are also known in other animals, such as in seabirds 

(Ashmole 1963; Birt et al. 1987; Orians & Pearson 1979). Eastern Australian 

temperate ecosystems are experiencing the rapid recovery of two sympatric fur seal 

species whose diets were found to overlap in particular at the frontier for 

recolonisation. This raises multiple questions, including: for how long could this 

overlap occur? Did this happen at Montague Island prior to population growth and 

potential local resource depletion? It would be difficult to know the answer to the 

latter question, however, will fur seal diets overlap and will both species frequently 

consume reef-based prey at new haul-out sites as these species continue to recover 

northward on the coast of eastern Australia? And, do similar patterns occur at other 

frontiers of recolonisation in these predators in southwestern Australia? 

 The answers to the questions posed above can provide insights for Australian 

temperate ecosystems, and also for ecosystems experiencing recovering predator 

populations globally. The first step to answering these questions is increasing our 

sampling effort both in space and time to investigate generalities in these patterns at 

the local scale of eastern Australia, the scale of Australian pinnipeds, and of course on 

a global scale in other recovering pinniped populations. The study presented in 

Chapter 3 provided valuable insights from only two seasons’ worth of sampling in 

two sympatric predators at the main locations at which they occur in eastern 

Australia. Since the commencement of this PhD project, both fur seal species have 

been observed to establish new permanent haul-out sites a further 150 km north of 

Jervis Bay, my northernmost study site (G. Ross, Office of Environment and 

Heritage, NSW Government, pers. comm.). I would recommend conducting further 

dietary analysis including at least two more locations on the eastern coast of 

Australia, including one breeding colony Gabo Island, Victoria, and the Five Islands 

Nature Reserve, NSW, as a second haul-out site. Including these sites would allow for 

replication of the type of study site (breeding colony vs. haul-out site) within the 

temperate east coast bioregion of Australia. Additionally, I would then recommend 
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conducting a larger geographic study of the overall dietary patterns of both seal 

species at haul-out sites compared to breeding colonies across their geographic range 

in Australia (Figure 6.2) and elsewhere to investigate broader dietary patterns that 

may be occurring in established compared to peripheral or frontier populations of 

central place foragers.  

 
Figure 6.2 Geographic range of Australian fur seals (AUFS, in pink), of long-nosed 
fur seals (LNFS in blue), highlighting areas of overlap in range. Bass Strait, however 
is dominated by large Australian fur seal colonies (McIntosh et al. 2014), whilst long-
nosed fur seals are more common in South Australia (Shaughnessy et al. 2014). Their 
potential northward range expansion in eastern Australian (in orange) is based on 
historic anecdotes of their former geographic prior to sealing activities in the 19th and 
20th centuries.  

 

 The next step in answering these questions is what methods to use? All 

methods of analysis of predator diets and foraging ecology provide valuable 

information and are complementary. Genetic methods of diet analysis enable 

scientists to investigate the breadth of a predator’s diet, and repeated over space and 

time, these techniques can provide detailed information of diets with enough 

taxonomic information to infer the likely provenance of most species (Hardy et al. 
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2017). Genetic methods and morphological analyses of diets can provide reliable 

semi-quantitative information on the relative importance of diet items (Thomas et al. 

2016). However, other molecular methods such as the analyses of stable isotope and 

fatty acid signatures provide information on trophic interactions at longer time-scales 

and can give a better idea of the importance of these trophic interactions over time. 

Additionally, animal-borne telemetry provides researchers with detailed 3D spatial 

information on foraging ecology, critical to understanding where predators were 

likely to have foraged (Knox et al. 2017; Kuhn et al. 2010; Page et al. 2006). This 

information can inform us of important ecological processes that support large 

predator populations (Carroll et al. 2016). All of these methods provide important 

information and also have serious limitations (Bowen & Iverson 2013). Strategies that 

combined methods can provide the most accurate information on a predator’s true diet 

(Chiaradia et al. 2014; Chapter 2). I would therefore recommend designing studies 

that integrate multiple methods for the analyses of these and other predators to more 

deeply understand their diets and broader patterns in their foraging ecology. 

 

6.2.2 On the top-down effects of pinnipeds 

 

The recovery of large, warmed-bodied predators in temperate marine ecosystems, and 

in particular where these predators are known to frequently consume shallow coastal 

and reef-based prey, is eventually expected to cause some level of resource depletion 

(Borer et al. 2005). Some evidence of predator effects on reef fish communities were 

detected (Chapter 4), however the evidence did not point to overwhelmingly strong 

trophic interaction between fur seals and particular functional groups of fish on 

eastern Australia temperate reefs. Nor did these subtle effects appear to strongly affect 

major functional groups of mobile and sessile benthic invertebrates and macroalgae 

on these temperate reefs. 

 The absence of strong visible direct or indirect effects of fur seals at the spatial 

and temporal scale that was sampled, does not necessarily mean there is no effect. 

The question lies in the temporal and spatial scale that was and needs to be sampled. 

These are wide-ranging animals and it is possible that their effects will occur at a 

range of spatial scales. But they are also central-place foragers with discrete 

aggregation sites for resting and/or breeding. There was an absence of any knowledge 
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on cascading trophic effects of pinnipeds recovering on Australian temperate reefs 

and there is a relatively small population of fur seals in NSW, Australia. However, 

central-place foragers first deplete prey resources close to their location of 

aggregation (Ashmole’s Halo); and there is evidence in other systems for wide-

ranging predators to have localised effects on prey communities (Estes 2009; Estes et 

al. 1998). Large, warm-bodied and wide-ranging mammalian predators are known for 

their ability to efficiently forage on and deplete localized prey resources (Bowen 

1997; Estes 2009; Estes et al. 1998). Newly established fur seal haul-out sites are 

unique in that fur seal densities are still low and localised effects are more likely, 

before predator densities increase above a critical threshold and predation pressure 

expands potentially from a reef scale to a coastal scale. The first step was therefore to 

start searching for localized, ‘halo’ effects (Ashmole 1963) on nearshore coastal reefs. 

This was also a scale that was achievable by divers and has only really been done 

involving one other marine mammal (Estes & Palmisano 1974), and which produced 

detailed information on important trophic processes.  

 The strongest evidence for visible direct and indirect effects of recovering fur 

seals on Australian temperate reefs stemming from this study came from the fur seal 

aggregation site with the longest duration of use (ca. 15 years) (Burleigh et al. 2008), 

whilst the weaker evidence came from the aggregation site with a shorter duration of 

use (~5–8 years, at the time of study). Decadal-scale observations of marine reserves 

have indicated that direct effects on target species were detectable within 5–7 years of 

protection (Babcock et al. 2010). If establishment of marine reserves and reduction in 

human predation pressure on temperate reefs is relatable to a local increase in large, 

warm-bodied predators also on temperate reefs, then the durations of use of the seal 

haul-out sites in this study of ca. 8–15 years are within the expected, aforementioned, 

time frame for observing direct effects on seal prey communities (Babcock et al. 

2010; Barrett et al. 2009; Barrett et al. 2007a). However, the complete protection of 

sites and thus immediate spatial closure of recreational and commercial fishing 

activities in sanctuary zones is likely to produce far more and visible recovery in reef 

communities from the effects of those activities, than would the slow and piece-meal 

recovery of generalist predators to coastal ecosystems. Additionally, these predators 

are wide-ranging and predation pressure is likely to be more spatially diffuse than a 

marine reserve. Thus, I offer that any measurable predator-mediated effects of fur 
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seals on temperate reefs would occur far more slowly than those observed from 

marine reserve protection. Therefore, the observations in this thesis of potential and 

weak trophic effects linked to fur seals on temperate east Australian reefs could be 

significant within the time-frame of their recovery (~8–15 years) and continued 

monitoring is recommended. 

A study of natural recolonisation events by northern fur seals in the North 

Pacific identified changes in fur seal foraging behaviour and local resource depletion 

within 31 years of recolonisation at a breeding colony and that they estimate was 

reaching carrying capacity in that time (Kuhn et al. 2014), and animal tracking was 

carried out over a period of 15 years to determine this. Two prominent studies also 

compared predator foraging behaviour inferred from telemetry data with the known 

(Kuhn et al. 2015) or likely distribution of prey (Carroll et al. 2016). A greater 

sampling effort in time and space, and combined with temporally-relevant 

information on predator diets and prey resource distributions (Kuhn et al. 2015) is 

strongly recommended for Australian pinnipeds, to determine patterns in their 

foraging ecology, their evolving relationships with various ecosystems, in particular 

coastal ecosystems. 

 Eastern Australian temperate and tropical reefs are also complex ecosystems 

(Carey et al. 2017; Chapters 3 and 4). Dietary analyses of Australian and long-nosed 

fur seals revealed over 70 prey species each across multiple seasons and ecosystems. 

Reef-based surveys in my eastern Australian temperate study sites included over 80 

species including a diverse number of mesopredators, benthic invertivores, omnivores 

and planktivores. In a global meta-analysis of consumer effects on benthic 

communities, Edwards et al. (2010) found that prey species richness was the most 

significant predictor for, and was negatively correlated with, the strength of consumer 

effects on benthic communities in models of studies including up to 40 prey species. 

The level of ecological complexity found in the study system investigated in this 

thesis is therefore comparatively large on a global scale. Prey diversity, and related 

trophic complexity, including omnivory, intraguild predation and competition, are 

known to significantly dampen cascading trophic effects (Bellwood et al. 2006; Polis 

et al. 2000). The ecological complexity in Australian temperate reefs could therefore 

dampen any potential consumer effects of recovering, large and warm-bodied 



 

 148 

predators, or these effects may take longer still to manifest. Only further research 

investigating these questions can provide the answers.  

 

6.2.3 On what to do next? 

 

As the population of fur seals in southeastern Australia continues to expand, it is 

increasingly important to understand the resources that this large biomass of coastal 

predators rely on and determine potential cascading effects of predation particularly 

where these resources may be limiting. The second half of this thesis ultimately 

focused on coastal reef ecosystems due to their importance for coastal communities 

(Figure 6.3). However, Chapter 3 also identified a diversity of trophic interactions 

involving benthic to pelagic habitats from the coast and into deeper waters. The most 

pressing research questions surrounding the recovery of sympatric fur seal species, 

and large predators on coastal eastern Australia, involve looking more broadly again 

to understand the resources that fur seals exploit across the breadth of ecosystems that 

support them (Figure 6.3). Specifically, I recommend that the next step in this 

research is to undertake ecological trophodynamic modelling, accounting for the 

energy budgets of recovering Australian and long-nosed fur seal populations in 

eastern Australia and identifying the relative importance of different ecosystems to 

growing fur seal popultions. Biomass-informed modelling could also be compared to 

other areas with seal populations, such as for the Great Australian Bight (Goldsworthy 

et al. 2013). 

In eastern Australia, fur seals are recovering on a coastline that also supports 

Australia’s densest human populations and where predators may increasingly be 

competing for marine resources with humans. This competition, perceived or real, 

certainly generates heated debate among key stakeholders and has significant ethical 

and conservation repercussions, not least the calls for culling of a marine mammal 

(Shaughnessy et al. 2015). The preliminary findings in this thesis indicate that fur 

seals are not significantly changing ecological communities near their aggregation 

sites. However, I recommend further research including ecological biomass modelling 

and more extensive ecosystem surveys temporally and spatially, sampling across the 

breadth of their geographic range, to positively identify potential areas of competition 

and conflict with humans. 
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There is merit in trying to understand how these recovering predators may 

interact with temperate reefs in the context of also designating and managing marine 

protected areas for the benefit of fish species targeted by fishing activities (Boncoeur 

et al. 2002; Kelaher et al. 2015). Economic and ecological modelling in another 

system involving seals and fish stocks recommended increasing the size of no-take 

marine reserves in order to account for seal predation on fish stocks (Boncoeur et al. 

2002). Continued monitoring of fur seal diets using multiple methods of analyses, and 

including modelling and quantification of ecological interactions, would help to map 

the exchange of energy between predators and coastal ecosystems and thus determine 

the significance of coastal ecosystems to fur seals. I would additionally recommend 

using animal tracking methods to identify specific foraging patterns of fur seals in 

eastern Australian, and for example this could potentially identify foraging 

“hotspots”. If coastal reef ecosystems are confirmed to be important for certain 

populations of fur seals, then measures to account for this could include designing 

larger marine parks in areas of high fur seal foraging activity.  

There is also merit in seeking to understand the productive offshore and 

continental shelf resources that support these large predators and investigate areas of 

conflict for resources with fishing activities. Additionally, southeastern Australian 

ecosystems are part of a global warming hotspot, where range expansion in reef 

species is already occurring (Figueira & Booth 2010; Ling et al. 2009) and where 

ecosystem changes have been observed (Vergés et al. 2014). It is unknown how the 

return of large predators to eastern Australian ecosystems and environmental changes 

may interact. There are obvious implications of further research to the conservation 

and management of Australian species and of ecological processes on Australian 

temperate reefs, such as understanding ecological stable states or potential phase-

shifts following large-scale changes to predator abundances. This information can 

help to identify when significant ecological changes occur and may require 

interventions, such as additional spatial protections for reef communities if they show 

signs of predator-mediated effects. 
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Figure 6.3 Diagram illustrating the ecological focus of this thesis spanning the 
breadth of fur seal diets in eastern Australia (Chapter 3) to focusing on trophic 
interactions between recovering fur seals and reef communities (Chapters 4 & 5). 
Ecosystems (boxes) in which fur seals forage are represented, where simplified 
trophic interactions are expected (arrows). This diagram highlights how much we 
don’t know about ecological interactions linking these generalist predators to a 
broader range of ecosystems in which they are known to forage. 

 

  The southeastern coast of Australia is a unique location in which to test 

ecological hypotheses regarding predator recovery (Figure 6.2). Here, populations of 

two large, warm-bodied and generalist predators are recovering and exploiting 

complex coastal and pelagic ecosystems. The eastern Australian range of fur seals 

spans 32˚ to 37˚S in latitude across a coastline that is broadly characterised by a 

narrow continental shelf, extensive temperate rocky reefs, and heavily influenced by 

one prominent oceanographic feature in particular, the East Australian Current 

(Suthers et al. 2011). Elsewhere in their geographic range, large differences in 

oceanographic features and characteristics occur from Bass Strait to the Great 

Australian Bight in Southern Australia. These differences offer diverse opportunities 

to investigate predator ecology across natural latitudinal, oceanographic and 
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biogeographical gradients (Figure 6.2). For future studies investigating potential 

consumer effects of fur seals, I recommend sampling across a larger array of fur seal 

breeding and haul-site in order to test for trophic effects across varying densities of 

fur seals, and spatial gradients using a multiple regression statistical design rather than 

categorical as was done in this study. 

For those embarking on an investigation of ecological interactions between 

predators and ecosystems, this thesis offers a useful exploratory strategy with which 

to start: using diet analysis for accurate food web characterization, combined with 

community trait-based modelling to identify potential consumer effects of predation. 

This strategy is particularly useful where prior knowledge on the diets of generalist 

predators and on important ecological interactions is lacking. Where these interactions 

have been identified, as has been done for eastern Australian temperate reefs 

presented in this thesis, the next step is to undertake more targeted investigations of 

key ecological interactions to understand their relative importance and dynamics. 

Scientists can use the information presented in exploratory food web investigations to 

inform further targeted analysis of specific species of conservation or management 

interest and to quantify these interactions in space and time. The third step is then to 

use detailed and quantitative information to build ecosystem-scale trophodynamic 

models to understand interactions and exchanges of energy within and across 

ecosystems (Goldsworthy et al. 2013). Australian and long-nosed fur seals interact 

with a broad range of temperate ecosystems from the coast to offshore ecosystems, 

and a trophic mass-balance model for these interactions would help to understand and 

attribute the potential impacts of recovering predators, of fishing activities and of 

ecological change in these ecosystems. 

 

6.3 Conclusions 

 

This thesis first provides a synthesis of genetic tools applied to the analysis of 

predator diets and trophic ecology, and it is my hope that this synthesis will prove a 

useful guide for ecologists aiming to apply genetic techniques in a broad range of 

ecosystems and predator taxa. My third chapter, now published, offered the first 

analyses of the diets of recovering and sympatric fur seal species in eastern Australia, 

and yielded information on novel trophic interactions. Through this work, I identified 
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important knowledge gaps and further avenues of investigation in frontier predator 

populations, and that led to further investigations of trophic effects from fur seals on 

coastal reef ecosystems. This thesis provides valuable information from an early time 

in the recovery trajectory of two predator species and I expect it will be very 

interesting to revisit this study throughout the recovery of these species and their 

continued range expansion. Simply getting in and having a look is not a common 

tactic in pinniped research generally, for many good reasons of course, primarily 

because we lack their diving capabilities. For a coastal predator, however, timely 

surveys of the reefs that they could impact is especially important to provide a 

baseline assessment of reef communities whilst predator densities are still low. 

Without the approach applied in this thesis, we would have no local information on 

temperate reefs adjacent to fur seal aggregation sites with which to compare potential 

trajectories of change, and we would not later know whether any localised prey 

depletion occurred at all or whether a ‘halo’ effect broadened spatially, if one is later 

detected. Although small in scale, this is the most significant offering to scientific 

knowledge that I make in the second half of my thesis. This thesis provides an 

investigative framework with which to undertake ecological monitoring in this study 

system and others, and also provides suggestions for multiple stages of ecological 

monitoring relevant to researchers and managers across a broad range of ecosystems.
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Appendix	B	

Supplementary material from Chapter 3. 

 

Table B.1 Taxonomic assignment and frequency of occurrence for samples of Australian (n = 60) and long-nosed (n = 53) fur seals for 
incidental prey taxa occurring in <10% of samples (Primer sets: Fish16S and S_Cephalopoda, Crust16S and Bird12S). * PR = predator; PI = 
piscivore; PL = planktivore; IN = invertivore; OM = omnivore; UN = unknown 
      Australian fur seal Long-nosed fur seal 
   JB MI JB MI 
Class/Family Genus species (Common Name) Trophic* & 

Functional Trait 
Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Actinopterygii         Congridae Gnathophis sp. (conger eel) PR, Benthic Predator 0.00 0.00 6.67 0.00 6.67 0.00 0.00 
Aulopidae Latropiscis purpurissatus (sergeant baker) PR, Benthic Predator 0.00 7.69 0.00 0.00 6.67 0.00 0.00 
Belonidae Unknown Belonidae (needlefishes) UN, Pelagic Unknown 0.00 0.00 0.00 0.00 0.00 9.52 0.00 
Hemiramphidae Hyporhamphus regularis (river garfish) OM, Coastal Pelagic 

Omnivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Clupeidae Etrumeus teres (maray) IN, Coastal Pelagic 
Invertivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 Sardinella gibbosa (gold-belly sardinella) OM, Coastal Pelagic 
Omnivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Engraulidae Engraulis australis (australian anchovy) IN, Coastal Pelagic 
Invertivore 0.00 0.00 0.00 6.67 0.00 0.00 0.00 

Moridae Lotella rhacina (rock cod, beardie) PI, Reef Piscivore 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
 Pseudophycis barbata (bearded rock cod) PR, Reef Predator 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
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Table B.1 Taxonomic assignment table continued (Actinopterygii). * PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. † Prey item found in the single LNFS sample from JB in Jan-Apr (Myxus elongatus). 
      Australian fur seal Long-nosed fur seal 
   JB MI JB MI 
Class/Family Genus species (Common Name) Trophic* & Functional 

Trait 
Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Mugilidae Aldrichetta forsteri (yelloweye 
mullet) 

OM, Demersal 
Omnivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 Liza argentea (goldspot mullet) OM, Demersal 
Omnivore 0.00 7.69 0.00 0.00 0.00 9.52 0.00 

 Mugil cephalus (sea mullet) OM, Demersal 
Omnivore 0.00 7.69 0.00 0.00 0.00 9.52 0.00 

† Myxus elongatus (sand mullet) OM, Demersal 
Omnivore 5.88 0.00 0.00 0.00 0.00 4.76 0.00 

 Unknown Mugilidae (mullets) OM, Demersal 
Omnivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Myctophidae Lampadena sp. (lanternfishes) IN, Pelagic Invertivore 0.00 0.00 6.67 0.00 0.00 0.00 0.00 
 Myctophum sp. (spotted lanternfish) IN, Pelagic Invertivore 0.00 0.00 0.00 0.00 6.67 0.00 0.00 
 Hygophum hanseni (hansen's 

lanternfish) 
PL, Pelagic Planktivore 0.00 0.00 0.00 0.00 0.00 0.00 5.88 

Ophidiidae Genypterus sp. (cusk-eels) PR, Demersal Predator 0.00 0.00 6.67 0.00 0.00 0.00 0.00 
Bramidae Brama brama (atlantic pomfret) PR, Pelagic Predator 0.00 0.00 0.00 0.00 0.00 4.76 0.00 
Carangidae Seriola lalandi (yellowtail kingfish) PR, Coastal Pelagic 

Predator 5.88 0.00 0.00 0.00 0.00 0.00 0.00 

Centrolophidae Seriolella brama (blue warehou) PR, Demersal Predator 0.00 0.00 6.67 0.00 0.00 0.00 0.00 
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Table B.1 Taxonomic assignment table continued (Actinopterygii). * PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. 
      Australian fur seal Long-nosed fur seal 

   
JB MI JB MI 

Class/Family Genus species (Common Name) Trophic* & Functional 
Trait 

Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Cheilodactylidae Nemadactylus douglasii (grey 
morwong) 

PR, Reef Predator 5.88 7.69 0.00 6.67 6.67 0.00 0.00 

 Unknown Cheilodactylidae 
(morwongs) 

PR, Reef Predator 5.88 0.00 0.00 0.00 0.00 0.00 0.00 

 Nemadactylus macropterus 
(jackass morwong) 

PR, Reef Predator 5.88 0.00 0.00 0.00 0.00 0.00 0.00 

Chironemidae Chironemus marmoratus 
(eastern kelpfish) 

PR, Reef Predator 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Dinolestidae Dinolestes lewini (longfin pike) PR, Reef Predator 5.88 0.00 0.00 0.00 6.67 4.76 0.00 
Emmelichthyidae Emmelichthys nitidus (redbait) PR, Continental Pelagic 

Predator 0.00 7.69 0.00 6.67 0.00 0.00 0.00 

Gempylidae Nealotus tripes (black snake 
mackerel) 

PR, Pelagic Predator 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Girellidae Girella sp. (greenfish) OM, Demersal Omnivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 
 Girella tricuspidata (luderick) HE, Demersal Herbivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 
Kyphosidae Kyphosus sydneyanus (silver 

drummer) 
HE, Reef Herbivore 5.88 0.00 0.00 0.00 0.00 0.00 0.00 

 Kyphosus vaigiensis (brassy 
drummer) 

OM, Reef Omnivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 

 Unknown Kyphosidae 
(drummers) 

OM, Reef Omnivore 0.00 0.00 0.00 0.00 6.67 0.00 0.00 
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Table B.1 Taxonomic assignment table continued (Actinopterygii). * PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. 
      Australian fur seal Long-nosed fur seal 
   JB MI JB MI 
Class/Family Genus species (Common Name) Trophic* & 

Functional Trait 
Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Labridae Achoerodus viridis (eastern blue groper) IN, Reef Invertivore 5.88 0.00 0.00 6.67 0.00 0.00 0.00 
 Austrolabrus maculatus (blackspotted 

wrasse) 
IN, Reef Invertivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 

 Bodianus sp. (pigfish) IN, Reef Invertivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 
Mullidae Upeneichthys sp. (goatfish) IN, Benthic 

Invertivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 

Odacidae Odax cyanomelas (herring cale) HE, Reef Herbivore 0.00 0.00 0.00 0.00 6.67 0.00 0.00 
Pempheridae Parapriacanthus sp. (sweepers) IN, Reef Invertivore 0.00 0.00 0.00 0.00 6.67 0.00 0.00 
Pentacerotidae Unknown Pentacerotidae (armourheads) PR, Demersal 

Predator 0.00 0.00 0.00 0.00 6.67 0.00 0.00 

Pinguipedidae Parapercis allporti (barred grubfish) IN, Benthic 
Invertivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 

Polyprionidae Polyprion oxygeneios (hapuku) PR, Pelagic 
Predator 0.00 7.69 0.00 0.00 0.00 0.00 0.00 

Sphyraenidae Sphyraena sp. (pikes) PR, Reef Predator 0.00 0.00 0.00 0.00 0.00 4.76 0.00 
Tetragonuridae Tetragonurus atlanticus (bigeye 

squaretail) 
IN, Pelagic 
Invertivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Trichiuridae Lepidopus caudatus (silver 
scabbardfish) 

PR, Continental 
Pelagic Predator 0.00 0.00 0.00 0.00 0.00 0.00 5.88 

Scorpaenidae Scorpaena sp. (scorpionfishes) PR, Reef Predator 0.00 7.69 0.00 0.00 0.00 0.00 0.00 
 Scorpaenodes scaber (pygmy 

scorpionfish) 
PR, Reef Predator 0.00 7.69 0.00 0.00 0.00 0.00 0.00 
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Table B.1 Taxonomic assignment table continued (Actinopterygii). * PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; OM = 
omnivore; UN = unknown. 
      Australian fur seal Long-nosed fur seal 
   JB MI JB MI 
Class/Family Genus species (Common Name) Trophic* & 

Functional Trait 
Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Sebastidae Helicolenus sp. (ocean perch) PR, Demersal 
Predator 5.88 0.00 6.67 6.67 0.00 0.00 0.00 

Triglidae Chelidonichthys sp. (gurnard) PR, Benthic 
Predator 5.88 0.00 0.00 0.00 0.00 0.00 0.00 

 Lepidotrigla argus (eye gurnard) IN, Benthic 
Invertivore 5.88 0.00 6.67 0.00 0.00 0.00 0.00 

 Lepidotrigla papilio (spiny gurnard) IN, Benthic 
Invertivore 0.00 0.00 6.67 0.00 0.00 0.00 5.88 

Diodontidae Allomycterus pilatus (australian burrfish) IN, Reef 
Invertivore 0.00 0.00 6.67 0.00 0.00 0.00 0.00 

Monacanthidae Cantherhines dumerilii (barred 
leatherjacket) 

OM, Reef 
Omnivore 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 Meuschenia australis (brownstriped 
leatherjacket) 

HE, Reef Herbivore 0.00 0.00 0.00 0.00 6.67 0.00 0.00 

 Meuschenia scaber (velvet leatherjacket) IN, Reef 
Invertivore 0.00 7.69 0.00 0.00 0.00 0.00 0.00 

 Eubalichthys mosaicus (mosaic 
leatherjacket) 

HE, Reef Herbivore 0.00 0.00 0.00 0.00 0.00 0.00 5.88 

Ostraciidae Anoplocapros inermis (eastern smooth 
boxfish) 

IN, Reef 
Invertivore 5.88 0.00 0.00 0.00 0.00 0.00 0.00 

Tetraodontidae Arothron firmamentum (starry toad) IN, Demersal 
Invertivore 0.00 0.00 6.67 0.00 0.00 4.76 0.00 

Osmeriformes Unknown Osmeriformes (argentines) UN, Unknown 0.00 0.00 0.00 6.67 0.00 0.00 0.00 
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Table B.1 Taxonomic assignment table continued (Cephalopoda and Aves). * PR = predator; PI = piscivore; PL = planktivore; IN = invertivore; 
OM = omnivore; UN = unknown. 
      Australian fur seal Long-nosed fur seal 
   JB MI JB MI 
Class/Family Genus species (Common Name) Trophic* & Functional 

Trait 
Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Cephalopoda         Argonautidae Argonauta nodosa (knobby argonaut) IN, Pelagic Invertivore 0.00 0.00 0.00 6.67 0.00 0.00 0.00 
Octopodidae Octopus tetricus (Common Sydney 

Octopus) 
IN, Benthic Invertivore 0.00 7.69 6.67 0.00 0.00 4.76 0.00 

 Unknown Octopodidae (octopus) IN, Benthic Invertivore 0.00 0.00 0.00 6.67 0.00 0.00 0.00 
 Octopus sp. #2 (O. berrima or O. 

pallidus) 
IN, Benthic Invertivore 0.00 7.69 0.00 6.67 0.00 4.76 0.00 

Ocythoidae Ocythoe tuberculata (tuberculate 
pelagic octopus) 

UN, Pelagic Unknown 0.00 0.00 0.00 0.00 0.00 9.52 0.00 

Cranchiidae Leachia sp. UN, Pelagic Unknown 0.00 0.00 0.00 0.00 0.00 0.00 5.88 
 Taonius sp. (glass squid) UN, Pelagic Unknown 0.00 0.00 0.00 6.67 6.67 0.00 0.00 
Enoploteuthidae Abralia sp. (midwater squid) UN, Pelagic Unknown 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
 Abraliopsis sp. UN, Pelagic Unknown 0.00 0.00 0.00 6.67 0.00 0.00 0.00 
Ommastrephidae Eucleuteuthis sp. (luminous flying 

squid) 
UN, Pelagic Unknown 0.00 0.00 6.67 0.00 0.00 0.00 0.00 

 Ornithoteuthis volatilis (flying squid) UN, Pelagic Unknown 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
Pyroteuthidae Pterygioteuthis microlampas UN, Pelagic Unknown 0.00 0.00 0.00 0.00 0.00 0.00 5.88 
Sepiidae Unknown Sepiidae (cuttlefish) PR, Reef Predator 5.88 7.69 6.67 0.00 6.67 0.00 5.88 
Aves   

       Spheniscidae Eudyptula minor (little penguin) PR, Pelagic Predator 0.00 0.00 0.00 0.00 6.67 0.00 0.00 
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Table B.2 Taxonomic assignment table for species present in Australian and long-nosed fur seal scats likely due to secondary predation 
(Malacostraca, primer set: Crust16S). 
    Australian fur seal Long-nosed fur seal 

  
JB MI JB MI 

Class/Family Genus species (Common Name) Jan-
Apr Sept Jan-

Apr Sept Sept Jan-
Apr Sept 

Malacostraca        
Acanthephyridae Notostomus sp. (shrimp) 0.00 0.00 6.67 0.00 0.00 0.00 0.00 
Callianassidae Biffarius sp. (ghost shrimp) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 
Diogenidae Unknown Diogenidae (hermit crabs) 0.00 0.00 6.67 0.00 0.00 0.00 0.00 
Euphausiidae Euphausia recurva (krill) 0.00 0.00 0.00 0.00 0.00 0.00 5.88 

 
Nyctiphanes australis (euphausiid) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 
Unknown Euphausiidae (krill) 0.00 0.00 0.00 0.00 0.00 0.00 5.88 

Pandalidae Chlorotocus crassicornis (green shrimp) 0.00 0.00 6.67 0.00 0.00 0.00 0.00 
Penaeidae Melicertus plebejus (eastern king prawn) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 
Metapenaeus sp. (school prawn) 0.00 0.00 0.00 13.33 0.00 0.00 0.00 

Polybiidae Ovalipes sp. (sand crab) 0.00 0.00 6.67 0.00 6.67 0.00 23.53 

 
Unknown Polybiidae (swimmer crabs) 0.00 0.00 20.00 0.00 0.00 0.00 0.00 

Portunidae Portunus sanguinolentus (blue-spot swimming crab) 0.00 0.00 6.67 0.00 0.00 19.05 0.00 

 
Thalamita admete (swimming crab) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 
Thalamita sima (four-lobed swimming crab) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

Raninidae Ranina ranina (spanner crab) 11.76 0.00 0.00 0.00 0.00 0.00 0.00 
Scyllaridae Galearctus rapanus (slipper lobster) 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
Sergestidae Unknown Sergestidae (sergestid shrimps) 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
Squillidae Busquilla plantei (stomatopod crustacea) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 

 
Oratosquillina sp. (mantis shrimp) 0.00 0.00 0.00 0.00 0.00 9.52 0.00 
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Table B.2 Continued taxonomic assignment table for like secondary predation species (Malacostraca, primer set: Crust16S). 
    Australian fur seal Long-nosed fur seal 

  
JB MI JB MI 

Class/Family Genus species (Common Name) Jan-Apr Sept Jan-Apr Sept Sept Jan-
Apr Sept 

Squillidae Unknown Squillidae (mantis shrimps) 5.88 0.00 0.00 0.00 0.00 0.00 0.00 
Xanthidae Unknown Xanthidae (rubble crabs) 0.00 0.00 6.67 0.00 0.00 0.00 0.00 

 
Unknown Decapod 11.76 0.00 13.33 0.00 13.33 4.76 17.65 

 
Unknown Dendrobranchiata (shrimps) 0.00 0.00 6.67 0.00 0.00 0.00 0.00 

 
Unknown Euphausiacea (krill) 0.00 0.00 0.00 0.00 0.00 0.00 5.88 

  Unknown Stomatopoda (mantis shrimps) 0.00 0.00 0.00 0.00 0.00 4.76 0.00 
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Table B.3 Analysis of deviance table for multivariate generalised linear models 
(mvGLM) for trophic and spatial group analyses of prey composition between fur seal 
species, at different locations and time points sampled, tested on four models. Where 
significant interactions occurred in the full model, reduced models tested the 
differences between levels of explanatory variables. Significance denoted by: *p < 
0.05, **p < 0.01, ***p < 0.001. 
  Response variables SPATIAL 
MODELS Factors R.df Df.diff Dev P-value 
(i) AUFS Intercept 59    
  Time 58 1 12.37 0.185 
  Location 57 1 11.38 0.245 
  Time×Location 56 1 25.03 0.011* 
AUFS in 
Summer Intercept 31    
  Location (Summer) 30 1 33.37 0.006** 
AUFS in 
Winter Intercept 27    
  Location (Winter) 26 1 26.49 0.034* 
AUFS at MI Intercept 29    
  Time (MI) 28 1 36.44 0.001** 
AUFS at JB Intercept 29    
  Time (JB) 28 1 12.09 0.492 
(ii) LNFS Intercept 51    
  Group (Location+Time) 49 2 83.46 0.001** 
LNFS in 
Winter Intercept 30    
  Location (Winter) 29 1 31.55 0.009** 
LNFS at MI Intercept 35    
  Time (MI) 34 1 34.67 0.006** 
(iii) MI Intercept 65    
  Time 64 1 33.98 0.001** 
  Seal sp. 63 1 36.68 0.002** 
  Seal sp.×Time 62 1 24.47 0.008** 
MI in Summer Intercept 35    
  Seal sp. (Summer) 34 1 40.17 0.002** 
MI in Winter Intercept 29    
  Seal sp. (Winter) 28 1 20.98 0.031* 
(iv) JB Intercept 45    
		 Group (Seal sp.+Time) 43 2 15.74 0.457 
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Table B.4 Analysis of variance table for species richness between fur seal species, 
locations and time points sampled, tested on four models. Significance denoted by: *p 
< 0.05, **p < 0.01, ***p < 0.001 
  Response 

variables SPECIES RICHNESS 

MODELS Factors Df Sum Sq Mean Sq F value P-value 
(i) AUFS Time 1 14.8 14.8 0.208 0.65 
 Location 1 2.8 2.82 1.095 0.3 
 Time×Location 1 0.3 0.28 0.021 0.886 
 Residuals 56 757 13.517   
(ii) LNFS Group 

(Location+Time) 2 80.02 40.01 6.887 0.002** 

  Residuals 49 284.66 5.81   
(iii) MI Time 1 25 25.03 4.155 0.081 
 Seal sp. 1 19 19.01 3.155 0.046 
 Seal sp.×Time 1 37.5 37.51 6.227 0.015* 
 Residuals 62 373.5 6.02   
(iv) JB Group (Seal 

sp.+Time) 2 1.8 0.87 0.106 0.9 

  Residuals 43 355.7 8.27   
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Appendix	C	

Supplementary material from Chapter 4. 

 

Table C.1 Matrix for the 85 fish species and one mobile macro-invertebrate, and their traits for gregariousness, trophic group and categorisation 
in terms of seal predation. Traits for gregariousness and trophic group were assigned based on information provided by Stuart-Smith et al. (2014) 
. Categorisation of species as seal prey was conducted using prior knowledge of the diets of Australian and long-nosed fur seals from NSW from 
Hardy et al. (2016) and from Bass Strait (Gales & Pemberton 1994; Kirkwood et al. 2008; Deagle et al. 2009; Lake 1999) and New Zealand (Fea 
et al. 2002). 

Species Family Gregariousness Seal Prey Trophic Group 

Prionurus microlepidotus Acanthuridae schools no browsing herbivore 
Aplodactylus lophodon Aplodactylidae pairs/group yes browsing herbivore 
Arripis trutta Arripidae schools no mesopredator 
Aulopus purpurissatus Aulopodidae solitary no mesopredator 
Plagiotremus laudandus Blennidae solitary no cleaner 
Brachaelurus waddi Brachaeluridae solitary no mesopredator 
Pseudocaranx georgianus Carangidae schools yes benthic invertivore 
Seriola lalandi Carangidae schools yes mesopredator 
Trachurus novaezelandiae Carangidae schools yes planktivore 
Chelmonops truncatus Chaetodontidae solitary no benthic invertivore 
Amphichaetodon howensis Chaetodontidae  solitary no benthic invertivore 
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Table C.1 Matrix for the 85 fish species and one mobile macro-invertebrate, and their traits for gregariousness, trophic group and categorisation 
in terms of seal predation. 

Species Family Gregariousness Seal Prey Trophic Group 

Cheilodactylus fuscus Cheilodactylidae pairs/group yes benthic invertivore 
Cheilodactylus spectabilis Cheilodactylidae solitary yes benthic invertivore 
Nemadactylus douglasii Cheilodactylidae solitary yes benthic invertivore 
Chironemus marmoratus Chironemidae solitary yes benthic invertivore 
Cirrhitichthys aprinus Cirrhitidae solitary no benthic invertivore 
Dasyatis thetidis Dasyatidae solitary no benthic invertivore 
Dinolestes lewini Dinolestidae schools yes mesopredator 
Enoplosus armatus Enoplosidae pairs/group no benthic invertivore 
Heterodontus portusjacksoni Heterodontidae solitary no benthic invertivore 
Atypichthys strigatus Kyphosidae schools yes planktivore 
Girella elevata Kyphosidae schools yes browsing herbivore 
Girella tricuspidata Kyphosidae schools yes browsing herbivore 
Kyphosus bigibbus Kyphosidae schools yes browsing herbivore 
Kyphosus sydneyanus Kyphosidae schools yes browsing herbivore 
Microcanthus strigatus Kyphosidae schools yes planktivore 
Scorpis lineolata Kyphosidae schools yes planktivore 
Tilodon sexfasciatus Kyphosidae pairs/group yes benthic invertivore 
Achoerodus viridis Labridae solitary yes benthic invertivore 
Austrolabrus maculatus Labridae solitary yes benthic invertivore 
Coris aurilineata Labridae solitary yes benthic invertivore 
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Table C.1 Matrix for the 85 fish species and one mobile macro-invertebrate, and their traits for gregariousness, trophic group and categorisation 

in terms of seal predation. 

Species Family Gregariousness Seal Prey Trophic Group 

Coris picta Labridae pairs/group yes benthic invertivore 
Coris sandeyeri Labridae pairs/group yes benthic invertivore 
Eupetrichthys angustipes Labridae solitary yes benthic invertivore 
Labrid spp. Labridae solitary yes benthic invertivore 
Notolabrus fucicola Labridae pairs/group yes benthic invertivore 
Notolabrus gymnogenis Labridae pairs/group yes benthic invertivore 
Notolabrus tetricus Labridae pairs/group yes benthic invertivore 
Ophthalmolepis lineolata Labridae solitary yes benthic invertivore 
Pictilabrus laticlavius Labridae solitary yes benthic invertivore 
Pseudolabrus luculentus Labridae pairs/group yes benthic invertivore 
Suezichthys arquatus Labridae solitary yes benthic invertivore 
Latridopsis forsteri Latridae schools yes benthic invertivore 
Sepioteuthis australis Loliginidae schools yes benthic invertivore 
Acanthaluteres vittiger Monacanthidae pairs/group yes browsing herbivore 
Eubalichthys bucephalus Monacanthidae pairs/group yes browsing herbivore 
Eubalichthys mosaicus Monacanthidae solitary yes browsing herbivore 
Meuschenia flavolineata Monacanthidae pairs/group yes browsing herbivore 
Meuschenia freycineti Monacanthidae pairs/group yes browsing herbivore 
Meuschenia trachylepis Monacanthidae pairs/group yes browsing herbivore 
Scobinichthys granulatus Monacanthidae solitary yes browsing herbivore 
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Table C.1 Matrix for the 85 fish species and one mobile macro-invertebrate, and their traits for gregariousness, trophic group and categorisation 

in terms of seal predation. 

Species Family Gregariousness Seal Prey Trophic Group 

Schuettea scalaripinnis Monodactylidae schools no planktivore 
Lotella rhacina Moridae solitary yes mesopredator 
Parupeneus spilurus Mullidae pairs/group yes benthic invertivore 
Upeneichthys lineatus Mullidae pairs/group yes benthic invertivore 
Upeneichthys vlamingii Mullidae pairs/group yes benthic invertivore 
Gymnothorax prasinus Muraenidae solitary no benthic invertivore 
Olisthops cyanomelas Odacidae solitary yes browsing herbivore 
Carcharias taurus Odontaspididae pairs/group no mesopredator 
Orectolobus maculatus Orectolobidae solitary no mesopredator 
Anoplocapros inermis Ostraciidae solitary yes benthic invertivore 
Pempheris affinis Pempheridae schools yes benthic invertivore 
Pempheris analis Pempheridae schools yes benthic invertivore 
Pempheris compressa Pempheridae schools yes benthic invertivore 
Pempheris multiradiata Pempheridae schools yes benthic invertivore 
Paraplesiops bleekeri Plesiopidae solitary no benthic invertivore 
Trachinops taeniatus Plesiopidae schools no benthic invertivore 
Chromis hypsilepis Pomacentridae schools yes planktivore 
Mecaenichthys immaculatus Pomacentridae pairs/group yes planktivore 
Parma microlepis Pomacentridae solitary yes browsing herbivore 
Parma unifasciata Pomacentridae solitary yes browsing herbivore 
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Table C.1 Matrix for the 85 fish species and one mobile macro-invertebrate, and their traits for gregariousness, trophic group and categorisation 

in terms of seal predation. 

Species Family Gregariousness Seal Prey Trophic Group 

Pomacentrid spp. Pomacentridae NA yes omnivore 
Pomacentrus coelestis Pomacentridae pairs/group yes omnivore 
Trygonorrhina fasciata Rhinobatidae solitary no benthic invertivore 
Scorpaena cardinalis Scorpaenidae solitary yes benthic invertivore 
Sepia spp. Sepiidae pairs/group yes benthic invertivore 
Acanthistius ocellatus Serranidae solitary yes mesopredator 
Hypoplectrodes maccullochi Serranidae solitary yes benthic invertivore 
Hypoplectrodes nigroruber Serranidae solitary yes benthic invertivore 
Acanthopagrus australis Sparidae pairs/group yes benthic invertivore 
Pagrus auratus Sparidae pairs/group yes benthic invertivore 
Rhabdosargus sarba Sparidae pairs/group yes benthic invertivore 
Synodus variegatus Synodontidae solitary no mesopredator 
Canthigaster callisterna Tetraodontidae  solitary no omnivore 
Torquigener squamicauda Tetraodontidae  solitary no benthic invertivore 
Trygonoptera spp. Urolophidae solitary no benthic invertivore 
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Table C.2 Results of linear and generalised linear models for species richness, species diversity Shanon-Wiener index and community evenness. 
*p < 0.05, **p < 0.01, ***p < 0.001. 

Metric Model Explanatory 
variables Estimate Std. Error z-value Pr (>|z|) 

Species Richness (SPR) 

SPR ~ Region*Site type (Intercept) 23.917 1.222 19.567 <2e-16 

 RegionSouth 2.875 1.729 1.663 0.0480* 

 SealHO 5.583 2.445 2.284 0.0066** 

 RegionSouth:SealHO -7.625 3.457 -2.206 0.0100* 

Shanon-Wiener Diversity Index (H) 

H ~ Region*Site type (Intercept) 1.5451 0.0623 24.7920 <2e-16*** 

 RegionSouth 0.1947 0.0881 2.2090 0.031* 

 SealHO 0.0994 0.1246 0.7970 0.4280 

 RegionSouth:SealHO -0.2274 0.1763 -1.2900 0.2020 

Evenness (E) 

E ~ Region*Site type (Intercept) 0.4917 0.0172 28.6460 <2e-16*** 

 RegionSouth 0.0395 0.0243 1.6280 0.1090 

 SealHO -0.0014 0.0343 -0.0400 0.9690 

 RegionSouth:SealHO -0.0264 0.0485 -0.5440 0.5890 

Total Abundance Prey Fish 
(T_Abun) 

T_Abun ~ Region*Site 
type (Intercept) 5.8550 0.1140 51.3670 <2e-16*** 

 RegionSouth -0.0557 0.1612 -0.3460 0.7296 

 SealHO 0.0291 0.2279 0.1280 0.8985 
  RegionSouth:SealHO -0.6578 0.3229 -2.0370 0.0417 * 

Total Biomass Prey Fish (T_Biom) 
  

T_Biom ~ Region*Site 
type (Intercept) 10.0730 0.1528 65.9130 <2e-16*** 

 RegionSouth -0.1376 0.2161 -0.6370 0.5240 

 SealHO 0.2744 0.3008 0.9120 0.3620 
  RegionSouth:SealHO -0.4880 0.4254 -1.1470 0.2510 
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Table C.3 Summary statistics in relation to trophic groups observed at Jervis Bay study sites. 

Trophic group 
Species 
richness 

%Species 
richness 

Total 
Abundance %T abundance 

Total Biomass 
(kg) 

%sT 
biomass 

Higher carnivore 11 13% 787 2.70% 191.7 16.00% 
Benthic invertivore 48 55% 10418 35.80% 290.5 24.20% 
Browsing herbivore 16 18% 1592 5.50% 164.9 13.80% 
Omnivore 3 3% 37 0.10% 1.4 0.10% 
Planktivore 8 9% 16240 55.90% 550.7 45.90% 
Cleaner 1 1% 1 0% 0.0 0% 
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Figure C.1 
Standardised 
coefficients for all 
species and 
environmental 
variable interaction 
from the GLM-
LASSO model, fitted 
without traits (part 
1). Colours denote 
significant 
interactions between 
species and the 
region and site type, 
whereby darker 
colours describe the 
strength of effect. 
Red indicates a 
positive relationship, 
whilst blue a 
negative relationship. 
The first half of the 
species assemblage is 
displayed here, the 
second half are in the 
following graph 
(Figure C.2). 
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Figure C.2. Results 
of the fourth-corner 
model fitted for the 
relationship between 
species and 
environmental 
variables, without 
traits (part 2). 
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Figure C.3 Standardised coefficients for individual species prevalence in the fourth-
corner model, most common or uncommon species (Part 1). 
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Figure C.4 Standardised coefficients for individual species prevalence in the fourth-
corner model, most common or uncommon species (Part 2). 
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Appendix	D	

Supplementary material from Chapter 5. 
Table D.1 Matrix for the 36 species benthic mobile invertebrates and cryptic fish, and 
their trophic group trait used for trait-based multivariate analyses. † Denotes 
detritivorous and filter-feeding species (n = 3), rare in this study, and thus excluded 
from trait-based analyses. 
Species Trophic Group 
Acanthistius ocellatus mesopredator 
Asterodiscides truncates † detritivore filter feeder 
Astralium tentoriformis herbivore 
Cabestana spengleri benthic invertivore 
Cabestana tabulata benthic invertivore 
Cellana sp. herbivore 
Centrostephanus rodgersii herbivore 
Chicoreus denudatus benthic invertivore 
Chironemus marmoratus benthic invertivore 
Comanthus trichoptera † detritivore filter feeder 
Cymatium parthenopeum benthic invertivore 
Dicathais orbita benthic invertivore 
Echinaster arcystatus benthic sessiles invertivore 
Fromia polypora benthic sessiles invertivore 
Gymnothorax prasinus mesopredator 
Heliocidaris erythrogramma herbivore 
Heliocidaris tuberculata herbivore 
Heteroclinus spp. benthic invertivore 
Hypoplectrodes maccullochi benthic invertivore 
Hypoplectrodes nigroruber mesopredator 
Hypselodoris bennetti benthic sessiles invertivore 
Istigobius hoesei benthic invertivore 
Lotella rhacina mesopredator 
Octopus tetricus benthic invertivore 
Orectolobus maculatus mesopredator 
Orectolobus ornatus mesopredator 
Penion mandarinus benthic invertivore 
Pentagonaster dubeni benthic sessiles invertivore 
Phyllacanthus parvispinus herbivore 
Plagiotremus tapeinosoma mesopredator 
Plectaster decanus benthic sessiles invertivore 
Pteraeolidia ianthina benthic sessiles invertivore 
Ranella australasia benthic sessiles invertivore 
Scorpaena cardinalis mesopredator 
Turbo torquatus herbivore 
Unidentified hermit crab † detritivore filter feeder 
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Table D.2 Categories of epibenthic biota identified using the standardised 
classification scheme (CATAMI v1.2). Broad morpho-taxa were used for statistical 
analyses of benthic community composition. 

Broad morpho-taxa Categories 
Algal & Biotic Matrix Algae matrix 
Algal & Biotic Matrix Biotic Matrix 
Ascidians Ascidians: stalked 
Ascidians Ascidians: stalked: solitary 
Ascidians Ascidians: stalked: colonial 
Ascidians Ascidians: unstalked 
Ascidians Ascidians: unstalked: colonial 
Ascidians Ascidians: unstalked: solitary 
Bryzoa Bryozoa: hard 
Bryzoa Bryozoa: hard: branching 
Bryzoa Bryozoa: hard: encrusting 
Bryzoa Bryozoa: hard: fenestrate 
Bryzoa Bryozoa: soft 
Bryzoa Bryozoa: soft: foliaceous 
Cnidaria Cnidaria: anemones 
Cnidaria Cnidaria: anemone: solitary 
Cnidaria Cnidaria: anemone: colonial 
Cnidaria Corals 
Cnidaria Corals: black/octocoral (3D) 
Cnidaria Corals: black/octocoral (3D): fleshy: arborescent 
Cnidaria Corals: black/octocoral (3D): non-fleshy: bushy 
Cnidaria Corals: black/octocoral: encrusting 
Cnidaria Corals: stony corals: encrusting 
Crustacea Crustacea: barnacles 
Echinoderms Echinoderms: feather stars: unstalked crinoids 
Echinoderms Echinoderms: sea urchin 
Hydroids Hydroids 
Encrusting macro-algae Macroalgae (encrusting) 
Encrusting macro-algae Macroalgae: encrusting: calcareous 
Encrusting macro-algae Macroalgae: encrusting: brown 
Encrusting macro-algae Macroalgae: encrusting: green 
Encrusting macro-algae Macroalgae: encrusting: red 
Macro-algae Macroalgae: articulated calcareous: red 
Macro-algae Macroalgae: erect coarse branching 
Macro-algae Macroalgae: erect coarse branching brown 
Macro-algae Macroalgae: erect coarse branching green 
Macro-algae Macroalgae: erect coarse branching red 
Macro-algae Macroalgae: erect fine branching 
Macro-algae Macroalgae: erect fine branching brown 
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Table D.2 Categories of epibenthic biota identified using the standardised 
classification scheme (CATAMI v1.2). Broad morpho-taxa were used for statistical 
analyses; “substrate” and “unclear” were not included in analyses. 

Broad morpho-taxa Categories 
Macro-algae Macroalgae: erect fine branching green 
Macro-algae Macroalgae: erect fine branching red 
Macro-algae Macroalgae: filamentous/filiform 
Macro-algae Macroalgae: filamentous/filiform: brown 
Macro-algae Macroalgae: filamentous/filiform: green 
Macro-algae Macroalgae: filamentous/filiform: red 
Macro-algae Macroalgae: globose/saccate 
Macro-algae Macroalgae: globose/saccate: brown 
Macro-algae Macroalgae: globose/saccate: green 
Macro-algae Macroalgae: laminate 
Macro-algae Macroalgae: laminate: brown 
Macro-algae Macroalgae: laminate: green 
Macro-algae Macroalgae: laminate: red 
Macro-algae Macroalgae: large canopy-forming 
Macro-algae Macroalgae: large canopy-forming: brown 
Macro-algae Macroalgae: large canopy-forming: Ecklonia 
Macro-algae Macroalgae: sheet-like/membraneous 
Macro-algae Macroalgae: sheet-like/membraneous: brown 
Macro-algae Macroalgae: sheet-like/membraneous: green 
Macro-algae Macroalgae: sheet-like/membraneous: red 
Sponges Sponges: erect 
Sponges Sponges: erect forms 
Sponges Sponges: erect forms: laminar 
Sponges Sponges: erect forms: branching 
Sponges Sponges: erect forms: simple 
Sponges Sponges: hollow forms 
Sponges Sponges: hollow forms: cups and alikes 
Sponges Sponges: massive forms 
Sponges Sponges: massive forms: simple 
Sponges Sponges: massive forms: cryptic 
Sponges Sponges: crusts 
Substrate Substrate: consolidated 
Substrate Substrate: consolidated (hard): boulders 
Substrate Substrate: consolidated (hard): rock 
Substrate Substrate: unconsolidated 
Substrate Substrate: unconsolidated: pebble/gravel 
Substrate Substrate: unconsolidated: sand/mud (<2mm) 
Unclear Transect hardware 
Unclear Unclear 
Unclear Water 
Unclear Shadow 



 

 216 

 

Figure D.1 Coefficients for individual species, illustrating species with the greatest 
influence on the assemblage. Colours denote species with significant effects on the 
overall assemblage. Red indicates a common species, and blue an uncommon species; 
whilst darker colours describe the strength of effect. 
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Scorpaena cardinalis

Ranella australasia
Pteraeolidia ianthina
Plectaster decanus

Plagiotremus tapeinosoma
Phyllacanthus parvispinus

Pentagonaster dubeni
Penion mandarinus

Orectolobus ornatus
Orectolobus maculatus

Octopus tetricus
Lotella rhacina

Istigobius hoesei
Hypselodoris bennetti

Hypoplectrodes nigroruber
Hypoplectrodes maccullochi

Heteroclinus spp.
Heliocidaris tuberculata

Heliocidaris erythrogramma
Gymnothorax prasinus

Fromia polypora
Echinaster arcystatus

Dicathais orbita
Cymatium parthenopeum
Chironemus marmoratus

Chicoreus denudatus
Centrostephanus rodgersii

Cellana spp.
Cabestana tabulata

Cabestana spengleri
Astralium tentoriformis
Acanthistius ocellatus
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