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ABSTRACT

IMPACTS OF CHANGING WATER TEMPERATURES ON 
THE LIFE HISTORIES OF TWO INVASIVE ASCIDIANS IN 

THE GULF OF MAINE: BOTRYLLUS SCHLOSSERI AND 
BOTRYLLOIDES VIOALCEUS

by

Erica Westerman 
University of New Hampshire, May, 2007

The impact of temperature on organism life cycles has received great attention 

due to heightened awareness of global warming. Relative growth and reproductive 

development were monitored in two dominant ascidians from the Gulf of Maine to 

compare effects of rising temperatures on established (Botryllus schlosseri) versus 

recently arrived {Botrylloides violaceus) species. Settlement panels were deployed at 

three sites with different temperature regimes (Damariscotta, ME, Newcastle, NH, and 

Salem, M A) during two growing seasons June 2005 to December 2006, and a recruitment 

study conducted May to December 2006. Both species had elongated breeding seasons 

in Salem, M A relative to the other sites. Botryllus schlosseri settled two weeks earlier 

than Botrylloides violaceus at all sites, however this delay in settlement can be attributed 

to the longer brooding period of Botrylloides violaceus. Timing of initial settlement may 

not be as indicative of temperature tolerances as timing of initial egg production in 

brooding animals.
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CHAPTER I

Introduction 

Climate Change and Ascidians

Average global temperatures have risen 0.6°C over the past century 

(Walther et al. 2002). During this time there has also been an increase in 

species movement to new habitats, primarily assisted by humans (Carlton 1996, 

Stachowitcz et al. 2002). These nonindigenous species have altered their new 

ecosystems through competition for space, food, and other resources (Carlton 

1996). As global temperatures continue to change, it is imperative to know how 

shifting environmental conditions affect species diversity in general and 

invasibility of communities in particular.

One way to study the impact global temperature change has on 

communities is through examining the impact of temperature change on life 

histories of individual species. Temperature effects on life cycle traits such as 

increased growth, earlier maturation, higher resource use efficiency, and earlier 

reproduction at higher temperatures are well documented in many species

1
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(Brunetti et al. 1980, Grosberg 1982, Fielder et al. 2000, Stachowitcz et al. 2002, 

Newlon et al. 2003, Rodriguez & Bustamente 2003, Durant et al. 2004). These 

positive, or negative, effects of temperature on life history traits are of particular 

interest when looking at interactions between invasive and local species in the 

context of ongoing climate change. A higher tolerance for seasonal temperature 

variability, coupled with a lack of predators, may increase the viability of an 

invasive species and enable it to out compete native species and disrupt the 

local ecosystem.

Ascidians appear to be a particularly successful group of invaders in a 

variety of marine environments (Berman et al. 1992, Stachowitcz et al. 2002, 

Lambert & Lambert 2003). Colonial ascidians are sessile, active suspension 

feeders that reproduce both sexually and asexually; they have grown in 

dominance on near shore sea bottom communities worldwide over the past forty 

years (Lambert & Lambert 2003). Part of this invasive success may be due to 

rapid growth and reproductive rates as well as highly flexible colony growth 

patterns. Colonies can grow over flat surfaces, around corners, over solitary 

tunicates, and around mussels. When space is limited they are also able to form 

long lobes and grow on themselves (Brunetti 1974, Sabbadin 1955). These 

flexible growth patterns and high growth rates have caused problems for shell 

fisheries, as ascidians are able to cover vast areas of the sea floor, over grow 

mussel lines, and produce biochemicals that make settlement and growth difficult 

for economically valuable mussels (Bryan et al. 2003, Bullard et al. 2007).

2
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Ascidian invasive success may also be driven by the fishing down of 

coastal ecosystems and the reduction of top predators such as Atlantic cod 

(Jackson et al. 2001). Simple communities with little diversity appear to be more 

susceptible to invasion than communities with high biodiversity (Case 1990, 

Dunne et al. 2002). As the Gulf of Maine has particularly low species diversity 

relative to other temperate coastal ecosystems, it may be more susceptible to 

invasion by highly competitive taxa such as ascidians.

The cause of increasing ascidian dominance is unknown and most likely 

multifactorial, however environmental change is one likely contributor. Previous 

studies have shown that colonial ascidian asexual growth and settlement are 

affected by temperature and salinity (Yamaguchi 1975, West & Lambert 1976, 

Brunetti et al. 1980, Grosberg 1988, Newlon et al. 2003). However, temperature 

related reaction norms for the reproduction of dominant colonial ascidians in the 

Gulf of Maine have not been studied. The increase in water temperatures over 

the last thirty years (Conversi et al. 2001, Greene et al. 2003, Dijkstra et al. 

2007), combined with the increase in colonial ascidian populations (Stachowicz 

et al. 2002, Bullard et al. 2007) make the Gulf of Maine an ideal area for 

examining temperature related changes in life cycle traits. To clarify the 

relationship between colonial invasive ascidian success and temperature, I 

studied the effects of temperature on reproduction in two species of colonial 

ascidians in the Gulf of Maine.

3
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Study Organisms

This study focuses on the colonial ascidians Botryllus schlosseri (Pallas 

1766) and Botrylloides violaceus (Oka 1927). Botryllus schlosseri, the star 

tunicate, has been a member of the Gulf of Maine subtidal community since the 

mid 1800s (Gould 1870). Transported to New England from the North Sea, this 

species was the historically dominant colonial tunicate in the Gulf of Maine until 

the late 1980s (Harris & Tyrrell 2001). Botrylloides violaceus, the orange sheath 

tunicate, is native to the west Pacific and arrived in the Gulf of Maine in the early 

1980’s, most likely from Japanese oysters brought into the Damariscotta River 

(Dijkstra et al. 2007). Although Botrylloides violaceus is considered a warm 

water species and Botryllus schlosseri is considered a cold-water 

species(Dijkstra et al. 2007), they currently share the same range in the Gulf of 

Maine, from Cape Cod MA to Eastport ME (Dijkstra et al. 2007).

Both Botryllus schlosseri and Botrylloides violaceus belong to the 

subfamily Botryllidae (Phylum Chordata, Subphylum Tunicata, Class Ascidiacea, 

Order Stolidobranchia, Family Styelidae). They are cyclical hermaphrodites, 

have internal fertilization, and brood their young. Colonies of both species are 

made up of genetically identical individuals, known as zooids, whose circulatory 

systems are connected to each other through blood vessels between the zooids 

and structures called ampullae. Ampullae are round, protruding structures at the 

ends of all interstitial blood vessels often found along the edges of the colony 

under the tunic; they may also be more centrally located among zooids in older

4
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colonies. Botryllidae is one of the few ascidian families containing animals with 

interconnecting blood vessels between zooids and ampullae around the edges of 

the colonies. These ampullae contain muscle tissue and contract on a regular 

basis to assist in pumping blood throughout the colony (Newberry 1965, Burighel 

& Brunetti 1971). Ampullae also help the colony adhere to surfaces, and assist 

in self/non-self recognition (Hirose et al. 1990, Rinkevich 2002, Litman 2006).

All ascidians are hermaphroditic, and each zooid within a colony is 

capable of producing both ovaries and testes. Ovaries in Botryllus schlosseri are 

located on the left side of the body above the stomach, while testes are located 

on both sides of the body: above the stomach on the left and slightly lower on the 

right (Berrill 1950). Gonads are located in a slightly different location in 

Botrylloides violaceus. A single ovary and testis are on each side at the base of 

the zooid in the bottom of the colony with testes located above the ovaries 

(Mukai 1977). Ovaries appear pink and testes white when observed through the 

tunic under a microscope.

Reproduction

All colonial ascidians undergo two different types of reproduction: asexual 

reproduction, through a budding process known as blastogenesis, and sexual 

reproduction through cross-fertilization and egg brooding. Asexual reproduction 

(often called colony growth) in the Botryllidae can occur through two different

5
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methods: palleal budding or vascular budding (Rinkevich 2002). In palleal 

budding, the most common method, a bud is formed out of the side of an existing 

zooid or bud. Zooids can have zero to four buds, and all buds in a colony reach 

adulthood at the same time (Sabbadin 1955). The replacement of old adult 

zooids by fully developed buds is called takeover, while the life span of one 

generation of adult zooids, from takeover to takeover, is referred to as a 

blastogenic cycle.

Three different generations of zooids at different stages of development 

are visible within a colony: adult zooids, which are heavily pigmented, large, and 

share an atrial siphon with two to fifteen other zooids; primary buds, which are 

buds off of the adult zooids and are generally positioned high on the left of the 

zooid and low on the right side of the zooid (a single primary bud is located on 

the left side); and secondary buds, which are small, mostly clear and relatively 

undefined buds attached to the left and right sides of the primary buds (Berrill 

1941). Takeover occurs when the primary buds are mature and the adult zooids 

go through apoptosis and degenerate. Immediately following takeover, colonies 

comprise three generations of zooids: senescing zooids, adult zooids, and 

primary buds. Secondary buds form on the primary buds within a day (Berrill 

1941).

The second form of asexual reproduction, vascular budding, occurs when 

a bud is formed from the wall of a blood vessel within the colony but is not 

attached to an adult zooid. This may occur when a piece of tissue without any 

zooids is removed from a colony and allowed to settle and grow on its own

6
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(Rinkevich 2002), or when a colony comes in contact with another colony 

(personal observation); however, vascular budding has rarely been observed in 

nature (Rinkevich 2002).

Sexual reproduction in a colonial ascidian occurs after the colony has 

gone through a series of blastogenic cycles and become sexually mature. 

Botryllus schlosseri colonies become mature after five to seven blastogenic 

cycles; it is unknown how many asexual cycles are required for Botrylloides 

violaceus colonies to become sexually mature (Brunetti 1974, Grosberg 1988). 

Once a colony reaches sexual maturity, each zooid within the colony is capable 

of producing eggs and sperm (Sabbadin 1955, Brunetti 1974). In Botryllus 

schlosseri colonies, initial testes production occurs at least one blastogenic cycle 

before initial egg production. Once eggs are being produced, however, both 

testes and eggs are produced in the same generation, though at different times 

during the life cycle of the zooid. This is one of the many ways that colonial 

ascidians prevent self fertilization (Milkman 1967).

Eggs are fertilized internally, then deposited in a brood pouch where 

incubation begins (Berrill 1950). During the brooding period in Botrylloides 

violaceus, which can last at least four weeks (Mukai et al. 1987), the adult zooid, 

which originally produced the egg, degenerates and is absorbed into the colony 

during takeover (Stewart-Savage et al. 2001a). Therefore, developing larvae are 

supported by a minimum of two different generations of zooids within the colony, 

only one of which produced the original oocytes. In Botryllus schlosseri, the 

brooding period is the duration of one blastogenic cycle, which is considerably

7
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shorter than that of Botrylloides violaceus, and larvae are released into the water 

column immediately before takeover is completed (Yund et al. 1997). However, 

if an egg is fertilized late in the life span of the adult zooid, the developing 

embryo will not develop in time, will not be released before takeover occurs, and 

will be reabsorbed back into the colony (Yund et al. 1997, Stewart-Savage et al. 

2001a).

Botryllus schlosseri eggs are stored in a common brood pouch near the 

shared atrial opening between each system of zooids (Berrill 1950). Though 

housed within the tunic, embryos do not receive any nutrients from surrounding 

zooids during development. In contrast, Botrylloides violaceus embryos are 

stored in individual brood pouches near the shared atrial opening between each 

system of zooids, and these brood pouches have blood vessels running through 

them, bringing nutrients from the entire colony to the developing embryos (Millar 

1971, Mukai etal. 1987).

Once released from the colony, larvae from both species normally spend 

less than 24 hours in the water column before settling on a hard substrate and 

metamorphosing (Sabbadin 1955, Millar 1971). Larvae can either attach to 

primary substrates such as rocks, wood, and cement piling, or to secondary 

substrates such as algae, scallop shells, and other tunicates (Berrill 1950). After 

settlement, larvae go through metamorphosis, absorbing their tail and opening 

atrial and oral siphons to become the original zooid of a new colony, known as 

the oozooid (Sabbadin 1955). This oozooid is identical in every way to future 

zooids in the colony (known as blastozooids) produced during the ensuing

8
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asexual budding, except that oozooid organs are formed from different tissues 

than those of blastozooids, and oozooids are not capable of becoming sexually 

reproductive (Brunetti & Burighel 1969).

Since each zooid within a mature colony can produce eggs and sperm, 

one can calculate the fecundity of a colony based on two measures: 1) number of 

eggs per zooid and 2) average size of the testes (testes size correlates directly 

with sperm count) (Yund 1998). Sexually mature colonies of both Botryllus 

schlosseri and Botrylloides violaceus continue to undergo periods of asexual 

reproduction while producing viable eggs and sperm, though at a diminished 

rate.

Past Studies on Abiotic Factors

Botryllus schlosseri has been a model system for the study of colonial 

ascidians for over fifty years, and a model system for the study of allorecognition 

for the last twenty years (Sabbadin 1955, Brunetti 1974, Brunetti et al. 1980, 

Grosberg 1988, Chadwick-Furman & Weissman 1995, Cohen et al. 1998).

These studies have included in-depth descriptions of this species and how its life 

history is impacted by changes in temperature in both Venice, Italy and 

Massachusetts, USA. (Brunetti et al. 1980) found that Botryllus schlosseri 

colonies from Venice would grow in the laboratory at 10°C but not at 3°C, and 

that all colonies died by day 11 when cultured at 3°C in the laboratory. Brunetti
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et al. (1980) also found that Botryllus schlosseri colonies from Venice would not 

reproduce when cultured in the laboratory at temperatures below 13°C.

Grosberg (1982) performed an extensive study on the life history of Botryllus 

schlosseri in Eel Pond on Cape Cod. He found that the duration of blastogenic 

cycles correlated inversely with increases in temperature, from 35 days at 5°C to 

7 days at 20°C. These growth rates are very similar to those of colonies from the 

Venetian Lagoon (Mukai 1977, Brunetti et al. 1980), suggesting that the duration 

of blastogenic cycle may be fixed relative to temperature. However, as the 

annual temperature regimes of Eel Pond and the Venetian Lagoon are very 

similar (Brunetti et al. 1980, Grosberg 1982) it is likely that Botryllus schlosseri 

populations of these two sites are also adapted to similar temperature ranges. 

Thus, the temperature tolerance similarities between these two populations may 

not be indicative of all Botryllus schlosseri populations, particularly those that 

may have adapted to different environmental conditions.

A transplant study comparing reproduction in Botryllus schlosseri colonies 

from Eel Pond, MA, with those from the Damariscotta River, ME found that 

colonies from Eel Pond had lower egg production than those of Damariscotta 

when grown at the Darling Marine Center (Stewart-Savage et al. 2001b). 

Stewart-Savage et al. (2001b) also found that genetically identical Botryllus 

schlosseri colonies grown upriver had significantly lower reproductive output than 

clones grown downriver in the Damariscotta River, ME. These data demonstrate 

the importance of treating each population as a unique entity and examining its 

life history traits in its new habitat before assuming it will behave as it has in other

10
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environmental conditions. Such considerations are especially critical in areas 

like the Gulf of Maine, where water temperatures are changing (Conversi et al. 

2001, Greene et al. 2003) and an influx of invasive species has altered benthic 

communities during the last thirty years (Berman et al. 1992, Harris & Tyrrell 

2001).

Botrylloides leachi, a sister species of Botrylloides violaceus found 

throughout Europe, has been extensively studied in Italy (Brunetti 1976 1967, 

Brunetti et al. 1980). Brunetti (1976) found that the breeding season of 

Botrylloides leachi in the Venetian Lagoon began when water temperatures 

reached 17-18°C and ended when they rose to 24-25°C. He also found evidence 

of a second reproductive period in early fall that occurred when water 

temperatures fell from 25°C to 16-17°C. Botrylloides leachi colonies would not 

grow at 11 °C, but would grow at 16°C (Brunetti et al. 1980). Botrylloides leachi 

was found to hibernate through the winter months. Hibernation in Botryllid 

ascidians is when a colony has many ampullae but few to no functional zooids. 

The only evidence that the colony was still alive was blood flowing through 

common blood vessels throughout the colony. Botrylloides leachi entered 

hibernation when water temperatures went below 10°C (Brunetti 1976).

Botrylloides violaceus is less commonly used in laboratory studies than 

Botryllus schlosseri, but its recent dominance of the Gulf of Maine benthic 

community has resulted in a heightened interest in its environmental limitations. 

Stachowicz et al. (2002) found that colonies of Botrylloides violaceus from 

Woods Hole, MA increased number of zooids in response to temperature at a
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higher rate than Botryllus schlosseri during a one-week study. Their one week 

study used water temperatures between 15 and 24°C, and recorded increase in 

number of zooids instead of duration of blastogenic cycle or increase in colony 

area. A second study by McCarthy et al. (2007) that examined increase in 

colony area over one week found that neither Botryllus schlosseri nor 

Botrylloides violaceus colonies from Groton, CT responded significantly to colder 

or warmer water temperatures relative to ambient water temperatures. The 

contrasting results from these two experiments and the brief duration of both 

suggest that the relative response of New England colonies of Botryllus 

schlosseri and Botrylloides violaceus to temperature merits further study.

These studies illustrate that the physical tolerances of different 

Botrylloides populations differ from each other and also differ greatly from those 

of Botryllus schlosseri. A particularly interesting and often overlooked study by 

Mukai (1977) found that Botrylloides violaceus colonies collected and cultured in 

Shizuoka, Japan had a blastogenic cycle that was eight days long at 12-13°C 

while Botryllus schlosseri colonies collected and cultured in Venice, Italy had a 

blastogenic cycle of seven days at 17°C. Botrylloides violaceus would also 

reproduce at 13°C, the lowest recorded temperature for Botryllus schlosseri 

reproduction. This suggests that while Botrylloides violaceus found in New 

England waters may be considered a warm water species, it may be more cold 

tolerant than Botryllus schlosseri in its native environment.

The apparent warm water preference of Botrylloides violaceus in Atlantic 

coastal waters coupled with the increase in its abundance coinciding with
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increased water temperatures in the Gulf of Maine suggests that temperature 

may be one factor driving the success of this invasive species. It is therefore 

important to examine whether increased temperatures result in heightened 

growth and reproduction for Botrylloides violaceus populations relative to those of 

Botryllus schlosseri in the Gulf of Maine. As water temperatures throughout the 

Gulf of Maine are highly variable and dispersal distances are short, populations 

from different areas may not only differ from those of other species or from 

populations from other major geographical regions, but from other areas within 

the Gulf of Maine as well. Therefore, studying different populations within the 

Gulf of Maine is vital to increasing our understanding of the interactions between 

the life histories of these two species and changing environmental conditions 

such as temperature.

Objectives

The objectives of this study are to 1) establish temperature minima for 

gametogenesis in Botryllus schlosseri and Botrylloides violaceus in the Gulf of 

Maine, 2) define the reproductive seasons of Botryllus schlosseri and Botrylloides 

violaceus under different temperature regimes in the Gulf of Maine, 3) establish 

the impact of increased water temperature on asexual reproduction of Botryllus 

schlosseri and Botrylloides violaceus, and 4) determine temperature impacts on 

observed abundance patterns of Botryllus schlosseri and Botrylloides violaceus.

13
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I hypothesize that Botrylloides violaceus will tolerate a larger range of 

temperatures than Botryllus schlosseri as well as populations that acclimatize 

more readily to new temperature regimes because it is a more recent invader 

and has thus had fewer generations than Botryllus schlosseri to adapt to 

conditions in the Gulf of Maine. To test this hypothesis, I will look at how 

temperature affects a) gametogenesis, and b) duration of the reproductive cycle. 

In addition, I hypothesize that ascidian populations from different temperature 

regimes will have different temperature minima for sexual reproduction, 

correlated with their natural local climate. Botryllus schlosseri has been found 

throughout the Gulf of Maine for a longer period of time than Botrylloides 

violaceus (Stachowicz 2002, Berman et al. 1992). Therefore, I expect Botryllus 

schlosseri to exhibit greater variability between populations and less plasticity 

within populations in response to temperature than Botrylloides violaceus.

Determining time of ascidian gamete production and temperature minima 

for gametogenesis in different areas within the Gulf of Maine will clarify the 

temperature range at which sexual reproduction can occur in these ascidian 

species. Establishing the effect temperature has on the duration of the 

reproductive cycle for different populations of different species will enable me to 

compare the impact of temperature on reproductive output in these species, as 

well as whether there is a change in response to temperature based on the 

colony’s climate of origin.
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CHAPTER II

Materials and Methods 

Field Sites

When looking at the impact of different local climates on the life history of 

a species, it is important to observe the behaviors of different populations 

exposed to differing environments in the field. Therefore three different study 

regions throughout the Gulf of Maine were used for field observations and 

experiments..

The three study regions within the Gulf of Maine were 1) the Damariscotta 

Estuary, Maine; 2) Portsmouth Harbor, New Hampshire; and 3) Salem Harbor, 

Massachusetts (Figure 1). These three regions of the Gulf of Maine all differ in 

yearly temperature and average range (Figure 2). All sites contain high densities 

of Botryllus schlosseri and Botrylloides violaceus (Bullard et al. 2007).

The Damariscotta River (43° 56.0’ N, 69° 34.8’ W) is the northernmost 

site. The site has a yearly water temperature range of 0.73°C to 20.51 °C with an 

average of 9.89°C. Panels were attached to a floating dock at the University of
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Maine Darling Marine Center (DMC), which is located in a protected area of the 

estuary, with a more constant water temperature than the other two sites.

Portsmouth Harbor (43° 04’18” N, 70° 42’37” W) is the middle site, with a 

yearly water temperature range of -0.61 °C to 20.138°C, and an average of 

10.66°C. Panels were attached to a floating dock at the University of New 

Hampshire Coastal Marine Laboratory (CML) in New Castle NH. The large 

fluctuations in water temperature at this site are due to tides and its proximity to 

the Piscataqua estuary.

The southern site, Salem Harbor (42° 31’17” N,70° 52’55” W), experiences 

a yearly water temperature range of 1.9°C to 24.15°C with an average of 

12.17°C. Panels were attached to a float at the Hawthorne Cove Marina (HCM) 

in Salem MA, which has moderate temperature fluctuations and is the most 

affected by urban contaminants of the three sites, being near the Salem Harbor 

Station power plant.
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Figure 1: Map of Study sites. DMC has a temperature range of 0.73°C to 
20.51 °C, CML has a temperature range of -0.61 °C to 20.138°C, and HCM has 
temperature range of 1.9°C to 24.15°C.
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Figure 2: Average sea surface water temperatures 7/12/2005-12/11/2006. HCM 
data are marked by diamonds, CML data are marked by squares, and DMC data 
are marked by triangles.
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Data Collection

Physical Data

HOBO data loggers located between 0.5 and 1.5m below water surface at 

the three sites monitored temperature during the field study. We used two types 

of loggers, HOBO temperature loggers from July 2005 to July 2006 and HOBO 

temperature and light recorders from July 2006 to December 2006, with 

measurements taken every 30 minutes by both machines. Salinity and water 

temperatures were gathered from GoMoos (Gulf of Maine Ocean Observing 

System, http://www.gomoos.com) Buoy E (43° 42’47” N, 69° 21’20” W). GoMoos 

Buoy B (43° 10’51” N, 70° 25’40” W), and GoMoos Buoy A (42° 31’40” N, 70° 

33’59” W), buoys up to nine miles off shore, November 2004-August 2006 

(Figure 3). Salem State College has an aquaculture facility in Cat’s Cove MA 

(42° 31’54”N, 70° 52’10” W), which is one cove north of the Hawthorne Cove 

Marina. Salem State students measured salinity and temperature data for Cat’s 

Cove from 2001 to 2006. Further data were collected from a sub-tidal 

multiparameter YSI at the University of New Hampshire Coastal Marine 

Laboratory (43° 04’18” N, 70° 42’37” W).
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Figure 3: Map of Gulf of Maine showing the location of GoMoos Buoys A 
(near Salem, MA), B (near Portsmouth, NH) and E (near Walpole, ME).
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2005 Spring Water Temperature Cross Calibration

In order to compare site 2004/2005 and 2005/2006 winter and spring 

water temperatures at DMC and HCM, 2005 data was cross-calibrated using 

GoMoos buoy 2005 and 2006 water temperatures and on site HOBO 2006 water 

temperatures. A linear regression between GoMoos and HOBO water 

temperatures was performed on data from January 1st, 2006 to August 31st 2006. 

Data from GoMoos buoy E were compared with those from DMC. Spring water 

temperatures at the two sites were highly correlated, with an R2of 0.8826 (Figure 

4b). The equation from the linear regression of this relationship was used to 

calibrate spring water temperatures at DMC for 2005 (y=1.1352x-0.732).

GoMoos buoy E water temperatures from January 1st 2005 to August 31st 2005 

were then used to estimate spring water temperatures at DMC (Figure 4a). Data 

from GoMoos buoy A were compared with those at HCM. Spring water 

temperatures at the two sites were highly correlated, though less than those at 

GoMoos buoy E and DMC, with an R2 of 0.71156. A polynomial fit was then 

performed on the same data, and was found to be a better fit, with an adjusted 

R2 of 0.871, p value <0.001 and an N of 4, 605 (Figure 4b). The equation from 

the second degree polynomial fit of this relationship was used as a calibration for 

spring water temperatures at HCM for 2005 (y=-2.198+2.158x-0.187(x-7.971)2). 

GoMoos buoy A water temperatures from January 1st 2005 to August 31st 2005 

were then used to estimate spring water temperatures at HCM (Fig 4b).
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Estimated spring 2005 temperatures were compared with spring 2006 water 

temperatures at HCM and DMC.

Estimations of spring 2005 CML water temperatures were unnecessary, 

as the multiprameter YSI located at CML had been deployed prior to the study 

period. Therefore actual spring temperatures from 2005 could be compared to 

spring temperatures from 2006.

Correlations between physical conditions and biotic results of field studies 

were analyzed using a regression analysis and a correlation matrix in the JMP 

statistical package.

Field Studies

Deployment of Panels For All Field Studies Unless Otherwise Noted.

Six 100 cm2 Plexiglas® panels were attached to bricks and deployed 

horizontally one meter below the water surface off of floating docks at DMC, CML 

and HCM. Every two weeks panels were photographed using a Nikon coolpix 

995, Nikon coolpix 950, or a Canon rebel 2000, June 2005 to December 2006.
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Figure 4: a) HCM correlation between on site 2006 water temperatures and 
offshore GoMoos Buoy A 2006 water temperatures, b) DMC correlation between 
on site 2006 water temperatures and offshore, GoMoos Buoy E 2006 water 
temperatures, y-1.1352x-0.732, R2=0.892.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Percent Cover by Species.

Three of the six settlement panels were experimentally selected for each 

species, either Botryllus schlosseri or Botrylloides violaceus. The allotted 

species was allowed to settle and grow on each panel while all other organisms 

were removed, resulting in a monoculture of one of the two species growing on 

each panel. This removal allowed for the observation of maximum growth under 

the different field conditions by ascidians unfettered by spatial interspecific 

competition. Panels were deployed twice, from late June 2005 to January 2006 

and from February 2006 to December 2006.

Percent cover was calculated from images viewed in iPhoto® using a 

point count analysis. Time of initial recruitment of each species at each site was 

recorded and analyzed using a two way ANOVA. Percent cover data were arc- 

sin transformed and space occupancy patterns between species, sites and years 

were analyzed using repeated measures MANOVA. Interactions between 

percent cover and temperature were analyzed using a linear regression model. 

Abundance patterns between species and sites were analyzed using a two way 

ANOVA. Statistical analyses were performed using the JMP statistical analysis 

package.

Single Colony.

Six settlement panels were deployed at HCM and DMC from May 2006 to 

December 2006. Two colonies of either Botrylloides violaceus or Botryllus 

schlosseri were allowed to settle on each panel, with three replicates for each
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species. All other organisms were removed. Two recruits were allowed to settle 

to ensure survival of at least one adult colony, as survival rates of recently settled 

juvenile colonies are low (Keough & Downes 1982). Once the two colonies 

reached approximately 100 zooids, one was removed leaving a single colony on 

each panel. Panels were cleaned of all other organisms and were deployed at 

HCM and DMC from June 2006 to December 2006. CML was not used for this 

study due to the severe flooding that occurred in May 2006, which caused 

recruitment to be delayed relative to DMC and HCM.

Initial recruitment and time of larval brooding in the colonies were 

recorded and analyzed using a two way ANOVA. Colony growth was measured 

as percent cover of the Plexiglas® panel using a point count analysis. Data were 

arc-sin transformed and spatial coverage patterns between species and site were 

analyzed using repeated measures MANOVA. Correlations between percent 

cover and temperature were analyzed using linear regression. Statistical 

analyses were performed using the JMP statistical analysis package.

Recruitment.

Six 100 cm2 Plexiglas® recruitment panels were deployed in May 2006. Panels 

were replaced and taken back to the laboratory every two weeks and examined 

under a Leica S6D dissecting microscope. Panels were deployed from May 

2006 to December 2006. The presence, absence, and quantity of Botrylloides 

violaceus and Botryllus schlosseri were recorded. Recruitment was calculated
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instead of settlement because deceased colonies, unidentifiable to species level, 

were observed on the panels, suggesting that I was not observing complete 

settlement, but was instead recording two week recruitment. Therefore 

recruitment for this study is defined as those juveniles that have settled during 

the two week period and maintained space until panel removal. Data were 

analyzed using a two way ANOVA. Interactions between temperature and 

recruitment were analyzed using linear regression. All statistical analyses were 

performed using the JMP statistical package.

Tunicate Culturing.

Colonies of both Botrylloides violaceus and Botryllus schlosseri were 

collected at all three field sites and brought back into the laboratory where they 

were settled onto microscope glass slides by removing all the debris from the 

underside of the colonies and placing them on the microscope slides inside a 

humid settlement box for two to three hours. After settlement, the colonies were 

hung vertically in a tank with low flow until they attached to the slide, (see 

(Phillippi et al. 2004 for details) Colonies for all laboratory studies were 

maintained in either 5-gallon tanks or 4-gallon plastic tubs containing 8.71 to 11.41 

of 32 psu seawater. Water was changed every two weeks in 2005 and every 

week in 2006. Animals were fed Coralife® Invertebrate Smorgasbord™ daily 

(five drops a day for the first five colonies, and an extra drop for every colony 

containing over fifty zooids in the tank or tub) and were in constant light. All
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colonies were monitored using a Leica S6D dissecting microscope, and 

periodically photographed using a Canon power shot S40 attached to the Leica 

dissecting microscope. Established colonies were then utilized in the different 

experiments as described in the following sections.

These studies were conducted during August-January 2005 and March- 

December 2006. There were two tubs containing 9.51 32 psu seawater at every 

temperature in 2005 and three tubs/tanks containing 9.5-10.51 at every 

temperature in 2006. Growth and reproduction studies were initiated four times: 

August 2005, March 2006, and June 2006 and July 2006. Colonies were kept 

until death, and as colony lifespans were often many months, there was overlap 

between cohorts in the tanks. However, all colonies in the laboratory at the same 

time experienced the same water conditions, food quantities and environmental 

parameters at each specific temperature, and food, temperature, and 

environmental parameters remained constant during the entire two-year period 

colonies were kept in the laboratory. Replicates were variable for each species 

from each site at the different temperatures and cohorts, ranging from 4-24.

Calculating colony growth.

There are currently four different methods in the literature for calculating 

colony growth in colonial ascidians. These methods can be divided into two 

groups, those calculating an increase over time, and those calculating an 

increase based on the asexual reproductive cycle of the colony. The two
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methods that have been used based on time are percent increase in number of 

zooids over a one-week period (Stachowicz et al. 2002) and percent increase in 

area of colony over a set interval of time such as a week or month (McCarthy et 

al. 2007). The two methods of calculating growth that incorporate the biological 

process of colony growth are duration of blastogenic cycle (Mukai 1977) and 

percent increase in number of zooids after a blastogenic cycle (Brunetti et 

al.1980). Percent increase in number of zooids over a one week period, though 

calculated, was not used for this study because duration of blastogenic cycle was 

often greater than one week for temperatures under 17°C (Mukai 1977, Brunetti 

et al. 1980, Grosberg 1982) which resulted in highly variable growth rates when 

weeks were compared. Percent increase in colony area was not used for this 

study because colonies are able to increase their area by either increasing the 

number of zooids, increasing the amount of interstitial tissue, or increasing the 

number of ampullae in a colony (personal observation) and two of these methods 

of increasing area do not necessarily involve increasing numbers of bud or egg 

producing structures. The duration of blastogenic cycle, though calculated, was 

not used for this study because it has been found to be highly variable 

throughout the life span of a single colony, and colonies of Botryllus schlosseri 

cultured in the same container were found to cycle together (De Tomaso, 

personal communication).
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Growth Rate and Reproduction.

To test the effect of temperature on growth, colonies were placed in five 

different temperature controlled rooms (5°C, 10°C, 15°C, 20°C and 25°C). After 

a two week acclimatization period, colonies were monitored daily throughout their 

life span (two weeks to over six months) (Brunetti 1974). Number of zooids, 

percent increase in zooid number per week, time of take over, percent increase 

in zooids at take over, presence of gametes, number of eggs, and size of testes 

were recorded. Percent increase in zooid number at takeover and reproductive 

success were compared between species and across temperatures using a two 

way ANOVA in the JMP statistical package.
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CHAPTER III

Results

Physical Conditions for the Hawthorne Cove Marina, the University of New 

Hampshire Coastal Marine Laboratory, and the University of Maine Darling 

Marine Center January 2005-December 2006

Salinity

Salinity levels dropped below 25 psu five times at GoMoos Buoy A, twice 

at GoMoos Buoy B, and never dropped below 25 psu at GoMoos Buoy E 

throughout the two-year study period (Figure 5). Salinity levels did not drop 

below 20 psu at any of the three buoy sites.

May 2006 Flooding

There was a 100 year flooding event in New England that occurred in May 

2006. This resulted in lower salinities than normal and a broken panel set up at
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the Hawthorne Cove Marina. Rains were heavy throughout New England, 

however there was less precipitation in the Maine midcoast region, where the 

Darling Marine Center is located, than in coastal New Hampshire or Salem 

Harbor (Figure 5).

Figure 5: May 2006 Precipitation map for New England from NOAA’s National 
Weather Service. Most intense rainfall occurred in coastal New Hampshire and 
the Cape Anne area, with less rainfall at the Damariscotta River.
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Additional Data for the Hawthorne Cove Marina

Data from Cat Cove were particularly helpful when looking at the effect of 

the spring 2006 flooding on the recruitment and growth patterns of Botryllus 

schlosseri and Botrylloides violaceus at HCM. While there was a 100-year 

flooding event in New Hampshire and parts of Massachusetts in May of 2006, 

salinity levels in Cat’s Cove did not drop below 23 psu during the flooding in May 

2006 (Table 1). These results differ from those from GoMoos Buoy A, and were 

considered a more accurate representation of salinities at HCM due to Cat’s 

Cove’s proximity to the study site.

Date Temperature (C) Salinity (psu)
6/20/04 17.9 31.4

7/1/04 18 31.7
8/22/05 23.3 24

9/6/05 19.7 25
10/14/05 14 30.5
10/27/05 12 26.3

11/3/05 9.8
11/10/05 8.1
5/22/06 27
6/12/06 16.6 30.8

Table 1: Abiotic data from Cat’s Cove, MA. Periodic records of temperature and 

salinity from 2004 to 2006.
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Water Temperature

Water temperatures collected from the HOBO data loggers during the 

study period of June 2005 to December 2006 varied at the three different sites. 

Summer water temperatures were highest at HCM for both summers, while CML 

had the lowest (Figure 2). Winter temperatures were again highest at HCM, 

however they were lowest at DMC. Biweekly average water temperatures were 

above 10°C 72 more days at HCM than at DMC during 2005, but only 26 more 

days during 2006. Biweekly average water temperatures were above 13°C 26 

more days at HCM than at DMC during 2005 and 54 more days in 2006 (Table 

2). Biweekly average water temperatures were above 10°C 37 more days in 

2006 than in 2005 at DMC and 9 fewer days in 2006 than in 2005 at HCM.
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Figure 6: a) 2005 and 2006 salinity at GoMoos Buoy E. b) 2005 and 2006 salinity 
at GoMoos Buoy B. c) 2005 and 2006 water temperature at GoMoos Buoy E. d) 
2005 and 2006 water temperature at GoMoos Buoy B. Timing of increasing 
salinities and initial temperatures above and below 13°C coincide at both sites.
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Site Biweekly average tem peratu re  above IOC Biweekly average tem p era tu re  below 10C
Average tem peratu re Date Average tem perature Date Days above 10C

DMC 6/14 /05 7.83 11/16/05 155
DMC 10.8 5 /20 /06 9.82 11/28/06 195
CML 10.9 6 /3 /06 8.89 11/16/06 166
HCM 4/18 /05 9.9 11/16/05 227
HCM 13.11 5 /6 /06 8.76 12/10 /06 218

Biweekly average tem peratu re  above 13C Biweekly average tem p era tu re  below 13C
Average tem peratu re Date Average tem perature Date Days above 13C

DMC 6/14 /05 10.01 11/3 /05 143
DMC 13.49 6 /17 /06 12.72 10/28/06 134
CML 14.19 6/17 /06 10.7 10/28/06 134
HCM 5/19 /05 10.7 11 /3 /05 169
HCM 13.11 5 /6 /06 10.45 11/10 /06 188

Table 2: Timing above 10°C and 13°C at HCM, CML, and DMC. These are the 
two different temperatures documented as the critical temperatures for 
reproduction in Botryllus schlosseri.

Biweekly average water temperatures were above 13°C 9 fewer days in 2006 

than in 2005 at DMC, and 19 more days in 2006 than in 2005 at HCM. As both 

10°C and 13°C are potential critical temperatures for Botryllus schlosseri 

reproduction (13°C is the lowest tested temperature that gamete production has 

been observed in the laboratory while 10°C is the highest temperature gamete 

production has not been observed in the laboratory), the opposite changes in 

number of days above these temperatures between the two years for these three 

sites may give us a better idea in which temperature is more important for Gulf of 

Maine Botryllus schlosseri populations

Biweekly average water temperatures did not differ significantly between 

years over the summer and fall months at any of the three sites (Figure 7). 

However, though these seasonal patterns did not vary between years at any of
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the sites, 2006 spring temperatures rose above 10°C sooner than the 

relationship between offshore and inshore temperature predicted for spring 2005 

water temperatures for both DMC and HCM (Figure 8c, d, Table 2). At CML the 

difference between summer and winter temperatures was greater in 2006 than in

2005 (2006 slope=-5.8202, R2=0.3973, p<0.000, 2005 slope= -4.6746, R2=0.277, 

p<0.000) suggesting that spring and early summer temperatures were higher in

2006 than in 2005 (Figure 9).

Spring water temperatures followed a similar pattern when compared 

between sites as between years, with the sites all having similar patterns. 

However, the southern most site (HCM) warmed earlier than the northern site 

(DMC) and reached a higher maximum temperature. This pattern was found in 

both the 2006 and estimated 2005 spring water temperatures (Figure 8).
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Figure 7: Summer and fall biweekly average water temperatures for 2005 (grey 
diamonds) and 2006 (black squares) a) HCM. There was no significant difference 
in water temperature, b) CML. No significant difference, c) DMC. No significant 
difference between years.
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Figure 8: a) Model spring 2005 water temperatures at HCM. b) Model spring 
2005 water temperatures at DMC. c) Spring 2006 water temperatures at HCM. d) 
Spring 2006 water temperatures at DMC.
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5.8202, R2=0.3973, p<0.000.
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Abundance and Growth Patterns

Hawthorne Cove Marina

Description of Colony Abundance and Growth Patterns.

Botrylloides violaceus had two local maxima of percent cover during both 

2005 and 2006 at HCM, with an overall maximum percent cover on August 13 in 

both 2005 and 2006 (Figure 10a). A local minimum in percent cover of 

Botrylloides violaceus occurred during both summer growing seasons, though 

earlier in 2005 (September 23) than in 2006 (October 7). Botryllus schlosseri 

also had two local maxima of percent cover during both 2005 and 2006 at HCM, 

with a maximum percent cover on August 13 in 2005 and almost a month earlier 

in 2006 (July 18) (Figure 10a). A local minimum in percent cover of Botryllus 

schlosseri occurred during both summer growing seasons, on September 9 

during 2005 and on September 23 during 2006. The maximum percent cover for 

Botrylloides violaceus occurred at the same time as the maximum percent cover 

for Botryllus schlosseri in 2005 and one month after the maximum percent cover 

for Botryllus schlosseri in 2006. The minimum percent cover during the growing 

season for Botrylloides violaceus occurred two weeks after that of Botryllus 

schlosseri in 2005 and in 2006. The maximum number of colonies of Botrylloides 

violaceus found on a single panel was 47 during 2005, and 36 during 2006 

(Figure 10b). The maximum number of colonies of Botryllus schlosseri found on 

a single panel was 9 during 2005 and 8 during 2006.
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Spatial Coverage Patterns Between Species.

During 2005, there was a significant difference in the spatial coverage 

patterns of Botryllus schlosseri and Botrylloides violaceus at HCM (repeated 

measures MANOVA, p=0.019), though this was primarily due to quantity of cover 

rather than timing of peak percent cover, as Botrylloides violaceus colonies 

covered a larger area of their panels than Botryllus schlosseri colonies did (Fig 

11a). There was no difference in the timing of peak percent cover for the two 

species in 2005. The two species showed similar spatial coverage patterns at 

HCM during 2006 (Fig 11b). However, this may be due to the flooding in May 

2006, which dropped the salinity of Salem Harbor to 23 psu and destroyed the 

panel set up at HCM (Table 1). This led to replacement of all panels on June 6, 

over a month after water temperatures had reached 10°C at HCM.

Spatial Coverage Patterns Between Years.

Botrylloides violaceus showed similar spatial coverage for the two years at 

HCM. However, there were significant differences in the spatial coverage 

patterns between the two years for Botryllus schlosseri at HCM (repeated 

measures MANOVA, p=0.008) with peak abundance occurring earlier in 2006 

than in 2005 (Figure 12a).
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Spatial Coverage and Temperature.

Percent cover was positively correlated with average biweekly water temperature 

June through December 2005 for Botrylloides violaceus (slope=3.188, R2=0. 414, 

p<0.0001) but not Botryllus schlosseri (Figure 13a, 13d). Percent cover was 

positively correlated with average biweekly water temperature May-December 

2006 at HCM for Botrylloides violaceus (R2=0.602, p=0.014) but not Botryllus 

schlosseri (Fig. 14a, 14d). However, percent cover for both Botryllus schlosseri 

and Botrylloides violaceus had a greater correlation with time than temperature 

from July to December 2006. Percent cover of Botryllus schlosseri, though not 

correlated with temperature, was negatively correlated with time. This correlation 

suggests a decline in one cohort of colonies that is not replaced by an increase 

of a second cohort. Percent cover of Botrylloides violaceus was correlated with 

time by a second-degree polynomial, suggesting that the growth in the cohort of 

Botrylloides violaceus colonies is delayed relative to that of Botryllus schlosseri 

(Figure 15a and 15d).
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Figure 11: a) Percent cover of both Botryllus schlosseri (dark) and Botrylloides violaceus (grey) at HCM during 
2005. There was a significant difference in the abundance patterns throughout the year, repeated measures 
MANOVA p=0.019. b) Percent cover of Botryllus and Botrylloides at HCM during 2006. There was no significant 
difference in the abundance patterns of the two species.
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Figure 11: c) Percent cover of B. schlosseri and 6. violaceus at CML during 2005. While there was a difference in the 
abundance during the fall, there was not a significant difference in the abundance patterns of the two species at this site, 
d) Percent cover of Botryllus schlosseri and Botrylloides violaceus at CML during 2006. No significant difference in 
abundance patterns.
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Figure 11: e) Percent cover of B. schlosseri and B. violaceus at DMC during 2005. There was an almost 
significant difference in the abundance patterns of these two species, repeated measures MANOVA p=0.057. f) 
Percent cover of Botryllus schlosseri and Botrylloides violaceus at DMC during 2006. No significant difference in 
abundance patterns of the two species.
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Figure 12: a) Percent cover of Botryllus schlosseri at HCM for 2005 (light) and 2008 (dark). There was a significant 
difference in tie  abundance patterns between the two years, repeated measures MANOVA, p=0.008. b) Percent 
cover of Botrylloides violaceus at HCM for 2005 and 2006. No significant difference between years.
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u, Figure 12: c) Percent cover of Botryllus schlosseri at CML for 2005(light) and 2006 (dark). No significant difference
°  between years, d) Percent cover of Botrylloides violaceus at CML for 2005 and 2006. No significant difference

between years.
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Figure 12: e) Percent cover of Botryllus schlosseri at DMC during 2005(light) and 2006 (dark). There was a significant 
difference in fie abundance patterns between the two years, repeated measures MANOVA, p=0.008. f) Percent cover of 
Botrylloides violaceus at DMC during 2005 and 2006. While there was no significant difference in the abundance patterns, 
there was a fend towards an earlier time of initial presence and growth in 2006.



Figure 13: a) Linear regression between 2005 Botryllus schlosseri percent cover 
and average biweekly water temperature at HCM.y=1.257x-3.173, R2=0.130, 
p=0.0307. b) Linear regression between 2005 Botryllus schlosseri percent cover 
and average biweekly water temperature at CML, y=-1.545x+33.510, R2=0.122, 
p=0.095. c) Linear regression between 2005 Botryllus schlosseri percent cover 
and average biweekly water temperature at DMC, y=4.86x-19.703, R2=0.417, 
p=0.0002. d) Linear regression between 2005 Botrylloides violaceus percent 
cover and average biweekly water temperature at HCM. y=3.188x-12.061, 
R2=0.414, p<0.0001. e) Linear regression between 2005 Botrylloides violaceus 
percent cover and average biweekly water temperature at CML, y=- 
6.956x+116.092, R2=0.537, p<0.0001. f) Linear regression between 2005 
Botrylloides violaceus percent cover and average biweekly water temperature at 
DMC, y=1.650x+13.247, R2=0.046, p=0.251.
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University of New Hampshire Coastal Marine Laboratory

Description of Colony Abundance and Growth Patterns.

Botrylloides violaceus had one period of maximum percent cover during 

the growing seasons of both 2005 and 2006. Maximum percent cover occurred 

November 16 in 2005 and almost a month earlier in 2006 (October 19) (Figure 

10c). Botryllus schlosseri also had one period of maximum percent cover during 

the growing seasons of both 2005 and 2006. Maximum percent cover occurred 

November 16 in 2005 and two months earlier in 2006 (September 9). Maximum 

percent cover for Botrylloides violaceus occurred at the same time as maximum 

percent cover for Botryllus schlosseri in 2005, and six weeks later than maximum 

percent cover for Botryllus schlosseri in 2006. The decline in percent cover at 

the end of the growing season for Botrylloides violaceus occurred two weeks 

after that of Botryllus schlosseri in 2005 and six weeks after that of Botryllus 

schlosseri in 2006. The maximum number of colonies of Botrylloides violaceus 

found on a single panel was 63 during 2005 and 56 during 2006 (Figure 10d). 

The maximum number of colonies of Botryllus schlosseri found on a single panel 

was 11 during 2005 and 7 during 2006.
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Figure 14: a) Percent cover was not correlated with temperature for Botryllus 
schlosseri at HCM in 2006. (R2=0.099, p value=0.124) b) Percent cover was 
correlated with temperature for Botrylloides violaceus at HCM. 3rd degree 
polynomial, y=0.344(x-15.727)3+3.235(x-15.727)2+1.289x-1.488, R2=0.602, p 
value=0.014. c) Percent cover versus temperature for Botryllus schlosseri at 
CML was not correlated, d) Percent cover was negatively correlated with 
temperature for Botrylloides violaceus at CML, y= -8.366x+150.205, R2=0.543, p 
value=0.0005. e) Percent cover was positively correlated with temperature for 
Botryllus schlosseri at DMC, y=5.396x-63.806, R2=,0.388 p-value <0.002. f) 
Percent cover was positively correlated with temperature for Botrylloides 
violaceus at DMC, y=5.138x-52.988 R2=0.355, p value<0.0004.
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Figure 15: a)2006 Botryllus schlosseri percent cover was negatively correlated 
with time at HCM, y=15416.262-47035e-6x, R2=0.3538, p=0.004. b) 2006 
Botrylloides violaceus percent cover was correlated with time by a 3rd degree 
polynomial, y=44203.86-0.0000135x-1.963e-12(x-3.27e+9)2+6.49e-16(x- 
3.27e+9)3, R2=0.466, p=0.0008 . c) 2006 Botryllus schlosseri percent cover was 
not correlated with time, R2=0.144, p=0.0291. d) 2006 Botrylloides violaceus 
percent cover was positively correlated with time, y=7.8012e'6x-25494.44, 
R2=0.714, p<0.001. e) 2006 Botryllus schlosseri percent cover was negatively 
correlated with time at DMC, y=10642.881-3.247e-6x, R2=0.182, p=0.0133. f) 
Botrylloides violaceus percent cover was correlated with time by a 2nd degree 
polynomial, y=4380.54-1.322e-6x-1.874e-12(x-3.27e+9)2, R2=0.406, p=0.0002.
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Spatial Coverage Patterns

Botrylloides violaceus and Botryllus schlosseri showed similar abundance 

patterns at CML in both 2005 and 2006 (Figure 11c and 11d). They also showed 

similar abundance patterns between 2005 and 2006 at CML (Figure 12c and 

12d). Botrylloides violaceus percent cover was negatively correlated with 

temperature at CML in 2005 (R2=0.515, p<0.001, one way ANOVA) (Figure 13e). 

In 2006 Botrylloides violaceus percent cover was negatively correlated with 

temperature (y= -8.366x+150.205, R2=0.543, p value=0.0005) and positively 

correlated with time at CML (Fig 14e and 15e). Botryllus schlosseri percent 

cover was correlated with neither temperature nor time at CML in 2005 or 2006.

University of Maine Darling Marine Center

Description of Abundance and Growth Patterns.

Botrylloides violaceus had one period of maximum percent cover 

during the growing seasons of 2005 and 2006. Maximum percent cover occurred 

September 23 in 2005 and a month earlier in 2006 (August 13) (Figure 10e). 

Botryllus schlosseri also had one period of maximum percent cover during the 

growing seasons of 2005 and 2006 at DMC. Maximum percent cover occurred 

September 9 in 2005 and two weeks earlier, on August 1, in 2006. The 

maximum percent cover for Botrylloides violaceus occurred two weeks after the 

maximum percent cover for Botryllus schlosseri in 2005 and 2006. The decline
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in percent cover at the end of the growing season for Botrylloides violaceus also 

occurred two weeks after that of Botryllus schlosseri in 2005 and 2006. The 

maximum number of colonies of Botrylloides violaceus found on a single panel 

was 12 during 2005 and 13 during 2006 (Figure 10f). The maximum number of 

colonies of Botryllus schlosseri found on a single panel was 4 during 2005 and 

23 during 2006 (Figure 10f).

Spatial Coverage Patterns Between Species.

There was an almost significant difference in the spatial coverage patterns 

between species at DMC during 2005 (repeated measures MANOVA, p=0.057) 

(Figure 11e). There was a trend towards earlier growth of Botryllus schlosseri 

relative to that of Botrylloides violaceus at the DMC, an area that did not receive 

as much rainfall during the spring of 2006 as the other two sites, though this 

trend was not statistically significant (Figure 11f and Figure 5).

Spatial Coverage Patterns Between Years.

There was a trend towards earlier settlement and growth of Botrylloides 

violaceus at DMC in 2006 relative to that in 2005, however this relationship was 

not statistically significant (Fig 13f). There were significant differences in the 

spatial coverage patterns between the two years for Botryllus schlosseri at DMC, 

with peak percent cover occurring later, lasting longer, and being greater in 2005 

(repeated measures MANOVA, p=0.008) (Fig 12e).
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Spatial Coverage Patterns and Temperature.

Botryllus schlosseri percent cover was positively correlated with average 

biweekly water temperature in 2005 ( y=4.86x-19.703, R2=0.417, p= 0.002) 

(Figure 13c) while Botrylloides violaceus percent cover was not correlated with 

temperature. Percent cover was positively correlated with average biweekly 

water temperature May-December 2006 at DMC for both Botrylloides violaceus 

(y=5.138x-52.988 R2=0.355, p value<0.004) and Botryllus schlosseri (y=5.396x- 

63.806, R2=,0.388 p-value <0.002) (Figure 14c, 14f). Percent cover of Botryllus 

schlosseri was negatively correlated with time at DMC during 2006 suggesting 

that there was only one cohort of colonies on the panels. Percent cover of 

Botrylloides violaceus was parabolically correlated with time at DMC 2006, 

suggesting that Botrylloides violaceus has a similar pattern to that of Botryllus 

schlosseri (growth, reproduction, and death, with colonies sloughing off the 

panel) but that it’s initiated two weeks later (Figure 15c, 15f).

Comparisons between field sites

Abundance and growth patterns between sites.

There was a significant difference in the seasonal timing of the growth 

patterns between the three sites in 2006 for both species, with initial growth 

bursts occurring first at HCM, then DMC, and finally at CML (Figure 16a and 

16b). Botrylloides violaceus did not exhibit significantly different patterns of 

growth across the three sites for either 2005 or 2006. Botryllus schlosseri
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percent cover patterns were significantly different between the three sites during 

2005, with initial growth first occurring at HCM and then at DMC (repeated 

measures MANOVA p=0.004) (Fig 16c). There was also a second peak in 

percent cover for both species at HCM that didn’t occur at DMC, suggesting a 

longer growth season at HCM than DMC.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Botryllus schlosseri

I  100 

*  80

0
£L
0
c
<5
i

8/10 9/026/17 7/03 7/15 8/01

Botrylloides violaceus

b)

CML
DMC '*

-a-
p=0.0014

HCM

6/17 7/03 7/15 8/01 8/10 9/02

Time (MM/DD)
On

Figure 16: a) Percent cover of Botryllus schlosseri July-September 2006. There was a significant difference in 
abundance patterns across the three sites, repeated measures MANOVA, p=0.0602. b) Percent cover of 
Botrylloides violaceus July-September 2006. There was a significant difference in abundance patterns across 
the three sites, repeated measures MANOVA, p=Q.Q014.
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Figure 16: c) Percent cover of Botryllus schlosseri throughout 2006. A significant difference between the 
abundance patterns across the three sites was found using a repeated measures MANOVA, p=0.0025. d) 
Percent cover of Botrylloides violaceus throughout 2005. No significant differences in abundance patterns.
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Figure 16: e) Percent cover of Botryllus schlosseri throughout 2006. There was no significant difference in 
oo abundance patterns, f) Percent cover of Botrylloides violaceus throughout 2006. There was no significant
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Single Colony

Hawthorne Cove Marina

Growth rates differed significantly between the two species at HCM, with 

Botrylloides violaceus growing faster and having a higher maximum percent 

cover than Botryllus schlosseri (repeated measures MANOVA, p=0.037) (Figure 

17a). Botrylloides violaceus percent cover is negatively correlated with 

temperature (y=-0.0932x+1.867, R2=0.763, p=0.001) (Figure 18). Percent cover 

of Botrylloides violaceus was parabolically correlated with that of Botryllus 

schlosseri at HCM suggesting that the timing of the life cycles of these two 

species at HCM are offset (y=-13.467(x-0.099)2+3.418x+0.225, R2=0.565, 

p=0.0019) (Figure 19).
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Figure 18: a) Single colony percent cover for Botryllus schlosseri and Botrylloides 
violaceus at HCM. Significant differences in abundance patterns, repeated 
measures MANOVA, p=0.037 b) Single colony percent cover for Botryllus 
schlosseri and Botrylloides violaceus at DMC. Almost significant differences in 
abundance patterns, repeated measures MANOVA, p=0.082.
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Figure 18: Botrylloides violaceus single colony percent cover at HCM is 
negatively correlated with temperature, y=-0.0932x+1.867, R2=0.763, p=0.001.
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Figure 19: Correlation between Botryllus schlosseri percent cover and 
Botrylloides violaceus at HCM. (y=-13.467(x-0.099)2+3.418x+0.225, R2=0.565, 
p=0.0019).

Darling Marine Center

There was an almost significant difference in growth rates between the 

two species at DMC, with Botrylloides violaceus growing faster and achieving a 

higher percent cover than Botryllus schlosseri (repeated measures MANOVA, 

p=0.082) (Figure 17b). Percent cover of Botrylloides violaceus was not 

correlated with that of Botryllus schlosseri.
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Comparisons Between Sites

There was no significant difference in growth rates of either species 

between HCM and DMC (Figure 20). However, at HCM the pattern of percent 

cover exhibited by Botrylloides violaceus was almost identical to that found at 

DMC, but occurred two months later, suggesting that these growth patterns have 

little to do with temperature but that the initial start time of growing might, and 

that the species may have acclimated to their local environments (Fig 20b).
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Figure 20: a) Single colony percent cover for Botryllus schlosseri at DMC and 
HCM. no significant difference in abundance patterns (repeated measures 
ANOVA, p-value=0.843). b) Single colony percent cover for Botrylloides 
violaceus at DMC and HCM, no significant difference in abundance patterns 
(repeated measures MANOVA, p-value=0.2063).
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Recruitment

Hawthorne Cove Marina

A substantial spring storm broke the panel set up at HCM in 2006, 

resulting in a hole in the recruitment data set that may have coincided with peak 

recruitment. Consequently, initial timing of Botryllus schlosseri recruitment 

relative to that of Botrylloides violaceus is unknown. However, recruitment 

occurred for both species throughout the growing season, and peak recruitment 

for both Botryllus schlosseri and Botrylloides violaceus occurred during the two 

weeks prior to September 9 (Figure 21a). There were also a significantly greater 

number of Botrylloides violaceus recruits than Botryllus schlosseri recruits over 

the entire recorded breeding season (Figure 21a). The recorded recruitment 

peak occurred within a month of peak percent cover and coincided with a decline 

in percent cover for both species. A second increase in percent cover also 

occurred a month after peak recruitment (Fig 22a). There is a positive correlative 

trend between recruitment and temperature for Botryllus schlosseri at HCM 

(R2=0.243, p-value=0.123) (Fig 23a). Recruitment was not correlated with 

percent cover for either species at HCM.
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Coastal Marine Laboratory

Recruitment occurred throughout the growth season at CML, with peak 

recruitment for Botryllus schlosseri during the two weeks prior to July 18, and 

peak recruitment for Botrylloides violaceus during the two weeks prior to August 

28 (Fig 21b). Outside of the month and a half from July 18 to September 9 

number of recruits was comparable for both species. Recruitment was not 

correlated with temperature or percent cover for either species at CML. There 

was no direct correlation between high recruitment and high percent cover, 

though there was a two to three week lag in peak percent cover after peak 

recruitment (Figure 22b).
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Figure 21: Recruitment of Botryllus schlosseri (black) and Botrylloides violaceus 
(grey) at HCM. b) Recruitment of Botryllus schlosseri and Botrylloides violaceus 
at CML. c) Recruitment of Botryllus schlosseri and Botrylloides violaceus at 
DMC.
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Figure 22: a) Recruitment and percent cover for Botryllus schlosseri and 
Botrylloides violaceus at HCM. b) Recruitment and percent cover for Botryllus 
schlosseri and Botrylloides violaceus at CML. c) Recruitment and percent cover 
for Botryllus schlosseri and Botrylloides violaceus at DMC.
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Figure 23: Recruitment is not significantly correlated with temperature for 
Botryllus schlosseri at HCM. R2=0.243, p-value=0.123 b) Recruitment is not 
correlated with temperature for Botrylloides violaceus at HCM, R2=0.053, p- 
value=0.498. c) Recruitment is not correlated with temperature for Botryllus 
schlosseri at DMC. R2=0.085, p-value=0.38 d) Recruitment is positively 
correlated with temperature for Botrylloides violaceus at DMC,y=3.461x-32.0347, 
R2=0.546, p-value=0.009.
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Darling Marine Center

Recruitment occurred throughout the growing season at DMC, with peak 

recruitment for Botryllus schlosseri during the two weeks prior to July 12 and for 

Botrylloides violaceus during the two weeks prior to July 18. Initial recruitment of 

Botryllus schlosseri occurred two weeks prior to that of Botrylloides violaceus 

(Fig 21c). Peak recruitment of Botryllus schlosseri (68) was higher than that of 

Botrylloides violaceus (53), however overall recruitment of Botrylloides violaceus 

was higher than that of Botryllus schlosseri. Recruitment was positively 

correlated with temperature for Botrylloides violaceus at DMC (y=3.461x- 

32.0347, R2=0.546, p-value=0.009) (Fig 23d). Recruitment was positively, 

almost significantly correlated with percent cover for Botrylloides violaceus at 

DMC (y=0.280x-13.670, R2=0.249, p-value=0.118) (Fig 24). There was no direct 

correlation between high recruitment and high percent cover, however there was 

a two to three week lag in peak percent cover after peak recruitment for both 

species (Fig 22c).
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Figure 24: Recruitment is positively, but not significantly correlated with percent 
cover for Botrylloides violaceus at DMC, y=0.280x-13.670, R2=0.249, p- 
value=0.118.
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Comparisons Between Sites

Initial recruitment for Botryllus schlosseri occurred at HCM a month earlier 

than at DMC and a month and a half earlier than at CML (Fig 25a). Initial 

recruitment for Botrylloides violaceus occurred at HCM a month earlier than at 

DMC and two months earlier than at CML (Fig 25b). Botryllus schlosseri 

recruitment continued a month longer at HCM than at DMC and CML. 

Botrylloides violaceus recruitment continued at HCM two weeks longer than at 

DMC and a month longer than at CML (Figure 25a). Initial recruitment for both 

species at CML occurred six weeks after initial recruitment at DMC; the end of 

the recruitment period at CML coincided with that of DMC (Figure 25).

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m
%
n

T “
orsi

T ~oIN

+4

i

(oo
“T -
s

- T -
S3

3wa
W3M
3wa
1W3
W3H
swa
1W3
N3H
awa
1W3
W3H
swa
1W3
W3M
Dwa
1W3
W3H
3WQ
1W3
W3H
swa
1W3
W3H
3Wd
1W3
W3H
DWQ
1W3
W3H
3Wd
1W3
W3H
3Wd
1W3
W3H
swa
1WS
W3H

SWd
1W3

T1721/900Z

9 l/tt/9 0 0 Z

CO/tt/9002

6t/0t/900Z

10 fQX /900Z

CZ/60/900Z

60/60/900Z

8Z/80/900Z

6T/80/900Z

10/80/900Z

8T/ZQ/900Z

21/Z0/90QZ

6Z /90 /900Z

S T /M /9 0 0 Z

S ' u b s s o p o s  s n i/A jfo g  S ' s n e o e p iA  s e p io n A jfo g

|8UBcj SB|6ix8id zLUO001 uo sjimoay #

Figure 25: a) Mean recruitment for Botryllus schlosseri at HCM, CML, and DMC. 
b) Mean recruitment for Botrylloides violaceus at HCM, CML, and DMC.
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Laboratory Studies

Colony Growth and Temperature

In order to reduce effects of the high amount of variability in growth both 

between colonies and within the life span of each colony, (Millar 1971) only the 

initial month of growth was used to examine the response of tunicates to 

temperature. During a one month period in the laboratory colonies went through 

zero to three asexual reproductive cycles depending on temperature, species, 

health, and reproductive stage of the colony.

Both Botryllus schlosseri and Botrylloides violaceus responded to 

increases in temperature by increasing the number of zooids after the first or 

second week of culturing and decreasing the duration of first and second 

blastogenic cycle (DBC) (N=135,y=-0.650x+25.741, R2=0.073 p=0.0015) (Figure 

26 and 27). However, temperature correlated more consistently with DBC than 

with weekly percent increase in number of zooids in both species (Tables 2-6). 

Also, when there was a positive correlation between DBC and percent increase 

in number of zooids in week 1 there was a negative correlation between DBC 

and percent increase in week 2, demonstrating that the asexual reproduction 

cycle took more than a week under these culturing conditions, often even at 20°C 

(Tables 2-6).
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Both ascidian species showed similar patterns of shorter blastogenic 

cycles at higher temperatures. However, when one examined the timing of 

takeover in one colony relative to those of other colonies in the same tank, it 

became apparent that all colonies in the tank were cycling together. Not only 

were Botryllus schlosseri colonies cycling with other Botryllus schlosseri colonies 

and Botrylloides violaceus colonies cycling with other
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Figure 26: Percent increase in number of zooids at the end of week one for 
Botryllus schlosseri colonies from all sites combined. N=54, y=2.004x-6.857, 
R2=0.062 p=0.0139.
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Figure 27: Bivariate fit of first DBC across temperature for laboratory reared 
colonies of both Botryllus schlosseri and Botrylloides violaceus. There is a 
significant decrease in time to take over with an increase in temperature, 
N=135,y=-0.650x+25.741, R2=0.073 p=0.0015.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Temperature C Percent Increase Percent increase Days until first Life Span
in first week in second week take over

Temperature C 1.0000 -0.1551 0.3155 -0.2576 0.2617
Percent Increase -0.1551 1.0000 -0.1721 -0.1547 -0.1999
in first week
Percent increase 0.3155 -0.1721 1.0000 -0.2302 0.1111
in second week
Days until first -0.2576 -0.1547 -0.2302 1.0000 -0.1142
take over
Life Span 0.2617 -0.1999 0.1111 -0.1142 1.0000

Table 3: Correlations between temperature, varying measures of growth, and life span in 
Botrylloides violaceus colonies from the Darling Marine Center.

Temperature C Percent Increase Percent increase Days until first Life Span
in first week in second week take over

Temperature C 1.0000 0.2272 -0.2564 -0.1499 -0.1806
Percent Increase 0.2272 1.0000 -0.0274 0.0278 0.5617
in first week
Percent increase -0.2564 -0.0274 1.0000 0.7559 0.1813
in second week
Days until first -0.1499 0.0278 0.7559 1.0000 0.2776
take over
Life Span -0.1806 0.5617 0.1813 0.2776 1.0000

Table 4: Correlations between temperature, varying measures of colony growth, and life 
span in Botrylloides violaceus colonies from the Coastal Marine Laboratory.
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Temperature C Percent Increase Percent increase Days until first Life Span
in first week in second week take over

Temperature C 1.0000 0.3416 -0.3858 0.1919 -0.2898
Percent Increase 0.3416 1.0000 -0.4475 0.1266 -0.0761
in first week
Percent increase -0.3858 -0.4475 1.0000 -0.1295 -0.0653
in second week
Days until first 0.1919 0.1266 -0.1295 1.0000 0.2500
take over
Lite Span -0.2898 -0.0761 -0.0653 0.2500 1.0000

Table 5: Correlations between temperature, varying measures of colony growth, and life 
span in Botrylloides violaceus colonies from the Hawthorne Cove Marina.

Temperature C Percent Increase Percent increase Days until first Life Span
in first week in second week take over

Temperature C 1.0000 0.3214 0.0440 -0.2773 0.0007
Percent Increase 0.3214 1.0000 -0.2024 -0.3831 -0.2133
in first week
Percent increase 0.0440 -0.2024 1.0000 0.0385 0.2900
in second week
Days until first -0.2773 -0.3831 0.0385 1.0000 -0.0877
take over
Life Span 0.0007 -0.2133 0.2900 -0.0877 1.0000

Table 6: Correlations between temperature, varying measures of colony growth, and life 
span in Botryllus schlosseri colonies from the Darling Marine Center.
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Temperature C Percent Increase Percent increase Days until first Life Span
in first week in second week take over

Temperature C 1.0000 0.5995 0.1989 -0.9544 -0.0858
Percent Increase 0.5995 1.0000 0.5706 -0.4554 -0.6505
in first week
Percent increase 0.1989 0.5706 1.0000 0.0825 -0.2675
in second week
Days until first -0.9544 -0.4554 0.0825 1.0000 0.0902
take over
Life Span -0.0858 -0.6505 -0.2675 0.0902 1.0000

Table 7: Correlations between temperature, varying measures of colony growth, and life 
span in Botryllus schlosseri colonies from the Hawthorne Cove Marina.

Botrylloides violaceus colonies, but Botryllus schlosseri colonies were cycling 

with Botrylloides violaceus colonies. Since both species were going through 

asexual cycles at the same time, comparing the difference in the change in 

duration of blastogenic cycle at different temperatures between species became 

a poor method of comparison. Therefore, only increase in number of zooids at 

takeover was used for comparisons between species.

Temperature and Asexual Cycling

Botryllus schlosseri and Botrylloides violaceus colonies maintained at 

20°C and 15°C cycled together when cultured in the same tank. Botrylloides 

violaceus colonies stopped cycling with both other B. violaceus colonies and
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Botryllus schlosseri colonies at 10°C. Botryllus schlosseri colonies stopped 

cycling with other B. schlosseri colonies at 5°C.

Low Temperatures and Growth

Both Botrylloides violaceus and Botryllus schlosseri underwent what 

appeared to be normal colony growth and blastogenic cycling at all temperatures 

but 5°C. This temperature appeared to be low enough to alter their growth 

patterns, though in very different ways for the two species.

Botryllus schlosseri laboratory colonies reared at 5°C underwent very slow 

blastogenic cycles, but most of the time did not stop bud production. However, 

different individual colonies began growing in very different ways. One colony 

doubled the number of zooids in the colony after every blastogenic cycle but did 

not increase its surface area. The colony accomplished this by producing 

smaller zooids every cycle until they were too small to function, at which point the 

colony died. Other colonies reduced the amount of interstitial tissue between 

rosettes, slowly destroyed the blood vessels between them, and formed isolated 

rosettes that cycled together, were genetic clones, but were no longer connected 

by either blood vessels or interstitial tissue. Some colonies stopped cycling 

altogether and just maintained one generation.

Botrylloides violaceus colonies had a very different, but much less 

variable, response to the cold temperatures. They halted blastogenic cycles and 

slowly increased the number of ampullae on the surface of the colony. Zooids
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became full of pigmented cells and started to shrink as ampullae number 

increased throughout the colony. Zooid number continued to decrease and 

ampullae number increased until the colony under the tunic was an almost solid 

mat of ampullae with a few very small zooids interspersed between the ampullae. 

All outward appearances of the colony suggested it was dead, however when 

one flipped the microscope slides holding these colonies over, one could see 

blood flowing, at times quite quickly, through the colony. Colonies would 

maintain this condition for a period of months, and then slowly come out of what 

has become dubbed “hibernation” (Brunetti 1976). If kept at 5°C, the colony 

would die a few days after it came out of hibernation.

Temperature and Growth in PMC Colonies

When looking at the data from DMC there is no correlation between 

temperature and percent increase in number of zooids after the second 

blastogenic cycle observed in the laboratory for Botrylloides violaceus, but a 

positive correlative trend between temperature and percent increase in number 

of zooids for Botryllus schlosseri (N=15, slope=4.66, R2=0.263, p=0.0505)
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Figure 28: a) Bivariate fit of percent increase in second take over and 
temperature for HCM Botrylloides violaceus. y=128.29-6.745x-1.023(x-16.47)2, 
R2=0.272, p-0.0072. b) Bivariate fit of percent increase in second take over and 
temperature for DMC Botryllus schlosseri. Solid line is all trials combined, y=- 
7.042+1.03x, R2=0.014, p=0.49. Dotted line is trial started on July 17, y=- 
39.78+4.66x, R2=0.263, p=0.05. c) Bivariate fit of percent increase in second 
take over and temperature for DMC Botrylloides violaceus. No significant 
relationship, R2=0.005, p>0.7.
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(Figure 28). However, there was an increase in variability of percent increase in 

number of zooids with an increase in temperature, as well as an increase in the 

maximum percent increase for both species. Also, the maximum percent 

increase in number of zooids for Botrylloides violaceus was 218% while that of 

Botryllus schlosseri was only 150%. There was no correlation in percent 

increase after first blastogenic cycle and percent increase after second 

blastogenic cycle when both species were combined, but there was a negative 

correlative trend between percent increase during second and first blastogenic 

cycles for Botrylloides violaceus.

Temperature and growth in HCM colonies

Data from HCM show a parabolic relationship between temperature and 

percent increase after second blastogenic cycle for Botrylloides violaceus (N=34, 

R2=0.225, p=0.0072) with the greatest increase in number of zooids occurring at 

15°C (Figure 28). There was not enough data (N=7) to observe a relationship 

between temperature and percent increase after second blastogenic cycle for 

Botryllus schlosseri. The greatest amount of variability in percent increase for 

Botrylloides violaceus was also at 15°C, as was the greatest percent increase, 

115%. The greatest percent increase in number of zooids recorded for Botryllus 

schlosseri, 145%, also occurred at 15°C, but there weren’t any colonies from 

HCM cultured at 20°C that survived, so it is unknown if Botryllus schlosseri would 

produce more buds per zooid at a higher temperature.
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While there appear to be some differences in the responses of 

Botrylloides violaceus from DMC relative to those from HCM, such conclusions 

warrant caution because colonies from DMC were collected on July 17th while 

those from HCM were collected on June 15th. This disparity in collecting time 

occurred because the life cycles of these two species at these two sites are 

offset by approximately one month, so in order to have colonies in the laboratory 

that were approximately the same age I had to collect them at different times 

from the different sites. Age of colony was important for measuring time to 

reproduction and for comparing growth rates, as DBCs may be highly variable 

throughout the lifespan of the colony (Millar).

Lifespan was negatively correlated with temperature in colonies from HCM 

and CML (Tables 3,4,6). Life span was not correlated with temperature in 

colonies from DMC (Tables 2 & 5).

Reproduction and Temperature

Botryllus schlosseri colonies from all sites failed to develop gametes at 

10°C or below. Both eggs and sperm were produced at 15°C and 20°C; however, 

colonies were more productive at 20°C than 15°C, as measured by number of 

eggs per colony, size of testes per zooid, and number of colonies with gonads 

(Table 7). Botrylloides violaceus testes were never observed in laboratory- 

reared cultures, though this may have been due to the location of the testes and 

not a lack of testes production. Unfertilized eggs were observed in colonies at 15
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and 20°C, though on a much less consistent rate than that found in Botryllus 

schlosseri colonies. This suggests that culturing methods were not conducive to 

reproductive development in Botrylloides violaceus, and that temperature limits of 

reproduction for New England populations of Botrylloides violaceus could not be 

established in this study. However, the complete lack of growth of these colonies 

at 5°C suggests that they are not reproductively viable at this temperature 

(Figure 28).
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Species

Botryllus
Botrylloides

Botryllus
Botrylloides

Botryllus
Botrylloides

5C IOC 15C 20C
# of colonies with gonads 

0 0 4 5
0 0 1 0

Average # of asexual cycles with eggs per colony 
0 0 1.75 1.6
0 0 1 0

Average # of eggs per zooid 
0 0 0.66 0.44
0 0 0.22 0

Botryllus
Botrylloides

Botryllus
Botrylloides

# of testes per zooid 
0 0 1 2
0 0 0 0

Average size of testes per zooid 

large0
0

0 small 
0

Table 8: Laboratory cultured sexual reproduction of Botryllus schlosseri and 
Botrylloides violaceus. Botryllus schlosseri colonies had more than one clutch 
per colony, and were slightly more fertile at 15°C than at 20°C.
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CHAPTER IV 

Discussion

Abiotic Factors

Abiotic factors other than temperature varied between the three sites 

during the study period. However, there was a striking difference in the number 

of days above the reproductive critical temperature for both Botryllus schlosseri 

and Botrylloides violaceus at HCM compared to both CML and DMC (Table 2). 

This makes duration above critical temperature a potential cause of observed 

growth pattern variation between the sites. Also, salinity, one of the abiotic 

factors known to impact the growth and reproduction of these species in other 

habitats, was similar at HCM and DMC during the study period, and is not below 

27 psu offshore when water temperature are above 13°C for either DMC or CML 

(Figure 6). As salinities lower than 15 psu are required to affect the heart rates of 

Botryllus schlosseri and Botrylloides violaceus (Dijkstra et al, submitted), it is 

unlikely that low salinities significantly affected the ability of these two species to 

grow and reproduce once water temperatures had reached 13°C. Therefore, it is 

highly likely that observed correlations between water temperature and initial
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recruitment, initial bursts of growth, initial periods of decline, or final recruitment 

are indicative of a functional relationship.

Since late summer and fall average water temperatures did not differ 

significantly between the two years for any of the sites (Figure 7), it is unlikely 

that variation observed in the abundance and life history patterns of Botryllus 

schlosseri and Botrylloides violaceus between 2005 and 2006 resulted from 

changes in ambient water temperature. However, since spring and late winter 

water temperatures did vary between years, (Figures 8 and 9) spring water 

temperatures are a potential contributor to observed changes in life history traits 

between years.

Abundance and Growth Patterns of Botryllus schlosseri and Botrylloides

violaceus

Temperature Effects on Reproductive Timing

The two-week delay in start time for the growth pattern of Botrylloides 

violaceus colonies relative to Botryllus schlosseri colonies observed in a majority 

of the comparisons implies that Botryllus schlosseri is more tolerant of lower 

water temperatures than Botrylloides violaceus (Figures 10 and 11). This 

tolerance should allow Botryllus schlosseri to have a longer growing season than 

Botrylloides violaceus, and ultimately allow it to extend its range further north 

than that of Botrylloides violaceus. However, as these two species share the
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same northerly limit on the Atlantic coast (Dijkstra et al. 2007) and Botrylloides 

violaceus has a similar northern range limit to Botryllus schlosseri on the eastern 

Pacific coast (Stoner et al. 2002, Lambert 2003, deRivera et al. 2006), the 

assumption that Botryllus schlosseri is more cold tolerant than Botrylloides 

violaceus is questionable. Further support for similar temperature tolerances of 

the two species are similar durations of blastogenic cycles of the two species at 

specific temperatures, and similar lowest recorded temperature for gamete 

production (Muaki 1977, Brunetti 1980).

Greater tolerance of lower temperatures should permit a longer growing 

season for Botryllus schlosseri than for Botrylloides violaceus. However, this is 

not the case (Figures 10 and 11). Botryllus schlosseri colony growth may start 

two weeks earlier than Botrylloides violaceus, but it also peaks, declines, and 

levels off earlier, resulting in similarly lengthened, offset growing seasons for the 

two species, one starting roughly two weeks earlier than the other. Since the 

observed growing seasons for these two species are the same length, they have 

the same northern range limit on the western Atlantic coast and Botrylloides 

violaceus has the greater northern limit on the east Pacific coast, the one 

observation that supports the idea that Botryllus schlosseri is more cold water 

tolerant than Botrylloides violaceus is the earlier spring starting time. However, 

this delay in start time for Botrylloides violaceus may be an artifact of the amount 

of time required to grow a larva to hatching age rather than a result of differing 

temperature tolerances. Botrylloides violaceus larvae are brooded in an adult 

colony at least two weeks longer than those of Botryllus schlosseri, therefore
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Botrylloides violaceus eggs fertilized at the same time as Botryllus schlosseri 

eggs will hatch approximately two weeks later (Sabbadin 1955, Mukai et al.

1987). Botrylloides violaceus colonies would have to become fertile two weeks 

earlier than Botryllus schlosseri colonies if larvae were to appear on panels at the 

same time, and there would be a two week delay in recruits if the two species 

became reproductive at the same time. The two week delay actually observed in 

Botrylloides violaceus growth patterns strongly suggests that the two species 

become reproductive at the same time, and that they reproduce in similar 

temperature ranges.

Alternatively, it is possible that initial recruitment of these two species was 

missed and that the observed patterns are not the result of concurrent 

reproduction and delayed larval release. New Botryllus schlosseri recruits are 

much smaller than those of Botrylloides violaceus (Millar 1971), making them 

harder to see on settlement panels. Therefore, it is possible that recruits arrive 

on the panels earlier than they are first observed, or that Botrylloides violaceus 

recruits are observed at an earlier stage in their life cycle. Botryllus schlosseri 

colonies may start reproducing earlier than Botrylloides violaceus colonies, but 

this particular study was unable to detect them. Single zooid colonies of both 

species were observed, suggesting that the animals were first observed at similar 

ages; however, the possibility of undetected earlier Botryllus schlosseri recruits 

cannot be ruled out.
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Abundance

Many more Botrylloides violaceus than Botryllus schlosseri colonies were 

found on the panels at HCM and CML (Figure 10b, 10d and 10f). While this did 

not always result in a higher percent cover, it does suggest that there are more 

Botrylloides violaceus colonies in the community. The quantitative imbalance 

between of Botrylloides violaceus and Botryllus schlosseri becomes even more 

pronounced when one considers that Botrylloides violaceus colonies are only 

able to produce one larva per zooid, and take a month to brood each larva, while 

Botryllus schlosseri colonies are able to produce up to four larvae per zooid and 

the larvae are ready to be released into the water column at the end of a single 

blastogenic cycle (six to ten days) (Muaki 1977). This means the same number 

of Botryllus schlosseri zooids can produce up to eight times as many larvae as 

Botrylloides violaceus zooids in the same time period. Therefore there must be 

many more Botrylloides violaceus zooids than Botryllus schlosseri zooids in the 

nearby benthic and/or fouling communities at CML and HCM. Interestingly, the 

numbers of Botrylloides violaceus colonies found on panels at DMC were much 

more similar to those of Botryllus schlosseri than those found at other sites 

(Figure 10f). This suggests that Botryllus schlosseri is a more successful 

competitor in the Damariscotta River than in either Portsmouth or Salem. 

Botryllus schlosseri success could be due to a variety of reasons: 1) there are 

large colonies of Didemnum sp. at DMC, which may be competing with 

Botrylloides violaceus populations; 2) water temperatures may be cold enough
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long enough to significantly slow down Botrylloides violaceus growth in the 

spring; 3) Botryllus schlosseri has been in the Damariscotta longer than 

Botrylloides violaceus (Dijkstra et al. 2007) and has become better adapted to 

the local environmental conditions.

The impact of Didemnum sp. on Botrylloides violaceus may be 

ascertained by conducting a panel study observing the effects of competition on 

the growth and reproductive output of these two species. Panels should be 

deployed and two colonies allowed to settle on each, either two Botrylloides 

violaceus, two Didemnum sp., or one Botrylloides violaceus and one Didemnum 

sp. As the growing seasons for these two species differ at DMC (personal 

observation) panels should be monitored for two years and the impact of 

Didemnum sp. on Botrylloides violaceus fecundity observed and recorded. 

Reduced fecundity on the interspecific panels would suggest that Didemnum sp. 

is negatively impacting B. violaceus and allowing Botryllus schlosseri to maintain 

a competitive advantage.

Differentiating between chilly spring water temperatures and 

acclimatization is difficult, because reduced acclimatization in Botrylloides 

violaceus may be the cause of observed low tolerance of cold spring waters. 

However, one can test whether chilly spring water temperatures are slowing 

Botrylloides violaceus growth by monitoring the growth of overwintering colonies 

in the spring, comparing between species, and correlating the growth with water 

temperature. Increased growth of Botryllus schlosseri at colder temperatures 

than that of Botrylloides violaceus would suggest that it stays colder long enough
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at DMC for Botryllus schlosseri to maintain it’s competitive advantage, even 

without the help of Didemnum sp. Reduced Botrylloides violaceus growth 

resulting from low spring water temperatures should increase global warming 

concerns. Botrylloides violaceus is a highly successful competitor at both CML 

and HCM (Dijkstra et al. 2007, personal observation), and if water temperatures 

continue to warm, it may continue it’s dominance march up the New England 

coast, impacting and changing benthic and fouling communities as it goes.

Abundance. Percent Cover and Chimaerism

The reduction in number of colonies with increased percent cover (Figure 

10), most likely due to fusion, has broad implications for assessing the genetic 

diversity of colonial ascidian communities. This reduction suggests very high 

rates of fusion, and therefore high numbers of Botryllus schlosseri and 

Botrylloides violaceus chimeras in the benthic and fouling communities of 

northern New England. The high number of chimeras may result in the 

underestimation both of numbers of larvae recruiting into a community, and of the 

genetic diversity of the ascidian population. As chimeras contain multiple gene 

lines in their oocytes (Magor et al. 1999), chimaerism has the potential to 

increase the speed of natural selection. This chimaerism may help colonial 

ascidians acclimatize to new environments rapidly, and may be partially 

responsible for their global success as invasive species.
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Length of Growing Season

The number of colonies decreased as percent cover increased for both 

species both years at all three sites (Figure 10). This could have been caused by 

either competition between colonies or fusion between colonies. Competition 

should lead to portions of colonies that have overgrown earlier ones (Grosberg 

1982). However, as this was not the case, and fusion events were observed on 

all panels, it is highly likely that the decrease in number of colonies that occurred 

at the same time as an increase in percent cover was a result of sibling or closely 

related colonies fusing together and becoming one large colony covering a high 

percentage of the panel. This hypothesis is also supported by evidence that 

recruits preferentially settle near related individuals (Rinkevich & Weissman 

1987, Feldgarden & Yund 1992). Due to fusion, manual removal of all spatial 

competitors, and the ability of larvae to settle on and fuse into adult colonies 

(Laird et al. 2005), each panel contained one age cohort of healthy colonies.

Data thus revealed the number of sequential cohorts possible in a single growing 

season at each of the three sites (Figure 10). Each decline in percent cover at a 

site reflected the death of a cohort. Therefore, the two local maxima of percent 

cover found at HCM for both Botryllus schlosseri and Botrylloides violaceus imply 

that the growing season is long enough for the animals to produce two cohorts of 

reproductive colonies before going into hibernation in the winter. This same 

pattern is observed further south at Woods Hole, MA and Groton, CT (Grosberg
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1988) as well as upriver from the DMC in the Damariscotta River (Yund & Stires 

2002). The single peak in percent cover per growing season for both species at 

CML and DMC suggests that the growing season at these sites is only long 

enough to produce one cohort of reproductive colonies. While there are a variety 

of different possible causes for this shortened growth season at the northern 

sites, water temperatures are above 13°C for a much shorter time at CML and 

DMC than they are at HCM (Table 2). This may result in Botryllus schlosseri and 

Botrylloides violaceus running out of time to produce a second generation as is 

possible during the longer season at HCM.

Temperature

The relationship between percent cover and temperature was highly 

variable for Botryllus schlosseri and Botrylloides violaceus across the three sites, 

with Botrylloides violaceus percent cover being positively correlated with 

temperature at HCM, negatively correlated with temperature at CML, and 

uncorrelated with temperature at DMC, the only site at which Botryllus schlosseri 

was correlated with temperature (Figures 13 and 14). However, initial growth for 

each species occurred at very similar temperatures across all sites (Figure 29). 

This suggests that reaching a critical temperature may be key for initiating growth 

and reproduction in these animals, but that as long as temperatures stay above 

the minimum critical temperature, other factors such as food availability, 

competition, salinity, and turbidity, have greater impacts on their dominance. The
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growth pattern of Botrylloides violaceus at CML is a good example of this, as low 

salinities in the spring may delay reproduction and growth, which may therefore 

lead to high percent cover in the fall instead of the summer months, though the 

end of the growing season was delineated by a drop below critical temperatures 

even at CML.

Consequently, increased warming may result in a longer uninterrupted 

growing season for these colonial tunicates. However, Brunetti (1976) observed 

two periods of reproduction during the growing season of Botrylloides leachi, one 

of which stopped when water temperatures reached 24°C. If Botryllus schlosseri 

and Botrylloides violaceus both have critical maximum reproductive temperatures 

as well as critical minimum temperatures, we may start seeing breaks in 

reproduction during the growing season, and even two shorter, separate

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CML DMC HCM

S ite

Figure 29: Temperature of initial starting growth. Botryllus schlosseri is in black 
and Botrylloides violaceus is in grey.

growing seasons, a shift that could reduce the impact of these two colonial 

ascidians on coastal temperate ecosystems.

The multi-colony study was initiated to address how these two different 

species respond to different environments. While results elucidated the spatial 

patterns and abundance of these two species in the absence of spatial 

competition, the variable numbers of colonies on each panel made it difficult to 

compare growth rates between sites or species (Figure 10). This led to a second 

study to examine single colony growth rates at DMC and HCM.
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Single Colony

Growth rates for Botrylloides violaceus and Botryllus schlosseri did not 

differ significantly between HCM and DMC (Figure 20). As the two sites had 

different temperature regimes (Figure 2, Table 2), different fouling communities 

(personal observation), and potentially different quantities of food, these similar 

growth patterns suggest that both species have been in these environments long 

enough to adapt to them; they are tolerant of a wide variety of environmental 

conditions (have high levels of phenotypic plasticity) or both. Botrylloides 

violaceus was first documented in the Gulf of Maine less than thirty years ago 

(Berman et al. 1992), and has a maximum of two generations a year (Figure 10), 

meaning that the species had adapted to its new environment in under sixty 

generations. This is a short number of generations for effecting such change; 

phenotypic plasticity seems a more likely explanation of similar growth patterns. 

However, the combination of three facts: the length of Botrylloides violaceus and 

Botryllus schlosseri breeding seasons being dependent on temperature (Millar 

1971, Brunetti et al. 1980), populations are likely genetically isolated from each 

other (Yund 1995), and colony growth patterns are statistically the same 

regardless of environmental condition or seasonal timing (Figure 20), suggests 

that this response is due to adaptation rather than to levels of plasticity. Both 

Botryllus schlosseri and Botrylloides violaceus are highly successful invasive 

species in the Atlantic and Pacific Oceans (Millar 1971, Lambert & Lambert 2003, 

Dijkstra et al. 2007). Their ability to adapt quickly to new environments may be
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one of the reasons they are now so widespread. Conversely, there is strong 

selection for high plasticity in heterogeneous environments, and this perceived 

ability to adapt quickly may instead be reflective of high levels of plasticity. A 

transplant study determining whether larvae hatched at one site and transplanted 

to another responded to physical conditions at the second site in the same 

manner as native recruits would help determine whether adaptation or 

acclimatization occurred.

While growth rates for each species did not differ between sites, they did 

differ between species at each site (Figure 18). Botrylloides violaceus grew 

faster than Botryllus schlosseri did at both HCM and DMC. This means that 

Botrylloides violaceus zooids were producing a greater number of buds than 

Botryllus schlosseri zooids in the field. The ability to produce a greater number 

of buds and therefore larger colonies than Botryllus schlosseri may enable 

Botrylloides violaceus to produce comparable numbers of larvae as Botryllus 

schlosseri in similar amounts of time, as well as to occupy more space more 

quickly. However, a two week time period between observations did not allow 

me to determine whether Botrylloides violaceus colonies were actually producing 

more buds per zooid than Botryllus schlosseri colonies, or if they were simply 

undergoing blastogenic cycles at a faster rate.

My inability to answer this question of manner of growth due to the 

inadequate time scale of data collection underscores the impact duration 

between field sampling may have on research results. We are in a day and age 

when it is very difficult to observe aquatic communities and subtidal animals in
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the amount of detail currently used in terrestrial studies. However, fouling 

communities, and the propensity of sessile animals to attach to conveniently 

deployed settlement panels, give us a unique opportunity to study marine 

organisms in (semi) natural environments with a level of detail normally reserved 

for terrestrial systems. I cannot ascertain how Botrylloides violaceus grows 

faster than Botryllus schlosseri with my long-term biweekly data set, but a month 

long study of daily observations would not only solve this puzzle, but might add 

clarity to a variety of other mysteries surrounding the fusion capabilities and 

competitive advantages of these animals.

Many sessile invertebrates have relatively short lifespans (Millar 1971, 

Brunetti 1974, Yamaguchi 1975, Brunetti 1976, Harvell & Grosberg 1988, Satoh 

1994, Krik 1997), and the current method of conducting long term studies with 

monthly, or even biweekly, snapshots of a system may result in inaccurate 

conclusions about the interactions and driving forces behind observed 

community changes. It is therefore very important to know the time scales 

relevant to the organisms being observed when designing and analyzing a study, 

both to insure one’s questions can be answered and to prevent misinterpretation 

of a result due to an overlooked life history event.

Single to Multi Colony

Spatial coverage patterns for single colonies appeared to differ from those 

on the multi colony panels in two ways: 1) single colonies never reached as
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great a percent cover as the multi colony panels in all Botryllus schlosseri 

colonies and in all but one Botrylloides violaceus colony at each site (Figures 11 

and 20); and 2) Botrylloides violaceus single colonies from HCM reached 

maximum growth at a later time than colonies from DMC, while the opposite was 

true for the multi colony panels (Figures 12 and 20). The slower increase in 

spatial coverage by single colonies compared to multi colony panels suggests 

that the high increases in percent coverage of both species are due to the 

combined growth of many colonies. The fact that none of the Botryllus schlosseri 

colonies and only one of the Botrylloides violaceus colonies (which may have 

been an unrecognized fused chimera) covered the entire panel before dying 

suggests that single colonies may not be capable of reaching extremely large 

sizes. Therefore most colonies observed to be more than 100 cm2 were 

probably chimeras. This hypothesis is further supported by the fact that when 

attempts were made to follow single colony growth on the multi colony panels, 

every colony randomly selected for monitoring fused with another colony during 

the period of observation. High fusion rates may be responsible for both the 

greater-than-exponential growth rate and the large colonies observed in long

term field studies of fouling communities.

The reversal in timing of maximum growth between sites observed in the 

single and multi colony panels may be due to the delay in deployment of the 

single colony panels relative to initial increase in percent cover at HCM. Initial 

increase in percent cover occurred almost a month later at DMC than it did at 

HCM, but the single colony panels were deployed at the same time at both sites
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to eliminate any temporal or environmental effects caused by starting the 

experiment at the time of initial percent increase at each site instead of 

concurrently at both sites. Unfortunately, this delay in deployment until recruits 

had been observed at both sites resulted in HCM panel deployment during a 

period of low ascidian larvae settlement and in DMC panel deployment during 

high ascidian larvae settlement (Figure 25). Since colonies both grew and cycled 

together at the different sites, recruitment peaks were amplified, and obtaining 

new recruits during periods of low larvae release was very difficult. Ironically, 

therefore, these single colony growth rate results may still be confounded by 

time, though this is an artifact of variable ascidian life cycles and not timing of 

panel deployment.

Temperature

Botryllus schlosseri percent cover was not correlated with water 

temperature at either site, and Botrylloides violaceus percent cover was 

negatively correlated with water temperature at HCM (Figure 18). The lack of a 

significant positive interaction between colony growth and temperature in the field 

suggests that colony growth rate is not driven by temperature. Laboratory 

studies have demonstrated that colonies do grow faster at higher temperatures 

when all else is equal (Grosberg 1982, Brunetti et al. 1984, Stachowicz et al. 

2002, McCarthy et al. 2007), so the lack of a significant relationship between 

temperature and growth in the field suggests that some other factor with a
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greater influence is masking the effect of temperature. Laboratory studies have 

also shown that colony growth rates change throughout their life cycles, that they 

slow down once becoming reproductive, and that some colonies die shortly after 

one reproductive cycle (Milkman 1967, Millar 1971, Brunetti & Copella 1978, 

Mukai et al. 1987, Grosberg 1988, Harvell & Grosberg 1988). As this study 

lasted the duration of each colony’s life, it is possible that the changing growth 

rates masked the impact of temperature on percent cover. It is also possible that 

colonies reached reproductive maturity, released larvae, and died slightly before 

or a few weeks after the occurrence of maximum water temperature, which could 

result in either no correlation with water temperature or a negative correlation 

with water temperature (Figure 13 and 14). This is illustrated by the inclusion of 

two reproductive cohorts, each of which experiences a decline in percent cover 

after larvae release, in one temperature cycle at HCM, making the lack of 

correlation with temperature an expected result (Figure 10). As the predicted 

results from these conditions match the actual results from this study, it is very 

likely that something besides summer water temperature is driving the life cycles 

and reproduction of these animals. One potential driving factor is food 

availability. Animals often have peak growth and reproductive output at times of 

peak food availability (Van Schaik & Van Noordwijk 1985, Harvell & Grosberg 

1988, Svensson & Nilsson 1995, Fielder et al. 2000, Ottersen et al. 2001, 

Rubenstein & Wikelski 2003, Durant et al. 2004), and as this may not always 

correlate with temperature for ascidians, food driven life cycles would not be 

correlated with temperature. Panels were not deployed when water
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temperatures were below 10°C so I was unable to determine the significance of a 

lower critical temperature on these colonies.

Recruitment

Interesting differences appear between recruitment patterns at CML and 

those at the other two sites. Unlike HCM and DMC, both Botryllus schlosseri and 

Botrylloides violaceus showed a pronounced burst in settlement followed by very 

low recruitment for the rest of the growing season (Figure 21). This suggests 

that either the vast majority of the colonies at CML are semelparous or that most 

colonies became reproductive at the same time at CML, but that timing of 

reproductive maturity was more variable at the other two sites. One strong 

possibility is that the flooding in May 2006 that strongly affected the fouling 

community in Portsmouth Harbor may have reset the colonies at CML so that 

they all became reproductive at the same time. However, one cannot rule out 

the possibility that this population is isolated from the other two populations and 

contains fewer iteroparous colonies that are releasing multiple sets of larvae into 

the water column per colony. In this case, one would not see a steady stream of 

recruits. Instead one would observe very sharp peaks of recruitment followed by 

months of very low recruitment from the stragglers, until the new cohort reached 

reproductive maturity.
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A simple colony dissection study could be conducted to ascertain whether 

Botryllus schlosseri and Botrylloides violaceus colonies at CML are all 

semelparous instead of simply having the same temporal onset of 

gametogenisis. Eggs of both species are brooded outside of the zooids and are 

visible to the naked eye (Mukai 1977, Boyd et al. 1986). Colonies monitored 

throughout the breeding season with fertile eggs for more than two consecutive 

weeks for Botryllus schlosseri and more than four consecutive weeks for 

Botrylloides violaceus (multiple sets of viable eggs) would be iteroparous, and 

those with only one set of viable eggs before colony death would be 

semelparous. The ratio of iteroparous to semelparous colonies could then be 

compared between sites to see if there was a higher dominance of semelparous 

colonies at CML relative to DMC and HCM. If not, the large burst observed in 

recruitment in 2006 was most likely a result of synchronous reproduction in the 

colonies at CML.

Initial recruitment occurred two weeks earlier for Botryllus schlosseri than 

for Botrylloides violaceus, and peak recruitment at both CML and DMC occurred 

earlier for Botryllus schlosseri than it did for Botrylloides violaceus, suggesting 

that Botryllus schlosseri may be more tolerant of cold than Botrylloides violaceus 

(Figure 21). However, the picture changes when one recalls that Botrylloides 

violaceus larvae take two weeks longer to brood than Botryllus schlosseri larvae 

(Milkman 1967, Mukai et al. 1987). Therefore, a two week lag in initial and peak 

recruitment for Botrylloides violaceus would mean that colonies of the two 

species became reproductive at the same time, and a co-occurrence of initial
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recruitment would mean that Botrylloides violaceus colonies become 

reproductive at least two weeks earlier than Botryllus schlosseri colonies. The 

similar timing of initial reproduction (Figure 21) supports the findings of the spatial 

coverage study that suggest the two species have similar critical temperatures 

for reproduction and therefore started reproducing and becoming active at the 

same time.

Recruitment abundance patterns mirrored colony abundance patterns 

observed for the two species at the two sites (Figures 10 and 21). There were 

more Botrylloides violaceus recruits relative to Botryllus schlosseri at HCM and 

CML, suggesting a greater number of Botrylloides violaceus zooids in the benthic 

and fouling communities at these sites, as well as higher spatial dominance of 

settled recruits. Recruitment data between the species were more similar at 

DMC, suggesting that Botrylloides violaceus currently has a smaller competitive 

advantage there than at either HCM or CML.

The offset of peak recruitment and peak percent cover suggests that 

colonies are growing, reaching maximum percent cover, reproducing, releasing 

larvae, and then dying (Figure 22). This life cycle is characteristic of the 

semelparous colonies Grosberg found in Eel Pond (Grosberg 1988). Due to the 

interaction between percent cover and recruitment, there did not seem to be any 

iteroparous colonies of either species on the panels (Figure 22). However, as 

there was recruitment throughout the entire growing season for both species at 

both sites (Figure 21), it is entirely possible that there were iteroparous colonies 

in the benthic and fouling communities that were releasing multiple sets of larvae.
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None was observed on the panels, however, and fertilized eggs can be seen by 

the naked eye in both species (personal observation), so missing reproductive 

cycles in the observed colonies would be unlikely.

The peak in recruitment observed prior to peak percent cover in both 

species at DMC and CML suggests that initial recruitment was observed in this 

study. The lack of both a secondary recruitment peak and secondary percent 

cover peak at these two sites demonstrates that only one cohort of colonies is 

able to complete the colonial ascidian life cycle in one growing season.

However, the occurrence of peak recruitment after peak percent cover for both 

species at HCM not only suggests that initial and peak growing season were 

missed, but that two cohorts are able to reach reproductive maturity and 

complete their life cycle during the growing season at this site. A two-cohort 

growing season is also observed in Cape Cod MA, Groton CT, Venice Italy, and 

upriver Damariscotta ME (Brunetti 1976, Brunetti & Copella 1978, Grosberg 

1982, Yund & Stires 2002).

Initial and ending recruitment occur at very similar temperatures at HCM, 

CML and DMC, further supporting the idea of a critical temperature range 

suggested by many laboratory studies (Milkman 1967, Mukai 1977, Grosberg 

1982, Brunetti et al. 1984, Mukai et al. 1987) and by the spatial cover study 

conducted earlier (Figures 10 and 11). However, as the reproductive temperature 

limits of these populations of Botryllus schlosseri and Botrylloides violaceus have 

not been tested in the laboratory, it is possible that the species have changed 

since leaving their native habitats, and have acclimated to reproducing at lower
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temperatures. It is therefore important to take colonies from the field site into the 

laboratory and culture colonies at one degree increments to find the actual critical 

temperature for reproduction in these two species. A meticulous field study 

consisting of daily observations and correlations with temperature to corroborate 

reproductive limits with laboratory results would further isolate the reproductive 

critical temperature for Botryllus schlosseri and Botrylloides violaceus.

Growth and Temperature

Grosberg (1988) stated that the duration of blastogenic cycles was fixed at 

set temperatures based on his and Milkman’s (1967) work in Woods Hole and 

Brunetti et al. (1984) and Sabaddin’s (1955) work in Venice. However, the 

temperature regimes of these locations differ from those at the three sites used in 

this experiment. Colony duration of blastogenic cycle in this study was longer 

than that found in other locations (Figure 27) (Sabaddin 1955, Milkman 1967, 

Brunetti et al, 1980, Grosberg 1988). This could be caused by a variety of 

factors. Colonies in this study were cultured in a closed system of seawater that 

was changed every week, while Grosberg (1988) and Milkman (1967) changed 

water daily and Brunetti (1984) and Sabaddin (1955) used flow through systems. 

This may have resulted in lower food intake by the zooids than in other studies 

due to either a slower flow of water or a reduction in amount of food in the water 

column (most studies using flow through systems found supplemental feeding 

unnecessary). However, if lower food intake can extend the blastogenic cycle
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then it is not fixed at a specific temperature and other factors may change it, 

contradictory to Grosberg’s claim. Grosberg (1988) also stated that duration of 

blastogenic cycle was fixed at a set temperature unless the colonies were being 

starved. Perhaps a reduction in water flow resulted in reduced food intake and 

therefore starvation in this study, but this does not explain colonies continuing to 

increase in number of zooids as well as producing gonads, a very energetically 

expensive process. The continued production of both high numbers of buds and 

gonads implies that the colonies were not starved, and that the longer 

blastogenic cycles were a result of something besides food availability (Table 8, 

Figure 28). Thus duration of blastogenic cycle may not in fact be fixed for these 

species at specific temperatures.

Both species increased the maximum number of zooids produced with 

increases in temperature when from DMC, though there was no significant 

correlation between average percent increase in zooids and temperature (Figure 

28). The widening of the range of possible zooid increases with increased 

temperature suggests that as temperatures rise other factors such as food 

availability, dips in salinity, competition, and space availability may play a greater 

roll in determining how many buds are produced. As this happened for both 

species, the pattern of temperature having a greater influence at lower 

temperatures and a smaller influence at higher temperatures may be constant 

throughout temperate Botryllid colonial ascidians.

Botrylloides violaceus and Botryllus schlosseri both increased the 

maximum percent increase with increased temperature, but they did not do so at

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the same rate (Figure 28). The maximum percent increase of Botrylloides 

violaceus was 100% more than that of Botryllus schlosseri, meaning that in at 

least one colony, zooids were producing twice as many buds as in the most 

productive Botryllus schlosseri colony. If this observed trend also occurs in 

natural conditions, Botrylloides violaceus colonies would have a clear advantage 

over Botryllus schlosseri at warm temperatures. The single colony study 

demonstrated that Botrylloides violaceus colonies grew faster in the field than 

Botryllus schlosseri colonies (Figure 20). Laboratory results suggest that higher 

growth rates are due to greater potential for bud production in Botrylloides 

violaceus.

Botrylloides violaceus colonies from HCM exhibited a different pattern 

than those at DMC (Figure 28), which was interesting for a variety of reasons. 

The decline in percent increase in zooids from 15°C to 20°C suggests that 

Botrylloides violaceus colonies from HCM do not necessarily increase growth 

indefinitely with temperature. This response to temperature could be caused by 

an increase in reproductive output at higher temperatures or be because HCM 

Botrylloides violaceus colonies are less fit at 20°C. These two reasons seem 

unlikely, however, as water temperatures at HCM are higher than those at DMC, 

and colonies from DMC did best at 20°C. One possible explanation for the 

decreased growth at 20°C is that the colonies from HCM were collected a month 

earlier than the colonies from DMC. Perhaps these colonies were adapted to 

grow fastest at lower temperatures to maximize space occupancy at a fast pace 

before sea waters reached maximum temperatures. Botrylloides violaceus’
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suboptimal growth at maximum temperature should be further examined by 

monitoring growth rates at multiple temperatures of different cohorts from the 

different sites.

Lifespan

Colonies kept at cold temperatures generally lived longer than 

those at warmer temperatures. Physiologically this may be the result of a 

general slowing down of colony metabolism due to temperature, but there may 

be an evolutionary reason for this as well. Grosberg (1988) found colonies of 

Botryllus schlosseri to either live a short period of time and reproduce quickly in 

the summer, or to live a long period of time and wait to reproduce in the winter. 

Both Botrylloides violaceus and Botryllus schlosseri colonies are known to 

overwinter in the field (Brunetti 1974) but they appear to simply maintain their 

space occupancy, or to shrink slightly in the case of Botrylloides violaceus 

(Brunetti 1974, Dijkstra, personal communication). The longer life span coupled 

with slower blastogenic cycle and reduced bud production may be how these two 

species have evolved to handle temperate climate winter conditions, in which 

there is less food, higher turbulence, and colder water temperatures. If this is the 

case, then the two species appear to have evolved different methods of surviving 

the winter, with Botrylloides violaceus going into a morphologically unique state 

of hibernation while Botryllus schlosseri simply slows or stops growth.
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Botryllus schlosseri colonies were able to live longer than Botrylloides 

violaceus colonies at cold temperatures, suggesting it may be a more cold 

tolerant species (Tables 2-6). However, Botryllus schlosseri colonies cultured in 

the laboratory were able to live longer in general, and may simply be more 

tolerant of laboratory conditions than Botrylloides violaceus. The high durability 

of Botryllus schlosseri relative to other Botrylloid ascidians may be one of the 

reasons it has become a model organism for histocompatibility studies, and may 

skew the results of comparative studies between it and other, less durable 

species in the laboratory.

Reproduction

The minimum temperature for reproductively viable colonies of both 

Botryllus schlosseri and Botrylloides violaceus established in this study was 

similar to those previously recorded for both species (Sabbadin 1955, Brunetti et 

al. 1984, Mukai et al. 1987). This suggests that the reproductive temperature 

range for these highly cosmopolitain species may be fixed. Moreover, it is the 

same for both species, confirming the field results in which recruits occurred on 

panels at times that would imply comparable reproductive temperatures (Table 8, 

Figure 21). While both species would produce eggs, and sperm were observed 

in Botryllus schlosseri, there were no viable offspring from laboratory-cultured 

animals. This occurred because the animals within a tank cycled together. As
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animals are cyclically hermaphroditic, all the colonies were male at the same 

time, so when sperm were released in a tank there were no viable eggs to 

fertilize.

Concurrent Colony Cycling

The concurrent cycling of Botryllus schlosseri and Botrylloides violaceus in 

the laboratory is particularly interesting because it suggests that colonies of the 

two species communicate. Interspecies communication in terrestrial animals 

such as birds is fairly common, but is most often in the form of alarm call 

recognition, food item location, or guarding (Baptista & Gaunt 1994, Zuberbuhler 

2000, Lewenza et al. 2002). Some animals might initiate their reproductive 

cycles when they obtain signals from food items, but interspecies 

communications controlling a behavior that is most likely used to prevent 

interbreeding is unusual. If colonies do have intraspecific selective settlement 

near relatives (Rinkevich & Weissman 1987), it would be logical for colonies to 

cycle together so that they are not fertilized by their siblings. However, the 

evolutionary advantage of cycling with a near neighbor of a different, but very 

similar species would be prevention of hybridization.

Colonial tunicates are highly selective of sperm and some species are 

able to store desirable sperm and reject those genetically similar to there own 

(Bishop & Ryland 1991, Bishop et al. 1996). This illustrates a complex sperm
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recognition process that should be able to identify and remove unsuitable sperm 

such as those from other species. However, Botrylloides and Botryllus are very 

similar genera, quite difficult to tell apart in both the field and the laboratory, and 

may even belong in one genus: Botryllus. As little experimental work has been 

conducted to see if different Botryllus species will interbreed, and even less on 

the reproductive compatibility of Botryllus and Botrylloides species, it is possible 

that Botryllus schlosseri and Botrylloides violaceus are similar enough that cross 

fertilization is a potential problem. Botryllus schlosseri has been found to be able 

to self fertilize (Mukai et al. 1987). This may be due to a lack of pre-zygotic 

barriers to selfing. If Botryllus schlosseri is unable to differentiate between highly 

related sperm and highly desirable sperm, it may also be unable to differentiate 

between conspecific sperm and closely related, non-conspecific sperm. If this 

were the case one would expect Botryllus schlosseri to have evolved a 

mechanism for preventing interactions with nearby non-conspecific sperm. One 

way to do this would be to release chemical signals that would cause all 

Botryllidae colonies that received the signals to cycle with the chemical releasing 

colony. Conversely, the Botryllus schlosseri or Botrylloides violaceus colonies 

may be releasing such strong and genera general cycling signals that all colonies 

of the genera in the area will cycle together regardless of a total lack of 

evolutionary advantage.

There are a few experiments that could be performed to test whether 

Botryllus schlosseri is sending out a general cycling signal, or is using cycling as 

a way to prevent hybridization. Reproductive Botryllus schlosseri and
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Botrylloides violaceus colonies that are out of sync (one male and one female) 

could be placed in the same tank to see if they fertilize each other. Hybridization 

would support the theory that strong cycling evolved to prevent both nearby inter 

and intra specific mating, while incompatible gonads would support a strong, 

genera general cycling signal.

Concurrent cycling of Botrylloides violaceus and Botryllus schlosseri stops 

as temperature drops below 10°C. Botrylloides violaceus colonies also stopped 

cycling with other Botrylloides violaceus colonies at 10°C, five degrees before the 

behavior was observed to stop in Botryllus schlosseri. This difference in 

minimum temperature at which the colonies will cycle with each other is the one 

clear piece of evidence from this study that suggests that Botryllus schlosseri is 

more cold tolerant that Botrylloides violaceus.

The breakdown of a communication system possibly used to prevent 

interbreeding implies that there are either not enough resources to support the 

behavior or that the system simply can no longer function in the present 

environmental conditions. A similar breakdown in species identification due to 

changes in temperature has been observed in rotifers (Suatoni, personal 

communication, personal observation). It is important to note that the breakdown 

of cycling occurs at temperatures below the known critical minimum reproduction 

temperature in both these species. Maintaining the ability to decrease the 

likelihood of inbreeding at these temperatures is not critical to these animals. 

However, this loss may be a cost of surviving at such low temperatures, and as it 

is exhibited at higher temperatures in Botrylloides violaceus than in Botryllus
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schlosseri; thus water temperatures below 10°C may indeed be less tolerable for 

Botrylloides violaceus. A higher cold water tolerance in Botryllus schlosseri is to 

be expected, as the species has been in the Gulf of Maine at least 100 years 

longer than Botrylloides violaceus (Gould 1870, Berman et al. 1992) and has 

therefore had a longer amount of time to adapt to local conditions such as long 

periods of low water temperatures.

It is important to note that preliminary data show these patterns of 

concurrent cycling to occur in the field as well as in the laboratory. While all 

colonies may not be cycling together in the field, concurrent cycling with near 

neighbors, if those neighbors were relatives, would be advantageous for 

preventing inbreeding. Further field studies with daily observations need to be 

conducted, along with genetic tests of near neighbor colonies, to establish how 

viable the prevention of interbreeding is as a evolutionary cause for concurrent 

cycling.
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CHAPTER V 

Conclusions

Results from all three field studies give strong evidence supporting the 

extension of the breeding season of both Botryllus schlosseri and Botrylloides 

violaceus due to increased temperature. These colonial ascidians (though not 

migrating like birds) exhibit a similar response to longer periods of warmer water 

temperatures. Many migrating passerines whose breeding seasons are defined 

by summer temperatures have been found to increase the amount of double 

clutching as periods of warm temperatures increase (Brown et al. 1999, 

Rodriguez & Bustamente 2003, Moller 2006). These responses, which are found 

across many taxa, appear to be driven by critical reproductive temperatures. 

There has been a great deal of interest in what aspects of global warming and 

changing temperature will impact species the most: extreme temperatures, 

average temperatures, temperature trends, or earlier critical temperatures. 

Shifting climates have resulted in range shifts towards the poles on a global 

scale, most likely driven by critical temperatures required for organism survival 

(Parmesan & Yohe 2003). As critical temperatures also seem to be driving the 

elongation of breeding seasons for both birds and ascidians, critical temperatures
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appear to be a very important factor in controlling the changing life cycle patterns 

observed in nature.

Botrylloides violaceus and Botryllus schlosseri both appear to be 

temperate species with almost identical reproductive temperature ranges and 

similar growth seasons. However, they have different temperature ranges for 

competitively dominant growth patterns, with Botryllus schlosseri growing faster 

at lower temperatures and Botrylloides violaceus growing faster at higher 

temperatures. Differences in relative responses to temperature for sexual and 

asexual reproduction in these two species underscore the importance of 

examining the impact of a factor such as temperature over the entire lifespan of 

an organism when attempting to understand how observed patterns are 

influenced by environmental elements.

These observed variations in response to temperature suggest that other 

factors such as food availability, competition, salinity, and turbidity may greatly 

influence the life cycles of Botrylloides violaceus and Botryllus schlosseri, making 

it very hard to gauge the relative importance of different factors. The large 

number of recruits, high abundance, and fast growth of Botrylloides violaceus 

demonstrate that it is clearly a more successful competitor than Botryllus 

schlosseri throughout the Gulf of Maine, and its success has coincided with an 

increase in water temperature over the past thirty years. However, data are 

inconclusive as to whether the increase in water temperature per se has 

facilitated this increase in Botrylloides violaceus: resolution of this question will 

require further studies of the impacts of other environmental factors on
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reproduction and growth. Future studies on the relative abilities of these two 

species should address: 1) whether increased food availability results in 

increased growth, earlier onset of gametogenesis, and higher fecundity; 2) 

whether these species compete for the same food resources, and whether one is 

better at metabolizing the food source; 3) whether short term changes in salinity 

impact growth rates differently for these two species; 4) whether increased 

turbidity reduces growth, delays onset of gametogenisis, and reduces fecundity. 

Only after conducting this series of studies will we be able to identify when 

specific abiotic variables are most important for predicting invasive ascidian 

growth and reproductive patterns.
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