

ENGINEERING

635152 CIT - ELECTRON TUBE & MICROWAVE LABORATORY REPORT

PULSE STIMULATED RADIATION FROM A PLASMA

AT HARMONICS OF THE GYROFREQUENCY

Wilhelm H. Kegel

Technical Report No. 32

June 1966

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

TECHNOLOGY

PULSE STIMULATED RADIATION FROM A PLASMA

AT HARMONICS OF THE GYROFREQUENCY

Wilhelm H. Kegel

Technical Report No. 32

June 1966

Research sponsored by

U. S. Office of Naval Research

Contract Nonr 220(50)

CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Pulse Stimulated Radiation from a Plasma at

Harmonics of the Gyrofrequency

Wilhelm H. Kegel*

ABSTRACT

A magneto-plasma excited by two short pulses at the gyrofrequency or a multiple thereof, is considered in the single particle approach. After the second pulse radiation maxima arise at the gyrofrequency and its harmonics. In a situation where the time separation of these maxima is τ^* (in the simplest case $\tau^* = \tau$) at the fundamental, it is τ^*/n at the n-th harmonic.

As the resonances at the harmonics are a finite Larmor radius effect, excitation at these frequencies requires an initial energy. As an example, the case is studied where the first pulse has the gyrofrequency while the second has the frequency $2\omega_c$. In this case radiation maxima arise with $2\omega_c$ at times $t_{\ell} = \ell \tau \ (\ell = 1, 2, 3 \cdots)$ after the second pulse. At the fundamental the maxima arise at times $t_{\ell} = (2\ell - 1)\tau$, where the maximum at the time τ is initially due to the nonlinearity during the second pulse.

*On leave from the Institut für Plasmaphysik, Garching bei München, Germany.

I. Introduction

The discussion of pulse stimulated radiation from a plasma has been restricted up to now essentially to the resonance at the gyrofrequency²⁻⁸. As the effects are nonlinear, one can expect similar phenomena to occur at harmonics of the gyrofrequency. These further resonances are due to the finite ratio between Larmor radius and wavelength and are therefore weaker than the resonance at the fundamental, if the plasma is not too energetic. The resulting pulse stimulated radiation, however, might be of some interest, especially in combination with the effects at the fundamental. As the effects at different harmonics are coupled to each other, there arises the possibility of observing the stimulated radiation at a frequency which is different from that of the exciting pulses.

II. Radiation at the Harmonics

We consider a magneto-plasma excited by two short pulses which have a frequency $n\omega_c$ $(n = 1, 2, 3 \cdots)$ and a time separation τ . We ask for the radiation coming from the plasma after the second pulse.

In order to calculate the radiation we make the essential assumption that the plasma is so dilute that the single particle approach is valid. This means we neglect the interaction between the particles. For simplicity we make the further assumption that the dimensions of the plasma are small compared to the wavelength being considered.

The radiation by the plasma at one of the harmonics of the gyrofrequency depends essentially on the relative phases of the gyrating

particles. The energy radiated at the $\rm n^{th}$ harmonic per second into the solid angle do is given by 9

$$dI_{n} = do \quad \frac{n^{2}e^{2}\overline{\omega}_{c}^{2}}{2\pi c} \left\{ \left| \sum_{\ell=1}^{N} \frac{v_{\ell}}{c} J_{n}^{*} \left(\frac{nv_{\ell}}{c} \sin \theta \right) \exp\left[in(\omega_{c}^{\ell}t + \alpha_{\ell}) \right] \right|^{2} + \sum_{\ell=1}^{N} \cot \theta J_{n} \left(\frac{nv_{\ell}}{c} \sin \theta \right) \exp\left[in(\omega_{c}^{\ell}t + \alpha_{\ell}) \right] \right|^{2} \right\}$$
(1)

where N is the number of particles considered, $v_{\underline{\ell}}$ is the magnitude of the velocity of the ℓ^{th} particle perpendicular to the magnetic field \underline{H} , ω_{c}^{ℓ} is its gyrofrequency and Θ is the angle between the direction of observation and \underline{H} . If we assume the argument of the Bessel functions in (1) to be small, we have in lowest order

$$dI_{n} = do \frac{n^{2}e^{2}\omega_{c}^{2}}{2\pi e^{2n+1}} (2 - \sin^{2}\theta) \left[\frac{\sin^{n-1}\theta}{n!} \left(\frac{n}{2}\right)^{n}\right]^{2}$$
$$\cdot \left|\sum_{\ell=1}^{N} v_{\ell}^{n} \exp\left[in(\omega_{c}^{\ell}t + \alpha_{e})\right]\right|^{2}$$
(1a)

The time variation of the radiation is determined by the last factor in (la). In this approximation the time variation is only due to changes in the degree of coherence of the motion of the particles. In order to study the time variation we introduce the function^{7,8}

$$\Phi_{n}(t) = \left| \sum_{\ell=1}^{N} v_{\ell}^{n} \right|^{-2} \left| \sum_{\ell=1}^{N} v_{\ell}^{n} \exp\left[in(\omega_{c}^{\ell} t + \alpha_{e}^{-}) \right]^{2}$$
(2)

This function is normalized such that $0 \leq \Phi \leq 1$ and gives the radiation as a fraction of the largest possible amount for a given velocity distribution. If we introduce new quantities t' = t/n and $\alpha_{\ell} = \alpha_{\ell}/n$ the exponential function in (2) becomes independent of n. This shows that one essential effect at the harmonics is that the time scale is changed due to the fact that we now deal with multipole radiation. For example, in a situation where we expect after the second pulse radiation peaks at the gyrofrequency having a time separation τ , we expect radiation peaks at the nth harmonic with a time separation τ/n . As the radiation at the harmonics is multipole radiation, the weighting factor in (2) is v^n compared to v at the fundamental. As an order of magnitude, one estimates from (la) that the intensity of the radiation peaks at the nth harmonic is smaller by a factor $(\overline{v}/c)^{2n}$ compared to the radiation at the fundamental.

The actual magnitude of the radiation peaks depends, of course, on the nonlinearities involved and the way of excitation. If the plasma is excited at one of the harmonics there is an essential nonlinearity during the pulses. Besides this we restrict the discussion to the case where the relativistic mass effect causes the gyrofrequency to become energy dependent. This case was treated in detail for radiation at the fundamental in an earlier paper⁷, which will be referred to as I.

III. Excitation at the Fundamental

In this section we consider the case where the exciting pulses are at the gyrofrequency. We make the same assumptions as in I. We consider slight inhomogeneities in the magnetic field (essentially perpendicular to \underline{H}) by assuming a distribution $h(\eta)$ of the electrons over different gyrofrequencies, where

$$n = \Delta_{inh} \overset{\omega}{c}$$

is the deviation from the average gyrofrequency due to differences in the magnetic field. The influence of an initial temperature is taken into account under the restriction $v_0 \ll V$ where $V = \frac{1}{2} \frac{e}{m} E_1^0 t_1$, E_1^0 and t_1 being the field strength and duration of the first pulse. Under this assumption the essential effect of the initial temperature is that the particles have different energies after the first pulse. We assume a distribution g(v), where v is the magnitude of the velocity after the first pulse.

The velocities and relative phases of the electrons after the second pulse can be expressed as functions of v and η . Taking these expressions from I and replacing the sums in (2) by integrals, we find for the radiation at the second harmonic:

$$\Phi_{2}(t) = \left(\iint dv \ d\eta \ g(v) \ h(\eta) \ v^{*2} \right)^{-2}$$

$$\cdot \left| v^{2} \iint dv \ d\eta \ g(v) \ h(\eta) \right| \left\{ D^{2} \exp(2if) + 2D(v/V) \ \exp(if + if_{1}) + (v/V)^{2} \ \exp(2if_{1}) \right\} \right|^{2}$$

$$(4)$$

with

$$f = \varphi_0 + \Delta^* \omega_c t$$
(5a)
$$f_1 = \varphi(\tau) - \varphi_0 + f$$
(5b)

where the star indicates quantities after the second pulse, D is the strength of the second pulse relative to the first one, ϕ is the relative phase of the particles and ϕ_{0} is the phase of the second pulse

5.

(3)

relative to a particle with $\varphi(\tau) = 0$. The time t is counted from the end of the second pulse. Corresponding to I eq. (26), we now find

$$\exp(2if) = \sum_{\ell=-\infty}^{+\infty} J_{\ell} (4At Dv/V)$$

$$\cdot \exp\left\{i\left[(2t + \ell\tau)(\eta + A(1 - v^{2}/V^{2})) - (\ell - 2)\phi_{0} - \ell\pi/2 + 2At(B - D^{2} - 2)\right]\right\}$$
(6)

where $A = \overline{\omega}_c v^2/2c^2$ and B is an arbitrary constant defining the particle with respect to which $\Delta * \omega_c$ is measured.

In the special case of an initially cold plasma, i.e. $g(v) = \delta(v - V)$, we see from (6) that there arise radiation maxima at times

$$t_{\ell} = -\ell\tau/2 \tag{7}$$

Under the assumption

$$\eta_{c} \tau \gg 1$$
 (8)

where η_0 is a characteristic spread in the gyrofrequencies, we find for the radiation peaks

$$\Phi_{2}(t_{\ell}) = (1 + D^{2})^{-2} \left\{ \left| D^{2}J_{\ell}(4ADt_{\ell}) - J_{\ell-2}(4ADt_{\ell}) \right|^{2} + \left| 2D J_{\ell-1}(4ADt_{\ell}) \right|^{2} \right\}$$
(9)

Fig. 1 shows Φ_2 for the first maximum, i.e., $\ell = -1$, as a function of At, with D = 1. The largest value is obtained for At = 1.5. (At the fundamental the first maximum has its largest value at At = 1.1). In the other limiting case of a strictly homogeneous magnetic field, i.e., $h(\eta) = \delta(\eta)$, we have the integration variable still in the Bessel functions. In order to simplify the expressions we assume the argument of the Bessel functions to be large. With the same expansions given in I, we then find radiation maxima at times

$$t_{\ell} = -\frac{\ell \tau}{2(D+1)}$$
, $t_{m} = \frac{m \tau}{2(D-1)}$ (10a,b)

With the assumption

where

$$\chi = A \tau v_0 / V \tag{12}$$

we then find for the maxima

$$\Phi_{2}(t_{\ell}) = \frac{1}{8\pi \text{ ADt}_{\ell}} \frac{(1+D)^{4}}{(1+D^{2})^{2}}$$
(13a)

$$\Phi_{2}(t_{m}) = \frac{1}{8\pi \text{ AD}t_{m}} \frac{(1-D)^{4}}{(1+D^{2})^{2}}$$
(13b)

The significance of the conditions (8) and (11) is essentially the same as discussed in I. Especially, we find that there are virtually no radiation peaks if both conditions are simultaneously fulfilled.

IV. Excitation at the Second Harmonic

In order to obtain the resonances at the harmonics of the gyrofrequency, one has to take into account the spatial variation of the exciting field, as these resonances depend on the finite ratio of the Larmor radius to the wavelength. We consider the influence of an electromagnetic wave on the motion of an electron in a static magnetic field \underline{H}_{0} . We choose \underline{H}_{0} to be in the z-direction, the electric field \underline{E} of the wave in the x-direction, and its \underline{k} vector in the y-direction. In this geometry the magnetic field of the wave is parallel to the static field. If we define the gyrofrequency by considering the static field only, the equations of motion (for v << c) are

$$\ddot{\mathbf{x}} = (-1 + \frac{\dot{\mathbf{y}}}{c}) \stackrel{e}{=} E^{O} \sin(\omega t - ky) - \omega_{c} \dot{\mathbf{y}}$$
(14)

$$\ddot{\mathbf{y}} = \dot{\mathbf{x}}\omega_{c} - \frac{\dot{\mathbf{x}}}{c}\frac{e}{m}E^{0}\sin(\omega t - ky)$$
(15)

This system of equations for x and y can be uncoupled. Using the relation $\omega/k = c$, equation (14) can be integrated

$$\dot{\mathbf{x}} = \frac{1}{\omega} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{O}} \cos(\omega \mathbf{t} - \mathbf{k}\mathbf{y}) - \omega_{\mathbf{c}}\mathbf{y} + \mathbf{C}$$
(16)

C being an integration constant. Combining (16) and (15) one obtains a second order differential equation for y. We assume

$$ky \ll 1$$
 , (17)

expand the trigonometric functions in ky, and keep only terms linear in ky. Assuming further

$$\epsilon = \frac{2}{\omega_c c} \frac{e}{m} E^0 \ll 1$$
(18)

we can approximate the exact differential equation for y by (see appendix)

$$\ddot{\mathbf{y}} + \omega_{c}^{2} \mathbf{y} \left(1 - \epsilon \sin \omega t\right) = \frac{\omega_{c}}{\omega} \frac{e}{m} E^{O}(-1 + \cos \omega t)$$
(19)

This is an inhomogeneous Mathieu equation. The homogeneous equation is characteristic for parametric resonance (in the present case the varied parameter is the gyrofrequency). It shows a resonance if $\omega = 2\omega_c$.

If one wants to study the resonances at higher multiples of the gyrofrequency, one must keep higher order terms in ky when one expands the trigonometric functions.

An approximate solution of (19) can be given in terms of trigonometric functions (see appendix). If we assume

$$\omega = 2\omega_{c} \tag{20}$$

and

$$\frac{1}{\omega} \frac{e}{m} E^0 \ll v (t=0)$$
(21)

we obtain in a coordinate system $(v_x^{\,\prime},v_y^{\,\prime})$ rotating with the average gyrofrequency in lowest order of $\,\epsilon$

$$v'_{x}(t) = v'_{x}(t=0) e^{st}$$
 (22a)

$$v'_{y}(t) = v'_{y}(t=0) e^{-st}$$
 (22b)

with

$$s = \frac{1}{2c} \frac{e}{m} E^{o} = \frac{\epsilon}{4} \omega_{c}$$
(23)

This solution is still a good approximation if the assumption (20) is substituted by

$$\Delta \omega t_p \ll 1$$
; $\frac{\Delta \omega}{\omega} \ll 1$ (24a,b)

t being the duration of the pulse, and $\Delta \omega = \omega - 2\omega_c$.

We see from (22) that in lowest order there is no effect if the velocity at the onset of the pulse is zero. So we do not expect any essential effect in an experiment at the second harmonic which is similar to the experiment performed at the fundamental, i.e., if one starts with an initially cold plasma and applies two short pulses at twice the gyrofrequency.

The situation is different, however, if the first exciting pulse is at the gyrofrequency and the second pulse is at the second harmonic. In this case the first pulse provides the electrons with sufficient energy so that the second pulse can act on them.

As we obtain some interesting results under these conditions, we shall study this case in some detail. We assume the plasma to be initially cold ($v_0 = 0$) and that some slight inhomogeneities exist in the magnetic field, essentially perpendicular to \underline{H} . The first pulse (at the gyrofrequency) gives a velocity V to all particles. After the first pulse, phase differences arise due to the inhomogeneities in the magnetic field. At the onset of the second pulse the relative phase is given by

$$\varphi(\tau) = \eta \tau \tag{25}$$

where η is given by (3) and τ is the time separation of the pulses. The second pulse (at the second harmonic) induces a quadrupole moment and we have, according to equations (22) at the end of the second pulse in the rotating frame (quantities after the second pulse are indicated by a star)

$$v_x^* = V \cos[\phi(\tau)] e^{S}$$
 (26a)
 $v_y^* = V \sin[\phi(\tau)] e^{-S}$ (26b)

11.

(27)

with

$$S = st,$$

where t_2 is the duration of the second pulse.

In order to calculate the relative phase $\phi^*(t)$ at a time t after the second pulse, we have to make an assumption about the differences in the gyrofrequencies of the different electrons. We consider two cases:

a) The differences in gyrofrequency are given only by the inhomogeneities in the magnetic field

$$\Delta^* \omega = \eta \tag{28}$$

In this case the only nonlinearity taken into account is that during the second pulse.

b) The relativistic mass effect is essential in addition to the inhomogeneities (corresponding to I eq. (24)

$$\Delta^* \omega = A(B - v *^2 / v^2) + \eta$$
⁽²⁹⁾

At first we ask for the radiation at the gyrofrequency, i.e., we ask for $\Phi_1(t)$. From (2) and (26) we find

$$\Phi(t) = \left(\frac{1}{2} e^{2S} + \frac{1}{2} e^{-2S}\right)^{-1} \cdot \left| \int d\eta h(\eta) \right|$$
$$\cdot \left\{ \left[\cos \left[\phi(\tau) \right] e^{S} + i \sin \left[\phi(\tau) \right] e^{-S} \right] e^{i\Delta\omega t} \right\} \right|^{2}$$
(30)

In case a), i.e., assuming eq. (28) to be valid, we have

$$\Phi_{1}(t) \sim \left| \frac{1}{2} \int d\eta h(\eta) \left\{ (e^{S} + e^{-S}) e^{i\eta(t+\tau)} + (e^{S} - e^{-S}) e^{-i\eta(t-\tau)} \right\} \right|^{2}$$
(31)

Just one radiation maximum arises at a time $t = \tau$ after the second pulse, when the second term in the curly bracket of (31) becomes independent of η . The time dependence of this maximum is given by the square of the Fourier transform of $h(\eta)$. If this is narrow compared to τ , the first term does not contribute essentially and we have for the maximum

$$\Phi_{1}(\tau) = \frac{1}{2} \frac{(e^{S} - e^{-S})^{2}}{e^{2S} + e^{-2S}}$$
(32)

if $S \ll l$ we have

$$\Phi_1(\tau) \approx s^2 = \frac{1}{4c^2} \left(\frac{e}{m} E_2^0 t_2\right)^2$$
 (32a)

It should be noted that at t = 0, Φ_1 is essentially zero, due to the fact that the second pulse induces a quadrupole moment but no dipole moment.

The occurrence of this single radiation maximum is due to the nonlinearity during the second pulse and can easily be understood qualitatively by using the diagrams introduced by Gould². Fig. 2 gives the distribution of the electrons in the v'-space (which rotates with the average gyrofrequency) at different times: a) at the end of the first pulse, b) at the onset of the second pulse, and c) at the end of the second pulse. The second pulse deforms the circle in b) into an ellipse according to eq. (22). Particles at the point E in this diagram change their phase during a time interval τ by $\pi \pm 2n\pi$. So, at a time τ after the second pulse (Fig. 2d) the particle group E coincides with group A and, more generally, all particles have the same phase (modulo 2π) which were out of phase by π at the end of the second pulse. This

shows that at this particular time a macroscopic dipole moment has been built up, the particles being distributed on a circle, the center of which is displaced with respect to (b).

Next we consider the case b), i.e., we assume $\Delta^*\omega$ as given by equation (29). From equation (26) we find

$$v \star^{2} = V^{2} \left\{ e^{-2S} + \left[1 + \cos 2\varphi(\tau) \right] Q \right\}$$
(33)

with

$$Q = \frac{1}{2} \left(e^{2S} - e^{-2S} \right) \tag{34}$$

As we now have a cosine in the last exponential function in (30), we make an expansion into Bessel functions and obtain

$$\Phi_{1}(t) \sim \left| \frac{1}{2} \int d\eta h(\eta) \left\{ (e^{S}_{+} e^{-S}) \sum_{\ell=-\infty}^{+\infty} J_{\ell}(AtQ) \exp(i[\eta(t+(2\ell+1)\tau) - \ell\pi/2]) + (e^{S}_{-} e^{-S}) \sum_{m=-\infty}^{+\infty} J_{m}(AtQ) \exp(i[\eta(t+(2\ell-1)\tau - m\pi/2])) \right\} \right|^{2}$$
(35)

Radiation maxima arise at times

$$t_{\ell} = -(2\ell + 1)\tau$$
 (36)

where ℓ is an integer with the restriction $t_{\ell} > 0$, i.e., we have radiation peaks at times τ , 3τ , 5τ , etc. after the second pulse. Under the assumption (8) we find for the maxima

$$\Phi(t_{\ell}) = \frac{1}{2}(e^{2S} + e^{-2S})^{-1} \left\{ \left| (e^{S} + e^{-S}) J_{\ell}(At_{\ell}Q) \right|^{2} + \left| (e^{S} - e^{-S}) J_{\ell+1}(At_{\ell}Q) \right|^{2} \right\}$$
(37)

If S \ll l this can be approximated by

$$\Phi_{1}(t_{\ell}) = \frac{1}{2} \left\{ \left| J_{\ell}(2At_{\ell}S) \right|^{2} + \left| 2S J_{\ell+1}(2At_{\ell}S) \right|^{2} \right\}$$
(37a)

For $\ell = -1$ the last term in (37) corresponds to the result (32).

Next we consider the radiation at the second harmonic, i.e., we ask for $\Phi_{2}(t)$. From (2) and (26) we find

$$\Phi_{2}(t) = \left(\frac{1}{2}e^{2S} + \frac{1}{2}e^{-2S}\right) \left|\frac{1}{2}\int d\eta h(\eta) \left\{2i \sin 2\phi(\tau) + \left[1 + \cos 2\phi(\tau)\right]e^{2S} + \left[-1 + \cos 2\phi(\tau)\right]e^{-2S}\right\}e^{2i\Delta\omega t}\right|^{2} (38)$$

In the case a), i.e., with equation (28). there arises again just one (weaker) maximum at a time τ after the second pulse. For this maximum we find

$$\Phi_{2}(\tau) = \frac{(-2 + e^{2S} + e^{-2S})^{2}}{4(e^{2S} + e^{-2S})^{2}}$$
(39)

If S << 1 we have

$$\Phi_2(\tau) = S^4 = \left(\frac{1}{2c} \frac{e}{m} E_2^0\right)^4$$
 (39a)

This is essentially smaller than the maximum at the fundamental as given by (32a).

In case b), i.e., taking $\Delta^*\omega$ from equation (29), we find radiation maxima at times

 $\mathbf{t} = -\boldsymbol{\ell}\boldsymbol{\tau} \tag{40}$

with

$$\Phi_{2}(t_{\ell}) = (e^{2S_{+}} e^{-2S_{-}})^{-2} \left\{ \left| 2Q J_{\ell}(2At_{\ell}Q) \right|^{2} + \left| \left(\frac{1}{2} e^{2S_{+}} \frac{1}{2} e^{-2S_{-}} \right) \left[J_{\ell-1}(2At_{\ell}Q) - J_{\ell+1}(2At_{\ell}Q) \right] \right|^{2} \right\}$$
(41)

or with $S \ll 1$

$$\Phi_{2}(t_{\ell}) = 16S^{2} J_{\ell}^{2}(2At_{\ell}Q) + S^{4} \left[J_{\ell-1}(2At_{\ell}Q) - J_{\ell+1}(2At_{\ell}Q)\right]^{2}$$
(41a)

Acknowledgement

Fruitful discussions with R. W. Gould, K. S. H. Lee and D. Montgomery are greatfully acknowledged.

Appendix: Solution of the Equation of Motion

Combining equations (15) and (16) we obtain

$$\ddot{\mathbf{y}} = -\omega_{c}^{2}\mathbf{y} + \mathbf{y}\frac{\omega_{c}}{c} \quad \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{O}\sin(\omega t - \mathbf{k}\mathbf{y}) + \frac{\omega_{c}}{\omega} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{O}\cos(\omega t - \mathbf{k}\mathbf{y})$$
$$- \frac{1}{2} \frac{1}{\omega c} \left(\frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{O}\right)^{2} \sin(2\omega t - 2\mathbf{k}\mathbf{y})$$
$$- \frac{C}{c} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{O}\sin(\omega t - \mathbf{k}\mathbf{y}) + \omega_{c}^{C}$$
(A1)

We now assume

$$ky \ll 1$$
 (A2)

and expand the trigonometric functions in ky and neglect all terms which are quadratic in ky or of higher order. Next, we determine the integration constant C from the initial condition

$$\ddot{y}(0) + \omega_c^2 y(0) = 0$$
 (A3)

From (Al) we find

$$C = -\frac{1}{\omega} \frac{e}{m} E^{O}$$
 (A4)

With this we have

$$\ddot{\mathbf{y}} + \omega_{\mathbf{c}}^{2}\mathbf{y} = \frac{\omega_{\mathbf{c}}}{\omega} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{o}}(-1 + \cos \omega t) + \frac{1}{\omega \mathbf{c}} \left(\frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{o}}\right)^{2} \sin \omega t$$

$$- \frac{1}{2\omega \mathbf{c}} \left(\frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{o}}\right)^{2} \sin 2\omega t$$

$$+ \mathbf{y} \frac{\omega_{\mathbf{c}}}{\mathbf{c}} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{o}}(2 \sin \omega t - \frac{1}{c\omega_{\mathbf{c}}} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{o}} \cos \omega t$$

$$+ \frac{1}{c\omega} \frac{\mathbf{e}}{\mathbf{m}} \mathbf{E}^{\mathbf{o}} \cos 2\omega t)$$
(A5)

17.

With the assumption

$$\epsilon = \frac{2}{\omega_c c} \frac{e}{m} E^0 \ll 1$$
 (A6)

we can approximate (A5) by equation (19)

$$\ddot{y} + \omega_c^2 y (1 - \epsilon \sin \omega t) = \frac{\omega_c}{\omega} \frac{e}{m} E^0 (-1 + \cos \omega t)$$
 (A7)

This is an inhomogeneous Mathieu equation. One has at first to solve the homogeneous problem which is characteristic for parametric resonance and has a resonance at

$$\omega = 2\omega_{c} \tag{A8}$$

If we assume ω to have the value (A8) we have as an approximate solution of the homogeneous equation according to Bogoljubow and Mitropolski¹

$$y = u \sin \omega_c t + v \cos \omega_c t + \frac{\epsilon}{16} \cos 3\omega_c t - \frac{\epsilon}{16} v \sin 3\omega_c t$$
 (A9)

with
$$u = C_I e^{st}$$
; $v = C_{II} e^{st}$ (A10)

where C_{I} and C_{II} are constants to be determined by the initial conditions and s is given by (23). We have two independent solutions y_{II} and y_{II} with

$$u_{I} = \frac{7}{16} \in e^{st}$$
; $v_{I} = e^{-st}$ (Alla)

$$u_{II} = \frac{1}{\omega_c} e^{st}$$
; $v_{II} = -\frac{\epsilon}{16\omega_c} e^{-st}$ (Allb)

Using this fundamental system which solves the homogeneous equation, one

finds as a solution of the inhomogeneous equation 10

$$\mathbf{y}(t) = \int_{0}^{t} \mathbf{f}(\tau) \left[\mathbf{y}_{I}(\tau) \mathbf{y}_{II}(t) - \mathbf{y}_{II}(\tau) \mathbf{y}_{I}(t) \right] d\tau \qquad (A12)$$

where f represents the inhomogeneous term (right-hand side) in (A7). To this solution there must be added multipoles of y_{I} and y_{II} in order to fulfill the initial conditions.

Using equations (A9 - All) one can perform the integral in (Al2). Having found an approximate solution for y(t) one can determine x(t)from equation (15). If one then goes to a coordinate system (in velocity space) which rotates with the average gyrofrequency

$$\mathbf{v}_{\mathbf{X}}' = - \mathbf{v}_{\mathbf{X}} \sin \overline{\omega}_{\mathbf{C}} t + \mathbf{v}_{\mathbf{C}} \cos \overline{\omega}_{\mathbf{C}} t$$
(Al3a)

$$v'_y = -v_x \cos \overline{\omega}_c t - v_y \sin \overline{\omega}_c t$$
 (Al3b)

and keeps only the lowest order terms (i.e., one neglects terms proportional to ϵ , ϵ^2 , etc.) one obtains

$$\mathbf{v}'_{\mathbf{x}} = \mathbf{v}'_{\mathbf{x}}(t=0) e^{st} + \frac{1}{6\omega_{c}} \frac{e}{m} E^{0}(3 \sin \omega_{c} t - \sin 3\omega_{c} t)$$
(Al4a)
$$\mathbf{v}'_{\mathbf{y}} = \left[\mathbf{v}'_{\mathbf{y}}(t=0) + \frac{2}{3\omega_{c}} \frac{e}{m} E^{0}\right] e^{-st}$$
(Al4b)
$$\cdot \qquad - \frac{1}{6\omega_{c}} \frac{e}{m} E^{0}(3 \cos \omega_{c} t + \cos 3\omega_{c} t)$$

If one further assumes (21), i.e., that the velocity which a gyrating electron gains in one period is small compared to the initial velocity, the expression (A14) reduces to the expression given in (22).

Equation (A7) has further resonances in addition to those at $2\omega_c$. But these show up only in approximations of higher order in ϵ and are therefore not meaningful in the present context, as in equation (A7) itself, higher order terms have been neglected.

References

- Bogoljubow, N. N. and J. A. Mitropolski, <u>Asymptotische Methoden</u> <u>in des Theorie der nichtlinearen Schwingungen</u>, Akademie-Verlag, Berlin 1965.
- 2. Gould, R. W., Phys. Lett. 19, 477 (1965).
- Gould, R. W., California Institute of Technology, Tech. Report No. 28, Nonr 229(50), 1965. To be published.
- 4. Herrmann, G. F. and R. F. Whitmer, Phys. Rev. 143, A122 (1966).
- 5. Hill, R. M. and D. E. Kaplan, Phys. Rev. Lett. 14, 1062 (1965).
- 6. Kaplan, D. E. and R. M. Hill, Bull. Amer. Phys. Soc. to appear.
- Kegel, W. H., California Institute of Technology, Tech. Report No. 27, Nonr 220(50), 1965. To be published.
- 8. Kegel, W. H. and R. W. Gould, Phys. Lett. 19, 531 (1965).
- 9. Landau, L. and E. Lifshitz, The Classical Theory of Fields, Addison-Wesley, 1953.
- 10. Meixner, J. and F. W. Schäfke, <u>Mathieusche Funktionen und Spharoid-</u> <u>functionen</u>, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954.

Fig. 1. Amplitude of the first radiation maximum at the second harmonic as a function of τ in the case where the plasma is excited by two pulses at the fundamental.

Fig. 2. Distribution of particle velocities in a rotating velocity space a) at the end of the first pulse, b) at the onset of the second pulse, c) at the end of the second pulse, d) at a time τ after the second pulse, the first pulse being at ω_c and the second at $2\omega_c$.

UNCLASSIFIED Security Classification					
DOCUMENT C	ONTROL DATA - R&	D	and a construction of the construction of the second second		
(Security classification of title, body of abstract and inde	xing annotation must be er	itered when	the overall report is classified)		
California Institute of Technology Pasadena, California		2a. REPO	DRT SECURITY CLASSIFICATION		
		25. GROUP			
3. REPORT TITLE		1			
PULSE STIMULATED RADIATION FROM	M A PLASMA AT HA	ARMONIC	S OF THE GYROFREQUENCY		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Tech. Report No. 32					
5. AUTHOR(S) (Last name, first name, initial)			·····		
KEGEL, Wilhelm H.					
5. REPORT DATE	74. TOTAL NO. OF P	AGES	7b. NO. OF REFS		
June 1966	22		10		
BA. CONTRACT OR GRANT NO.	94. ORIGINATOR'S R	EPORT NU	MBER(S)		
Nonr 220(50)	Mashut				
b. PROJECT NO.	Technic	al Repo	ort 32		
c.	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)				
11. SUPPL EMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY				
A magneto-plasma excited by multiple thereof, is considered in second pulse radiation maxima aris In a situation where the time sepa simplest case $\tau^* = \tau$) at the fun As the resonances at the ha excitation at these frequencies re the case is studied where the firs second has the frequency $2\omega_c$. I $2\omega_c$ at times $t_{\ell} = \ell \tau$ ($\ell = 1,2,3$, fundamental the maxima arise at ti time τ is initially due to the m	two short pulse the single part e at the gyrofre ration of these damental, it is rmonics are a fi quires an initia t pulse has the n this case radi \cdots) after the mes $t_{\ell} = (2\ell -$ onlinearity duri	es at ti cicle aj equency maxima τ^*/n inite La al energy ation is second 1) τ , ing the	he gyrofrequency or a pproach. After the and its harmonics. is τ^* (in the at the n-th harmonic. armor radius effect, gy. As an example, equency, while the maxima arise with pulse. At the where the maximum at second pulse.		

UNCLASSIFIED Security Classification

14. KEY WORDS		LINK A		LINK B		LINK C	
		WT	ROLE	WΤ	ROLE	WT	
	-						
plasma radiation		5 64	-407	41. D			
cyclotron harmonic		3	an her		(27-1)		
stimulated emission							
Larmor radius effect		-	1.5				
		.2		÷			
			144		- 20-1		
and the second sec							
IN APPROVAL							

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. OTHER REPORT NUMBER(\$): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

GPO 886-551

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

. "

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.