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ABSTRACT 

 

The goal of this research is to identify and characterize enzymes responsible for post-

translational modifications of phycobiliproteins (PBP) in the cyanobacterium Synechocystis sp. 

PCC 6803. Asparagine 72 is methylated to produce gamma-N-methylasparagine on beta subunits 

of PBP in vivo.  A candidate for this methyl transferase is CpcM (sll0487). Methylase assays 

showed that CpcM is specific for the beta subunits of PBP with no methylation on the 

homologous alpha subunits. CpcM methylates PBP after chromophorylation but before the PBP 

assemble into trimers. Candidates for the lyases responsible for attachment of phycocyanobilin to 

phycocyanin in Synechocystis sp. PCC 6803 are two cpeS-like genes (cpcS and cpcU) and one 

cpeT-like gene (cpcT).  Through absorbance and fluorescence spectra, it was determined that 

CpcS and CpcU together catalyze the addition of phycocyanobilin to Cys-82 on beta-

phycocyanin in vitro and that CpcT is a lyase that adds phycocyanobilin to Cys-153 on beta-

phycocyanin. 
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INTRODUCTION 
 
 
 
1.1 Cyanobacteria 

Cyanobacteria are photosynthetic, gram-negative prokaryotes belonging to the kingdom 

Monera. They have the distinction of being the world’s oldest oxygen-evolving organisms and 

fossils have been found which are more than 3.5 billion years old (Schopf, 1983). Through their 

oxygenic photosynthetic capabilities during the Archaean and Proterozoic eras, they created the 

oxygen rich atmosphere that we breathe today (Bengston, 1994). Cyanobacteria also contributed 

to the origin of plants and other oxygen-evolving organisms such as red, green, and cryptophyte 

algae; through endosymbiosis, they became the chloroplasts of these eukaryotes (Bengston, 

1994; Sidler, 1994). Plants also evolved from cyanobacterial genes that migrated to the host 

nucleus from the plastid, thus demonstrating an evolutionary relationship between plants and 

cyanobacteria (Hughes and Lamparter, 1999). 

Cyanobacteria, like plants, require a light-harvesting complex that helps the organism 

perform photosynthesis. These complexes are responsible for capturing light and then efficiently 

transferring this energy to the photosynthetic reaction centers. In cyanobacteria this complex is 

the phycobilisome (PBS) which forms regular arrays that electrostatically interact with the 

stromal side of the thylakoid membrane transferring energy to photosystem II (PSII) (Figure 1) 

(Glazer et al., 1983; Sidler, 1994). The PBS is a large, water-soluble, macromolecular antenna 

complex comprised mostly of light-absorbing phycobiliproteins (Glazer, 1989). 
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Figure 1: Phycobilisome structure and interaction with PSII and the thylakoid membrane The PBS consists of 
a core composed of stacked PBP trimeric discs and radiating rods composed of stacked PBP hexameric discs. A 
collection of polypeptides known as “linker” polypeptides mediate the assembly of the PBS and regulate the 
spectroscopic properties of the individual PBP within the PBS. The arrangement of the PBP in the PBS coincides to 
that of spontaneous excitation energy flow from higher to lower energy transitions with phycoerythrin (PE-λmax 
565 nm) at the periphery of the rods, phycocyanin (PC-λmax 620 nm) on the interior of the rods proximal to the 
core, and allophycocyanin (AP-λmax 650 nm) in the core (modified from Beale, 1994). 
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1.2 Phycobiliproteins and Bilin Chromophores 

 1.2.1 Phycobiliprotein Structure and Function 

 Phycobiliproteins serve as the light-harvesting antenna in many photosynthetic organisms 

such as prokaryotic cyanobacteria, eukaryotic red algae and cryptomonads (Glazer, 1989). 

Phycobiliproteins can comprise up to 30-40% of total protein in a typical cyanobacterial cell 

(Arciero et al., 1988), and absorb light in the visible range of 450-665 nm, which covers the 

absorption of light wavelengths between the two maxima covered by chlorophyll a (420 and 680 

nm), during photosynthesis (Apt et al., 1995). The four spectroscopic classes of 

phycobiliproteins are phycoerythrocyanin (PEC, λmax575 nm), phycoerythrin (PE, λmax565-575 

nm), phycocyanin (PC, λmax615-640 nm), and allophycocyanin (AP, λmax650-655 nm) (Sidler, 

1994). The cyanobacteria used in this study, Synechocystis sp. PCC 6803 and Synechococcus sp. 

PCC 7002, contain only two major phycobiliprotiens, AP and PC (Toole et al., 1998).  

Each phycobiliprotein consists of equimolar amounts of two dissimilar polypeptide 

chains, the α and β subunits, with molecular weights of approximately 17 and 18 kDa, 

respectively (Glazer and Fang, 1973; Glazer, 1989). Sequence alignment data of the α and β 

subunits have revealed that a large number of residues are highly conserved in all 

phycobiliprotein subunits (Schirmer et al., 1986). Each phycobiliprotein α and β subunit, 

together, form a monomer. These monomers assemble into trimers (αβ)3, and there is further 

stacking of two trimers in a face-to-face arrangement to form a hexamer (αβ)6. These trimers and 

hexamers are disc-like structures possessing a central cavity where “linker” proteins bind to 

connect the trimers and hexamers together (Apt et al., 1995).  

Each α or β subunit bears one to three covalently attached bilin chromophores (Glazer, 

1989). These heme-derived open-chain linear tetrapyrrole bilin prosthetic groups are covalently 
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attached to cysteinyl residues on the α or β subunit via a thioether linkage (Duerring et al., 1990; 

Frankenburg et al., 2001; Glazer, 1989). Most bilin chromophores are attached to the cysteine at 

the vinyl group ring A bilin (Sidler, 1994). The four bilins naturally occurring in cyanobacteria 

are: phycocyanobilin (PCB, blue), phycoviolobilin (PVB, purple), phycoerythrobilin (PEB, red) 

and phycourobilin (PUB, yellow) (Figure 2) (Glazer, 1989; Sidler, 1994). Each bilin has a 

different number of double bonds in conjugation, which gives it its own unique spectroscopic 

properties (Glazer, 1989). The only bilin attached to the phycobiliproteins in Synechocystis sp. 

PCC 6803 and Synechococcus sp. PCC 7002 is PCB.  

 

1.2.2 Phycocyanobilin:Ferredoxin Oxidoreductase (PcyA) 

The precursor molecule for all bilins is heme. Heme is a prosthetic group that consists of 

an iron atom contained in the center of a porphyrin, a large heterocyclic organic ring. 

Phycocyanobilin:Ferredoxin Oxidoreducatase (PcyA) catalyzes the synthesis of phycocyanobilin 

from biliverdin (Frankenburg et al., 2001). This enzymatic reaction is dependent on a four-

electron reduction of biliverdin using ferredoxin as the electron donor (Figure 3). Recombinant 

PcyA forms a very stable complex with biliverdin which is the precursor of all bilins in the bilin 

biosynthetic pathway (Frankenburg et al., 2001; Frankenburg and Lagarias, 2003). 

 

1.3 Phycobilisome Structure and Function 

The PBS consists of a core composed of stacked phycobiliprotein trimeric discs and 

radiating rods composed of stacked phycobiliprotein hexameric discs. The core is composed of 

three phycobiliprotein structures that run parallel to one another, and there are six or more rods 

of phycobiliproteins that branch out from the core. A collection of polypeptides known as                   
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Figure 2: Phycobiliprotein Synthesis and Structure. Structure of heme and the natural bilins biliverdin (BV), 
phytochromobilin (found in phytochromes [P B]), phycocyanobilin (PCB), phycoerythrobilin (PEB), 
phycoviolobilin (PVB), and phycourobilin (PUB). Heme oxygenase converts heme to biliverdin by cleaving 
between rings A and D at the positions marked. Differences in the other bilins with respect to biliverdin are also 
indicated (Hughes and Lamparter, 1999). 
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Figure 3: Biosynthesis of phycocyanobilin. Conversion of heme to phycocyanobilin (modified from Hagiwara et 
al., 2006). 

  Heme Oxygenase 
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“linker” polypeptides mediate the assembly of the PBS and regulate the spectroscopic properties 

of the individual phycobiliproteins within the PBS by interacting with the bilins near the central 

cavity of the trimers (Glazer, 1989). The arrangement of the phycobiliproteins in the PBS 

coincides with spontaneous excitation energy flow from higher to lower energy transitions from 

PEC (λmax 575) or PE (λmax 565 nm) at the periphery of the rods, to PC (λmax 620 nm) on the 

interior of the rods proximal to the core, and then to AP (λmax 650 nm) in the core. Energy is then 

transferred to PSII (λmax 680 nm). In the organisms Synechocystis sp. PCC 6803 and 

Synechococcus sp. PCC 7002 the phycobiliprotein composition in the core is AP, and in the rods 

only PC is found (Figure 4).  

Steady state fluorescence emission originates almost exclusively from “acceptor” bilins 

which both absorb excitation energy and fluoresce (Glazer, 1989). In C-phycocyanin and other 

phycobiliproteins, the bilin located at β-84 (β-82 in Synechocystis sp. PCC 6803 and 

Synechococcus sp. PCC 7002) is the “acceptor”, and the bilins located at α-84 and β-155 (β-153) 

are “donors” that absorb light energy and transfer this excitation energy to another bilin 

(Schirmer and Vincent, 1987). The α-84 and β-82 bilins are found toward the center of the 

trimeric discs in regions that have structural similarity to the heme-binding pocket in the globin 

family of proteins, whereas the chromophore β-153 is located in a short loop unique to the β-

subunit of phycocyanin and is close to the edge of the trimeric disc (Pastore and Lesk, 1990; 

Schirmer et al., 1985). Energy absorbed by any of the “donor” bilins in the PBS is quickly 

localized on the terminal energy “acceptor” bilins and the emission of these bilins overlaps 

precisely the absorption spectrum of the reaction center of PSII creating a radiationless 

directional transfer of energy (Glazer, 1989). 
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Figure 4: Phycobilisome (PBS) Structure. Panel A) PBS phycoerythrin (PE) shown in the periphery of the rod 
structures, phycocyanin (PC) shown in the interior rods, and allophycocyanin (AP) shown inside the core of the PBS 
structure. Panel B) PBS structure is shown three dimensionally with core trimeric discs and rod hexameric discs 
Panel C) A diagram of a phycobiliprotein disc with alternating α and β subunits (Glazer, 1989). 

 

 

 

A 
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The structure and composition of the PBS corresponds to rapid energy absorption and 

transfer throughout the antenna complex and photosynthetic membrane to PSII with greater than 

95% efficiency (Swanson and Glazer, 1990). The radiationless energy transfer occurs through a 

dipole-induced dipole resonance energy transfer called the Förster energy-transfer mechanism 

(Förster, 1965, 1967). The energy transfer to Chl a of PSII occurs 150 picoseconds after the 

excitation of peripheral phycoerythrins and 120 picoseconds after excitation of phycocyanins 

(Sidler, 1994).  

 The allophycocyanin core of the PBS contains some low abundance subunits that are 

important for energy transfer from the core to PSII. ApcF is a β-like allophycocyanin subunit that 

is present in two copies per phycobilisome and ApcD is an α-like allophycocyanin subunit, 

present in two copies per PBS. Ashby and Mullineaux (1999) investigated the role of the 

phycobilisome core components, ApcD and ApcF, in transferring energy from the phycobilisome 

to PS I and PS II in the cyanobacterium Synechocystis sp. PCC 6803. The genes encoding these 

proteins were disrupted in the genomes of wild type Synechocystis sp. PCC 6803. When both 

ApcF and ApcD are absent, the phycobilisomes are unable to transfer energy to either reaction 

center. The major route of energy transfer to both reaction centers appears to involve ApcF rather 

than ApcD (Ashby and Mullineaux, 1999). 

 

1.4 Phycobiliprotein Post-Translational Modifications 

 1.4.1 Phycobiliprotein Methylation 

The efficient radiationless transfer of energy throughout the PBS and photosynthetic 

membrane to PSII has been shown to be facilitated by a unique post-translationally modified 

residue, γ-N-methylasparagine. This modified residue has been found in all phycobiliproteins 
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isolated from cyanobacteria, red algae, and cryptomonads (Wilbanks et al., 1989). This highly 

conserved γ-N-methylasparagine residue is located at the β-72 position, and no such 

modification is present on the homologous α position (Klotz et al., 1986; Klotz and Glazer, 

1987). The methylation is also thought to be conserved in the allophycocyanin subunits, ApcB 

and ApcF (Swanson and Glazer, 1990). The conservation of asparagine at position 72 is 

demonstrated in a phycobiliprotein alignment in Figure 5. 

  Radiotracer experiments have shown that the methyl group of γ-N-methylasparagine is 

derived from the S-methyl of methionine, implicating S-adenosylmethionine, which is found 

naturally in cells, as an intermediate methyl transfer agent (Klotz and Glazer, 1987). This means 

that the enzyme responsible for this methylation is an S-adenosylmethionine (AdoMet)-

dependent methyltransferase. These enzymes have the very simple function of transferring a 

methyl group from the sulfonium atom of AdoMet to a variety of nucleophiles, including 

oxygen, sulfur, carbon, and in the case of γ-N-methylasparagine, a nitrogen atom, on proteins, 

nucleic acids, carbohydrates, lipids, and small molecules in all organisms (Clarke, 2002). γ-N-

methylasparagine results from the methylation on the side-chain amide nitrogen on the 

asparagine residue located at β-72 of phycobiliproteins leading to N-4-methylasparagine or γ-N-

methylasparagine (Figure 6) (Klotz et al., 1986; Klotz and Glazer, 1987).  Besides providing the 

efficient radiationless transfer of energy during photosynthesis, studies on synthetic peptides 

have suggested that methylation can slow the spontaneous deamidation of the side chain of 

asparagine residues by 45-fold (Klotz and Thomas, 1993). The methylation reaction adds bulk to 

the side-chain amide group and removes the possible participation of one of the two amide 

hydrogen atoms from participating in hydrogen bonding schemes (Klotz and Thomas, 1993). 
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Figure 5: Alignment of phycobiliprotein sequences from Synechocystis sp. PCC 6803 and Synechococcus sp. 
PCC 7002. Indicated in the red box is the conserved asparagine residue at position 72. Indicated in the blue boxes 
are the CpcB bilin attachment site cysteines at positions 82 and 153. 
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Figure 6: Methylation of β-72 asparagine. Panel A) Diagram of S-adenosylmethionine (SAM): In red is the very 
reactive sulfonium group with a methyl group attached, the amino group is homocysteine in green, and the 
nucleoside is adenosine in blue. Panel B) Diagram of the methylation of asparagine to N-4-Methylasparagine by an 
unknown enzyme transferring the methyl group of the sulfonium atom of SAM to the side-chain amide nitrogen 
(Clarke, 2002).  
 

 

 

A 
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 The fact that there is no modification on the homologous α position, the modification is 

highly evolutionarily conserved, and the modification is energetically costly implies the 

important role of this modification in photosynthesis. The side chain of γ-N-methylasparagine at 

β-72 is located in close proximity to the chromophore at β-82 (Figure 7) (Swanson and Glazer, 

1990), which serves as the terminal energy acceptor in C-phycocyanin. This location suggested 

that this methylation might affect the spectroscopic properties of the chromophore at β-82.  

 Swanson and Glazer (1990) developed a protocol using [methyl-3H]S-

adenosylmethionine and apo-phycocyanin (purified from Escherichia coli expressing the genes 

for the PC α and β subunits from Synechococcus sp. PCC 7002) as substrates to assay the 

phycobiliprotein asparagine methylase activity in extracts from Synechococcus sp. PCC 6301. 

This assay allowed the partial purification of the activity that completely methylates PC and AP 

at the β-72 residue. Swanson and Glazer isolated two mutants of the cyanobacterium 

Synechococcus sp. PCC 7942, pcm-1 and pcm-2, after incubation with the mutagen N-ethyl-N’- 

nitro-N-nitrosoguanidine (ENNG) which produces G:C to A:T transitions. The mutants, pcm-1 

and pcm-2, produced PC and AP unmethylated at β-72 and were shown to lack the methylase 

activity (Swanson and Glazer, 1990). The phycobilisomes from these mutant strains displayed 

greater emission from PC and AP and lower fluorescence emission quantum yields (14%) 

compared to fully methylated phycobilisomes. These results showed that site-specific 

methylation of phycobiliproteins significantly contributes to the efficiency of directional energy 

transfer to the terminal energy acceptors in the PBS (Swanson and Glazer, 1990). 

 Thomas et al. (1993) used these same mutants, pcm-1 and pcm-2, to study the relative 

rates of PSII electron transfer by observing steady state rates of oxygen evolution. Oxidation of  

 



                                                                       14

 

Figure 7: Figures of β-72 γ-N-Methylasparagine. Panel A) Crystal structure of phycocyanin. The γ-N-
methylasparagine is highlighted in pink color. Panel B) Crystal structure of allophycocyanin. The γ-N-
methylasparagine is highlighted in brown color. Panel C) A ribbon diagram of the β subunit of phycoerythrin. 
Circled in red is the cysteine β-82 chromophore and circled in blue is the area where the β-72 asparagine residue is 
located showing the β-82 and β-72 close proximity (Brejc et al., 1995; Stec et al., 1999; Wilk et al., 1999). 
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water to O2 requires abstraction of 4 electrons requiring the photochemistry of a 1 photon/1 

electron event (Einstein's Law), this requires a mechanistic interface between the 1-electron 

photochemistry, and the 4-electron oxidation process. A schematic model explaining these 

observations, proposed by Kok and coworkers, has been widely accepted (Kok et al. 1970). This 

model for the photooxidation of water, called the S state mechanism, consists of a series of five 

states, known as S0 to S4, which represent successively more oxidized forms of the water-

oxidizing enzyme system, or oxygen-evolving complex. The light flashes advance the system 

from one S state to the next, until state S4 is reached. State S4 produces O2 without further light 

input and returns the system to S0. After the steady state has been reached, a complex has the 

same probability of being in any of the states S0 to S3 (S4 is unstable and occurs only transiently), 

and the yield of O2 becomes constant (Kok et al., 1970). Thomas et al. (1993) using xenon lamps 

for illumination and DCBQ and DMBQ as artificial electron acceptors, found that the mutants 

demonstrated lower rates of electron transfer through PSII, and it was shown that methylation at 

β-72 can improve the PSII quantum efficiency (the average number of electrons photoelectrically 

emitted per incident photon of a given wavelength) from 0.82 to 0.95 (observed in wild-type) 

which is consistent with the 14% lowering of PBS fluorescence quantum yield originally shown 

(Thomas et al., 1993; Swanson and Glazer, 1990).  

In 1995, these same researchers used two mutants of the cyanobacterium Synechococcus 

sp. PCC 7002 that contained either Asp or Gln in place of the Asn located at β-72. Steady-state 

spectroscopic measurements demonstrated that these substitutions affected both the ground 

(lowest-energy) to excited (any energy greater than ground) state transition and the excited-state 

characteristics of the β-82 chromophore. The lifetime of a system in an excited state is usually 

short. Spontaneous emission of a quantum of energy (such as a photon) usually occurs shortly 
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after the system is promoted to the excited state, returning the system to a state with lower 

energy (a less excited state or the ground state). Energy-transfer efficiency represented by 

steady-state fluorescence quantum yield decreased 7-10% in the mutants compared to wild-type. 

It was concluded that γ-N-methylasparagine plays a role in establishing the environment 

surrounding β-82 thereby minimizing non-radiative energy loss (Thomas et al., 1995).  

The effect of γ-N-methylasparagine is critical to the efficiency of photosynthesis and 

therefore the survival of many organisms. Now that this is known, the enzyme that performs this 

vital modification needs to be ascertained. Swanson and Glazer in 1990 developed an assay for 

the methylase activity using [methyl-3H]S-adenosylmethionine which allowed for the partial 

purification of the enzyme in cell extracts that methylates phycocyanin and allophycocyanin at 

β-72, but the gene that encoded this presumed enzyme was never elucidated.  

  

 1.4.2 Bilin Attachment to Phycobiliproteins 

 Phycocyanobilin chromophore is covalently attached to cysteinyl residues on 

phycocyanin, one on the α subunit (α-84) and two on the β subunit (β-82 and β-153) (reviewed in 

Glazer, 1989). Researchers first speculated that the addition of bilins to phycobiliproteins was a 

spontaneous occurrence, like it is in bilin addition to apo-phytochrome, but in vitro bilin addition 

experiments provided support for the requirement of enzymes called lyases (Arciero et al., 

1988). These lyases function to attach bilins through thioether linkages to specific cysteinyl 

residues of apophycobiliproteins (proteins without bilins attached) (Glazer, 1994). 

 Arciero et al., (1988) performed in vitro addition experiments with phycocyanobilin and 

apo-phycocyanin. The α and β subunits of PC from Synechococcus sp. PCC 7002, CpcA and 

CpcB, respectively, were overexpressed in Escherichia coli cells. The copurified monomeric 
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(αβ) apo-PC subunits were incubated with PCB at room temperature in the dark for 16 hours, 

which resulted in the formation of covalent bilin adducts. The reaction was assayed by the 

change of the visible absorption spectrum of the adducts with noticeable spectroscopic 

differences between the in vitro produced PC and the native PC. Amino acid analysis of the in 

vitro produced chromopeptides revealed that PCB reacted specifically only at the cysteinyl 

residues α-84 and β-82 leaving the β-153 site unchromophorylated. In addition, NMR spectra of 

these in vitro products showed that the actual covalent bilin product was more oxidized than 

PCB and that the bilin of the two adduct peptides, α-84 and β-82, was 3’cysteinylmesobiliverdin 

which has an extra double bond in the C2-C3 position of ring A (Figure 8). These results indicate 

that the major bilin products arising from an in vitro nonenzymatic reaction of PCB with apo-PC 

differ from the bilins present in wild-type PC. This supported strongly the hypothesis that the 

addition of PCB to apo-PC is not a spontaneous event, but rather that enzymes are required for 

chromophorylation (Arciero et al., 1988).  

 

1.5 Enzymes Involved In PBP Post-Translational Modifications 

 1.5.1 The sll0487 Gene Denoted cpcM 

 Donald Bryant’s lab (Pennsylvania State University) cloned the apcE gene, which 

encodes an allophycocyanin core linker protein from Synechococcus sp. PCC 7002 (J. Zhou, 

1992), and upstream from this gene they found an unidentified partial ORF, which showed 

similarity to methyltransferases (J. Zhou, 1992). This homology to known methyltransferases 

suggests that the product of this ORF is likely to exhibit methylase activity. Since, at the 

beginning of this research project the genome of Synechococcus sp. PCC 7002 had not been fully 

sequenced, a similar cyanobacterium whose genome had been fully sequenced, Synechocystis sp.  
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Figure 8: Structure of mesobiliverdin compared to phycocyanobilin. Abbreviations used: M, -CH3; V, -
CH=CH2; P, -CH2CH2CO2H; E, -CH2CH3; A, =CH-CH3 (modified from Brown and Holroyd, 1984).  
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PCC 6803, was used to further investigate this ORF. The sequence analysis of the genome for 

Synechocystis sp. PCC 6803 assigned a potential protein-coding region, similar to the 

Synechococcus sp. PCC 7002 ORF found in Donald Bryant’s lab, to the area of the genome 

sll0487 (Accesssion No. X05302) (H.R Leonard, 2002). Genomic sequencing of several 

cyanobacterial strains, including Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, 

has provided very useful information in identifying the candidate gene that functions to 

methylate PBP. Gene homologs of the sll0487 gene encoding a hypothetical methyltransferase 

from Synechocystis sp. PCC 6803 have been found to be located upstream of the apcE gene in 

the genomes of Synechococcus sp. PCC 7002 and several other cyanobacteria. As shown in 

Figure 9, this gene exists in all of the sequenced genomes of cyanobacteria. Based on the 

bioinformatic analysis and results of characterization of mutants in two different cyanobacterial 

strains, the cyanobacterial gene sll0487 from Synechocystis sp. PCC 6803 is designated as the 

cpcM gene. 

 When the Synechocystis sp. PCC 6803 cpcM gene was compared against the Genbank 

database the highest scored hit had a high sequence similarity (65%) to a SAM-dependent 

methyltransferase from the cyanobacterium Nostoc punctiforme PCC 73102, and the next highest 

scored hits were putative methyltransferases from other cyanobacteria. A conserved domain 

search resulted in significant similarities with several methylases including SAM-dependent 

methyltransferases (64.6%). This cpcM gene was also only found in genomes of organisms that 

contain phycobiliproteins. The proximity of this ORF to a phycobiliprotein structural gene and 

its similarity to other methylases made this gene product, CpcM, a candidate for the asparagine 

methylase.  
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Figure 9: Phylogenetic tree of CpcM proteins from cyanobacteria. Amino acid sequences of CpcM proteins 
were compared from Synechococcus sp. PCC 7002 (7002), Synechocystis sp. PCC 6803 (6803), Anabaena sp. PCC 
7120 (7120), Nostoc punctiforme PCC 73102 (73102), Anabaena variabilis ATCC 29413 (29413), 
Thermosynechococcus elongatus BP-1 (BP 1), Synechococcus sp. WH8102  (8102), Crocosphaera watsonii 
WH8501 (8501), Trichodesmium erthraeum IMS101 (IMS101), Gloeobacter violaceus PCC 7421 (7421), 
Synechococcus elongatus PCC 7942 (7942), Synechococcus sp. PCC 6301 (6301), Prochlorococcus marinus 
MIT9313 (MIT9313), Prochlorococcus sp. CC9605 (CC9605), Prochlorococcus sp. CC9902 (CC9902), 
Prochlorococcus marinus MIT9313 (MIT9313) (G.Shen, W.M. Schluchter, and D.A. Bryant unpublished results). 
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 Previously, the cpcM gene was inactivated by interposon mutagenesis (H.R. Leonard, 

2002). The cpcM mutant as compared to the wild-type demonstrated a 32.5% and 13.7% 

decrease in doubling time when grown with glucose and without glucose, respectively (H.R. 

Leonard, unpublished results). State transition measurements using fluorescence emission 

spectra during the exponential phase and under green light resulted in no light-induced transition 

from state 2 to state 1 in the cpcM mutant and impaired excitation energy transfer from 

phycocyanin to allophycocyanin and from Photosystem I (G. Shen, H. Leonard, W. Schluchter, 

D.A. Bryant, unpublished results). This phenotype was consistent with CpcM being the 

asparagine methyl transferase. 

 

 1.5.2 α Subunit Lyases: CpcE/F and PecE/F 

 The first phycobiliprotein lyases discovered were CpcE and CpcF from the phycocyanin 

of the cyanobacterium Synechococcus sp. PCC 7002. The cpcE and cpcF genes were first 

identified because they were present in an operon including the PBP structural genes: cpcA, 

cpcB, cpcC, and cpcD. The function of the cpcE and cpcF genes were explored using knockout 

mutagenesis techniques resulting in mutants that were yellow-green in color, had increased 

doubling times, and low levels of phycocyanin (Zhou et al., 1992). About 90% of the 

phycocyanin lacked a phycocyanobilin chromophore on the α subunit, however the β subunit of 

PC had the correct bilin incorporated at both cysteinyl residues (Fairchild et al., 1992). Because 

knocking out the cpcE and cpcF genes resulted in cyanobacterial cells that could not attach PCB 

to the α subunit of PC (Swanson et al., 1992), the authors concluded that these genes might 

encode the lyases for bilin attachment to the α subunit.  
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 Fairchild et al. (1992) performed in vitro reactions with recombinant cpcE and cpcF, 

PCB, and apo-α PC attached to resin. The product of this reaction was holo-α PC (protein with 

bilins attached) which was determined by absorbance and fluorescence spectroscopy. Additional 

work by Fairchild and Glazer (1994) showed that CpcE and CpcF form a heterodimer that 

attaches PCB to PC. Tooley et al. (2001) recreated the pathway of α PC biosynthesis within 

Escherichia coli. They created two plasmids: one plasmid contained all the essential genes for 

bilin biosynthesis, including enzymes that convert heme to PCB and another plasmid that 

contained the genes cpcA (apo-α PC) and cpcE and cpcF (lyases). After induction of the 

products, one-third of the apo-α PC was converted to holo-α PC. Through spectroscopic and 

SDS-PAGE analysis, this holo-α PC demonstrated similar absorbance and fluorescent properties 

as compared to native PC found within cyanobacteria. No mesobiliverdin was found in 

Escherichia coli meaning that there was no non-enzymatic addition of bilin which would result 

in the unnatural addition of mesobiliverdin instead of the enzymatic addition of phycocyanobilin, 

the correct bilin.  

 Other α subunit lyases discovered are PecE and PecF from Anabaena sp. PCC 7120, a 

cyanobacterium that contains phycoerythrocyanin (PEC) in addition to phycocyanin in its rods. 

The genes pecE and pecF were found in the pec operon containing other PEC structural genes: 

pecB, pecA, and pecC (Jung et al., 1995).  The β subunits of PEC and PC carry two PCB 

chromophores at cysteinyl residues β-82 and β-153, but the PEC α subunit carries one 

phycoviolobilin (PVB) (see Figure 2) at cysteinyl residue α-84 (Tooley and Glazer, 2002). The 

pecE and pecF genes of Anabaena sp. PCC 7120 show 47% similarity to cpcE and cpcF genes of 

Synechococcus sp. PCC 7002. Jung et al. (1995) created pecE and pecF single and double 
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knockout mutants, and similar to the cpcE and cpcF mutants, these mutants produced less PEC, 

and the α subunit had the incorrect bilin attached. 

 Zhao et al. (2000) performed in vitro reactions by adding overexpressed pecE and pecF 

from Escherichia coli to apo-α PEC and PCB resulting in the product holo-α PEC that was 

identical to native holo-α PEC found inside cyanobacteria based on absorbance spectroscopy. 

When apo-α PEC was incubated with PCB without PecE and PecF, the bilin adduct formed was 

mesobiliverdin instead of PVB which suggests that PecE and PecF proteins are necessary for the 

addition of PCB and then its subsequent isomerization to PVB. Further research has concluded 

that PecE is responsible for attachment of PCB to PEC and PecF is responsible for the 

isomerization of PCB to PVB (Storf et al., 2001; Zhao et al., 2002). Tooley and Glazer (2002) 

recreated the pathway of α PEC biosynthesis within Escherichia coli. They created two 

plasmids: one plasmid contained all the essential genes for PCB biosynthesis and another 

plasmid that contained the genes pecA (apo-α PEC) and pecE and pecF (lyases). After induction 

of the products, two-thirds of the apo-α PEC was converted to holo-α PEC. This holo-α PEC 

demonstrated similar absorbance and fluorescent properties as compared to native PEC found 

within cyanobacteria (Tooley and Glazer, 2002). 

  

 1.5.3 β Subunit Lyases: CpcS and CpcT 

 Until recently, very little was known about the attachment of bilins to the two cysteine 

residues of the phycocyanin β subunit, β-82 and β-153. In 2002 Cobley et al., discovered a gene 

required for the expression of the cpe operon in the cyanobacterium Fremyella diplosiphon 

called cpeR. One operon contains the genes encoding the α and β subunits of phycoerythrin (PE), 

cpeA and cpeB. The PE linker polypeptide operon contains the genes: cpeC, cpeD, cpeE, cpeS, 
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cpeT, and cpeR. The cpeS and cpeT genes were found in the genomes of other organisms 

containing phycobiliproteins, even in species lacking phycoerythrin. A cpeT transposon mutant 

was lacking in PE, and initially Cobley believed that the CpeT protein was involved in the 

regulation of transcription for the PE operon (J. Cobley, personal communication). However, 

there was no direct evidence that the cpeS and cpeT genes were transcriptional regulators as they 

had no sequence similarity to such DNA binding proteins.  

 Recently, a group of four genes: cpcS, cpcT, cpcU, and cpcV have been identified in 

Synechococcus sp. PCC 7002 that show similarity to these cpeS and cpeT genes. Three of the 

genes are similar to the cpeS gene found in Fremyella diplosiphon: cpcS, cpcU, and cpcV, and 

there is one gene that is an ortholog of the Fremyella diplosiphon gene cpeT, cpcT. Shen et al. 

(2006) created a cpcT mutant in Synechococcus sp. PCC 7002 which contained 40% less PC than 

wild-type and produced smaller PBS with red-shifted absorbance and fluorescence. Purified PC 

from the mutant was cleaved with formic acid and analyzed via SDS-PAGE. Results showed that 

there was no PCB bound to the peptide containing cysteine β-153. Recombinant CpcT was used 

to perform in vitro bilin addition assays with apo-PC (CpcB/CpcA) and PCB. The reaction 

products had an absorbance maxima between 597 and 603 nm as compared to 638 nm for control 

reactions (with mesobiliverdin attached). After trypsin digestion and Reverse-Phase HPLC, the 

CpcT reaction product had one major PCB-containing peptide. This peptide had a retention time 

identical to that of the tryptic peptide that includes PCB-bound, cysteine β-153 of wild-type PC. 

Shen et al. (2006) concluded, from characterization of the cpcT mutant and in vitro biochemical 

assays, CpcT is a new PCB lyase that specifically attaches PCB to cysteine β-153 of PC. 

 Zhao et al. (2006) expressed the gene alr0617, which is homologous to cpeS and cpcS,  

from the cyanobacterium Anabaena sp. PCC 7120 in Escherichia coli. The gene product (CpeS) 
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was then incubated with PCB and CpcB which resulted in a rapid increase of absorption around 

619 nm and with a fluorescence emission around 643 nm. In both cases, PC and PEC, the 

binding reactions to cysteine β-82 catalyzed by CpeS are at least 10-fold increased compared to 

the spontaneous, non-enzymatic addition of PCB to the respective subunits. Zhao et al. (2006) 

concluded that CpeS catalyzes the site-selective attachment of PCB to cysteine β-82 in both 

CpcB and PecB. 

 Recently, it was shown that Synechococcus sp. PCC 7002 proteins CpcS and CpcU form 

a 1:1 complex and catalyze the addition of phycocyanobilin to the β-82 cysteinyl residue on 

phycocyanin in vitro (N. Saunée, 2006). Bilin addition reactions using the CpcSU complex  and 

apo-CpcBA showed the addition of PCB to the β-82 cysteinyl residue. The PCB was generated 

in situ from PcyA using ferredoxin for the 4 electron reduction of biliverdin to PCB 

(Frankenburg et al., 2001; Frankenburg and Lagarias, 2003). After incubation at 30°C for four 

hours a color change from blue-green to blue was visible. Absorbance and fluorescence spectra 

maxima of the reaction sample were 621 nm and 638 nm, respectively, which were different 

from the control reactions (no lyases added) and consistent with the presence of PCB at β-82 

(absorbance and fluorescence maxima at 620 nm and 640 nm, respectively) (Debreczeny et al., 

1993). PcyA bilin addition reactions with apo-CpcBA and either CpcS or CpcU alone resulted in 

results similar to the control (N.Saunée, 2006).  

 To determine which cysteinyl residue the CpcSU lyase was adding to, tryptic digestion 

and Reverse-Phase HPLC was performed on a PcyA bilin addition reaction sample. The CpcSU-

product and Synechococcus sp. PCC 7002 holo-phycocyanin were each digested with trypsin. 

The products of the trypsin cleavage were injected onto a C18 HPLC reverse phase column and 

the elution profiles were analyzed. The holo-PC had three peaks: α-84 with a retention time of 
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20.1 minutes, β-82 with a retention time of 23.1 minutes, and β-153 with a retention time of 30.1 

minutes. The CpcSU reaction sample only had one peak with a retention time of 23 minutes 

corresponding to that of the β-82 cysteinyl residue PCB site. This indicated that CpcSU is a lyase 

specific for bilin attachment at the Cys-82 on β phycocyanin of Synechococcus sp. PCC 7002 (N. 

Saunée, 2006).  

 Synechococcus sp. PCC 7002 PC β subunit has two PCB attachment sites, β-153 and β-

82, and each requires two different lyases to perform this attachment, CpcT for the former and 

CpcSU for the latter. The reason that separate lyases are required for the two sites may have to 

do with the stereochemistry of the attachment sites. The PCB that attaches to the β-153 cysteine 

has S stereochemistry on the chiral carbon at C31, whereas the PCB that attaches to the β-82 

cysteine has R stereochemistry on the chiral carbon at C31 (Figure 10) (Schirmer et al., 1987; 

Shen et al., 2006; Zhao et al., 2006). The β-153 site has been shown to have S stereochemistry in 

all solved x-ray crystal structures of phycobiliproteins (Duerring et al., 1990; Duerring et al., 

1991; Ritter et al., 1999). With this information Shen et al., (2006), hypothesized that it is 

probable that CpcT and its paralogs may also be responsible for attachment of any possible 

substrate to the β-153 or its corresponding site (Shen et al., 2006). A compilation of all lyases 

used to chromophorylate Synechococcus sp. PCC 7002 phycocyanin and their locations are 

summarized in Figure 11. 

 

1.6 Purpose of this Work 

 The first part of the research presented here is to further characterize the sll0487 gene 

(cpcM) from the cyanobacterium Synechocystis sp. PCC 6803. Recombinant CpcM from 

Synechocystis sp. PCC 6803 will be assayed for methyl transferase activity to phycobiliprotein  
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Figure 10: Structure of phycocyanobilin (PCB) in the R and S stereochemistry forms (modified from Shen et 
al., 2006). 
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Figure 11: Crystal structure of phycocyanin. Summary of lyases required for addition of phycocyanobilin to 
phycocyanin in Synechococcus sp. PCC 7002. Stereochemistry is shown for α-84 (31 chiral carbon as R 
stereochemistry), β-82 (31 chiral carbon as R stereochemistry), and β-153 (31 chiral carbon as S stereochemistry) 
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subunits in vitro using [methyl-3H]S-adenosylmethionine. Through scintillation counting and 

autoradiograms enzymatic activity can be analyzed and quantitated.  

 The second part of this research focuses on phycobiliprotein biosynthesis in 

Synechocystis sp. PCC 6803. Synechocystis sp. PCC 6803 contains two genes that are cpeS-like 

genes, slr2049 and sll0853, which are denoted cpcS and cpcU, respectively. This cyanobacterium 

also contains one cpeT-like gene, slr1649, denoted cpcT. The first goal of this part of the 

research is to clone these genes into plasmids and then purify the recombinant proteins from 

Escherichia coli. The second goal is to perform bilin addition reactions with apo-PC to 

determine if these proteins are in fact adding a bilin to either or both of the β subunit bilin 

attachment sites, β-82 and β-153. Lastly, biochemical analysis will be used to determine if the 

correct bilin addition product occurred in the presence of these lyases. These results can be 

compared to those achieved for Anabaena sp. PCC 7120 CpeS and for Synechococcus sp. PCC 

7002 CpcSU (heteromer). 
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MATERIALS AND METHODS 

 

Materials: 

 All chemicals were purchased from Fisher Chemical Company (Houston, TX) and Sigma 

Chemical Company (St. Louis, MO). Restriction enzymes were purchased from New England 

Biolabs (Beverly, MA) and Promega Corporation (Madison, WI). The Geneclean kits were 

purchased from Qbiogene (Carlsbad, CA). PCR primers were purchased from Qiagen (Alameda, 

CA) and Operon Biotechnologies (Huntsville, AL). QIAquick PCR purification kit and QIAprep 

spin miniprep kit were purchased from Qiagen Incorporated (Valencia, CA). PCR Master Mix 

was purchased from Promega Corporation (Madison, WI). DH5α, TOP10, and BL21DE3 cells 

were purchased from Invitrogen (Carlsbad, CA). BL21 and BL21-T1
R cells were purchased from 

Sigma-Aldrich Incorporated (St. Louis, MO). Plasmid midiprep kit and SDS-PAGE gels were 

purchased from Bio-Rad Laboratories (Hercules, CA). Big Dye was purchased from Applied 

Biosystems (ABI) (Foster City, CA). Amplify solution and [methyl-3H]S-adenosylmethionine 

was purchased from Amersham BioSciences (Piscataway, NJ). S-adenosylmethionine was 

purchased from Sigma Chemical Company (St. Louis, MO) and nitrocellulose filters were 

purchased from Fisher Chemical Company (Houston, TX). Kodak tritium sensitive film, 

developer and fixer solutions were purchased from Sigma-Aldrich Incorporated (St. Louis, MO). 

Sep-pak cartridges were purchased from Waters Corporation (Milford, MA). 
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2.1 Construction of Recombinant Expression Plasmids 

 2.1.1 Polymerase Chain Reaction (PCR) 

 All PCR amplification reactions were performed with 40 pmol of each primer, 10 ng of 

Synechocystis sp. PCC 6803 or Synechococcus sp. PCC 7002 chromosomal DNA, and 25 µl of 

PCR Master Mix. All PCR reactions were performed in the W.M. Keck Foundation Lab using a 

Thermocycler (i-cycler, Bio-Rad). The PCR amplification program consisted of: 1) an initial 

denaturing step of 4 minutes at 95°C, 2) a second denaturing step for 30 seconds at 95°C, 3) an 

annealing step for 30 seconds at 50°C, 4) an extension step for 1 minute at 72°C (this cycle of 

steps 2-4 was repeated 35 times), 5) 7 minutes at 72°C, 6) the cycle was held at 4°C until 

retrieved. QIAquick PCR purification kit was used to remove any unincorporated primers and 

dNTPs. Following manufacturer guidelines the PCR product was absorbed to a silica-membrane 

while any other contaminants passed through the column without binding. The pure PCR product 

was eluted in water. 

  

 2.1.2 DNA Purification from Agarose Gels 

 Electrophoresis DNA separation on agarose gel for PCR and purification of digested 

products was performed using DNA Fragment Purification Grade agarose. Agarose gels were 

0.8% agarose in 1X Tris Acetate EDTA (TAE) buffer [0.4 M Tris-acetate (pH 8.0), 1 mM 

EDTA]. Gels ran for 60 minutes at 100 volts using an EC570-90 voltmeter (EC Apparatus 

Corporation, Holbrook, NY). After separation, gels were then stained in 10 mg/ml ethidium 

bromide for 15 minutes and visualized under ultraviolet (UV) light. The DNA bands were 

excised from the gel and purified using manufacturer guidelines in the Geneclean kit. 
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 2.1.3 Restriction Enzyme Digestion and Ligation 

 Four different vectors were used to create recombinant expression plasmids: pGEX-2T, 

pET100, pBS150V, and pAED4. The pGEX-2T vector contains an ampicillin resistance gene 

and contains a section of DNA that codes for an extra 232 amino acids at the N-terminus. This 

section encodes the protein glutathionine-S-transferase (GST) fusion tag, which makes the 

recombinant protein easy to purify using glutathione agarose chromatography. The pGEX-2T 

vector also has a lac fusion promoter that allows the protein to be expressed when lactose (or 

IPTG) is present. The pET100 vector (Invitrogen) contains an ampicillin resistance gene, a lac 

fusion promoter, and contains a section of DNA that codes for an extra 37 amino acids at the N-

terminus, which includes six histidines. This series of histidines, called a his-tag (HT), makes the 

protein easy to purify by metal affinity chromatography (nickel-NTA resin). The pBS150V 

vector has a spectinomycin resistance gene, a lac fusion promoter, and also encodes a his-tag 

from the extra 23 amino acids at its N-terminus. The pAED4 vector contains an ampicillin 

resistance gene and a T7 promoter cloned into it, but contains no fusion tag. BL21DE3 cells have 

the T7 RNA polymerase gene cloned behind the lac promoter, which is why pAED4 plasmids 

must be transformed into BL21DE3 cells to promote protein expression. 

 The cleaned PCR amplification product of interest and its corresponding vector were 

digested with restriction enzymes. The digestions were composed of: at least 1 µg of DNA, 1 µl 

of restriction enzyme (10 units/ µl), 1 µl of 10X restriction enzyme buffer, and ddH2O to give a 

total volume of 10 µl. The digestion reactions were allowed to incubate at 37°C for 1 hour then 1 

µl of 10X DNA loading buffer was added to each digest. The digests were then separated on a 

0.8% agarose gel and the bands were purified. The digested gene of interest and vector were 

added together and incubated at room temperature (16°C) overnight. The ligations were 
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composed of: 200 ng of digested PCR product, 50 ng of digested vector, 1 µl of T4 DNA ligase, 

1 µl of 10X ligase buffer, and ddH2O to give a total volume of 10 µl. 

  

 2.1.4 Transformation 

 After overnight incubation, the ligations were transformed into either Top10 or DH5α 

Escherichia coli cells using the method suggested by supplier. Transformation was obtained by 

adding 5 µl of ligation to 50 µl of cells. This mixture was put on ice for 5 minutes after a light 

tapping and then heat shocked at 42°C for 30 seconds. After the heat shock, the cells were placed 

on ice for 2 minutes and 250 µl of S.O.C [0.5% Bacto-yeast extract (w/v), 2% Bacto-tryptone 

(w/v), 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 1 mM NaOH, 20 mM glucose] was added. 

Next, the cells were placed in a 37°C water bath for 1 hour. 

 Luria-Bertani [LB, 1% NaCl (w/v), 1% Bacto-tryptone (w/v), and 0.5% Bacto-yeast 

extract] plates with either ampicillin (100 µg/ml) or spectinomycin (100 µg/ml) were used to 

plate the transformations. The appropriate antibiotic was used to select for cells that contained 

vectors which hopefully contained inserts as well. The entire transformation sample was about 

300 µl; this allowed for 100 µl and 200 µl aliquots to be spread plated on two separate antibiotic 

LB plates. 

  

 2.1.5 Minipreps and Midipreps 

 Plasmid DNA was purified using the miniprep method from each colony grown in 5 ml 

LB with antibiotics using manufacturer’s guidelines from the QIAprep spin miniprep kit. After a 

0.8% agarose gel confirmed the correct size of the transformed molecule, another digest was 

performed on the ligated construct. The same enzymes used to originally digest both the gene of 
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interest and vector were used to digest the ligated vector using the same protocol. The digested 

DNA was then separated on a 0.8% agarose gel to confirm that bands of DNA representing the 

correct sizes of the insert and vector appear confirming a correct clone. A large scale midiprep 

(from a 50 ml LB with antibiotics culture) is then performed using the midiprep kit, again 

following manufacturer guidelines. Midiprep DNA was used for sequencing.  

  

 2.1.6 cpcBA, apcAB, apcFA, cpcM, cpcS, cpcU, and cpcT 

 The cpcB and cpcA genes were amplified together by PCR from wild-type Synechocystis 

sp. PCC 6803 chromosomal DNA using oligonucleotides cpcB.1 and cpcA3’ (see Table 1) 

(W.M. Schluchter, unpublished results). All clones were made from 6803 chromosomal DNA 

unless otherwise specified. After PCR purification, the resulting 1.3-kb product was cloned into 

the 5.2-kb his-tagged vector pBS150V using restriction enzymes NdeI- and HindIII (Figure 12).   

 The apcA and apcB genes were amplified together by PCR using the primers apcA5’ and 

apcB3’ (Table 1). After PCR purification, the resulting 1.1 kb apcAB operon was cloned into the 

5.7-kb his-tagged pET100 vector using Invitrogen’s ChampionTM pET Directional TOPO® 

Expression Kit (Carlsbad, CA), following manufacturer directions (Figure 13).  

 The apcF gene was PCR amplified from wild-type Synechococcus sp. PCC 7002 

chromosomal DNA using the primers 7002ApcF5’ and 7002ApcF3’ (Table 1). After PCR 

purification, the resulting 0.6-kb product was cloned into the 5.7-kb his-tagged pET100 vector 

using Invitrogen’s ChampionTM pET Directional TOPO® Expression Kit, following 

manufacturer guidelines. Once the ligation was confirmed correct the apcF/pET100 plasmid was 

then used to construct another clone. The apcA gene was PCR amplified using the primers 

apcA5’Sac and apcA3’Sac (Table 1). The resulting 0.6-kb product was digested with SacI and  
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Table 1: Primers used for PCR amplification. Restriction enzyme sites are underlined. 

  
 
Primer                                       Sequence (5’ to 3’)                                                   Use 

cpcB.1 GGAGATTAATCATATGTTCGACGTATTCAC Amplification of cpcB 
cpcA3’ CCCAAGCTTCCAGGCCAGCTAGAAT Amplification of cpcA 
apcA5’ CACCATGAGTATCGTCACGAAATCAATCTG Amplification of apcA 
apcB3’ GGAATTCAGGACTAGCTCAAGCCAGA Amplification of apcB 
7002ApcF5’ CACCATGCGGGACGCTGTTACAAGTC Amplification of apcF 
7002ApcF3’ TCAGATATCTTAGAGATCCACTTCGCTCAGTTC Amplification of apcF 
7002apcA5-Sac ATTTGAGCTCATATCTAGAGGAGGAATC Amplification of apcA 
7002apcA3-Sac AACGGAGCTCCAGAGGGTAAAAACCAC Amplification of apcA 
sll0487.5.2 TTCGGATCCATGTTGTCCAACTCCGAC Amplification of cpcM 
sll0487.3.2 AATTCCCGGGCATCGAGAAGTCG Amplification of cpcM 
slr2049cpeS.5 GAGTTAATCCATATGGATGCAATGGAATTCTTTCGC Amplification of cpcS 
slr2049cpeS.3 CTGGAAGCTTACGGGGCCTACCAGCCACA Amplification of cpcS 
sll0853cpeS2.5 CAATAGCCTCATATGAAGCCTGTTGCCCCAAGAA Amplification of cpcU 
sll0853cpeS2.3 GTACTCGAGAACTGTTACTCTGCCGGAGG Amplification of cpcU 
slr1649cpeT1.5 CAATAACTACATATGTCCCATTCCACTGATCTTT Amplification of cpcT 
slr1649cpeT1.3 GTCGAAGCTTGCTAAAAACTAACTTCATC Amplification of cpcT 
slr1649GST5 TTGGATCCATGTCCCATTCCACTGATCTTTCC Amplification of cpcT 
slr1649GST3 GTGAATTCTGGCTAAAAACTAACTTCATCGGCG Amplification of cpcT 
pBS150NcoI CAGACCATGGGTCATCATCATCATCATCACG Sequencing of cpcBA 
pBS150V.3 AAATGCAGGGCCAGTGCCAAGCTT Sequencing of cpcBA 
T7 Promoter 
Primer 

TAATACGACTCACTATAGGG Sequencing of apcAB, 
apcFA 

T7 Reverse 
Seq. Primer 

TAGTTATTGCTCAGCGGTGG Sequencing of apcAB, 
apcFA 

pGEX2T5 GCCTTTGCAGGGCTGGCAAG Sequencing of cpcM, 
cpcT 

pGEX2T3 CCGTCATCACCGAAACGCG Sequencing of cpcM, 
cpcT 

pAED45.2 AGCAGCCGGATCTGATATCATCG Sequencing of cpcS, 
cpcU 

pAED43.2 TAACGGATCCAAGGAGATATACATATG Sequencing of cpcS, 
cpcU 
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Figure 12: Plasmid map for Synechocystis sp. PCC 6803 clone cpcBA/pBS150V. 
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Figure 13: Plasmid map for Synechocystis sp. PCC 6803 clone apcAB/pET100. 
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cloned into SacI-digested apcF/pET100 plasmid of 6.3-kb such that apcA will be cotranscribed 

with apcF. The plasmid was digested with HindIII to confirm the correct orientation of the apcA 

gene within the plasmid. A plasmid construct of apcFA/pET100 (HT-apcF) was made and a 

midiprep was performed (Figure 14) (A. Fletcher, B. Turner, and W.M. Schluchter, unpublished 

results). Primers used to PCR amplify the cpcM gene were sll0487.5.2 and sll0487.3.2 (Table 1). 

The resulting 1.3-kb product was digested with BamHI and SmaI and cloned into BamHI-and 

SmaI-digested GST-tagged cloning vector pGEX-2T of 4.9-kb (Figure 15).  

 The cpcS gene was amplified by PCR using the oligonucleotides slr2049cpeS.5 and 

slr2049cpeS.3 (Table 1). After PCR purification, the resulting 0.6-kb cpcS gene was cloned into 

the 3.3-kb vector pAED4 using the restriction enzymes NdeI and HindIII (Figure 16). The cpcU 

gene was amplified by PCR using the primers sll0853cpeS2.5 and sll0853cpeS2.3 (Table 1). 

After PCR purification, the resulting 0.6-kb cpcU gene was cloned into the 3.3-kb vector pAED4 

using the restriction enzymes NdeI and XhoI (Figure 17). 

The cpcT gene was the only gene ligated into two different vectors. The gene was 

amplified by PCR using the primers slr1649cpeT1.5 and slr1649cpeT1.3 (Table 1). After PCR 

purification, the resulting 0.6-kb cpcT gene was cloned into the 3.3-kb vector pAED4 using the 

restriction enzymes NdeI and HindIII (Figure 18). The cpcT gene was also PCR amplified using 

the primers slr1649GST5 and slr1649GST3 (Table 1). After PCR purification, the resulting 0.6-

kb gene was cloned into the 4.9-kb GST-tagged vector pGEX-2T using the restriction enzymes 

BamHI and EcoRI (Figure 19). Only the GST-tagged cpcT plasmid was used for further study. 
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Figure 14: Plasmid map for Synechococcus sp. PCC 7002 clone apcFA/pET100. 
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Figure 15: Plasmid map for Synechocystis sp. PCC 6803 clone cpcM/pGET-2T. 
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Figure 16: Plasmid map for Synechocystis sp. PCC 6803 clone cpcS/pAED4. 
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Figure 17: Plasmid map for Synechocystis sp. PCC 6803 clone cpcU/pAED4. 
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Figure 18: Plasmid map for Synechocystis sp. PCC 6803 clone cpcT/pAED4. 
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Figure 19: Plasmid map for Synechocystis sp. PCC 6803 clone cpcT/pGEX-2T. 
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2.2 Sequencing 

All recombinant expression plasmid clones were sequenced in the W.M. Keck 

Conservation and Molecular Genetics laboratory to confirm that the clones were correct and no 

mutations had occurred. To sequence the genes the following was combined: 2 µl of template 

DNA (300-500 ng), 1 µl of primer (0.8 pmol/µl), and 2 µl of Big Dye. The cycle sequence on the 

Thermocycler was as follows: an initial denaturing step performed only once, a second 

denaturing step at 96°C for 2 seconds, an annealing step at 50°C for 15 seconds, and an 

extension step at 60°C for 15 seconds. The three steps were repeated 25 times. To remove 

unincorporated dNTPs and primer, a slurry of Sephadex G-50 was used with a 2.0 ml eppendorf 

tube and a mini-column (USA Scientific). To the tube/column combination 650 µl of Sephadex 

was added and centrifuged for 3 minutes at 14,000 x g. The column was placed in a new 1.5 ml 

eppendorf tube and the DNA sample was added to the column and centrifuged for 3 minutes at 

14,000 x g. The clean samples were then dried in a speed vac for 8 minutes. After drying, 20 µl 

of hi di (formamide) was added to each sample and then loaded into the ABI PRIZM 3100 

Genetic Analyzer. The resulting sequences were then analyzed using the MacVector program 

(Accelrys, San Diego, CA) to compare sequence alignment to actual gene sequence. This 

confirmed if the constructs were correct and if mutations had been introduced. 

 

2.3 SDS-PAGE Analysis 

 The protein samples were boiled for 15 minutes and separated by SDS-PAGE using a 

15% Tris-HCl 8.6 x 6.8 cm resolving gel or a 10-20% Tris-HCl 13.3 x 8.7 cm resolving gel. 15% 

Tris-HCL SDS-PAGE gels were subjected to electrophoresis at 100 volts for 12 minutes 

followed by 45 minutes at 200 volts and 10-20% Tris-HCl gels were electrophoresed for 60 
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minutes at 200 volts. Gels were stained overnight in Coomassie Blue and then destained (10% 

methanol, 10% acetic acid). To assay for the presence of covalent bilins, zinc ions were added to 

bind to bilin for detection by 550 nm Vis light. 100 mM ZnSO4 was added to SDS-PAGE gel 

and incubated for 2-3 minutes. The gel was then scanned for bilin fluorescence at 550 nm and 

images were acquired.  

 

2.4 Recombinant Protein Production and Purification 

 2.4.1 Protein Production 

 BL21 cells were transformed with the plasmids containing cpcBA, apcAB, apcFA, cpcM, 

and cpcT and streaked onto a LB plate containing the appropriate antibiotic. Plasmids containing 

cpcS and cpcU were transformed into BL21DE3 cells like the plasmids mentioned above. To 

produce proteins encoded from plasmids transformed into BL21DE3 cells, a 50-ml overnight 

starter culture was added to each 1-L LB with the appropriate antibiotic and grown for 4 hours at 

37°C. Gene expression was induced by the addition of 0.5 mM isopropyl β-D-thiogalactoside 

(IPTG), and cells were then allowed to grow for an additional 4 hours. To express genes from 

plasmids transformed into BL21DE3 cells, a 25-ml overnight starter culture was added to each 1-

L LB with the appropriate antibiotic and grown for 6 hours at 30°C. No IPTG was added during 

growth period. All expression cells were harvested by centrifugation at 3273 x g and frozen at -

20°C until later. 

 

2.4.2 CpcBA, ApcAB, ApcFA, and CpcA Purification 

 CpcBA, ApcAB, and ApcFA each contain a subunit that is a his-tagged protein. In the 

case of CpcBA, CpcB is his-tagged and CpcA co-purify with HT-CpcB. In ApcAB, ApcA is his-
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tagged, and ApcB will co-purify with it, and in ApcFA, ApcF is his-tagged, and ApcA will co-

purify with it. The cpcA gene was expressed using the pBS414V vector which encodes HT-CpcA 

and the lyases CpcE and CpcF (Tooley et al., 2001). All his-tagged proteins were purified from 

cells as follows: cell pellets were thawed on ice for around 30 minutes and resuspended in 20 ml 

of cold (0-4°C) buffer 0 [20mM Tris·HCl (pH 8.0), 100 mM Na/KCl]. The suspensions were 

vortexed, homogenized, and then the cells were broken by passage through a French Pressure 

Cell three times at 18,000 psi. Five ml of nickel-nitrilotriacetic acid (Qiagen Incorporated, 

Valencia, CA), or Ni-NTA, was incubated with 10 ml of buffer 0 on ice for 20 minutes then 

centrifuged for 5 minutes at 5,000 x g. After centrifugation of the cell extract at 15,000 x g in a 

Sorvall® GSA rotor for 30 min, to pellet unbroken cells and inclusion bodies, the supernatant 

was applied to a Ni-NTA Glass Econo-Column® (2.5 cm x 10 cm; BioRad, Richmond, CA) 

containing 5 mls of resin. The supernatant was slowly filtered through the resin three times. The 

agarose was washed with one column full each of buffer A1 [20 mM Tris·HCl (pH 8.0), 100 mM 

Na/KCl, 20 mM imidazole, 5% glycerol] buffer B [20mM Tris·HCl (pH 8.0), 1 M Na/KCl] and 

buffer A2 [20 mM Tris·HCl (pH 8.0), 100 mM Na/KCl, 30 mM imidazole]. His-tagged proteins 

were eluted from the agarose with 20 ml buffer C [20 mM Tris·HCl (pH 8.0), 100 mM Na/KCl, 

200 mM imidazole] and the proteins were dialyzed against 2-L buffer 0 and 1 mM β-

mercaptoethanol overnight at 4°C on a magnetic stirrer and against another 2-L for 4 hours 

longer.  

 

2.4.3 CpcM, CpcT, GST, and PcyA Purification 

 GST-tagged proteins CpcM, CpcT, PcyA and GST itself (from the pGEX-2T vector) 

were all purified using Glutathione affinity chromatography. The pcyA/pGEX-2T plasmid was 
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kindly provided by Dr. J. C. Lagarias (U.C. Davis). The pcyA/pGEX-2T plasmid and the pGEX-

2T vector alone were transformed and gene expressed in the same manner as CpcM and CpcT. 

Cell pellets were thawed on ice for around 30 minutes and resuspended in 20 ml of cold (0-4°C) 

buffer 0. The suspensions were vortexed, homogenized, and the cells were then broken by 

passage through a French Pressure Cell three times at 18,000 psi. After centrifugation of the cell 

extract at 15,000 x g for 20 minutes, the supernatant was applied to a glutathione-agarose (Sigma 

Chemical Company, St. Louis, MO) column (2.5 cm x 10 cm) with a 5 ml bed volume that was 

previously washed with 2 column volumes of equilibration buffer [20 mM Tris·HCl (pH 7.5), 

150 mM NaCl]. The lyophilized glutathione agarose powder was also previously swollen by 

adding 10 ml of ddH2O to 740 mg of powder (74 mg/ml) and allowed to swell for at least 2 

hours. The supernatant was filtered through the agarose three times slowly. Another two columns 

full of equilibration buffer was applied to the column, and the protein was eluted using 20 ml of 

elution buffer [50 mM Tris·HCl (pH 8.0), 5 mM glutathione]. Proteins were dialyzed against 2-L 

50 mM Tris·HCl (pH 8.0), 1 mM EDTA, and 1 mM β-mercaptoethanol overnight at 4°C on a 

magnetic stirrer and then in another 2-L for 4 more hours. 

  

 2.4.4 CpcS and CpcU Purification 

 To purify CpcS and CpcU, expression cells were resuspended in 50 mM Tris-HCl (pH 

8.0), vortexed, homogenized, and passed through a French Pressure Cell at 18,000 psi three 

times. Whole cell extracts were centrifuged at 15,000 x g for 20 minutes. The supernatant was 

brought to 45% (w/v) ammonium sulfate and was left at 4°C overnight. The ammonium sulfate 

precipitation was centrifuged at 15,000 x g for 20 minutes. Most of the protein was in the pellet 

so the supernatant was discarded. The pellet was resuspended in 50 mM Tris-HCl (pH 8.0) and 
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dialyzed at 4°C against the same buffer overnight and then another 4 hours in fresh buffer to 

remove the ammonium sulfate. To purify the proteins, anion exchange chromatography was 

performed using a Diethylaminoethyl cellulose (DEAE) column. To make the DEAE column 

200 g of DEAE powder (DE52; Whatman, Maidstone, England) was added to 400 ml of 50 mM 

Tris-HCl (pH 8.0) and stirred on a stir plate for 2 hours. The solution then sat overnight at room 

temperature to let the DEAE swell and allow any fines rise to the top. The fines at the top of the 

DEAE slurry were poured off the next day. Then a DEAE column (2.5 cm x 20 cm) was poured 

and equilibrated with 2 column volumes of buffer containing 50 mM Tris-HCl (pH 8.0) and 1 

mM NaN3 (Buffer A). Using 10 ml aliquots of the protein solution, the DEAE column was 

loaded using the BioLogic LP system at room temperature (BioRad, Richmond, CA). 

 The column program (flow rate of 2 ml/min) is as follows: 0-30 minutes, 100% Buffer A; 

30-150 minutes, up to 100% Buffer B [50 mM Tris-HCl (pH 8.0), 1 M NaCl, 1mM NaN3]; 150-

180 minutes, 100% Buffer B; 180-210 minutes, 100% Buffer A. Fractions with ≥ 0.08 

absorbance at 280 nm were collected and examined for purity by SDS-PAGE. Fractions 

containing protein were pooled and dialyzed against 50 mM Tris-HCl (pH 8.0) overnight at 4°C 

and then another 4 hours in fresh buffer. CpcS and CpcU were concentrated using Amicon Ultra-

15 concentrators (Millipore Corporation, Billerica, MA) and stored in 2 ml aliquots at -20°C 

until needed.  

 

2.5 Production of Recombinant HT-Holo-α-PC 

  Chromophorylation of recombinant Synechocystis sp. PCC 6803 phycocyanin α subunit 

was achieved by using two expression vectors containing genes from Synechocystis sp. PCC 

6803, pBS414V and pAT101, which were designed by Tooley et al., (2001). Both plasmids were 
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kindly provided by Dr. A. N. Glazer (U.C. Berkeley). The cassette in pBS414V vector contains a 

histidine tag and cpcA along with cpcE and cpcF, and provides all of the components (apo-HT-

CpcA, CpcE, and CpcF) known to be both necessary and sufficient for the correct addition of 

PCB to apo-CpcA. The cassette in pAT101 contains hox1 and pcyA, which provides the enzymes 

required for the conversion of heme to PCB, the proximal precursor to the polypeptide-bound 

bilin. By introducing them together into Escherichia coli cells, they produced all of the 

components and catalytic functions required for the formation of his-tagged holo-α-phycocyanin 

in vivo. Transformation, protein overexpression, and purification protocols were followed as 

addressed above for the other his-tagged proteins.  

 

2.6 Purification of PC from the Synechococcus sp. PCC 7002 cpcM Mutant 

 The mutant was created by our collaborators G. Shen and D.A. Bryant at the 

Pennsylvania State University. For insertional inactivation of the cpcM gene, a 1 kb DNA 

fragment, which encodes the aacCI gene, which confers resistance to gentamicin, was inserted 

into the unique BglII site within the cpcM coding sequence. This construction was used to 

transform Synechococcus sp. PCC 7002 cells. Transformants were selected on medium A+ plates 

containing gentamicin and were subjected to several rounds of streaking on selective media. 

Segregation of the cpcM and cpcM::aacCI alleles were verified by PCR analysis (G. Shen and 

D.A. Bryant, unpublished results). 

 Synechococcus sp. PCC 7002 cpcM mutant cells were grown by our collaborator G. Shen 

at the Pennsylvania State University then shipped to us frozen. To purify PC (following the 

protocol of Arciero et al., [1988a]), mutant cells were passed through a French Pressure Cell at 

18,000 psi three times. Whole cell extracts were centrifuged at 15,000 x g for 20 minutes. The 
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supernatant was brought to 45% (w/v) ammonium sulfate and was left at 4°C overnight. The 

ammonium sulfate precipitation was centrifuged at 15,000 x g for 20 minutes. The pellet was 

resuspended in 10 mM phophate buffer (pH 7.0) and dialyzed at 4°C against the same buffer 

overnight and then another 4 hours in fresh buffer to remove the ammonium sulfate. To purify 

the proteins, anion exchange chromatography was performed using a Diethylaminoethyl 

cellulose (DEAE) column. To make the DEAE column 200 g of DEAE powder (DE52; 

Whatman, Maidstone, England) was added to 400 ml of 50 mM Phosphate Buffer (pH 7.0) and 

stirred on a stir plate for 2 hours. The solution then sat overnight at room temperature to let the 

DEAE swell and allow any fines rise to the top. The fines at the top of the DEAE slurry were 

poured off the next day. Then a DEAE column (2.5 cm x 20 cm) was poured and equilibrated 

with 2 column volumes of buffer containing 50 mM Phosphate Buffer (pH 7.0). Using 10 ml 

aliquots of the protein solution, the DEAE column was loaded using the BioLogic LP system at 

room temperature (BioRad, Richmond, CA). 

 The column program (flow rate of 1.5 ml/min) is as follows: 0-30 minutes, 100% Buffer 

A [200 mM Phosphate Buffer (pH 7.0)]; 30-150 minutes, up to 100% Buffer B [10 mM Phosphat 

Buffer (pH 7.0)]; 150-180 minutes, 100% Buffer B; 180-210 minutes, 100% Buffer A. Fractions 

with ≥ 0.01 absorbance at 280 nm were collected, and blue-colored fractions were examined for 

purity by SDS-PAGE. Fractions containing protein were pooled and dialyzed against 50 mM 

Phosphate Buffer (pH 7.0) overnight at 4°C and then another 4 hours in fresh buffer. The cpcM 

mutant phycocyanin α and β  subunits were concentrated using Amicon Ultra-15 concentrators 

(Millipore Corporation, Billerica, MA) and stored in 2 ml aliquots at -20°C until needed.  
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2.7 Demonstrating CpcM Methylase Activity 

 2.7.1 Asparagine Methyltransferase Assay 

 Methylase activity was assayed using the protocol of Swanson and Glazer, 1990.  Either 

14.5 µM apo-ApcAB, apo-CpcBA, or  apo-ApcFA was combined with 1.25 µM-GST-CpcM and 

a reaction mixture containing 50 mM-Tris·HCl (pH 8.0), 10 mM-EDTA, 10 mM-dithiothreitol, 

1.6 µM-S-adenosylmethionine, and 0.4 µM-[methyl-3H]S-adenosylmethionine in a total volume 

of 200 µl. Controls were set up with all the above (one for each substrate) except instead of the 

1.25 µM-GST-CpcM, 1.25 µM-GST protein was used. All concentrations were determined by 

using Extinction Coefficients which are listed in Table 2. Reaction mixtures incubated at 30°C 

for up to 3 hrs and were terminated by addition of an equal volume of cold (0-4°C) 10% (v/v) 

trichloroacetic acid (TCA) and incubated overnight at 4°C. Methylase activity was analyzed by 

washing the precipitates onto 25 mm nitrocellulose filters and washing with 30 ml of 5% TCA 

followed by 20 ml of 95% ethanol. Filters were dried at 37°C for 15 min then placed in a 

scintillation tube with 4 ml of scintillation fluid and assayed by scintillation counting for 3H in 

counts per minute (cpm).  Time-controlled assays were also set up using 6803 apo-HT-CpcA 

versus 6803 holo-HT-CpcA and Synechococcus sp. PCC 7002 apo-CpcBA versus Cys-82-PCB-

CpcB/CpcA in a total volume of 78.125 µl and precipitates were separated by SDS-PAGE. 

Multiple assays using 14.5 µM 7002 apo-CpcBA versus PC from cpcM mutant were performed 

in a total volume of 85 µl and were terminated every 2.5 minutes by TCA precipitation prior to 

loading onto SDS-PAGE. 
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Table 2: Molar Extinction Coefficients of proteins used in CpcM methyltransferase assays. 
 
 

                                   Protein                                                                       ε280 

6803 HT-ApcA/ApcB 19,440 ± 5% M-1cm-1 

6803 HT-CpcB/CpcA 29,330 ± 5% M-1cm-1 

7002 HT-ApcF/ApcA 22,000 ± 5% M-1cm-1 

6803 HT-CpcA 21,290 ± 5% M-1cm-1 

7002 CpcBA 26,770 ± 5% M-1cm-1 

6803 GST-CpcM 106,360 ± 5% M-1cm-1 

GST 41,160 ± 5% M-1cm-1 
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 2.7.2 SDS Polyacrylamide Gel Electrophoresis 

 To determine which subunits, if any, were methylated, assays were performed using the 

above reaction procedures. After the TCA precipitates of reaction mixtures incubated overnight, 

the samples were microcentrifuged at 14,000 x g for 15 min. The supernatant was removed, and 

the pellet was resuspended in 20 µl of 50 mM Tris·HCl (pH 8.0) and an equal volume of 2 X 

SDS loading buffer. Pre-stained molecular weight markers (BioRad) were used for protein 

molecular weight determination. The samples were then boiled for 15 minutes and separated by 

SDS-PAGE using either a 15% or 10-20% Tris-HCl resolving gel following SDS-PAGE 

protocol mentioned above. The gel was then soaked in a fixing solution 

(Isoproponal:Water:Acetic Acid in the ratio 25:65:10) and then in Amplify solution (Amersham 

BioSciences) for 30 minutes each, on a rocker. The gel was transferred to whatman paper and 

then dried down at 80°C under vacuum for 30 minutes (8.6 x 6.8 cm) or 60 minutes (13.3 x 8.7 

cm) using a Model 583 Gel Dryer (BioRad, Richmond, CA). The dried down gel was then 

exposed to 3H-sensitive Kodak film at -80°C from 1-3 days. After exposure period, films were 

developed in the dark using Kodak GBX developer and replenisher and Kodak GBX fixer and 

replenisher solutions. Proteins with incorporated 3H were then visualized and images acquired 

using a BioRad densitometer (BioRad, Richmond, CA). 

 

2.8 Demonstrating CpcS, CpcU, and CpcT Lyase Activity 

 2.8.1 In Vitro Bilin Addition Reactions with PCB 

 Bilin addition assays with Synechocystis sp. PCC 6803 proteins were performed using 

phycocyanobilin cleaved and purified from Spirulina sp. The reactions contained (1 mg/ml final 

concentration of all components): 1 ml CpcBA, 200 µl CpcT, and/or 100 µl pAED4 E. coli 
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extract containing vector alone. The reactions also contained 75 mM MgCl2 and 75 mM Hepes 

(pH 7.3). The proteins were incubated on ice for 15 minutes before PCB was added up to a 10 

µM concentration from a 2 M stock in DMSO. PCB (2 µM) was added in 15 minute intervals 

during the first hour of incubation. The reactions incubated at 30°C for a total of two hours in the 

dark. After the assays reacted, fluorescence and absorbance spectra were taken and a sample of 

each reaction was taken for SDS-PAGE analysis. 

   

 2.8.2 In vitro Bilin Addition Reactions with PcyA 

 Biliverdin is reduced by PcyA in two sequential, 2-electron reductions using reduced 

ferredoxin to produce PCB (Frankenberg et al., 2001; Frankenburg and Lagarias, 2003). Only a 

small amount of PCB is produced by PcyA, therefore almost no mesobiliverdin is produced (the 

non-enzymatic bilin addition). Five reactions were set up containing the following: 1) 2 ml of 

purified CpcB/CpcA (1mg/ml) and 200 µl pAED4 control extract 2) 2 ml of CpcB/CpcA and 

200 µl CpcS (1 mg/ml) 3) 2 ml of CpcB/CpcA and 200 µl CpcU (1mg/ml) 4) 2 ml of 

CpcB/CpcA and 200 µl CpcS and 200 µl CpcU 5) 2 ml of CpcB/CpcA and 200 µl CpcT 

(1mg/ml). The following were also added to each reaction mixture: Hepes (pH 7.3) to 75 mM, 

MgCl2 to 75 mM, 6.5 mM glucose-6-phosphate, 1.6 mM NADP+, 1.1 u/ml glucose-6-phosphate 

dehydrogenase, 4.6 µM recombinant Synechococcus sp. PCC 7002 ferredoxin (Gomez-Lojero et 

al., 2004; Schluchter, 1994), 0.025 u/ml Spinach FNR, 10 µM BSA, 5 µM biliverdin (Porphyrin 

Products, Logan, UT), and 10 µM PcyA (Frankenberg et al., 2001; Frankenburg and Lagarias, 

2003). The concentration of biliverdin was determined using the extinction coefficient ε696 = 30.8 

mM-1cm-1 (Schluchter and Glazer, 1997). Reactions incubated in the dark at 30°C for two hours 

then a second aliquot of biliverdin was added (for a final concentration of 10 µM). The reactions 
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were allowed to incubate at 30°C for another two hours. Fluorescence and absorbance spectra 

were taken as described above. 

  

 2.8.3 Absorbance and Fluorescence Spectra 

Absorbance spectra were gathered using a dual-beam Lambda 35 UV-Vis 

spectrophotometer (Perkin Elmer, Shelton, CT). The blank for absorbance scans was 1 ml of 

buffer 0. Absorbance spectra were acquired from 450-750 nm. 

 Fluorescence emission spectra were acquired with slits set a 3 nm (excitation and 

emission) and the excitation wavelength set at 590 nm using a LS 55 Luminescence 

Spectrometer (Perkin Elmer, Shelton, CT). The fluorometer is equipped with a xenon discharge 

lamp (7.3 W average power at 50 Hz) as a light source. Spectra were taken from 600-750 nm. 
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RESULTS 

 

3.1 CpcM: The PBP γ-N-Methylasparagine Methyltrasferase  

 3.1.1 Creation of cpcBA, apcAB, apcFA, and cpcM Clones  

 Working in collaboration with Donald Bryant’s lab at the Pennsylvania State University, 

a gene was identified that showed high probability of being responsible for the methylation of 

the β-72 asparagine residue. After Donald Bryant’s lab cloned the apcE gene, which encodes an 

allophycocyanin core linker protein from Synechococcus sp. PCC 7002, they found a partial 

ORF upstream from this gene, denoted cpcM, which showed similarity to methyltransferases (J. 

Zhou, 1992). Since at the time the genome of Synechococcus sp. PCC 7002 had not yet been 

fully sequenced, the ortholog of the ORF in Synechococcus sp. PCC 7002 was found in 

Synechocystis sp. PCC 6803 (H.R. Leonard, 2002). 

The genes used in this research project were amplified by PCR and cloned as described in 

Materials and Methods. CpcM amino acid sequences from several cyanobacteria were aligned 

using ClustalW and Mac Vector software (Accelrys, San Diego, CA) (Figure 20). CpcM in 

Synechocystis sp. PCC 6803 is very similar in amino acid sequence to all0012 in Nostoc sp. PCC 

7120 cyanobacterium with 71% similarity. Other similarity scores for the CpcM alignment are as 

follows: Nostoc punctiforme PCC 73102 with 71% (unidentified gene name), Anabaena 

variabilis ATCC 29413 with 70% similarity (gene name Ava_2618), Nodularia spumigena CCY 

9414 with 70% similarity (gene name N9414_05394), and Synechococcus sp. PCC 7002 with 

45% similarity (gene name cpcM). All of these ORFs that showed high similarity to CpcM were 

similar to SAM-dependent methyltransferases or similar to other methylases. 
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Figure 20: Alignment of amino acid sequences of Synechocystis sp. PCC 6803 CpcM presumed paralogs from 
different cyanobacteria. Synechocystis sp. PCC 6803 gene name cpcM, Synechococcus sp. PCC 7002 gene name 
cpcM, Nostoc sp. PCC 7120 gene name all0012, Nostoc punctiforme PCC 73102 gene name SAM-dependent 
methyltransferase, Anabaena variabilis ATCC 29413 gene name Ava_2618, and Nodularia spumigena CCY 9414 
gene name N9414_05394. Boxed in grey are the exact matches of amino acid residues. Boxed conserved domains of 
SAM-dependent methyltransferases: red = motif I, blue = post I, green = motif II, and yellow = motif III. 
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 3.1.2 Production and Purification of Recombinant Tagged CpcBA, ApcAB, ApcFA,  
and CpcM 

 
 Synechocystis sp. PCC 6803 his-tagged proteins: CpcB and ApcA, and Synechococcus sp. 

PCC 7002 his-tagged protein ApcF were purified using Ni-NTA resin after harvesting 

overproducing cells as described in Materials and Methods. Previous research by Plank, Toole, 

and Anderson (1995) showed that when CpcB from Synechocystis sp. PCC 6803 was 

insertionally inactivated, no CpcA was detected. Analysis of the mutants showed that by 

interrupting one of the phycocyanin subunits the other subunit was also absent (Plank et al., 

1995). For this reason CpcB and CpcA, ApcA and ApcB, and ApcF and ApcA were expressed 

together. This copurification also allows for a higher yield of soluble protein, and when used in 

the asparagine methyltransferase assays there is an internal control protein with the presence of 

the alpha subunit. Synechocystis sp. PCC 6803 GST-tagged protein CpcM and the GST alone  

were purified using glutathione agarose resin after harvesting expression cells as described in 

Materials and Methods. Purified, tagged samples were analyzed by SDS- PAGE (Figure 21). 

Table 3 shows the calculated molecular weights and isoelectric points for each of the proteins 

used in this project. Synechocystis sp. PCC 6803 HT-CpcB has a calculated molecular weight of 

21 kDa and CpcA has a calculated molecular weight of 17.6 kDa. These copurified proteins 

normally purified in a 1:1 ratio as visualized by SDS-PAGE, but not always. CpcBA was 

sometimes difficult to purify in a 1:1 ratio, but when achieved, those samples were used for 

reactions. These samples were fairly pure with very little other purified proteins (Figure 21A, 

lane 1), except for a ~25 kDa protein commonly seen in most Ni-NTA purifications from E. coli. 

The Synechocystis sp. PCC 6803 HT-ApcA has a calculated molecular weight of 21.5 kDa and 

ApcB has a calculated molecular weight of 17.2 kDa. These proteins, visualized via SDS-PAGE, 

always purified in a 1:1 ratio and the samples were always really pure with only small amounts  
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Figure 21: SDS-PAGE analysis of purification of Synechocystis sp. PCC 6803 tagged proteins CpcBA, ApcAB, 
CpcM, and CpcT and Synechococcus sp. PCC 7002 tagged proteins ApcFA; and the GST protein.  Panel A) 
Samples were loaded as follows: phycobiliprotein subunits HT-CpcB/CpcA (lane 1) HT-ApcA/ApcB (lane 2) GST-
CpcM (lane 3) glutathione-S-transferase (lane 4) Panel B) HT-ApcF/ApcA (lane 1). Molecular weight standards 
were loaded into the lane labeled “S”; the size of the  bands is indicated on the left.   
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Table 3: Calculated molecular weights and Isoelectric points. 
 

            Protein*                      Calculated Molecular            Calculated Isoelectric  
                                                           Weight                                      Point 
CpcB (his-tagged) 21,005.50 Da 5.75 

CpcA 17,588.10 Da 5.27 

ApcA (his-tagged) 21,539.20 Da 5.36 

ApcB 17,217.20 Da 5.30 

7002 ApcF (his-

tagged) 

22,824.00 Da 4.52 

7002 ApcA 17,297.47 Da 4.48 

CpcM (GST-tagged) 72,824.50 Da 5.52 

CpcS 21,945.16 Da 4.45 

CpcU 21,212.20 Da 5.49 

CpcT (GST-tagged) 49,566.34 Da 5.73 

GST 26,989.30 Da 6.45 

Holo-CpcA (his-

tagged) 

21,052.80 Da 6.12 

CpcA (his-tagged) 20,465.80 Da 6.12 

 

*All recombinant proteins are from Synechocystis sp. PCC 6803 unless indicated otherwise. 
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of the 25 kDa E. coli protein (Figure 21A, lane 2). Synechocystis sp. PCC 6803 GST-CpcM has a 

calculated molecular weight of 72.8 kDa and when visualized by SDS-PAGE had a protein 

migrating at the size expected for GST-CpcM (Figure 21A, lane 3). Two other bands were 

visualized in lane 3 and are likely proteolytic degradation products of GST-CpcM (CpcM at 45 

kDa and GST at 27 kDa). Purified GST is shown in Figure 21A lane 4 and has a calculated 

molecular weight of 27 kDa. Synechococcus sp. PCC 7002 HT-ApcF has a calculated molecular 

weight of 22.8 kDa, and ApcA has a calculated molecular weight of 17.3 kDa. ApcFA separated 

by SDS-PAGE in nearly a 1:1 ratio, but was not as pure as an ideal sample with other proteins 

appearing on the gel (Figure 21B, lane 1). 

 

 3.1.3 Recombinant Holo-α-PC 

 Chromophorylation of recombinant Synechocystis sp. PCC 6803 phycocyanin α subunit 

was achieved by using two expression vectors containing genes from Synechocystis sp. PCC 

6803, pBS414V (containing cpcA along with cpcE and cpcF) and pAT101 (containing hox1 and 

pcyA), which were designed by Tooley et al., (2001). By introducing them together into 

Escherichia coli cells, they produced all of the components and catalytic functions required for 

the formation of his-tagged holo-α-phycocyanin in vivo. The protein was purified using Ni-NTA 

(as described in Materials and Methods) and a sample was analyzed by SDS-PAGE (Figure 22). 

The gel was incubated with ZnSO4 followed by Coomassie staining. ZnSO4 allows bilin-

containing polypeptides to be easily detected when the Zn+ ions bind to the bilin in the 

polypeptide, and enhance the fluorescence of the cyclic bilin in the presence of UV light (Raps, 

1990). The band fluorescing on the zinc stained gel corresponds to the holo-HT-CpcA in the 

Coomassie stained gel which has a molecular weight of 21.1 kDa with one PCB attached.  
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Figure 22: SDS-PAGE analysis of the expression of Synechocystis sp. PCC 6803 holo-CpcA and of in vivo 
chromophorylation of CpcA. Panel A shows the Coomassie stained SDS-PAGE gel of the purification of HT-
CpcA in lane 1. Low molecular weight standard is marked as S and the sizes of the bands are indicated on the left. 
Panel B shows the zinc-enhanced fluorescence of the purified HT-holo-CpcA. 
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Absorbance and fluorescence spectra were taken of the purified holo-HT-CpcA and maxima 

were at 626 nm and 648.5 nm, respectively (Figures 23,24). This corresponds to the absorbance 

and fluorescence of PCB at the α-84 cysteinyl residue which has maxima at 625 nm and 645 nm, 

respectively (Tooley et al., 2001). This holo-HT-CpcA was used in CpcM methylation assays. 

 

3.1.4 Purification of PC from the Synechococcus sp. PCC 7002 cpcM Mutant  
 
 To generate the Synechococcus sp. PCC 7002 cpcM mutant, G. Shen (Pennsylvania State 

University) insertionally inactivated the cpcM gene with a gentamicin resistance cartridge and 

then transformed the construct into Synechococcus sp. PCC 7002 wild-type cells. The cells were 

then grown under optimal conditions and complete segregation was confirmed by PCR analysis 

(G. Shen, unpublished results). Through anion exchange chromatography the α and β 

phycocyanin subunits were purified from the Synechococcus sp. PCC 7002 cpcM mutant cells 

using a DEAE column. These phycobiliproteins are completely chromophorylated at all bilin 

attachment sites (α and β) but lack the methylated asparagine located at β-72. A chromatograph 

of the PC purification is shown in figure 25. Several blue fractions collected were separated via 

SDS-PAGE (Figure 26). Fractions from time points 125-200 minutes were separated via SDS-

PAGE even though there was only one major peak between 125-145 minutes which is where all 

the protein was located. The most concentrated fractions were in lanes 3-6 which were time 

points: 133, 137, 141, and 144 minutes. Those fractions were pooled together, dialyzed, and 

concentrated. 
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Figure 23: Absorbance spectrum of recombinant Synechocystis sp. PCC 6803 holo-HT-CpcA. Absorbance 
maximum is indicated for the protein at 626 nm.  
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Figure 24: Fluorescence emission spectrum of recombinant Synechocystis sp. PCC 6803 holo-HT-CpcA. 
Excitation was at 590 nm with 3 nm slit widths. The emission maximum was at 648.5 nm. 
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Figure 25: Purification of PC from Synechococcus sp. PCC 7002 cpcM mutant on a DEAE column. 
Absorbance at 280 nm is shown by the solid line while conductivity is shown by the dotted line. The most pure 
fraction of cpcM mutant CpcBA eluted at the largest peak (between 125-145 minutes). 
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Figure 26: SDS-PAGE analysis of cpcM mutant CpcBA DEAE fractions. Lanes 1-9 show fractions of the largest 
peak (124-157 minutes), lanes 10-17 show fractions further down the largest peak and into the next smaller peak 
(160-205 minutes), and lane “S” is the molecular weight standard. Lanes 3-6 contained the most concentrated 
fractions (133-144 minutes). The size of the molecular weight bands are indicated on the right. 
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 3.1.5 CpcM Methyltransferase Activity Assay: Time-controlled assay 

 Recombinant Synechocystis sp. PCC 6803 apo-phycocyanin and apo-allophycocyanin 

were used as substrates for the phycobiliprotein methyltransferase assay.  Recombinant apo-

phycocyanin and apo-allophycocyanin lack phycocyanobilin chromophores and are 

unmethylated at β-72. With [methyl-3H]-S-adenosylmethionine as the methyl donor, CpcM (the 

suspect methyltransferase) was assayed for its ability to incorporate tritium into TCA-

precipitable material. Scintillation counting revealed that GST-CpcM was active with both apo-

PC and apo-APC as substrates, but GST alone did not incorporate any tritium into the 

phycobiliprotein substrates. The scintillation counting results showed that for a 2 hour assay, 

apo-phycocyanin contained 23 times more 3H counts per minute than its control counterpart 

containing no CpcM (just GST) and apo-allophycocyanin contained 33 times more 3H counts per 

minute than its control counterpart with no CpcM  (just GST). A time-controlled assay 

terminating the reactions every hour up to three hours showed maximum activity at two hours 

(figure 27). However, looking at the overall results, it was concluded that performing a one hour 

assay for further study would allow for enough tritium incorporation for sufficient detection.  

 

 3.1.6 β-Subunit Specificity Assay 

 Another assay was performed with the same components for only one hour and the 

scintillation counting revealed similar results as compared to the time-controlled assay (Figure 

28). Not only was scintillation counting performed on the TCA precipitates, but the samples 

were also separated by SDS-PAGE. Since both α and β subunits were present, it was necessary 

to determine which subunit was being methylated. In cyanobacteria only the β subunit is 

methylated. The autoradiogram of the SDS-PAGE separation of the phycobiliprotein subunits  
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Figure 27: A time course of methylation of phycobiliproteins by CpcM. 3H incorporation [into TCA-precipitable 
material] from [methyl-3H]-S-adenosylmethionine was measured by scintillation counting. Asparagine methylation 
in acid hydrolyzates of purified phycobiliproteins was quantitated radiochemically by determining the amount of 3H 
methyl groups bound to protein in counts per minute. Time-controlled assays were quenched after 1, 2, or 3 hours to 
determine time of maximum enzyme incorporation.  
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revealed that the proteins in the control reactions contained no incorporated 3H (Figure 29). 

However in the reaction containing GST-CpcM, 3H was only incorporated into the HT-β subunit 

of both phycocyanin and allophycocyanin with no α subunits containing 3H (Figure 29). The 

migration of the HT-CpcB subunit in Panel A, lane 1 (Figure 29) of the Coomassie stained gel is 

consistent with the position of the tritiated protein in Panel B, lanes 3 and 7 (Figure 29). The 

position of ApcB in the SDS-PAGE gel (Figure 29A, lane 2) is also consistent with the identity 

of the tritiated protein in Figure 29B, lanes 1 and 5 being ApcB. This is congruent with the fact 

that there is no methylated asparagine residue on the homologous α subunit in either 

phycocyanin or allophycocyanin purified from cyanobacteria (Klotz et al., 1986; Klotz and 

Glazer, 1987). Since assays containing CpcM contained 8-21 times the number of counts per 

minute incorporated into phycobiliprotein as compared to controls, reactions containing GST, 

and CpcM reactions had 3H incorporated into the β subunits only, it is concluded that CpcM is 

the phycobiliprotein β-72 methyltransferase. 

 
 3.1.7 CpcM Specificity: Apo Versus Holo 
 
 To determine where along the path of assembly of the phycobilisome that this 

methylation of the β-72 asparagine residue might occur, assays were performed using apo and 

holo phycobiliproteins. If CpcM was to show a preference to methylate one versus the other then 

we may know if the asparagine methylation occurs before or after chromophorylation of the 

PBP. First, CpcA was used in assays to verify that neither apo- nor holo-CpcA is a substrate. In a 

one-hour assay Synechocystis sp. PCC 6803 apo and holo-HT-CpcA was used as a substrate. The 

apo-HT-CpcA was purified from E. coli cells lacking PCB production (Figure 30A, lane 1) and 

holo- HT-CpcA was purified from E. coli cells containing PCB and the α-PC lyases (Figure 30B, 

lane 1). This was used to check whether CpcM shows any methylation of a chromophorylated α  
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Figure 28: Graph of 3H incorporation in recombinant Synechocystis sp. PCC 6803 HT-ApcAB and HT-
CpcBA by CpcM. Asparagine methylation in acid hydrolyzates of purified phycobiliproteins was quantitated 
radiochemically by determining the amount of 3H methyl groups bound to protein in counts per minute. Assay was 
quenched after one hour. 
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Figure 29: β-subunit specificity Assay. Panel A) Coomassie stained SDS-PAGE of purified substrates used in the 
assay. Lane 1 contains HT-CpcB/CpcA and lane 2 contains HT-ApcA/ApcB. Molecular weight standard was loaded 
into the lane labeled “S”. Weights are indicated on the left. Panel B) Autoradiogram of asparagine methyltransferase 
assay using HT-CpcB/CpcA and HT-ApcA/ApcB and CpcM. Samples were loaded as follows: ApcAB (GST-
CpcM) 30 µl (lane 1) and 10 µl (lane 5), ApcAB control (GST only) 30 µl (lane 2) and 10 µl (lane 6), CpcBA (GST-
CpcM) 30 µl (lane 3) and 10 µl (lane 7), and CpcBA control (GST only) 30 µl (lane 4) and 10 µl (lane 8). Prestained 
molecular weight standards were loaded on the gel and their sizes are shown at left. The positions of polypeptides 
are indicated to the right.  
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Figure 30: SDS-PAGE of CpcA, CpcBA, and of methylase assays using apo vs holo CpcA and CpcB (at Cys-
82). Panel A) Coomassie stained SDS-PAGE of the Synechocystis sp. PCC 6803 α phycocyanin subunit. Lane 1 
contains holo-HT-CpcA and lane S is the molecular weight marker. Panel B) Coomassie stained SDS-PAGE of 
Synechocystis sp. PCC 6803 α phycocyanin subunit. Lane 1 apo-HT-CpcA and lane S is the molecular weight 
marker. Panel C) Coomassie stained SDS-PAGE of the Synechococcus sp. PCC 7002 β phycocyanin subunits. Lane 
1 contains (Cys-82-PCB)-CpcB, lane 2 contains apo-CpcB, and lane “S” is the molecular weight marker. Panel D) 
Autoradiogram of CpcM assay using the α and β proteins. Lane 1 contains the apo-HT-CpcA, lane 2 holo-HT-CpcA, 
lane 3 apo-CpcB, and lane 4 is (Cys-82-PCB)-CpcB. Prestained molecular weight standards were loaded on the gel 
and their sizes are shown at left. The position of the polypeptide is indicated to the right 
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subunit. After a one-hour assay, an audioradiogram was produced from the TCA precipitates. In 

lanes 1 and 2 of the autoradiogram (Figure 30, Panel D) no bands of α subunits, apo or holo, are 

visible, consistent with the expected specificity of CpcM. Also tested in an assay were 

Synechococcus sp. PCC 7002 apo-CpcBA and (Cys-82-PCB)-CpcB/CpcA which were used as 

substrates. These β phycocyanin proteins were kindly provided to me by Nicolle Saunée. She 

chromophorylated CpcB using the Synechococcus sp. PCC 7002 lyases CpcS and CpcU, which 

attach PCB only at Cys-82 on CpcB. The absorbance and fluorescence spectra of the (Cys-82-

PCB)-CpcB were extremely high and at the correct wavelengths (N. Saunée, 2006). A 

Coomassie stained SDS-PAGE of the separated proteins used in the assay is also presented to 

show the size of the proteins (Figure 30, Panels A-C). After a one-hour assay both the apo and 

(Cys-82-PCB)-CpcB tritiated bands are visible in the autoradiogram, lanes 3 and 4, and appear to 

be equally methylated (Figure 30, Panel D).     

 To further investigate CpcM’s activity towards unmethylated holo-PC from cpcM mutant 

and recombinant apo-PC, a time-controlled assay was performed using Synechococcus sp. PCC 

7002 apo-β-phycocyanin and holo-β-phycocyanin both with CpcA co-purified. The holo-PC is 

purified from the Synechococcus sp. PCC 7002 cpcM mutant and is fully chromophorylated at all 

bilin addition sites (α and β) and lacks the methylation at β-72. Analysis of the PC purified from 

Synechococcus sp. PCC 7002 cpcM mutant showed that the unmethylated phycocyanin is in the 

form of a trimer instead of the monomeric forms that are created from recombinant protein (S.R. 

Williams and W.M. Schluchter, unpublished results). Methylase assays were performed (as 

described in Materials and Methods) but were terminated about every 2.5 minutes from 1.0 

minute to 17.5 minutes. The TCA precipitates from all the reactions were separated by SDS-

PAGE and an autoradiogram of the gel is shown in Figure 31B. A Coomassie stained gel of the  
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Figure 31: Apo Vs Holo Asparagine methyltransferase assay. Panel A) Coomassie stained SDS-PAGE analysis 
of the purified component used in the asparagine methyltransferase assays. Synechococcus sp. PCC 7002 
phycobiliprotein samples were loaded as follows: apo-CpcB/CpcA (lane 1) cpcM mutant holo-PC (lane 2). 
Molecular weight standard is loaded in the lane labeled “S”; the size of each protein is indicated on the left side of 
the gel. Panel B) an autoradiogram of components after assays terminated in 2.5 minute increments. 10 µl samples 
were loaded as follows: from 1.0 min to 17.5 minutes apo-CpcB/CpcA (lanes A) and holo-PC (lanes H). Prestained 
molecular weight standards were loaded on the gel and their sizes are shown at left. The position of the methylated 
polypeptide is indicated to the right.  
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substrates is presented in Figure 31A.  On the autoradiogram there are other tritiated bands that 

appear that are not the size of CpcB. This is a result of proteolytic degradation of CpcB and is 

not CpcA; this was verified by Western blot analysis (not pictured). Results of the assay showed 

that the first tritiated CpcB to appear on the autoradiogram was in the reaction containing apo-

CpcB at 5.0 minutes, and then the PBP methylation of apo-CpcB consecutively darkened in 

intensity through 17.5 minutes. The methylation of holo-CpcB was detected after 15.0 minutes. 

This indicates that CpcM may methylate the β-72 asparagine before chromophorylation of the 

phycobiliproteins since CpcM appears to have a greater affinity for apo-CpcB than for holo-β-PC 

in the trimeric form or it may just be methylating the apo-CpcB because it is a monomer. CpcM 

may methylate after chromophorylation of monomeric PBP but before they assemble into 

trimers.  

 To test this hypothesis, further assays were performed using Synechococcus sp. PCC 

7002 apo-CpcBA recombinant protein and Syenchococcus sp. PCC 7002 (Cys-82-PCB)-

CpcB/CpcA provided by N. Saunée used in a previous assay. A coomassie stained SDS-PAGE 

of the proteins is pictured in Figure 30 Panel C. Both of these substrates are monomers but one is 

completely unchromophorylated and one has a bilin attached at the β-82 residue. Two assays 

were acid-quenched in 2.5 minute increments (Figure 32A&B). Again on the autoradiogram 

there are other tritiated bands that appear that are not the size of CpcB. This is a result of 

proteolytic degradation of CpcB and is not CpcA which was verified by Western blot analysis 

(not pictured). In Panel A the first tritiated band to appear on the autoradiogram was in the 

reaction containing (Cys-82-PCB)-CpcB at 2.5 minutes in lane 4. In Panel B the first tritiated 

band to appear on the autoradiogram, though faint, was in the reaction containing (Cys-82-PCB)-

CpcB at 1.0 minute in lane 2. After 7.5 minutes both β subunits demonstrated equal methylation. 
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Figure 32: Synechococcus sp. PCC 7002 apo-CpcB vs (Cys-82-PCB)-CpcB asparagine methyltransferase 
assay.  Panel A and B) two different autoradiograms of components after assays terminated in 2.5 minute 
increments. 10 µl samples were loaded as follows: 1.0 min apo-CpcB/CpcA (lane 1), 1.0 min (Cys-82-PCB)-
CpcB/CpcA (lane 2), 2.5 min apo-CpcB/CpcA (lane 3), 2.5 min (Cys-82-PCB)-CpcB/CpcA (lane 4) 5.0 min apo-
CpcB/CpcA (lane 5), 5.0 min (Cys-82-PCB)-CpcB/CpcA (lane 6) 7.5 min apo-CpcB/CpcA (lane 7), and 7.5 (Cys-
82-PCB)-CpcB/CpcA (lane 8). Prestained molecular weight standards were loaded on the gel and their sizes are 
shown at left. The position of the methylated polypeptide is indicated to the right.  
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The β subunit was not fully chromophorylated, lacking the PCB at Cys-153, but CpcM still 

showed a preference for one bilin attached on the (Cys-82-PCB)-CpcB versus the apo-CpcB 

monomeric subunits. These assays revealed that CpcM has a greater affinity for CpcB 

chromophorylated at Cys-82 which suggests that asparagine methylation may occur after the 

attachment of phycobiliprotein bilins but before holo-PC is trimerized. 

 
 
 3.1.8 CpcM Methylation of ApcF 

 ApcF is a β-like allophycocyanin subunit that is present in two copies per phycobilisome. 

ApcF is important for energy transfer from the phycobilisome to photosynthetic reaction centers, 

and it also contains a methylated asparagine residue like the phycocyanin and allophycocaynin β-

72 γ-N-methylasparagine residue. Recombinant ApcF was produced with ApcA and purified 

from E. Coli for use in a CpcM assay (Figure 33 Panel A) (A. Fletcher, B. Turner, W. 

Schluchter, unpublished results). A one-hour assay was performed using purified ApcFA (his-

tagged ApcF/ApcA) as the substrate to determine if CpcM also methylates ApcF. TCA 

precipitates were separated by SDS-PAGE, and the autoradiogram is shown in Figure 33B. As 

one can see in lane 1 of panel B there is one radioactive band that appears on the autoradiogram, 

and it is the size of the HT-ApcF protein. The co-purified ApcA shows no tritium incorporation, 

therefore was not methylated by CpcM. The autoradiogram results show that CpcM not only 

methylates the β-subunits of phycocyanin and allophycocyanin, but also methylates the 

allophycocyanin core component, ApcF. 
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Figure 33: ApcF/CpcM methylase assay.  Panel A) Coomassie stained SDS-PAGE of purified HT-ApcF/ApcA 
used in the methylase assay. Lane “S” containes the molecular weight marker and Lane 1 contains the HT-
ApcF/ApcA proteins. Panel B) Autoradiogram of TCA precipitates from the methylase assay using CpcM. Lane 1 
contains only a tritiated band for HT-ApcF and no ApcA shows radioactivity. Lane “S” contains the prestained 
molecular weight marker with weights indicated on the right.  
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3.2 CpcS, CpcU, and CpcT: PBP β-Subunit lyases 

 3.2.1 Creation of cpcS, cpcU, and cpcT Clones 

 Other genes of interest in this project are the PBP lyases of Synechocystis sp. PCC 6803. 

The cpcS, cpcU, and cpcT genes from Synechocystis sp. PCC 6803 were amplified by PCR and 

cloned as described in Materials and Methods. The transformants with both insert and vector 

were then sequenced to determine if the clones were correct. The amino acid sequences were 

aligned using Mac Vector (Accelrys, San Diego, CA). Each of the three proteins from 

Synechocystis sp. PCC 6803: CpcS, CpcU, and CpcT, was aligned to translations of two different 

cyanobacterial genomes (Genbank and Cyanobase): Synechococcus sp. PCC 7002 and Fremyella 

diplosiphon PCC 7601and three other ORFs that showed the highest similarity against Genbank 

when using BLAST. Using ClustalW (v1.4) multiple sequence alignment, three different 

alignments were created (one for each protein) (Figures 34-36). 

 CpcS in Synechocystis sp. PCC 6803 showed the highest similarity to its Synechococcus 

sp. PCC 7002 ortholog, cpcS, with 61% similarity out of the three lyase-like genes, but other 

translations from Genbank scored higher (Figure 34). Similarity scores for the CpcS alignment 

are as follows: Crocosphaera watsonii WH 8501 with 69% similarity (hypothetical protein), 

Cyanothece sp. CCY 0110 with 68% similarity (gene name CY0110_04081), Lyngbya sp. PCC 

8106 with 64% similarity (gene name L8106_24665), Synechococcus sp. PCC 7002 with 61% 

similarity (gene name cpcS), and Fremyella diplosiphon with 31% similarity (gene name cpeS). 

Using Cyanobase (www.bacteria.kazusa.or.jp/cyanobase/) Synechocystis sp. PCC 6803 

sequenced genome map, it was found that CpcS is located directly upstream (no other ORF 

between) of the phycobilisome rod-core linker polypeptide, CpcG (slr2051) (Kaneko et al.,  
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Alignment of CpcS

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

10 20 30
M D A M E F F R N S S G N W R S Q R T T H H L A
M D A L K F F Q N S S G K W R S Q R T T H H L A
M D A L K F F Q N S S G K W R S Q R T T H H L A
M D A M Q F F R Q S A G Q W Q S L R T T H H L A

M Q S F A D A K E F F Q Y S A G Q W Q S R R V T H H L P
M E T K V L M N I T K F V A N S I G H W R S Q R S A H H L A

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

40 50 60
F R R A E T G T S E I F V E A L G A D D Q K I V E I C E M H
F R R A E I G D S E I Y V E A L E A D N P K I I E I C Q M H
F R R A E I G N S E I Y V E A L E S D N P K I V E I C Q M H
F R Q A E K G N S K I N V E A L D A D D P K V I E I C Q M H
F R R A E S G G S N I Q V E T L E K D D P R I I E I C Q M H
F G H F E A V Q S E I D I I A L P H D D P A V I D L C K S Y

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

70 80 90
D C D P A K A V G G A F V R W E S A M A W D K E D E N H E G
D V D P A L A V G G A F V S W D G S M A W D R N E E N H T G
E V D P S L A I G G A F V S W D G S M A W D K E D E N H S G
D V D S A I A A G G A Y V T W N G E M A W D K E D E N H S G
D M D A S L S V G G S Y V T W A G T M Q W D K D D E N H E G
N I D P Q T V V S P F R M T W E G Q S D W D - - D S E I K G

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

100 110 120
T T V F A L I P D E D N P Q Q G L L L R E R G Y A E I V P I
T T I F A L I P E K D N P R E G V L L R E R G Y A E I V P I
N T I F A L I P E Q D N P R E G V L L R E R G Y A E I V P I
S T V F A I V P D L D N P R K G R M L R E R G Y A E I V P V
S T V F A L I P D A D N P R Q G K L L R E R G Y A E I V P V
T C V L V P I P D P D S P H R G K L L R S R - L C R N N R C

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

130 140 150
A G R Y H I D E E E A L V L V T E Y E T M T T I E R F W F A
A G R Y H L D G D D A L V L I T E Y D T M S T I E R F W F V
A G R Y Y I D A D D A L V L I T E Y D T M S T I E R F W F V
V G Q F E M D E D D A L I L V T E Y E T M S S I E R F W F A
A G E Y H L D H E D G L V L T T E Y E T M T I Y E R F W F A
R G D Y Y F T E H G T F V L V T A Y E R A A A E E K I W F V

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

160 170 180
N P D M R - - - - - - L R T S T - - - - - - - - - - - - - -
N P N L R - - - - - - L R T S T - - - - - - - - - - - - - -
N P N L R - - - - - - L R T S T - - - - - - - - - - - - - -
S P N V R - - - - - - M R T S A - - - - - - - - - - - - - -
N P D L R - - - - - - L R T S T - - - - - - - - - - - - - -
N P N V R C L C V S L I K T S V R F S E L L L P H F L Q K F

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

190 200 210
V Q R F G G F N T A T Y C T E M R V K E E - - - - - N T V S
V Q R F G G F N T A T F C A E M R Q G D D V D S E T Q T S N
V Q R F G G F N T A T F C A E M R Q A D H S E S N K E T N N
V K R F G G F N T S T F C T E I R L E E T D S K A S S E S E
V K R F G G F N T T T F C M E E R I Q T S P V T A T - - - A
A R I F R I K L Y M T I F K S Y R Y K L R A C S L Y I N A I

6803 CpcS
Croco8501
Cyanothece
Lyngbya
7002 CpcS
Fremyella

220 230 240
A S P A P A Y E Q F C G W
I T P F N L G Y S I T G W
I A P L S V G Y S I T G W

N A E N T A F Y S A L G W
A A E T N P L Y A I S G W
A L A L P C H F F I N T G A

 

Figure 34: Alignment of amino acid sequences of Synechocystis sp. PCC 6803 CpcS presumed orthologs from 
different cyanobacteria. Synechocystis sp. PCC 6803 gene name cpcS, Crocosphaera watsonii WH 8501 
hypothetical protein, Cyanothece sp. CCY0110 gene name CY0110_04081, Lyngbya sp. PCC 8106 gene name 
L8106_24665, Synechococcus sp. PCC 7002 gene name cpcS, and Fremyella diplosiphon gene name cpeS. Boxed in 
grey are the conserved amino acid residues. 
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1996). It is possible that they are co-transcribed because they are in the same direction and right 

next to each other. 

 CpcU in Synechocystis sp. PCC 6803 has the lowest similarity scores among the three 

lyase-like genes (Figure 35). The similarity scores for CpcU are as follows: Cyanothece sp. 

CCY0110 with 40% similarity (gene name CY0110_18677), Crocosphaera watsonii WH 8501 

with 37% similarity (gene name CwatDRAFT_4215), Trichodesmium erythraeum IMS101 with 

31% similarity (gene name Tery_3198), Synechococcus sp. PCC 7002 with 29% similarity (gene 

name cpcU), and Fremyella diplosiphon with 18% similarity (gene name cpeS). Using 

Cyanobase BLAST Synechocystis sp. PCC 6803 similarity search, CpcU was the most similar 

ORF to CpcS in the entire Synechocystis sp. PCC 6803 genome with 27% identities, 50% 

positives, and only 2% gaps. Using Cyanobase Synechocystis sp. PCC 6803 sequenced genome 

map, it was found that CpcU is located approximately 115 kbp downstream of the phycocyanin 

alpha-subunit phycocyanobilin lyase, CpcE (slr1878) (Fairchild et al., 1992; Zhou et al., 1992; 

Swanson et al., 1992). 

 CpcT in Synechocystis sp. PCC 6803 was 42% similar to its Fremyella diplosiphon 

paralog, cpeT, but there are other higher scoring alignments (Figure 36). The similarity scores for 

CpcT are as follows: Cyanothece sp. CCY0110 with 67% similarity (gene name 

CY0110_13236), Crocosphaera watsonii WH 8501 with 67% similarity (gene name DUF1001), 

Nostoc punctiforme PCC 73102 with 64% similarity (gene name Npun02004130), 

Synechococcus sp. PCC 7002 with 54% similarity (gene name cpcT), and Fremyella diplosiphon 

with 42% similarity (gene name cpeT). Using Cyanobase Synechocystis sp. PCC 6803 sequenced 

genome map, it was found that CpcT is located approximately 216 kpb upstream of the  
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Alignment of CpcU

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

10 20 30
M K P V A P R S F F A M D F L E F I T A W E G K W L S Q R T

M D I Q T F I E S C I G Q W F S Q R S
M D I Q T F L E L C I G Q W F S Q Q S
M N I I D F F E L S A G E W F S Q R T
M D I N A F I H Q S A G N W F A Q R T

M E T K V L M N I T K F V A N S I G H W R S Q R S

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

40 50 60
N Y S F E Q N E A G N A K S D V T V Q R W D S Q T E L G R S
S Y Q F D T E K A E S H K S E L T I E W L D T D H S L L V S
S Y Q F D T E K A E S Q K S E L T V E W L E A N H S T V V S
I H N L V S G E L Q A G K S E V N V E I L E K T D P T L I N
F Y Q A H H P E P D N G K A N L A F E L L P L D H P E V S R
A H H L A F G H F E A V Q S E I D I I A L P H D D P A V I D

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

70 80 90
L L E R A G L K N Q G - E L I L L Q L S W D N S V D W G K S
L C Q Q H G I D P N Q - A I G G Q T V S W N S S S D Y G Q K
L C Q Q Y H L D P S Q - A I G G K K I S W N S S S D Y G E K
L C E Q N Q V D S S V T K L I G V K I S W N G T N N K G Q V
F A A A I A Q A P N E - H W R V F Q S S W D T S V D W G K P
L C K S Y N I D P Q T - V V S P F R M T W E G Q S D W D D S

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

100 110 120
K Q K G T I Y Y G F L P D A D H G D R G Q L W R G T T N S N
K Q T G S T I L I V I P D N N T P Q T G Q I I Q S F Q S K -
K Q T G N A T I I L I P D S N K P K V G K I I Q T F Q S Q -
K D V G S R M L I I I P N F D D L N Q G Q L L Q N R G N G N
K A V G S S L F A F V I N P D Q P T Q G Q A F S L D E R T -
E I K G T C V L V P I P D P D S P H R G K L L R S R L C R N

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

130 140 150
L A F L R G D Y H L G S D E C L T L N L G D G E T S L T E R
- P S S Q G N Y S L G E D E A L T L I L E V G D F S I E E R
- P P S P G S Y L L A E D E A L N L T L E V G D F L M E E R

S P K I S G R Y I M G S D D V L M L T T E S E G L Y V E E R
- - L A Q G Q Y R L G E D Q I L I V T L E A G E V K I I E R
- N R C R G D Y Y F T E H G T F V L V T A Y E R A A A E E K

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

160 170 180
H W Y A S P N L R - L R T S L I Q - - - Q G E G Y S H S A F
I W F A S P N L R - L R T S L M K - - - G K N G Y N R T A F
I W F A S E N L R - L R T S L I K - - - G N N G Y S R T A F

F W Y L I P N L R - L R T S V V N - - - R P Q G F S L A S F
Q W F G N E N L R - L R T N I V T - - - G K T G V L Q T A F
I W F V N P N V R C L C V S L I K T S V R F S E L L L P H F

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

190 200 210
Y S D I R R L P - P A E
Y S E I R R L P - P Q E V A
Y S E I R R L P - P Q Q A A
C S E I R R V K - S
Y S E I R R I I E P E K T A E V T A E A S N
L Q K F A R I F R I K L Y M T I F K S Y R Y K L R A C S L Y

6803 CpcU
Cyanothece
Croco8501
Trichodesmium
7002 CpcU
Fremyella

220 230 240

I N A I A L A L P C H F F I N T G A

Figure 35: Alignment of amino acid sequences of Synechocystis sp. PCC 6803 CpcU presumed orthologs from 
different cyanobacteria. Synechocystis sp. PCC 680.3 gene name cpcU, Cyanothece sp. CCY0110 gene name 
CY0110_18677, Crocosphaera watsonii WH 8501 gene name CwatDRAFT_4215, Trichodesmium erythraeum 
IMS101 gene name Tery_3198, Synechococcus sp. PCC 7002 gene name cpcU, and Fremyella diplosiphon gene 
name cpeS. Boxed in grey are the conserved amino acid residues. 
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Alignment of CpcT

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

10 20 30
M S H S T D L S A L A R W M A A D F S N Q
M S H A T D I K T L A R W M C S D F S N Q
M A H A T D I K A L A R W M C A D F S N Q
M T H S T D I A T L A R W M S A D F S N Q
M S H S T D A H T L A R W M A G E F S N E

M T S S L P K I P D T V S P N L I T L A R W M A G D F S N Y

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

40 50 60
A Q A F E N P P F Y A H I R V A I R P L D Q A K F G D R L L
E Q A F E N P P F Y A H I R V C I R P L P V D N F P E P S L
E Q A F E N P P F Y A H I R V C I R P L P I T N F P E P S L
E Q A F E N P P F Y A H I R V C I R P L P L E L F S G V S L
A Q A L A N P P L W A H I K V C M R P L P N Q F F D G Y G L
Q Q A F E N S K D Y A H I H V F F R P L P F E F F S G I G L

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

70 80 90
F L E Q A Y D F M L Q R P Y R L R V L K L K V V E D H I E I
F L E Q A Y D Y A L N Q P Y R V R V L Q L K I V D N R I E L
F L E Q A Y D Y A L D Q P Y R V R V L R L K I V E G R M E L
F L E Q A Y D F M L N Q P Y R M R V M K L I P A E N H I A I
Y L E Q A Y S S D T S A P Y R L R L F H I K P V D D H M E L
Y S E Q V Y D Y D L W R P Y R Q G V H R L I D K G D E I Y I

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

100 110 120
E N F K V K D - - E E K F Y G A A R D L G K L A Q L T P A D
E N Y K L K E - - K E A F L G A S R Q P E K L K E I T P D D
E N Y K L K E - - K E G F L G A A R D R E K L K K I T P D D
E H Y T V K E - - E Q K F Y G A S R E P E R L K D L S V D Q
V H Y K P K D D A K T K Y M G A A R N P A M M Q H F D M A D
E N Y S L K Q - - A L Y Y A G A A R D L N I L K T I T P N C

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

130 140 150
L E P M H G C D M I V E W T G T S F K G E V Q P G R Q C R V
I E L M Q G C D M F V D W T G T S F K G T V K P G R N C R I

L E L M Q G C D M F I D W T G N S F K G V V K P G K N C L V
L E K M S G C N M I V E W T G K S F K G R V E P G K G C I V
L D P M P G C D M I V T W S G T S F K G T V Q A G K G C R V
I E R R Y H C S M I F K R E G D K F I G G V E P G N L C L I

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

160 170 180
M R D G K E T Y L E N S F E V S E T G L I S L D R G Y D P E
V R K G K E T Y L D N S F E I N E H Q L I S L D R G Y D P V
F R K G K E T Y L D N S F E I D D Q K L I S L D R G Y D P V
V R D G K N T Y L D N E F E I D A K E F F S L D R G R D L D
V R Y N K E S Y L D N S F E I T D N A L I S I D R G R D P V
E K N G C Q T Y L D S Y V E I T E T T W V S L D K G M D V N

6803 CpcT
Cyanothece
Croco8501
Nostoc73102
7002 CpcT
Fremyella

190 200 210
T N E R V W G S V A G A F H F V R W Q S F A D E V S F
T N E L V W G S V A G P F H F E R R Q S F A D E V K F
T D E L V W G S V A G A F N F K R R Q S F A D E V E F
T D E R L W G S I A G P F H F V R W A N F A D E V K A N
T N E I L W G S L A G A F E F E K I N N F S G E V Q P H
T H Q Q V W G S T F G P L R F E K R E S F A D E I P N I L

 

Figure 36: Alignment of amino acid sequences of Synechocystis sp. PCC 6803 CpcT presumed orthologs from 
different cyanobacteria. Synechocystis sp. PCC 6803 gene name cpcT, Cyanothece sp. CCY0110 gene name 
CY0110_13236, Crocosphaera watsonii WH 8501 gene name DUF1001, Nostoc punctiforme PCC 73102 gene 
name Npun02004130, Synechococcus sp. PCC 7002 gene name cpcT, and Fremyella diplosiphon gene name cpeT. 
Boxed in grey are the conserved amino acid residues. 
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phycobilisome core-membrane linker polypeptide, ApcE (slr0335) (DiMagno and Haselkorn, 

1993).  

 

 3.2.2 Production and Purification of Recombinant CpcS, CpcU, and CpcT 
 
 Recombinant Synechocystis sp. PCC 6803 CpcS has a calculated molecular weight of 

21.9 kDa (Table 3) and was very difficult to purify. Numerous expression attempts ended in 

CpcS being present mostly in insoluble from (inclusion bodies). Recombinant CpcS was purified 

using DEAE anion exchange chromatography (described in Materials and Methods). A 

chromatograph of the CpcS purification is shown in Figure 37. Fractions containing protein were 

collected and SDS-PAGE analysis (Figure 38) was performed to determine which fractions 

contained CpcS. Recombinant CpcS ran near the size expected on the gel and lanes 1 and 2 show 

fractions from the smaller peaks before the large peak between 170 and 185 minutes. Lanes 3, 4, 

and 5 show fractions from the large peak (150-190 minutes) and the fraction in lane 4 is the most 

pure fraction. Fractions included in the large peak were pooled together, dialyzed, and 

concentrated.  

 Recombinant Synechocystis sp. PCC 6803 CpcU has a calculated molecular weight of 

21.2 kDa (Table 3) and was also very difficult to express. Numerous expression attempts ended 

in insoluble protein. Eventually, expression conditions were optimized to get some soluble 

CpcU. Recombinant CpcU was purified using DEAE anion exchange chromatography 

(described in Materials and Methods). The chromatograph of the CpcU purification is shown in 

Figure 39. Fractions containing protein were collected, and SDS-PAGE analysis was performed. 

Figure 40 shows the SDS-PAGE gel of purified CpcU. Recombinant CpcU ran near the size 

expected on the gel and lanes 1 and 2 show the most pure fractions from the first peak between 

75 and 90 minutes (seen in figure 40). Lanes 3 and 4 show fractions collected from the largest 
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Figure 37: Purification on a DEAE column for Synechocystis sp. PCC 6803 CpcS. Absorbance at 280 nm is 
shown by the solid line while conductivity is shown by the dotted line. The most pure fraction of CpcS eluted at the 
major peak (between 170-185 minutes). 
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Figure 38: SDS-PAGE analysis of CpcS DEAE fractions. Lane 1 and 2 show fractions from the smaller peaks 
(110-130 min and 130-145 min, respectively) before the large peak (150-190 min) (seen in figure 23). Fractions 
from the large peak can be seen in lanes 3-5. Lane 4 is the most pure fraction. Molecular weight standard was loaded 
into the lane labeled “S”; the size of the bands is indicated on the left.   
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Figure 39: Purification on a DEAE column for Synechocystis sp. PCC 6803 CpcU. Absorbance at 280 nm is 
shown by the solid line while conductivity is shown by the dotted line. The most pure fractions of CpcU eluted at 
the first peak (between 75-90 minutes). 
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Figure 40: SDS-PAGE analysis of CpcU DEAE fractions. Lanes 1 and 2 contain the most pure fractions of CpcU 
from the first peak (75-90 min and 90-100 min, respectively) (seen in figure 25). Lanes 3 and 4 show fractions taken 
after the first peak which contain non-pure CpcU (110-130 min and 130-140 min, respectively). Molecular weight 
standard was loaded into the lane labeled “S”; the size of the bands is indicated on the right.   
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peak between 110 and 140 minutes which were not very pure. The pure fractions were pooled 

together, dialyzed, and concentrated. 

 Synechocystis sp. PCC 6803 GST-tagged protein CpcT from the pGEX-2T vector was 

purified using glutathione agarose resin after harvesting overproduced cells as described in 

Materials and Methods. A purified tagged sample was analyzed by SDS-PAGE (Figure 41 lane 

1). Table 3 shows the calculated molecular weight and isoelectric point for the protein. GST-

CpcT has a calculated molecular weight of 49.6 kDa which corresponds to the apparent 

molecular weight of the GST-CpcT band in lane 1 of Figure 41. The other two main 

polypeptides visible on the gel probably correspond to proteolytic products of GST as they are 

consistent with the molecular weight of GST (26.9 kDa). 

 

 3.2.3 Phycocyanobilin Addition with CpcT and CpcBA: PCB Reactions 

 Previous research has shown that Synechococcus sp. PCC 7002 CpcT does not interact or 

form complexes with any of the other lyase proteins in any significant way and was shown to be 

the lyase that adds PCB to the β-153 cysteinyl residue in Synechococcus sp. PCC 7002  (Shen et 

al., 2006; N. Saunée, 2006). Synechocystis sp. PCC 6803 CpcT was a candidate for the β-153 

phycocyanobilin lyase in Synechocystis sp. PCC 6803, and chromophorylation reactions were 

performed to test this hypothesis. Recombinant Synechocystis sp. PCC 6803 HT-CpcB/CpcA and 

GST-CpcT were purified (Figure 21A lane 1 and Figure 41 lane 1, respectively). Bilin addition 

reactions were performed using HT-CpcB/CpcA alone (with E. coli extract containing empty 

vector pAED4) as a control and HT-CpcB/CpcA with GST-CpcT. For these reactions, 

phycocyanobilin (10 µM) purified from Spirulina sp. was the source of phycocyanobilin. 
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Figure 41: SDS-PAGE analysis of GST-CpcT purified sample. Lane 1 contains GST-CpcT and lane “S” is the 
molecular weight marker. Weights are indicated on the left. 
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 After the addition of PCB to the CpcT reaction, a color change was noted within an hour. 

The color changed from blue-green to bluish/purple. The control reaction did not change color as 

significantly. Absorbance and fluorescence spectra can be seen in Figures 42 and 43, 

respectively. The absorption maximum of the CpcT-dependent product reaction is 601 nm with a 

second maximum at 640 nm while that of the control reaction is 640 nm. We would expect the 

maximum to be around 600 nm if the lyase is adding at the β-153 site (Debreczeny et al., 1993). 

The control reaction maximum is at 640 where mesobiliverdin has its absorbance maximum, 

which is the more oxidized product seen after combining CpcBA with PCB in the absence of 

enzymes (Arciero et al., 1988 a&b). In the CpcT reaction there is a significant shoulder at 640 

nm which is likely due to some non-enzyme mediated addition at the Cys-82 on β-PC and on 

Cys-84 on α-PC. Figure 43 shows the fluorescence emission spectra for the same PCB reactions. 

The control reaction had a fluorescence maximum of 655 nm. The CpcT reaction has a peak at 

629 nm which is consistent with PCB being attached at the β-153 site, and it has a strong second 

peak at 655 nm due to energy being absorbed by PCB at Cys-153 on β-PC and then being 

transferred to mesobiliverdin attaching to Cys-82 on β-PC. This mesobiliverdin fluoresces at 655 

nm. Energy absorbed by chromophores must either be transferred to another chromophore that is 

in close proximity or be released as fluorescence. The CpcT reaction was overall more 

fluorescent than the control reaction which had almost double the fluorescence emission. This is 

consistent with the control product being mesobiliverdin; mesobiliverdin has only 5-10% of the 

fluorescence that phycocyanobilin has (Arciero et al., 1988 a&b; Fairchild and Glazer, 1994). 
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Figure 42: Absorbance spectra of in vitro PCB assays.  Absorbance spectra of PCB reaction products with 
CpcBA and CpcBA with CpcT. The control reaction (CpcBA) is shown in blue, while the CpcT reaction is shown in 
black. The control reaction has a maximum at 640 nm while the CpcT reaction has a maximum at 601 nm. 
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Figure 43: Fluorescence spectra of in vitro PCB assays.  Fluorescence spectra of PCB reaction products with 
CpcBA and CpcBA with CpcT. The control reaction (CpcBA) is shown in blue, while the CpcT reaction is shown in 
black. The control reaction has a maximum at 655 nm while the CpcT reaction has a peak at 655 nm, as well, but a 
strong peak at 629 nm, also. 
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 3.2.4 PcyA Reactions with CpcT 

 Because of the non-enzymatic mesobiliverdin product made during the PCB reactions, 

PcyA was used to generate PCB. Phycocyanobilin:ferredoxin oxidoreductase (PcyA) from 

Nostoc sp. PCC 7120 was used to produce PCB in situ. PcyA is a novel enzyme requiring no 

cofactors or metal, and it catalyzes a four electron reduction of biliverdin using ferredoxin to 

produce PCB. In these reactions there is little mesobiliverdin produced because only small 

amounts of phycocyanobilin are produced in situ (Frankenburg et al., 2001; Frankenburg and 

Lagarias, 2003). Reactions were performed at 30°C because the PcyA enzyme from Nostoc is 

active at this temperature. PcyA along with other factors (ferredoxin, biliverdin, etc.) were added 

to reactions containing just CpcBA or CpcBA with CpcT. After the four hour incubation period 

at 30°C, a color change from yellow-green to blue could be seen. The control reaction again had 

little to no color change. The absorbance and fluorescence spectra of the reactions can be seen in 

Figure 44 and 45, respectively. Figure 44 shows the product of the reaction with CpcT had an 

absorbance maximum at 599 nm, while the control reaction had an absorbance maximum of 655 

nm. If the CpcT lyase is adding at the β-153 site we expect a maximum around 600 nm 

(Debreczeny et al., 1993; Shen et al., 2006), consistent with the result in Figure 44 for CpcT. 

The control reaction had an absorbance spectra similar to that of mesobiliverdin (Arciero et al., 

1988 a&b), the non-enzymatic product, but it is not as significant as it is in the PCB reactions. 

The absorbance of the control product could also be a more oxidized version of mesobiliverdin 

as its maximum is red-shifted ~15 nm from that reported for mesobiliverdin (compare to Figure 

42) The CpcT reaction product was fluorescent (Figure 45) with a fluorescence emission 

maximum of 621 nm, while the control reaction was much less fluroescent and with a maximum 

of 669 nm. Both the absorbance and fluorescence spectra of the CpcT-dependent CpcBA product  
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Figure 44: Absorbance spectra of in vitro bilin addition reactions with CpcBA using CpcT and PcyA. 
Absorbance spectra of reactions with CpcBA alone (control reaction=blue line) and CpcBA with CpcT (black line). 
Absorbance maxima are shown for the reactions. The control reaction has a maximum of 655 nm while the CpcT 
reaction has an absorbance maximum of 599 nm. 
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Figure 45: Fluorescence emission spectra of in vitro bilin addition reactions with CpcBA using CpcT and 
PcyA.  Fluorescence spectra of reactions with CpcBA alone (control reaction=blue line) and CpcBA with CpcT 
(black line). Fluorescence maxima are shown for the reactions. The control reaction has a maximum of 669 nm 
while the CpcT reaction has a maximum of 621 nm. 
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have maxima that are consistent with addition of phycocyanobilin taking place at the β-153 

cysteine and are consistent with the results obtained with CpcT from Synechococcus sp. PCC 

7002 (Debreczeny et al., 1993; Shen et al., 2006). 

 

 3.2.5 Analysis of Bilin Addition by SDS-PAGE 

Because CpcA has one bilin addition site and CpcB has two bilin addition sites and both 

proteins are present in the reaction mixture, it was important to determine which site has a bilin 

attached to it. Aliquots of chromophorylation reactions were separated by SDS-PAGE and 

incubated with ZnSO4 and later with Coomassie blue (as described in Materials and Methods). 

Figure 46 shows zinc-enhanced fluorescence of bilins attached to proteins (Panel A) and the 

Coomassie stained gel (Panel B) for the PcyA reactions with CpcT (seen in Figures 44 and 45). 

The left side (Panel A) shows the products of the control (lane 1) and the CpcT PcyA reaction 

(lane 2) after the gel was incubated with zinc. The control reaction product contained a small 

amount of bilin (probably mesobiliverdin) attached to HT-CpcB, but the CpcT product clearly 

had more bilin attachment to HT-CpcB. There was not enough product to analyze which cysteine 

(β-82 or β-153) contained a PCB, but the absorbance and fluorescence properties of the CpcT 

product are consistent with addition at Cys-153 (Shen et al., 2006). 

 

 3.2.6 Phycocyanobilin addition with CpcS/CpcU and CpcBA: PcyA Reactions 

 Previous research has shown that Synechococcus sp. PCC 7002 CpcS and CpcU form a 

complex with each other and comprise the lyase that adds PCB to the β-82 cysteinyl residue in 

Synechococcus sp. PCC 7002 (N. Suanée, 2006). However, recently CpeS from Anabaena sp.  
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Figure 46: SDS-PAGE analysis of PcyA reactions containing CpcT. Panel A) Zinc-enhanced fluorescence of 
bilins attached to proteins present in the control reaction (lane 1) and the CpcT reaction (lane 2). Lane 1 contains the 
control reaction and lane 2 contains the CpcT reaction (fluorescence on the β-subunit). Panel B) Shows the same gel 
after staining in Coomassie blue. Lane 1 is the control reaction and lane 2 is the CpcT reaction. The protein 
identities are shown. 
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PCC 7120 was shown to act alone to attach PCB to Cys-82 (Zhao et al., 2006). Synechocystis sp. 

PCC 6803 CpcS and CpcU were candidates for the β-82 phycocyanobilin lyase in Synechocystis 

sp. PCC 6803. In vitro assays for chromophorylation were performed by adding CpcBA as a 

substrate and one or both subunits (CpcS, CpcU, or CpcSU) to each assay. For these reactions, 

PcyA from Nostoc sp. PCC 7120 was used to produce phycocyanobilin in situ. After incubation 

the color changes were noted for the different sets of reactions. The control, CpcS alone, and 

CpcU alone reactions changed from yellow to a light green, but the reaction containing both 

CpcS and CpcU changed to a slightly bluish-green color.  

 The absorbance and fluorescence spectra of these reactions can be seen in Figures 47 and 

48, respectively. Figure 47 shows the product of the reaction with both CpcS and CpcU had an 

absorption maximum at 629 nm, while the control reaction and the single reactions with CpcS or 

CpcU had absorbance maxima between 655 nm and 672 nm. If phycocyanobilin is attached at 

the β-82 site then a peak around 620-625 nm would be expected (Debreczeny et al., 1993), 

similar to the peak for CpcSU-dependent reaction product. The single reactions had an 

absorbance spectrum that is similar to the absorbance spectrum of mesobiliverdin (the non-

enzymatic unnatural product) (Arciero et al., 1988 a&b). 

 The product of the CpcSU reactions was fluorescent with an emission maximum of 640 

nm while the control reaction and the CpcS and CpcU single reactions were barely fluorescent 

with an emission maxima of 649 (Figure 48). The β-82 phycocyanobilin chromophore should 

fluoresce at approximately 640 nm (Debreczeny et al., 1993). Both the absorbance and 

fluorescence spectra are consistent with addition of phycocyanobilin taking place at the β-82 

cysteine site, and both CpcS and CpcU were required to get the product. This is also consistent 

with the results obtained with CpcSU from Synechococcus sp. PCC 7002 (N. Saunée, 2006). 
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Figure 47: Absorbance spectra of in vitro bilin addition reactions with CpcBA using CpcS and CpcU with 
PcyA. Absorbance spectra of reactions with CpcBA alone (control reaction=red line) and CpcBA with CpcS alone 
(green line), CpcU alone (blue line), and CpcS and CpcU (black line). Absorbance maxima are shown for the 
reactions. 
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Figure 48: Fluorescence emission spectra of in vitro bilin addition reactions with CpcBA using CpcS and 
CpcU with PcyA. Fluorescence spectra of reactions with CpcBA alone (control reation=red line) and CpcBA with 
CpcS alone (green line), CpcU alone (blue line), and CpcS and CpcU (black line). Fluorescence was taken at 590 
nm with 10 nm slits. The maximum for CpcBA with CpcS and CpcU was 640 nm, while all other maxima were 
around 649 nm. 
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3.2.7 Analysis of Bilin Addition by SDS-PAGE 

 Both HT-CpcB and CpcA were included in the in vitro assay reactions. To determine 

which subunit the CpcS/CpcU lyases were adding to, the CpcS/CpcU reaction sample was 

separated via SDS-PAGE. 20 µl aliquots from each reaction were separated on SDS-PAGE, 

incubated in ZnSO4, followed by staining in Coomassie Blue. Figure 49 shows the bilin 

fluorescence (Panel A) and the Coomassie stained gel (Panel B) for reactions with CpcS and/or 

CpcU. The control showed very little bilin attachment (Panel A, lane 1), but all three reactions: 

CpcS (lane 3), CpcU (lane 4), and CpcSU (lane 2) displayed bilin attachment to both the α and β 

subunits.These attachments are due to mesobiliverdin in the control, CpcS, and CpcU reactions. 

There was an equivalent amount of bilin attached to CpcA as judged by fluoresence intensity in 

reactions containing CpcSU, CpcS, or CpcU (Figure 49A, lanes 2-4). The intensity of CpcB 

fluoresence in the CpcSU reaction (lane 2) was at least 2-fold higher than in the CpcS or CpcU-

alone reactions (lanes 3 and 4, respectively). Panel B of Figure 43 shows the same gel after 

Coomassie staining. Proteins are identified on the gel. There was not enough product to analyze 

which cysteine contained a PCB, but the absorbance and fluorescence properties of the CpcSU 

product are consistent with addition of PCB to β-Cys-82. 
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Figure 49: SDS-PAGE analysis of PcyA reactions containing CpcS and/or CpcU. Panel A) Zinc-
enhanced fluorescence of bilins attached to proteins present in the control reaction (lane 1), the 
CpcSU reaction (lane 2), the CpcS reaction (lane 3), and the CpcU reaction (lane 4). Panel B) Shows 
the same gel after staining in Coomassie Blue. 
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DISCUSSION 

 

 4.1 CpcM Methyltrasferase 

 Many observations have noted an unusual post-translational modification of γ-N-

methylasparagine at the β-72 residue of many phycobiliproteins in cyanobacteria, red algae, and 

cryptomonads (Klotz et al., 1986; Klotz and Glazer, 1987; Wilbanks et al., 1989). Researchers 

have examined the consequences of this methylation for the structure and function of 

phycobiliproteins and of phycobilisomes (Swanson and Glazer, 1990). Results of many studies 

have shown that this site-specific methylation of a phycobiliprotein contributes significantly to 

the efficiency of energy transfer in phycobilisomes (Swanson and Glazer, 1990; Thomas et al., 

1993). Specifically, this methylation increases the energy transfer efficiency from phycobilisome 

components to the terminal energy acceptors in PSII and minimizes non-radiative energy losses 

(Thomas et al., 1993; Thomas et al., 1995). This prevention of nonradiative energy loss occurs 

by “fine-tuning” the spectroscopic properties of the neighboring β-82 chromophore (Thomas et 

al., 1995). This protection of quantum energy yield presumably provides a selective advantage to 

cells growing in aquatic niches that are light-limiting (Thomas et al., 1993). We have shown here 

that CpcM is responsible for methylation of the β-72 residues within phycobiliproteins of 

Synechocystis sp. PCC 6803.  

 We have shown that CpcM only methylates β subunits (CpcB, ApcF, and ApcB) and not 

α subunits (CpcA, ApcA) and these results match very well with previous researchers’ and 

collaborators’ work with the cpcM gene. The cpcM gene from Synechocystis sp. PCC 6803, was 

cloned and insertionally inactivated by interposon mutagenesis (H.R. Leonard, 2002). The 

mutant was analyzed to determine its effect on the assembly of the phycobilisome and 
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photosystem complexes. To assess the photosystem reaction centers, cells were frozen down to 

77K, and the fluorescence emission of the chlorophylls associated with PSI and PSII were 

measured. No difference was observed in fluorescence amplitude from PSII and PSI associated 

chlorophylls between wild-type and the mutant. There was also no difference in the measured 

phycobiliprotein to chlorophyll ratio in mutant cells compared to wild-type (H.R. Leonard, 2002; 

G. Shen and D.A. Bryant, unpublished results). 

 To test whether PBS assembly was affected, PBS were purified from the cpcM mutant 

and wild-type cells. Spectral analysis of isolated phycobilisomes showed that there was no 

difference in the chromophore content of the phycobilisomes isolated from the cpcM mutant and 

wild-type. SDS-PAGE analysis showed that there was no difference in the composition of 

isolated phycobilisomes from wild-type and the cpcM mutant. These results imply that the cpcM 

mutation does not affect phycobilisome biogenesis and assembly (H.R. Leonard, 2002; G.Shen, 

W.M. Schluchter, and D.A. Bryant, unpublished results). In examining the growth curves, when 

the cpcM mutant and wild-type Synechocystis sp. PCC 6803 were grown under high-intensity 

white light, the cpcM mutant and wild-type displayed no differences in growth rates. When 

grown under low-intensity white light and green light, the cpcM mutant exhibited a much slower 

growth rate compared to wild-type indicating that this mutation has affected energy transfer from 

phycobilisomes to PSI and PSII (H.R. Leonard, 2002; G. Shen, W.M. Schluchter, and D.A. 

Bryant, unpublished results).  

This is consistent with experiments performed by Swanson and Glazer on Synechococcus 

sp. PCC 7942 pcm-1 and pcm-2 mutants lacking methylation at the β-72 residue. Their mutant 

was still able to produce complete phycobiliproteins and phycobilisomes (Swanson and Glazer, 

1990). However, Swanson and Glazer also noted that the mutants of Synechococcus sp. PCC 
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7942 deficient in PBP methylation had an increase in fluorescence emission between 630 and 

660 nm indicating less efficient energy transfer was occurring between phycocyanin and 

allophycocyanin.  

 Because the original cpcM mutant was lost, cpcM mutant strains were generated through 

interposon mutagenesis in Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803. To 

investigate the possibility that the interruption of the cpcM gene affects energy transfer 

efficiency from phycobilisome to photosystems, state transition measurements were compared 

between wild-type and sll0487::Km cells. State transition measurements were done using 

fluorescence emission on exponential-phase cells. Fluorescence emission spectra of the purified 

phycobilisomes from cpcM mutant and wild-type revealed that the mutant exhibited obvious 

inefficiency of energy transfer from phycocyanin to allophycocyanin. No light-induced transition 

from state 2 to state 1 was observed in the cpcM mutant cells (G. Shen and D.A. Bryant, 

unpublished results). The decrease in excitation energy transfer would be consistent with the idea 

that the cpcM mutant’s phycobilisomes are missing the methylation at the β-72 residue, and that 

this methylation is important in energy transfer within the PBS and from the PBS to PSI. These 

results are consistent with CpcM functioning in phycobiliprotein methylation. Since methylation 

of phycobiliproteins affects the cell’s ability to respond to short-term changes in light-conditions, 

the cpcM mutant’s inability to respond to short-term changes in light-conditions provides more 

evidence that the β-72 residue was not methylated. 

 LC-MS analyses of isolated PBS from the cpcM mutants confirmed that mutants lacking 

CpcM synthesize CpcB, ApcB, and ApcF that are not methylated. Trypsin digestion and further 

MS analyses of peptides showed that the peptide (Q L F A D Q P Q L I A P G G N A Y T N R) 
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 including Asn72 (in bold) was 14 daltons (the weight of CH3 replacing H) lighter than the 

equivalent peptide from the wild-type strains (G. Shen and D.A. Bryant, unpublished results). 

This provides evidence that CpcM is specific for Asn 72. 

 The timing of the post-translational methylation modification during the building of the 

phycobilisome was investigated by performing assays on chromophorylated and 

unchromophorylated phycobiliproteins. If CpcM were to show specificity towards apo versus 

holo protein, this would give us a clue to when the methylation occurs, either before or after the 

bilins were attached to the phycobiliproteins. When apo-CpcB and that same protein containing a 

bilin at Cys-82 (Cys-82-PCB)-CpcB were compared in assays, the presence of the bilin at Cys-

82 on β-PC seemed to increase the affinity of the CpcM enzyme for the substrate. 

 When trimeric PC isolated from the cpcM mutant was compared with apo-PC 

(monomeric), the CpcM enzyme showed higher affinity towards the apo-PC. One explanation is 

that CpcM methylates the β-subunits early in the protein biogenesis either before, or just after 

bilins get added. Once the phycobiliprotein associates into trimers with linker proteins, the CpcM 

enzyme showed less affinity for this form. In examining the structure and position of the Asn72 

with the PC trimers, Duerring et al., noted that the Asn72 residue was readily accessible on the 

exterior of the trimer, and they speculated that the methyltransferase may recognize this as a 

substrate. Further research performing CpcM assays using CpcSU and CpcT-dependent CpcB 

reaction product versus apo-CpcB may allow us to examine the importance of bilins at all 

positions in the affinity of CpcM for its substrates. The conclusion from this research is that the 

methylation occurs after monomeric PBP are chromophorylated but before they assemble into 

trimers.  
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 How does specificity for the β subunit and not the α subunit of PBP arise given the 

extremely similar primary and tertiary structures of these proteins (see Figure 5)? Comparing 

sequence alignments around the Asn72 there is a strong conservation of a short sequence among 

the β subunits that is not present in the α subunits. This signature sequence is P-G-G-N-( )-Y-T 

(Klotz et al., 1986). This implies that the recognition domain for CpcM is within this region. 

This hypothesis could be tested by fusing this sequence to a protein like GST or by changing 

CpcA to contain this sequence. 

 Though there are only very slight structural differences between the α and β subunits of 

PBP, only the β-subunit carries the terminal energy acceptor bilin chromophore at Cys-82. It has 

been shown that the methylation of Asn72 provides for optimal energy transfer by decreasing the 

nonradiative energy loss of the β-82 chromophore, the terminal energy acceptor. This is 

proposed to happen by the methyl group on the Asn72 restricting conformational flexibility of 

the bilin. By keeping the chromophore rigid processes such as excited-state proton-transfer 

reactions, intersystem crossing, or photoisomerization are decreased (Thomas et al., 1995). The 

methylation is specific for β subunits due to its purpose in altering the environment surrounding 

the terminal energy “acceptor” bilin located on the β subunit. 

 How does this post-translational modification affect Asn72 within the phycocyanin? 

When the Asn72 residue is methylated, the methylation reaction adds bulk to the side-chain 

amide group and also removes the possible participation of one of the two amide hydrogen atoms 

in hydrogen bonding schemes. Studies on synthetic peptides have suggested that methylation can 

slow the spontaneous deamidation of the side chain of asparagine residues by 45-fold (Klotz and 

Thomas, 1993). This is very important if Asn72 is supposed to hold the β-82 chromophore rigid 
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and in place for efficient photosynthesis. If the chromophore were to become flexible it would 

lead to nonradiative relaxation decreasing the efficiency of photosynthesis in the organism. 

 AdoMet-dependent methyltransferases, like CpcM, share a conserved catalytic domain 

structure due to the interaction of the enzymes with a common cofactor, S-adenosylmethionine 

(Schluckebier et al., 1995). AdoMet-dependent methyltransferases show a similar folding pattern 

with a central parallel β-sheet surrounded by -helces. The common three-dimensional structure 

of these enzymes is demonstrated in sequence motifs that are conserved among a large number of 

AdoMet-dependent methyltransferases (Ingrosso et al., 1989; Lauster et al., 1989; Posfai et al., 

1989; Kagan and Clarke, 1994; Malone et al., 1995; Hamahata et al., 1996). The conserved 

regions, which are designated as motif I, post-I, motif II, and motif III, are always found in the 

same order on the polypeptide chain and are separated by comparable intervals. The three-

dimensional structures of AdoMet-dependent methyltransferases have revealed that motif I and 

post-I interact directly with AdoMet, whereas motifs II and III interact with each other and with a 

portion of motif I to form the central portion of the β-sheet (Figure 50). The enzymes lacking 

motifs may have three-dimensional structures distinct from the family of methyltransferases or 

may have diverged sufficiently for the motifs to become unrecognizable (Niewmierzycka and 

Clarke, 1999). 

 Is CpcM similar to any other methyltransferases? Another methyltransferase involved in 

helping its organism perform optimally is CheR. Sensory adaptation to persisting stimulation 

permits cells to respond with greater sensitivity to temporal changes in stimuli. In Escherichia 

coli and Salmonella enterica, adaptation during bacterial chemotaxis is in part mediated by 

reversible covalent modifications of transmembrane chemoreceptors, also referred to as methyl-

accepting chemotaxis proteins, in which specific glutamate residues within the cytoplasmic  
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Figure 50: Schematic representation of the conserved methyltransferase motifs in relation to S-
adenosylmethionine. The conserved motifs I, post-I, II, and III are shown with the sequence of the human protein 
L-isoaspartate (D-aspartate) O-methyltransferase. The arrangement of motifs is predicted based on known three- 
dimensional structures (Niewmierzycka and Clarke, 1999).  
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domains are methylated by methyltransferase CheR and demethylated by 

methylesterase/deamidase CheB (Kehry and Dahlquist, 1982). Though both CpcM and CheR’s  

methylation may help their respective organisms to be more efficient, they are not similar in that 

one is reversible and one is not. Asparagine 72 methylation performed by CpcM is a covalent 

permanent post-translational modification. CheR/CheB’s methylation/demethylation is regulated 

by negative feedback from receptors. CpcM methylation of Asn72 is probably more like other 

permament modifications seen in ribosomal proteins. 

 Ribosomal protein methylation such as the δ-N-methylglutamine, is a permanent 

modification that makes ribosomes more cold hardy. Lhoest and Colson (1981) observed the 

effects on low-temperature assembly of E. coli ribosome L3 lacking the δ-N-methylglutamine 

modification. They suggested that the methylase represents a ribosomal assembly factor, as 

unmodified ribosomes, once assembled, appear to function normally. The gene encoding the 

methyltransferase was designated prmB (Colson et al., 1979). Mutants in the prmB gene 

displayed a cold-sensitive phenotype and accumulated unstable and abnormal ribosomal particles 

(Lhoest and Colson, 1981). The PrmB methyltransferase is probably a distinct enzyme from 

CpcM. There is no sequence similarity in the methyl-accepting site of L3 and the PBP. Another 

permanent ribosomal protein methylation is N-5-methylglutamine. This is performed by the 

enzyme HemK and modulates the termination activity of release factors in ribosomal protein 

synthesis. A hemK knockout strain of E. coli not only suffered severe growth defects, but also 

showed a global shift in gene expression to anaerobic respiration (Nakahigashi et al., 2002). The 

asparagine residue methylated by CpcM in phycobiliproteins is located in a similar sequence 

context to that of the glutamine residues in the ribosomal protein synthesis release factors 
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methylated by the HemK methyltransferase, where the amide residue in both cases is preceded 

by a pair of glycine residues (Clarke, 2002). 

Several other amino acids have been found to be methylated by methyltransferases such 

as arginine, glutamate, and glutamine. What about the possibility of methylation of the side chain 

of glutamine residues by CpcM, since they only have one more methylene group in the side-

chain than asparagine residues? This may be possible due to research performed by Thomas et 

al., (1995) which showed when the asparagine residue at 72 was replaced with a glutamine 

residue in PBP, significant amounts of methylation were still detected. This suggests that CpcM 

might recognize either an asparagine or glutamine residue after the two glycine residues in the β-

subunit signature sequence surrounding the 72 residue (Thomas et al., 1995). There is also the 

fact that the asparagine residue methylated in phycobiliproteins is located in a similar sequence 

to that of the glutamine residues in the ribosomal protein methylated by the HemK 

methyltransferase, where the amide residue in both cases is preceded by a pair of glycine residues 

(Clarke, 2002). Research on γ-N-methylasparagine and δ-N-methylglutamine was performed by 

Klotz et al., (1990). Both modified residues are similar in chemistry, and some methylation was 

detected by CpcM on glutamine residues. It seems probable that CpcM would methylate a 

glutamine residue if found in the same signature sequence as found in phycobiliproteins. 

 In conclusion for the CpcM experiments, we have deduced that CpcM is responsible for 

not only methylating CpcB and ApcB, but also ApcF. We demonstrated CpcM does not 

methylate the homologous α subunit in either phycocyanin or allophycocyanin. Through various 

assays we have concluded where along the path of phycobilisome assembly the asparagine 

methylation occurs. The methylation probably occurs after chromophorylation of the 

phycobiliproteins, but before formation of trimeric phycobiliproteins, but all forms of β-subunits 
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tested could be substrates for CpcM. We have also shown that CpcM is methylating Asn72 

through the analysis of the cpcM mutant. In addition, we demonstrated that CpcM methylates β-

PC in PC isolated from the cpcM mutant. 

 

4.2 CpcS, CpcU, and CpcT Lyases 

 The second part of this research project demonstrated that Synechocystis sp. PCC 6803 

CpcS, CpcU, and CpcT act as lyases to chromophorylate the β-subunit of phycocyanin. CpcT is a 

lyase that attaches phycocyanobilin to β-153 cysteine site of phycocyanin as demonstrated by 

absorbance, fluorescence, and zinc-enhanced fluorescence of SDS-PAGE. These results are 

consistent with the CpcT characterization from Synechococcus sp. PCC 7002, a similar species 

to that of Synechocystis sp. PCC 6803 (Shen et al., 2006). Absorbance and fluorescence spectra 

of the CpcSU-dependent product show peaks where we would expect if bilin addition is taking 

place on the β-82 site of phycocyanin. These results are consistent with the CpcSU 

characterization in Synechococcus sp. PCC 7002 (Saunée, 2006). Therefore, it appears in these 

two cyanobacteria, both CpcS and CpcU are required to get bilin addition to β-82 PC. 

 Zhao et al. (2006) characterized the CpeS protein from Anabaena sp. PCC 7120 that is an 

ortholog to CpcS, called CpeS. They concluded that CpeS works alone to catalyze a site-specific 

attachment of phycocyanobilin to the β-84 (β-82, equivalent) cysteine in both CpcB and PecB 

(phycoerythrocyanin β subunit). Assays showed that CpeS does not require any other partner 

proteins to attach phycocyanobilin (Zhao et al., 2006). This is in contrast to the results presented 

here that CpcS and CpcU are both required for bilin addition to β-82. One explanation for these 

differing results may be that CpeS acts as a homo-dimer while CpcSU has been shown to form a 
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1:1 stoichiometric complex in Synechococcus sp. PCC 7002 (N. Saunée, 2006), and this may be 

the case in Synechocystis sp. PCC 6803.  

 CpcT has no relation to α phycocyanin lyases CpcE/F or the lyase/isomerase PecE/F. 

Because CpcT is not related in sequence to CpcE/F or PecE/F, it is part of a new class of bilin 

lyase found in Synechococcus sp. PCC 7002 (Shen et al., 2006). cpcT and cpeT-like genes are 

represented in all sequenced genomes of cyanobacteria, except P. marinus MED4 (which lacks 

phycobiliprotein). These genomes contain one copy of the cpcT or cpeT-like gene. Because of 

this sequence similarity, CpeT orthologs most probably function in attachment of the bilin at β-

153, or the equivalent position (Shen et al., 2006). cpcS or cpeS-like genes and cpcT or cpeT-like 

genes can be found in all phycobiliprotein-containing cyanobacterial genomes and can be 

considered cyanobacterial signature genes. 

 Why are different lyases needed for the addition of PCB to the Cys-84 and Cys-82 

postion on α and β subunit since the spatial and stereochemical position of the bilins is the same? 

The lyases responsible for attachment to the α subunits, CpcE/F and PecE/F, act as heterodimers, 

can also act as bilin transferases (perform repairs), and in some cases isomerize the bilin 

(Fairchild et al., 1992; Fairchild and Glazer, 1994; Jung et al., 1995; Zhao et al., 2006). In 

contrast to the α-subunit lyases, the CpeS/CpcSU family attaches phycocyanobilin to β-82 and 

are not similar in sequence to CpcE/F or PecE/F. The CpcEF-type lyases appear to have more 

involvement in bilin removal/repair than the CpeS/CpcSU family does. 

 It is not clear why cyanobacteria have separate lyases for attachment on the α and β 

phycocyanin subunits. The locations of the attachment sites may be a reason for different lyases 

for the subunits. Bilins attached at the β-153 site are ‘peripheral bilins’ and are exposed because 

they do not have helices or other structures surrounding them and are at a location in the 
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biliprotein structure that bends and is exposed. The α-84 and β-82 cysteines are buried inside a 

crevice created by the α helices in the phycocyanin structure. Bilins attached at these sites are 

called ‘central bilins’ because of their location inside the biliprotein structure (Toole et al., 

1998). One reason that there are two different lyases for the two sites on the β phycocyanin 

subunit may have to do with the stereochemistry of the attachment sites. The PCB that attaches 

to the β-153 cysteine has an S stereochemistry on the chiral carbon at C31. The PCB that attaches 

to the β-82 cysteine has an R stereochemistry on the chiral carbon at C31 (Figure 10) (Schirmer 

et al., 1987; Shen et al., 2006; Zhao et al., 2006). The PCB at β-153 has been shown to have S 

stereochemistry in all solved x-ray crystal structure phycobiliproteins (Duerring et al., 1990; 

Duerring et al., 1991; Ritter et al., 1999). With this information Shen et al., (2006), hypothesized 

that it is probable that CpcT and its paralogs may also be responsible for attachment of any 

possible substrate to the β-153 or its corresponding site (Shen et al., 2006). 
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Future Work 

 

 Future experiments would be to achieve conclusive evidence of when CpcM methylation 

of PBP occurs during phycobilisome assembly. Bilin addition reactions using recombinant apo-

CpcBA and PcyA using CpcSU and CpcT to fully chromophorylate the CpcB should be 

performed. This holo-CpcB should then be used in assays compared against apo-CpcB. These 

assays should give conclusive evidence as to when the CpcM methylation of β-72 occurs. Also, 

experiments to show that CpcM specifically methylates at β-72 should be performed. This can be 

achieved by narrowing down the recognition site for CpcM on β-subunits by making truncations. 

Or, one could subject the CpcB assay product to mass spectroscopy to confirm it is heavier at the 

peptide containing Asn72.  

Futher lyase experiments would be to first achieve enough CpcSU-dependent product and 

CpcT-dependent product to perform tyrptic digestion and Reverse Phase-HPLC to determine 

precisely which cysteine bilin attachment sites these lyases are adding to. Next, we should 

determine the subunit structure of the CpcSU complex. More work also needs to be done to 

determine if cofactors can affect the lyase activity. Increasing the MgCl2 concentration was 

shown to slightly increase the activity of CpcSU and CpcT in bilin addition reactions. Future 

work needs to determine if this or other metal ions can inhibit or help activate the lyases. Also, 

work on the Synechocystis sp. PCC 6803 allophycocyanin subunits using CpcS, CpcU, and CpcT 

to determine which lyases chromophorylate them could be performed. Allophycocyanin does not 

contain the β-153 bilin attachment site but does contain α-84 and β-82.  
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