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ABSTRACT

A GAP THEOREM FOR HALF-CONFORMALLY-FLAT 4-MANIFOLDS

Martin Citoler-Saumell

Brian J. Weber

Given a smooth, compact manifold, an important question to ask is, what are the

“best” metrics that it admits. A reasonable approach is to consider as “best” metrics

those that have the least amount of curvature possible. This leads to the study of

canonical metrics, that are defined as minimizers of several scale-invariant Riemannian

functionals. In this dissertation, we study the minimizers of the Weyl curvature func-

tional in dimension four, which are precisely half-conformally-flat metrics. Extending

a result of LeBrun, we show an obstruction to the existence of “almost” scalar-flat

half-conformally-flat metrics in terms of the positive-definite part of its intersection

form. On a related note, we prove a removable singularity result for Hodge-harmonic

self-dual 2-forms on compact, anti-self-dual Riemannian orbifolds with non-negative

scalar curvature.
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Chapter 1

Introduction and background

1.1 Introduction

The classification of smooth manifolds is perhaps one of the most fundamental prob-

lems in differential geometry and, closely related, we have the following question.

Question (René Thom). Given a smooth manifold M , what are the “best” Rieman-

nian metrics that it admits? When do they exist?

First we need to decided what do we mean by “best” metrics. Arguably, what

Thom had in mind was the uniformization theorem, which says that any closed 2-

manifold admits a metric of constant sectional curvature with a specific sign. One

can go a little further and consider the resolution of geometrization conjecture, where

Einstein manifolds played important role as the building blocks of 3-dimensional

manifolds. In any case, it stands to reason that the notion of “best” metric should
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include constant sectional curvature metrics and Einstein metrics.

The next natural step is to look into 4-manifolds. Unfortunately, in dimension 4

the situation is more complicated and there is no geometrization program in place

at the current time. One of the main difficulties is that the geometry is not really

controlled. For example, it is well known that any finitely presented group can be

realized as the fundamental group of a 4-manifold. As a result, the classification of

4-manifolds seems like a daunting endeavor at best. However, we can still approach

Thom’s question on 4-manifolds and, hopefully, shed some light onto the problem.

For the rest of this section we assume that M is a smooth, closed, oriented 4-

manifold. Recall the decomposition of the Riemannian curvature tensor in dimension

4

Rm = W+ +W− +
1

2
R
◦
ıc? g +

scal

24
g ? g.

As a general rule, flat metrics are considered quite desirable whenever they exist

so we should ask “best” metrics to have the least amount of curvature possible in

some sense. More specifically, our definition of “best” metrics is those that are the

minimizers (or critical points) of scale-invariant Riemannian functionals,

FC : g 7→
ˆ
M

|C|2 dV ,

where C is one of the curvature quantities appearing in the decomposition of Rm.

For example, Einstein metrics, whenever they exist, are critical points of all these

functionals and they actually minimize FRm. Indeed, from the Chern-Gauss Bonnet
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theorem

χ(M) =
1

32π2

ˆ
M

(
|W+|2 + |W−|2 − 2|R◦ıc|2 +

scal2

6

)
dV ,

we can compute

ˆ
M

|Rm|2 dV = 32π2χ(M) + 4

ˆ
M

|R◦ıc|2dV ≥ 32π2χ(M),

with equality only for Einstein metrics. In a similar fashion we can find other mini-

mizers of FRm. Using Hirzebruch’s signature theorem

τ(M) =
1

48π2

ˆ
M

(
|W+|2 − |W−|2

)
dV ,

we obtain

ˆ
M

|Rm|2 dV = −32π2 (χ(M) + 3τ(M)) + 4

ˆ
M

(
|W+|+ scal2

12

)
dV

≥ −32π2 (χ(M) + 3τ(M)) ,

(1.1)

with equality only if W+ ≡ 0 and scal ≡ 0. This means that anti-self-dual scalar-flat

metrics also minimize FRm. As a result, we have some topological obstructions to the

existence of such metrics. It follows that if (M, g) is Einsten, then χ(M) ≥ 0 and if

(M, g) is anti-self-dual scalar-flat, then χ(M) + 3τ(M) ≤ 0. Along the same lines, we

can compute

2χ(M) + 3τ(M) =
1

8π2

ˆ
M

(
|W+|2 − |R◦ıc|2 +

scal2

12

)
dV ,

which yields the Hitchin-Thorpe inequality, 2χ(M) + 3τ(M) ≥ 0, for Einstein mani-

folds and its reverse, 2χ(M) + 3τ(M) ≤ 0, for anti-self-dual scalar-flat manifolds.
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In this dissertation we are mainly concerned with the Weyl functional, FW , which

we will usually denote by W . Proceeding as above, we can find minimizers as well.

By Hirzebruch’s signature theorem,

W(g) = ∓48π2τ(M) + 2

ˆ
M

|W±|2dV ,

which implies that metrics satisfying either W+ ≡ 0 or W− ≡ 0 are minimizers ofW .

Since changing orientation exchanges W+ and W−, we sometimes call these metrics

half-conformally-flat. For simplicity we will work with anti-self-dual metrics but our

results are valid for self-dual metrics as well. As before, we also obtain a topological

obstruction to the existence of anti-self-dual metrics. Namely, if (M, g) is anti-self-

dual, then τ(M) ≤ 0. In fact, not many other topological obstructions are known

and, in light of the following result of Taubes, not many are expected.

Theorem 1.1 ([Tau92]). Let M be a closed 4-manifold. Then M#kCP2
admits an

anti-self-dual metric for all sufficiently large k.

Nonetheless, if we constrain the scalar curvature, there are some other topological

obstructions to the existence of anti-self-dual metrics. Of course, if we actually have

scal ≡ 0, we are in the previous situation and we have the reversed Hitchin-Thorpe

inequality. In addition to this, LeBrun proved in [LeB86] the following result, which

we quote as it appears in [LeB04, Proposition 3.5].

Theorem 1.2. Let M be a closed, simply-connected 4-manifold that admits an anti-

self-dual scalar-flat metric. Then one of the following holds:

4



• M is homeomorphic to kCP2
for some k ≥ 5; or

• M is diffeomorphic to CP2#kCP2
for some k ≥ 10; or else

• M is diffeomorphic to K3.

The main ingredient in the proof of this theorem is the following proposition,

which gives a restriction on b+ for anti-self-dual metrics with non-negative scalar

curvature.

Proposition 1.3 ([LeB86, Proposition 1]). Let (M, g) be a closed, anti-self-dual 4-

manifold with non-negative scalar curvature. Then one of the following holds:

• b+(M) = 0; or

• b+(M) = 1 and g is scalar-flat Kähler; or else

• b+(M) = 3 and g is hyper-Kähler.

Recall that b+(M) can be defined as the dimension of the space of Hodge-harmonic

self-dual 2-forms on M . The proof of this proposition is an application of the Böchner

technique to prove that the 2-forms representing b+(M) are parallel. As usual, these

kind of arguments rely heavily on the non-negativity of some curvature quantity, in

this case scal ≥ 0.

Finally, if one allows the scalar curvature to become negative, not much is known.

However, if one considers small negative scalar curvature, there is some hope. Heuris-

tically, the representatives of b+ are almost parallel, which should suffice to obtain a
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similar result. In this dissertation we prove an obstruction theorem to the existence

of “almost” scalar-flat anti-self-dual metrics.

Theorem 1.4. Fix any m ≥ 2 and let (M, g) be a closed, unit-volume, anti-self-dual

4-manifold with π1(M) = 0. Suppose that there are constants E0 < ∞, V0 < ∞,

S0 <∞, and CS > 0 such that(ˆ
M

|Rm|2dV
) 1

2

≤ E0, (1.2)

‖scal‖Wm+2,4(M) ≤ S0, (1.3)

Vol (Br(x)) ≤ V0r
4 for all x ∈M and r > 0, (1.4)

and

CS (M) ≤ CS. (1.5)

Then there is a constant δ0 = δ0(E0, V0, S0, CS) > 0 such that if ‖scal‖L1(M) < δ0,

then we have b+(M) ≤ 3.

Remark 1.5. The choice of m in the statement above is rather inconsequential as it

only affects the regularity of some convergence results that appear during the course of

the proof. One might set m = 2 and work with ‖scal‖W 4,4(M), anyway, the statement

includes m ≥ 2 to highlight the fact that this m is not optimal. In fact, by tweaking

some of the arguments, it is possible to only ask for ‖scal‖W 2,4 ≤ S0 but we shall not

delve into this issue for the sake of a better exposition.

Now we give a brief description of the methods in the proof. In an argument by

contradiction, our result amounts to understanding the convergence theory for anti-
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self-dual manifolds with small scalar curvature and big b+. We build on the work of

Tian-Viaclovsky [TV05a, TV05b, TV08] (cf. [And05]), where they prove an orbifold

compactness theorem for anti-self-dual manifolds with constant scalar curvature. In

our case, we obtain limit spaces that are manifolds except for finitely many singular

points which might not be orbifold singularities. Nonetheless, this is good enough

to obtain parallel Hodge-harmonic self-dual 2-forms on the regular part of the limit

space and, similar to the case of smooth manifolds, not many can be supported.

On a related direction, we are able to prove a removable singularity result for

Hodge-harmonic self-dual 2-forms on compact Riemannian orbifolds with isolated

singularities.

Proposition 1.6. Let (X, g) be a compact, oriented, smooth Riemannian orbifold

with isolated singularities. Also assume that the orbifold metric is anti-self-dual with

non-negative scalar curvature. Let XR denote the regular set of the orbifold. If η is a

Hodge-harmonic self-dual 2-form in L2(XR), then η must be parallel. In particular,

it can be extended across orbifold singularities. Further, if η 6≡ 0, then the orbifold is

scalar-flat.

The rest of the dissertation is organized as follows. In the remaining of Chapter 1,

we cover some background material that is needed in the later chapters. This includes

some basic definitions; important properties of anti-self-dual metrics and 4-manifolds;

and the rudiments of the regularity theory for elliptic inequalities. Even though

we concentrate our attention to dimension 4, most of the material has analogous
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formulations in arbitrary dimensions.

In Chapter 2, we prove a geometric ε-regularity theorem for anti-self-dual 4-

manifolds. Roughly speaking, it says that in regions where ‖Rm‖L2 is sufficiently

small, we actually have bounds for ‖Rm‖L∞ . Essentially, this comes from the fact

that anti-self-dual metrics satisfy a system of elliptic equations. This kind of result

is the most important ingredient to understand the convergence theory.

Lastly, Chapter 3 is devoted to give the full details of the proofs of Theorem 1.4

and Proposition 1.6.

1.2 Notation and definitions

Suppose M is a smooth n-manifold and let g be a smooth Riemannian metric on M .

We use Rm, Ric and scal to denote, respectively, the Riemannian curvature tensor,

the Ricci curvature tensor and the scalar curvature. Our sign convention is such that

the curvature (0, 4)-tensor is given by

〈R(X, Y )Z,W 〉 =
〈
∇X (∇YZ)−∇Y (∇XZ)−∇[X,Y ]Z,W

〉
,

where ∇ denotes the Levi-Civita connection. In coordinates, Ric is given by Rjk =

gilRijkl, and the scalar curvature by, scal = gjkRjk. The curvature tensor has nice

symmetries that can be expressed by

Rijkl = −Rjikl = −Rijlk = Rklij.
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In fact, given two (0, 2)-tensors we can use the Kulkarni-Nomizu product to produce

a (0, 4)-tensor with curvature symmetries, in coordinates it is given by the following

expression,

(T ? S)ijkl = TjkSil + TilSjk − TikSjl − TjlSik.

We also use the comma notation to denote the covariant derivatives of a tensor.

Namely, if T is a (p, q)-tensor, the m-th covariant derivatives has components,

(∇mT )k1...kmi1...ipj1...jq = ∇k1 · · · ∇kmT
i1...ip
j1...jq

= T
i1...ip
j1...jq ,km...k1

.

Since we can use the metric g to identify TM with T ∗M , from now on we often write

only subindices. Further, unless otherwise specified, we always use geodesic normal

coordinates centered at some point p to write down coordinate expressions and we

also adopt the convention of summing over repeated indices. For example, recall the

Ricci identities that express the commutator formulas for covariant derivatives. If T

is a (0, 2)-tensor we have

Tij,kl − Tij,lk = RlkmiTmj +RlkmjTim. (1.6)

Another important fact that is implicitly used is that Riemannian metrics induce inner

products on all tensor bundles. In coordinates, given T and S two (p, q)-tensors, we

have

〈T, S〉 = gi1k1 · · · gipkpgj1l1 · · · gjqlqT
i1...ip
j1...jq

S
k1...kp
l1...lq

.

Finally, associated to the metric we can define several operators acting on the

9



differential k-forms on M , which we denote by Λk. We have the Hodge-star operator,

∗ : Λk → Λn−k,

which is given by

ω ∧ ∗ψ = 〈ω, ψ〉dV ,

where ω, ψ ∈ Λk and dV denotes the volume form; the Hodge Laplacian,

∆H = δd+ dδ,

where d denotes the exterior derivative and δ = (−1)nk+1 ∗ d∗ is the divergence

operator, which also is the L2-adjoint of d; and the connection Laplacian,

∆ = tr(∇2) = gij∇i∇j,

where tr denotes tracing over the first two indices.

1.2.1 Sobolev constants and inequalities

In this dissertation we make repeated use of Sobolev-type inequalities and bounds on

the corresponding Sobolev constants. For a compact Riemannian manifold, (M, g),

we define the Sobolev constant as the smallest positive constant CS(M) such that

(ˆ
M

u2γdV

) 1
γ

≤ CS(M)

ˆ
M

|∇u|2 dV +
1

Vol (M, g)
2
n

ˆ
M

u2dV , (1.7)

for all u ∈ C1(M), where γ = n
n−2

. However, in most cases we are only interested

in the local behavior and we can use a local version of the inequality above. For a

10



domain Ω ⊂ M we define the local Sobolev constant as the biggest positive constant

CS(Ω) such that

CS(Ω)

(ˆ
Ω

u2γdV

) 1
γ

≤
(ˆ

Ω

|∇u|2dV
) 1

2

, (1.8)

for all u ∈ C1
c (Ω).

The relation between these two constants is that a bound on the Sobolev constant

implies a bound on the local Sobolev constant for domains with sufficiently small

volume.

Lemma 1.7. Let (M, g) be a compact Riemannian manifold and let Ω ⊂ M be

some domain. Then for any c ∈ (0, 1) we have that Vol(Ω) ≤ c
n
2 Vol(M, g) implies

CS(Ω) ≥ c
CS(M)

.

Proof. Given u ∈ C1
c (Ω), we can extend it to be identically zero on M \Ω and apply

(1.7) to obtain

(ˆ
Ω

u2γdV

) 1
γ

≤ CS(M)

ˆ
Ω

|∇u|2 dV +
1

Vol (M, g)
2
n

ˆ
Ω

u2dV .

By Hölder’s inequality

1

Vol (M, g)
2
n

ˆ
Ω

u2dV ≤ Vol (Ω)
2
n

Vol (M, g)
2
n

(ˆ
Ω

u2γdV

) 1
γ

,

so the condition on Vol(Ω) implies

c

CS(M)

(ˆ
Ω

u2γdV

) 1
γ

≤
ˆ

Ω

|∇u|2 dV .

11



1.3 Anti-self-dual 4-manifolds

In this section we give the definition of anti-self-dual metrics and show how to realize

the signature of a 4-manifold using subspaces of Hodge-harmonic 2-forms. We also

show how to obtain elliptic equations and inequalities for anti-self-dual metrics.

Suppose (M, g) is a Riemannian n-manifold. By the curvature symmetries, we can

think of Rm as an element of the second symmetric power of the bundle of 2-forms,

i.e. Rm ∈ S2 (Λ2). Since Rm satisfies the Bianchi identity, it is in the kernel of the

Bianchi map, b : S2 (Λ2)→ S2 (Λ2), which is given by the expression

b(R)(X, Y, Z, T ) =
1

3
(R(X, Y, Z, T ) +R(Y, Z,X, T ) +R(Z,X, Y, T )) .

In fact, by studying the representation theory of the set of algebraic curvature tensors,

ker
(
b
∣∣
S2(Λ2)

)
, as an O(n)-module, we can obtain an orthogonal decomposition for the

curvature (0,4)-tensor (see [Bes08, Chapter 1.G] for a more detailed account1),

Rm = W +
1

n− 2
R
◦
ıc? g +

scal

2n(n− 1)
g ? g, (1.9)

where R
◦
ıc is the traceless Ricci tensor, R

◦
ıc = Ric− scal

n
g, and W is the Weyl tensor.

It is important to note that both R
◦
ıc and W are traceless.

Now we restrict our attention to dimension 4 where the Hodge-star operator acts

on 2-forms, ∗ : Λ2 → Λ2. It is straightforward to check that ∗ is self-adjoint and

satisfies ∗2 = 1. This implies that we have an orthogonal decomposition

Λ2 = Λ+ ⊕ Λ−,

1Beware that both our curvature tensor and our ? have the opposite sign to those in [Bes08].
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where Λ± are the ±1-eigenspaces of ∗. We call elements in Λ+ self-dual 2-forms

and elements in Λ− anti-self-dual 2-forms. It turns out that W (Λ±) ⊂ Λ± (see

Lemma A.8) so we can define the restrictions of the Weyl tensor to Λ±, W± = W
∣∣
Λ±

.

Then we say that (M, g) is a self-dual manifold if it satisfies W− = 0 and we say that

g is a self-dual metric. Similarly, we use anti-self-dual when W+ = 0. Since reversing

the orientation exchanges W±, we sometimes refer to either one as half-conformally-

flat manifolds. Roughly speaking, this decomposition of the Weyl tensor arises when

one considers the algebraic curvature tensors as an SO(4)-module. This is a special

phenomenon of dimension 4 and a manifestation of the non-simplicity of SO(4). We

refer the reader to [Bes08] and the references therein for further details.

1.3.1 2-forms and topology

As illustrated in the introduction, not many obstructions to the existence of half-

conformally-flat metrics are known. Nonetheless, we can use the decomposition of the

bundle of 2-forms seen above to gain some insight into some topological invariants of

M . Namely, we can encode the signature of M using Hodge-harmonic 2-forms in Λ±.

We follow the exposition in [LeB04].

Recall that for any closed 4-manifold we have the intersection form

Q : H2
dR(M)×H2

dR(M)→ R, (1.10)

given by Q ([α], [β]) =
´
M
α ∧ β. Note that the wedge product is commutative on

2-forms and Poincaré duality says that Q is non-degenerate. Thus, Q is a symmetric

13



bilinear form and we can choose a basis for H2
dR(M) so that Q takes the form of

a diagonal matrix with only ±1 entries and zeros. Since this only depends on the

topology of M , we can define

b±(M) = “dimension of ±-definite subspace of H2
dR(M) with respect to Q”,

and the signature of M is the signature of Q

τ(M) = b+(M)− b−(M).

By the Hodge decomposition theorem, we can restrict Q to Hodge-harmonic 2-forms

Hg(M) =
{
η ∈ Λ2 : ∆Hη = 0

}
.

Moreover, since ∗∆H = ∆H∗, we have that ∆H : Λ± → Λ±. This implies that the

orthogonal decomposition, Λ2 = Λ+ ⊕ Λ−, restricts to Hodge-harmonic 2-forms

Hg(M) = H+
g (M)⊕H−g (M),

where H±g (M) = {η ∈ Λ± : ∆Hη = 0}. Finally, given η ∈ H±g we have

Q(η, η) =

ˆ
M

η ∧ η = ±
ˆ
M

η ∧ ∗η = ±
ˆ
M

|η|2dV ,

so Q restricted to H±g is ±-definite and we have

b±(M) = dim H±g (M).
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1.3.2 Geometric elliptic equations and inequalities

Recall that any Riemannian manifold satisfies an elliptic equation for the Riemannian

curvature tensor (see Lemma A.5)

∆Rm = Rm ∗Rm+ L(∇2Ric), (1.11)

where L denotes a linear combination of the components of the tensor and A ∗ B

denotes a generic linear combination of contractions of the tensors A and B. One of

the key features of half-conformally-flat 4-manifolds is that they satisfy an additional

elliptic equation for the Ricci tensor

∆Ric = Rm ∗Ric+
1

6
(∆scal)g +

1

3
∇2scal. (1.12)

These two equations are at the core of the geometric regularity theorem from the next

chapter, which is the main tool that allows us to control the geometry of anti-self-dual

4-manifolds.

Derivation of equation for Ric (1.12)

The following derivation can be found in [TV05a] for the case of constant scalar

metrics and in [CW11] for the case of extremal Kähler metrics. Our computations are

essentially the same but keeping track of the scalar curvature. See [Der83, Section 2].

As observed in [Der83, Lemma 1] (cf. [Bac21]), the Euler-Lagrange equations of

the Weyl curvature functional

W : g 7→
ˆ
M

|W |2dV ,
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are given in local coordinates by

Wikjl,lk +
1

2
RklWikjl = 0. (1.13)

This expression can be use to define the Bach tensor, Bij = Wikjl,lk + 1
2
RklWikjl.

Metrics satisfying Bij = 0 are called Bach-flat. Furthermore, by [ACG03, Section 1.5]

we actually have

Bij = W±
ikjl,lk +

1

2
RklW

±
ikjl,

so, in particular, half-conformally-flat metrics are examples of Bach-flat metrics. Al-

ternatively, we can also see this using Hirzebruch’s signature theorem. Indeed, recall

that

τ(M) =
1

48π2

ˆ
M

(
|W+|2 − |W−|2

)
dV ,

so we obtain

W(g)± 48π2τ(M) = 2

ˆ
M

|W±|2dV ≥ 0,

which implies W(g) ≥ ∓48π2τ(M) and equality is attained only when W± = 0.

Therefore, half-conformally-flat metrics are critical points of the Weyl functional and

they must satisfy the corresponding Euler-Lagrange equations.

Now we go back to the Bach-flat equation (1.13). Using the divergence formula

for the Weyl tensor, Wijkl,i = Sjk,l − Sjl,k (A.3), we obtain

Sji,kk = Sjk,ik +
1

2
RklWikjl,

where S = 1
2

(
Ric− scal

6
g
)

is the Schouten tensor. Thus, we have

1

2

(
Rij,kk −

∆scal

6
gij

)
=

1

2

(
Rjk,ik −

1

6
scal,ij

)
+

1

2
RklWikjl.
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Then we use the Ricci identities (1.6) followed by the divergence formula, div(Ric) =

1
2

d scal (A.2), to obtain

1

2

(
Rij,kk −

∆scal

6
gij

)
=

1

2

(
1

3
scal,ij +RikmjRmk −RimRjm

)
+

1

2
RklWikjl,

which yields the coordinate expression of (1.12)

Rij,kk = RikmjRmk −RimRjm +RklWikjl +
1

6
(∆scal)gij +

1

3
scal,ij.

Remark 1.8. In particular, Bach-flat metrics also satisfy (1.12).

Elliptic inequalities for curvature quantities

In applications, it is sometimes more convenient to work with elliptic inequalities

instead of the full equations. To make this transition we use the following well-known

identity (A.7)

|T |∆ |T |+ |∇ |T ||2 = 〈T,∆T 〉+ |∇T |2,

where T is any tensor. Using Kato’s inequality (A.6) and Cauchy-Schwarz, we can

also obtain

∆ |T | ≥ −|∆T |, (1.14)

which is valid when |T | 6= 0 and it holds in the sense of distributions otherwise.

Applying this inequality to the equations for Rm and Ric, (1.11) and (1.12), we

obtain

∆|Ric| ≥ −|Rm||Ric| − |∇2scal|, (1.15)

∆|Rm| ≥ −|Rm|2 − |∇2Ric|, (1.16)
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where we used |∆scal| ≤ 2|∇2scal| for the first inequality and we also ignored dimen-

sional constants.

1.4 Regularity theory for elliptic inequalities

Suppose that (M, g) is a complete smooth Riemannian manifold and that we have

chosen a point x in M and some geodesic ball centered around it, Br(x). Also suppose

that we have non-negative functions, u, f, s : Br(x)→ R in Lp (Br(x)). In this section

we review some of the basic regularity theory for elliptic inequalities of the type

∆u ≥ −fu− s. (1.17)

In this section we are only concerned about the local behavior of u, so one expects

the same kind of behavior as with elliptic equations in Euclidean space. Generally

speaking, any function satisfying an inequality of this type will enjoy better regularity

properties than a priori assumed. The main difference arises when one tries to obtain

estimates for higher order derivatives because curvature terms start to appear in the

equations. This phenomenon will manifest itself later on in this dissertation but for

now we are only concerned with two basic results. First, as long as the L
n
2 -norm of f

is small enough and we have suitable a priori control of s, we can improve the initial

regularity of u to any Lq-space with p ≤ q <∞. Second, we can actually obtain the

limit case q = ∞ as long as we have better than L
n
2 -control on f . All these results

are really well-known and have been extensively used in the literature. We follow the

presentations from [BKN89, Section 4] and [TV05a, Section 3].
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In an essential way, most of this section stems from the local Sobolev inequality

(1.8). For clarity in the exposition, we restrict to dimension 4 and we adopt a few

conventions to make the notation leaner: we write CS = CS(Ω), note that we only

use the local Sobolev inequality in this chapter so there is no ambiguity; we omit the

volume form in the integrals; and, when clear from the context, we omit the domains

of integration as well.

It is also important to reinforce the notion that these kind of estimates will play

a significant role in the rest of the dissertation, where we will work with inequalities

like (1.17) that are satisfied by curvature quantities and Hodge-harmonic self-dual

2-forms. See for example, (1.15), (1.16) and (3.9).

Lemma 1.9 ([BKN89]). Fix some p ≥ p0 > 1 and suppose that u ∈ Lp (Br(x)) and

f ∈ L2 (Br(x)) satisfy ∆u ≥ −fu. Then there are constants ε0 = ε0(p, CS) > 0 and

C = C(p0, CS) <∞ such that if
(´

Br(x)
f 2
) 1

2 ≤ ε0, then we have

(ˆ
B r

2
(x)

u2p

) 1
2

≤ Cr−2

ˆ
Br(x)

up.

Proof. Let φ be any smooth cutoff function with 0 ≤ φ ≤ 1 and support contained

in Br(x). By the Sobolev inequality (1.8) applied to φu
p
2 and Cauchy’s inequality we

have

CS

(ˆ
φ4u2p

) 1
2

≤ 2

ˆ
|∇φ|2 up +

p2

2

ˆ
φ2up−2 |∇u|2 .

Note that we can rewrite the last term as

p2

ˆ
φ2up−2 |∇u|2 =

p2

p− 1

ˆ
φ2
〈
∇up−1∇u

〉
,
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so integrating by parts we obtain

p2

ˆ
φ2up−2 |∇u|2 = − 2p2

p− 1

ˆ
φup−1 〈∇φ,∇u〉 − p2

p− 1

ˆ
φ2up−1∆u

≤ p2

2

ˆ
φ2up−1 |∇u|2 +

2p2

(p− 1)2

ˆ
|∇φ|2 up +

p2

p− 1

ˆ
φ2upf,

where we used Cauchy’s inequality and ∆u ≥ −fu on the second line. This yields

CS

(ˆ
φ4u2p

) 1
2

≤ 2

(
1 +

p2

(p− 1)2

) ˆ
|∇φ|2 up +

p2

p− 1

ˆ
φ2upf.

By Hölder’s inequality,

ˆ
φ2upf ≤

(ˆ
φ4u2p

) 1
2
(ˆ

Br(x)

f 2

) 1
2

,

so choosing ε0 = CS(p−1)
2p2 implies

CS
2

(ˆ
φ4u2p

) 1
2

≤ 2

(
1 +

p2

(p− 1)2

) ˆ
|∇φ|2up. (1.18)

Now observe that p2

(p−1)
≤ p2

0

(p0−1)2 , so we can obtain the desired inequality by choosing

φ such that φ|B r
2 (x)
≡ 1 and |∇φ| ≤ 2r−1.

If we iterate the inequality above, we can prove that u is in Lq for any q > p

provided ||f ||L2 is small enough. Indeed, let k be the first positive integer such that

2kp > q. Then, using Hölder’s inequality, we have(ˆ
B

2−kr(x)

uq

) 1
q

≤ (VolB2−kr(x))
1
q
− 1

2kp

(ˆ
B

2−k+1r
(x)

u2kp

) 1

2kp

≤ (VolB2−kr(x))
1
q
− 1

2kp

k∏
l=1

(Cr−2)
1

2l−1p

(ˆ
Br(x)

up
) 1

p

.

Further, since ‖u‖Lq → ‖u‖L∞ as q →∞, it stands to reason that we can extend this

result to the case q =∞. Of course, the caveat is that the bigger q is, the smaller the
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L2-bound on f must be. As we mentioned above, this can be circumvented whenever

we have better control on f . We require L4-bounds, which is enough for our purposes,

but it is possible to achieve the same result with only L2+ε-bounds where ε > 0.

Lemma 1.10 ([BKN89]). Fix some q ≥ 2 and suppose u ∈ Lq (Br(x)) and f ∈

L4 (Br(x)) satisfy ∆u ≥ −fu. Then there is a constant C = C (q, CS) <∞ such that

if
(´

Br(x)
f 4
) 1

2 ≤ A <∞, then we have

sup
B r

2
(x)

u ≤ C
(
A+ r−2

) 2
q

(ˆ
Br(x)

uq
) 1

q

. (1.19)

Proof. Let φ be any smooth cutoff function with 0 ≤ φ ≤ 1 and support contained in

Br(x). We can proceed exactly as in the proof of Lemma 1.11 to obtain

CS

(ˆ
φ4u2p

) 1
2

≤ 10

ˆ
|∇φ|2 up + 2p

ˆ
φ2upf,

where now we are assuming p ≥ 2. The key point is that we can improve the estimate

of the last term. By Hölder’s inequality with exponents 1
4

+ 1
2

+ 1
4

= 1, we obtain

2p

ˆ
φ2upf ≤ 2p

(ˆ
Br(x)

f 4

) 1
4
(ˆ

φ2up
) 1

2
(ˆ

φ4u2p

) 1
4

≤ p2

δ

(ˆ
Br(x)

f 4

) 1
2
ˆ
φ2up + δ

(ˆ
φ4u2p

) 1
2

,

where we used the δ-Cauchy inequality on the second line. Thus, setting δ = CS
2

yields (ˆ
φ4u2p

) 1
2

≤ 20

CS

ˆ
|∇φ|2up +

4p2

C2
S

(ˆ
Br(x)

f 4

) 1
2
ˆ
φ2up.

Now we pick appropriate cutoff functions. For each i ∈ N chose φi such that it also

satisfies

supp(φi) ⊂ Br(2−1+2−i)(x), φi
∣∣
B
r(2−1+2−(i+1))

(x)
≡ 1 , sup |∇φi| ≤ 2i+1r−1.
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Then we can replace φ with φi and p with 2i−1q in the inequality above to obtainˆ
B
r(2−1+2−(i+1))

(x)

u2iq

 1

2i

≤ Ci(q)
1

2i−1

(ˆ
Br(2−1+2−i)(x)

u2i−1q

) 1

2i−1

,

where Ci(q) = 20
CS

22i−2
(
q2A
5CS

+ 24r−2
)

. We can reiterate this inequality to achieve

‖u‖q
L2kq

(
B r

2
(x)
) ≤ ‖u‖q

L2kq

(
B
r(2−1+2−(k+1))

(x)

) ≤
(

k∏
i=1

Ci(q)
1

2i−1q

)ˆ
Br(x)

uq,

for any positive integer k. Since ‖u‖La → ‖u‖L∞ as a → ∞, we only need to bound

the constant appearing above. A simple computation yields

k∏
i=1

Ci(q)
1

2i−1 =

(
20

CS

)2(1−2−k)

24(3−(k+3)2−k)
(

q2A

24 · 5CS
+ r−2

)2(1−2−k)

≤ C
(
A+ r−2

)2
(

20

CS

)−2−k+1 (
q2A

24 · 5CS
+ r−2

)−2−k+1

,

which is uniformly bounded for large enough k.

Now we can prove the corresponding statements for non-zero s in (1.17). First we

show the Lp estimates and then the L∞ estimate.

Lemma 1.11 ([BKN89]). Fix some p ≥ p0 > 1 and suppose that u, s ∈ Lp (Br(x))

and f ∈ L2 (Br(x)) satisfy ∆u ≥ −fu−s. Then there are constants ε0 = ε0(p, CS) > 0

and C = C (p0, CS) <∞ such that if
´
Br(x)

f 2 ≤ ε0, then we have

(ˆ
B r

2
(x)

u2p

) 1
2

≤ C

(
r−2

ˆ
Br(x)

up + p

(ˆ
Br(x)

up
) p−1

p
(ˆ

Br(x)

sp
) 1

p

)
.

Proof. Let φ be any smooth cutoff function with 0 ≤ φ ≤ 1 and support contained

in Br(x). We can follow the argument in the proof of Lemma 1.9 word by word but
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carrying the extra term coming from s. In the end we obtain

C

(ˆ
φ4u2p

) 1
2

≤
ˆ
φ2sup−1 +

ˆ
up|∇φ|2, (1.20)

instead of (1.18). By Hölder’s inequality

ˆ
φ2sup−1 ≤

(ˆ
φ

p
p−1up

) p−1
p
(ˆ

φpsp
) 1

p

,

and the result follows choosing φ with φ|B r
2

(x) ≡ 1 and |∇φ| ≤ 2r−1.

Lemma 1.12 ([TV05a, Lemma 3.9]). Fix q ≥ 2 and suppose that u ∈ Lq (Br(x)),

f ∈ L4 (Br(x)) and s ∈ L4 (Br(x)) satisfy ∆u ≥ −fu − s. Then there is a constant

C = C (q, CS) <∞ such that if
(´

Br(x)
f 4
) 1

2 ≤ A <∞, then we have

sup
B r

2
(x)

u ≤ C
(
A+ r−2

) 2
q

(
‖u‖Lq(Br(x)) + r ‖s‖L4(Br(x)) (VolBr(x))

1
q

)
.

Proof. We can assume that ‖s‖L4 > 0, otherwise we can just use (1.19). Consider the

auxiliary function v = u+ r ‖s‖L4 . Since ∆v = ∆u and u ≤ v, we have

∆v ≥ −fu− s ≥ −(fv + s) ≥ −
(
f +

s

v

)
v ≥ −

(
f +

s

r ‖s‖L4

)
v,

which is the same type of inequality as in Lemma 1.10. Note that∥∥∥∥f +
s

r ‖s‖L4

∥∥∥∥
L4

≤ ‖f‖L4 +

∥∥∥∥ s

r ‖s‖L4

∥∥∥∥
L4

≤ A
1
2 + r−1,

and

‖v‖Lq ≤
(
‖u‖Lq + r

a
2 ‖s‖L4 (VolBr(x))

1
q

)
,

so we can use (1.19) to obtain

sup
B r

2
(x)

v ≤ C

[(
A

1
2 + r−1

)2

+ r−2

] 2
q
(ˆ

Br(x)

vq
) 1

q

≤ C
[
A+ r−2

] 2
q

(ˆ
Br(x)

vq
) 1

q

,
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and the result follows because u ≤ v.
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Chapter 2

ε-regularity theorem for

anti-self-dual 4-manifolds

In this chapter we prove an ε-regularity theorem for anti-self-dual 4-manifolds with

Wm,4-bounds on the scalar curvature. This is the basic ingredient that allows us to

control the geometry and obtain convergence results for the manifolds under consid-

eration. The proof closely follows the analogous result of Tian-Viaclovsky [TV05a,

Theorem 3.1], where constant scalar curvature is assumed. Of course, the main dif-

ference is the extra scalar curvature terms which makes some of the analysis a more

convoluted. See also [CW11] for the corresponding result in the context of extremal

Kähler metrics.

Theorem 2.1. Fix some integer m ≥ 0 and let (M, g) be a closed 4-manifold sat-

isfying the elliptic equation for Ric (1.12). Suppose that there are some constants

25



CS > 0, V0 < ∞ and S0 < ∞ such that Vol(Br(x)) ≤ V0r
4, CS (Br(x)) ≥ CS

and ||∇2scal||Wm,4(Br(x)) ≤ S0. Then there are constants ε0 = ε0(CS) > 0 and

Cm = Cm(r, CS, S0, V0) <∞ such that if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

sup
B r

2
(x)

|∇mRm| ≤ Cmε
1
2
0 .

If in addition we assume that the scalar curvature is constant, we recover Tian-

Viaclovsky’s result. There are constants ε1 = ε1(CS) and C1 = C1(m,CS) such

that if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε1, then we have

sup
B r

2
(x)

|∇mRm| ≤ C1

rm+2
ε1.

Note that no assumptions on the upper volume growth are needed for this case.

The overall goal of the proof is to be able to apply Lemma 1.12 to the elliptic

inequality for |Rm| (1.16). In order to accomplish this, we need to prove estimates

for several curvature quantities. The strategy is to use equation (1.12)

∆Ric = Rm ∗Ric+∇2scal,

to obtain estimates for Ric which in turn can be used together with (1.11)

∆Rm = Rm ∗Rm+∇2Ric,

to prove estimates for Rm. The improved regularity on Rm implies that we can

extract better estimates for Ric from (1.12) which in turn enables improved estimates

for Rm. We can repeat this process as long as we have control on the scalar curvature.

Remark 2.2. To simplify some computations we always assume that ε0 ≤ 1 without

further notice.
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2.1 L2 and L4 bounds for curvature quantities

The goal of this section is to prove the following L2 and L4 estimates.

Proposition 2.3. There are constants ε0 = ε0 (CS) > 0 and C = C (m,CS) < ∞

such that if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

(ˆ
B r

2
(x)

|∇mRic|4
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

, (2.1)

ˆ
B r

2
(x)

|∇m+1Ric|2 ≤ C
(
r−2 + Pm+1

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

, (2.2)

ˆ
B r

2
(x)

|∇mRm|2 ≤ C
(
r−2 + Pm

)m(ˆ
Br(x)

|Rm|2
) 1

2

, (2.3)

(ˆ
B r

2
(x)

|∇mRm|4
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Rm|2
) 1

2

, (2.4)

where Pm =
∑m

k=0

∥∥∇k+2scal
∥∥ 2
k+2

L2(Br(x)).

Remark 2.4. Note that if we scale the metric g̃ = c2g, Pm scales like c2 and the

inequalities are scale invariant.

In order to set up an induction argument, we first prove a series of lemmas that

establish the cases with m = 0.

Lemma 2.5. There are constants ε0 = ε0 (CS) > 0 and C = C (CS) < ∞ such that

if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

(ˆ
B r

2
(x)

|Ric|4
) 1

2

≤ C
(
r−2 +

∥∥∇2scal
∥∥
L2(Br(x))

)(ˆ
Br(x)

|Ric|2
) 1

2

. (2.5)
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Proof. Since we have the inequality for Ric (1.15), we can directly apply Lemma 1.11

with s = ∇2scal and p = 2. More specifically, we have the inequality (cf. (1.20))

CS
2

(ˆ
φ4|Ric|4

) 1
2

≤
(ˆ

Br(x)

|∇2scal|2
) 1

2
(ˆ

Br(x)

|Ric|2
) 1

2

+

ˆ
|Ric|2|∇φ|2, (2.6)

where φ is a cutoff function with 0 ≤ φ ≤ 1 and support contained inBr(x). The result

can be obtained by choosing φ that also satisfies φ|B r
2

(x) ≡ 1 and |∇φ| ≤ 2r−1.

Lemma 2.6. There are constants ε0 = ε0 (CS) > 0 and C = C (CS) < ∞ such that

if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

ˆ
B r

2
(x)

|∇Ric|2 ≤ C
(
r−2 +

∥∥∇2scal
∥∥
L2(Br(x))

)(ˆ
Br(x)

|Ric|2
) 1

2

. (2.7)

Proof. Let φ be any smooth cutoff function with 0 ≤ φ ≤ 1 and support contained in

Br(x). Integrating by parts we obtain

ˆ
φ2|∇Ric|2 = −

ˆ
φ2〈∆Ric,Ric〉 − 2

ˆ
φ〈tr(∇φ⊗∇Ric), Ric〉,

so by Cauchy-Schwarz’s inequality and the elliptic inequality for Ric (1.15),

ˆ
φ2|∇Ric|2 ≤

ˆ
φ2|Rm||Ric|2 +

ˆ
φ2|∇2scal||Ric|+ 2

ˆ
φ|∇φ||∇Ric||Ric|.

We use Hölder’s inequality to bound the first and second terms

ˆ
φ2|Rm||Ric|2 ≤

(ˆ
Br(x)

|Rm|2
) 1

2
(ˆ

φ4|Ric|4
) 1

2

,

and ˆ
φ2|∇2scal||Ric| ≤

(ˆ
φ2|∇2scal|2

) 1
2
(ˆ

φ2|Ric|2
) 1

2

,
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and we bound the third term with the δ-Cauchy inequality

2

ˆ
φ|∇φ||∇Ric||Ric| ≤ δ

ˆ
φ2|∇Ric|2 +

1

δ

ˆ
|∇φ|2|Ric|2.

Therefore, using (2.6) to bound
´
φ2|Ric|4 and setting δ = 1

2
, we obtain

ˆ
φ2|∇Ric|2 ≤ C

(ˆ
|∇φ|2|Ric|2 +

(ˆ
Br(x)

|∇2scal|2
) 1

2
(ˆ

Br(x)

|Ric|2
) 1

2

)
, (2.8)

and the result follows choosing φ such that φ|B r
2

(x) ≡ 1 and |∇φ| ≤ 2r−1.

Lemma 2.7. There are constants ε0 = ε0 (CS) > 0 and C = C (CS) < ∞ such that

if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

(ˆ
B r

2
(x)

|Rm|4
) 1

2

≤ C
(
r−2 +

∥∥∇2scal
∥∥
L2(Br(x))

)(ˆ
Br(x)

|Rm|2
) 1

2

. (2.9)

Proof. Let φ be any smooth cutoff function with 0 ≤ φ ≤ 1 and support contained in

Br(x). Using the Sobolev inequality followed by integration by parts we obtain

CS

(ˆ
φ4|Rm|4

) 1
2

≤
ˆ
|∇φ|Rm||2 = −

ˆ
φ2|Rm|∆|Rm|+

ˆ
|∇φ|2|Rm|2.

Since we have |Rm|∆|Rm| ≥ 〈Rm,∆Rm〉 by (A.7), using the equation for Rm (1.11)

yields

−
ˆ
φ2|Rm|∆|Rm| ≤ −

ˆ
φ2〈Rm,Rm ∗Rm〉 −

ˆ
φ2〈Rm,∇2Ric〉.

Then, using Cauchy-Schwarz’s inequality on the first summand and integrating by

parts the second one, we obtain

CS

(ˆ
φ4|Rm|4

) 1
2

≤
ˆ
φ2|Rm|3 +

ˆ
〈tr∇(φ2Rm),∇Ric〉︸ ︷︷ ︸

II

+

ˆ
|∇φ|2|Rm|2. (2.10)
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Now the second term is just

II =

ˆ
φ2〈tr∇Rm,∇Ric〉+ 2

ˆ
φ〈tr (∇φ⊗Rm) ,∇Ric〉,

which can be bounded using Cauchy-Schwarz’s and Cauchy’s inequalities

II ≤
ˆ
φ2|∇Rm||∇Ric|+ 2

ˆ
φ|∇φ||Rm||∇Ric|

≤ 1

2

ˆ
φ2|∇Rm|2 +

3

2

ˆ
φ2|∇Ric|2 +

ˆ
|∇φ|2|Rm|2.

Next we want to bound the term
´
φ2|∇Rm|2. Integrating by parts and plugging in

the equation for Rm (1.16),

ˆ
φ2|∇Rm|2 = −

ˆ
φ2〈Rm ∗Rm,Rm〉 −

ˆ
φ2〈∇2Ric,Rm〉

− 2

ˆ
φ〈tr(∇φ⊗∇Rm), Rm〉.

We also integrate by parts the second term

−
ˆ
φ2〈∇2Ric,Rm〉 =

ˆ
〈∇Ric, φ2∇Rm+ 2φ tr(∇φ⊗Rm)〉,

thus, Cauchy-Schwarz’s inequality yields

ˆ
φ2|∇Rm|2 ≤

ˆ
φ2|Rm|3 +

ˆ
φ2|∇Ric||∇Rm|

+ 2

ˆ
|∇Ric|φ|∇φ||Rm|+ 2

ˆ
φ|∇φ||Rm||∇Rm|.

Then we bound each of the last three terms using the δ-Cauchy inequality

ˆ
φ2|∇Rm|2 ≤

ˆ
φ2|Rm|3 +

(
δ1

2
+ δ2

) ˆ
φ2|∇Ric|2

+

(
1

2δ1

+ δ3

)ˆ
φ2|∇Rm|2 +

(
1

δ2

+
1

δ3

) ˆ
|∇φ|2|Rm|2.
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Regrouping the term
´
φ2|∇Rm|2 and choosing δi’s small enough we have

C

ˆ
φ2|∇Rm|2 ≤

ˆ
φ2|Rm|3 +

ˆ
φ2|∇Ric|2 +

ˆ
|∇φ|2|Rm|2. (2.11)

Putting it all back together with (2.10) yields

C

(ˆ
φ4|Rm|4

) 1
2

≤
ˆ
φ2|Rm|3 +

ˆ
φ2|∇Ric|2 +

ˆ
|∇φ|2|Rm|2.

By Hölder’s inequality
´
φ2|Rm|3 ≤

(´
φ4|Rm|4

) 1
2

(´
Br(x)

|Rm|2
) 1

2
. Thus, we can

choose ε0 small enough so that

C

(ˆ
φ4|Rm|4

) 1
2

≤
ˆ
φ2|∇Ric|2 +

ˆ
|∇φ|2|Rm|2,

which combined with (2.8) yields

C

(ˆ
φ4|Rm|4

) 1
2

≤
ˆ
|∇φ|2|Rm|2 +

(ˆ
Br(x)

|∇2scal|2
) 1

2
(ˆ

Br(x)

|Ric|2
) 1

2

. (2.12)

Then the desired estimate can be achieved choosing φ such that it also satisfies

φ|B r
2

(x) ≡ 1 and |∇φ| ≤ 2r−1.

For the general estimates we need elliptic equations for ∇mRic and ∇mRm. These

can be derived taking derivatives of the equations for Rm and Ric (1.11) and (1.12)

and using the standard commutator formulas (see Lemma A.6 for details). We have

∆ (∇mRic) =
m∑
k=0

∇kRm ∗ ∇m−kRic+∇m+2scal, (2.13)

and

∆ (∇mRm) =
m∑
k=0

∇kRm ∗ ∇m−kRm+∇m+2Ric. (2.14)

Now we can proceed with the general induction argument.
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Proof of (2.1). Let φ be any smooth cutoff function with 0 ≤ φ ≤ 1 and support

contained in Br(x). From the Sobolev inequality and integration by parts, we obtain

CS

(ˆ
φ4|∇mRic|4

) 1
2

≤ −
ˆ
φ2|∇mRic|∆|∇mRic|︸ ︷︷ ︸

I

+

ˆ
|∇φ|2|∇mRic|2︸ ︷︷ ︸

II

.

Using |T |∆ |T | ≥ 〈T,∆T 〉 (A.8) and the equation for ∇mRic (2.13) yields

I ≤
ˆ
φ2 〈∇mRic,Rm ∗ ∇mRic〉︸ ︷︷ ︸

I1

+

ˆ
φ2

〈
∇mRic,

m−1∑
k=1

∇kRm ∗ ∇m−kRic

〉
︸ ︷︷ ︸

I2

+

ˆ
φ2 〈∇mRic,∇mRm ∗Ric〉︸ ︷︷ ︸

I3

+

ˆ
φ2
〈
∇mRic,∇m+2scal

〉
︸ ︷︷ ︸

I4

.

Next we bound the third term. First we integrate by parts

I3 = −
ˆ 〈
∇mRic,∇m−1Rm ∗ φ2∇Ric

〉
−
ˆ 〈
∇m+1Ric,∇m−1Rm ∗ φ2Ric

〉
− 2

ˆ
φ
〈
∇mRic,∇m−1Rm ∗ tr(∇φ⊗Ric)

〉
,

and then we use Cauchy-Schwarz followed by the δ-Cauchy inequality

I3 ≤
ˆ
φ2|∇mRic||∇m−1Rm||∇Ric|+ δ

2

ˆ
φ2|∇m+1Ric|2

+

(
1

2δ
+ 1

) ˆ
φ2|∇m−1Rm|2|Ric|2 +

ˆ
|∇φ|2|∇mRic|2.

Now we deal with
´
φ2|∇m+1Ric|2. Integrating by parts we have

ˆ
φ2|∇m+1Ric|2 = −

ˆ
φ2〈∆(∇mRic),∇mRic〉− 2

ˆ
φ〈tr(∇φ⊗∇m+1Ric),∇mRic〉.

The first term can be bounded as I above. We obtain

ˆ
φ2|∇m+1Ric|2 ≤ I1 + I2 + I3 + I4 + 2

ˆ
φ|∇φ||∇m+1Ric||∇mRic|.
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Using the bound for I3 and the δ-Cauchy inequality on the last term, we have

ˆ
φ2|∇m+1Ric|2 ≤ I1 + I2 + I4 +

(
1 +

1

δ

)
II +

3δ

2

ˆ
φ2|∇m+1Ric|2

+

(
1 +

1

2δ

) ˆ
φ2|∇m−1Rm|2|Ric|2 +

ˆ
φ2|∇mRic||∇m−1Rm||∇Ric|.

Thus, choosing δ small enough, we can write

C

ˆ
φ2|∇m+1Ric|2 ≤ I1 + I2 + I4 + II

+

ˆ
φ2|∇m−1Rm|2|Ric|2 +

ˆ
φ2|∇mRic||∇m−1Rm||∇Ric|, (2.15)

which plugged back into the initial inequality results in

C

(ˆ
φ4|∇mRic|4

) 1
2

≤ I1 + I2 + I4 + II +

ˆ
φ2|∇m−1Rm|2|Ric|2,

where we used that the last summand in (2.15) can be incorporated into I2 (see

inequality below). Now we choose suitably supported cutoff functions and deal with

the remaining terms. By Hölder’s inequality,

I1 ≤
ˆ
φ2|∇mRic|2|Rm| ≤

(ˆ
φ4|∇mRic|4

) 1
2
(ˆ

Br(x)

|Rm|2
) 1

2

,

so we can regroup I1 on the left hand side provided we choose ε0 small enough. To

bound I2 we use Cauchy-Schwarz’s inequality, Hölder’s inequality and the induction
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hypothesis

I2 ≤
m−1∑
k=1

ˆ
φ2|∇mRic||∇kRm||∇m−kRic|

≤
m−1∑
k=1

(ˆ
supp(φ)

|∇mRic|2
) 1

2
(ˆ

φ4|∇kRm|4
) 1

4
(ˆ

φ4|∇m−kRic|4
) 1

4

≤ C

[(
r−2 + Pm

)m
2

m−1∑
k=1

(
r−2 + Pm

) k+1
2
(
r−2 + Pm

)m−k+1
2

](ˆ
Br(x)

|Ric|2
) 1

2

≤ C

[(
r−2 + Pm

)m
2

m−1∑
k=1

(
r−2 + Pm

)m+2
2

](ˆ
Br(x)

|Ric|2
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

.

For I4 we use Cauchy-Schwarz and Hölder’s inequality followed by the induction

hypothesis

I4 ≤
ˆ
φ2|∇mRic||∇m+2scal| ≤

(ˆ
φ2|∇mRic|2

) 1
2
(ˆ

φ2|∇m+2scal|2
) 1

2

≤ C
(
r−2 + Pm

)m
2

(ˆ
Br(x)

|Ric|2
) 1

4

P
m+2

2
m

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

.

The induction hypothesis can also be used to bound II

II ≤ Cr−2
(
r−2 + Pm

)m(ˆ
Br(x)

|Ric|2
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

,

as well as the last term

ˆ
φ2|∇m−1Rm|2|Ric|2 ≤

(ˆ
φ2|∇m−1Rm|4

) 1
2
(ˆ

φ2|Ric|4
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

.
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Proof of (2.2). From (2.15) and the estimates obtained in the proof of (2.1), we have

C

ˆ
φ2|∇m+1Ric|2 ≤

(ˆ
Br(x)

|Rm|2
) 1

2
(ˆ

φ4|∇mRic|4
) 1

2

+
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Ric|2
) 1

2

,

and the estimate follows using (2.1).

Proof of (2.3). Let φ be a smooth function with 0 ≤ φ ≤ 1 and support contained in

Br(x). We integrate by parts to obtain

ˆ
φ2|∇mRm|2 = −

ˆ
φ2〈∆(∇m−1Rm),∇m−1Rm〉︸ ︷︷ ︸

I

−2

ˆ
φ〈tr(∇φ⊗∇mRm),∇m−1Rm〉︸ ︷︷ ︸

II

.

Using the equation for ∇m−1Rm (2.14), we have

I = −
m−1∑
k=0

ˆ
φ2〈∇kRm ∗ ∇m−k−1Rm,∇m−1Rm〉︸ ︷︷ ︸

I1

−
ˆ
φ2〈∇m+1Ric,∇m−1Rm〉︸ ︷︷ ︸

I2

.

By Hölder’s inequality and the induction hypothesis,

I1 ≤
m−1∑
k=0

(ˆ
φ4|∇kRm|4

) 1
4
(ˆ

φ4|∇m−k−1Rm|4
) 1

4
(ˆ

supp(φ)

|∇m−1Rm|2
) 1

2

≤ C

[(
r−2 + Pm

)m−1
2

m−1∑
k=1

(
r−2 + Pm

) k+1
2
(
r−2 + Pm

)m−k
2

](ˆ
Br(x)

|Rm|2
) 1

2

≤ C
(
r−2 + Pm

)m(ˆ
Br(x)

|Rm|2
) 1

2

,

where we have chosen suitably supported cutoff functions. We can bound I2 in a

similar fashion using (2.2)

I2 ≤
(ˆ

φ2|∇m+1Ric|2
) 1

2
(ˆ

φ2|∇m−1Rm|2
) 1

2

≤ C
(
r−2 + Pm

)m(ˆ
Br(x)

|Rm|2
) 1

2

.
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Lastly, using the δ-Cauchy inequality , we can bound II as follows

II ≤ 2

ˆ
φ|∇φ||∇mRm||∇m−1Rm| ≤ δ

ˆ
φ2|∇mRm|+ 1

δ

ˆ
|∇φ|2|∇m−1Rm|2.

Thus, choosing δ small enough, we obtain

C

ˆ
φ2|∇mRm|2 ≤

(
r−2 + Pm

)m
+

ˆ
|∇φ|2|∇m−1Rm|2,

and we are done by noting that

ˆ
|∇φ|2|∇m−1Rm|2 ≤ Cr−2

(
r−2 + Pm

)m−1 ≤ C
(
r−2 + Pm

)m
,

where again we have chosen suitable cutoff functions and the induction hypothesis.

Proof of (2.4). By the Sobolev inequality and integration by parts we obtain

CS

(ˆ
φ4|∇mRm|4

) 1
2

≤
ˆ
φ2〈∆(∇mRm),∇mRm〉︸ ︷︷ ︸

I

+

ˆ
|∇φ|2|∇mRm|2︸ ︷︷ ︸

II

,

where we also have used the inequality |T |∆ |T | ≥ 〈T,∆T 〉 (A.8). Then, using the

equation for ∇mRm (2.14) we can write

I =

ˆ
φ2〈∇m+2Ric,∇mRm〉︸ ︷︷ ︸

I1

+ 2

ˆ
φ2〈Rm ∗ ∇mRm,∇mRm〉︸ ︷︷ ︸

I2

+
m−1∑
k=1

ˆ
φ2〈∇kRm ∗ ∇m−kRm,∇mRm〉︸ ︷︷ ︸

I3

.

Integrate by parts the first term and then use the δ-Cauchy inequality to obtain

I1 = −
ˆ
φ2〈∇m+1Ric,∇m+1Rm〉 − 2

ˆ
φ
〈
∇m+1Ric, tr(∇φ⊗∇mRm)

〉
≤
(

1

2δ
+ 1

) ˆ
φ2|∇m+1Ric|2 +

δ

2

ˆ
φ2|∇m+1Rm|2 +

ˆ
|∇φ|2|∇mRm|2.
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Therefore, setting δ = 1, we end up with

C

(ˆ
φ4|∇mRm|4

) 1
2

≤ I2 + I3 + II +

ˆ
φ2|∇m+1Ric|2 +

ˆ
φ2|∇m+1Rm|2. (2.16)

Now we bound the term
´
φ2|∇m+1Rm|2 as in the proof of (2.3). Integrating by parts

we obtain

ˆ
φ2|∇m+1Rm|2 = −

ˆ
φ2〈∆(∇mRm),∇mRm〉−2

ˆ
φ〈tr(∇φ⊗∇m+1Rm),∇mRm〉.

By Cauchy-Schwarz and the δ-Cauchy inequality , we bound the second term

−2

ˆ
φ〈tr(∇φ⊗∇m+1Rm),∇mRm〉 ≤ δ

ˆ
φ2|∇m+1Rm|2 +

1

δ

ˆ
|∇φ|2|∇mRm|2.

Therefore, using the bound for I obtained above, we end up with the following

ˆ
φ2|∇m+1Rm|2 ≤ I2 + I3 +

(
1

δ
+ 1

)
II

+

(
1

2δ
+ 1

) ˆ
φ2|∇m+1Ric|2 +

3δ

2

ˆ
φ2|∇m+1Rm|2.

So choosing δ small enough to regroup the term
´
φ2|∇m+1Rm|2 and plugging back

into (2.16) yields

C

(ˆ
φ4|∇mRm|4

) 1
2

≤ I2 + I3 + II +

ˆ
φ2|∇m+1Ric|2.

Note that by Hölder’s inequality

I2 ≤ 2

(ˆ
supp(φ)

|Rm|2
) 1

2
(ˆ

φ4|∇mRm|4
) 1

2

,

which allows us to regroup this term on the left hand side by choosing ε0 small enough.

Next we choose suitably supported cutoff functions and deal with the remaining terms.

37



By Hölder’s inequality and the induction hypothesis, we have

I3 ≤
m−1∑
k=1

(ˆ
φ4|∇kRm|4

) 1
4
(ˆ

φ4|∇m−kRm|4
) 1

4
(ˆ

supp(φ)

|∇mRm|2
) 1

2

≤ C

[(
r−2 + Pm

)m
2

m−1∑
k=1

(
r−2 + Pm

) k+1
2
(
r−2 + Pm

)m−k+1
2

](ˆ
Br(x)

|Rm|2
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Rm|2
) 1

2

,

By the induction hypothesis,

II ≤
ˆ
|∇φ|2|∇mRm|2 ≤ Cr−2

(
r−2 + Pm

)m(ˆ
Br(x)

|Rm|2
) 1

2

≤ C
(
r−2 + Pm

)m+1
(ˆ

Br(x)

|Rm|2
) 1

2

,

and, finally, the term
´
φ2|∇m+1Ric|2 can be bounded with (2.2).

2.2 L∞ bounds for |Rm|

Now that we have established L2 and L4 estimates, we can use Lemma 1.12 to obtain

the L∞ estimates in Theorem 2.1. Here is where we need to use the upper volume

growth assumption.

Proposition 2.8. There are constants C = C (m, r, S0, CS, V0) <∞, ε0 = ε0 (CS) >

0 such that if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

sup
B r

8
(x)

|∇mRm| ≤ C

(ˆ
Br(x)

|Rm|2
) 1

4

Proof. For the sake of an induction argument, we start with m = 0 case. Recall that

we have the elliptic inequality for Rm (1.16)

∆|Rm| ≥ −|Rm|2 − |∇2Ric|,
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so we can use Lemma 1.12 to obtain

sup
B r

8
(x)

|Rm| ≤ C
(
r−2 +

∥∥∇2scal
∥∥
L2(Br(x))

)(
‖Rm‖L2(Br(x)) + r3

∥∥∇2Ric
∥∥
L4
(
B r

4
(x)
)) ,

where we also used Vol(Br(x)) ≤ V0r
4. Thus, using (2.1) to bound the ∇2Ric term,

we have

sup
B r

8
(x)

|Rm| ≤ C ‖Rm‖
1
2

L2(Br(x)) .

In general, from the equation for ∇mRm (2.14) we have

∆|∇mRm| ≥ −2|∇mRm||Rm| −

(
m−1∑
k=1

|∇kRm||∇m−kRm|+ |∇m+2Ric|

)
︸ ︷︷ ︸

S

.

So this time Lemma 1.12 yields

sup
B r

8
(x)

|∇mRm| ≤ C
(
r−2 +

∥∥∇2scal
∥∥
L2(Br(x))

)
(
‖∇mRm‖

L2
(
B r

4
(x)
) + r3 ‖S‖

L4
(
B r

4
(x)
)) .

Note that for each m we can adjust the cutoff functions appearing in the proof of

Proposition 2.3 in order to modify the radius of the geodesic balls at will. This allows

us to conclude that
∑m−1

k=1 |∇kRm||∇m−kRm| ≤ C ‖Rm‖L2(Br(x)) by the induction

hypothesis even though it appears in a bigger geodesic ball. Using (2.1) again we can

bound the term S

‖S‖
L4
(
B r

4
(x)
) ≤ C

(
‖Rm‖L2(Br(x))

(
VolB r

4
(x)
) 1

4 + ‖Ric‖
1
2

L2(Br(x))

)
,

and by (2.3) we have ‖∇mRm‖
L2
(
B r

4
(x)
) ≤ C ‖Rm‖

1
2

L2(Br(x)) so the result follows

immediately.
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2.2.1 L∞ bounds for |Rm| with constant scalar curvature

Here we provide the proof for the statement regarding constant scalar curvature in the

ε-regularity Theorem 2.1. Here we don’t need the upper volume growth assumption

because it can be derived from the simpler equation for Ric. As mentioned above,

this can be found in [TV05a].

Lemma 2.9. There are constants ε0 = ε0 (CS) > 0 and V0 = V0 (CS) <∞ such that

if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then we have

VolBs(y) ≤ V0s
4 for all Bs(y) ⊂ B r

4
(x). (2.17)

Proof. First note that by scale invariance it is enough to show the result for r = 1.

If we assume constant scalar curvature, the inequality for Ric (1.15) is

∆|Ric| ≥ −|Rm||Ric|,

and the bound (2.9) is

(´
B 1

2
(x)
|Rm|4

) 1
2

≤ Cε0. Therefore, we can use Lemma 1.10

to obtain supB 1
4

(x) |Ric| ≤ C for some constant C = C(CS). Now the desired volume

estimate follows from Bishop-Gromov volume comparison

Vol (Bs(y)) ≤ V−C(s) ≤ V−C(1)

V0(1)
V0(s) ≤ C(CS)s4,

where V−Λ(t) denotes the volume of a geodesic ball of radius t in the space form of

constant curvature −Λ.

Now that we have an upper volume growth estimate, the rest of the proof is similar

to the non-constant scalar curvature case. The only difference is that the bounds line

up nicely.
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Proposition 2.10. There are constants ε0 = ε0 (CS) > 0 and C = C (m,CS) < ∞

such that if
(´

Br(x)
|Rm|2

) 1
2 ≤ ε0, then

sup
B r

8
(x)

|∇mRm| ≤ C

rm+2

(ˆ
Br(x)

|Rm|2
) 1

2

Proof. We can argue by induction as before. We have (1.16)

∆|Rm| ≥ −|Rm|2 − |∇2Ric|,

so we can use Lemma 1.12 and the L4-bound for Rm (2.9) to obtain

sup
B r

8
(x)

|Rm| ≤ Cr−2

(
‖Rm‖L2(Br(x)) + r3

∥∥∇2Ric
∥∥
L4
(
B r

4
(x)
)) ,

where we also used the volume estimate (2.17) from above. By (2.1), we have

‖∇2Ric‖L4 ≤ Cr−3 ‖Ric‖L2(Br(x)) which yields the m = 0 case. In general, from

the equation for ∇mRm (2.14) we obtain the inequality

∆|∇mRm| ≥ −2|∇mRm||Rm| −

(
m−1∑
k=1

|∇kRm||∇m−kRm|+ |∇m+2Ric|

)
︸ ︷︷ ︸

S

.

Thus, Lemma 1.12 implies

sup
B r

8
(x)

|∇mRm| ≤ Cr−2

(
‖∇mRm‖

L2
(
B r

4
(x)
) + r3 ‖S‖

L4
(
B r

4
(x)
)) .

Using the induction hypothesis we have

m−1∑
k=1

|∇kRm||∇m−kRm| ≤ Cr−m−4 ‖Rm‖2
L2(Br(x)) ,

so using (2.1) and (2.17) we obtain

‖S‖
L4
(
B r

4
(x)
) ≤ Cr−m−3 ‖Rm‖L2(Br(x)) .
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The only bound left is obtained using (2.3)

‖∇mRm‖
L2
(
B r

4
(x)
) ≤ Cr−m ‖Rm‖L2(Br(x)) .
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Chapter 3

Proof of the main results

In this chapter we give the details for the proof of Theorem 1.4, our gap theorem

for “almost” scalar-flat half-conformally flat manifolds, and for the proof of Propo-

sition 1.6, the removable singularity result for Hodge-harmonic self-dual 2-forms on

compact Riemannian orbifolds with isolated singularities.

To gain some intuition about the problem, we first look into the simpler situation

considered in [LeB86], where the scalar curvature is assumed to be non-negative.

Proposition 3.1 (cf. [LeB86, Proposition 2]). Let (M, g) be a closed, anti-self-dual

4-manifold with scal ≥ 0. Then we have b+(M) ≤ 3 and if b+(M) 6= 0, we also have

scal ≡ 0.

As discussed in Section 1.3.1, we know that b+(M) can be realized as the dimension

of the space of Hodge-harmonic self-dual 2-forms on (M, g), which we denoted by
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H+
g (M). Recall that for 2-forms on 4-manifolds, the Böchner formula reads [Bou81]

∆Hω = −∆ω − 2W (ω, ·) +
scal

3
ω. (3.1)

Now suppose that η ∈ H+
g (M). Since the metric g is anti-self-dual, the Weyl tensor

acts trivially on self-dual 2-forms. This implies

Wη = W+η +W−η = 0.

Therefore, the Böchner formula simplifies to

∆η =
scal

3
η, (3.2)

hence, we can take the inner product with η and integrate by parts to obtain

0 =

ˆ
M

|∇η|2 +

ˆ
M

scal

3
|η|2.

Since scal ≥ 0, it follows that ∇η = 0 and that |η| is constant. If b+(M) 6= 0, we

can actually choose η to be non-trivial, which then forces scal to vanish everywhere.

Further, if we have η, ν ∈ H+
g (M), then 〈η, ν〉 must be constant as well. In particular,

if η and ν are L2-orthogonal, they are also point-wise orthogonal. Finally, observe

that Λ+ is a rank 3 vector bundle, so we conclude that b+(M) ≤ 3.

Of course, this argument breaks down if we allow scal to take negative values.

However, if we are able to take a limit as scal→ 0, any Hodge-harmonic self-dual 2-

form would satisfy the limiting equation ∆η = 0 in some appropriate sense. Therefore,

one expects their behavior to be similar to the case scal ≡ 0 we just illustrated. This

is the guiding idea in our strategy to prove Theorem 1.4, which we restate here for

the convenience of the reader.
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Theorem 3.2 (Theorem 1.4). Fix any m ≥ 2 and let (M, g) be a closed, unit-volume,

anti-self-dual 4-manifold with π1(M) = 0. Suppose that there are constants E0 <∞,

V0 <∞, S0 <∞, and CS > 0 such that

(ˆ
M

|Rm|2dV
) 1

2

≤ E0, (3.3)

‖scal‖Wm+2,4(M) ≤ S0, (3.4)

Vol (Br(x)) ≤ V0r
4 for all x ∈M and r > 0, (3.5)

and

CS (M) ≤ CS. (3.6)

Then there is a constant δ0 = δ0(E0, V0, S0, CS) > 0 such that if ‖scal‖L1(M) < δ0,

then we have b+(M) ≤ 3.

We give a brief outline of the proof. For the sake of contradiction, suppose that the

conclusion of the theorem doesn’t hold. That is, no matter how small we choose δ0,

there is always some anti-self-dual 4-manifold, (Mδ0 , gδ0), satisfying the hypothesis of

the theorem but with b+ (Mδ0) ≥ 4. In other words, we have a so called contradicting

sequence of closed, unit-volume, anti-self-dual 4-manifolds, (Mi, gi), with π1 (Mi) = 0

and such that (ˆ
Mi

|Rmi|2 dV i

) 1
2

≤ E0,

∥∥∇2scal
∥∥
Wm,4(Mi)

≤ S0,

Vol (Br(x)) ≤ V0r
4 for all x ∈Mi and r > 0,
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and

CS (Mi) ≤ CS,

but with b+(Mi) ≥ 4 and ‖scali‖L1(Mi)
→ 0 as i → ∞. The first step is to use the

ε-regularity theorem for anti-self-dual metrics, Theorem 2.1, and the upper volume

growth (3.5) to prove that the sequence, (Mi, gi), must converge to a limit space,

(M∞, g∞), in the Gromov-Hausdorff sense. Further, we have that M∞ is a Cm+1,α

Riemannian manifold except for finitely many singular points, S, and the convergence

is uniform on compact subsets of M∞ \S in the Cm,α-topology. Next, since b+ (Mi) ≥

4, we can pick an L2-orthonormal set of at least 4 Hodge-harmonic self-dual 2-forms

on each Mi. Then, we can use the equation (3.2) to prove regularity estimates that

allow us to show that this L2-orthonormal set converges to a point-wise orthogonal

set of 4 self-dual 2-forms on the regular part of the limit, M∞ \ S, a contradiction

with dim (Λ+) = 3.

The rest of the chapter is organized as follows. In the first section, we prove all

the necessary regularity estimates concerning Hodge-harmonic self-dual 2-forms. The

second section is dedicated to describe the limit spaces and finalizing the proof of

Theorem 1.4. In the third and last section we prove Proposition 1.6, the removable

singularity result for orbifolds.
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3.1 Analysis of Hodge-harmonic self-dual 2-forms

In this section we study the analysis of Hodge-harmonic self-dual 2-forms. More

specifically, we prove uniform L∞-bounds and an ε-regularity result for regions with

small curvature in the L2 sense. The main tools used in the proofs are the equation

coming from the Böchner formula, (3.2), the regularity theory discussed in Section 1.4

and bounds on the (local) Sobolev constant.

Lemma 3.3. Fix q ≥ 2 and let (M, g) be a closed, anti-self-dual 4-manifold. Suppose

that η is a Hodge-harmonic self-dual 2-form in Lq(M). If CS(M) ≤ CS < ∞, then

there is some constant C = C(q, CS) <∞ such that

sup
M
|η| ≤ C

(
‖scal‖2

L4(M) +
1

Vol(M, g)
1
2

) 2
q (ˆ

M

|η|q
) 1

q

. (3.7)

If CS (Br(x)) ≥ CS > 0, there is a constant C1 = C1(q, CS) <∞ such that

sup
B r

2
(x)

|η| ≤ C1

(
‖scal‖2

L4(Br(x)) + r−2
) 2
q

(ˆ
Br(x)

|η|q
) 1

q

. (3.8)

Proof. Recall that the Böchner formula (3.1) on Hodge-harmonic self-dual 2-forms

reduces to ∆η = scal
3
η. Then we can use the inequality (A.8), |T |∆ |T | ≥ 〈T,∆T 〉,

to obtain

∆|η| ≥ −1

3
|scal||η|. (3.9)

At this point we can directly apply Lemma 1.10 to produce the local bound (3.8).

For the global bound, we can just proceed as in the proof of Lemma 1.10. By the

Sobolev inequality (1.7), for any p ≥ 2 we have(ˆ
M

|η|2p
) 1

2

≤ CS
p2

4

ˆ
M

|η|p−2 |∇ |η||2 +
1

Vol(M, g)
1
2

ˆ
M

|η|p .
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The first term can be integrated by parts and bounded using (3.9)

p2

ˆ
M

|η|p−2 |∇ |η||2 =
p2

p− 1

ˆ
M

〈
∇ |η|p−1 ,∇ |η|

〉
= − p2

p− 1

ˆ
M

|η|p−1 ∆ |η|

≤ 2p

3

ˆ
M

|scal| |η|p ,

where we also used p
p−1
≤ 2 for any p ≥ 2. Now we continue using Hölder’s inequality

and the δ-Cauchy inequality

p

ˆ
M

|scal| |η|p ≤ p

(ˆ
M

|η|2p
) 1

4
(ˆ

M

|scal|4
) 1

4
(ˆ

M

|η|p
) 1

2

≤ δ

2

(ˆ
M

|η|2p
) 1

2

+
p2

2δ

(ˆ
M

|scal|4
) 1

2
ˆ
M

|η|p .

Therefore, choosing δ sufficiently small in terms of CS, we arrive at

(ˆ
M

|η|2p
) 1

2

≤ p2C(CS)

(
‖scal‖2

L4(M) +
1

Vol(M, g)
1
2

)ˆ
M

|η|p , (3.10)

which can be iterated just as in Lemma 1.10.

We can also obtain global uniform L∞ estimates in terms of the local Sobolev

constant of geodesic balls of a definite size.

Corollary 3.4. Fix some q ≥ 2 and let (M, g) be a closed, anti-self-dual 4-manifold

satisfying ‖scal‖L4(M) ≤ S0. Suppose that there are constants CS > 0 and r0 > 0 such

that CS(Br0(x)) > CS for all x ∈M . Then there is a constant C = C (q, r0, S0, CS) <

∞ such that for

sup
M
|η| ≤ C ‖η‖Lq(M) ,

where η is any Hodge-harmonic self-dual 2-from in Lq(M).

Proof. Given any x ∈M we can always write |η(x)| ≤ supB r0
2

(x) |η| and use (3.8).
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Next we deal with higher order covariant derivatives. We start with a bound for

the L2-norm of ∇η.

Lemma 3.5. Let (M, g) be a closed, anti-self-dual 4-manifold. Suppose that η is

a Hodge-harmonic self-dual 2-form in L2(M). If CS (Br(x)) ≥ CS > 0, there are

constants ε0 = ε0(CS) > 0 and C = C(CS) < ∞ such that if ‖scal‖L2(Br(x)) < ε0,

then we have

ˆ
B r

2
(x)

|∇η|2 ≤ C
(
‖scal‖L2(Br(x)) + 1

)
r−2

ˆ
Br(x)

|η|2. (3.11)

If CS(M) ≤ CS <∞, then there is a constant C1 = C1(CS) such that

ˆ
M

|∇η|2 ≤ C1 ‖scal‖L2(M)

(
‖scal‖2

L4(M) +
1

Vol(M, g)
1
2

)ˆ
M

|η|2 .

Proof. We prove (3.11) first. Let φ be a cutoff function with 0 ≤ φ ≤ 1 and support

contained in Br(x). We integrate by parts and use the equation for η (3.2) to obtain

ˆ
φ2|∇η|2 = −2

ˆ
φ〈tr(∇φ⊗∇η), η〉 − 1

3

ˆ
φ2scal|η|2.

Then, using the δ-Cauchy inequality we can bound

ˆ
φ2|∇η|2 ≤ 1

δ

ˆ
|∇φ|2|η|2 + δ

ˆ
φ2|∇η|2 +

1

3

ˆ
φ2|scal||η|2,

so choosing δ = 1
2

yields

C

ˆ
φ2|∇η|2 ≤

ˆ
|∇φ|2|η|2 +

ˆ
φ2|scal||η|2.

The second term can be bounded using Hölder’s inequality followed by the Sobolev

inequality

ˆ
φ2|scal||η|2 ≤

(ˆ
supp(φ)

|scal|2
) 1

2
(ˆ

φ4|η|4
) 1

2

≤ C ‖scal‖L2(Br(x))

ˆ
|∇(φ|η|)|2.
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Integrating by parts and then using (3.9), we obtain

ˆ
|∇(φ|η|)|2 = −

ˆ
φ2|η|∆|η|+

ˆ
|∇φ|2|η|2 ≤ 1

3

ˆ
φ2|scal||η|2 +

ˆ
|∇φ|2|η|2.

Therefore, choosing ε0 small enough we obtain

ˆ
φ2|scal||η|2 ≤ C ‖scal‖L2(Br(x))

ˆ
|∇φ|2|η|2,

which yields ˆ
φ2|∇η|2 ≤ C

(
‖scal‖L2(Br(x)) + 1

) ˆ
|∇φ|2|η|2.

Then (3.11) follows choosing the cutoff φ so that φ
∣∣
B r

2
(x)
≡ 1 and |∇φ| ≤ cr−1.

If CS(M) ≤ CS < ∞, we can proceed slightly differently. Integrating by parts

and using Hölder’s inequality

ˆ
M

|∇η|2 ≤ 1

3

ˆ
M

|scal| |η|2 ≤ 1

3

(ˆ
M

|scal|2
) 1

2
(ˆ

M

|η|4
) 1

2

,

so we can use the estimate in (3.10) with p = 2 to obtain the desired bound.

Much like before, we can obtain global bounds depending on the local Sobolev

constant of geodesic balls of definite size.

Corollary 3.6. Let (M, g) be a closed, anti-self-dual 4-manifold with Vol(M, g) ≤ V .

If there is some r0 > 0 such that CS(Br0(x)) > CS for all x ∈ M , then there are

constants ε0 = ε0(CS) > 0 and C = C(r0, CS, V ) <∞ such that if ‖scal‖L2(M) ≤ ε0,

then we have

‖∇η‖L2(M) ≤ C ‖η‖L2(M) ,

where η is any Hodge-harmonic self-dual 2-form in L2(M).
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Proof. Choose ε0 as in Lemma 3.5. Then consider a maximally disjoint family of

r0
4

-balls, {B r0
4

(xi)}Ni=1. Since we have a lower volume growth (3.16), a simple covering

argument yields N ≤ V v−1
0 r−4

0 44. Then, using (3.11), we obtain

ˆ
M

|∇η|2 ≤
N∑
i=1

ˆ
B r0

2
(xi)

|∇η|2 ≤ C ‖η‖2
L2(M) ,

as desired.

The next step is to obtain L2-bounds for an arbitrary number of covariant deriva-

tives. From the equation for Hodge-harmonic self-dual 2-forms (3.2), we can produce

similar equations for each ∇kη (see Lemma A.7 for details)

∆
(
∇kη

)
=

k∑
l=0

∇lRm ∗ ∇k−lη. (3.12)

Note that in general we don’t have control over the curvature terms appearing in the

equation above, so we are not going to be able to obtain global bounds as before.

However, due to the ε-regularity Theorem 2.1, we are able to derive local estimates

in regions with small L2-norm for the curvature.

Lemma 3.7. Fix some integer k ≥ 1 and let (M, g) be a closed anti-self-dual 4-

manifold. Suppose that there are finite constants V0 and S0 such that Vol(Br(x)) ≤

V0r
4 and ||∇2scal||Wk,4(Br(x)) ≤ S0. If CS (Br(x)) ≥ CS > 0, then there are constants

ε0 = ε0(CS) and C = C(k, r, CS, S0, V ) such that if ‖Rm‖L2(Br(x)) < ε0, then we have

ˆ
B r

2k
(x)

|∇kη|2 ≤ C

ˆ
Br(x)

|η|2, (3.13)

where η is any Hodge-harmonic self-dual 2-form in L2(M).
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Proof. Since we have the estimate for k = 1, (3.11), we argue by induction. Let φ

be a smooth cutoff function with 0 ≤ φ ≤ 1 and support contained in Br2−k+1(x).

Integrating by parts and using (3.12), we have

ˆ
φ2|∇kη|2 = −2

ˆ
φ
〈
tr(∇φ⊗∇kη),∇k−1η

〉
−
ˆ
φ2

〈
k−1∑
l=0

∇lRm ∗ ∇k−lη,∇kη

〉
.

We bound the first term with the δ-Cauchy inequality

−2

ˆ
φ
〈
tr(∇φ⊗∇kη),∇k−1η

〉
≤ 1

2

ˆ
φ2|∇kη|2 + 2

ˆ
|∇φ|2|∇k−1η|2.

By Theorem 2.1 and Hölder’s inequality, we can bound the second term

−
ˆ
φ2

〈
k−1∑
l=0

∇lRm ∗ ∇k−lη,∇kη

〉
≤ C

k−1∑
l=0

(ˆ
φ2|∇k−lη|2

) 1
2
(ˆ

φ2|∇k−lη|2
) 1

2

,

where C is a constant depending on k, CS, S0, V0 and r. Thus, using the induction

hypothesis and combining these two estimates, we obtain

1

2

ˆ
φ2|∇kη|2 ≤ 2

ˆ
|∇φ|2|∇k−1η|2 + C

ˆ
Br(x)

|η|2,

and the result follows choosing φ so that φ |B
r2−k (x) ≡ 1 and |∇φ| ≤ ckr

−1 where ck

is some constant only depending on k.

Now we can use this lemma to prove L∞ estimates for ∇kη in regions where the

L2-norm of Rm is small.

Lemma 3.8. Fix some integer k ≥ 0 and let (M, g) be a closed anti-self-dual 4-

manifold. Suppose that there are finite constants V0 and S0 such that Vol(Br(x)) ≤
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V0r
4 and ||∇2scal||Wk,4(Br(x)) ≤ S0. If CS (Br(x)) ≥ CS > 0, there are constants

ε0 = ε0(CS) and C = C(k, r, CS, S0, V0) such that if ‖Rm‖L2(Br(x)) < ε0, then we have

sup
B r

2k+1
(x)

∣∣∇kη
∣∣ ≤ C

(ˆ
Br(x)

|η|2
) 1

2

, (3.14)

where η is any Hodge-harmonic self-dual 2-form in L2(M).

Proof. We argue by induction. The case k = 0 is already proved in (3.8), so assume

that we have obtained the bound for all non-negative integers up to k − 1. For the

general case we use an argument similar to Lemma 1.12 combined with the estimates

in Theorem 2.1. From (3.12) and the inequality |T |∆ |T | ≥ 〈T,∆T 〉 (A.8) it follows

that

∆
∣∣∇kη

∣∣ ≥ − ∣∣∇kη
∣∣ |Rm| − k∑

l=1

∣∣∇lRm
∣∣ ∣∣∇k−lη

∣∣ .
If ε0 is small enough, we know by (2.4) that for l = 0, . . . , k(ˆ

B r
2

(x)

∣∣∇lRm
∣∣4) 1

2

≤ Cl,

where Cl is a constant depending on l, CS, S0 and r. Further, by the induction

hypothesis, we also have

sup
B r

2k−l+1
(x)

∣∣∇k−lη
∣∣ ≤ Ck−l ‖η‖L2(Br(x)) ,

which implies∥∥∥∥∥
k∑
l=1

∣∣∇lRm
∣∣ ∣∣∇k−lη

∣∣∥∥∥∥∥
L4

(
B r

2k
(x)

) ≤
k∑
l=1

Ck−l ‖η‖L2(Br(x))

∥∥∇lRm
∥∥
L4

(
B r

2k
(x)

)

≤
k∑
l=1

Ck−l ‖η‖L2(Br(x))Cl ≤ Ck ‖η‖L2(Br(x)) .
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Finally, by Lemma 1.12 we obtain

sup
B r

2k+1
(x)

∣∣∇kη
∣∣ ≤ C

(∥∥∇kη
∥∥
L2

(
B r

2k
(x)

) + ‖η‖
L2

(
B r

2k
(x)

)
)
,

where now C depends on k, CS, S0, r and V0. We only need to use (3.13) in order to

obtain the desired estimate.

3.2 Proof of Theorem 1.4

In this section we give the details for the proof of Theorem 1.4, our gap theorem for

the scalar curvature of anti-self-dual 4-manifolds. To set the stage, recall that we use

a contradiction argument. More explicitly, from now on we consider a sequence of

closed, unit-volume, anti-self-dual 4-manifolds, (Mi, gi), with π1(Mi) = 0 and satis-

fying the property that there are constants E0 < ∞, V0 < ∞, S0 < ∞ and CS < ∞

such that (ˆ
Mi

|Rmi|2dV i

) 1
2

≤ E0,

‖scal‖Wm+2,4(Mi)
≤ S0,

VolBr(x) ≤ V0r
4 for all x ∈Mi and r > 0,

and

CS (M) ≤ CS,

while simultaneously satisfying ‖scali‖L1(Mi)
→ 0 and b+(Mi) ≥ 4. As discussed in

the outline given at the beginning of the chapter, there are two aspects to consider.

First we need to study the convergence of the sequence, (Mi, gi), to a limit space M∞
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and then we need to understand how this convergence interacts with the analysis of

Hodge-harmonic self-dual 2-forms that realize b+(Mi) as explained in Section 1.3.1.

Before we continue we make a few general “geometric” observations. Earlier, we

proved in Lemma 1.7 that a bound on CS(M) implies a bound on the local Sobolev

constant CS(Ω) as long as Vol(Ω) ≤ c2 Vol(M, g) for some constant 0 < c < 1. By

our assumptions on volume, if we take c = 1
2
, this means that there is a constant

C(CS) > 0 such that

CS (Br(x)) ≥ C(CS), (3.15)

as long as r ≤ r0 =
√

2V
− 1

4
0 . It is also well known that the local Sobolev constant

controls the lower volume growth of small geodesic balls (see Lemma A.9 for details).

On this account, there is a constant v0 = v0(CS) > 0 such that

Vol (Br(x)) ≥ v0r
4, (3.16)

for all x ∈ Mi and r ≤ r0. Lastly, the upper volume growth (3.5) implies a lower

bound on the diameter, diam(M, g) ≥ d0(V0).

3.2.1 Convergence theory for anti-self-dual 4-manifolds

In this section we show that the sequence, (Mi, gi), or possibly a subsequence, con-

verges in the Gromov-Hausdorff topology to a compact length space, (M∞, g∞), with

the following structure. There is a finite number of singular points, S, such that

M∞ \ S is a Cm+1,α anti-self-dual Riemannian manifold and the convergence is uni-

form on compact subsets of M∞ \ S in the Cm,α-topology. On top of that, there is
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a constant N = N(E0, CS) such that |S| ≤ N . This kind of argument has appeared

many times in the literature and it is well understood that the key ingredients are an

ε-regularity theorem like Theorem 2.1 and an upper volume growth (3.5). Roughly

speaking, the finite L2-norm of Rm combined with the ε-regularity theorem tells

us that, on most of Mi, we have uniformly bounded curvature, then the upper vol-

ume growth guarantees that those regions were the curvature becomes unbounded

are small. For the most part, our arguments are adaptations of those appearing in

[And89, BKN89, TV05b, Nak88].

Right from the start we can prove that we have some sort of Gromov-Hausdorff

convergence

Lemma 3.9. There is a compact length space (X∞, d∞) such that

(Mi, gi) −→ (X∞, d∞) (3.17)

in the Gromov-Hausdorff topology.

Proof. Consider,
{
B r

2

(
xki
)}Ni

k=1
, a maximal family of disjoint geodesic r

2
-balls con-

tained in Mi. In particular, the family
{
Br

(
xki
)}Ni

k=1
covers Mi. If we assume r < 2r0,

where r0 is as in (3.15), by the lower volume growth (3.16) we obtain

1 = Vol(Mi, gi) ≥
Ni∑
k=1

Vol
(
B r

2

(
xki
))
≥ NiC(v0)r4,

which gives the uniform upper bound on the cardinality of the family, Ni ≤ C(v0)r−4.

Therefore, the result follows from Gromov’s precompactness theorem [Pet98, Propo-

sition 44].
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Next we improve the regularity of the limit space. As mentioned above, on of the

most important aspects is to understand how curvature concentrates as measured by

the L2-norm. From now on, we fix ε0 > 0 to be the same constant that appears in

the ε-regularity Theorem 2.1. Given r > 0, we can define the good set and bad set of

Mi. Respectively,

Gi,r =

{
x ∈Mi :

(ˆ
Br(x)

|Rmi|2
) 1

2

< ε0

}
, (3.18)

and

Bi,r =

{
x ∈Mi :

(ˆ
Br(x)

|Rmi|2
) 1

2

≥ ε0

}
. (3.19)

We want to use the local Sobolev constant, so we further assume that r ≤ r0, where

r0 is as in (3.15). Clearly, the good and bad sets are disjoint and constitute a cover,

Mi = Gi,r
⊔
Bi,r. The key for the regular convergence is to take limits of these good

sets, where we have control of the geometry thanks to Theorem 2.1.

Lemma 3.10. Fix some 0 < r ≤ r0. Then there is a Cm+1,α Riemannian manifold,

(G∞,r, g∞,r), such that Gi,r → G∞,r uniformly on compact subsets in the Cm,α-topology

as i→∞. If m ≥ 2, then g∞,r is an anti-self-dual metric with scal∞ = 0.

Proof. Using Theorem 2.1, we have constants Ck = Ck(r, S0, CS, V0) such that

sup
Gi,r
|∇kRm| ≤ Ck, (3.20)

for k = 0, . . . ,m. By the work in [CGT82], this curvature estimate combined with

the lower volume growth (3.16) implies a lower bound on the injectivity radius,
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inj(Mi, gi) ≥ ι (v0, C0) > 0. Therefore, we can apply Gromov’s compactness theo-

rem [And89, Theorem 2.2] to conclude that there is a Cm+1,α manifold, (G∞,r, g∞,r),

with the desired properties, after possibly passing to a subsequence. That is, there

are diffeomorphisms, ψi,r : G∞,r → Gi,r, such that ψ∗i,rgi → g∞,r uniformly on com-

pact subsets in the Cm,α-topology. To see that g∞,r is an anti-self-dual metric when

m ≥ 2, recall that the self-dual part of the Weyl tensor is just an expression in

terms of up to two derivatives of the metric, and since the gi converges to g∞,r in the

Cm,α-topology with m ≥ 2, we have W+
i → W+

∞. Since we are assuming W+
i ≡ 0,

it follows that W+
∞ = 0. By the same token, we also have scali → scal∞ but since

‖scali‖L1(Gi,r) → 0, Fatou’s lemma implies that
´
G∞,r |scal∞| = 0 and we end up with

scal∞ = 0 on G∞,r.

Remark 3.11. Although not quite relevant to this dissertation, one can show that

(G∞,r, g∞,r) is a smooth manifold instead of just Cm+1,α. This is because scal∞ ≡ 0

allows for Theorem 2.1 to be used with any m.

Next we see how the volume of the bad set is controlled.

Lemma 3.12. There is a constant C = C(CS, V0, E0) such that Vol (Bi,r) ≤ Cr4.

Proof. Consider, {Br(x
k
i )}Nk=1, a maximal family of disjoint geodesic r-balls with cen-

ters in the bad set, xki ∈ Bi,r. By definition, we have

Nε2
0 ≤

N∑
k=1

ˆ
Br(xki )

|Rmi|2 ≤
ˆ
Mi

|Rmi|2,

and since we have finite L2-norm for |Rm| (3.3), we obtain N ≤ E2
0ε
−2
0 . Note that,

doubling the radii of the geodesic balls, we can cover the bad set. Therefore, using the

58



upper volume growth (3.5), we have that Vol(Bi,r) ≤
∑N

k=1 Vol(B2r(xi,k)) ≤ NV0(2r)4.

Recall that ε0 only depended on CS so the result follows.

In the following, we finish the construction of M∞. Observe that in the proof of

Lemma 3.12 we actually showed that the bad set Bi,r can always be covered by at

most N geodesic balls of radius 2r, where N only depends on CS and E0. Therefore,

we can restrict to a subsequence of (Mi, gi) where this covering number is always the

same. We keep track of the centers of these geodesic balls with the set Si = {xki }Nk=1

and let Si,r =
⋃N
k=1B2r(x

k
i ) the aforementioned covering of Bi,r. This leads us to

define the even better set, Ei,r = Mi \ Si,r ⊂ Gi,r. Now take a sequence of increasingly

smaller scales, rj → 0, for each fixed j we can use Lemma 3.10 to obtain a converging

sequence, Ei,rj → E∞,rj , in the Cm,α-topology. Since we have Ei,rj ⊂ Ei,rj+1
because

rj+1 < rj, taking further subsequences we obtain nested limit manifolds, E∞,rj ⊂

E∞,rj+1
⊂ . . . and we can define the limit manifold E∞ =

⋃∞
j=1 E∞,rj , which carries a

scalar-flat anti-self-dual metric, g∞, induced from the scalar-flat anti-self-dual metrics

g∞,rj .

Finally, we define M∞ as the metric completion of E∞ with respect to g∞. Using

Lemma 3.12, it is easy to prove that M∞ \ E∞ is a finite set of points which we call

singular and denote by S. Since convergence in the Cm,α-topology implies convergence

in the Gromov-Hausdorff topology, it is straightforward to see that Mi converges to

M∞ in the Gromov-Hausdorff topology as well. In particular, (M∞, g∞) is isometric

to the limit length space, (X∞, d∞), from (3.17). This implies that (M∞, g∞) is a
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compact length such that g∞ restricts to an anti-self-dual scalar-flat metric on M∞\S

and has all the convergence properties claimed above.

Based on arguments in [CQY07, Lemma 3.2] and [TV05b, Proposition 7.2], we

are able to prove that the regular part of the limit space is connected. This will

be useful later on when we study the convergence of the Hodge-harmonic self-dual

2-forms representing b+(Mi).

Lemma 3.13. π1(Mi) = 0 implies that M∞ \ S is connected.

Proof. We prove something slightly stronger. Given a singular point s ∈ S, we prove

that Br(s) \ {s} must be connected for all sufficiently small r > 0. Suppose to the

contrary that there is some r0 > 0 with the property that Br0(s)\{s} has at least two

connected components, B1
r0

(s) and B2
r0

(s). Let v denote the volume of the smallest

of these components. Then we can intersect the annulus Aρ,r0(s) with each Bi
r0

(s) to

obtain two connected components, A1
ρ,r0

(s) and A2
ρ,r0

(s). Moreover, the upper volume

growth (3.5) implies that for all small ρ, we have Vol
(
Ak2ρ,r0(s)

)
≥ 1

2
v. Next, let {xi}

be a sequence of points in Mi converging to s in the Gromov-Hausdorff topology.

If we choose some r < ρ, then, by Lemma 3.10, the annulus Aρ,r0(s) ⊂ E∞,r is

diffeomorphic to the annulus Aρ,r0(xi) ⊂ Ei,r ⊂ Mi for large enough i. This implies

that Aρ,r0(xi) also has two connected components, A1
ρ,r0

(xi) and A2
ρ,r0

(xi), satisfying

Vol
(
Ak2ρ,r0(xi)

)
≥ 1

3
v. We claim that this is impossible. Indeed, the assumption

π1(Mi) = 0 implies that there is no path connecting A1
ρ,r0

(xi) and A2
ρ,r0

(xi) that is

contained in Mi \Br0(xi). It follows that the subannulus A1
ρ,2ρ(xi) separates Mi into
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exactly two connected components, A∪B = Mi\A1
ρ,2ρ(xi). Without loss of generality

we may assume that Vol(A) ≤ Vol(B). As the final step, consider a smooth cutoff

function, φ, with 0 < φ < 1 and such that φ
∣∣
A
≡ 1, φ

∣∣
B
≡ 0 and |∇φ| ≤ 2ρ−1

on A1
ρ,2ρ(xi). Using the Sobolev inequality (1.7), Hölder’s inequality and the upper

volume growth (3.5), we obtain(ˆ
Mi

φ4

) 1
2

≤ CS

ˆ
Mi

|∇φ|2 +

ˆ
Mi

φ2

≤ 4CSρ
−2 Vol(A1

ρ,2ρ(xi)) +

ˆ
A

φ2 +

ˆ
A1
ρ,2ρ(xi)

φ2

≤ C(CS, V0)ρ2 +

(ˆ
Mi

φ4

) 1
2

Vol(A)
1
2 + 16V0ρ

4.

Since we are assuming unit-volume for Mi, it follows that Vol(A) ≤ 1
2
. So we obtain

(ˆ
Mi

φ4

) 1
2

≤ C(CS, V0)(ρ2 + ρ4).

On the other hand, we constructed our annuli to have a definite amount of volume

(v
3

) 1
2 ≤ Vol(A)

1
2 ≤

(ˆ
Mi

φ4

) 1
2

,

which results in C(CS, V0, v) ≤ ρ2 + ρ4, a contradiction because we can choose ρ as

small as necessary.

Remark 3.14. If we assume that the scalar curvature is constant, the resulting con-

vergence theory can be significantly improved. This was done by Tian-Viaclovsky in

[TV05a, TV05b, TV08] (cf. [And05]), where they prove that the singularities are

actually of (multi-)orbifold type.
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3.2.2 Final arguments for Theorem 1.4

Recall that our sequence satisfies b+(Mi) ≥ 4, which is the dimension of Hodge-

harmonic self-dual 2-forms as it was shown in Section 1.3.1. Thus, we can choose a

L2-orthonormal set of at least 4 such forms, {ηki }4
k=1. That is

´
Mi

〈
ηki , η

l
i

〉
= δkl. From

the discussion in Section 3.2.1, now we better grasp on the possible degenerations

in the geometry of (Mi, gi). Now, it is time to examine the interplay between this

geometric convergence and the convergence of {ηki }4
k=1. The first step is to prove that

each {ηki } converges to some Hodge-harmonic self-dual 2-form, ηk, along the regular

part, Ei,r ⊂ (Mi.gi) −→ E∞,r ⊂M∞ as i→∞.

Lemma 3.15. For each k = 1, . . . , 4 there is some Hodge-harmonic self-dual 2-form

on M∞\S, denoted by ηk, such that ηki−→ηk uniformly on compact subsets of M∞\S

in the Cm,α-topology. Further, we also have ∆ηk = 0.

Proof. Fix r ≤ r0 =
√

2V
− 1

4
0 so that the bound on the local Sobolev constant (3.15) is

active and consider the even better set Ei,r. By definition, any point x in Ei,r satisfies

‖Rm‖L2(Br(x)) ≤ ε0 and since
∥∥ηki ∥∥L2(Mi)

= 1, from Lemma 3.8 we obtain

sup
Ei,r

∣∣∇lηki
∣∣ ≤ Cl,

for each l = 0, . . . ,m where Cl is a constant depending only on l, r, CS, S0 and V0.

Recall that that the convergence Ei,r → E∞,r comes equipped with diffeomorphisms,

ψi,r : E∞,r → Ei,r, such that ψ∗i,rgi → g∞,r uniformly on compact subsets in the Cm,α-

topology. It follows that
∥∥ψ∗i,rηki ∥∥Cm,α is uniformly bounded, therefore, from Arzelà-

Ascoli we obtain a 2-form, ηk, such that ηki → ηk uniformly on compact subsets in
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the Cm,α′-topology for α′ < α, but α is arbitrary between 0 and 1, so we do obtain

Cm,α for any 0 < α < 1.

Next, we verify the properties that were claimed about ηk. Since m ≥ 2, the

convergence is good enough so that the usual quantities that can be defined in terms

of the Riemannian metric pass to the limit. We have ∗ηki → ηk and ∆Hη
k
i → ∆Hη

k,

so ηk is Hodge-harmonic and self-dual. We also have ∆ηki → ∆ηk and scali → scal∞,

but in Lemma 3.10 we proved scal∞ = 0, so the equation ∆ηki = scali
3
ηki becomes

∆ηk = 0 in the limit.

To finish the proof, let rj → 0 and take diagonal subsequences.

The goal for the rest of the proof is to show that that the set {ηk}4
k=1 must be

point-wise linearly independent on M∞ \S. The difficulty lies in the fact that, at this

point, we don’t really know what happens with the convergence of ηki on the singular

set. In the following we deal this problem. The first thing is to observe that each ηk

must be parallel on M∞ \ S.

Lemma 3.16. ∇ηk ≡ 0 on M∞ \ S.

Proof. Integrating by parts equation (3.2), ∆ηki = scali
3
ηki , followed by Hölder’s in-

equality, we obtain

ˆ
Mi

∣∣∇ηki ∣∣2 = −1

3

ˆ
Mi

scal
∣∣ηki ∣∣2 ≤ 1

3
sup
Mi

∣∣ηki ∣∣2 ‖scal‖L1(Mi)
.

From the discussion surrounding (3.15), we can take r0 =
√

2V
− 1

4
0 in Corollary 3.4 to

obtain a constant C = C(CS, V0) such that supMi

∣∣ηki ∣∣2 ≤ C. Since ‖scal‖L1(Mi)
→ 0,
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we conclude that
´
Mi

∣∣∇ηki ∣∣2 → 0. Recall that from Lemma 3.10 we have
∣∣∇ηki ∣∣ →∣∣∇ηk∣∣, so Fatou’s lemma implies

ˆ
E∞,r

∣∣∇ηk∣∣2 ≤ lim
i→∞

ˆ
Ei,r

∣∣∇ηki ∣∣2 ≤ lim
i→∞

ˆ
Mi

∣∣∇ηki ∣∣2 = 0,

and the claim follows by letting r → 0.

From this we obtain ∇
〈
ηk, ηl

〉
=
〈
∇ηk, ηl

〉
+
〈
ηk,∇ηl

〉
= 0, hence, the func-

tions
〈
ηk, ηl

〉
are constant on each connected component of M∞ \ S. We proved in

Lemma 3.13 that M∞ \ S is actually connected so let ckl =
〈
ηk, ηl

〉
if k 6= l and

ck =
∣∣ηk∣∣2 the constant value that these functions take on M∞ \ S. The main issue

that could arise now would be for the singularities to concentrate all the L2-norm of

our Hodge-harmonic self-dual 2-forms,
{
ηki
}4

k=1
. In other words, we might have that

ηk ≡ 0 or that they “fold” into each other and don’t become orthogonal. The final

step is to prove that these phenomena don’t actually occur.

Lemma 3.17. ck > 0 and ckl = 0 for k 6= l.

Proof. Fix some small r > 0. Recall that Mi = Ei,r
⊔
Si,r. We can take r0 =

√
2V
− 1

4
0

in Corollary 3.4 to obtain a constant C = C(CS, V0) such that supMi

∣∣ηki ∣∣ ≤ C. Thus,

using the proof of Lemma 3.12, we have

ˆ
Si,r

∣∣ηki ∣∣2 ≤ C(CS, V0, E0)r4.

Therefore, since
∥∥ηki ∥∥L2(Mi)

= 1, we obtain

ˆ
Ei,r

∣∣ηk∣∣2 = 1−
ˆ
Si,r

∣∣ηki ∣∣2 ≥ 1− C(CS, V0, E0)r4.
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On the other hand, by dominated convergence and Lemmas 3.10 and 3.15, we also

have

ck Vol (E∞,r) =

ˆ
E∞,r

∣∣ηk∣∣2 = lim
i→∞

ˆ
Ei,r

∣∣ηki ∣∣2 ≤ 1.

Combining these, we reach

1 ≥ ck Vol (E∞,r) ≥ 1− C(CS, V0, E0)r4,

which is valid for any small r > 0. Letting r → 0 implies ck > 0, where we are

also using Lemma 3.12 and Vol (Mi, gi) = 1 to verify that Vol (E∞,r) > 0. In fact,

we obtain ck = Vol (M∞)−1 = 1. We can proceed in a similar fashion with ckl. We

obtain ∣∣∣∣∣
ˆ
Si,r

〈
ηki , η

l
i

〉∣∣∣∣∣ ≤ C(CS, V0, E0)r4,

and using
〈
ηki , η

l
i

〉
L2(Mi)

= 0,∣∣∣∣∣
ˆ
Ei,r

〈
ηki , η

l
i

〉∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Si,r

〈
ηki , η

l
i

〉∣∣∣∣∣ ≤ C(CS, V0, E0)r4.

Finally,

ckl Vol (E∞,r) =

ˆ
E∞,r

〈
ηki , η

l
i

〉
= lim

i→∞

ˆ
Ei,r

〈
ηki , η

l
i

〉
≤ C(CS, V0, E0)r4,

and letting r → 0 results in ckl = 0.

Remark 3.18. To prove this lemma we only really need
∣∣∣´Si,r 〈ηki , ηli〉∣∣∣→ 0 as r → 0.

To finish the proof of Theorem 1.4, just pick any x∞ ∈ M∞ \ S and apply

Lemma 3.17 to conclude that
{
ηk(x∞)

}4

k=1
is a linearly independent subset of Λ+

x∞ .

A contradiction, since Λ+ is a rank 3 bundle.
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Some remarks about Theorem 1.4

As mentioned before, if we assume constant scalar curvature the assumptions can

be simplified and the ε-regularity Theorem 2.1 takes Tian-Viaclovsky’s original form

[TV05a, Theorem 3.1]. This way, if we restrict our attention to constant scalar

curvature metrics we can restate Theorem 1.4 as follows.

Theorem 3.19. Let (M, g) be a simply connected, unit-volume, closed anti-self-dual

4-manifold with constant scalar curvature. Suppose that there are constants E0 <∞

and CS < ∞ such that
´
M
|Rm|2 ≤ E0 and CS (M) ≤ CS. Then there is a constant

δ = δ(E0, CS) > 0 such that if |scal| < δ0, then b+(M) ≤ 3.

Proof. Clearly, if we have constant scalar curvature and unit-volume, the condition

|scal| < δ0 implies ‖scal‖L1(M) < δ0 as well. Moreover, by [TV05b, Theorem 1.2],

there is a constant V0 = V0(E0, CS) such that Vol (Br(x)) ≤ V0r
4 for all x ∈ M and

r > 0. At this point we can just apply Theorem 1.4.

It turns out that a lower bound for Ric encodes the majority of the assumptions

in Theorem 1.4 and, in addition, we don’t need to assume that our manifolds are

simply-connected. We have the following formulation of Theorem 1.4.

Theorem 3.20. Let (M, g) be a closed, anti-self-dual 4-manifold. Suppose that

there are constants Λ > 0, S0 < ∞, v > 0 and D < ∞ such that Ric ≥ −3Λ2,

‖∇2scal‖W 4,4(M) ≤ S0, Vol(M, g) ≥ v and diam(M, g) ≤ D. Then there is a constant

δ0 = δ0(v,D,Λ, S0) > 0 such that if |scal| < δ, then we have b+(M) ≤ 3.

66



Proof. First of all, by Bishop-Gromov’s volume comparison, we have an upper volume

growth

Vol (Br(x)) ≤ V−Λ(r) ≤ V−Λ(D)

V0(D)
V0(r) ≤ C(D,Λ)r4, (3.21)

where V−Λ(r) denotes the volume of a geodesic ball of radius r in the space form of

constant curvature −Λ. It is also well-known [Cro80] that the Sobolev constant can

be bounded in terms of v, D and Λ. In fact, the local Sobolev constant can also be

bounded. Inded, using Bishop-Gromov’s volume comparison again, we have

v ≤ Vol (M, g) ≤ V−Λ(diam(M, g)),

which implies a lower bound on the diameter, diam(M, g) ≥ d0(v,Λ). Therefore, we

can use [And92, Theorem 4.1] to obtain that, for any r ≤ min
{

1
4
d0, 1

}
and x in M ,

we have

CS (Br(x)) ≥ C(Λ)

(
Vol(Br(x))

V−Λ(r)

) 1
4

≥ C(v,Λ) > 0,

where we also used Bishop-Gromov’s volume comparison on the last inequality. Next,

observe that we may assume |scal| ≤ 1, which combined with the lower bound on

Ric, implies a two-sided bound, |Ric| ≤ C(Λ). Therefore, the work of Cheeger-Naber

[CN15, Theorem 1.13] gives a bound for ‖Rm‖L2(M).

Now the only missing piece is the simply-connected condition in Theorem 1.4.

However, that assumption was only necessary to prove Lemma 3.13, that the regular

part, M∞\S, is connected. In the presence of bounds for Ric, we can adapt the proof

of this lemma using the Cheeger-Gromoll splitting theorem (see [And89, BKN89]).

We briefly give the details here using the notation from Section 3.2.1.
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Let s be singular point in S and suppose that for some small r0 > 0 the metric ball

Br0(s) \ {s} has at least two connected components, B1
r0

(s) and B2
r0

(s). Then we can

intersect the annulus Aρ,r0(s) with each Bi
r0

(s) to obtain two connected components,

A1
ρ,r0

(s) and A2
ρ,r0

(s). Next, let {xi} be a sequence of points in Mi converging to s in

the Gromov-Hausdorff topology. We can also assume that {xi} satisfies

sup
Br0 (xi)

|Rmi| ≤ |Rmi| (xi)→∞.

Choose some r < ρ, by Lemma 3.10, the annulus Aρ,r0(s) ⊂ E∞,r is diffeomorphic

to the annulus Aρ,r0(xi) ⊂ Ei,r ⊂ Mi for large enough i. This implies that Aρ,r0(xi)

also has two connected components, A1
ρ,r0

(xi) and A2
ρ,r0

(xi). Since M∞ is a length

space, if we choose r0 sufficiently small, we can take a minimizing segment, γ, with

endpoints on ∂Bρ(s) ∩ A1
ρ,r0

(s) and ∂Bρ(s) ∩ A2
ρ,r0

(s) and γ(0) = s. Then, there is a

corresponding minimizing geodesic segment, γi, with endpoints on ∂Bρ(xi)∩A1
ρ,r0

(xi)

and ∂Bρ(xi) ∩A2
ρ,r0

(xi) and that goes through xi. Finally, we can rescale the metric,

g̃i = |Rmi|(xi)gi, so that |R̃mi|(xi) ≡ 1. Notice that before rescaling there is some

r0 = r0(v,Λ) such that

r4v0(v,Λ) ≤ Vol(Br(x)) ≤ V0(v,Λ)r4,

for all r ≤ r0. Therefore, after rescaling we still have two-sided volume growth es-

timates. Since the curvature is bounded, this implies that there exists some r1 =

r1(v,Λ) such that Ẽi,r = M̃i for all r ≤ r1. Consequently, from Lemma 3.10 we

conclude that the sequence, (Br0(xi), g̃i, xi), converges uniformly on compact sub-

sets in the C2,α-topology to a complete, smooth Ricci-flat 4-manifold with a line,
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(M̃∞, g̃∞, x∞). By Cheeger-Gromoll’s splitting theorem, M̃∞ is isometric to Rl × N

where N is a compact Ricci-flat manifold of dimension at most 4− l ≤ 3. This implies

that M̃∞ is flat, a contradiction with |R̃mi|(x∞) ≡ 1.

3.3 Proof of Proposition 1.6

In this section we prove the removable singularity result for Hodge-harmonic self-

dual 2-forms on compact orbifolds with isolated singularities. For convenience of the

reader, we recall the statement of Proposition 1.6.

Proposition 3.21 (Proposition 1.6). Let (X, g) be a compact, oriented, smooth Rie-

mannian orbifold with isolated singularities. Also assume that the orbifold metric is

anti-self-dual with non-negative scalar curvature. Let XR denote the regular set of

the orbifold. If η is a Hodge-harmonic self-dual 2-form in L2(XR), then η must be

parallel. In particular, it can be extended across orbifold singularities. Further, if

η 6≡ 0, then the orbifold is scalar-flat.

There are two main ingredients in the proof: an improved Kato inequality [Sea91],

and a lemma due to Sibner [Sib85], which allows us to integrate by parts even in the

presence of isolated singularities. We quote Sibner’s lemma as it appears in [CW11,

Lemma 2.5].

Lemma 3.22 ([Sib85, Lemma 2.1]). Assume that we have two-sided Euclidean volume

growth and bounds for the local Sobolev constant. Let u ≥ 0 be a smooth function
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defined on B \ {x} satisfying, ∆u ≥ −fu, where f is a non-negative function in

L
n
2 (B \ {x}). Then there are constants ε0 and C, depending on the assumptions,

such that if φ ∈ C∞c (B) with
´
supp(φ)

f
n
2 ≤ ε0, then we have

ˆ
B

φ2 |∇uq|2 ≤ C

ˆ
B

|∇φ|2 u2q,

whenever q > n
2(n−2)

.

We would like to use this inequality with q = 1 but in dimension 4 the requirement

is q > 1. However, this issue can be avoided using elliptic inequalities with fractional

powers of u. For example, if we know that ∆u
1
2 ≥ −fu 1

2 , we can then use q = 2 and

obtain ˆ
B

φ2 |∇u|2 ≤ C

ˆ
B

|∇φ|2 u4,

which is what we wanted in the first place. In geometric situations, these improved

elliptic inequalities can often be achieved using the so called improved Kato inequal-

ities. Recall that, given any tensor T , the standard Kato inequality says that

|∇ |T || ≤ |∇T | ,

wherever |T | 6= 0. Then, an improved Kato inequality would take the form

(1 + δ) |∇ |T || ≤ |∇T | ,

for some δ > 0. If we have extra information about the tensor T and its algebraic

properties, there is a chance that such an inequality can be reached. For example,

in [BKN89, Lemma 4.9] it was proved that the inequality holds whenever T is the
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curvature tensor of an Einsten metric or, if dimension is 4, when T is the curvature

tensor of a half-conformally-flat metric. More generally, in [Bra00, CGH00], they de-

veloped a theory of improved Kato inequalities when T is in the kernel of certain first

order elliptic operators. Oversimplifying, the problem of finding such an inequality

reduces to a Lagrange multiplier problem, minimizing the quantity |〈∇T, T 〉| subject

to the algebraic constraints of T .

For the case of Hodge-harmonic self-dual 2-forms on 4-manifolds, Seaman gave

a purely geometric proof in [Sea91]. We include the details here for the sake of

completeness.

Lemma 3.23 ([Sea91, Theorem 1]). Let (M, g) be a closed, anti-self-dual 4-manifold

and suppose η is a Hodge-harmonic self-dual 2-form. Then we have

3

2
|∇|η||2 ≤ |∇η|2 , (3.22)

which holds point-wise wherever |η| 6= 0, and in the distribution sense otherwise.

Proof. In the region determined by |η| 6= 0, we can conformally change the metric

as follows, g̃ = |η|g. Recall that the Hodge-star operator is by α ∧ ∗β = 〈α, β〉 dV .

Therefore, acting on 2-forms it is conformally invariant, ∗̃ = ∗, which implies that η

is self-dual and Hodge-harmonic with respect to g̃ as well. Thus, from the Böchner

formula we still have ∆̃η = 1
3
s̃cal. Since |η|g̃ ≡ 1, we can compute

0 = ∆̃|η|2g̃ = |∇η|2g̃ +
〈
η, ∆̃η

〉
g̃

= |∇η|2g̃ +
1

3
s̃cal,

whence, s̃cal ≤ 0. From [Bes08, Theorem 1.159], we have the following expression for
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the scalar curvature after the conformal change of the metric

s̃cal = |η|−1

(
scal − 3

|η|∆|η| − |∇|η||2

|η|2
− 3

2

|∇|η||2

|η|2

)
.

Now we can use the identity (A.7), |η|∆|η| = |∇η|2 − |∇|η||2 + 1
3
scal|η|2, to obtain

0 ≥ s̃cal = 3
3
2
|∇|η||2 − |∇η|2

|η|3
,

which implies 3
2
|∇|η||2 ≤ |∇η|2.

Once we have the improved Kato inequality, we can easily derive an elliptic in-

equality with fractional exponents.

Lemma 3.24. Assume η is a Hodge-harmonic self-dual 2-form on an anti-self-dual

4-manifold. Then we have

∆|η|
1
2 ≥ −1

6
|scal||η|

1
2 . (3.23)

Proof. It is a straightforward computation

∆|η|
1
2 = −1

4
|η|−

3
2 |∇|η||2 +

1

2
|η|−

1
2 ∆|η|

= −1

4
|η|−

3
2 |∇|η||2 +

1

2
|η|−

3
2

(
|∇η|2 − |∇|η||2 +

1

3
scal|η|2

)
=

1

2
|η|−

3
2

(
|∇η|2 − 3

2
|∇|η||2

)
+

1

6
scal|η|

1
2

≥ −1

6
|scal||η|

1
2 ,

where we used the identity (A.7), |η|∆|η|+ |∇|η||2 = |∇η|2 + 〈η,∆η〉, on the second

line.

As outlined above, we can combine this inequality with Sibner’s lemma to perform

integration by parts even in the presence of isolated singularities.
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Proof of Proposition 1.6. On the regular part of the orbifold, the Hodge-harmonic

self-dual 2-form η satisfies the equation, ∆η = scal
3
η. In particular, the improved

inequality (3.23) still holds. Then we can use Siebner’s lemma to carry out the usual

Moser iteration process (cf. Lemma 1.10), we only need to be careful about the

integration by parts. Let φ be a cutoff function with 0 ≤ φ ≤ 1 and supported in

some Br(x). The local Sobolev inequality still holds for orbifolds [Nak93, Far01], so

we have

CS

(ˆ
φ4 |η|2p

) 1
2

≤ 2

ˆ
|∇φ|2 |η|p + 2

ˆ
φ2
∣∣∣∇|η| p2 ∣∣∣2 .

Since we have ∆|η| 12 ≥ −1
6
|scal||η| 12 and p > 1, Sibner’s Lemma 3.22 implies

2

ˆ
φ2
∣∣∣∇|η| p2 ∣∣∣2 ≤ C

ˆ
|∇φ|2 |η|p ,

as long as
´
Br(x)

|scal|2 < ε0. By volume comparison for orbifolds [Bor92], there is

some constant V0(X, g) > 0 such that Vol(Bs(x)) ≤ V0s
4 for all s > 0. Therefore we

can choose r < r0(X, g) so that the condition
´
Br(x)

|scal|2 < ε0 is always satisfied.

Then we have the inequality(ˆ
φ4 |η|2p

) 1
2

≤ C(X, g)

ˆ
|∇φ|2 |η|p ,

and the rest of the argument in Lemma 1.10 can be followed without change to obtain

sup
B r

2
(x)

|η| ≤ Cr−2

(ˆ
Br(x)

|η|2
) 1

2

,

even in the presence of singularities. Hence, since we can cover X with geodesic balls

of radius r0, there is some constant C = C(X, g) such that

sup
X
|η| ≤ C ‖η‖L2(X) .
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Let S = {si}Ni=1 denote the singular set of X and let Sr = {x ∈ X : dist(x, S) < r}.

Since the singularities are finite and isolated, we can choose r > 0 small enough so

that Sr is a disjoint union of geodesic balls, Sr =
⊔N
i=1Br(si). For the next step we

choose a cutoff function, φ, with 0 ≤ φ ≤ 1 and such that φ |Sr ≡ 0, φ
∣∣
X\S2r ≡ 1 and

|∇φ| ≤ 24r−1 on the transition region. Integrating by parts

ˆ
X\Sr

φ2|∇η|2 = −2

ˆ
X\Sr

φ 〈tr(∇φ⊗∇η), η〉 − 1

3

ˆ
X\Sr

φ2scal|η|2,

so rearranging and using Cauchy’s inequality, we obtain

ˆ
X\Sr

(
1

2
φ2|∇η|2 +

1

3
φ2scal|η|2

)
≤ 2

ˆ
X\Sr

|∇φ|2|η|2. (3.24)

Therefore, since scal ≥ 0 and we have a bound for supX |η|, it follows that

ˆ
X\S2r

|∇η|2 ≤
ˆ
X\S2r

(
|∇η|2 + scal|η|2

)
≤ 24

r2

N∑
i=1

ˆ
Ar,2r(si)

|η|2

≤ C ‖η‖L2(X) Nr
2,

where we also used volume comparison for orbifolds. Now, for each singularity we

choose ψ to be a cutoff function supported in B4r(si) with 0 ≤ ψ ≤ 1 and such that

ψ
∣∣
B2r(si) ≡ 1 and |∇ψ| ≤ 1

2
r−1 on the transition region. Note that, choosing r smaller

if necessary, we can assume that B4r(si) are also disjoint. We can use the bound for

supX |η| and Lemma 3.22 to obtain

ˆ
B4r(si)

ψ2|∇η|2 ≤ C

ˆ
B4r(si)

|∇ψ|2|η|2 ≤ C ‖η‖L2(X) r
2,

provided that
´
Br(si)

|scal|2 < ε0, which will hold for small enough r as argued before.
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Hence, combining the last two estimates yields

ˆ
X

|∇η|2 ≤ C ‖η‖L2(X) r
2,

for all sufficiently small r > 0. Letting r → 0, we obtain that ∇η ≡ 0. In particular,

passing to a local orbifold cover of any singular point, η can be trivially extended.

Now suppose that η 6≡ 0, which means that |η| is a non-zero constant everywhere.

Thus, the inequality (3.24) above implies

ˆ
X\S2r

scal ≤ C (N, (X, g), |η|) r2.

On the other hand

ˆ
S2r

scal ≤
N∑
i=1

ˆ
B2r(si)

scal ≤ C
(

max
X

scal
)
r4,

and we conclude that
´
X
scal ≤ Cr2 → 0 as r → 0. Since scal ≥ 0, it follows that

scal ≡ 0.
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Appendix A

The purpose of this appendix is to prove some elementary results that might be

unfamiliar to the uninitiated reader. We include several useful identities; elliptic

equations for ∇mRm, ∇mRic and ∇mη; a lemma regarding the relation between

the Weyl tensor and the Hodge-star; and, finally, a lemma about how the Sobolev

constant provides control on the lower volume growth of small geodesic balls.

Some useful identities

Lemma A.1 (Divergence formulas). Let (M, g) be a Riemannian n-manifold. Then

we have the following divergence formulas.

Rijkl,i = Rjk,l −Rjl,k, (A.1)

Rkm,k =
1

2
scal,m, (A.2)

Wijkl,i = (n− 3) (Sjk,l − Sjl,k) , (A.3)

where S = 1
n−2

(
Ric− scal

2(n−1)
g
)

is the Schouten tensor.
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Proof. Recall the 2nd Bianchi identity

Rijkl,m +Rijlm,k +Rijmk,l = 0, (A.4)

which readily implies (A.1)

Rijkl,i = −Rijik,l −Rijli,k = Rjk,l −Rjl,k.

Tracing (A.1) with respect to the indeces j and k, we obtain (A.2)

Ril,i = scal,l −Rjl,j.

Finally, we use the Schouten tensor to rewrite the curvature decomposition (1.9)

Rm = W +
1

n− 2
R
◦
ıc? g +

scal

2n(n− 1)
g ? g

= W +
1

n− 2
Ric? g − scal

2(n− 1)(n− 2)
g ? g

= W + S ? g,

(A.5)

where we used R
◦
ıc = Ric− scal

n
g. In coordinate form, we have

Wijkl = Rijkl − (Sjkgil + Silgjk − Sikgjl − Sjlgik)

so using (A.1) we obtain

Wijkl,i = Rjk,l −Rjl,k − (Sjk,l + Sil,igjk − Sik,igjl − Sjl,k)

= (n− 3) (Sjk,l − Sjl,k) +
scal,l

2(n− 1)
gjk −

scal,k
2(n− 1)

gjl − (Sil,igjk − Sik,igjl) ,

where we used Ric = (n − 2)S + scal
2(n−1)

g. Now, (A.2) implies that Sil,i =
scal,l

2(n−1)
so

(A.3) follows trivially.
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Lemma A.2 (Kato’s inequality). Let T be any tensor defined on any Riemannian

manifold, (M, g). Then we have

|∇ |T || ≤ |∇T | , (A.6)

which holds point-wise wherever |T | 6= 0.

Proof. By Cauchy-Schwarz, we have

∣∣∇ |T |2∣∣ = |2 〈T,∇T 〉| ≤ 2 |T | |∇T | .

On the other hand,
∣∣∇ |T |2∣∣ = 2 |T | |∇ |T ||, so it follows that

|T | |∇ |T || ≤ |T | |∇T | ,

which implies (A.6) wherever |T | 6= 0.

From this inequality we can derive a couple other identities.

Lemma A.3. Let T be any tensor on any Riemannian n-manifold, (M, g). Then we

have

|T |∆ |T |+ |∇ |T ||2 = 〈T,∆T 〉+ |∇T |2 , (A.7)

and

|T |∆ |T | ≥ 〈T,∆T 〉. (A.8)

Proof. We can compute ∆ |T |2 as follows

∆ |T |2 = ∆ (|T | |T |) = 2 |T |∆ |T |+ 2 |∇ |T ||2 ,
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and we also have

∆ |T |2 = ∆〈T, T 〉 = 2〈T,∆T 〉+ 2 |∇T |2 .

This implies (A.7). Then (A.8) follows using Kato’s inequality (A.6)

|T |∆ |T | = 〈T,∆T 〉+ |∇T |2 − |∇ |T ||2 ≥ 〈T,∆T 〉.

Equations for ∇mRm, ∇mRic and ∇mη

First we need some formulas to commute covariant derivatives.

Lemma A.4 (Commutator formulas). Let (M, g) be a smooth Riemannian manifold

and suppose T is a (p, q)-tensor. Then we have the Ricci identities to commute

covariant derivatives

T j1...jp i1...iq ,kl − T j1...jp i1...iq ,lk =Rklmi1T
j1...jp

m...iq + · · ·+RklmiqT
j1...jp

i1...m

−Rklmj1T
m...jp

i1...iq − · · · −RklmjpT
j1...m

i1...iq .

(A.9)

In short hand notation, [∇k,∇l]T = Rm ∗ T .

Proof. This is a straightforward computation. Given a tensor T , the Riemannian

curvature tensor acts on T as follows

R(X, Y )T = ∇X∇Y T −∇Y∇XT −∇[X,Y ]T,

which we can write in coordinates and unravel to obtain (A.9).

We have the basic elliptic equations for Rm and Ric.
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Lemma A.5. Let (M, g) be a smooth Riemannian manifold. Then we have

∆Rm = Rm ∗Rm+ L(∇2Ric),

and

∆Rm = Rm ∗Ric+ L(∇2scal).

Proof. We use the second Bianchi identity, (A.4), to compute in coordinates

Rijkl,mm = −Rijlm,km −Rijmk,lm = −Rlmij,km −Rmkij,lm

= −Rmlij,mk −Rkmij,ml +Rm ∗Rm

= Rmljm,ik +Rmlmi,jk +Rkmjm,il +Rkmmi,jl +Rm ∗Rm

= Rlj,ik −Rli,jk −Rkj,il +Rki,jl +Rm ∗Rm,

where on the second line we used, Rijkl,mn − Rijkl,nm = Rm ∗ Rm. The equation for

Ric is already proved in Section 1.3.2.

Now we can use induction on the order of the covariant derivative.

Lemma A.6. Let (M, g) be a smooth Riemannian manifold. Then we have

∆ (∇mRm) =
m∑
k=0

∇kRm ∗ ∇m−kRm+ Lm
(
∇m+2Ric

)
, (A.10)

and

∆ (∇mRic) =
m∑
k=0

∇kRm ∗ ∇m−kRic+ Lm
(
∇m+2scal

)
. (A.11)

Proof. We argue by induction. The case m = 0 is exactly the content of Lemma A.5.

So suppose that the equation (A.10) is satisfied up to order m− 1. Using (A.9) twice
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and the induction hypothesis, we can compute

∆ (∇mRm) = ∇
(
∆∇m−1Rm

)
+∇

(
Rm ∗ ∇m−1Rm

)
+Rm ∗ ∇mRm

= ∇

(
m−1∑
k=0

∇kRm ∗ ∇m−1−kRm+ Lm−1

(
∇m−1Ric

))

+∇
(
Rm ∗ ∇m−1Rm

)
+Rm ∗ ∇mRm

=
m∑
k=0

∇kRm ∗ ∇m−kRm+ Lm
(
∇m+2Ric

)
.

The proof for the equation for ∇mRic is exactly the same.

Simlarly, we have elliptic equations for Hodge-harmonic self-dual 2-forms and their

covariant derivatives.

Lemma A.7. Suppose η is a Hodge-harmonic self-dual 2-form on a 4-dimensional

anti-self-dual 4-manifold. Given any integer m ≥ 0, we have the following equation

∆ (∇mη) =
m∑
k=0

∇kRm ∗ ∇m−kη.

Proof. If m = 0, this equation is a consequence of the Böchner forumula as it was

explained in the discussion surrounding (3.2). We argue by induction for the general

case. Using the commutator formulas (A.9) twice and the induction hypothesis, we

obtain

∆ (∇mη) = ∇
(
∆
(
∇m−1η

))
+Rm ∗ ∇mη +∇

(
Rm ∗ ∇m−1η

)
= ∇

(
m−1∑
k=0

∇kRm ∗ ∇m−1−kη

)
+Rm ∗ ∇mη +∇

(
Rm ∗ ∇m−1η

)
=

m∑
k=0

∇kRm ∗ ∇m−kη,

as desired.
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Two lemmas

Here we prove the lemma that allow us to decompose the Weyl curvature into self-dual

and anti-self-dual parts, W = W+ +W−.

Lemma A.8 (W and Hodge-∗ commute). Let (M, g) be a 4-manifold. Then, as

operators acting on 2-forms, the Weyl tensor, W , and the Hodge-star operator, ∗,

commute with each other. In particular, we have W (Λ±) ⊂ Λ±.

Proof. Recall the decomposition of 2-forms, Λ = Λ+⊕Λ−. This implies that given any

2-form ω, we can write it as, ω = ω+ +ω−, where ω± ∈ Λ±. By linearity, it is enough

to work with a basis of (anti)-self-dual 2-forms. If {e1, . . . , e4} is an orthonormal basis

of covectors, one can check that

{e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e4} ,

is an orthogonal basis for Λ+. Flipping the signs we obtain an orthogonal basis for

Λ−. Here we do the computations for e1 ∧ e2 + e3 ∧ e4, but the rest are analogous.

By self-duality we have

W ∗ (e1 ∧ e2 + e3 ∧ e4) = W (e1 ∧ e2 + e3 ∧ e4).

Recall that the Weyl tensor acts on 2-forms as follows, W (ω)ij = 1
2
Wklijωkl. From

this coordinate expression we obtain

W (e1 ∧ e2 + e3 ∧ e4) = (W1212 +W3412)e1 ∧ e2 + (W1213 +W3413)e1 ∧ e3

+ (W1214 +W3414)e1 ∧ e4 + (W1223 +W3423)e2 ∧ e3

+ (W1224 +W3424)e2 ∧ e4 + (W1234 +W3434)e3 ∧ e4.
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On the other hand

∗W (e1 ∧ e2 + e3 ∧ e4) = (W1212 +W3412)e3 ∧ e4 − (W1213 +W3413)e2 ∧ e4

+ (W1214 +W3414)e2 ∧ e3 + (W1223 +W3423)e1 ∧ e4

− (W1224 +W3424)e1 ∧ e3 + (W1234 +W3434)e1 ∧ e2,

and we only need to check that these last two expressions are the same. We can do

this using the symmetries of W and the fact that it is traceless. For example, looking

at the terms with e1 ∧ e2, we need

W1212 +W3412 = W1234 +W3434,

which is equivalent to W1212 = W3434. Since W is traceless, we have

0 = gijW1i1j = W1212 +W1313 +W1414,

and also

0 = gijWi2j2 = W1212 +W3232 +W4242.

Adding them together we obtain, 2W1212 = −W1313−W1414−W3232−W4242. Similarly,

tracing gijW3i3j and gijWi4j4, we obtain

2W3434 = −W3131 −W3232 −W1414 −W2424.

Now, using the curvature symmetries of W , we can swap indices to obtain

2W1212 = −W1313 −W1414 −W3232 −W4242 = 2W3434,

as we wanted. The rest of components can be computed in a similar fashion.
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The last lemma gives a lower volume growth for small geodesic balls in terms of

the local Sobolev constant.

Lemma A.9. Let (M, g) be a Riemannian 4-manifold and suppose that CS(Br(x)) ≥

CS > 0. Then there is a constant v0 = v0(CS) > 0 such that

Vol (Br(x)) ≥ v0r
4.

Proof. It is standard that the local Sobolev constant is equivalent to the following

isoperimetric constant [Li12, Theorem 9.5]

I(B) = inf
Ω⊂B

∂Ω∩∂B=∅

|∂Ω|
|Ω|

3
4

.

Therefore, for any geodesic ball, Bs(x), with s < r, we have |∂Bs(x)|
|Bs(x)|

3
4
≥ C(CS). Now

we can integrate this inequality with respect to s

C(CS)r ≤
ˆ r

0

|∂Bs(x)|
|Bs(x)|

3
4

ds = Vol (Br(x))
1
4 ,

and the result follows.
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