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Abstract 

New noncentrosymmetric double borate Rb3EuB6O12 was synthesized by solid state reaction 

method, and their crystallographic parameters were obtained by Rietveld analysis. This borate 

crystallizes in the trigonal space group R32 with cell parameters of a = 13.4604(2) Å, c = 

30.7981(5) Å, Z = 15. Their structure features a three-dimensional framework composed of 

[B5O10]
5- groups that are bridged by Eu-O polyhedra. The existence of B5O10 group in the 

structure was confirmed by vibrational spectroscopy. Rb3EuB6O12 melts incongruently at 1101 

K. The second harmonic generation effect of Rb3EuB6O12 is 16 times higher than that of α-quartz 

standard. In the luminescence spectrum, the domination of a single prominent narrow line from 

hypersensitive 5D0 - 7F2 manifold of Eu3+ ions is observed, while 5D0 - 7F1 manifold and 

ultranarrow 5D0 - 7F0 line are of comparable peak intensity. These features are explained by 

specific local symmetry of Eu ion within the crystal structure of Rb3EuB6O12.. 
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1. Introduction 

During last decades, borate crystals are extensively studied mainly in connection with 

valuable properties of several nonlinear optical (NLO) borate crystals discovered in the past. 

Among the most attractive features of borate crystals such key characteristics as their 

transparency in deep UV range, high optical damage threshold combined with appropriate 

nonlinearity, and suitable chemical stability of optical surface should be pointed, and they define 

wide applications of borate materials in modern laser optics and nanophotonics [1-11]. Within 

borate matrices, boron ions can be either three- or four-fold coordinated, and the combination of 

BO4 and BO3 units produces large variety of crystal structures with differing properties [12-15]. 

In recent years, many complex borate crystals were discovered and evaluated in searching for 

new efficient polyfunctional materials for nonlinear optics and photonics [16-23]. 

One of extensively studying trends concerning borates' crystals is doping them with rare 

earth ions producing either phosphors or lasing crystals with the possibility of simultaneous 

frequency doubling of generated radiation within the same crystal. Such noncentrosymmetric 

(NCS) borates as YAl3(BO3)4 (YAB) [24] Ca4RO(BO3)3 (R = rare earth of Y) [25] and 

Na3La9O3(BO3)8 [26] are known as self-frequency doubling (SFD) materials when doped with 

Nd. YAl3(BO3)3 doped with Mn4+ or pair Yb3+/Tm3+ is prospective as efficient phosphor material 

[27,28]. Femtosecond pulse generation was carried out in Ca3Gd2(BO3)4:Nd3+ crystal [29]. 

However, within M2O–RE2O3–B2O3 (M = alkali metal, RE = rare earth) systems, only several 

NCS crystalline media have been found up to date, namely Na3La2(BO3)3 [30], Rb3Y2B3O9 [31] 

Na3La9O3(BO3)8 [32], K3REB6O12 (RE = Y, Eu, Tb, Lu) [33-36] and Rb3NdB6O12 [37]. It is 

worth noting that K3REB6O12 (RE = Y, Eu, Tb, Lu) and Rb3NdB6O12 are related to the same 

structure type, and they crystallize in the trigonal space group R32 and exhibit noticeable SHG 

signal. The UV cut-off edge of K3YB6O12 and Rb3NdB6O12 is reported to be at 195-197 nm 

[33,37]. These findings indicate that the M2O–RE2O3–B2O3 ternary systems are complex 

enough, and other NCS borate crystals transparent in UV range can be formed. In the present 



study, we employ larger alkali ions since they could have stronger polarizability and, hence, 

stronger overall NLO response can be expected. The structural and optical properties of 

Rb3Y2B3O9 are not investigated up to date. Recently, we reported the properties of new 

noncentrosymmetric borate crystal, Rb3NdB6O12 [37], which is featured by unusual blue shift if 

luminescent lines with respect to traditional laser materials. This shift is larger than that in other 

borate family, namely, huntites, and it is close to that observed in fluorides. The observed 

peculiarity must be ascribed to specific influence of the current boron-based framework 

structure. Respectively, it is interesting to examine the properties of other rare earth ions in the 

same structure. In the present study, the synthesis of new crystal Rb3EuB6O12 is performed, its 

structural and vibrational characteristics are investigated, and luminescent properties of Eu3+ ion 

in this new borate structure are studied. 

 

2. Experimental 

The samples were prepared by solid state reactions using high-purity starting reagents (Red 

Chemist, Ltd., Russia): Rb2CO3 (99.9%), RE2O3 (RE = Eu) (99.99%), and H3BO3 (99.99%). 

Before weighing, Rb2CO3 was preheated at 900°C for 24 h to remove any absorbed water. The 

reagents were weighed on an analytical balance with an accuracy of 0.5 mg. The mixtures of 

Rb2CO3, RE2O3, and H3BO3 in stoichiometric proportions were thoroughly ground in an agate 

mortar, slowly heated in a muffle furnace to 500°C at the rate of 1°C/min and held at this 

temperature for 24 h. Then, the samples were reground and annealed at 700–750°C for 24–72 h 

until equilibrium is reached. Temperatures were measured with a Pt–PtRh thermocouple. The 

temperature was controlled to be within ±2°C up to 1200°C with a OMRON controller. The 

equilibrium was specified when two successive heat treatments result in the identical X-ray 

patterns.  

The powder X-ray diffraction data were recorded by a D8 ADVANCE Bruker AXS 

diffractometer (Vantec-1 detector) at room temperature using CuKα radiation and scanning over 



the range of 2θ=8-100°. The step size of 2θ was 0.021° and the counting time was 10 s per step. 

The Rietveld refinement was implemented using TOPAS 4.2 [38]. Almost all peaks were 

indexed by a trigonal cell (space group R32) with the parameters close to those of K3YB6O12 

[33].   

Differential scanning calorimetric (DSC) measurements were performed on a STA 449  F1 

Jupiter thermoanalyzer (NETZSCH) over the temperature range of 30–900°C in argon flow. Pt 

crucibles were used as vessels. Pt–PtRh thermocouples were used for measurement. The 

precision of temperature measurement was ±1°C. The heating and cooling rates were 10°C/min. 

The second harmonic generation (SHG) response of powder samples was measured with a Q-

switched YAG:Nd laser at λω=1064 nm, in the reflection mode. The SHG signal intensities (I2ω) 

from the sample and from the reference sample (polycrystalline α-SiO2) were registered 

comparatively. Infrared (IR) spectra were carried out to specify the boron coordination in the 

new compounds. The mid-infrared spectra were obtained at room temperature using a Nicolet-

380 infrared spectrophotometer with KBr pellets as standards. The spectra were obtained in the 

range from 500 to 2000 cm−1 with the resolution of 1 cm−1. 

 

3. Results and discussions 

The synthesized product was a free-flowing powder. Examination of the XRD pattern of the 

synthesized compound revealed close similarity to that of K3YB6O12. Therefore, an initial 

structure model and atomic positions of K3YB6O12 were adopted for the structure refinement. 

Rb3EuB6O12 crystallizes in the noncentrosymmetric space group R32, as it was supported by 

SHG measurements. The intensity of the green light (λ = 532 nm) produced by Rb3EuB6O12 is 

about 16 of that produced by the α-quartz standard. The intensity of SHG effect is similar to that 

of K3YB6O12 [33]. Weak SHG effect of Rb3EuB6O12 and K3YB6O12 is due to the B5O10 groups 

which are aligned in the almost opposite directions and, consequently, contribute little to the 

SHG effect.  



The refinement results and atomic coordinates obtained for Rb3EuB6O12 are summarized in 

Tables 1, 2 and the final Rietveld profiles are shown in Fig. 1. The Rb3EuB6O12 structure contain 

a three-dimensional framework composed of [B5O10]
5- groups bridged by Eu-O polyhedra (Fig. 

2). The [B5O10]
5- group consists of one BO4 tetrahedron and four BO3 triangles that form double 

B-O rings via the common tetrahedron (Fig. 2). Each [B5O10]
5− group is linked to four different 

Eu-O polyhedra and likewise each Eu-O polyhedra is connected to four neighboring [B5O10]
5− 

groups. The Eu-O polyhedra are formed by the face-sharing linked EuO6 octahedra. Rubidium 

cations are located in large cavities of the framework structure (Fig. 2). The main bond lengths 

obtained for Rb3EuB6O12 are listed in Table 1S, and one can see good agreement of refined 

values with those reported for the structures containing similar [B5O10]
5− units [12].  

The dependence of unit cell volume on the element combination in M3REB6O12 (M = alkaline 

metals; RE = Y, rare earth metals) crystal family is shown in Fig. 3 [33-37,39]. It should be 

noted that all compounds besides K3TbB6O12 have space group R32 and similar cell parameters. 

The K3(Tb, Lu, Eu)B6O12 compounds have R32 space group which is non-standard and, 

moreover, cell parameter c is two times smaller in comparison with other compounds [34-36]. 

The small cell volume of K3(Tb, Lu, Eu)B6O12 leads to (Tb, Lu, Eu)/K disordering which seems 

to be not reasonable. As it appears, these structures should be reinvestigated in future in order to 

understand the difference. For the analysis shown in Fig. 3, the c parameters and unit cell 

volumes reported for K3(Tb, Lu, Eu)B6O12 were doubled to uniform the space group R32 for 

M3REB6O12 crystals. Then, as it is seen from Fig. 3, cell volume increases with IR(M) and 

IR(RE) increase and the curves for Rb and K are practically parallel. In the first approximation, 

we can write V = A×IR(RE) + B×IR(M) + C, where A, B, C are some constants. The least-square 

method was used to estimate A, B, C using the known data about cell volumes of all known 

compounds and ions radii of constituted elements [33-37,39]. It was found that general formula 

V = 2222.0×IR(RE) + 1212.6×IR(M) + 904.7 Å3 fits very well the cell volumes of all known 

compounds, including Rb3EuB6O12 (Fig. 3). It is interesting that A = 2222.0 is almost two times 



bigger than B = 1212.6, and this means that the cell volume variation is dominated by changing 

of IR(RE). Moreover, the similar analysis for cell parameter variation reveals the relations a = 

1.12617×IR(RE) + 1.51834×IR(M) + 10.10377 Å and c = 9.05935×IR(RE) + 0.91584×IR(M) + 

20.86787 Å. The equation for c cell parameter showed that M cation is of low influence on c 

parameter value, but RE provides ten times bigger effect. In the M3REB6O12 structure, this effect 

can be associated with the column of three (RE)O6 octahedra linked by faces which goes along 

c-axis. Probably, increasing of RE ion radii cannot be compensated by other ion moving and this 

leads to strong c-axis stretching. 

Using the diagram shown in Fig. 3, some predictions are possible for discovery of new NCS 

borates with the K3YB6O12 structure. The existence of compounds (RE = Yb, Tm, Er, Ho, Dy, 

Gd) and Rb3REB6O12 (RE = Pm, Sm) seems to be evident. Besides, the formation of solid 

solutions (K,Rb)3REB6O12 may be reasonably supposed for many RE. The situation with M = 

Na, Cs is less clear. However, the existence of solid solutions (Na,Rb)3REB6O12 with averaged 

IR(Na,Rb) close to that of IR(K) is expected with high probability. Above this, the existence of 

solid solutions (Na,K)3REB6O12 with partial substitution of Na for K can not be excluded at 

Na/K ratios when the impact of averaged IR(Na,K) on the structural parameters is not strong. 

The synthesized powder Rb3EuB6O12 possesses light-cream tint, as evident in Fig. 4, that is a 

common characteristic of Eu-containing oxides [40-42]. Typical SEM image of the particle is 

shown in Fig. 5. Under the selected technological conditions, synthesis resulted in the 

agglomerates 5-20 m in size formed by strongly coalescent individual grains with diameter 

below 1 m. This micromorphology is common in oxides when temperature/time conditions 

used for the solid state reaction are high enough for the active grain interdiffusion 

[16,34,37,43,44]. It should be pointed that the Rb3EuB6O12 particles possessed strong charging 

effect during SEM measurements and this verifies their very low conductivity common for the 

oxides without oxygen vacancies. 



The recorded DSC curve is shown in Fig. 6. Only sharp endothermic peak associated with 

melting at 1101 K was observed for Rb3EuB6O12. The powder XRD pattern measured for the 

sample obtained by the melt solidification is shown in Fig. 1S. Among of the crystalline 

residues, the presence of Rb2(B4O5OH)4)(H2O)3.6 (PDF 70-4576), EuBO3 (PDF 74-1931), B2O3 

(73-1550) was revealed [45-47]. As it is assumed, the Rb2(B4O5OH)4)(H2O)3.6 compound  

appeared due to chemical interaction with the air during cooling because of high hygroscopicity 

of the decomposition products. Besides the crystalline compounds, amorphous component is 

significant. Thus, it can be concluded that Rb3EuB6O12 melts incongruently. The thermal 

parameters available presently for the M3REB6O12 borates are summarized in Table 3. 

Regrettably, for K3REB6O12 compounds, the melting point was earlier measured only for 

K3YB6O12. For other K3REB6O12 borates, however, the melting points can be estimated on the 

base of temperature used for solid state synthesis. From the comparison of available 

experimental data, it can be reasonably assumed that melting points of K3REB6O12 borates are 

noticeably higher than those of Rb3REB6O12 borates. 

Raman spectrum obtained from Rb3EuB6O12 is shown in Fig. 7. According to the XRD data, 

the main structural unit of Rb3EuB6O12 is so called pentaborate group [B5O10]
5– [48], which 

consists of one BO4 tetrahedron and four BO3 triangles (Fig. 2). The ν1, ν3, and ν4 normal 

vibration modes of planar BO3 triangles are Raman-active and ν2, ν3, and ν4 are infrared-active; 

all four normal vibrations of tetrahedral BO4 groups are Raman-active, whereas only ν3 and ν4 

are infrared-active [49]. The total set of vibrational modes in Rb3EuB6O12 is summarized in 

Table 4. In Fig. 7, for comparison, the Raman frequencies of pentaborate ion in potassium 

pentaborate tetrahydrate single crystal are shown by black vertical lines [50]. 

The antisymmetric stretching of BO3 triangles of pentaborate group observed in the range 

of 1300–1700 cm–1 in Raman spectra (Fig. 7) and in the range of 1100–1600 cm–1 in IR spectra 

(Fig. 8). Intensity of these bands are greater in Infrared than in Raman spectra [50]. This region 

could be also covered by the contribution from Eu3+ 5D1 → 7F2 luminescence [41], however the 



presence of similar band in Raman spectrum of Rb3NdB6O12 indicates its origin both from 

boron-oxygen network of Rb3EuB6O12 crystal and from Eu luminescence. The only unexplained 

lines are narrow doublet at 1290 and 1310 cm–1 that is present in Raman spectrum of 

Rb3EuB6O12 but absent in Rb3NdB6O12. Strong Raman bands for boron compounds in this region 

are not known. Therefore, we must ascribe it to the component of Eu luminescence that 

experienced red shift by 100 cm–1 in the borate under study with respect to europium molybdate. 

However, this suggestion needs additional study. Symmetric stretching of BO3 triangles can be 

found at 875–1000 cm–1 in Raman [49, 51] and at 850–975 cm–1 in Infrared spectra. 

An asymmetric stretching of BO4 should be observed in Raman spectra in the range of 

1000–1150 cm–1, however, intensity of these bands are very weak [50], in the case of Infrared 

spectra these vibrations are clearly observed at 975–1100 cm–1. Raman bands in the region of 

725–800 cm–1 are symmetric stretching of BO4 and strong line at 756 cm–1 can be used as an 

indicator of the pentaborate group presence [52]. Symmetric stretching of BO4 in the range of 

750–810 cm–1 can be found in Infrared spectra. 

The in-plane bending of BO3 groups situated in the region of 575–650 cm–1 in Raman 

spectra and at 550–625 cm–1 in Infrared spectra. The out-of-plane of BO3 bending should be 

inactive in Raman and can be found at 650–750 cm–1 in Infrared spectra. 

Raman bands in the region of 575–650 cm–1 in Raman spectra and spectral region of 550 

– 625 cm–1 of IR are related to the ν4 bending modes of BO4. Strong peak at 530 cm–1 is a so-

called symmetric pulse vibration of pentaborate anion [53]. Medium bands in the region of 375–

500 are ν2 bending modes of BO4 groups. 

Except for B5O10 vibrations, Raman spectrum of Rb3EuB6O12 must contain external 

vibrations involving the movement of heavy constituents (Eu and Rb) of crystal lattice. These 

vibrations are present in Raman spectrum as the bands observed below 150 cm−1. Rotational and 

translational modes of [B5O10]
5- ion as the whole are positioned in the same frequency range, 

bending modes are in the range of 200 – 375 cm–1. 



Fig. 9 depicts the luminescence spectrum of Rb3EuB6O12 excited at 514.5 nm. The infrared 

part of the spectrum is multiplied by 400 to enhance visibility of longer-wavelength Eu3+ 

luminescent multiplets. All seven 5D0 - 
7FJ bands are present in this spectrum. Noticeable feature 

of this spectrum is the prominent ultranarrow line corresponding to 5D0 - 7F0 transition. 

Comparison of this line with the same line in recently studied europium molybdate [41] is 

presented in Fig. 2S. The position of the ultranarrow line in the Rb3EuB6O12 borate is at 579.8 

nm and its width is 5 cm-1 (FWHM), while in -Eu2(MoO4)3 it is at 580.4 nm with the width 2 

cm-1. As one can extract from the structural results, Eu ions occupy three inequivalent sites 

within the unit cell of Rb3EuB6O12 crystal. Two of them are featured by C3 local symmetry of 

Eu3+ ion while the third one possesses D3 local symmetry. The selection rules allow 5D0 - 
7F0 

transition only in case of symmetry as low as C3 but not in case of D3. Therefore, observed 

ultranarrow line must be ascribed to the first two sites with the required symmetry.  

In most crystals and glasses containing Eu3+ ions, the hypersensitive 5D0 - 
7F2 transition is 

typically the most intense since its oscillator strength is due to the lack of inversion symmetry, 

and such environment of Eu3+ ion is rather common. This is the case of our borate, too. 

However, comparing the spectra of Rb3EuB6O12 and earlier studied -Eu2(MoO4)3, we see that 

the intensity of ultranarrow line with respect to hypersensitive band is much higher in borate than 

in molybdate. To reveal the nature of this feature we recorded the luminescence spectra of equal 

amounts of both materials at the same spectrometer settings, in order to enable approximate 

comparison of  the intensities of lines (difference in the Eu content and in the absorption cross 

sections was not accounted for). The intensity of hypersensitive band is 43.7 times smaller in 

borate than in molybdate while the intensity of ultranarrow line is only 2.1 times smaller. Since 

both emissions originate from the same starting level, we can deduce that breaking of the central 

inversion of local environment of all three inequivalent Eu sites in Rb3EuB6O12 leads to smaller 

oscillator strength gain of hypersensitive transition than the breaking of the mirror symmetry in 

C3 sites, with respect to the same symmetry violations in a single C1 site of Eu in -Eu2(MoO4)3.  



Another interesting feature of borate Rb3EuB6O12 is the shape of hypersensitive 5D0 - 7F2 

transition band which is dominated by a single narrow peak at 611 nm, as shown in Fig. 9, This 

feature is, in principle, favorable for obtaining lasing at this transition since amplification cross 

section is not smeared over wide spectral region but it is concentrated in the vicinity of peaking 

wavelength (Fig. 3S). However, due to the above-described fact that concentration quenching in 

Rb3EuB6O1 is stronger than in -Eu2(MoO4)3, the use of lower Eu content must be 

recommended, e.g. by diluting Eu3+ with Gd3+ which possesses closest ionic radius.  

 

4. Conclusions 

In the K3YB6O12 borate family, new noncentrosymmetric Rb-containing borates 

Rb3REB6O12 (RE = Nd, Eu) are discovered and this greatly extends the nomenclature of the 

noncentrosymmetric borate crystals available in this family. As it is clear, this borate family 

covers a wide range of RE elements, including those appropriate for laser and photonic 

applications. Thus, more wide and deep investigation of the compounds related to the 

M3REB6O12 (M = alkaline metals; RE = Y, rare earth metals) crystal family is topical, including 

search for new compounds and solid solution, development of the crystal growth methods, the 

observation of piezoelectric and luminescence characteristics. This opens the door for the 

estimation of the potential of this borate family for practical applications. Luminescence 

properties of Eu ion in conjunction with nonlinear properties of the matrix indicate that Eu-

activated crystals of the Rb3REB6O12family (here RE = Gd, La and probably Y and Lu) are good 

candidates for self-doubling Eu-lasing media.  
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Table 1. Crystallographic data obtained for Rb3EuB6O12 phase at room temperature 

 

Compound Rb3EuB6O12 

Sp. Gr. R32 

a, Å 13.4732 (2) 

c, Å 30.8424 (6) 

V, Å3 4848.6 (2) 

Z 3 

2θ-interval, º 5-100 

No. of reflections 658 

No. of refined parameters 98 

Rwp, % 2.26 

Rp, % 1.63 

Rexp, % 0.62 

χ2 3.66 

RB, % 1.07 



Table 2. Fractional atomic coordinates and isotropic displacement parameters (Å2) of 

Rb3EuB6O12  

 x y z Biso 

Rb3EuB6O12 

Eu1 1/3 2/3 -0.2182 (7) 0.5 (5) 

Eu2 1/3 2/3 -0.7192 (7) 0.5 (5) 

Eu3 1/3 2/3 2/3 1.5 (8) 

Rb1 0.116 (1) 1/3 5/6 1.5 (7) 

Rb2 2/3 0.798 (2) 1/3 1.5 (6) 

Rb3 0.187 (1) 0.855 (1) -0.4146 (6) 1.5 (3) 

Rb4 1/3 2/3 -0.580 (1) 1.5 (4) 

Rb5 1/3 2/3 1/6 0.9 (11) 

B1 0.19 (2) 0.78 (2) -0.278 (5) 2.0 (9) 

B2 0.21 (2) 0.77 (2) -0.514 (6) 2.0 (9) 

B3 0.47 (2) 0.89 (2) -0.651 (6) 2.0 (9) 

B4 0.66 (2) 1.08 (1) -0.419 (6) 2.0 (9) 

B5 0.47 (2) 0.93 (1) -0.891 (5) 2.0 (9) 

O1 0.27 (1) 0.769 (8) -0.482 (2) 1.5 (5) 

O2 0.170 (7) 0.566 (8) -0.682 (2) 1.5 (5) 

O3 0.391 (7) 0.806 (4) -0.388 (2) 1.5 (5) 

O4 0.284 (6) 0.773 (5) -0.769 (2) 1.5 (5) 

O5 0.516 (7) 0.855 (7) -0.620 (3) 1.5 (5) 

O6 0.521 (7) 0.851 (8) -0.542 (3) 1.5 (5) 

O7 0.497 (6) 1.010 (5) -0.648 (2) 1.5 (5) 

O8 0.667 (6) 0.808 (5) -0.525 (2) 1.5 (5) 

O9 0.592 (6) 1.036 (9) -0.579 (3) 1.5 (5) 

O10 0.099 (8) 0.730 (6) -0.750 (3) 1.5 (5) 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Thermal parameters obtained for borates with general composition MREB6O12 (M = K, 

Rb RE = Y, rare earths) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M3REB6O12 Melting temperature, 

K 

Enthalpy, 

J/g 

Reference 

K3EuB6O12 >1023 - [34] 

K3TbB6O12 >1023 - [35] 

K3YB6O12 1214 - [33] 

K3LuB6O12 >1023 - [36] 

Rb3NdB6O12 1070 122.4 [37] 

Rb3EuB6O12 1101 160.6 This work 



Table4. Wyckoff positions of atoms and vibrational modes in Rb3EuB6O12 

Atom Wyckoff 

position 

Mechanical representation 

Rb1 9e A1 + 2A2 + 3E 

Rb2 9d A1 + 2A2 + 3E 

Eu1, Eu2, Rb4 6c A1 + A2+2E 

Rb5 3b A2 + E 

Eu3 3a A2 + E 

Rb3, B1–B5, 

O1–O10 

18f 3A1 + 3A2 + 6E 

Total  53A1 + 57A2 + 110E 

Acoustic  A2 + E 

Optic  53A1 + 56A2 + 109E 

Raman active 

modes 

 53A1 + 109E 

IR active 

modes 

 56A2+ 109E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Captions 

Fig. 1. Measured (red), calculated (black) and differential (blue) diffraction patterns of  

Rb3EuB6O12. 

Fig. 2. Crystal structure of Rb3EuB6O12. 

Fig. 3. The dependence of unit cell volume V on the element combination in M3REB6O12 (M = 

alkaline metals; RE = Y, rare earth metals) crystal family. 

Fig. 4. The photo image of Rb3EuB6O12 powder under illumination by white light. 

Fig. 5.  SEM pattern of the Rb3EuB6O12 particle. 

Fig. 6.  DSC measurements the temperature range of 298 – 813 K. 

Fig. 7. Raman spectra of Rb3EuB6O12 in comparison with band positions of pentaborate ion in 

potassium pentaborate tetrahydrate single crystal [50]. 

Fig. 8. IR spectra of Rb3REB6O12 (RE=Nd, Eu). 

Fig. 9. High-resolution PL spectrum for Rb3EuB6O12 recorded at 514.5 nm excitation with a 

T64000 spectrometer. Long-wavelength part is multiplied by 400 and shifted up.  
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Fig. 3. 

 

 



 

 

 

 

 

Fig. 4. 
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Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 7. 

 

 

 

 

 

 

 

 



 

Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 9. 
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Table 1S. Main bond lengths (Å) in Rb3EuB6O12  

Rb3EuB6O12 

Eu1—O1i 2.20 (9) B1—O3i 1.4 (2) 

Eu1—O3i 2.48 (6) B1—O7viii 1.4 (2) 

Eu2—O2 2.24 (9) B1—O9viii 1.3 (2) 

Eu2—O4 2.39 (6) B2—O1 1.3 (2) 

Eu3—O3ii 2.36 (5) B2—O6x 1.4 (2) 

Rb1—O1iii 2.88 (9) B2—O8x 1.4 (2) 

Rb1—O6iii 2.93 (7) B3—O2xi 1.3 (2) 

Rb1—O8iv 3.10 (6) B3—O5 1.4 (2) 

Rb1—O9iii 3.00 (7) B3—O7 1.4 (2) 

Rb2—O2v 2.94 (9) B4—O5xii 1.5 (2) 

Rb2—O5ii 2.89 (8) B4—O6xii 1.5 (2) 

Rb2—O10vi 3.07 (9) B4—O9xii 1.5 (2) 

Rb3—O1 2.88 (8) B4—O10xiii 1.5 (2) 

Rb3—O2vii 2.84 (7) B5—O4xiv 1.3 (2) 

Rb3—O3 3.24 (6) B5—O8xv 1.4 (2) 

Rb3—O4viii 2.92 (6) B5—O10xiv 1.4 (2) 

Rb3—O7viii 3.10 (6)   

Rb3—O9ix 3.1 (1)   

Rb3—O10vii 2.95 (8)   

Rb4—O5 2.80 (8)   

Rb4—O6 2.76 (8)   

Rb5—O4ii 2.72 (6)   

Symmetry codes:  (i) -x+2/3, -x+y+1/3, -z-2/3; (ii) x, y, z+1; (iii) x-y+2/3, -y+4/3, -z+1/3; (iv) -x+2/3, -

x+y+1/3, -z+1/3; (v) -y+1, x-y+1, z+1; (vi) -x+y, -x+1, z+1; (vii) -y+2/3, x-y+4/3, z+1/3; (viii) -x+y-1/3, -

x+4/3, z+1/3; (ix) y-1, x, -z-1; (x) -y+1, x-y+1, z; (xi) y-2/3, x+2/3, -z-4/3; (xii) -x+y, -x+1, z; (xiii) x-y+1, -

y+2, -z-1; (xiv) x+2/3, y+1/3, z+1/3; (xv) -x+2/3, -x+y+1/3, -z-5/3; (xvi) -x+y+1/3, -x+5/3, z-1/3. 

 

 

 

 

 

 

 



 

 

Fig. 1S. Measured (red), calculated (black) and differential (gray) diffraction patterns of  the 

products obtained by thermal decomposition of Rb3EuB6O12. 

 

 

 

 

 



 

Fig. 2S. High-resolution 514.5 nm excited PL spectra for Rb3EuB6O12, (red) and Eu2(MoO4)3 

(blue) in the vicinity of ultranarrow line (T64000 spectrometer). The spectra are equalized at the 

maximum value. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 3S. Comparison of band shapes in PL spectra for Rb3EuB6O12, (red) and Eu2(MoO4)3 (blue) 

in the vicinity of hypersensitive transition (T64000 spectrometer). The spectra are equalized at 

the maximum value. 

 

 


