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ABSTRACT 

Campoletis sonorensis is a native parasitoid of the Cabbage Looper, Trichoplusia 

ni, and I found it attacking T. ni in multiple field and greenhouse crops in Ontario. 

I found that C. sonorensis is an important factor regulating T. ni populations. 

Campoletis sonorensis was the dominant larval parasitoid of T. ni with higher 

rates of parasitism and higher abundances than all other native parasitoids 

combined. Campoletis sonorensis demonstrates potential as a commercial 

biocontrol agent of T. ni because C. sonorensis populations were chronologically 

and physiologically synchronized with those of T. ni. Thus, adult parasitoids were 

always available when suitable T. ni host stages were present. Additionally, C. 

sonorensis was a positively density-dependent factor in the regulation of the T. ni 

population. I demonstrated that C. sonorensis can successfully parasitise and 

emerge from 2 to 8 day-old T. ni hosts, but that the highest parasitoid fitness is 

achieved from 3 to 5 day-old T. ni hosts. Finally, C. sonorensis has a higher 

intrinsic rate of increase than T. ni, which is a desirable trait in potential biocontrol 

agents. Campoletis sonorensis is a native parasitoid that is very well adapted to 

T.ni population dynamics, but also attacks other Noctuidae host species. It 

appears that in the agricultural and climatic conditions of Ontario, the timing and 

presence of other Noctuidae host species may be an important factor in the 

stabilization of C. sonorensis populations, allowing it to be the dominant 

parasitoid species on T. ni. 
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Chapter 1 

General Introduction 

Biological control is the use of parasitoid, predator, pathogen, antagonist, or 

competitor populations (natural enemies) to suppress a pest population, making it 

less abundant and thus less damaging than it would otherwise be (van Driesche 

and Bellows 1996). It requires investigating the ecology of organisms, how they 

interact and how natural control regulates populations. It also involves the 

application of that knowledge to restore or conserve ecosystem functioning in 

disturbed ecosystems, and to produce resources required by humans in an 

environmentally sustainable manner in managed ecosystems. This can be 

accomplished either through (1) importation of exotic enemies against either 

exotic or native pest (i.e. classical biological control) or (2) conservation and 

augmentation of enemies that are already in place or are readily available (Ehler 

1998). 

Augmentation of natural enemies is accomplished by repetitive releases of 

natural enemies or their hosts (at strategic times) to increase pest mortality by 

natural enemies. There are two general but overlapping categories of 

augmentation tactics: 1) environmental manipulation and 2) periodic release of a 

natural enemy for an immediate (by the released individuals) or time-lag (by 

progeny of released individuals) control effect on the pest population (Debach 

and Hagen 1964; Rabb et al. 1976; Huffaker et al. 1977). Augmentation attempts 

should usually be restricted to those natural enemies which have been 

demonstrated by research to be inherently effective in prey/host population 

regulation but are prevented from doing so (DeBach 1974). 

Internationally, more than 150 species of natural enemies are commercially 

available for augmentative biological control (van Lenteren 2006). This form of 

control is applied in crops that are attacked by only a few pest species, and it is 
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particularly popular in greenhouse crops, where the complete spectrum of pests 

can be managed by a suite of natural enemies. When compared with chemical 

control, there are no phytotoxic effects on young plants and premature abortion of 

fruit and flowers does not occur (van Lenteren 2000). Release of natural 

enemies takes less time and safer than applying pesticides. Several key pests 

can be controlled only with natural enemies, but not with pesticides, and there is 

no safety or re-entry period after release of natural enemies (van Lenteren 2000). 

The use of biological control allows continuous harvesting without danger to the 

health of greenhouse personnel. Although this form of biological control needs 

periodic introductions, natural enemies can be used indefinitely. Finally, the 

general public appreciates biological control because of the lessened risk of 

pesticide residues on produce (van Lenteren 2000) 

Currently, world wide, augmentative forms of biological control, including 

parasitoids, predators and entomopathogens, are applied on up to 17 million 

hectares. Of these, parasitoids are applied in up to 15.25 million hectares and 

larval endoparasitoids are applied in up to 0.045 million hectares (van Lenteren 

2000). Insect parasitoids are the most commonly employed biological control 

agents, both, in practice and in theoretical developments (Hochberg and Holt 

1999). In biological control, parasitoids are favored over predators because they 

are more host-specific, usually better adapted and synchronised with the host, 

have a lower food requirement per individual thereby maintaining a balance with 

their host species at a lower host densities, and their larvae do not need to 

search for food (van Lenteren 1986a,b) 

Parasitoids 

The term 'parasitoid' was first defined by Reuter (1913) and then improved by 

Gauld and Bolton (1988) to describe a group of insects whose larvae develop by 

feeding on, or within, an arthropod host and this host individual is almost always 

killed by the developing parasitoid larva. The parasitoid life-history is most 

2 



common in certain families of Hymenoptera and Diptera and it is from these 

groups that most species have been selected for biological control of agricultural 

pests. The stages in this unique life-history can be summarized as follows: adult 

female parasitoids forage actively for hosts, depositing eggs through an 

ovipositor either in, on, or near their hosts. Upon hatching, the larvae locate and 

begin feeding on host tissues and pass through several developmental stages 

either within the host, as endoparasitoids, or on the host, as ectoparasitoids. 

Solitary parasitoids develop singly in the host, while gregarious parasitoids may 

develop in groups from eggs laid during one or more oviposition events (Waage 

and Hassell 1982). Specialists and generalists (parasitoids with respectively 

narrow and broad host ranges, respectively) and koinobionts and idionbionts 

(parasitoids that permit the host to grow and metamorphose beyond the stage 

attacked or not, respectively) are two more ways of characterizing their life history 

traits. 

Parasitoid species exhibit remarkable biological and taxonomic diversity. 

Parasitoid taxa have diversified into a staggering number of species - about 1 in 

10 metazoan species is an insect parasitoid. This diversification has been most 

prolific in the parasitic Hymenoptera, which may possess more than 200,000 

species, constituting slightly more than 75% of all insect parasitoids (Waage and 

Hassell 1982; Eggleton and Belshaw 1992). Parasitoid life histories constitute 

greater stability to ecosystem than any other life histories such as predators, 

phytophagous forms etc (La Salle 1993). 

Parasitic Hymenoptera 

Among the natural enemies used in biological control of insect pests, the parasitic 

Hymenoptera have been the most successful (Debach 1964, 1974; Waage and 

Hassell 1982; Noyes 1985). There are innumerable examples to show that 

parasitic Hymenoptera are extremely successful in biological control 

programmes. The main reason for this success is that they are capable of living 

3 



and interacting at lower trophic levels and can operate in a density dependent 

manner; an effective species may maintain its hosts in low numbers and 

therefore be in low numbers itself (La Salle and Gauld 1991; La Salle 1993; 

Narendram 2001). The fact that parasitic Hymenoptera predominate among the 

various kinds of natural enemies successfully used in biological control is, in part, 

the effect of certain unique morphological, physiological, and psychological 

adaptations which enhance the host-finding capacity of the female parasitoid and 

enable it, individually and collectively, to maintain the host population at relatively 

low densities (Flanders 1962). 

Parasitic Hymenoptera consist of mostly keystone species which have a major 

influence on the character or structure of an ecosystem (Reid and Miller 1989; 

LaSalle and Gauld 1991, 1993). Removal or loss of keystone species would have 

a noticeable effect on the ecosystem (Paine 1969; DeBach 1974; Paine and 

Levin 1981; La Salle 1993). The presence of the high level of diversity within 

parasitic Hymenoptera has potential value to biological control projects. The 

native parasitic Hymenoptera parasitising any particular pest or potential pest are 

important not only to that pest, but may also prove to be important to other 

related introduced pests (La Salle 1993). 

Selecting parasitoids as biological control agents 

Augmentative biological control consists of the following four general elements: 

1) the selection of the biological control agent through basic life history studies; 

2) the mass production of an augmentative biological control agent(s) and its 

economics; 3) the agent's release and impact on a target's population density in 

the field, that is, the mechanics of release along with the ecology and population 

dynamics of the agent and its host or prey; and 4) the economics associated with 

pest suppression and crop production in a commodity in relation to the 

development of a sustainable pest management program at a specific 
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geographical location (van Driesche and Bellows 1996; van Lenteren 2000, 

2006). 

Criteria for selecting parasitoids have been compiled by van Lenteren (1986a,b) 

from numerous sources (Varley 1951; Flanders 1957; Sweetman 1958; 

Andrewartha 1961; DeBach 1964, 1971, 1974; Askew 1971; Huffaker et al. 1971, 

1976; Krebs 1972; Hassell and Rogers 1972; Hassell and May 1973; Varley et al. 

1973; van Emden 1974; Huffaker 1976; Coppel and Mertins 1977; Ridgway and 

Vinson 1977; Waage and Hassell 1982): 

1. Seasonal synchronization with host 

2. Internal synchronization with host 

3. Climatic adaptation 

4. No negative effects 

5. Good culture methods 

6. Host specificity or potential for development of host preference 

7. Great reproductive potential 

8. Good density responsiveness 

Models have identified searching efficiency, fecundity, larval survival, sex ratio, 

interference, spatial heterogeneity and developmental time of the natural enemy 

as key contributors to the suppression of a host population equilibrium and/or to 

the stability of the pest-enemy interaction. Three of these factors - searching 

efficiency, interference and spatial heterogeneity - relate particularly to density 

responsiveness (Waage and Hassell 1982; van Lenteren 1986a,b). 

The most relevant studies for pre-introductory evaluation criteria of natural 

enemies to be used in seasonal augmentation releases in greenhouses are 

points 2 to 5 and 7, as described above. In Figure 1, a flow diagram is presented 

outlining an evaluation programme. By using such a flow diagram, it is possible to 
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separate useless from potentially useful biological control candidates at an early 

phase of research (van Lenteren and Manzaroli 1999). 

Trichoplusia ni Hubner (Lepidoptera: Noctuidae) 

The Cabbage Looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae), is a 

widely distributed polyphagous insect that is usually considered to have a tropical 

or subtropical origin, native to the southern half of North America (Kostrowicki 

1961). Widespread in southern Europe, North, East and South Africa, extending 

eastwards through Pakistan, India and Bangladesh to much of Southeast Asia, to 

China, Taiwan, Korea and Japan; present in South America in Argentina, Bolivia, 

Brazil, Chile, Colombia and Uruguay (Apablaza and Norero 1993; CIE 1974). It 

does not overwinter in many areas where it commonly occurs, but instead 

migrates annually to these locations. Trichoplusia ni adults are strong fliers and 

can migrate considerable distances. As an example, they annually migrate along 

the eastern coast of the USA. Although the insects cannot overwinter north of the 

coastal plain of Georgia, they follow the advancing spring and move northward 

(Mitchell and Chalfant 1984). In Canada, they have been found overwintering 

inside vegetable greenhouses (Cervantes 2005). Trichoplusia ni is a sporadic 

migrant only in the UK and northern Europe. 

Larvae of T. ni have been recorded causing damage to over 160 species in 36 

families, although cultivated brassicas (Brassica oleracea L., Brassicaceae) are 

the most favored host plants when available (Martin et al. 1976; Sutherland and 

Greene 1984). Brassicas and cotton (Gossypium hirsutum L., Malvaceae) are 

most frequently cited as being damaged, although the list of commercial crops 

affected also includes the Asparagaceae (asparagus, Asparagus officinalis L.), 

the Leguminosae (beans, Phaseolus vulgaris L.; pea, Pisum sativum L.; soybean, 

Glycine max L), the Chenopodiaceae (sugarbeet, Beta vulgaris L.), the 

Cucurbitaceae (cantaloupes, Cucumis melo var. cantalupensis Naud.; cucumber 

(Cucumis sativus L.; squash, Cucurbita pepo L.; watermelon, Citrullus lanatus 

6 



Thunb.), the Apiaceae (carrot, Daucus carota subsp. sativus Hoffm.; celery, 

Apium graveolens Mill.; parsley, Petroselinum crispum Mill.)), the Gramineae 

(maize (silks), Zea mays L) , the Asteraceae (lettuce, Lactuca sativa L) , the 

Solanaceae (pepper, Capsicum annum L; potato, Solanum tuberosum L; 

tobacco, Nicotiana tabacum L; tomato, Licopersicum esculentum L) , and the 

Amaranthaceae (spinach, Spinacia oleracea L.) (Waterhouse ^QQ).Trichoplusia 

ni is a major pest of commercial brassicas in North America and many other 

areas where it occurs, and also causes significant economic damage to lettuce, 

tomatoes, celery and cotton. Larvae chew large irregular holes, leaving only main 

veins, in the outer leaves of cabbage, cauliflower and related plants, often leaving 

them riddled with holes. Later, the outer layers of cabbage heads are eaten and 

masses of faecal pellets contaminate the feeding sites. So much leaf tissue is 

eaten that heads of cabbage and cauliflower are stunted and other leafy 

vegetables are rendered unfit to eat (Greene 1984; Waterhouse 1998). 

Trichoplusia ni adults are strong fliers and are primarily nocturnal. During the day, 

the adults can be found resting in foliage or in crop debris. Moths feed on various 

wild and cultivated hosts where they obtain water and dissolved nutrients 

(Mitchell and Chalfant 1984). Mating primarily occurs shortly before sunset 

(Shorey et al. 1962). Adults emerge in spring. There is a pre-ovipositional period 

of about 4 days, after which mating begins, and most mating occurs after 3-4 

days and can continue up to 16 days (Mitchell and Chalfant 1984). Oviposition of 

viable eggs reaches a peak at 3-6 days and the number of eggs laid can vary 

between 300-1600 per female. The eggs are laid singly on plants (Banham and 

Arrand 1970). There are five larval stages and the total development time of the 

larval period can vary widely depending on temperature; the normal duration of 

the larval stage is 2-4 weeks and the pupal stage lasts about 2 weeks (Metcalf et 

al. 1962). Pupation occurs in a folded webbed leaf or between two webbed 

leaves. There are 3-4 generations per year and T. ni can overwinter as a pupa in 

a cocoon attached to the foliage of its host plants. 
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Canadian populations are established through annual migration of adult moths 

from the south (Lafontaine and Poole 1991). Trichoplusia ni became a chronic 

pest of greenhouse vegetable crops in the early 1990s (Gillespie et al. 2002). 

Outside greenhouses, T ni is an important pest of brassicas and in many other 

crops in Ontario, but it is less important in other vegetable-producing areas of 

Canada (Howard et al. 1994). In greenhouse crops, caterpillars cause serious 

defoliation in cucumber, lettuce, pepper, and tomato. Crop losses result from a 

combination of plant defoliation, direct damage to fruit, destruction of purchased 

biological control agents by pesticides applied against T. ni and subsequent 

damage by other pests as a result of their release from biological control 

(Gillespie et al. 2002). In commercial settings, growers rely on Btk {Bacillus 

thuringiensis war. kurstaki) products against outbreaks of T. ni which appears to 

be compatible with the other natural enemies and insect pollinators. The ability of 

T. ni to overwinter inside greenhouses enables this pest to colonize plants at the 

beginning of the season, when plants are first brought into the greenhouse. This 

has resulted in increased sprays of Btk to control T. ni and development of 

resistance to Btk in populations of T. ni in British Columbia (Janmaat and Myers 

2003, 2006; Cervantes 2004). Subsequently, chemical pesticides are used which 

are not compatible with biocontrol agents for other pests or bumble bee 

pollinators, which is of major concern to the greenhouse industry. In Canada, the 

pollination of vegetable in greenhouses relies on the periodic introduction of 

bumble bee's colonies instead of manual or mechanical pollination. 

Campoletis sonorensis Cameron (Hymenoptera: Ichneumonidae) 

In late summer of 2002, I discovered cocoons of a T. ni larval endoparasitoid in 

two tomato greenhouses in the Leamington - Kingsville area of Ontario. It was 

identified as Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) 

by Dr. Andrew Bennett at the Canadian National Collection - Agriculture and 

Agrifood Canada. Since then, I have collected this parasitoid from, 1 cucumber, 2 

pepper and 12 tomato greenhouses in Ontario. 
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The genus Campoletis is taxonomically complicated, being placed in subfamily 

Campopleginae, tribe Campoplegini (Burks et al. 1979) or in the tribe Porizontini 

(Townes 1971). In the Americas, two species, C. sonorensis (Cameron) and C. 

flavicincta (Ashmead) are the most common and share some of the same hosts. 

Campoletis sonorensis is frequently misidentified as C. perdistincta (Viereck), 

which is a non-preferred synonym for C. flavicincta (Carlson 1972). The 

confusion is further complicated because it was previously identified as Limneria 

sonorensis, Campoletis websteri, Sagaritis websteri and Sagaritis provancheri 

(Carlson 1972; Korytkowski and Casanova 1966; CABI 2005). 

Campoletis sonorensis is a generalist solitary larval endoparasitoid that has been 

reported on about 30 species of Lepidoptera, primarily of the family Noctuidae 

which are considered to be insect pests in different economic crops (Lingren and 

Noble 1972; de Moraes et al. 1991; Machuca et al. 1989; CABI 2005). 

Campoletis sonorensis is widely distributed in the Americas where it has been 

reported to parasitise relatively large numbers of its hosts from Chile to Canada 

(Machuca et al. 1986; Carlson 1972; Hoballah 2001; Molina et al. 2003). Larvae 

of the tobacco budworm, Helicoverpa virescens (Fabricious) (Lepidoptera: 

Noctuidae), the corn earworm / tomato fruitworm, Helicoverpa zea (Boddie) and 

the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) are 

the most preferred hosts in crops like cotton, tobacco, corn and tomato (Lingren 

and Noble 1972; Carlson 1972). Although C. sonorensis has been considered as 

a potential biocontrol agent for these three pest species (Lingren et al. 1970; 

Lingren 1977; Siabatto 1991; Hoelscher and Vinson 1971; Isenhour 1985, 

Hoballah et al. 2004) and most of the research, to date, has been conducted 

using these three species as hosts, it is better known as a model system for the 

study of the effects of polydnaviruses on the host during the parasitism process 

(Stoltz et al. 1984). Certain endoparasitic wasps carry polydnaviruses (PDVs), a 

family of insect viruses characterized by a multipartite or segmented double-

stranded DNA genome that exist in two states, as integrated proviral DNA in the 
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wasp chromosomal DNA and as extra-chromosomal DNA segments within the 

virions (Fleming and Summers 1991; Fleming 1992; Webb 1998). Two genera 

are recognized in this virus family: the bracoviruses, which are associated with 

braconid wasps, and the ichnoviruses, which are associated with the 

ichneumonid wasps (Stoltz et al. 1995). Polydnaviruses are of crucial importance 

for the survival of the braconid wasps and ichneumonid wasps. Campoletis 

sonorensis has a symbiotic mutualism with an ichnovirus (CslV) which is 

integrated in the genome of the wasp. During oviposition of the endoparasitoid 

egg into the lepidopteran host, the wasp also injects venoms, ovarian proteins 

and CslV. The ovarian and venom proteins transiently inhibit lepidopteran 

immune response over the initial 24 hours and later disrupt encapsulation. Viral 

protein titrers become high enough over this period to induce pathologic effects 

on the host, notably the viral proteins suppress cellular and humoral immunity, 

arrest host development, and suppress synthesis of some host proteins (Edson 

et al. 1981; Vinson and Stoltz 1986; Davies and Vinson 1988; Davies et al. 1987; 

Prevost et al. 1990; Webb and Luckhart 1994, 1996; Tanaka et al. 2002; Gill and 

Webb 2006). 

Host finding studies had revealed that C. sonorensis females are attracted to 

many, but not all, plants on which their hosts feed by synomones produced after 

damage (Elzen et al. 1983, 1984; Baehrecke et al. 1989; McAuslane et al. 1990a, 

b; Vinson et al. 1994) Once on the damaged plant, antennal examination and 

ovipositor thrusting in response to kairomones present on the cuticle of larval 

hosts are the mechanisms by which hosts are located (Norton and Vinson 1974; 

Schmidt 1974; Wilson et al. 1974; Vinson 1975; Elzen et al. 1983). 

Behavioural studies of C. sonorensis host-selection have found that females 

prefer third-instar host larvae of S. frugiperda and 2-5 day-old larvae of six 

different hosts, including T. n/(lsenhour 1985, Noble and Graham 1966; Lingren 

et al. 1970). Host age and color has no influence on acceptance behaviour by C. 

sonorensis but shape has an appreciable effect, a straight cylindrical shape is 
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more acceptable than a round or flat one (Schmidt 1974; Wilson et al. 1974); both 

experience and learning play a role in host selection by C. sonorensis 

(McAuslane et al. 1991; Vinson and Williams 1991), 

Male Campoletis sonorensis courtship behaviour is elicited by sex pheromones 

released by females (Vinson 1972a) and both plant olfactory and visual cues are 

also involved in the location of mates (McAuslane et al. 1990b). The offspring sex 

allocation by C. sonorensis is influenced mostly by photoperiod, mating status 

and female age. Offspring produced from unmated females are all males and 

females may or not be produced after copulation but the exposure of older 

females to males for mating and a 12:12 (L:D) photoperiod yielded offspring with 

a greater percentage of females (Hoelscher and Vinson 1971). Campoletis 

sonorensis exhibited a type-ll functional response when it was exposed to 

varying densities of S. frugiperda larvae at 2 temperature regimes and 

significantly more larvae were parasitised at 25°C than at 30°C (Isenhour 1985). 

Locomotory studies revealed maximum phototactic responses of C. sonorensis to 

yellow substrates and wavelengths of light in the green region («560 nm) with 

strong responses in the near-UV region (Schmidt et al. 1978; Hollingsworth et al. 

1970). Campoletis sonorensis does not discriminate between non-parasitised 

larvae and larvae parasitised once by C. sonorensis but does discriminate 

against superparasitised larvae immediately following superparasitism (Vinson 

1972b; Isenhour 1988). Elimination of competitors is through physical attack and 

later through physiological suppression. Female parasitoids mark their hosts to 

avoid superparasitism (Vinson 1972b; Isenhour 1988, Escribano et al. 2000). 

Until today, the most valuable studies supporting the potential of C. sonorensis as 

a commercial biological control agent are: 1) the evaluation of C. sonorensis 

hosts and host age preferences (Lingren et al. 1970; Lingren and Noble 1972; 

Isenhour 1985); 2) the measurement of its functional response at different host 

densities and temperatures, as well as its developmental time, fecundity and 

lifespan (Isenhour 1985, 1986); 3) the evaluation of the effects of host stage 

11 



attacked on C. sonorensis using H. virescens as the host (Gunasena et al. 

1989); 4) the description of the developmental morphology and behaviour of C. 

sonorensis larvae in H. virescens (Wilson and Ridgway 1974, 1975; Danks et al. 

1979); 5) the evaluation of the relationships between C. sonorensis and several 

other larval parasitoids (Vinson and Abies 1980; Isenhour 1988); 6) the 

evaluation of augmentative releases of C. sonorensis against H. virescens 

(Lingren 1977; Lingren and Lukefahr 1977; Lingren et al. 1978); and, 7) the 

preliminary development of an in vitro mass rearing system (Hu 1998; Hu and 

Vinson 1997a,b). 

The overall objective of the current research was to evaluate the potential of C. 

sonorensis as a biocontrol agent of T, ni in vegetable greenhouses. The current 

research examined three aspects of the interaction of C. sonorensis with T. ni: 

1. Seasonal abundance of T. ni and natural levels of parasitism by C. 

sonorensis in field and greenhouse tomato in Southwestern Ontario 

(Chapter 2); 

2. Host preference and fitness of C. sonorensis as a parasitoid of T. ni 

(Chapter 3); and, 

3. Reproduction of C. sonorensis as an endoparasitoid of T. ni under 

laboratory conditions (Chapter 4). 

The information obtained through the current research should also be useful in 

the development of a field conservation biological control program, which is of 

value to both field crop and greenhouse production, because it would assist in 

regulation of insect pests before they migrate into greenhouses. 
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Figure 1.1: Flow diagram depicting an evaluation programme for natural enemies 

to be used in seasonal augmentative releases (van Lenteren and Manzaroli, 

1999). 
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No 

No 

Development on pest insect at greenhouse 
environmental conditions and host plant. Discard 

Yes 

Determination of innate capacity for 
population increase (rmax) or host killing rate 
(rate of killing host through oviposition, 
host feeding and/or host mutilation). 

No 

Is rmax or host killing rate > rmax host at 
climatological conditions where parasitoid 
will be introduced. 

Discard 

Yes 

Parasitoid is a candidate for seasonal 
augmentative release programmes; test 
whether parasitoid is able to reduce and 
suppress pest sufficiently at greenhouse 
conditions. 
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Chapter 2 

Seasonal Abundance of Trichoplusia ni (Lepidoptera: Noctuidae) and its 

parasitism by Campoletis sonorensis (Hymenoptera: Ichneumonidae) in 

field and greenhouse tomato in Southwestern Ontario. 

Introduction 

Insects have the potential to increase their numbers dramatically and to adjust 

their numbers in response to the dynamic environment in which they occur. 

Nevertheless, changes in population numbers often occur slowly because of the 

continual adjustment caused by abiotic and biotic factors (Ridgway and Vinson 

1977). Pest situations arise as a result of environmental disturbances of an 

unusual nature or degree and man generates many of them. The introduction of 

potential pests, either intentionally or accidentally, into favorable environments 

where natural enemies are not present often leads to serious pest problems 

(Ridgway and Vinson 1977). It is a common occurrence that the growth of 

susceptible crops or animals in monoculture allows large pest populations to 

build-up. The widespread disruption of the ecosystem that occurs when crops are 

planted or harvested destroys alternative hosts/prey for natural enemies, and 

reduces shelter, non-prey food sources and oviposition material (Ridgway and 

Vinson 1977). This limits the response of natural enemies to pest resurgence. 

Use of pesticides adversely affects these beneficial organisms and induces the 

development of resistance in the pest populations, which further encourages pest 

population outbreaks (Ridgway and Vinson 1977). 

The study of numerical changes occurring in populations, or population 

dynamics, is really the study of quantitative population ecology and is concerned 

not only with observing and describing how the population size of a species 

varies in time and space, but also with separating out and understanding the 

processes which cause this variation (Coppel and Mertins 1977). Mortality factors 
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acting on an insect population can cause dynamic changes such as the mean 

population density and degree of fluctuation around the mean population 

equilibrium density. Natural enemies contribute to population regulation through 

mortality factors that can act by returning populations to an equilibrium after some 

perturbation (i.e. stabilizing population numbers) or by restricting population 

numbers within certain limits, but allowing fluctuations in numbers (e.g. cycles) 

within those limits (DeBach 1974, Huffaker and Messenger 1964, 1976; Murdoch 

and Walde 1989; Kidd and Jervis 2005). 

In order for a mortality factor such as parasitism to regulate a population, the 

strength of its action must be dependent on the density of the population affected. 

That is, it needs to be density-dependent with its proportional effect being greater 

at higher population densities. If the proportion of host parasitised varies with 

changing host density, either temporally or spatially, this can profoundly affect the 

dynamics of the interaction (Howard and Fiske 1911; Smith 1935; Morris 1959; 

Huffaker et al. 1971; Varley and Gradwell 1971; Kuno 1973; Hassell and Waage 

1984; Hassell 1987; Solow and Steele 1990; DeBach and Rosen 1991; Boivin 

1993; Turchin 1995; Murdoch and Briggs 1996; van Lenteren 2000; Sigiura and 

Osawa 2002; Matsumoto et al. 2004; Kidd and Jervis 2005). A strong density-

dependent response is one of the key criteria in the selection of potential natural 

enemies for biocontrol (van Lenteren 1986; Waage and Hassell 1982) 

The Cabbage Looper, Trichoplusia ni, (Hubner) (Lepidoptera: Noctuidae) is a 

cosmopolitan insect pest that causes damage in more than 160 species of plants 

(Martin et al. 1976; Sutherland and Greene 1984), although Brassicas {Brassica 

oleracea L, Brassicaceae) and cotton (Gossypium hirsutum L. Malvaceae) are 

most frequently cited as being damaged (Waterhouse, 1998). Each spring the 

overwintering population of T. ni in the southern United States migrates north to 

establish seasonal populations in Canada (Lafontaine and Poole 1991). 

Trichoplusia ni became a chronic pest of Canadian greenhouse vegetable crops 

in the early 1990s (Gillespie et al. 2002). Outside greenhouses, T. ni is an 
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important pest of brassicas and in many other crops in Ontario, but it is less 

important in other vegetable-producing areas of Canada (Howard et al. 1994). In 

commercial settings, growers rely on Btk (Bacillus thuringiensis var. kurstaki) 

products against outbreaks of T. ni which appears to be compatible with the other 

natural enemies and insect pollinators. However, the recent development of T. ni 

resistance to Btk is a major concern in the industry (Janmaat and Myers 2003, 

2006; Cervantes 2005). 

Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae) is a generalist 

larval endoparasitoid of at least 30 different Lepidoptera hosts mostly belonging 

to the Noctuidae family (Lingren and Noble, 1972; de Moraes et al. 1991; 

Machuca et al. 1989; CABI 2005). The geographic distribution of this parasitoid 

includes all the Americas (Chile to Canada) and it is an important natural agent in 

the regulation of pest populations within agro-ecosystems of various countries 

including the tobacco budworm, Helicoverpa virescens (Fabricious) (Lepidoptera: 

Noctuidae), the corn earworm / tomato fruitworm, Helicoverpa zea (Boddie) and 

the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), in 

cotton (Gossypium hirsutum L.) (Malvaceae) and com (Zea mays L.) 

(Gramineae) (Wene, 1943; Korytkowski and Casanova, 1966; Graham et al. 

1972; Pair et al. 1982; Isenhour 1985; Machuca et al. 1989; de Moraes et al. 

1991;Siabatto, 1991). 

Starting in 2002, I have collected C. sonorensis as a common larval 

endoparasitoid of T. ni in the vegetable greenhouses in Essex County, Ontario 

each year. Although this parasitoid has never been reported as an important 

natural enemy of T. ni in field or greenhouse crops, the agroclimatic conditions in 

Southwestern Ontario have allowed C. sonorensis to become a common natural 

enemy of T. ni. The objective of this study was to measure the natural seasonal 

population dynamics of the larval stages of T. ni and its parasitoids. Specifically, I 

measured: 1) The seasonal changes in abundance of each larval stage of T. ni; 

2) The community composition and diversity of the parasitoid assemblage on 
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larval stages of T. ni; 3) The proportion of T. ni larvae parasitised within each 

larval stage; 4) The parasitism rate of T. ni larvae by C. sonorensis; and 5) The 

potential for density dependent population regulation of T. n/by C. sonorensis. 

Materials and Methods 

The population dynamics of larval stages of T. ni and its native larval parasitoids 

were measured on tomato (Lycopersicum esculentum Mill.) (Solanaceae) crops 

in 2005 and 2006. Three 2000-plant conventional fields and three 1.6 hectare 

greenhouses in Leamington and Essex County (Ontario, Canada) were chosen. 

As these were commercial crops, the fields and greenhouses in 2005 were 

managed using insecticides. In 2006, the fields were managed without 

insecticides; however, insecticides were still used within the greenhouses. 

Number and active ingredients of the insecticide sprays, planting dates, crop 

variety and other crop details are provided in Table 2.1a and b. 

Sampling Method: 

Trichoplusia ni larvae were sampled weekly. In greenhouses, T. ni larvae 

sampling began the first week of May (Week 1) for both years. In fields, T. ni 

larvae sampling began on different dates, depending on weather conditions. In 

fields in 2005, it began on May 20 (Week 3) and in 2006, the first week of 

sampling began on June 13 (Week 8). In greenhouses, rows were selected from 

the front, middle and back of the greenhouse for a total of 1.5 hours of sampling 

time per greenhouse (mean ± SE of 1103 ± 66 plants in 2005; mean ± SE of 

1358 ± 141 plants in 2006). In each selected row, all the plants were examined 

for the presence of T. ni larvae. For each field, a total of 100 plants were 

sampled. Starting from a different corner of the field on each sampling date, 

plants were selected and examined for T. ni larvae every 10 steps in a zigzag 

pattern. All T. ni larvae were collected and their location, stage and the date of 

collection was recorded. Larvae were reared individually on a pinto bean diet 
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(Shorey and Hale 1965) in a growth chamber at 24°C, 12L12D photoperiod and 

60% RH. The immatures were checked every other day for either emergence of a 

parasitoid or an adult T. ni moth. For each emerging parasitoid, the host stage at 

which the parasitoid cocoon developed was recorded. This information provided 

the means to calculate the percentage of T. ni larvae parasitised (% parasitism) 

and natural host stage preference by the parasitoids. A representative specimen 

of each species of parasitoid that emerged from T. n/was sent for identification to 

Dr. John Huber, Director of the parasitoid systematic department at the Canadian 

National Collection, Agriculture and Agri-food Canada, Ottawa. 

For calculation of T. ni parasitism by C. sonorensis, only the 2nd larval instar was 

considered. From both years there were just 10 instances of parasitism within the 

3rd instar stage of T. ni and all other occurrences of parasitism were in the 2nd 

instar. 

Percentage of parasitism was calculated as follows: 

RP = P L x100/T L 

Where RP = rate of parasitism, PL = number of 2nd instar parasitised larvae, TL = 

total number of 2nd instar larvae. 

Alternative plant and insect hosts of C. sonorensis: 

In one of the tomato fields during 2006, T. ni larvae were sampled on weeds and 

in one 0.2-hectare sweet corn (Zea mays L., Gramineae) field beside the 

tomato field that was under attack by a high population of fall armyworm, S. 

frugiperda, which was also sampled. In addition, one pepper (Capsicum annum 

L, Solanaceae) and one cucumber (Cucumis sativus L, Cucurbitaceae) 

greenhouse contained populations of T. ni and these larvae were sampled. 

Statistical Analysis: 
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The seasonal abundance of T. ni larvae was calculated from the mean number of 

larvae per plant from the three tomato fields and from the greenhouses by year, 

respectively. 

The descriptive statistics for the parasitoid species assemblage from the tomato 

fields in both years (not calculated from tomato greenhouses because just one 

species was found) consist of species richness, relative abundance, Simpson's 

diversity index and Simpson's measure of evenness as follows (Magurran 2004): 

The relative abundance of parasitoids was determined using the formula 

(Krebs1985): 

Relative abundance = Nr. of individuals per particular species x 100 

Total no. of individuals of all species 

Simpson's diversity Index 

D = 1 - I [ n / ( n / - 1 ) / N ( N - 1 ) ] 

Where n/ = the number of individuals in the ith species and, N = the total 

number of individuals. 

Measure of parasitoid evenness 

This measure of evenness was calculated by dividing the reciprocal 

form of the Simpson's index by the number of species in the sample 

(Smith and Wilson 1996; Krebs 1999): 

E 1/D = H M 

s 
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Where, D = Simpson's diversity index, and S = number of species in the 

sample. 

Chi-Square tests were used to compare the number of parasitised larvae of each 

instar of T. ni. ANOVA was used to compare the parasitism rate of C. sonorensis 

on T. ni 2nd instar larvae by field and by years. Kruskal-Wallis tests were 

used to compare the number of T. ni 2nd instar larvae per plant between 

fields and between years as these data did not meet the normality and 

variance criteria for ANOVA. 

Pearson correlations were used to initially determine if C. sonorensis appeared to 

have an impact on T. ni 2nd instar population dynamics in fields in 2006. Due to 

the numerous Btk sprays in greenhouses in both year and chemical pesticides in 

2005 fields, this test was not conducted using the data obtained from them. 

Although no method is likely to be efficient at detecting all forms of density 

dependence and no consensus has been reached as to which technique is most 

appropriate (Kuno 1973; Hassell 1987; Solow and Steele 1990; Boivin 1993; 

Turchin 1995; van Lenteren 2000; Sigiura and Osawa 2002;), linear regression is 

frequently used (e.g., Reeve and Murdoch 1985; Strong 1989; Boivin 1993, 

Sigiura and Osawa 2002; Matsumoto et al. 2004). To specifically examine the 

possibility of density dependent population regulation of T. ni by C. sonorensis, 

the relationship between density of 2nd instar T. ni and percent parasitism by C. 

sonorensis was examined using linear regression analysis from the 2006 field 

data, as no insecticides were applied to these fields. Temporal density-

dependence was analyzed by comparing the density and percent parasitism in 

the 2nd larval instar among the sampling periods when parasitised larvae were 

found. These data were analyzed by pooling data from the 100 plants for a given 

sampling day. Before the regression analyses, the proportion of parasitised hosts 

was square root-arcsine transformed (Sokal and Rohlf 1981), and host densities 

were log-transformed. In this regression analysis, a significant positive or 
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negative slope indicates positive or inverse density dependence, respectively. All 

analyses were conducted in SPSS v. 15 (2006) 

Results 

Seasonal abundance of larval instars of T. ni 

The number of T. ni larvae varied seasonally (Figure 2.1a-b), and T. ni 

generations overlapped (Figure 2.2a-d). In both tomato fields and greenhouses, 

all stages of T. ni larvae were present across the growing season, however, 

population density varied. In 2005, the first larvae were collected on July 6 

(Week 10) in fields, however this occurred 3 weeks later in 2006 (July 20). In 

2005, it is hard to describe the real growth pattern of the population of T. ni 

because the three plots were sprayed with chemical insecticides during the time 

the mean number of larvae per plant was the lowest (Weeks 11-12) (Figure 2.1a). 

In 2006, the larvae population increased almost steadily until Week 18 when 

there is a peak of 0.43 larvae per plant. By the end of the season, the mean 

number of larvae began declining (Figure 2.1a). In vegetable greenhouses in 

British Columbia, pest incidence of 1 large T. ni larvae per plant would trigger a 

spray of a Bacillus thuringiensis product, as would, in all likelihood, 1 large 

caterpillar per 2 plants (Gillespie et al. 1997) 

It is impossible to define a real growth population pattern of T. ni in the tomato 

greenhouses because as soon as the first larvae were found, the insecticide Btk 

was sprayed continuously until the end of the season. However, there was a 

peak in larval numbers after mid-July (Week 12) in both years (Figure 2.1b) of 

0.052 and 0.084 larvae per plant, respectively. In both fields and greenhouses, 

the 2nd larval instar was the most abundant stage collected, followed by the 3rd 

instar in fields and the 1st instar in greenhouses (Figure 2.2). 
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Because insecticide sprays were used in fields in 2005 and greenhouses in both 

years, the most natural population growth of T. nils only represented by the fields 

in 2006, where no sprays were used (Figures 2.1a and 2.2b). The mean number 

of 2nd instar larvae increased throughout the season and by the end of August 

(Week 18) the population of 2nd instar larvae started to decrease. In fields in 2005 

and in greenhouses for both years, although the increase in the mean number of 

the 2nd instar larvae of T. ni is notable through the season, it is interrupted, likely 

by the numerous insecticide sprays. 

Parasitism of T. ni by larval parasitoids 

During the two year study, the total parasitoid species richness in fields was 10 

(Table 2.2). Within each year, the total parasitoid species richness was 7, with 4 

species not collected in both years. All of the parasitoids were hymenopterans, 

with the exception of 1 dipteran that could not be identified to species. Nine were 

primary parasitoids, of which 7 were larval endoparasitoids, 1 egg-larval 

endoparasitoid and 1 larval ectoparasitoid. There was also 1 hyperparasitoid 

reared from C. sonorensis, Trichomalopsis viridescens (Walsh)(Hymenoptera: 

Pteromalidae). Although the family Braconidae had the greatest species richness, 

the family Ichneumonidae had the greatest relative abundance due to the 

dominance of the solitary larval endoparasitoid, C. sonorensis (Table 2.3). 

Simpson's diversity index of 0.7 in 2005 and 0.58 in 2006 for fields demonstrates 

that the field tomato ecosystems tend to be homogeneous in parasitoid diversity. 

Simpson's evenness indexes of 0.20 in 2005 and 0.25 in 2006 for fields represent 

that the relative abundance of the species found within the field tomato parasitoid 

community each year diverge due to the high dominance of C. sonorensis (Table 

2.3). 

Of the 400 T. ni larvae collected within fields in 2005, 51 were parasitised by C. 

sonorensis (12.75%) and 10 were parasitised by six other larval parasitoid 

species (2.5%) (Table 2.4). The second most common parasitoid species were 

39 



Euplectrus spp. (Westwood) (Hymenoptera: Eulophidae) and Copidosoma 

floridanum (Ashmead) (Hymenoptera: Encytidae) representing 0.75% of 

the total parasitism. Of the 365 T. ni larvae collected within fields in 2006, 62 

were parasitised by C. sonorensis (16.98%) and 21 were parasitised by six other 

larval parasitoid species (5.46%). The second most common parasitoid species 

was Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae) with just 

1.64% of the total parasitism (Table 2.4). 

Inside tomato greenhouses, C. sonorensis was the only larval parasitoid reared 

from T. ni. Of the 838 T. ni larvae collected in 2005, 22 were parasitised by C. 

sonorensis (2.63%) and in 2006, 22 of the 1645 T. ni larvae collected were 

parasitised by C. sonorensis (2.37%) (Table 2.5). 

In both, fields (2005: X2
4,i = 443.052, P< 0.0001; 2006: X2

4t1 = 62.982, P< 

0.0001) and greenhouses (2005: X2
4;1 = 14.678, P<0.005; 2006: X2

4,i = 21.864, 

P<0.0001) regardless of year, the 2nd instar of T. ni was the most commonly 

parasitised stage of development by C. sonorensis and other parasitoid species 

(Table 2.5). The number of parasitised 2nd instars differed from all other 

parasitised instars combined for both fields (2005: X 2 ^ = 43.422, P< 0.0001; 

2006: X2i,t = 59.038, P< 0.0001) and greenhouses (2005: X2
1T1 = 14.311, 

P<0.0001; 2006: X2^A = 20.739, P<0.0001) within both years (Table 2.5). 

Percent parasitism of T. ni 2nd instar larvae by C. sonorensis in fields ranged from 

11.5 to 75.0% in 2005 and 14.3 to 87.5% in 2006 (Figures 2.3a-b). The first C. 

sonorensis were found on July 6 and July 20, in 2005 and 2006 respectively. The 

highest parasitism rates occurred on August 10 (week 15) in 2005 and on August 

9 (week 8) in 2006. In both years, there was no difference in C. sonorensis 

parasitism rates between fields (2005: F2,i7=3.18, P=0.05; 2006: F2,23=0.618, 

P=0.097). However, there was a difference between years (Fi,4i=6.272, 

P=0.016). There was no difference in the number of T. ni 2nd instar larvae 
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per plant between fields (2005: Kruskal-Wallis X2
2 = 0.416, P=0.812; 2006: 

X2
2= 2.878, P= 0.237) nor between years (X2! = 1.358, P= 0.244). 

The parasitism rates by C. sonorensis on T. ni larvae in greenhouses ranged 

from 5.0 to 60% in 2005 and from 2.5 to 75.0% in 2006. The highest parasitism 

rate was found on August 19 (Week 16) in 2005 and on July 5 (Week 10) in 

2006. The first C. sonorensis were found on June 16 and on June 5, respectively. 

The highest mean parasitism rate by C. sonorensis within fields was 58.17% on 

July 28 (Week 13) in 2005 and 76.33% on August 9 (Week 15) in 2006 (Figure 

2.3). Within greenhouses, the highest mean parasitism rate was 20.1% on 

August 19 (Week 16) in 2005 and 25% on July 5 (Week 10) in 2006 (Figure 2.3). 

In 2006, the number of 2nd instar larvae of T. ni and the number of parasitised 

larvae by C. sonorensis in fields was positively correlated overall (Pearson 

correlation r=0.946, p<0.0001, n=22), and individually within two of the three 

fields (Table 2.6). Additionally, the overall relationship between the number of 2nd 

instar larvae of T. ni and percent parasitism by C. sonorensis in fields in 2006 

was positively density-dependent (b= 0.322, r2 = 0.182, P= 0.048) (Table 2.7). On 

a weekly basis, it was only during week 11 (August 24, 2006) that the relationship 

was positively density dependent (b=0.940, ^=0.998, p=0.025) (Table 2.8). 

Alternative plant and insect hosts of C. sonorensis: 

In 2006, from a weed of one of the tomato fields, identified as Galinsoga ciliata 

(Raf.) Blake (Asteraceae)(Common name: Hairy Galinsoga) six cocoons of C. 

sonorensis and 12 second instar of T. ni larvae were collected. The six cocoons 

and 4 of the larvae collected which also yielded parasitoid cocoons subsequently 

developed as adults of C. sonorensis. 

From the sweet corn field beside the same tomato field, 8 cocoons and 38 2nd 

and 3rd instar of S. frugiperda larvae were collected. Six cocoons developed into 

41 



adults of C. sonorensis and 2 did not hatch. Thirteen cocoons which yielded 

adults of C. sonorensis were obtained from the larval sample as well. 

In the cucumber greenhouse, from 12 2nd instar larvae of T. ni that were 

collected, 2 C. sonorensis and 1 Cotesia marginiventris were obtained. Finally, in 

the pepper greenhouse 4 cocoons were collected, which developed into adults of 

Cotesia marginiventris. Sixteen larvae of T. n/'were collected (7 1s t instar 1, 4 2nd 

instar and 5 3rd instar). From the 2nd instar T. ni larvae, 1 C. sonorensis and 1 C. 

marginiventris were obtained. 

Discussion 

Herbivores and natural enemies both consist of fluctuating populations. Thus, the 

development and effective use of biological control depends in large measure on 

an understanding of population dynamics (Huffaker and Messengers 1964; 

Hassell 1976; May 1976; Ridgway and Vinson 1977). The dynamics of T. ni in 

tomato fields compared to greenhouses in Southwestern Ontario are different but 

likely to be inter-related. The first T. ni generation may begin to develop inside 

tomato greenhouses as early as the last week of May and 3 to 4 weeks later in 

tomato fields, resulting in at least 1 more generation within greenhouses 

compared with fields. Janmaat (2004) reported that T. ni can cycle monthly in 

greenhouses throughout the growing season. In Eastern Ontario and in the 

Southwestern counties of Chatham-Kent and Essex, the first T. ni adults are 

found in Brassica crops by late-May (Harcourt 1963; OMAF, 2004), which agrees 

with what I have found in tomato greenhouses. In British Columbia, T. ni is 

collected outside greenhouses as early as April (Cervantes 2005) due to the mild 

temperature in BC at this time. 

In North America, T. ni is often present in tomato fields but is not usually an 

economically important pest in this crop. In some years, control measures are 

required but natural control by beneficial insects usually keeps them under 
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control (Harcourt, 1963; Hoffman et al. 1990; Howard et al. 1994, Metcalfe et al. 

2002). This is likely why population dynamics of T. ni have not been studied in 

field tomatoes. In tomato greenhouses, this is the first study of T. ni population 

dynamics in tomato greenhouses in Southwestern Ontario. Cervantes (2005) 

studied the dynamics of migrating T. ni moths into greenhouses in British 

Columbia and confirmed the results of Sutherland (1966) and Poe and Workman 

(1984) that the pupal stage is unable to overwinter outside the greenhouses but 

that it is able to overwinter inside greenhouses as it has been found in 

Southwestern Ontario greenhouses as well (OMAFRA 2005). In concordance 

with the results of this study, Cervantes (2005) also reported that the first T. ni 

generation in greenhouses may start in late May. 

The number of parasitoid species per host species is strongly associated with 

herbivore feeding biology. Host feeding biology is the single most important 

correlate of how many parasitoids species an herbivore is known to support 

(Hawkins and Lawton 1987; Hawkins 1988, 1990; Hawkins et al. 1992). During 

two years, the parasitism by larval parasitoids of T. ni was studied as one of the 

major mortality factors in the regulation of T. ni populations in tomato fields. The 

assemblage or the parasitoid species richness consisted of ten species. In a 

review of the global analysis of the patterns in the number of parasitoid species 

that individual herbivore species support and their associations by Hawkins 

(1994), he stated three patterns. The first is that completely or partially exophytic 

hosts support the richest parasitoid assemblages in areas experiencing high 

thermal variability. For lepidopteran external hosts where the mean low 

temperature in the coldest months is under 0°C, the species richness is about 7 

species per host species. In the current study, winter temperatures are below 0°C 

and with the lepidopteran host of T. ni, the overall parasitoid species richness 

was 10 across both years, with only 7 in any one year. Although the time frame 

of the studies under Hawkins's (1994) analysis was not considered as a variable, 

it should be included in a future analysis because, as shown in this study, not all 

parasitoid species are present each year. Differences in parasitoid species 

43 



presence/absence may be in response to climatic conditions changes, cultivation 

effects, host abundance, competition, etc. I only collected larval parasitoids in the 

current study, thus, the actual species richness could be higher if egg and pupal 

parasitoids were present. 

The second pattern stated by Hawkins (1994) is that parasitoid complexes on 

completely or partially exophytic insects are dominated by ichneumonoids 

(Ichneumonidae - Braconidae). Ichneumonoids are the most common parasitoids 

in feeding niches containing larger hosts as macrolepidoptera. In the current 

study of T. ni, which is a macrolepidoptera, the parasitoid complex is dominated 

by ichneumonoids (6 out of 10 species) and of those 6, 1 species is an 

ichneumonid and 5 are braconids. 

The third pattern stated by Hawkins (1994) is that hosts in all feeding niches 

support both idiobiont (those that do not permit continued host development 

following parasitisation) and koinobiont parasitoids (those that permit continued 

host development following parasitisation); in the case of exophytics (external 

and roller / webber hosts), all koinobionts attack larval stages. In the current 

study, with the exception of the egg-larval koinobiont parasitoid Copidosoma 

floridanum (Ashmead), all the other koinobionts species were larval 

parasitoids (8 species). 

Previous studies on the natural enemies of T. ni in North America have listed the 

parasitoid species richness as between 1 to 31 species, with a mean of 8.5 

(McKinney 1944; Pimentel 1961; Harcourt 1963; Oatman 1966; Sutherland 1966; 

Brubaker 1968; Clancy 1969; Oatman and Platner 1969; Elsey and Rabb 1970; 

Beirne 1971; Ehler and van den Bosch 1974; Wall and Berberet 1975; Harding 

1976; Martin et al. 1981; Oatman et al. 1983; Roltsch and Mayse 1983; Marston 

et al. 1984; Chamberlin and Kok 1986; Henneberry et al. 1991; Biever et al. 

1992; Godin and Boivin 1998; Shelton 2002; Caron 2005; Wold-Burkness et al. 

2005). From these studies, I conclude that the parasitoid richness of T. ni 
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depends on the crop or crops where the study is performed, the time frame of the 

study and the location. The highest parasitoid species richness was obtained 

when the studies sampled more that one host crop, and crops other than 

Brassica. Parasitoid species richness was the lowest overall in Brassica crops. 

When the studies were done over a longer time frame (more than 2 years), in the 

southern USA, and including Brassica crops, the number of parasitoid species 

recovered from T. ni increases. In Canada, all previous studies have sampled 

Brassica crops in British Columbia, Ontario and Southern Quebec. Within these 

studies, the mean parasitoid species richness was 4.5, with the highest value of 7 

in British Columbia. This contradicts Hawkins (1994) who states that completely 

or partially exophytic hosts support the richest parasitoid assemblages in areas 

experiencing high thermal variability and/or low winter temperature, with richness 

falling as climates become more stable or with increasingly milder low 

temperature. In contrast, the highest parasitoid richness was 31 species in 

Texas. However, study time frame and host crop has to be considered as 

important factors to defining a general pattern. It is my opinion that Brassica 

oleracea crops are not the best host crops to use to evaluate the species 

richness of parasitoids attacking T. ni. Finally, Brassica cultivated varieties are 

not native of America, which may explain why not as many native parasitoids are 

able to find T. ni hosts if they have not yet adapted to finding T. ni host cues in a 

Brassica crop. 

Previous literature has reported Compsilura concinnata (Meigen)(Diptera: 

Tachinidae) from Ontario and Quebec (Harcourt 1963; Godin and Boivin 1998). 

As this is the only dipteran T. ni parasitoid reported in this region, it is likely that 

this is the identity of the dipteran parasitoid. In the current study C. floridanum 

was found; Harcourt (1963) reported C. truncatellum in Eastern Ontario but Godin 

and Bovin (1998) reported C. floridanum in Southwestern Quebec. Copidosoma 

floridanum has almost invariably been misidentified as C. truncatellum (Noyes 

1988). I collected C. floridanum in this study, and based on the 24 studies about 

the natural enemies of T. ni in North America mentioned above, I agree with the 
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conclusion of Jones et al. (1983) and Waterhouse (1998) that across T. n/s 

range the most common parasitoids that contribute in the regulation of the 

populations of T. ni are Trichogramma spp, Voria ruralis, C. truncatellum and 

Hyposoter exiguae, although in the current study egg parasitoids were not 

evaluated. Most of the 10 species of parasitoid collected in this study are 

reported as common parasitoids of T. ni except for C. sonorensis which has 

rarely been collected from T. ni and Cotesia plathypenae which may be a new 

record for T. ni as no previous host association with T. n/was found. 

During this two-year study, C. sonorensis was the dominant species and its 

abundance was much higher compared with all the other parasitoid species 

together. Southwestern Ontario may provide some special conditions that allow 

C. sonorensis to be the dominant larval parasitoid of T. ni. Campoletis 

sonorensis is either rarely, or not reported at all as a natural enemy of T. ni 

(McKinney 1944; Pimentel 1961; Harcourt, 1963; Oatman 1966; Sutherland 

1966; Brubaker 1968; Clancy 1969; Oatman and Platner 1969; Elsey and Rabb, 

1970; Beirne 1971; Ehler and van den Bosch 1974; Wall and Berberet 1975; 

Harding 1976; Martin et al. 1981; Oatman et al. 1983; Roltsch and Mayse 1983; 

Marston et al. 1984; Chamberlin and Kok 1986; Waterhouse 1988; Henneberry et 

al. 1991; Biever et al. 1992; Godin and Boivin 1998; Yu 1999; Shelton 2002; 

Caron 2005; CABI Protection compendium 2005; Wold-Burkness et al. 2005). 

There are only three possible references of the presence of this species within 

Canada; one is reported for Alberta as the synonym Campoletis websteri 

(Viereck) without information about the insect host (Strickland, 1946); one from 

Oliver, British Columbia as the synonym Sagaritis websteri (Viereck) without 

information about host (Criddle 1924); and Campoletis perdistincta, a junior 

synonym of Campoletis flavicincta which is often a mis-identification of 

Campoletis sonorensis (Carlson 1972), is reported in New Brunswick as a 

parasitoid of Syngrapha epigea (Grote)(l_epidotera: Noctuidea) (Graham 1965). 

In the rest of North America, C. sonorensis has been reported as a parasitoid of 

T. ni once in Southern California in lettuce {Lactuca sativa L, Asteraceae) 
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(Henneberry et al. 1991) and once in Texas but the crop host was not reported 

(Harding 1976). Oatman et al. (1983) in Southern California and Wold-Burkness 

et al. (2005) in Rosemount, Minnesota reported Campoletis spp as a parasitoid of 

T. ni on tomato and cabbage, respectively. Rosemount, Minnesota is the closest 

location to Southern Ontario where Campoletis spp has been reported as a 

parasitoid of T. ni, although it could be C. flavicincta, another rare parasitoid of T. 

ni that together with C. sonorensis are the only species of this genus reported as 

T. n/parasitoids. 

I propose four reasons why C. sonorensis has not been reported as an important 

natural enemy of T. ni before: first, most of the T. ni parasitoid assemblages 

studies have been done in Brassica species crops. In choice and no-choice 

experiments, Brassica crops are not attractive to C. sonorensis (Elzen et al. 

1983). Brassica crops may not produce the synomones that cotton or tobacco, 

Nicotiana tabacum L. (Solanaceae) produce after insect damage and that 

mediate searching behavior in C. sonorensis (Elzen el al. 1984). In 14 studies on 

Brassica varieties (cabbage, broccoli, collard and cauliflower) (Pimentel, 1961; 

Harcourt 1963; Oatman 1966; Sutherland 1966; Brubaker 1968; Oatman and 

Platner 1969; Elsey and Rabb 1970; Martin et al. 1981; Chamberlin and Kok 

1986; Biever et al. 1992; Godin and Boivin 1998; Shelton 2002; Caron 2005), 

there is only one reference of Campoletis spp as an infrequent parasitoid of T. ni 

in cabbage in Rosemount, Minnesota (Wold-Burkness et al. 2005). No Brassica 

plants are on the list of 20 C. sonorensis host plants reported by Yu (1999). Two 

field studies measured parasitism of H. zea and H. virescens in a mix of wild and 

cultivated crops in Mississippi and in eastern Tennessee: percent parasitism by 

Microplitis croceipes reached 94.73%, parasitism by Cotesia marginiventris was 

1.31% and the parasitism by C. sonorensis was 1.05% in cutleaf geranium 

{Geranium dissectum L.)(Geraniaceae); only M. croceipes was present in 

crimson clover {Trifolium incarnatum L.) and soybean (Glycine max L.) 

(Leguminoseae); in cotton both M. croceipes and C. marginiventris reached 

100% and C. sonorensis 16.67%; and in tobacco M. croceipes reach up to 1.62% 
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and C. sonorensis up to 94.75% (Bidlack et al. 1991, Stadelbacher et al. 1984). 

de Moraes and Lewis (1999) found that the most important host-location cues for 

M. croceipes were materials associated with damaged plants. Microplitis 

croceipes demonstrated a significant preference for volatiles released from plants 

damaged by H. virescens larvae, over those released from undamaged tobacco 

and cotton plants. In choice experiments with damaged tobacco versus cotton, M. 

croceipes showed a significant preference for cotton plants. Studies by Lewis and 

Brazzel (1968), Graham et al. (1972), Pair et al. (1982, 1986), Puterka et al. 

(1985) and Eger et al. (1982) in different localities also support the host plant 

preferences of C. sonorensis for different wild and cultivated host plants with 

Helicoverpa spp and S. frugiperda as insect hosts. 

The second reason why it has not been reported may be that under many 

circumstances, competitors do not allow C. sonorensis to be successful and 

outcompete C. sonorensis for hosts. Eggs or 1s t instar larvae may be depleted by 

other natural enemies such as Trichogramma spp. which is able to parasitise up 

to 65% of the T. ni eggs (Graham 1970). In the study by Wold-Burkness et al. 

(2005) on cabbage, Campoletis spp parasitised 0.6% of the T. ni larvae and the 

dominant parasitoid, Voria ruralis, parasitised 69%. Voria ruralis is a parasitoid of 

the late 3rd and early 4th instar larvae of T. n/when it may already be parasitised 

by C. sonorensis. The faster development and the larger size of V. ruralis may 

allow it to be a better competitor. At 24°C, V. ruralis develops from egg to pupae 

in 7-8 days and when the eggs are deposited they are nearly ready to hatch 

(Brubaker, 1968), while C. sonorensis develops from egg to pupae in about 10 

days (reported in Chapter 3 results) and eclosion requires 36-48 hours (Wilson 

and Ridgway, 1975). Browning and Oatman (1984) reported that C. truncatellum 

and V. ruralis exhibited a competitive advantage when multiple parasitisation 

occurred between these species and other T. ni larval parasitoids, and that 

between the two species, the timing of parasitisation by V. ruralis affected the 

competitive outcome. In a study in lettuce, of 1750 T. ni larvae collected, 65 were 
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parasitised by M. brassicae, 42 by C. truncatellum, 42 by V. ruralis and only 4 by 

C. sonorensis (Henneberry et al. 1991). 

The third reason why it has not been reported may be the preference of C. 

sonorensis for other hosts that are more abundant than T. ni in non-Brassica 

crops. Campoletis sonorensis frequents fields of cotton, tobacco, alfalfa and 

tomatoes (Carlson 1972). In 10 of the 24 studies on T. n/parasitoid diversity, T. ni 

was a secondary problem in that crop and the T. ni population was very low or 

not present (McKinney 1944; Clancy 1969; Beirne 1971; Ehler and van den 

Bosch 1974; Wall and Berberet 1975; Harding 1976; Oatman et al. 1983; Roltsch 

and Mayse 1983; Marston et al. 1984; Henneberry et al. 1991). The preference of 

C. sonorensis for other hosts has been demonstrated by Lingren and Noble 

(1972), who concluded that H. zea, S. frugiperda and H. virescens were the most 

preferred hosts whereas T. ni was the least preferred host. The current study is 

the first where the main objective was to evaluate the parasitism by C. sonorensis 

on T. ni, as all the other studies on C. sonorensis have been conducted with 

Helicoverpa spp and S. frugiperda as the target hosts. 

The fourth reason why it has not been reported is that the distribution and habitat 

range of C. sonorensis may still be expanding through America. As reported by 

Carlson (1972), the geographic distribution of C. sonorensis was Sandpoint, 

Idaho (USA) as the northernmost point of distribution and Lima (Peru) as the 

southernmost locality. According to Machuca et al. (1989), this parasitoid 

colonized Chile relatively recently. Campoletis spp was only observed in field 

studies in 2000 in Rosemount, Minnesota, however field studies have been 

conducted there since 1968 (Wold-Burkness et al. 2005). This change in the 

distribution of C. sonorensis may be explained by the migration habits of most of 

the Noctuidae it parasitises. As C. sonorensis may be trying to follow the 

migration of its most important hosts, S. frugiperda and Helicoperva spp or 

probably other Noctuidae, the parasitoid has migrated into the Northern USA and 

Southwestern Ontario. Its ability to diapause has evolved to allow it to overwinter 
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in Southwestern Ontario and take advantage of the Noctuidae moth migrations in 

spring and/or emerging moths overwintering in Canada. To overcome stressful 

periods and to keep in synchrony with the seasonal occurrence of their biotic 

requisites, parasitoids have evolved different adaptations such as regulation of 

development and reproduction, such as through diapause (Tauber et al. 1986). 

Parasitoids undergo diapause like other insects (Tauber et al. 1983, 1986). As 

the parasitoid spread into new habitats, the abundance of non-preferred host 

species such as T. ni likely influenced C. sonorensis to evolve in a geographic 

strain or ecotype well adapted to the population dynamics of this host species. It 

is well documented that different strains of the same parasitoid species have 

preferences for different host species in different geographic areas (Pak, 1986; 

Pak and De Jong, 1987; Kraaijeveld and van Alphen, 1995; Kraaijeveld et al. 

1995; Arakaki et al. 1997; Bertschy et al. 1997; Heimpel et al. 2004; Vos and Vet 

2004; Geden et al. 2006). 

As soon as warmer conditions begin in early spring, C. sonorensis may start 

emerging from diapause and at this time preferred hosts such as S. frugiperda, 

Helicoverpa species and other migrating hosts are not present in this region. 

However, by May, one of the first migrant Noctuidae to arrive is T. ni, both from 

migrations from the south and emergence from overwintering in greenhouses. 

Pupae of T. ni are able to survive inside unheated greenhouses during the winter 

for 5 weeks (Cervantes, 2005) and likely C. sonorensis as well. Some other 

Noctuidae species such as Hydraecia micacea which are first captured in early 

May, are able to overwinter in Southern Ontario (West et al. 1983; Howard et al. 

1994, Kullik et al. 2005; Chaput 2000) and could be the first host of C. 

sonorensis. Campoletis spp has been reported as a parasitoid of H. micacea 

from corn fields around Guelph Ontario (West et al. 1983). When S. frugiperda, 

Helicoverpa species, Peridroma saucia (Lingren et al. 1972; Marino et al. 2006) 

and other reported C. sonorensis migrating host species colonize by mid-summer 

(Hudon et al. 1985; Howard et al. 1994), the population of C. sonorensis on T. ni 
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is stable and high enough that C. sonorensis can start moving into other crops 

and other wild host plants looking for hosts. 

The population dynamics of T. ni are a major component of the success of C. 

sonorensis in this region. The perfect synchronization of C. sonorensis and the 

first generation of T. ni larvae as found in this study, is the main factor to explain 

the high level of T. ni parasitism by C. sonorensis. By early spring, the first T. ni 

generation starts developing inside tomato greenhouses and at the same time, C. 

sonorensis is found parasitising 2nd instar larvae in greenhouses. After about 2 

weeks, when the first T. ni larvae are found in field tomato crops, C. sonorensis is 

also found parasitising 2nd instar larvae in the field crops. From this point 

onwards, the C. sonorensis population starts increasing in the fields on T. ni in a 

positively density dependent manner until harvest, reaching up to 87.5% 

parasitism. At this point, populations of other hosts on other plants become 

available in larger numbers such as S. frugiperda in corn, possibly allowing C. 

sonorensis to switch hosts and crop plants. 

In conclusion, C. sonorensis is a major factor in the regulation of the T. ni 

populations in tomato fields in Southern Ontario. This conclusion is based on the 

following evidence: 1) in non-pesticides sprayed tomato fields and sprayed-

tomato fields, C. sonorensis was the dominant larval parasitoid and its 

abundance was much higher than the abundance of the other parasitoids found; 

2) there was chronological synchrony between the populations of T. ni and C. 

sonorensis; 3) in non-pesticide sprayed tomato fields, the populations of T. n/'was 

the same as in tomato fields that were sprayed but the C. sonorensis parasitism 

was higher in the insecticide-free fields; 4) in the same non-sprayed fields, C. 

sonorensis was a positively density-dependent factor in the regulation of the T. ni 

population; and 5) the presence of other Noctuidae host species in the area could 

be an important factor in the stabilization of C. sonorensis populations throughout 

the year. 
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Table 2.1a: Crop management of the tomato fields and greenhouses used in the 
2005 survey. 

Year 

Crop System 

Character 

Planting date 

Variety 

Intercropping 
date 

Variety 

Sampling 
start date 
Sampling 
finish date 
Number of 
chemical 
insecticide 
sprays 

Chemical 
insecticides 

Number of 
Bt products 
sprays* 

2005 

Field 

1 

May 15 

Multiple 
hybrids 

-

-

May 20 

Aug. 10 

4 

Spinosad, 
Cyhalithrin-

Lamda, 
Dymethoate 

2 

2 

May 15 

Q909 
(58rows) 
TH4(10 
Rows) 

-

-

May 20 

Aug. 10 

2 

Cyhalithrin-
Lamda, 

Imidacloprid 

-

3 

May 15 

Sonoma 
and 

Marianna 

-

-

May 20 

Aug. 10 

4 

Permethrin 
Imidacloprid 

-

Greenhouse 

1 

Jan. 5 

Clarance 

Jun. 30 
Jul. 15 

Tresco 

May 3 

Sep 1 

1 

Tebufenozide 

6 

2 

Dec. 28/2004 

Big Dina 
Macarena 

-

-

May 3 

Sep 1 

3 

Tebufenozide 

8 

3 

Jan. 5 

Dundee 

Jul. 6 

Dundee 

May 3 

Sep1 

4 

Tebufenozide 

8 

'Bt = Bacillus thuringiensis. 
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Table 2.1b: Crop management of the tomato fields and greenhouses used in the 
2006 survey. 

Year 

Crop System 

Character 

Planting date 

Variety 

Sampling 
start date 
Sampling 
finish date 
Number of 
chemical 
insecticide 
sprays 

Chemical 
insecticides 

Number of 
Bt products 
sprays* 

2006 

Field 

1 

Jun. 13 

Heinz 
9478 

June 20 

Sep. 17 

-

-

-

2 

Jun. 13 

Heinz 
9478 

June 20 

Sep. 17 

-

-

-

3 

Jun. 13 

Heinz 
9478 

June 20 

Sep. 17 

-

-

-

Greenhouses 

1 

Dec. 12/2005 

Clarance 

May 3 

Sep 1 

7 

Tebufenozide, 
Methoxyfenozid 

e 

17 

2 

Dec. 1/2005 

Big Dina 
Macarena 

May 3 

Sep 1 

7 

Tebufenozide 

19 

3 

Jan. 6/2006 

Dundee 

May 3 

Sep 1 

12 

Tebufenozide 

12 

*Bt - Bacillus thuringiensis. 
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Table 2.2: Parasitoids reared from Trichoplusia ni Larvae in Fields in 2005 and 
2006 in the Kingsville-Leamington area. 

Order Family 

Ichneumonidae 

Braconidae 

Hymenoptera 

Encytidae 

Eulophidae 

Pteromalidae 

Diptera 

Species 

Campoletis sonorensis (Cameron) 

Cotesia marginiventris (Cresson) 

Cotesia plathypenae (Muesebeck) 

Microplitis alaskensis (Ashmead) 

Meteorus spp. (Haliday) 

Species not identified 

Copidosoma floridanum 
(Ashmead) 

Euplectrus spp. (Westwood) 

Trichomalopsis ?viridescens 
(Walsh) 

The specimens deteriorated too 
fast and were impossible to be 
identified. 

Habit 

Solitary larval endoparasitoid -
koinobiont 

Solitary larval endoparasitoid -
koinobiont 

Gregarious larval endoparasitoid -
koinobiont 

Solitary larval endoparasitoid -
koinobiont 

Solitary larval endoparasitoid -
koinobiont 

Solitary larval endoparasitoid -
koinobiont 

Polyembrionic egg-larval 
parasitoid - koinobiont 

Gregarious larval 
ectoparasitoid - koinobiont. 
Probably two species. 

Hyperparasitoid of Campoletis 
sonorensis 

Larval endoparasitoid -
koinobiont 
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Table 2.3: Relative abundance and Diversity's indexes of larval parasitoids of Tricholusia ni in tomato fields. 

Year 

2005 

2006 

Field 

1 

2 

3 

Total 
Mean 
(±SE) 

Field 

1 
2 

3 
Total 
Mean 
(±SE) 

Species' relative abundance 

Campoletis 
sonorensis 

93.3 

78.6 

81.3 

83.6 

84.4±4.5 

Campoletis 
sonorensis 

80.0 
77.3 

72.5 
75.6 

76.6±2.2 

Euplectrus 
spp 

6.7 

0.0 

6.3 

4.9 
4.3+2.2 

Euplectrus 
spp 

5.0 

9.1 

0.0 
3.7 

4.7±2.6 

Copidosoma 
floridanum 

0.0 

14.3 

3.1 
4.9 

5.8±4.3 

Copidosoma 
floridanum 

0.0 

4.5 

5.0 
3.7 

3.2±1.6 

Cotesia 
marginiventris 

0.0 

7.1 

0.0 

1.6 
2.4±2.4 

Cotesia 
marginiventris 

10.0 

4.5 

7.5 
7.3 

7.3±1.6 

Microplitis 
alaskensis 

0.0 

0.0 

3.1 

1.6 
1.0+1.0 

Microplitis 
alaskensis 

5.0 

4.5 

0.0 
2.4 

3.2±1.6 

Cotesia 
plathypenae 

0.0 

0.0 

3.1 

1.6 
1.0+1.0 

Meteorus 
spp 

0.0 

0.0 

7.5 
3.7 

2.5+2.5 

Braconidae 

0.0 

0.0 

3.1 

1.6 
1.0+1.0 

Diptera 

0.0 

0.0 

7.5 
3.7 

2.5±2.5 

Diversity's indexes 

Simpson's 
diversity 

Index 

0.87 

0.62 

0.66 

0.70 
0.72±0.08 

Simpson's 
diversity 

Index 

0.64 
0.59 

0.53 

0.58 
0.59±0.03 

Simpson's 
evenness 

index 

0.58 
0.54 

0.25 

0.20 
0.46±0.10 

Simpson's 
evenness 

index 
0.39 

0.34 

0.38 
0.25 

0.37±0.03 
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Table 2.4: Total percent parasitism of the Trichoplusia ri\ larval parasitoid 
assemblage species in tomato fields. 

Species 

Campoletis sonorensis (Cameron) 

Cotesia marginiventris (Cresson) 

Cotesia plathypenae (Muesebeck) 

Microplitis alaskensis (Ashmead) 

Meteorus spp. (Haliday) 

Braconid not identified 

Copidosoma floridanum (Ashmead) 

Euplectrus spp. (Westwood) 

Diptera 

Total parasitism (%) 

Total number of larvae 

Year 

2005 

12.75 

0.25 

0.25 

0.25 

-

0.25 

0.75 

0.75 

-

15.25 

400 

2006 

17.26 

1.64 

-

0.55 

0.82 

-

0.82 

0.82 

0.82 

22.73 

365 
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Table 2.5: Overall total percent parasitism of Trichoplusia ni larval instars in tomato fields and greenhouses. 

System 

Year 

Instar 

1 

2 

3 

4 

5 

Total 

Fields 

2005 

Total 
number 
of larvae 

(#) 

41 

210 

118 

24 

7 

400 

Campoletis 
sonorensis 
parasitism 

(%) 

0.0 

22.9 

2.5 

0.0 

0.0 

12.75 

All other 
parasitoids 
parasitism 

(%) 

0.0 

3.8 

1.7 

0.0 

0.0 

2.5 

2006 

Total 
number 
of larvae 

(#) 

7 

177 

84 

54 

43 

365 

Campoletis 
sonorensis 
parasitism 

(%) 

0.0 

31.6 

8.3 

0.0 

0.0 

17.3 

All other 
parasitoids 
parasitism 

(%) 

0.0 

8.5 

4.8 

1.9 

0.0 

5.5 

Greenhouses 

2005 

Total 
number 
of larvae 

(#) 

305 

391 

111 

19 

12 

838 

Campoletis 
sonorensis 
parasitism 

(%) 

1.0 

4.9 

0.0 

0.0 

0.0 

2.6 

2006 

Total 
number 
of larvae 

(#) 

450 

931 

233 

20 

11 

1645 

Campoletis 
sonorensis 
parasitism 

(%) 

0.0 

3.9 

1.3 

0.0 

0.0 

2.4 
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Table 2.6: Pearson Correlation of the number of second instar 
larvae of Trichoplusia ni and the number of larvae parasitised by 
Campoletis sonorensis in fields 2006. 

Field 

1 

2 

3 

Overall 

Pearson 
Correlation 

0.664 

0.929 

0.979 

0.946 

P-value 

0.336 

0.0001 

0.0001 

0.0001 

N 

4 

9 

9 

22 



Table 2.7: Regression analysis of the second larval instar density of Trichoplusia 
n/and percent parasitism by Campoletis sonorensis. Samples from all dates were 
pooled by field and by year (Overall). 

2006 
Field 

1 
2 
3 

Overall 

Slope (b) 
-0.686 
0.444 
0.388 
0.322 

D.F. 

1,3 
1,3 
1,3 
1,3 

r2 

0.705 
0.224 
0.428 
0.182 

F-value 
4.782 
2.015 
5.241 

4.4751 

P-value 
0.160 
0.199 
0.056 
0.048 
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Table 2.8: Temporal relationship between second larval instar density of 
Trichoplusia ni and percent parasitism by Campoletis sonorensis in tomato fields 
2006. 

Date / Week 

August 2 (week 8) 

August 9 (Week 9) 

August 17 (Week 10) 

August 24 (Week 11) 

Slope (b) 

-0.397 

0.368 

1.331 

0.940 

D.F. 

1,1 

1,1 

1,1 

1,1 

r2 

0.386 

0.116 

0.905 

0.998 

F-value 

0.628 

0.131 

9.558 

629.635 

P-value 

0.572 

0.779 

0.199 

0.025 
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Figure 2.1: Mean (± SE) number of Trichoplusia ni larvae per plant. 
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Figure 2.2: Mean (± SE) number of each larvae instar of Trichoplusia ni per 
plant. 
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C. Within tomato greenhouses in 2005 
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Figure 2.3: Mean (± SE) percent parasitism of the 2nd larval instar of Trichoplusia 
ni by Campoletis sonorensis 
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C. Within tomato greenhouses in 2005 
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Chapter 3 

Host preference and fitness-related proxies of Campoletis sonorensis 

(Hymenoptera: Ichneumonidae) as a Parasitoid of the Cabbage Looper, 

Trichoplusia ni (Lepidoptera: Noctuidae) 

Introduction 

For insect parasitoids, the host represents the whole nutritional and physiological 

environment during immature development. Thus, host quality evaluation by 

female parasitoids plays a key role in host selection and the tradeoffs in fitness of 

the parasitoid because the host quality and the developmental requirements of 

the immature parasitoid may result in an increased or lowered gain (Vinson 1990; 

Godfray 1994; Harvey and Strand 2002; Beckage and Gelman 2004). 

Koinobiont parasitoids, which allow the host to continue to feed and grow after 

parasitisation, have to cope with a higher degree of uncertainty regarding the 

resources available for their offspring as host quality varies during parasitoid 

development (Mackauer 1986). Thus, the relationship between host 

characteristics at oviposition and fitness gain of the parasitoid is not obvious and 

depends on a combination of factors such as (1) the physiology and behaviour of 

the host instars (Liu et al. 1984; Gerling et al. 1990; Weisser 1994; Jones and 

Greenberg 1998; Chau and Mackauer 2000; Lin and Ives 2003), (2) host-plant 

quality (Kouame and Mackauer 1991; Stadler and Mackauer 1996), (3) the 

feeding ecology of the host (Harvey and Strand 2002), and (4) rearing conditions 

(Roitberg et al. 2001; Hoelscher and Vinson 1971, Li and Mills 2004). 

Parasitoid fitness is usually measured by life-history traits such as development 

time, survival, fecundity, sex ratio, and size (Godfray 1994; Roitberg et al. 2001) 

and although they are not true measures of fitness (Roitberg et al. 2001; van 

Baalen and Hemerik 2008), they can have direct or indirect contributions to it. 
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Several host quality models assume fitness as a relationship between the host 

size at oviposition and the emerging parasitoid size (Nicol and Mackauer 1999; 

Harvey et al. 2000; Chau and Mackauer 2001) such that when host size and 

quality vary, parasitoid wasps are expected to oviposit more females in high 

quality hosts, because the fitness of sons suffers less from being small than the 

fitness of the daughters, who will have to produce eggs (Charnov et al. 1981; 

Godfray 1994; VanLaerhoven and Stephen 2003). 

Trichoplusia ni (Lepidoptera: Noctuidae), an important pest of crucifers and many 

other field crops in Ontario, is now a year-round pest in the vegetable 

greenhouse crops in Canada (Gillespie et al. 2002). Canadian populations of this 

insect pest are usually established through annual migration of adult moths from 

the south (Lafontaine and Poole 1991). The overwintering T. ni populations inside 

Canadian greenhouses have increased the development of resistance to Bacillus 

thuringiensis var. kurstaki (Janmaat and Myers 2003, 2006) which has resulted in 

increased use of chemical pesticides that are not compatible with other biocontrol 

agents and bumble bee pollinators. 

Campoletis sonorensis (Hymenoptera: Ichneumonidae) is a solitary larval 

endoparasitoid that has been reported on about 30 Lepidoptera crop pests, 

primarily of the family Noctuidae (Lingren and Noble 1970; de Moraes et al. 1991; 

Machuca et al. 1989; CABI 2005). This generalist parasitoid has demonstrated 

potential to suppress populations of the tobacco budworm, Helicoverpa virescens 

(Fabricious) (Lepidoptera: Noctuidae), the corn earworm / tomato fruitworm, 

Helicoverpa zea (Boddie) and the fall army worm Spodoptera frugiperda (JE 

Smith) (Lepidoptera: Noctuidae) in tobacco {Nicotiana tabacum L.)(Solanaceae), 

tomatoes (Lycopersicon esculentum Mill.)(Solanaceae), cotton {Gossypium 

hirsutum L.)(Malvaceae), corn (Zea mays L.)(Gramineae) and sorghum 

{Sorghum bicolor L.)(Poaceae) (Hoelscher and Vinson 1971; Lingren 1977; 

Isenhour 1986) and as reported in my previous study (Chapter 2), it has been 
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found to be a major factor in the regulation of T. ni populations in tomato fields in 

Southern Ontario. 

The objectives of this study were to measure which larval stage of T. ni is the 

preferred host of the parasitoid C. sonorensis, and to measure the effect of 

different larval age classes of T. ni on parasitism, offspring sex ratio, mortality 

and development time parameters of C. sonorensis. 

Methods and Materials 

Trichoplusia ni rearing 

The colony was maintained in an environmental chamber at 24°C, 60% RH and a 

photoperiod of 12:12 (L:D). Approximately 50 adults were kept in a 5 L plastic 

container. Adults were fed a 5% sugar solution and every other day the eggs 

were collected from paper towels used as the lid of the container and as 

oviposition substrate. The eggs were disinfected with a 0.5% solution of 

commercial bleach. Once the eggs hatched, larvae were reared on a pinto bean 

diet (Shorey and Hale 1965) in 12-oz Styrofoam containers. Larvae were moved 

into individual 1-oz transparent plastic cups (Solo Cup Company, Urbana, USA) 

once they developed to the second instar. 

Campoletis sonorensis rearing 

The parasitoid colony was maintained under the same conditions as the T. ni 

colony, with 4 day-old T. ni larvae (early second larval instar) provided as hosts. 

In small plastic transparent cages (17x12x15 cm) on the same artificial diet as 

stated above, T. ni larvae were exposed to naive mated C. sonorensis females 

for 24 h. Within each cage, there was a ratio of 20 larvae: 1 parasitoid female, 

with a total of up to 5 parasitoids/cage. Subsequently, each T. ni larva was placed 

into individual 1-oz plastic cups to allow the parasitoid to develop to adult. When 

C. sonorensis adults emerged, they were separated into cages by sex. After 24 h, 
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females were introduced into male cages to allow mating for 48 hours (ratio of 3 

males: 1 female) (Isenhour 1986; Hoelscherand Vinson 1971) 

Fitness & Preference of C. sonorensis on T. ni 

Larvae of T. ni were separated into 7 age class treatments based on date of 

eclosion (i.e. 2-8 day-old). The selection of age classes was based on the natural 

survey rearing results (Chapter 2) in which the 2nd larval instar of T. ni was the 

most frequent developmental stage parasitised by C. sonorensis. Under the 

rearing conditions described, T. ni larvae reached 2nd instar at 3-4 days and 3rd 

instar at 7-8 days. Twenty T. ni larvae of each age class were placed on tomato 

leaves in small transparent cages ( 1 7 x 1 2 x 1 5 cm). The tomato leaves chosen 

consisted of the three distal leaflets of a new side shoot, which were removed 

and kept in a plastic cup with wet cotton. One mated C. sonorensis female was 

introduced to the cage for 24 h. After exposure to the parasitoid, the T. ni larvae 

were placed individually in 0.5 oz cups (Solo Cup Company, Urbana, USA) with 

diet. Cups were checked daily and the time of formation of parasitoid cocoons 

was recorded until emergence of either adult T. ni or C. sonorensis. Upon 

emergence, the sex of each parasitoid was determined. Both the cages and the 

rearing cups were held in an environmental chamber set at 27°C, 60% RH and a 

photoperiod of 12:12 L:D. Each age class treatment was replicated 10 times. 

The C. sonorensis fitness parameters measured were of four types: 1) parasitism 

ratio and success, 2) offspring sex ratio, 3) mortality, and 4) developmental time. 

1. The parasitism ratio and success parameters consisted of: (a) 

parasitisation rate, (b) emergence rate, and (c) no emergence rate. 

a. Parasitisation rate was calculated from the proportion of the total 

number of hosts that produced parasitoid cocoons. 

b. Emergence rate was calculated from the proportion of parasitoids 

that emerged from the total number of cocoons. 

c. No emergence rate was calculated from the proportion of cocoons 

where adult parasitoids didn't emerge. 
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2. Offspring sex ratio parameters consisted of: (a) male rate, (b) female rate, 

and (c) overall sex ratio. 

a. Male rate was calculated from the proportion of male offspring. 

b. Female rate was calculated from the proportion of female offspring. 

c. Overall sex ratio was calculated from the proportion of male and 

female offspring. 

3. Mortality parameters consisted of mortality rate, and 

corrected mortality rate, which were calculated as proportion of dead 

larvae, which was then corrected against that in the control for each host 

age according to Abbott (1925): 

M corrected = M treatment — M mntrol X 1 0 0 

1 0 0 - M control 

4. Offspring development time parameters consisted of: (a) parasitisation to 

cocoon formation, (b) cocoon formation to adult emergence, and (c) 

parasitisation to adult emergence (or total development time). These 

parameters were calculated individually for males and females. 

Statistical Analysis 

The effect of different T. ni age classes on fitness parameters (except for 

developmental time) of C. sonorensis were analyzed using the Kruskal-Wallis test 

for nonparametric data, followed by Dunn's Multiple Comparison Test (Zar 1999) 

when significant differences were found between the host age classes. Pairwise 

comparisons to evaluate the effect of gender on emergence rate were analyzed 

with the Mann-Whitney U test. One-Sample sign test was used to compare the 

mean sex ratio of each age class with an equal mean sex ratio (0.5). ANCOVA 

was used to analyze a possible relationship between no emergence rate and 

parasitism rate through the age classes where no emergence rate was the 

dependent variable, age was the fixed factor and parasitism was the covariate. 

ANCOVA was also used to analyze a possible relationship between corrected 
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mortality rate and parasitism rate through the age classes where corrected 

mortality rate was the dependent variable, age was the fixed factor and 

parasitism rate was the covariate. The interactions of the different T. ni age 

classes and the C. sonorensis gender on each developmental time parameter 

was analyzed using a two-way ANOVA followed by Tukey's SHD Test at P=0.05 

for means separation between the different age classes. The parameters 

parasitisation to cocoon formation, cocoon formation to adult emergence, and 

parasitisation to adult emergence (or total development time) were used as the 

dependent variable and sex and age were used as fixed factors. Pairwise 

comparisons to evaluate the effect of gender on each development parameter 

within each age classes were analyzed with independent samples T-test. These 

analyses were conducted in Minitab 15 (2006) and SPSS v. 15 (2006) 

Results 

Campoletis sonorensis was able to parasitise and successfully develop to adult in 

all of the age classes provided (2 to 8 day-old larvae) (Figure 3.1). The 

percentage of hosts parasitised (parasitisation rate) differed between different 

host age classes (Kruskal-Wallis X2
6 = 27.47, P=0.0001) such that the highest 

parasitism rate (53.0±5.7%), which occurred on 4 day-old hosts, did not differ 

from the parasitism rates on hosts of 3, 5 and 7 day-old, but it was higher than 

that on 2, 6 and 8 day-old hosts. 

The percentage of parasitoids that successfully developed to adult (emergence 

rate) also differed between different host age classes (Figure 3.1; Kruskal-Wallis 

test: X2
6 = 27.89, P=0.0001)). Similar to the parasitism rate, the highest 

emergence rate also occurred on 4 day-old hosts (44.0±5.5%) and it was not 

different from the emergence rates on hosts of 3, 5 and 7 day-old but it was 

higher than that on 2, 6 and 8 day-old hosts. 
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The percentage of parasitoids that were unsuccessful in developing to adult (no 

emergence rate) did not differ between different host age classes (Figure 3.1; 

Kruskal-Wallis test: X2
6 = 10.18, P=0.117). The fluctuation in the no 

emergence rate is related to fluctuation in parasitisation rate (ANCOVA: F-i, 

62=51.377, P=0.0001), not host age (ANCOVA: F6,62= 1.086, P = 0.381). 

The offspring sex ratio was equal between males and females from all host age 

classes (Figure 3.2) and did not differ between different host age classes 

(Kruskal-Wallis test: X2
6=3.22, P=0.781)). There was no difference in 

emergence rates of male compared to female parasitoids from different host age 

classes (Table 3.1). 

Emergence rate of males differed between host age classes (Figure 3.3; X2
6 = 

21.84, P=0.001).The highest male mean emergence (22.0±3.9%) was from 4 

day-old hosts, which did not differ from emergence from 3, 5 and 7 day-old hosts, 

but was higher than that from 2, 6, 8 day-old hosts. Emergence rate of females 

differed between host age classes (X26=21.33, P=0.002). The highest mean 

female emergence rate, 22.0±4.8%, was from 4 day-old hosts, which did not 

differ from emergence from 3, 5, 6, and 7 day-old hosts, but was higher than that 

from 2 and 8 day-old hosts. 

Both mortality rate and corrected mortality rate differed between host age classes 

(Figure 3.4; X2
6=33.04, P=0.0001; X2

6 = 68.01, P=0.0001). Both mortality rate 

and corrected mortality rate were highest in 2 day-old hosts, 39.0±5.3% and 

31.7±5.7%, respectively. The mortality rates decreased with host age such that 

the lowest mortality rates were of 5-8 day-old larvae (mortality rate) or 6-8 day-old 

larvae (corrected mortality rate). The rate of parasitism on dead larvae was not 

measured, however most of the dead larvae that were examined under the 

stereoscope showing possible signals of parasitism (scars) and/or parasitoid 

eggs inside the bodies were 2 -3 day-old hosts. It could be that they were killed 

by the oviposition of the parasitoid as the corrected mortality was only marginally 
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related to the parasitisation rate (ANCOVA: Fi,62=3.665, P=0.060) but was related 

to the age of the host (ANCOVA: F6,62=6.096, P=0.0001). 

The development time from parasitisation to cocoon formation differed overall 

between host age classes (ANOVA: F6,254=22.718, P=0.0001) and between 

sexes (ANOVA: Fi,254=7.111, P=0.008) but there was no interaction between age 

class and sex (ANOVA: F6,254=1-360, P=0.231). Parasitoids developed faster to 

cocoon formation on 5-8 day-old hosts than on younger hosts (Table 3.2). In 

general, the development time from parasitisation to cocoon formation was 

shorter for males and it just differed from that on females on 3, 5, and 7 day-old 

hosts (Table 3.3a). 

Development time from cocoon formation to adult emergence differed between 

host age classes (ANOVA: F6,254=2.552, P=0.020) but not between sexes 

(ANOVA: F1254=0.270, P=0.604). There was no interaction between age class 

and sex (ANOVA: F6,254=1-166, P=0.325). Parasitoids developed faster from 

cocoon formation to adult emergence on 7 day-old hosts than on 2 day-old hosts 

(Table 3.2) and it took the same amount of time in both sexes within each age 

host class (Table 3.3b). 

Total development time (parasitisation to adult emergence) differed between host 

age classes (ANOVA: F6,254=26.091, P=0.0001) and between sexes (ANOVA: 

Fi,254=5.515, P=0.020) but there was no interaction between age class and sex 

(ANOVA: F6,254=1-600, P=0.148). Total developmental time was faster on 5-8 

day-old hosts than on younger hosts (Table 3.2). These results are similar to the 

results for the development time from parasitisation to cocoon formation 

described above. Total developmental time was shorter for males than females 

on 3, 4 and 5, day-old hosts (Table 3.3c). 
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Discussion 

The suitability of the seven age-classes of T. ni larvae evaluated in this study as 

hosts of C. sonorensis indicates that 3-5 day-old larvae (early second larval 

instar) are the preferred stage of this host for parasitisation and provide the 

highest degree of fitness, although the parasitoid was able to develop to adult in 

all seven age-classes. These results agree with the results of Lingren et al. 

(1970) who studied the preference of C. sonorensis in ten different Lepidoptera 

hosts and reported that the suitability of these hosts depended on the age of the 

host species. In their study, they found that C. sonorensis was able to develop to 

adult on 2-8 day-old T. ni larvae. However, they reported that the parasitoid 

preferred 2-4 day-old larvae instead of the 3-5 day-old larvae preferred in the 

current study. They used a temperature of 29.5°C whereas I used 27°C, which 

may make a difference due to temperature effects on development rate. Likely, 2-

4 day-old larvae at 29.5°C are the same size as 3-5 day-old larvae at 27°C. 

Although they used 2 mated parasitoid females per enclosure, the number of 

parasitised larvae was lower than the number I found in the current study. With a 

24 hour exposure time, from 100 3-day-old larvae they reported a mean of 7.4 

parasitised larvae, (3.7 per female) but from 20 4-day-old larvae, I found a mean 

of 10.6±1.1 parasitised larvae per female. Although it appears to be different, it is 

impossible to make a direct comparison because there is no measure of variation 

associated with their mean. 

There are multiple factors identified that affect the parasitisation rate on different 

host age classes and these can be divided into two groups: 1) internal factors, 

including a) physiological and nutritional compatibility between the host and the 

immature parasitoid (Harvey et al. 2004), b) disruption of the parasitoid 

oviposition behaviour (Schmidt 1974; Bigornia 1956), c) failing of the parasitoid 

larvae to egress from older hosts or lack of a trigger from the host to initiate 

parasitoid egression (Gunasena et al. 1989a), and d) host mortality before 

parasitoid egression mostly from hosts parasitised at early age (Jenner and 
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Kuhlmann 2006); and 2) external factors, such as a) host food (Campbell and 

Duffey 1979; Gunasena et al. 1989b; Fox et al. 1990; Romeis et al. 2005), b) 

parasitoid parental aging (Hoelscher and Vinson 1971; Matos et al. 2005; Pandey 

et al. 2007), c) interference between females (Lingren and Noble 1970; Pandey 

et al. 2004), d) oviposition enclosure (Lingren and Noble 1972), and e) 

environmental conditions such as temperature and photoperiod (Hoelscher and 

Vinson 1971). Differences in these external factors between the ones in the 

current study and those of Lingren et al (1970), which were not fully specified, 

may explain the difference in parasitisation levels of C. sonorensis on T. ni 

observed between the two studies. 

The difference on the parasitisation rate and on the emergence rate between the 

different age classes is due to two types of mortality: 1) mortality of host larvae 

prior to parasitoid cocoon formation, and 2) mortality of parasitoid prior to 

emergence. Many factors could explain this mortality. For example, 

superparasitism is a possible explanation. Although it was not quantified in this 

study, superparasitism has been found to be common under the conditions that 

C. sonorensis is reared in our lab (unpublished data). 

Another mortality factor could be host age because in young larvae, the resource 

for the parasitoid development may be insufficient such that the parasitoid fails to 

mature and dies (Godfray 1994) and that young hosts are more susceptible to 

lethal injury during parasitoid oviposition by stinging, by the polydnavirus-venom 

injection or both. This mortality was indirectly measured by the corrected mortality 

rate as it provides a measure of the background level of mortality of hosts in the 

absence of parasitism. Campoletis sonorensis injects a polydnavirus into its hosts 

during oviposition which induces immunosuppression, host developmental 

arrestment, and in some cases, the death of the host (Norton and Vinson 1977; 

Webb and Summers 1990; Vinson and Stoltz 1986). Lingren et al. (1970) 

concluded that the higher mortality in 2-3 day-old larvae of T. ni exposed to C. 

sonorensis was due to abortive parasitism, however as they did not explain what 
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they meant by it, I assume that it could have been induced by all the factors 

mentioned previously. On the other hand, the mortality was reduced in the older 

host larvae, probably as a result of the larval defensive behavioural response 

(Bigomia 1956; Noble and Graham 1966), or to a stronger immune response to 

parasitism (Salt 1968; Vinson 1990), or both. 

The proportion of parasitoid cocoons that did not emerge as adults was related to 

the increase in the parasitisation rate but not to the host age, probably a matter of 

the sample size which was too small to show any relationship. 

Hoelscher and Vinson (1971) and Lingren et al. (1970) reported that the 

proportion of males is usually greater than that of females in field-collected and 

laboratory-reared C. sonorensis. In current study, the offspring sex ratio was not 

dependent on the host age. Lingren et al. (1970) reported sex ratio from 2-8 day-

old larvae of 5 different Lepidoptera host species including T. ni, and found a 

female-biased sex ratio in C. sonorensis reared from 2 and 3 day-old larvae of S. 

frugiperda and S. eridania (Cramer), respectively. In the current study, an equal 

sex ratio was obtained from all the different age classes. Noble and Graham 

(1966) reported a higher ratio of adult females to males in older hosts. In the 

reproduction rate and life table study of C. sonorensis (Chapter 4), I reported a 

mean female-biased sex ratio on 4 day-old larvae of T. ni. 

The sex ratio of the parasitoid progeny can be affected by multiple factors 

including: 1) photoperiod and female age, 2) host species, 3) female parasitoid 

density, and 4) host plant and/or diet quality. Hoelscher and Vinson (1971) 

reported that a 12:12 (L:D) photoperiod and 4 day-old females produced offspring 

with the greatest proportion of females, although the sex ratio was always male-

biased. Lingren et al. (1970) found that S frugiperda and S. eridania were the 

only hosts that provided female-biased sex ratios for C. sonorensis, whereas 

parasitoid offspring from T. ni were always male-biased. Pandey et al. (2004) 

reported that with an increase in female parasitoid density, the proportion of male 
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progeny increased significantly when they used 1, 2, 4 and 8 females of C. 

chlorideae per cage. In the studies of Hoelscher and Vinson (1971) and Lingren 

et al. (1970), two to three female parasitoids were used per cage with T. ni and H. 

virescens as hosts and these studies had a male-biased C. sonorensis progeny 

sex ratio. I used 1 female per cage and obtained female-biased progeny sex 

ratios. Multiple lab and field-based studies support the idea that the progeny sex 

ratio of parasitoids is affect by the host plant and/or diet quality (Kumar and 

Tripathi 1987; Fox et al. 1990; Jansson 2003; Weathersbee III et al. 2004; 

Setamou et al. 2005; Onagbola et al. 2007; Lentz and Kester 2008). In the 

current study, 4 day-old T. ni larvae were exposed to C. sonorensis females on 

tomato seedlings and in the reproduction rate and life table study (Chapter 4), the 

larvae were exposed on pinto bean diet. This may be affecting the progeny sex 

ratio which was equal for males and females in the current study and female-

biased in the subsequent study (Chapter 4). 

The development time of C. sonorensis from parasitism to cocoon formation was 

longer in young T. ni larvae and shorter for older host ages. Development time 

from cocoon formation to adult emergence is dependent on the environmental 

conditions during which the cocoons are exposed. Gunasena et al. (1989a) and 

Noble and Graham (1966) reported that the time to cocoon formation and adult 

emergence of C. sonorensis was not affected by the instar stage of Heliothis 

virescens attacked at 28°C and 36°C, respectively. Gunasena el al. (1989a) 

reported that males and females formed cocoons at approximately the same 

time, but the mean developmental time was longer for females. These results are 

in part contrary to the results of the current study because, for both parameters, 

the development time was longer for females. In contrast, Isenhour's (1986) 

results demonstrated the same relationship with C. sonorensis on S. frugiperda at 

20°C as I did in the current study. As found by Isenhour (1986), temperature 

seems to be a major factor influencing these results because he did not find 

dependence of the development time of C. sonorensis from S. frugiperda at 15, 

25 and 30°C but it has been reported in other parasitoids such as Encarsia 
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formosa (Gahan)(Hymenoptera: Aphelinidae) (Hu et al. 2002, 2003) and in 

Aphidius ervi (Haliday)(Hymenoptera: Aphelinidae) (Colinet et al. 2005). The 

longer development time observed in parasitoids in young host stages may be 

associated with the existence of a critical host size required for successful 

parasitoid development. In younger host stages that have fewer resources 

available, the immature parasitoid may need to slow down its development until 

the host has reached a sufficient size (Colinet et al. 2005). The developmental 

times of between 13 to 17.2 days for C. sonorensis on 1-8 day-old larvae of T. ni 

at 27°C found in the current study were very similar and followed the same trend 

through the age classes as development times from 14.5 to 16.8 days on 1-5 

day-old larvae of H. virescensat 36°C found by Noble and Graham (1966). 

In summary, the early 2nd larval instar (3-5 day-old larvae) of T. ni represents the 

most preferred host stage of the larval endoparasitoid C. sonorensis. The higher 

suitability of this host stage results in more parasitised larvae, a higher rate of 

successful parasitoid emergence, a higher rate of female emergence, and lower 

rate of immature parasitoid mortality. The fitness gain of C. sonorensis on late 1st 

larval instar (2 day-old larvae) and late 2nd larvae instar (6-8 day-old larvae) 

stages of T. ni is negatively affected by the trade-offs between the different 

physiological and behavioral characteristics influencing their suitability as hosts of 

C. sonorensis. Although the use of these suboptimal hosts results in a lower 

parasitisation rate, lower adult parasitoid emergence rate, lower female parasitoid 

rate, and higher mortality of immature parasitoids rate, the female parasitoids will 

probably use them when their availability, either in terms of accessibility or 

abundance, makes them profitable even though parasitoid fitness is diminished 

compared to other host stages (Colinet et al. 2005). Here, I clearly show why in 

the study of the host-parasitoid interactions, it is important to include multiple 

trade-offs between the parasitoid fitness-related proxies and that the 

physiological and behavioral characteristics of the host can influence the 

prediction of the interactions. 
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Table 3.1: Comparison of male versus female Campoletis sonorensis offspring 
emergence rates from each age class of Trichoplusia ni larvae. Means with the 
same letter are not significantly different (Mann-Whitney U test, P>0.05) 

Host age 
(Day-old) 

2 

3 

4 

5 

6 

7 

8 

Mean±SE emergence rate 

Male percentage (%) 

4.5±2.5a 

10.0±3.7a 

22.0±3.9a 

15.0±4.9a 

4.0±1,2a 

9.5±2.3a 

5.0±2.2a 

Female percentage (%) 

2.5±1.1a 

10±4.3a 

22.0±4.8a 

9.0±1.8a 

11.5±3.3a 

5.5±1.6a 

2.0±0.8a 
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Table 3.2: Development time parameters of Campoletis sonorensis offspring by 
host age classes. Means within the same response variable followed by the same 
letter are not significantly different (Tukey's Multiple Comparison Test, P>0.05) 

Host Age 
(day-old) 

2 

3 

4 

5 

6 

7 

8 

Parasitism to cocoon 
formation (days) 

Mean±SE 

11.1±0.5b 

11.4±0.3b 

10.2±0.2b 

8.0±0.2a 

7.6±0.2a 

8.3±0.4a 

7.71±0.2a 

Cocoon formation to 
adult emergence (days) 

Mean±SE 

5.7±0.2b 

5.6±0.1ab 

5.4±0.1ab 

5.3±0.1ab 

5.1 ±0.1 ab 

5.0±0.1a 

5.3±0.2ab 

Parasitism to adult 
emergence (days) 

Mean±SE 

16.8±0.5b 

17.0±0.3b 

15.6±0.2b 

13.4±0.2a 

12.7±0.2a 

13.3±0.5a 

13.0±0.4a 
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Table 3.3: Development time parameters of Campoletis sonorensis offspring by 
sex within host age classes. Means with the same letter are not significantly 
different (Independent samples T-test, P>0.05) 

a. Parasitism to cocoon formation 

Host Age 
(day-old) 

2 

3 

4 

5 

6 

7 

8 

Mean±SE development time from parasitism to cocoon 
formation (Days) 

Male 

11.4±0.5a 

10.6±0.3a 

9.8±0.3a 

7.6±0.1a 

7.3±0.4a 

7.6±0.4a 

7.6±0.2a 

Female 

10.4±0.9a 

12.3±0.6b 

10.6±0.3a 

8.7±0.3b 

7.7±0.2a 

9.5±0.9b 

8.0±0.7a 

T-test 

t1|12=1.122, P=0.284 

ti,38=-2.736, P=0.009 

t1j89=-1.800, P=0.075 

t146=-3.996, P=0.0001 

ti,29=-1.061, P=0.297 

ti.28s-2.252, P=0.032 

ti,i2=-0.726, P=0.482 

b. Cocoon formation to adult emergence 

Host Age 
(day-old) 

2 

3 

4 

5 

6 

7 

8 

Mean±SE development time from cocoon formation to 
adult emergence (Days) 

Male 

5.8±0.4a 

5.5+0.1 a 

5.2±0.1a 

5.4+0.1 a 

2.3±0.3a 

5.1 ±0.1 a 

5.4±0.2a 

Female 

5.6±0.2a 

5.7±0.3a 

5.6±0.1b 

5.3±0.2a 

5.0±0.2a 

4.9±0.2a 

5.0±0.4a 

T-test 

ti,12=3.37, P=0.742 

ti i38=-0.677, P=0.503 

t1iB9=-2.443, P=0.017 

ti,46=0.408, P=0.685 

t1i29=-0.631,P=0.533 

^,28=0.639, P=0.528 

ti ,12=0.926, P=0.373 

c. Parasitism to adult emergence 

Host Age 
(day-old) 

2 

3 

4 

5 

6 

7 

8 

Mean±SE development time from parasitism to adult 
emergence (Days) 

Male 

17.2±0.5a 

16.1±0.3a 

15.0±0.3a 

13.0±0.2a 

12.5±0.3a 

12.6+0.4a 

13.0±0.4a 

Female 

16.0±1.0a 

18.0±0.6b 

16.2±0.3b 

14.0±0.3b 

12.7±0.2a 

14.4±1.0a 

13.0±1.0a 

T-test 

ti,i2=1.239, P=0.239 

ti i38=-3.109, P=0.004 

ti i8g=-2.616, P=0.010 

t1i46=-3.011, P=0.004 

ti,29=-0.551, P=0.586 

ti,28=-1.808, P=0.081 

ti,i2=0.000, P=1.000 

http://ti.28s-2.252


Figure 3.1: Mean (± SE) parasitisation rate (percent of parasitised hosts), 
parasitoid emergence rate (percent of parasitoids successfully developing to 
adult), and no emergence rate (percent of parasitoids not successfully developing 
to adult) of Campoletis sonorensis on each Trichoplusia ni age class. Means 
within the same response variable followed by the same letter are not 
significantly different (Dunn's Multiple Comparison Test, P>0.05) 
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Figure 3.2: Mean (± SE) offspring sex ratio of Campoletis sonorensis emerging 
from different Trichoplusia ni age classes. Means with the same letter are not 
significantly different between them (Dunn's Multiple Comparison Test, P>0.05) 
and from a mean sex ratio of 0.5 (One-Sample sign test, P>0.05) 
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Figure 3.3: Mean (± SE) percentage of male or female Campoletis sonorensis 
offspring emerging from different Trichoplusia ni age classes (T. ni larvae 
reached 2nd instar at 3-4 days and 3rd instar at 7-8 days). Means within the same 
response variable followed by the same letter are not significantly different 
(Dunn's Multiple Comparison Test, P>0.05) 
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Figure 3.4: Mean (± SE) percent mortality and corrected mortality of different 
Trichoplusia ni age classes parasitised by Campoletis sonorensis. Means within 
the same response variable followed by the same letter are not significantly 
different (Dunn's Multiple Comparison Test, P>0.05) 

50.0 i 

45.0 -

40.0 • 

f 35.0 

I 30.0 

^ 25.0 4 m 
£ 20.0 • 

S 15.0-1 

10.0 • 

5.0 • 

0.0 

i i i j Mortality Corrected mortality 

ab 

abc 

be 

i 

ab 

abc abc 

i 

be be 

rfi i 
i ' •• •• • 

3 4 5 6 7 8 2 3 4 5 6 7 8 

Host larval age (Days) 

109 



Chapter 4 

Reproduction of Campoletis sonorensis (Hymenoptera: Ichneumonidae), an 

Endoparasitoid of the Cabbage Looper Trichoplusia ni (Lepidoptera: 

Noctuidae) under laboratory conditions 

Introduction 

The term fecundity refers to an animal's reproductive output, in terms of the total 

number of eggs produced or laid over a specified period, and should be 

distinguished from fertility, which refers to the number of viable progeny that 

ensue. From the standpoint of population dynamics, fertility is the more important 

parameter, as it is the number of progeny entering the next generation. A 

species' potential fecundity is usually taken to be the maximum number of eggs 

that can potentially be laid by females and the realised fecundity as the number 

of eggs actually laid over the life-span (Jervis et al. 2005) 

Fecundity is a variable feature of a species, influenced by a range of intrinsic and 

extrinsic (physical and biotic) factors. The evaluation of a natural enemy for 

biological control requires a study of the influence of these factors and possible 

interaction effects between certain factors on potential and realised fecundity, 

and if possible, fertility (Jervis et al. 2005 ). The life table analysis is the most 

reliable method to account for survival and reproduction of a population, which is 

vital to the description and understanding of the population dynamics of a species 

(Andrewartha and Birch 1966; Southwood 1978). Biological parameters, such as 

the duration of developmental stages and population growth obtained from fertility 

life tables, are important for that knowledge. The main parameters associated 

with a fertility life table are the net reproductive rate (ffo), intrinsic rate of increase 

(rm ), mean generation time (7), finite rate of increase (I) and the doubling time 

(D). Rate of increase (rm) or growth potential of a population under specified 

physical conditions in an unlimited environment where the effects of increasing 
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density do not need to be considered (Birch 1948) is one of the key criteria in the 

process of selecting parasitoids as a biological control agents (van Lenteren 

1986) 

Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae), an important pest of crucifers 

and many other field crops in Ontario, is now a year-round pest in vegetable 

greenhouse crops in Canada (Gillespie et al. 2002). In the past, Canadian 

populations of this insect pest were usually established through annual migration 

of adult moths from the south (Lafontaine and Poole 1991) but recently, T. ni has 

been found overwintering inside Canadian vegetable greenhouses, which has 

required increased insecticide sprays of Bacillus thuringiensis var. kurstaki and 

lead to the development of resistance to Btk in populations of T. ni (Janmaat and 

Myers 2003, Janmaat et al. 2004). 

Campoletis sonorensis (Cameron)(Hymenoptera: Ichneumonidae) is an 

arrenotokous, solitary, endoparasitoid of lepidopterans, including several major 

pest species (Townes and Townes 1951, Lingren et al. 1970; de Moraes et al. 

1991; Machuca et al. 1989; CABI 2005). This generalist parasitoid has 

demonstrated potential to suppress populations of the tobacco budworm, 

Helicoverpa virescens (Fabricious) (Lepidoptera: Noctuidae), the corn earworm / 

tomato fruitworm, Helicoverpa zea (Boddie) and the fall armyworm Spodoptera 

frugiperda (JE Smith) (Lepidoptera: Noctuidae) in tobacco (Nicotiana tabacum 

L.)(Solanaceae), tomatoes (Lycopersicon esculentum Mill.)(Solanaceae), cotton 

(Gossypium hirsutum L.)(Malvaceae), corn {Zea mays L.)(Gramineae) and 

sorghum (Sorghum bicolor L.)(Poaceae) from USA to Chile (Hoelscher and 

Vinson 1971; Isenhour 1985, Carlson 1972; Machuca et al. 1989) but is a rare 

parasitoid of T. ni (Carlson 1972; Waterhouse 1998). However, in Southwestern 

Ontario vegetable fields and greenhouses, T. ni seems to be an important host 

for C. sonorensis for the first time recorded (Chapter 2). Thus, more knowledge 

about this parasitoid-host relationship is required in order to evaluate the potential 

of this parasitoid as a biocontrol agent of T. ni. This study measured the realised 
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fecundity and fertility parameters of C. sonorensis as an endoparasitoid of T. ni 

and calculated parasitoid life table statistics. 

Materials and Methods 

Trichoplusia ni rearing 

The colony was maintained in an environmental chamber at 24°C, 60% RH and a 

photoperiod of 12:12 (L:D). Approximately 50 adults were kept in a 5 L plastic 

container. Adults were fed a 5% sugar solution and every other day the eggs 

were collected from paper towels used as the lid of the container and as 

oviposition substrate. The eggs were disinfected with a 0.5% solution of 

commercial bleach. Once the eggs hatched, larvae were reared on a pinto bean 

diet (Shorey and Hale 1965) in 12-oz Styrofoam containers. Larvae were moved 

into individual 1-oz transparent plastic cups (Solo Cup Company, Urbana, USA) 

once they developed to the second instar. 

Campoletis sonorensis rearing 

The parasitoid was maintained under the same conditions as the T. ni colony, 

with 4 day-old T. ni larvae (early second larval instar) provided as hosts. In small 

plastic transparent cages ( 1 7 x 1 2 x 1 5 cm) on the same artificial diet as stated 

above, T. ni larvae were exposed to mated C. sonorensis females for 24 h. Within 

each cage, there was a ratio of 20 larvae: 1 parasitoid female, with a total of up to 

5 parasitoids / cage. Subsequently, each T. ni larva was placed into individual 1 -

oz plastic transparent cups to allow the parasitoid to develop. When C. 

sonorensis wasps emerged, they were separated into cages by sex. After 24 h, 

females were introduced into male cages to allow mating for 48 hours (ratio of 3 

males: 1 female) (Hoelscher and Vinson 1971; Isenhour 1986) 

Fecundity and life table experiment 

Using a fine paint brush, thirty 4 day-old T. ni larvae were placed in a plastic Petri 

dish (12 cm diameter) with a 2x2 cm piece of diet (Shorey and Hale 1965) inside 

112 



a cage (17x12x15 cm) with one mated female C. sonorensis. After 24 h, the T. ni 

larvae were removed and another set of 30 T. ni larvae were placed in the cage 

with the parasitoid. This was continued until the parasitoid died. After exposure 

to the parasitoid, the T. ni larvae were placed individually in small cups (1 oz) with 

diet and checked daily until adult emergence of either a parasitoid or a moth. 

Twelve parasitoid females were used. The experiment was conducted in 

environmental chambers set at 24°C, 60% RH and a photoperiod of 12:12 Light: 

Dark. 

The parasitoid life span was measured and divided into an oviposition period 

and a post-oviposition period. The oviposition period was divided in two as 

follows: the constant oviposition period which refers to the number of sequential 

days that hosts were successfully parasitised (resulting in cocoon or adult 

offspring) and total oviposition period as the total number of days that hosts were 

successfully parasitised. The post-oviposition period refers to the time when a 

parasitoid ceased to parasitise hosts until death of the parasitoid. Two fecundity 

parameters were calculated, realised fecundity as the number of parasitised 

larvae that developed in a cocoon (whether it developed into an adult parasitoid 

or not) over the life-span of the parasitoid, and fertility as the number of 

parasitised larvae laid by a parasitoid that developed into adult parasitoids. The 

mean sex ratio was calculated as the proportion of males. 

Statistical Analysis 

Realised fecundity and fertility were compared using repeated measures ANOVA. 

The comparison between the daily fertility values for the oviposition period was 

tested using Kruskal Wallis test, followed by Dunn's multiple comparison test for 

means separation as ANOVA could not be used because normality and equal 

variances assumptions were not met by these data. One sample t-test was used 

to compare the mean daily sex ratio with the mean equal sex ratio, 0.5. All 

analyses were conducted in SPSS v. 15 (2006) and Minitab 15 (2006). 
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Life table statistics 

The life table statistics and the intrinsic rate of natural increase of C. sonorensis 

were calculated from the previous parameters as follows: 

The intrinsic rate of natural increase rm was calculated by iteratively solving 

the following equation (Birch 1948): 

n 

T -rmx 
£ - e lxmx

 = 1 
x=o 

Where x is the mid-point of age intervals in days, lx is the fraction of females 

surviving to the pivotal age x (the probability of a female surviving to age x), mx is 

the mean number of female 'births' during age interval x per female aged x, and e 

is the base of natural logarithms. Trial rm values are substituted into the above 

expression until the left hand side is (arbitrarily) close to 1. Ix and mx were 

calculated by tabulating (Table 4.2) age-specific fertility and age-specific survival 

(Jervis et al. 2005) 

Once the values for lx and mx were calculated, then the following population 

statistics were also calculated (Messenger 1964): 

1. The gross reproductive rate: the mean total number of eggs produced by 

female over the lifetime; measured in female/female/generation. 

GRR = Z mx. 

In this study the mean number of parasitoid progeny that developed up to 

cocoon (for realised fecundity) and the mean number of parasitoid progeny 

that developed up to adult (for fertility) were used instead of the mean number 

of eggs produced by female over the lifetime. 
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2. The net reproductive rate: the number of times a population will multiply 

per generation; measured in female/female/generation. 

R0 = I lxmx 

3. The finite capacity for increase: the number of times the population will 

multiply itself per unit of time; measured in female/female/day. 

rm 
A = e m 

4. The mean generation time: the mean time, measured in days, required 

for a given parasitoid cohort to develop from egg to adult. 

T = (loge R0) / rm 

5. The doubling time: the time, measured in days, required for a given 

population to double its numbers. 

DT=loge2/rm 

6. The capacity for increase: approximation of rm but is more useful than rm 

for consideration of the relation between the capacity for increase and life-

history parameters such as generation time (Laughlin 1965; May 1976). 

rc = log* Rn 

To 

7. The cohort generation time: the mean age of maternal parents in the 

cohort at birth of female offspring (Laughlin 1965; May 1976). 
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Results 

Fecundity parameters 

The mean (±SE) longevity of the 12 C. sonorensis females used in this study was 

34.5±2.8 days, with a range of 21 to 46 days. The mean (±SE) oviposition period 

was 22.7±1.9 days, with a range of 15 to 35 days. The mean (±SE) constant 

oviposition period and the mean (±SE) post-oviposition period were 15.9±1.3 and 

11.9±2.2 days, respectively. Ninety two percent of the C. sonorensis females 

survived up to the end of the oviposition period (Figure 4.1) 

The mean (±SE) realised fecundity and the mean (±SE) fertility differed 

significantly (rmANOVA: F1,11=67, P=0.001) at 66.9±7.8 and 60.4±7.8 parasitoids 

per female, respectively. 

The mean (±SE) daily realised fecundity and mean (±SE) daily fertility calculated 

for total oviposition period were 3.1 ±0.4 and 2.8±0.4 parasitoids per female, 

respectively. During just the constant oviposition period, the mean (±SE) daily 

realised fecundity and mean (±SE) daily fertility were 4.3±0.4 and 3.8±0.4, 

respectively. 

Mean daily fertility values for the first 23 days (the mean oviposition period) 

differed between days (Kruskal Wallis: Hi,9 = 78.64, P = 0.0001). Mean daily 

fertility did not differ between day 4 to day 18, however, days 8-10 and 12 were 

higher than that of days 19-23 (Table 4.1). The mean daily fertility values for 

realised fecundity and fertility increase from day 4 to day 8, at which point the 

highest number of offspring were deposited (Table 4.1). After day 8, the daily 

values decreased until day 24 when intermittent parasitisation occurred at the 

116 



lowest mean daily values. Day 22 had the lowest mean daily fertility during the 

mean oviposition period. 

The mean (±SE) sex ratio for the mean oviposition period (23 days) was 

0.13±0.07, indicating a highly female biased ratio (Table 4.1). The mean daily sex 

ratios were different from a sex ratio equal to 0.5 at 19 and 21 day-old parasitoid 

probably due to the small number of samples. 

Life table parameters 

The life table of the C. sonorensis cohort is presented in Table 4.2. Fertility and 

realised fecundity parameters were calculated from the life table, and presented 

in Table 4.3. 

Discussion 

Fecundity parameters 

Both Isenhour (1986) and Nobel and Graham (1966) conducted studies on the 

reproductive capacity of C. sonorensis, however, these two studies had very 

different results. Isenhour (1986) reported that C. sonorensis females produce a 

mean of 222.45 progeny when held at 30°C and provided with 40 S. frugiperda 

larvae every 24 hours whereas Noble and Graham (1966) reported a mean of 

27.2 progeny per female at 36°C and provided with 15 to 20 larvae of H. 

virescens. Although the studies utilized different hosts, Isenhour (1986) 

concluded that the increase in temperature and host density resulted in increased 

progeny for C. sonorensis. Subsequently, Hu and Vinson (2000) reported that the 

egg production estimate of C. sonorensis was 88.27 eggs from parasitoids 

developed from the third instar larvae of H. virescens at 28°C and that in younger 

hosts, parasitoids produced a significantly reduced body length, weight, longevity, 

and egg production estimate. Although the authors did not specify how many 

eggs were actually laid per female parasitoid, they reported a 77.7% adult 

parasitoid emergence. Thus, if all 88.27 eggs were laid, 68.6 progeny would be 
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the mean total fertility of C. sonorensis. In comparison, I had a slightly lower 

mean total fertility value of 60.4 progeny per female parasitoid. I have several 

ideas to explain the discrepancy between the studies, including host size, host 

density, incidence of superparasitism, host species, parasitoid age, venom 

production and misidentification of parasitoid species, which I have discussed 

further below. 

Although Isenhour (1986) concluded that increases in temperature and in host 

density were the factors that increased the total progeny production of C. 

sonorensis, Hu and Vinson (2000)'s results also indicate that host stage (size) is 

important. This was also demonstrated by Gunasena et al. (1989), who showed 

that the reproductive potential of C. sonorensis was higher when females were 

reared from larger host sizes because the females themselves were larger. In 

laboratory and field studies, fecundity as the most direct measure of parasitoid 

fitness is found to be positively correlated with the size of solitary female 

parasitoids (VanLaerhoven and Stephen 2003; Roitberg et al. 2001; Charnov et 

al. 1981; Godfray 1994; Visser 1994; van dem Assem et al. 1989; Ellers et al. 

1998). 

Although I used a host density intermediate between Isenhour (1986) and Nobel 

and Graham's (1966) studies (30 T. ni), the temperature I conducted the current 

study at was lower than both of the studies (24°C) but I still had a higher mean 

realised fecundity (66.9) per female than Noble and Graham (1966) with their 

lower host density. Perhaps host density is more important than temperature in 

determining mean progeny in C. sonorensis. 

Related to host density, superparasitism by C. sonorensis is common when low 

host densities are provided to our lab colony. Although the level of 

superparasitism have been not quantified, some superparasitism with densities of 

40 T. ni larvae have been observed. At 24 hours of host exposure intervals, 15-

20 larvae were used by Noble and Graham (1966), 30 larvae in the current 
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studies and 40 larvae by Isenhour (1986). In view of this, it may have been that 

the superparasitism was higher in the study of Noble and Graham (1966), 

explaining their lower parasitoid progeny. Bigornia (1956) reported 

superparasitism of H. virescens also under field conditions by C. perdistinctus, a 

misidentification of C. sonorensis (Carlson 1972). Superparasitism must be 

considered as an important factor in the final progeny number of C. sonorensis 

mostly because some parasitoids are not able to develop on superparasitised 

hosts as reported by Patel and Habib (1987) for C. flavicincta on superparasitised 

S. frugiperda larvae. 

Isenhour (1986) did not consider host species by itself as a factor in the 

increased number of progeny of C. sonorensis. Spodoptera frugiperda may 

induce a higher reproductive capability on C. sonorensis than other insect hosts. 

Lingren et al (1970) concluded that S. frugiperda was the best host for mass 

rearing C. sonorensis when it was compared to 10 other potential host species 

that included H. zea, H. virescens and T. ni. In a later study using the same host 

species, Lingren and Noble (1972) found out that H. zea and S. frugiperda were 

the most preferred hosts and T. ni was the least preferred host. The fecundity 

and other components of the fitness of parasitoid progeny may vary with host 

species (Fellowes et al. 2005, VanLaerhoven and Stephen 2003; Lingren and 

Noble 1972) and according to the optimal host selection theory, female 

parasitoids choose hosts in a way which maximizes the expected fitness of 

progeny (Iwasa et al. 1984). 

The age of parasitoid females can influence fertility and sex-ratio. Matos et al. 

(2005) found out that when 24, 3-4 day-old larvae of S. frugiperda were exposed 

to 4 day-old C. flavicincta at 25°C, the number of parasitised larvae over a 

female's lifespan was 170.25, whereas with 1-3 and 5 day-old females, it was 

lower. Hoelscher and Vinson (1971) found that when 33 hour-old mated females 

were used, the most favorable offspring female: male ratio was produced. 
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Bezemer et al. (2005) reported that other factors such as parasitoid venom 

production may be more important in limiting reproduction than egg availability. In 

order to facilitate protection against the host immune defenses C. sonorensis 

injects a polydnavirus and venoms when it oviposits into a host (Dover and 

Vinson 1990; Webb and Summers 1990, Summer and Dib-Hajj 1995). Bezemer 

et al. (2005) concluded that the production of venoms limits reproduction in 

parasitoids after observing mature eggs present in the ovarioles of dissected 

females of Mastrus ridibundus (Hymenoptera: Ichneumonidae) with a post-

oviposition period of at least 5-6 days. There are three possible ways in which 

these venoms and polydnavirus could have affected the final progeny number of 

C. sonorensis in the current study: 1) the female parasitoids still had some 

mature eggs in their ovarioles during the long post-reproductive period but they 

were not used due to a depletion in the production of the polydnavirus and 

venoms (Bezemer et al. 2005); 2) The eggs were laid but the injection of the 

polydnavirus at the time of oviposition was either not done, or was not enough to 

provide long-term suppression of host immunity and the parasitised host survived 

(Cui et al. 2000); and 3) the host died before the parasitoid completed 

development (Vinson and Stoltz 1986). Vinson and Stoltz (1986) concluded that 

whether T. ni was naturally parasitised by C. sonorensis, or injected with C. 

sonorensis calyx fluid, or purified virus, the T. ni died in 4-8 days resulting in the 

death of the parasitoid larvae within the host. 

Finally, Isenhour (1986) could have misidentified C. flavicincta with C. 

sonorensis. As stated by Carlson (1972), the misidentification of these two 

species has been common. Matos et al. (2005) recorded that C. flavicincta 

parasitised up to 170.25 S. frugiperda larvae throughout its lifespan at 25°C. This 

value is closer to the 222.45 found by Isenhour (1986), especially when we 

consider that Matos et al. (2005) used a lower temperature and lower host 

density than Isenhour (1986). Campoletis flavicincta prefers corn fields more than 

C. sonorensis (Carlson 1972) and parasitises S. frugiperda more frequently in 

corn fields than C. sonorensis (Matos et al. 2005; Ashley 1986; Molina et al. 
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2004; Hogg et al. 1982; Cruz et al. 1997), making if possible that Isenhour (1986) 

misidentified C. sonorensis when he collected it from S. frugiperda in corn fields 

for his research. 

Parasitoid longevity and oviposition period 

According to the literature, the longevity of C. sonorensis depends on 

temperature such that as temperature increases, longevity decreases. For C. 

sonorensis mated females, Noble and Graham (1966) recorded a mean longevity 

of 4.6 days at 36°C, whereas Isenhour (1986) reported 11.4 days at 25°C and 

26.8 days at 20°C for unmated females. Although the temperature I used was 

only 1°C higher than that of Isenhour (1986), I recorded mean longevity as 34.5 

days for mated females, which usually live a shorter time than unmated females. 

There are two reasons that I think may explain the difference between the results 

in the current study and Isenhour (1986). The first could be the number of 

samples as Isenhour (1986) used 21 mated females and I used 12. The second 

could be differences in the experimental methods. Isenhour (1986) fed them with 

10% honey solution, newly emerged male and female parasitoids were paired, 

and male parasitoids were present all the time. Isenhour (1986) used a 

photoperiod of 14:10 (L:D), 70% RH. In contrast, I fed them with 100% honey, 

male and female parasitoids were paired after one day and left together only for 

48 hours. I used a 12:12 (L:D) photoperiod with 60% RH as per Hoelscher and 

Vinson's (1971) recommendations. In both the current study and Isenhour's 

(1986), the time of oviposition exposure was 24 hours. Pandey et al (2004) 

reported that the presence of male parasitoids in the parasitisation cages affected 

the progeny sex ratio by decreasing the number of females in the offspring 

population in C. chlorideae, demonstrating that the presence of male parasitoids 

can affect female biology. 

Daily oviposition, oviposition period and post-oviposition period of C. sonorensis 

also depend on temperature, as well as the age of parasitoid. The results in the 

current study for daily progeny were considerably smaller than that of Isenhour 

121 



(1986) (2.8 versus 11.7-23.7). Perhaps the sample size and experimental 

methods in the current study explain this large difference. Isenhour (1986) and 

Noble and Graham (1966) did not discuss a post-oviposition period for C. 

sonorensis, but using their data I was able to calculate their post-oviposition 

period of 1 day (Noble and Graham 1970) and 0.4-4.2 days (Isenhour 1986), 

compared to 11.9 days in the current study. Noble and Graham (1970) reported a 

mean oviposition period of 3.3 days, and I calculated a mean oviposition period of 

8.4-11 days from Isenhour (1986), compared to 22.7 days in the current study. 

Although these post-oviposition periods are much shorter than in the current 

study, they are still a considerable amount of time compared to the short 

longevity values reported in those studies. Even though long post-oviposition 

periods are reported frequently in parasitoid reproductive laboratory studies 

(Kopelman and Chabora 1992; James 1993; Awadalla 1996; Babendreier 2000; 

Harvey et al. 2001, Loomans AJM 2003; Bezemer et al. 2005; Kivan and Kilic 

2005), they have been disregarded from some of these studies because they are 

considered to be a laboratory artifact (Jervis et al. 2001). Under laboratory 

conditions with constant access to hosts, parasitoid wasps such as Venturis 

canescens Gravenhorst (Hymenoptera: Ichneumonidae), Leptopilina boulardi 

(Barbotin et al.)(Hymenoptera: Eucoilidae) and Dicondylus indianus Olmi 

(Hymenoptera: Dryinidae) experienced longer periods of post-reproductive 

survival than conspecific wasps with limited host access (Sahragard et al. 1991; 

Kopelman and Chabora 1992; Harvey et al. 2001). Whether the phenomenon is 

simply a laboratory artifact is something that requires further study in field 

situations (Jervis et al. 1994). In most laboratory studies, the parasitoids have 

been provided with a surfeit of hosts and food, which may not accurately reflect 

the heterogeneity of natural systems where resources are likely to be limiting 

(Harvey etal. 2001). 

Parasitoid sex ratio 

The highly female-biased sex ratio obtained in the current study differed from the 

male- biased sex ratio reported by Hoelscher and Vinson (1971) and Lingren et al 
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(1970) but agrees with the one obtained from 6 day-old larvae in the host 

preference and fitness of C. sonorensis study (Chapter 3) and with the higher 

ratio of adult females to males in older larvae reported by Noble and Graham 

(1966). Hoelscher and Vinson (1971) and Lingren et al (1970) reported that the 

proportion of males is usually greater than that of females in field-collected and 

laboratory-reared C. sonorensis. Photoperiod and female age were the most 

important factor affecting progeny sex ratio (Hoelscher and Vinson, 1971), with a 

12:12 (L:D) photoperiod and 4 day-old females producing offspring with the 

greatest percentage of females (0.66), which was still male-biased and very 

different from the mean female-biased value of 0.13 obtained in the current study. 

Although Hoelscher and Vinson (1971) found that the temperature influenced the 

sex ratio of Campoletis sonorensis, they did not considered it as a major factor as 

did Pandey and Tripathi (2007), who observed that the sex ratio of Campoletis 

chlorideae was female-biased at temperatures of 17-27°C when using different 

constant temperatures from 12 to 37°C 

Age of host larvae was stated to influence C. sonorensis sex ratio (Lingren et al. 

1970) When they used 2 to 8 day-old larvae of five Lepidoptera species including 

T. ni, female sex ratios just occurred in the progeny of parasitoid reared on 2 and 

3 day-old larvae of S. frugiperda and Spodoptera eridania (Cramer), respectively. 

In contrast, Noble and graham (1966) reported female-biased sex ratios in 3-5 

day-old larvae. 

When evaluating the progeny sex ratio of C. sonorensis on 6 different 

Lepidoptera species, Lingren et al (1970) found that under the same conditions, 

S. frugiperda and S. eridania were the only insect hosts that provided female-

biased sex ratios of the C. sonorensis, whereas parasitoid offspring from T. ni 

were always male-biased. Thus, I conclude that in addition to other factors the 

host species also may influences parasitoid sex ratio in C. sonorensis. 
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Female parasitoid density may affect sex ratio in C. sonorensis. Pandey et al. 

(2004) reported that with an increase in female parasitoid density, the proportion 

of male progeny increased significantly when they used 1,2,4 and 8 females of 

C. chlorideae per cage. In the studies of Hoelscher and Vinson (1971) and 

Lingren et al. (1970), two to three female parasitoids were used per cage with 7*. 

ni and Helicoverpa virescens as hosts and these studies had a male-biased C. 

sonorensis progeny sex ratio. I used 1 female per cage and had a mean female-

biased progeny sex ratio. 

Multiple lab and field-based studies support the idea that host plant and/or diet 

quality affect the progeny sex ratio of parasitoids (Kumar and Tripathi 1987; Fox 

et al. 1990; Jansson 2003; Weathersbee III et al. 2004; Setamou et al. 2005; 

Onagbola et al. 2007; Lentz and Kester 2008). In the host preference and fitness 

of C. sonorensis study (Chapter 3), 4 day-old T. ni larvae were exposed to C. 

sonorensis females on tomato seedlings and in the current study, they were 

exposed on pinto bean diet. This may be affecting the progeny sex ratio which 

was equal for females and males in the first study and female-biased in the 

second study. 

Potential for mass rearing 

The realised fecundity, fertility, oviposition period and sex ratio are important 

factors in the population dynamics of a species and in this case, for a parasitoid 

that is intended as biocontrol agent for augmentatives releases, and they are also 

important for starting a mass rearing system for the parasitoid. The highly 

significant difference between realised fecundity and fertility found for C. 

sonorensis due to pupal cocoons that do not develop to adult in this study 

indicates that reduction of this mortality could be a key challenge in achieving a 

higher number of progeny for subsequent generations. Although diapause has 

not been reported for C. sonorensis, I believe that the non-hatching cocoons are 

entering diapause in response to the 12:12 photoperiod of the experiment, as 
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photoperiod is one of the most common diapausing-stimulus among parasitoids 

(Tauber et al. 1986; Quicke 1997). 

The high survivorship rate of 92% of C. sonorensis female adults to the end of 

the oviposition period allows this parasitoid to reach its maximum reproductive 

potential under lab conditions. The drop in mean daily fertility after 18 days 

indicates that for a mass rearing system of C. sonorensis under the conditions 

described here, it will not be worth keeping female parasitoids for more than 18 

days due to the labor required for rearing. Also, I would recommend using a 

temperature of 28°C as was done by Hu and Vinson (2000) to get the same 

number of progeny in a shorter time. 

Pandey and Tripathi (2007) conducted a life table analysis for Campoletis 

chlorideae, which is an Asiatic species that is an important natural control of 

Asiatic Helicoverpa species and other Noctuidae species (WanXue et al. 2004, 

Gupta and Nirmala 2004; Yan et al. 2005) as C. sonorensis is in America 

(Carlson 1972; Townes and Townes 1951; Lingren et al. 1970; de Moraes et al. 

1991; Machuca et al. 1989; CABI 2005). Campoletis chlorideae is being 

developed as a commercial biocontrol agent in India, Korea and China against 

Helicoverpa armigera (Yan et al. 2005, Pandey et al. 2004). In a single 

generation, the intrinsic rate of increase of C. sonorensis was 0.24 per female per 

day, doubling time was 2.9 days and the mean generation time was 17.1 days in 

the current study. For C. chlorideae, at 22°C, the intrinsic rate of increase was 

0.25 per female per day, doubling time was 2.73 days, and the mean generation 

time was 17.70 (Pandey and Tripathi 2007). Although the life table parameters in 

this study are in accordance with the observations of Pandey and Tripathi (2007), 

the progeny value of 137.3 per female they found is very high when it is 

compared the 60.4, which I observed. I propose that the similar results obtained 

in the life table parameters are probably due to the difference in the female 

parasitoid longevity which was 22.9 days shorter in Pandey and Tripathi (2007). 
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For Campoletis species that are specialists on Lepidoptera Noctuidae, such as C. 

sonorensis, C. flavicincta and C. chlorideae, certain Spodoptera species are likely 

the best hosts in terms of progeny production and mass production of these 

parasitoids because among a selection of Noctuidae species, Lingren et al (1970) 

reported Spodoptera frugiperda as the best host for C. sonorensis in USA, 

Carlson (1972) and Molina et al (2001) reported Spodoptera frugiperda and S. 

ornithogalli as frequent and important hosts of C. flavicincta in USA and Mexico, 

Matos et al. (2005) has identified this parasitoid as a potential biocontrol agent of 

S. frugiperda in Brazil, WanXue et al (2004) reported Spodoptera litura as the 

best host for C. chlorideae in China, and at the University of Neuchatel 

(Switzerland), Laboratory of evolutionary entomology, Spodoptera littoralis has 

been chosen as the best host for the continues mass production of C. sonorensis 

(Jourdie V., personal communications). Although S. frugiperda was considered 

as the best host for mass rearing C. sonorensis by Lingren et al (1970), mass 

rearing S. frugiperda is time consuming due to high cannibalism rates of the 

larvae and activity of the moths (Chapman et al. 1999; personal experience 

rearing S. frugiperda). 

Reproductive potential is one of 8 criteria that needs to be evaluated when 

selecting parasitoids as potential biocontrol agents (van Lenteren 1986). An 

efficient parasitoid should have a potential maximum rate of population increase 

(/•„,) equal to, or larger than, that of the host (van Lenteren and Manzaroli 1999). 

If a parasitoid causes additional substantial mortality (through host feeding or 

mortality of parasitised host before parasitoid development), then the overall host 

killing rate should be larger than the rate of population increase of the host, in the 

absence of the natural enemy, to be considered an efficient parasitoid. In the 

current study, the intrinsic rate of natural increase for fertility and realised 

fecundity of C. sonorensis were larger than those obtained for T. ni by Zote et al. 

(2006) (0.24 and 0.27, respectively). Thus, C. sonorensis passes the first criteria 

as a potential biological control of T. ni. However, the other 7 criteria compiled by 

van Lenteren (1986) have still to be evaluated. 
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Table 4.1: Mean (+ SE) values for age-specific fertility parameters of Campoletis 
sonorensis with Trichoplusia ni as a host. Means followed by the same letter are 
not significantly different (Dunn's multiple comparison test, P>0.05). 

Age 
(days) 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 

Realised 
fecundi ty 

(# parasi t ised 
larvae*) 

Mean+SE 

3.4 ±0 .9 

3.9±1.0 

3.3± 0.7 

4.8± 0.8 

8.1+1.5 

7.2±1.8 

5.4± 1.1 

3.3± 0.7 

5.2± 0.7 

3.9+ 1.1 

2.9±1.0 

2.2±0.8 

3.3±1.2 

3.0+0.9 

2.9+1.3 

0.9±0.5 

0.8±0.8 

0.6±0.5 

0.5±0.4 

0.4±0.2 

0.1+0.1 

0.0±0.0 

0.0±0.0 

0.1+0.1 

0.1 ±0.1 

0.0±0.0 

0.1 ±0.1 

0.0±0.0 

0.0±0.0 

0.3±0.3 

0.2±0.2 
0.3±0.3 

Ferti l i ty 
(# parasi t ised 

larvae**) 

Mean+SE 

3.1±0.9abc 

3.8±1 .Oabc 

2.8±0.6abc 

4.0±0.8abc 

7.6±1.5a 

6.8±1.7a 

4.9±1.1a 

3.0±0.6abc 

4.4±0.6a 

3.6±1.1abc 

2.7±0.9abc 

1 8±0.8abc 

2.8±1 .Oabc 

2.8±0.8abc 

2.7+1.2abc 

0.8±0.4b 

0.7±0.7b 

0.6+0.5b 

0.5±0.4c 

0.4±0.2b 

0.1 ±0.1 

0.0±0.0 

0.0±0.0 

0.1 ±0.1 

0.1 ±0.1 

0.0±0.0 

0.1 ±0.1 

0.0±0.0 

0.0±0.0 

0.3±0.3 

0.2±0.2 
0.3±0.3 

No emergence 
f rom cocoon 

(#) 

Mean±SE 

0.3±0.2 

0.2±0.1 

0.5±0.2 

0.8±0.3 

0.5±0.3 

0.4±0.2 

0.5±0.2 

0.3±0.2 

0.8±0.4 

0.3±0.2 

0.3±0.1 

0.3±0.2 

0.4+0.3 

0.3±0.1 

0.3±0.1 

0.2±0.2 

0.1 ±0.1 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 
0.0±0.0 

# Males 

Mean±SE 

1.3±0.9 

0.9±0.4 

0.6±0.3 

0.8±0.4 

0.8±0.2 

1.0±0.3 

0.8±0.4 

0.5±0.2 

0.7±0.2 

0.8±0.3 

0.4±0.3 

0.1+0.1 

0.3±0.1 

0.5±0.5 

0.4±0.3 

0.1 ±0.1 

0.0±0.0 

0.2±0.2 

0.0±0.0 

0.1 ±0.1 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.3±0.3 

0.2±0.2 
0.0±0.0 

# females 

Mean±SE 

1.8±0.5 

2.8±0.6 

2.3±0.5 

3.3±0.7 

6.8±1.4 

5.8±1.6 

4.1 ±0.9 

2.5±0.5 

3.8±0.6 

3.1 ±0.9 

2.3±0.8 

1.8±0.7 

2.6±0.9 

2.3±0.7 

2.3+1.0 

0.7±0.4 

0.7±0.7 

0.4±0.3 

0.5±0.4 

0.4±0.2 

0.1 ±0.1 

0.0±0.0 

0.0±0.0 

0.1±0.1 

0.1 ±0.1 

0.0±0.0 

0.1±0.1 

0.0±0.0 

0.0±0.0 

0.0±0.0 

0.0±0.0 
0.3±0.3 

Sex ratio 

Mean±SE 

0.20±0.11 

0.16±0.06 

0.25±0.10 

0.19±0.10 

0.10±0.02 

0.18±0.06 

0.20±0.10 

0.16±0.06 

0.18±0.08 

0.21 ±0.07 

0.17±0.12 

0.02±0.02 

0.06±0.03 

0.12*0.11 

0.12±0.08 

0.11±0.11 

0.00 

0.17±0.17 

0.00±0.00 

0.00±0.00 

0.00 

-
-

0.00 

0.00 

-
0.00 

-
-

1.00 

1.00 
0.00 

*Developed or not as adult parasitoids **Developed as adult parasitoids 



Table 4.2: Life-table for Campoletis sonorensis female cohort, x is the mid-point 
of age intervals (pivotal age) in days, Ix is the fraction of the females surviving to 
age x, and mx is the mean number of female 'births' during age interval x per 
female aged x. 

Pivotal Ages 
(Days) 

X 

4.5 
5.5 
6.5 
7.5 
8.5 
9.5 
10.5 
11.5 
12.5 
13.5 
14.5 
15.5 
16.5 
17.5 
18.5 
19.5 
20.5 
21.5 
22.5 
23.5 
24.5 
25.5 
26.5 
27.5 
28.5 
29.5 
30.5 
31.5 
32.5 
33.5 
34.5 
35.5 
36.5 
37.5 
38.5 
39.5 
40.5 
41.5 
42.5 
43.5 
44.5 
45.5 
46.5 

Survival 
rate 

/x 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
0.92 
0.92 
0.92 
0.83 
0.83 
0.83 
0.83 
0.75 
0.58 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
0.42 
0.33 
0.33 
0.33 
0.33 
0.25 
0.25 
0.25 
0.08 

Realised 
fecundity 

rate 

3.42 
3.92 
3.33 
4.83 
8.08 
7.17 
5.42 
3.33 
5.17 
3.92 
2.92 
2.17 
3.25 
3.00 
2.92 
0.92 
0.75 
0.58 
0.55 
0.36 
0.09 
0.00 
0.00 
0.10 
0.10 
0.00 
0.14 
0.00 
0.00 
0.33 
0.17 
0.33 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
3.00 

IxTIxt 

3.42 
3.92 
3.33 
4.83 
8.08 
7.17 
5.42 
3.33 
5.17 
3.92 
2.92 
2.17 
3.25 
3.00 
2.92 
0.92 
0.75 
0.58 
0.50 
0.33 
0.08 
0.00 
0.00 
0.08 
0.08 
0.00 
0.08 
0.00 
0.00 
0.17 
0.08 
0.17 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.24 

x*lx*mxt 

15.38 
21.54 
21.67 
36.25 
68.71 
68.08 
56.88 
38.33 
64.58 
52.88 
42.29 
33.58 
53.63 
52.50 
53.96 
17.88 
15.38 
12.54 
11.29 
7.86 
2.05 
0.00 
0.00 
2.28 
2.37 
0.00 
2.53 
0.00 
0.00 
5.58 
2.88 
5.92 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
11.16 

Effective 
fertility rate 

3.08 
3.75 
2.83 
4.00 
7.58 
6.75 
4.92 
3.00 
4.42 
3.58 
2.67 
1.83 
2.83 
2.75 
2.67 
0.75 
0.67 
0.58 
0.55 
0.36 
0.09 
0.00 
0.00 
0.10 
0.10 
0.00 
0.14 
0.00 
0.00 
0.33 
0.17 
0.33 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
2.00 

IxlTtxe 

3.08 
3.75 
2.83 
4.00 
7.58 
6.75 
4.92 
3.00 
4.42 
3.58 
2.67 
1.83 
2.83 
2.75 
2.67 
0.75 
0.67 
0.58 
0.50 
0.33 
0.08 
0.00 
0.00 
0.08 
0.08 
0.00 
0.08 
0.00 
0.00 
0.17 
0.08 
0.17 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.16 

x * le * rrixe 

13.88 
20.63 
18.42 
30.00 
64.46 
64.13 
51.63 
34.50 
55.21 
48.38 
38.67 
28.42 
46.75 
48.13 
49.33 
14.63 
13.67 
12.54 
11.29 
7.86 
2.05 
0.00 
0.00 
2.28 
2.37 
0.00 
2.53 
0.00 
0.00 
5.58 
2.88 
5.92 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
7.44 
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Table 4.3: Life table parameters of Campoletis sonorensis 

Parameter 

Intrinsic rate of natural increase 

Gross reproductive rate 

Net reproductive rate 

Finite capacity for increase 

Mean generation time 

Doubling time 

Capacity for increase 

Cohort generation time 

Realised 
Fecundity 

0.27 

70.26 

66.91 

1.31 

15.57 

2.57 

0.36 

11.66 

Fertility 

0.24 

62.84 

60.41 

1.27 

17.09 

2.89 

0.35 

11.65 



Figure 4.1: Survivorship (lx) and fecundity (mx) curves of Campoletis sonorensis 

-Survivorship -Realised fecundity 
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Chapter 5 

General discussion and conclusions 

Although a specific set of criteria for selecting parasitoids was not followed by 

Noble and Graham 1966; Lingren et al. 1970; Lingren and Noble 1972; Lingren 

1977 and Isenhour 1985, 1986, they provide considerable evidence supporting 

the potential of C. sonorensis as a biocontrol agent for control of Helicoverpa spp 

and S. frugiperda. A more detailed procedure has been done for the evaluation of 

C. chlorideae as a potential biocontrol agent of Helicoverpa armigera in India and 

China and its commercialization for augmentative biocontrol programs started a 

few year ago (Dai 1989, 1990; Kumar et al. 1994; WanXue et al. 2004, Pandey 

and Tripathi 2007; Ballal C, personal communication). Until the current study, no 

research had been done specifically to evaluate the potential of C. sonorensis as 

a biocontrol agent of T. ni. Using van Lenteren's (1986) compilation of criteria for 

selecting parasitoid biocontrol agents, I will discuss why I conclude that C. 

sonorensis demonstrates potential as a biocontrol agent in an augmentative 

biological control program against T. ni, which is one of the main insect pest 

problems in greenhouse vegetables crops in Southwestern Ontario, Canada. I 

will also discuss the possibilities of using this parasitoid as a model for 

conservation biological control for T. ni and other Lepidoptera pests in field crops 

as a way of assisting in the regulation of insect pests before they migrate into 

greenhouses. 

The eight criteria for selecting parasitoids compiled by van Lenteren (1986) are 

discussed as follows: 

1) Seasonal synchronization with host 

In biological control, seasonal synchronization occurs when the parasitoid is 

present when the pest occurs (van Lenteren and Manzaroli 1999). For an 

augmentative approach in vegetable greenhouses, this criteria is not important 

because the grower could artificially synchronize the parasitoid and host by 
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introducing the parasitoid when most of the T. ni larvae are in the early second 

instar, the preferred stage of parasitisation by C. sonorensis. The presence of 

host larvae (density) must be regularly monitored or predicted by developing a 

population model in order to determine the timing and frequency of the parasitoid 

releases. On the other hand, for a conservation approach in field crops, 

synchronization will be important because the degree of host-parasitoid 

synchrony influences the subsequent parasitoid population size, as well as the 

persistence and the rate of colonization of previously uninhabited host 

populations (Munster-Swendson and Nachman 1978; Godfray et al. 1994, van 

Nouhuys and Lei 2004). As reported in the survey of parasitoids of T. ni in 

Chapter 2, in Southwestern Ontario the populations of C. sonorensis and T. ni 

are well synchronized but strategies of conservation should be developed in 

order to strength the interaction because the temperature at the time when this 

interaction begins may be deleterious to the parasitoid populations (Godfray et al. 

1994; van Nouhuys and Lei 2004). In addition, other factors such as chemical 

pesticide sprays could be reducing the overwintering parasitoid population and 

therefore, the parasitoid population available for synchronization with the T. ni 

immigration in spring. As evidenced in Chapter 2 as well, C. sonorensis 

populations are also well synchronized with S. frugiperda, and probably with 

Helicoverpa species which migrate to Southwestern Ontario by mid-summer in 

order to feed mostly in corn fields when the parasitoid populations are well 

established on T. ni and probably on other pests and wild hosts. 

2) Internal synchronization with host 

As per Pak (1991), this criterion should be termed "host suitability" to describe the 

ability of a parasitoid to complete development in a host. As reported in Chapter 

3, C. sonorensis development is synchronous with that of T. ni so that adult 

parasitoids will be available when suitable host stages are present. To use an 

augmentation approach in greenhouse and field crops, the internal 

synchronization will be especially important at the end of spring and early 

summer when T. ni generations are still discrete, although poor synchronization 
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could be corrected in part through repeated introductions (inundative releases). 

The results of the current evaluation demonstrated that at laboratory conditions, 

24°C, 60% HR and 12:12 L:D, C. sonorensis females complete their development 

to adult in about 19.4 days (ranging 15 to 25 days) and have an oviposition 

period of 22.7 days (ranging 15 to 35 days), whereas T. ni development time is 

about 33 days (ranging 30 to 37 days) and has an oviposition period of about 5 

days. Therefore, the parasitoid has about 1.7 generations compared to one 

generation of the host. The long parasitisation and emergence periods ensure 

that emergence of the parasitoid overlaps with suitable larval instars of the host. 

For conservation biocontrol using C. sonorensis against T. ni, the internal 

synchronization criteria is perfectly met as well, as explained above, but 

conservation practices should still be developed to strengthen this interaction. 

3) Climatic adaptation 

Climatic adaptation describes the ability of natural enemies to tolerate the 

extreme abiotic conditions of their environment compared to their host. Climatic 

tolerance is a determining factor for the survival and/or the reproduction of a 

natural enemy (Pak 1991). Because C. sonorensis is a native parasitoid of the 

area where it is intended to be used and because it is very well adapted to the 

pest population dynamics it will be used against, there are no indications that this 

criterion will be a problem for the implementation of any biological control 

program. However, the one exception is that inside greenhouses in the summer, 

the temperature can reach up to 40°C. Hoelscher and Vinson (1971) reported 

that 27°C was the most suitable temperature for production of the greatest 

numbers of C. sonorensis. At 36°C, Noble and Graham (1966) reported a mean 

offspring number of 27.2 per female, whereas in the current studies at 24°C, I 

reported a mean value of 60.4, thus it is possible that high temperatures may 

affect the number of offspring per female. However, the two studies also differed 

in the host species, the experimental conditions, the number of adults that did not 

emerge, and the number of parasitised hosts that died prior to the parasitoid 

developing into cocoons. I expect that the number of parasitised larvae that die 
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before parasitoid development reaches the cocoon stage is higher at higher 

temperatures, and if so, the overall mortality of hosts caused by C. sonorensis 

could be similar to the actual mortality caused by the successful parasitism and 

emergence of a new parasitoid adult. 

4) No negative effects 

The augmentation or conservation of C. sonorensis populations in greenhouses 

or field crops should not have any negative effects on other beneficial organisms 

or non-pest hosts. In greenhouses, C. sonorensis will be intended for the 

regulation of T. ni and probably other potential Lepidoptera pest problems that 

could enter the greenhouse such as Alfalfa Looper (Autographa californica 

Speyer, Lepidoptera: Noctuidae), Tomato Fruitworm (H. virescens) and Tomato 

Looper (Chrysodeixis chalcites Esper, Lepidoptera: Noctuidae). The only 

beneficial organism that is heavily used against these pests is the bacterium 

Bacillus thuringiensis {Bt}. I predict that the parasitoid will synergize the effect of 

Bt because the regulation of T. ni will be improved since C. sonorensis could 

parasitise a portion of the T. ni larvae that is usually not controlled by the bacteria 

due to difficulties in reaching all of the larvae with the Bt spray. However, the 

potential effects of the bacterium on C. sonorensis have to be evaluated. The use 

of C. sonorensis could be a good alternative in order to reduce the probability of a 

T. ni population developing resistance to Bt but this potential positive interaction 

also needs to be evaluated. For non-pest hosts, C. sonorensis does not 

represent any risk as it is a native species of America. 

5) Good culture methods 

I agree with Waage (1990) and Pack (1991) that this criterion should not be in 

this compilation. They concluded that the ability to culture a given natural enemy 

is a conditional necessity of concern to the producer, rather than a useful 

selection criterion for a researcher conducting an evaluation program of potential 

biocontrol agents. Instead, it is expected that after a potential biocontrol agent 

passes the selection criteria, that culture and application methods will need to be 
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developed and implemented. However, if a culture method already exists or is 

easy to develop, it is ideal. 

For C. sonorensis, a laboratory culture method exists but it needs to be improved 

in order to produce commercial quantities of the parasitoid as is the case with C. 

chlorideae in India (Ballal C, personal communications) although for a 

greenhouse grower or a group of them who afford the cost of the parasitoid 

production with the current method, it could be worth it if the parasitoid is highly 

effective at regulating T. ni populations below economic injury levels in 

vegetables greenhouses. 

6) Host specificity or potential for development of host preference 

Since C. sonorensis has a broad host range including the entire Lepidoptera 

Noctuidae family, the wide range of host species within the family reported by 

Lingren et al. (1970) will not be important if the parasitoid is going to be released 

in greenhouse crops because the only available host will be T. ni or other 

Noctuidae pests such as H. virescens. In contrast, C. sonorensis does not satisfy 

this criterion, which states that a narrow host range is desirable, if the parasitoid 

would be intended in field crops such as tomato and corn. To solve this 

controversy, I agree with the conclusion of Chang and Kareiva (1996) regarding 

selection of generalist and specialist natural enemies. They reported that in many 

cases, a generalist parasitoid (wide host range) will be a better biocontrol agent 

candidate than a specialist parasitoid (narrow host range). Generalist natural 

enemies may not be as effective per capita as specialists, but they can 

compensate for this deficiency in host regulation by being present earlier in the 

season (Nyffeler et al. 1994; Settle et al. 1996) and survive in the system on 

alternative hosts so that they are present when pest populations re-enter the 

system. As I will illustrate with C. sonorensis, this is beneficial for a species within 

an augmentation / conservation biocontrol program in field crops. I believe that C. 

sonorensis overwinters in Southwestern Ontario, probably diapausing; if so, by 

early May, C. sonorensis could begin coming out of this overwintering period as 
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Hydraecia micacea and other Lepidoptera overwintering species, which could be 

the first hosts, do (Howard et al. 1994; Kullik et al. 2005; West et al. 1983; Chaput 

2000). At this time, T ni that had overwintered in greenhouses due to a bad clean 

up could be another of the first possible hosts (OMAFRA 2005). By Late May, 

when the migrating population of T. ni and probably other Lepidoptera Noctuidae 

species arrive in this area, C. sonorensis may still be coming out of the 

overwintering period and probably emerging from the parasitised overwintering 

hosts. On these hosts, the parasitoid population will increase its size until the 

next wave of migrating hosts as S. frugiperda, Helicoverpa species, and 

Peridroma saucia start arriving by mid-summer (Lingren et al. 1970; Hudon et al. 

1985; Howard et al. 1994, Marino et al. 2006). Thus, the ability of C. sonorensis 

to parasitise multiple hosts allows it to persist, but also to affect the population 

dynamics of multiple pest species, not just T. ni. 

7) Great reproductive potential 

This criterion states that an efficient parasitoid should have a potential maximum 

rate of population increase (rm) equal to, or larger than that of the host, as is the 

case in the current evaluation. The intrinsic rate of natural increase for fertility 

(0.24) and realised fecundity (0.27) of C. sonorensis were larger than those 

obtained for 7". n/'by Zote et al (2006), 0.12 to 0.19. Since C. sonorensis causes a 

considerable rate of mortality of parasitised hosts before parasitoid development 

and a portion of the parasitoid adults did not emerged from the cocoons, the 

overall host killing rate should be contrasted against the rate of population 

increase of the host instead of the parasitoid rm (van Lenteren and Manzaroli 

1999). In this criterion, also the net reproductive rate of C. sonorensis should be 

considered as an important factor of the great reproductive potential of this 

parasitoid which was 66.91 offspring per female per generation. 

For inundative biological control the reproductive potential does not appear to be 

a useful selection criterion, because a limited parasitoid fecundity can, in theory, 

be adjusted by releasing more parasitoids (Pak 1991). However, it would be 
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important to calculate whether releasing more parasitoids is economically 

feasible, given their individual fecundity. 

8) Good density responsiveness 

This criterion is often said to be an invaluable characteristic of an efficient natural 

enemy. Although there is a controversy about what the best method for 

determining a parasitoid's response to host density is (van Lenteren 1986), using 

the most common methods, regression analysis and correlations, in this study C. 

sonorensis exhibits a positively density dependent relationship with T. ni 

populations. Thus, the parasitoid is able to locate and reduce the host 

populations. However, we have not yet evaluated whether C. sonorensis is 

capable of reducing T. ni populations below economic injury levels and this is a 

very important factor which must be determined before any augmentative 

biological control program is started. 

Pak (1991) found the coexistence of pest and natural enemy at a low density to 

be an essential feature of augmentative approaches by inoculation of the natural 

enemy, but not of augmentative approaches by inundation of the agent. 

Inoculation approaches to conservation biocontrol, where natural enemies that 

do not go extinct at low host/prey populations, should be considered as important 

priorities in selection of a biocontrol agent, as the cost of inundation (repeated 

releases) depending on cost of the agent and effectiveness of the agent, is likely 

to be too expensive. 

In addition to these criteria, there is one criterion regarding the selection C. 

sonorensis as a biocontrol agent for T. ni that I consider very important that I 

have not found in my review of the papers. This criterion is the reduction in the 

feeding by parasitised hosts. It has been documented that in parasitised larval 

hosts, the reduction of their feeding rate has a direct effect on the damage they 

inflict (Guillot and Vinson 1973; Mani et al. 1982; van Loon et al. 2000; Fritzsche-

Hoballah and Turlings 2001). This is very important in this specific case, and 
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probably in many more cases similar to this one, because the regulation of the T. 

ni population by C. sonorensis occurs mostly during the early 2nd instar of the 

host, a time when the feeding rate is low and not detrimental to the crop yield as 

bigger and more voracious host instar stages are. This factor may become more 

important because as Lingren et al. (1970) and I have found, these early 2nd 

instar parasitised hosts stop feeding within 3 to 4 days of being parasitised and 

they never reach a size that could represent a real economic risk to the crop. 

Lingren et al. (1970) concluded that this fact would be an asset if an 

augmentation approach by inundative releases of C. sonorensis proves to be a 

feasible method for control of pests as H. zea and H. virescens in cotton. 

Now that I have demonstrated that C. sonorensis fits the criteria for a potential 

biological control agent T. ni, further research is required to finish the 

development of a biological control programme. For the development of an 

augmentation approach I propose two major steps. The first would be the 

evaluation of the biological and economic effectiveness (control capacity) of 

inundative releases of the parasitoid into the vegetable greenhouses, with a 

comparison of the cost of production and release using the current method of 

laboratory parasitoid mass rearing available, with the economic benefit provided 

by T. ni control, and including the cost of T. ni control using Btk or other 

measures, risk of Btk resistance, etc in the analysis. This requires evaluation of 

the timing of release, number of parasitoids released, distribution of release, 

interaction with other biocontrol agents and Btk and effect on population 

dynamics of T. ni. The second step requires improvement of the mass rearing 

system in order to allow a scale-up of the system and to be able to produce 

commercial amounts of the parasitoid at a lower cost. 

For the development of a conservation approach using C. sonorensis as a model, 

I also propose two major steps. The first is the evaluation of the population 

dynamics of C. sonorensis and other parasitoids of Noctuidae in the 

representative field crops of Southwestern Ontario. This should include crop 
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species that contain Lepidoptera species that migrate or have the potential to 

migrate into greenhouses, as well as crops that also are critical to maintaining 

species of natural enemies during vulnerable points in their seasonal dynamics. 

The second step is the evaluation of the main factors (e.g., chemical pesticide 

sprays, alternative refugees, food supplies, etc.) affecting the growth of the 

natural enemies' populations. 
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