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Abstract: Aerobic moderately thermophilic and thermophilic methane-oxidizing bacteria make a 

substantial contribution in the control of global warming through biological reduction of methane 

emissions and have a unique capability of utilizing methane as their sole carbon and energy source. 

Here, we report a novel moderately thermophilic Methylococcus-like Type Ib methanotroph 

recovered from an alkaline thermal spring (55.4 °C and pH 8.82) in the Ethiopian Rift Valley. The 

isolate, designated LS7-MC, most probably represents a novel species of a new genus in the family 

Methylococcaceae of the class Gammaproteobacteria. The 16S rRNA gene phylogeny indicated that 

strain LS7-MC is distantly related to the closest described relative, Methylococcus capsulatus (92.7% 

sequence identity). Growth was observed at temperatures of 30–60 °C (optimal, 51–55 °C), and the 

cells possessed Type I intracellular membrane (ICM). The comparison of the pmoA gene sequences 

showed that the strain was most closely related to M. capsulatus (87.8%). Soluble methane 

monooxygenase (sMMO) was not detected, signifying the biological oxidation process from 

methane to methanol by the particulate methane monooxygenase (pMMO). The other functional 

genes mxaF, cbbL and nifH were detected by PCR. To our knowledge, the new strain is the first 

isolated moderately thermophilic methanotroph from an alkaline thermal spring of the family 

Methylococcaceae. Furthermore, LS7-MC represents a previously unrecognized biological methane 

sink in thermal habitats, expanding our knowledge of its ecological role in methane cycling and 

aerobic methanotrophy. 

Keywords: Methanotrophs; Type Ib; moderate thermophile; alkaline thermal spring; pMMO; 

Ethiopian Rift Valley 

 

1. Introduction 

Methane plays a key role in the global carbon cycle, being 34 times more powerful as a 

greenhouse gas than CO2, and is the most substantial contributor to climate effect [1]. Abiogenic 

methane from underground reservoirs is produced in catalytic reactions at high pressure and 

temperature. Especially in geothermal habitats, a mixture of methane and other gases (known as 
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natural gas) enter the Earth’s atmosphere as a part of volcanic gases and hydrothermal solutions 

through seeps, degassing of spring water and gas venting. Moreover, anaerobic microbials (the 

presence of methanogenic archaea) in hyperthermal hot springs also contribute formation and 

releasing of biogenic methane into the atmosphere [2–4]. In some parts of Ethiopia (the Great Rift 

Valley regions), natural methane is released through thermal springs nearby the Rift Valley lakes. 

Such lakes and thermally heated water sediments from hot springs may affect the community 

structure and diversity of microorganisms and may have a major influence in the global carbon cycle. 

The study of aerobic methane-oxidizing bacteria (MOB) or methanotrophs is of special interest 

because of their significant ecological role in the global carbon cycle and natural reduction of methane 

emission to the atmosphere from many different ecosystems. Moreover, these microorganisms have 

the ability of utilizing methane as their sole energy and have a unique multicomponent enzyme 

system called methane monooxygenase (MMO), of which two distinct types, a particulate membrane-

bound enzyme (pMMO) and a cytoplasmic soluble, membrane-free form (sMMO) have been 

described. These bacteria are found worldwide in nature and have been detected and isolated from 

a variety of thermal and non-thermal habitats [5–8]. Until now, taxonomical and molecular diversity 

studies of aerobic methanotrophs comprise the three phyla of Proteobacteria, Verrucomicrobia and 

“Methylomirabilaeota” (candidate phylum NC10). In the phylum Proteobacteria, methanotrophs are 

currently reclassified and defined into five distinct families: the gammaproteobacterial 

Methylomonadaceae (referred to as Type Ia), Methylococcaceae (Type Ib, formerly named as Type X), 

Methylothermaceae (Type Ic) and the alphaproteobacterial Methylocystaceae (Type IIa) and 

Beijerinckiaceae (Type IIb), based on their genomic comparisons (digital DNA-DNA hybridization 

(dDDH)), reconstruction of genome phylogeny, average nucleotide identity (ANI) and average 

amino acid identity [9–13]. Within the phylum Verrucomicrobia (sometimes referred also to Type III 

methanotrophs), only one family is defined as Methylacidiphilaceae that consists of, up to now, two 

genera: Methylacidiphilum and Methylacidimicrobium [14–16]. 

Although the majority of reported aerobic methanotrophs are mesophilic (optimal between 10 

and 35 °C) and neutrophilic, their actual physiological tolerance ranges from 0 to 72 °C, pH from 1 to 

11 and salinities up to 30%. In fact, several thermotolerant (growth up to 50 °C) and moderately 

thermophilic methanotrophs have also been described [9,13,17]. Our knowledge of truly thermophilic 

or moderately thermophilic proteobacterial methanotrophs (Topt > 40 °C and Tmax < 67 °C) is still 

limited compared to their thermotolerant (Tmax < 50 °C), mesophilic (Tmax < 42 °C) or psychrotolerant 

(Tmax < 36 °C) counterparts. Only a few validly described species of thermophilic methanotrophs like 

Methylothermus thermalis (growth at 37−67 °C), Methylothermus subterraneus (growth at 37−65 °C) 

within the family Methylothermaceae and Methylocaldum szegediense (growth at 37−62 °C) within the 

family Methylococcaceae, could grow optimally above 55 °C [13,18,19]. The family Methylococcaceae 

presently comprises only seven phylogenetically associated genera: Methylococcus, Methylocaldum, 

Methyloparacoccus, Methylogaea, Methylomagnum, Methyloterricola and Methylotetracoccus [13,19–25]. In 

addition to these genera, the first isolated acid-tolerant moderately thermophilic (at a temperature 

range of 30−60 °C and at pH range 4.2−7.5) gammaproteobacterial methane oxidizers 

(methanotrophic isolates BFH1 and BFH2) were retrieved from a tropical topsoil with methane seeps 

habitat in Bangladesh, and possibly represent a novel new genus within the Type Ib methanotrophs. 

16S rRNA gene phylogeny of both strains formed a cluster with the genus Methylocaldum as the 

closest described relative [26]. Furthermore, three novel isolates (strains GFS-K6, BRS-K6 and AK-K6) 

were also recovered from three different geographical regions and habitats: rice field soil, a methane 

seeps pond sediment from Bangladesh and a warm spring sediment from Armenia. But these 

microorganisms are mesophilic rather than thermotolerant and represent the members of Type Ib 

methanotrophs, and make, phylogenetically, a cluster together of the mesophilic genera 

Methylomagnum and Methyloparacoccus [27]. 

Methylococcus capsulatus strains, Texas and Bath, were the first reported thermotolerant methane 

oxidizers, growing up to 50 °C and at pH range 5.5−8.5, and were isolated from sewage sludge and 

geothermally heated water, respectively [21,28]. So far, strain M. capsulatus Bath is the most studied 

methanotroph and expanded knowledge of its ecophysiology, genetic and biochemistry. Bodrossy 
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and colleagues, reported a bona fide novel thermophilic gammaproteobacterial methane-oxidizing 

bacterium (informally named as “Methylothermus” strain HB), which was recovered from 

underground hot springs in Hungary, and this bacterium represented the highest recorded growth 

temperature range at 40−72 °C, with an optimum at 62−65 °C, until now [29]. Sequence comparisons 

of both 16S rRNA and pmoA genes revealed that strain HB represents a novel genus of the Type Ic 

methanotrophs in the family Methylothermaceae, but unfortunately, this strain does not exist any 

longer [13]. Recently, the detection of a new gammaproteobacterial group of methanotrophs, 

distantly related to Methylococcus and Methylocaldum, in a Russian Far East thermal spring, provides 

new insights into the diversity and distribution of thermophilic methanotrophs [30]. Moreover, three 

thermoacidophilic strains, M. infernorum, M. fumiolicum and M. kamchatkense, were able to grow at 

temperatures of 37 to 65 °C and pH at up to 6.0. These were isolated from acidic geothermally heated 

soils and a hot spring, but they are members in the genus Methylacidiphilum of the phylum 

Verrucomicrobia. Verrucomicrobial methane oxidizers appear to be found only in acidic geothermal 

environments [14–16]. 

Several key functional molecular gene markers like pmoA (encoding a subunit of the particulate 

methane monooxygenase, pMMO: a copper-dependent enzyme), mmoX (encoding a subunit of the 

soluble methane monooxygenase, sMMO: an iron-dependent enzyme) and mxaF (encoding the large 

subunit of PQQ-dependent methanol dehydrogenase, MDH: a calcium-containing enzyme) were 

frequently applied for detecting and diversity analysis of C1-utilizing bacteria. Especially, the pmoA 

gene is often applied as a phylogenetic marker for identifying aerobic methanotrophs in various 

habitats [6,31]. Hitherto, no thermophilic methane oxidizers have been reported to exhibit both 

enzymes systems, indicating that methanotrophic cytoplasmic sMMO might not be existing in cells 

living above 55 °C [13,18,29]. The gene cbbL, encodes the large subunit of the ribulose-1,5-

bisphosphate carboxylase/oxygenase (RuBisCo: an essential enzyme in the Calvin-Benson-Bossham 

cycle), which is responsible for autotrophic growth. This gene has been commonly utilized for 

analyzing marine and hypersaline microbial communities as well as studies of Type Ib 

methanotrophs [26,32–34]. 

Recovering of moderately thermophilic methane-oxidizing bacteria from alkaline thermal 

springs (pH 8.0 to 9.0) is still a challenging process. Little is known about the identity, community 

structure and distribution of these bacteria from such ecosystems. 

In this study, we have isolated and characterized the first moderately thermophilic Type Ib 

methanotroph, recovered from an alkaline thermal spring sample from the Ethiopian Rift Valley. The 

new isolate likely represents a new genus within the family Methylococcaceae of the class 

Gammaproteobacteria and extends our knowledge of this group of microorganisms in these 

environments. 

2. Materials and Methods 

2.1. Sample Collection, Enrichments and Growth Conditions 

The alkaline-saline Lake Shalla is situated in the eastern Ethiopian Rift Valley [35], where 

extensive volcanic activity has disrupted drainage and thus helped create small shallow lake basins. 

Lake Shalla is a terminal lake with several thermal springs close by (Figure 1). The samples were 

collected in November 2007 from one of the largest ponds showing diffuse venting and emitting high 

temperature fluids. It is located 1561 m above sea level at a position 7°28′ 666′’N and 38°38′086′’E. 

Water and sediment samples were collected using a sterile pitcher connected to a stick at around 50 

cm depth and around 50 cm from the shore of the pond. The samples were transferred to Falcon tubes 

that were filled completely with sediment and water from the thermal spring outlet. 

For the enrichment and cultivation of moderately thermophilic methane oxidizers, 3 mL 

sediment slurry was added to 15 mL low-salt mineral medium (LMM) supplemented with KNO3 in 

120 mL sterile serum flasks [27]. The pH of the LMM was adjusted to 7.0 with HCl or NaOH. In 

addition, a low-salt mineral medium, supplemented with either NH4 Cl (LMM-AC) or (NH4)2 SO4 

(LMM-AS) adjusted to pH 7.0 was also utilized for methanotrophic enrichment cultures. The serum 
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flasks were closed with butyl rubber stoppers with aluminum crimp seals and a mixture of 80% 

methane (purity 99.5%, Yara Praxair, Oslo, Norway) and 20% air aseptically was added through a 

syringe in the headspace. The same methane:air mixture was used in all growth experiments. The 

cultures were incubated at 55 °C for one week with shaking at 150 rpm in the dark. 

 

Figure 1. Satellite image of the Ethiopian Rift Valley region, showing the Lake Shalla and the location 

of the hot-spring. An insert on the map shows the location of the lake in Ethiopia (Google Maps, 2020) 

(A). A close-up photograph of the sampling site (B). 

2.2. Isolation and Purification of Strain LS7-MC 

The primary enrichment culture was transferred up to five times and serial dilutions were made 

of the culture with LMM. 100 µL of dilutions (10−5 to 10−8) were spread onto gelrite solidified plates 

(20 g L−1; GelzanTM CM, Sigma-Aldrich) or agar (Difco) containing LMM. The plates were incubated 

for four weeks at 55 °C in jars filled with the methane and air mixture (4:1). No extra air was added 

in the jar. Colonies were picked and re-streaked onto fresh gelrite plates and re-incubated. Finally, 

one single colony was transferred to fresh liquid LMM with the methane:air mixture (4:1) in the 

headspace and incubated at 55 °C. These growth conditions with methane as the sole carbon source 

were routinely used for further cultivation of this isolate. The purity of the culture was evaluated by 

phase-contrast and electron microscopy, and repeated PCR amplification analysis of the partial 16S 

rRNA gene sequences. For further verification, the strain LS7-MC was also tested for lack of growth 

on acetate (10 mM), pyruvate (10 mM), succinate (10 mM), glucose (10 mM), ethanol (17 mM) and 

yeast extract (0.1%), streaking onto R2 A agar plates [36]. 

2.3. Naphthalene Assay, Acetylene Inhibition Test and Electron Microscopy 

To test for the presence of sMMO, the naphthalene-oxidation assay was performed using a 

culture grown in liquid LMM without copper, as described by Graham and collaborators [37]. 

Acetylene has been applied as an inhibitor for completely blocking methane monooxygenase [38]. 

The effect of acetylene on strain LS7-MC was monitored by adding 4% (v/v) acetylene to the 

headspace after two days of incubation with methane. Three replicate flasks were used for the 

methane oxidation inhibition test and one flask without acetylene was used as a control. To validate 

the acetylene inhibition test, M. kamchatkense Kam1 and M. capsulatus Bath were used as positive 

controls under the same conditions [36,39]. The morphology of the strain LS7-MC was determined 

using phase-contrast microscopy (Nikon, Eclipse E400 microscope) and electron microscopy Jeol-
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1230. For electron microscopy, strain LS7-MC was grown at its optimum temperature (55 °C) and 

ultrathin sections were prepared as described previously [36]. 

2.4. Growth Conditions, Carbon and Nitrogen Sources 

Growth of strain LS7-MC on various organic compounds was tested in liquid LMM 

supplemented with sterile substrates as potential carbon sources (acetate, pyruvate, succinate, 

glucose, lactate, maltose, ethanol and sorbitol) at a concentration of 10 mM. Growth on methanol, 

formaldehyde, methylamine, dimethylamine, formamide, glycerol, formate and yeast extract was 

examined using LMM containing the following variable concentration of the respective substrates: 

0.01%, 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1% (v/v). To determine the temperature range and the 

optimum temperature of strain LS7-MC, growth was tested at 16 different temperatures ranging from 

20 to 70 °C. The effect of pH range was examined at the optimum temperature of 55 °C, with a range 

of 14 pH values from 5.0 to 10.0. The optical cell density was measured at 600 nm (Spectronic 21, 

Milton Roy Company). Nitrogen sources were tested by using liquid LMM, in which KNO3 (0.1 g L−1) 

was replaced by 0.1 g L−1 of NH4 Cl, (NH4)2 SO4, glycine, methylamine, dimethylamine and yeast 

extract. Strain LS7-MC was also tested in triplicate with nitrogen-free LMM, where N2 from the air 

(20% air in the headspace) was the only nitrogen source. Exponential-phase cells (1:10 dilution) were 

supplemented into LMM (without KNO3) and this culture was transferred three times for excluding 

any trace of nitrate from the original inoculum. Growth was examined after two weeks of incubation 

at 55 °C. The generation time and the specific growth rate were calculated from exponential phase of 

growth under optimal growth conditions. For testing heat-resistance, a 4-week-old culture of strain 

LS7-MC was heated at 80 °C for 10 min. Growth of strain LS7-MC was also tested without vitamins 

in LMM. The strain was examined for growth on LMM (KNO3) without added vitamins and CuSO4 · 

5 H2 O (0.2 g L−1). Exponential-phase cells (1:10 dilution) were added to the medium and continued 

to grow until three passages. NaCl tolerance and the test of antibiotic sensitivity of strain LS7-MC 

were followed as delineated previously [26]. Growth was performed with methane for one week at 

55 °C. 

2.5. Fatty Acid Analysis 

For fatty acid analysis, cultures of strain LS7-MC grown at optimum temperature (55 °C) and 

with cell densities 108 cells/mL were delivered to DSMZ (Deutsche Sammlung von Mikrooganismen 

und Zellkulturen GmbH, Germany), where the samples were processed by harvesting, 

saponification, methylation, extraction and base wash prior to gas chromatography analysis. The 

fatty acid database of the Microbial Identification System (MIS) was employed for comparing with 

the fatty acid patterns of strain LS7-MC. 

2.6. PCR Amplification and Southern Blot Hybridization of Functional Genes 

Genomic DNA was extracted using GenElute Bacterial Genomic DNA kit (Sigma). The 16S 

rRNA genes were amplified with the universal bacterial primers 27 f and 1492 r, using a Veriti 96-

well Thermal Cycler (Applied Biosystems). The PCR was performed using DynazymeTM High-

fidelity DNA polymerase (Finnzymes) and the PCR and sequencing protocols were followed as 

previously described [27]. The functional genes pmoA, mmoX, mxaF, cbbL and nifH (a gene responsible 

for nitrogen fixation) were amplified using the same PCR protocol as described above for the 16S 

rRNA gene. Primers used in this study are listed in Supplementary Table S1. Furthermore, amplified 

fragments of 16S rRNA genes, pmoA and cbbL genes were cloned using a TOPO-TA Cloning Kit 

(Invitrogen). The clones were screened for correct inserts and the fragments were sequenced. For 

confirmation of pMMO and sMMO, the Southern blotting technique was applied. Genomic DNA 

from strain LS7-MC, M. kamchatkense Kam1 (as a negative control) and M. capsulatus Bath and 

Methylococcaceae strain BFH1 (as positive controls) was extracted. Then, DNA was digested with 

EcoRI and HindIII. Hybridization probes and the further process were followed as previously 

described [32,36]. 
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2.7. Phylogenetic Analysis and Nucleotide Sequence Accession Numbers 

16S rRNA gene sequences, and PmoA, MxaF and CbbL protein sequences of strain LS7-MC were 

compared with available sequences in the GenBank database using the NCBI tools (Blastn and 

Blastp). To perform phylogenetic analysis, 16S rRNA gene sequences and deduced amino acid 

sequences of PmoA were aligned using the CLUSTAL W algorithm. Distances were computed and 

phylogenetic trees were constructed using the following methods: Neighbor Joining (NJ), Maximum 

Likelihood (ML), Minimum-Evolution (ME), and the following models: Maximum Composite 

Likelihood, Kimura 2-parameter, Tamura 3-parameter, Jukes–Cantor, Jones Taylor-Thornton (JTT), 

Poisson and Dayhoff, which are implemented in the MEGA7 software package. The confidence of 

the trees was determined by 1000 bootstrap replications [40]. The phylogenetic analysis of 16S rRNA 

and PmoA involved 1424 nucleotides and 167 amino acid sequences, respectively. The nearly 

complete 16S rRNA gene sequences and the partial sequences of the genes pmoA, mxaF, cbbL and nifH 

of the strain LS7-MC have been deposited in GenBank under the accession numbers KP771709, 

KP828775, KP843192, KP843193 and KP843194, respectively. 

3. Results 

3.1. Isolation of a Moderately Thermophilic Methylococcus-Like Methanotroph 

The enrichments of moderately thermophilic methane oxidizers were achieved from an alkaline 

hydrothermal spring that has been present for the last 80 years. The in-situ temperature, the pH and 

the conductivity of the thermal spring were 55.4 °C, 8.82 and 8.6 S/m, respectively. Three separate 

enrichments, LMM (KNO3), LMM-AC (NH4 Cl) and LMM-AS ((NH4)2 SO4) were set up. After two 

weeks of incubation at 55 °C, the enrichment with LMM showed that cells’ turbidity and microbial 

growth was confirmed by phase-contrast microscopy. Growth on LMM-AC (NH4 Cl) and LMM-AS 

((NH4)2 SO4) were not evident even after three weeks of incubation in the same culture conditions. 

Diluted LMM enrichment cultures were spread on gelrite plates and incubated for 10 days. Two 

different types of colonies were observed. One type was small white colonies about 0.6–0.8 mm in 

diameter and the other type was shiny and slightly larger, at about 1.2–1.5 mm in diameter. No such 

colonies appeared on agar plates. The small white colonies stopped growing after 10 days, but the 

cells were viable for about four weeks of incubation with methane. Using phase-contrast microscopy, 

the small white colonies were comprised of coccoid cells, whereas the larger and shiny colonies 

showed small rod-shaped cells. Physiological and taxonomic depiction of the ‘rod-shaped’ strain is 

currently under investigation (Islam et al., in prep.). For this current study we selected the small white 

colonies with coccoid cells for further characterization. The final isolate, designated LS7-MC, grew 

on methane or methanol as the sole carbon and energy source. It did not grow on ethanol, acetate, 

pyruvate, malate, succinate, methylamine, glucose, fructose or yeast extract, indicating that the 

isolate is an obligate aerobic methanotroph. No heterotrophic contaminants grew on these media, 

thus verifying the purity of the strain. Furthermore, repeated PCR amplification analysis of the partial 

16S rRNA gene sequence from the methane and methanol grown cultures yielded the same sequence, 

confirming the purity of LS7-MC. 

3.2. Growth and Physiological Characteristics of LS7-MC 

The temperature range for growth was between 30 and 60 °C, and no growth was observed at 

25 or 62 °C. The optimum growth temperature was 51−55 °C at pH 7.0. The cells did not appear to be 

heat-resistant. Growth occurred between pH 6.0–9.3 but not at pH 5 or 9.5. The optimal pH was 

between 7.0 and 7.5. Growth was not obtained under aerobic conditions in the absence of methane or 

under anaerobic conditions in the presence of methane. Furthermore, the isolate grew only in the 

presence of very low methanol concentrations, between 0.05% and 0.25%. Strain LS7-MC did not 

grow on LMM-AC (NH4 Cl), LMM-AS ((NH4)2 SO4) and nitrogen-free compounds, except LMM 

(KNO3). Only nitrate in the medium was used as a nitrogen source. This indicated that the addition 

of nitrate has strong effects on methane consumption for growth or that the strain was possibly 
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sensitive to ammonium salts. Multicarbon compounds completely prevented growth on methane or 

methanol at pH 7.0. The strain was able to grow to an OD600 value of 1.2 on methane. The generation 

time and the specific growth rate of a culture grown on methane were estimated to 6 h and 0.115 h−1, 

respectively. No growth was observed after 10 days of incubation for each of these passages in LMM 

medium without added CuSO4 or vitamin, indicating that both vitamins and Cu+2 are essential for 

growth. NaCl was not required for growth, but the isolate could grow on medium supplemented 

with 0.1%–0.25% NaCl (w/v). No growth occurred at concentrations above 0.5% NaCl (w/v). All 

tested antibiotics (ampicillin 10 µg mL−1, tetracycline 10 μg mL−1, kanamycin 30 µg mL−1, streptomycin 

10 µg mL−1, erythromycin 10 µg mL−1 and nalidixic acid 30 µg mL−1) suppressed growth of LS7-MC. 

The addition of acetylene (4%) to the headspace of exponentially growing cultures, resulted in 

inhibition of methane oxidation, and further growth of strain LS7-MC stopped. This demonstrated 

the presence of the functionally active methane oxidizing enzyme typical for MOB. Major 

characteristics of the strain LS7-MC with other described obligate Type Ib methanotrophic genera or 

species of the family Methylococcaceae are presented in Table 1. 
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Table 1. Comparison of the major characteristics of the strain LS7-MC with other described Type Ib methanotrophs of the family Methylococcaceae. Strains: 1, This 

study; 2, Methylococcus capsulatus strain Bath [20,41]; 3, Methylocaldum spp. [17,19]; 4, Methylococcaceae strain BFH1 [26]; 5, Methylotetracoccus oryzae strain C50 C1 T 

[25]; 6, Methylogaea oryzae E10 T [21]; 7, Methyloparacoccus murrellii R-49797 T [22]; 8, Methylomagnum ishizawai RS11 D-PrT [23]; 9, Methyloterricola oryzae 73 aT [24]; +, 

positive results; –, negative results; nd, not determined. 

Characteristic 1 2 3 4 5 6 7 8 9 

Cell 

morphology 
Coccoids Coccoids Rods-pleomorphic Coccoids Coccoids Curved rods Coccoids Rods Coccus 

Temperature 

condition 
Moderately Thermotolerant Thermophilic/ Moderately mesophilic Mesophilic Mesophilic Mesophilic Mesophilic 

 thermophilic  thermotolerant thermophilic      

Internal 

membranes  
Type I Type I Type I Type I Type I Type I Type I Type I Type I 

Motility − − +/− − − + − + + 

Pigmentation White Yellow Brown/cream White white White White White White 

pMMO + + + + + + + + + 

sMMO − + −/+a − − − − + − 

mxaF + + + + + + + + + 

cbbL(RuBisCo) + + + + + nd nd + + 

nifH gene/N2-

fixation 
+ + + + + + −  − + 

Growth on N-

free medium 
− + nd − nd − −  − + 

Range of temp. 

(optimal)  

30−60 

(51−55) 

20−47 

(42−45) 

20−61 

(42−55) 

30−60 

(51−55) 

4−30 

(18−25) 

20–37 

(30–35) 

20–37 

(25–33) 

20–37 

(31–33) 

15–45  

(27–37) 
oC 6.0−9.3  5.5−7.5  6.0−8.5  4.2−7.5  6−8 5–8  5.8–9.0  5.5–9.0  4.6–7.5  

pH growth 

range (optimal) 
(7.0−7.5) (6.5) (7.0−7.2) (5.5−6.0)  (6.5– 6.8) (6.3–6.8) (6.8–7.4) (7.0–7.5) 

Growth on 

methanol (0.1%) 
+ + − + + + – – – 

Vitamin 

required 
+ − − − − – – +/– – 

Growth with C1          

compoundsb − + − − + nd nd nd nd 

G+C content 

(mol%) 
nd 62.5 57−59 62.7 62.77 63.1  65.6 64.1 61.0 

G+C content 

(mol%)c 
59.4 60.3 56.7d 59.5 nd 57.5 57.8 61.4 55.1d 

Isolation source 

(pH) 

Alkaline  

thermal spring 

(pH 8.82) 

Hot spring 

(pH 6.0) 

Manure, silage 

(pH 6.0) 

Tropical topsoil 

(pH 5.0) 

Rice field 

(pH 6.0) 

Rice field 

(pH 5.8) 

Pond water 

pH (7.1–8.4) 

Rice field 

pH (6.3) 

Rice plants 

pH (6.0–8.4) 

a Only Methylocaldum marinum strain S8 T possessed the soluble methane monooxygenase gene [42]. b Formamide, formate and methylamine (0.1% w/v). c 16S rRNA, pmoA, 

mxaF, cbbL and nifH genes sequences were used for computing measurement of DNA G+C content (mol%). d Only 16S rRNA and pmoA sequences of Methylocaldum 

szegediense OR2 T and Methyloterricola oryzae 73 aT were applied. Bold values show significant range of temperatures and pH of isolation sources among Type Ib methane 

oxidizers.
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3.3. Microscopic Observations 

Coccoid-type cells were observed by phase contrast microscopy (Figure 2A,B). The cells 

occurred individually or in pair (diplococcus) with a diameter and a length of 0.9–1.2 µm (Figure 

2C,D). During cell division, an ellipsoid form appeared which turned into a diplococcus. This 

morphology was also seen in a thermophilic methanotrophic strain HB [29]. The strain was non-

motile and multiplied by binary fission. Flagella were not apparent by transmission electron 

microscopy (TEM). Analysis of ultrathin sections by TEM revealed a typical Gram-negative cell wall 

structure and moreover, the presence of extensive intracytoplasmic membrane (ICM) (Figure 2C,D). 

Cells became elongated when the growth temperature was above 55 °C. 

 
 

Figure 2. Morphology of the methanotrophic strain LS7-MC. (A and B) Phase-contrast 

photomicrograph of cells grown in low-salt mineral medium (LMM) medium with methane at 55 °C 

for 5 days. Transmission electron micrograph (TEM) of the strain LS7-MC shows (C) a single cell and 

(D) a diplococcus. Ultrathin sections showing extensive intracytoplasmic membrane (ICM) systems 

and a typical Gram-negative cell wall (CW). Bars, 0.2 µm. 

3.4. Phospholipids Fatty Acids (PLFA) Composition 

The major fatty acids of strain LS7-MC are shown in Table 2 together with those of related Type 

Ib methanotrophs of the family Methylococcaceae. The fatty acid composition of this novel organism 

was revealed as comparable to other strains of the species M. capsulatus, Methylocaldum spp., 

Methylotetracoccus oryzae, Methylogaea oryzae, Methyloparacoccus murrellii, Methylomagnum ishiwaze and 

Metyloterricola oryzae regarding the two predominant fatty acids (C16:0 and C16:1ω7 c). In strain LS7-

MC C16:0 (47.75%) and C16:1ω7 c (40.95%) accounted for 88.7% of the total amount of fatty acids. 

C16:0 is a major fatty acid in thermophilic, thermotolerant and mesophilic methanotrophs of the Type 

Ib genera like Methylocaldum, Methylococcace strain BFH1, Methylococcus, Methyloterricola and 

Methylogaea (30−60%), whereas mesophilic methanotroph genera (e.g., Methylotetracoccus, 

Methyloparacoccus and Methylomagnum) contain less than 24% of C16:0 [22]. Type Ia mesophilic or 

psychrotolerant genera in the family Methylomonadaceae (Methylosoma, Methylobacter and 

Methyloglobulus) exhibit more than 55% of C16:0 [43]. Hitherto, such high amounts of C16:1ω7 c found 

5 µm 3 µm 

ICM D C 

CW 

A B 
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in strain LS7-MC have not been reported in any other described thermophilic or thermotolerant Type 

Ib methanotrophs. Methyloparacoccus, Methylomagnum and Methyloterricola as mesophiles, contain 

54%, 47% and 27% of C16:1ω7 c, respectively. The following fatty acids were detected in less amounts 

(1% to 6%): C17:0 cyc, C16:0 3-OH and C18:1ω7 c, accounting for 9.0% of total fatty acids. In general, 

fatty acid profiles from other related methanotrophs differ significantly from that of strain LS7-MC. 

Table 2. Phospholipid fatty acids comparison of the strain LS7-MC and other related 

gammaproteobacterial. 

Fatty acids 1 2 3 4 5 6 7 8 9 

C12:0      2.11    

C13:1 0.50       0.27  

iC14:0    0.59      

C14:0 0.79 0.8−0.62 1.97 0.78 0.34 5.84 4.7 15.8  

C14:0 2-OH          

C15:0 0.34 0−1.7 3.51 0.80 1.12 1.03 3.2 1.56  

C15:1ω8 c        0.22  

C15:1ω6 c    0.12      

C16:1ω11 c        5.46  

C16:1ω7 c 40.97 10.6−23.1  13.83 18.13 10.33 54.2 47.3 26.9 

C16:1ω6 c  3.9−12.3   8.67   8.03 8.7 

C16:1ω5 c  3.2−9.0  0.37 5.95  4.2  28.3 

C16:1ω5 t  1.8−6.0   0.19     

C16:1ω9 t     3.91     

C16:0 47.75 33.5−56.0 63.67 54,38 17.73 62.05 23.7 19.6 30.9 

C16:1ω9 c     33.01 7.36 6.5   

C16:1ω10 c         2.4 

C16:1   11.90  0.80     

iC16:0 3-OH      3.96    

C16:0 3-OH 1.64  0.64 0.28  2.93 2.6 1.78  

9-ο-Me-C16:0  0−14.0 4.62       

C17:0 cyc 5.90  8.99 26.33      

C17:0   0.68 0.46 0.26     

C17:1   0.34       

C17:1ω6 c  0−1.8 0.43 0.62      

C17:1ω7 c   0.26       

C17:1ω8 c     0–16     

9-o-Me-C17:0   0.60       

11-0-Me-17:0   0−2.1 0.60       

C18:0 0.64  0.26  0.53     

C18:1  0−6.5 0.17  0.11     

C18:1ω7 c 1.49 0−2.9  0.71 0.93    1.7 

C18:1ω9 c  0.6−1.8  0.62      

C19:0 cyc          

C19:1 cyc   1.37       

C20:0      2.66    

Growth temp. (°C) 55 40 40 55 25 30 30 30 30 

Type Ib methanotrophs (moderately thermophiles, thermotolerants and mesophiles). Strains: 1, Strain 

LS7-MC (the current study); 2, Methylococcus capsulatus [41]; 3, Methylocaldum sp. O-12 [17]; 4, 

Methylococcace strain BFH1 [26]; 5, Methylotetracoccus oryzae C50 C1 T [25]; 6, Methylogaea oryzae E10 T 

[21]; 7, Methyloparacoccus murrellii R-49797 T [22]; 8, Methylomagnum ishizawai RS11 D-PrT [23]; 9, 

Methyloterricola oryzae 73 aT [24]. Values are given as a percentage of total fatty acids. Bold values show 

significant fatty acids for correlating among Type Ib methane oxidizers. 

3.5. Detection of Functional Genes 

All amplification reactions of functional genes gave positive results except for the gene mmoX. 

Strain LS7-MC did not show any positive results in the naphthalene assay, verifying the absence of 

sMMO. Southern blotting analysis of genomic DNA also showed no positive signals with the mmoX 

probe, whereas the pmoA probe yielded positive signals (Supplementary Table S2). These results 

confirmed that strain LS7-MC does not contain the soluble form of MMO. 
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3.6. Phylogenetic Analysis of 16S rRNA and Functional Genes 

A nearly complete sequence of the 16S rRNA gene (1424 bp) was obtained. Using Blastn search 

of the 16S rRNA gene sequence, strain LS7-MC showed a high sequence similarity (98.7%) to an 

uncultured bacterium clone (FG44 B-12) from a subterranean radioactive thermal spring in the 

Austrian central Alps (‘‘Franz-Josef-Quelle’’ in Bad Gastein; GenBank Accession No. FR846909) [44]. 

The strain showed 92.5% sequence similarity to uncultured bacterial clones from fracture water of a 

gold mine borehole in the USA (JX434172, JX434181, JX434257-58, JX434183, JX434188-89, JX434195, 

JX434201, JX434207, JX434214, JX434216, JX434220-22, JX434225), and a soil sample from Bugok 

geothermal in South Korea (MN726710). Low sequence similarity values were also found at 93.1% 

similarity to uncultured bacteria clones from industrial sugarcane bagasse feedstock piles [45], and 

Methylococcus sp. strain IM1 from geothermal field soils. The closest extant strains were M. capsulatus 

strain Bath (92.7% similarity), acid-tolerant moderately thermophilic strains BFH1 and BFH2, M. 

szegediense strain OR2 (92.9%), Methylocaldum sp. O-12 (92.8%) and Methylocaldum sp. E10 (92.9%). 

Analysis of pairwise alignment 16S rRNA gene sequence of the strain LS7-MC and the closest extant 

strains showed maximum sequence similarity (92.7%) with M. capsulatus strain Bath, which is a 

thermotolerant methanotroph of the family Methylococcaceae. Further analysis exhibited 91.2–92.4% 

sequence similarity to other strains (Supplementary Table S3). These results suggested that strain 

LS7-MC may represent a new member of the Type Ib methanotrophs rather than Type Ia 

(Methylomonadaceae) or Type Ic (Methylothermaceae) in the class Gammaproteobacteria. In the Neighbor-

Joining tree of 16S rRNA gene (Figure 3), strain LS7-MC formed a phylogenetically separate linage 

within the closest genera of Methylococcus, Methylocaldum, Methylogaea and Methyloparacoccus, 

Methylomagnum, Methylotetracoccus and Methyloterricola. This topology was also verified with the 

Maximum-Likelihood (Supplementary Figure S1) and Minimum-Evolution (Supplementary Figure 

S2) trees, suggesting that strain LS7-MC is not a species within any of the known genera of the Type 

Ia, Type Ib or Type Ic methanotrophs. 

Based on the pmoA gene analysis and Blastn search, strain LS7-MC showed 93.8% (99.4% amino 

acid level) sequence identity to the partial pmoA gene sequences of a DGGE band of an uncultured 

bacterium clone in an Austrian radioactive thermal spring (AM749116) [46]. Lower sequence 

identities (88.2–91.2%) were found compared to many uncultured bacteria from different ecosystems, 

such as wetland soil (JQ038175), hot water (AF533666), diverse soils (MF107118), subsurface borehole 

water (KF901437), hot spring (KF836706), landfill cover soil (JX998182), forest soils (FN393903), coal 

mine soil (EU131055) and Danish soils (AF368356). The pmoA gene of the strain LS7-MC, based on 

pairwise sequence analysis, revealed 87.8% identity (99.4% at amino acid level) to M. capsulatus Bath, 

79.7–82.7% identity (92.3–94.7% at amino acid level) to Methylocaldum spp. (M. szegediense OR2 T, M. 

tepidum LK6 T, M. gracile VKM 14 LT, and M. marinum S8 T), 84.6% identity (96.2%) to M. murrellii R-

49797 T and 79.0% identity (95.3%) to M. oryzae E10 T (Supplementary Table S3). The phylogenetic 

analysis of partial derived PmoA amino acid sequences showed that the strain LS7-MC was clustered 

along with M. capsulatus, Methylocaldum spp., M. murrellii, M. oryzea and Methylococcaceae strains GFS-

K6 and AK-K6 (Figure 4). The same topology was also found using Maximum-Likelihood 

(Supplementary Figure S3) and Minimum-Evolution (Supplementary Figure S4) trees, suggesting 

that the PmoA-based and 16S rRNA-based phylogenies generated a consistent position between 

strain LS7-MC and other cultivated Type Ib methanotrophs of the family Methylococcaceae. Analyses 

of the mxaF gene of the strain LS7-MC exhibited lower homology (83.6–85.9%) to several uncultured 

bacteria from coal mine soils (KF031213-15, KF031234, EU131063 and EU131061). The closest related 

genera, based on the mxaF gene (555 bp) and MxaF protein sequences (185 amino acids) of strain LS7-

MC, were Methylococcus, Methylocaldum, Methyloparacoccus and Methylogaea, demonstrating 81.5–

85.7% identity at the DNA sequences level and 96.5–97.8% similarity at the amino acid level 

(Supplementary Table S4). Pairwise partial-derived CbbL protein sequences (101 amino acids) 

comparison showed 98.1% identity with CbbL from M. capsulatus strain Bath (AF447860) and 95.0% 

with CbbL from M. szegediense (WP_026609010). 
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Figure 3. 16S rRNA gene-based phylogenetic tree, using the Neighbor-Joining method, showing the 

phylogenetic position of strain LS7-MC (highlighted in bold red) within the family Methylococcaceae 

(Type Ib) of the class Gammaproteobacteria. The evolutionary distances were computed using the 

Maximum Composite Likelihood method and are in the units of the number of base substitutions per 

site. Methylacidiphilum infernorum V4T (AM900833), a thermoacidophilic verrucomicrobial 

methanotroph, was used as an outgroup. Evolutionary analyses were conducted in MEGA7 [40]. The 

scale bar represents 0.05 changes per nucleotide position. Less than 50% of bootstrap values (1000 

replicates) are not shown. 
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Figure 4. Phylogenetic dendrogram based on derived deduced PmoA amino acid sequences showing 

the position of strain LS7-MC (highlighted in bold red) and other described gammaproteobacterial 

methanotrophs. The evolutionary distances were computed using the Poisson correction method and 

are in the units of the number of amino acid substitutions per site. Methylacidiphilum infernorum V4 T 

PmoA3 (EU223855), a thermoacidophilic verrucomicrobial methanotroph, was used as an outgroup. 

Evolutionary analyses were performed in MEGA7 [40]. The scale bar represents 0.1 changes per 

nucleotide position. 

4. Discussion 

Research on methane-oxidizing bacteria has mainly focused on low-temperature ecosystems. 

Most of the more than 50 validates species are either mesophilic or psycrophilic. Only a few 

thermophilic or moderately thermophilic species (8 species of proteobacterial and 3 species of 

verrucomicrobial methanotrophs) with optimal growth temperature between 50 and 55 °C have so 

far been reported [13,14,26]. In this study, enrichments for aerobic methanotrophs were established 

by inoculating sediment slurry from a thermal spring close to an alkaline lake (Lake Shalla) in the 

Ethiopian Rift Valley. From these enrichments, a novel moderately thermophilic Type Ib 

methanotroph, termed LS7-MC, was retrieved. This novel isolate shows an obligate aerobic 

methylotrophic growth with methane and methanol as the sole carbon and energy sources. 

According to 16S rRNA, PmoA, MxaF, CbbL and NifH sequence analyses, strain LS7-MC is most 
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closely related to the Type Ib thermotolerant and moderately thermophilic methanotrophic bacteria 

within the family Methylococcaceae. Both the particulate methane monooxygenase gene pmoA and the 

methanol dehydrogenase gene mxaF, routinely used as functional and phylogenetic biomarkers for 

methanotrophic proteobacteria in natural environments [31,47], were detected in strain LS7-MC, 

indicating that methanotrophic proteobacteria are more widespread in thermal environments than 

previously thought. Furthermore, the difference in 16S rRNA gene sequences between strain LS7-MC 

and other related validated Type Ib methanotrophic genera ranges between 7% and 10%. The lack of 

soluble methane monooxygenase gene mmoX implies another significant difference between the 

thermotolerant genus Methylococcus and the strain LS7-MC presented here. These results ascertain 

that strain LS7-MC is, most probably, not a new species or subspecies of the genus Methylococcus or 

other genera of the families Candidate Methylomonadaceae, Methylococcaceae or Methylothermaceae. The 

16S rRNA gene analyses suggested that this strain most probably represents a new genus in the 

methane-oxidizing bacterial family Methylococcaceae of the class Gammaproteobacteria. 

Thermotolerant and moderately thermophilic proteobacterial methanotrophs have been found 

in various ecosystems from thermal spring sediments, subsurface hot aquifer, tropical landfill 

wetlands, methane seeps topsoil, compost and marine sediments [17,18,26,42]. The existence of these 

bacteria was supported by phylogenetic analyses of genes (like 16S rRNA, pmoA, mxaF and mmoX), 

through cultivation efforts and bacterial community analyses (using DNA-SIP, metagenomics, 

metatranscriptomics and next-generation sequencing) [48–51]. The comparative analysis of the 16S 

rRNA gene showed a relatively high sequence identity (>98%) to a clone of subsurface water sample 

(average pH 7.88) from an Austrian radioactive thermal spring [44]. The high sequence similarity of 

this clone to strain LS7-MC may indicate common physiology and metabolism properties between 

the strain LS7-MC and the uncultured thermal spring bacterium. Moderately thermophilic 

methanotrophs related to strain LS7-MC could be present in the central Austrian radioactive thermal 

spring and possibly in other related habitations of radioactive geothermal, and pmoA gene sequences 

obtained from the same thermal spring showed 93.8% sequence identity to pmoA of the strain LS7-

MC. This is an indication that moderately thermophilic gammaproteobacterial methanotrophs may 

play a significant role in the carbon cycle in such subsurface thermal spring ecosystems. A relatively 

lower percentage identity of 16S rRNA, pmoA and mxaF sequences have also been detected in coal 

mine, diverse soils, wetland and landfill cover soils as well as hot spring water [19,52–54], suggesting 

that Methylococcus-like mesophilic or moderately thermophilic methanotrophs might be found in 

these various environments. 

Strain LS7-MC required vitamins and copper for consistent growth and was negative with the 

naphthalene-oxidation assay. The lack of sMMO was also verified using the Southern blotting 

technique and PCR amplification. These central observations have also been described in other 

thermophilic proteobacterial isolates such as ‘Methylothermus’ strain HB [29], Methylothermus spp. 

[18,48] and thermophilic Methylocaldum spp. [17], as well as the verrucomicrobial M. kamchatkense 

Kam1 [36], which suggests that genes encoding soluble methane monooxygenase most probably do 

not exist in moderately thermophilic or thermophilic proteobacterial methanotrophs or 

verrucomicrobial thermoacidophilic methanotrophs [14]. On the other hand, within Type Ib 

methane-oxidizers, thermotolerants such as M. capsulatus and M. marinum, and mesophilic M. 

ishizawai (growth range 4–37 °C) possess both sMMO and pMMO enzyme systems [13,42,55]. 

5. Conclusion 

We have retrieved an obligate moderately thermophilic Type Ib methanotroph that belongs to 

the family Methylococcaceae of the class Gammaproteobacteria. This new isolate is a Methylococcus-like 

bacterium that contains the particulate methane monooxygenase (pMMO) but does not contain 

soluble methane monooxygenase (sMMO) in the methane oxidation process. Based on the 

physiological, biochemical and genotypic properties, strain LS7-MC most probably represents a 

novel genus within the family Methylococcaceae. This strain also denotes a previously unrecognized 

biological methane sink, diversity of methane oxidation and on the adaptation of this process to 

alkaline thermal habitats. Furthermore, this finding will increase our knowledge of methanotroph 
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ecology and its involvement to global cycles of carbon and nitrogen, and the thermophilic nature of 

this strain possibly makes a considerable candidate for potential biotechnological applications [56]. 

Additional studies regarding the molecular biology, biochemistry and whole genome of LS7-MC are 

needed to provide insight into how biological methane oxidation processes and mechanisms are 

regulated in alkaline thermal ecosystems. 

Supplementary Materials: Table S1: Primers for amplification of functional genes of the strain LS7-MC. Table 

S2: Results of Southern blot analysis of radioactively labeled pmoA and mmoX probes. Table S3: Pairwise 

sequence (EMBOSS) alignment analysis of 16S rRNA gene sequences, pmoA gene and partial-derived PmoA 

amino acid sequences shows similarity between strain LS7-MC and other cultivated gammaproteobacterial 

methanotrophs. Table S4: Pairwise MxaF protein sequences similarity comparisons (EMBOSS) between LS7-MC 

and other related methanotrophs of the family Methylococcaceae. Figure S1: Phylogenetic tree based on 16S rRNA 

gene sequences. Figure S2: Phylogenetic tree based on 16S rRNA gene sequences. Figure S3: Phylogenetic tree 

of PmoA protein sequences. Figure S4: Phylogenetic tree of PmoA protein sequences. 

Author Contributions: T.I., A.G., A.G.-M., J.C.M. and L.Ø. designed the experiments, analyzed the data and 

wrote and edited the manuscript. T.I. performed the isolation of strain LS7-MC, and carried out morphological, 

biochemical characterization and phylogenetic analysis. L.Ø. collected samples and contributed 

reagents/materials/TEM analysis. All authors have read and agreed to the published version of the manuscript. 

Funding: The Norwegian Council of Universities Committee for Developmental Research and Education 

(NUFU) funded this project through grant number NUFUPRO-2007 10069 to University of Addis Ababa and 

University of Bergen. 

Acknowledgments: This study was supported through the Ethiopian–Norwegian collaboration project 

“Biotechnology and microbial diversity of Ethiopian Soda Lakes”. The electron microscopy imaging was 

performed at the Molecular Imaging Center (MIC), Department of Biomedicine, University of Bergen. 

Conflicts of Interest: The authors declare that they have no conflicts of interest. 

References 

1. IPCC. Climate Change:The Physical Science Basis, Contribution of Working Group I to the Fith Assessment Report 

of the IPCC.; Cambridge University Press: Cambridge, UK, 2013. 

2. Etiope, G.; Lassey, K.R.; Klusman, R.W.; Boschi, E. Reappraisal of the fossil methane budget and related 

emission from geologic sources. Geophy. Res. Lett. 2008, 35, L09307 

3. Nazaries, L.; Murrell, J.C.; Millard, P.; Baggs, L.; Singh, B.K. Methane, microbes and models: Fundamental 

understanding of the soil methane cycle for future predictions. Environ. Microbiol. 2013, 15, 2395–2417. 

4. Tikhonova, E.N.; Kravchenko, I.K. Activity and Diversity of Aerobic Methanotrophs in Thermal Springs of 

the Russian Far East. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: 

Amsterdam, The Netherlands, 2019; pp. 1–30. 

5. Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. 

6. McDonald, I.R.; Bodrossy, L.; Chen, Y.; Murrell, J.C. Molecular ecology techniques for the study of aerobic 

methanotrophs. Appl. Environ. Microbiol. 2008, 74, 1305–1315. 

7. Semrau, J.D.; Dispirito, A.A.; Murrell, J.C. Life in the extreme: Thermoacidophilic methanotrophy. Trends 

Microbiol. 2008, 16, 190–193. 

8. Saidi-Mehrabad, A.; He, Z.; Tamas, I.; Sharp, C.E.; Brady, A.L.; Rochman, F.F.; Bodrossy, L.; Abell, G.C.; 

Penner, T.; Dong, X.; et al. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J. 

2013, 7, 908–921. 

9. Bowman, J. The Methanotrophs—The Families Methylococcaceae and Methylocystaceae. In Dworkin M, Falkow, 

S.; Rosenberg, E.; Schleifer, K. H. (ed). 3rd ed. Springer, New York, NY. 2006; pp. 266–289. 

10. Trotsenko, Y.A.; Murrell, J.C. Metabolic Aspects of Aerobic Obligate Methanotrophy. Adv. Appl. Microbiol. 

2008, 63, 183–229. 

11. Knief, C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria 

evaluated based on pmoA as molecular marker. Front. Microbiol. 2015, 6, 1346. 

12. Orata, F.D.; Meier-Kolthoff, J.P.; Sauvageau, D.; Stein, L.Y. Phylogenomic analysis of the 

gammaproteobacterial methanotrophs (Order Methylococcales) calls for the reclassification of members at 

the genus and species levels. Front. Microbiol. 2018, 9, 3162. 



Microorganisms 2020, 8, 250 16 of 18 

 

13. Houghton, K.M.; Carere, C.R.; Stott, M.B.; McDonald, I.R. Thermophilic methanotrophs: In hot pursuit. 

FEMS Microbiol. Ecol. 2019, 95, fiz125. 

14. Op den Camp, H.J.; Islam, T.; Stott, M.B.; Harhangi, H.R.; Hynes, A.; Schouten, S.; Jetten, M.S.; Birkeland, 

N.K.; Pol, A.; Dunfield, P.F. Environmental, genomic and taxonomic perspectives on methanotrophic 

Verrucomicrobia. Environ. Microbiol. Rep. 2009, 1, 293–306. 

15. Sharp, C.E.; Smirnova, A.V.; Graham, J.M.; Stott, M.B.; Khadka, R.; Moore, T.R.; Grasby, S.E.; Strack, M.; 

Dunfield, P.F. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic 

environments. Environ. Microbiol. 2014, 16, 1867–1878. 

16. Van Teeseling, M.C.; Pol, A.; Harhangi, H.R.; van der Zwart, S.; Jetten, M.S.; Op den Camp, H.J.; van Niftrik, 

L. Expanding the verrucomicrobial methanotrophic world: Description of three novel species of 

Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 2014, 80, 6782–6791. 

17. Eshinimaev, B.T.; Medvedkova, K.A.; Khmelenina, V.N.; Suzina, N.E.; Osipov, G.A.; Lysenko, A.M.; 

Trotsenko, luA. New thermophilic methanotrophs of the genus Methylocaldum. Mikrobiologiia 2004, 73, 530–

539. 

18. Hirayama, H.; Suzuki, Y.; Abe, M.; Miyazaki, M.; Makita, H.; Inagaki, F.; Uematsu, K.; Takai, K. 

Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial 

subsurface hot aquifer. Int. J. Syst. Evol. Microbiol. 2011, 61, 2646–2653. 

19. Bodrossy, L.; Holmes, E.M.; Holmes, A.J.; Kovacs, K.L.; Murrell, J.C. Analysis of 16 S rRNA and methane 

monooxygenase gene sequences reveals a novel group thermotolerant and thermophilic methanotrophs, 

Methylocaldum gen. nov. Arch. Microbiol. 1997, 168, 493–503. 

20. Foster, J.W.; Davis, R.H. A methane-dependent coccus, with notes on classification and nomenclature of 

obligate, methane-utilizing bacteria. J Bacteriol. 1966, 91, 1924–1931. 

21. Geymonat, E.; Ferrando, L.; Tarlera, S.E. Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph 

isolated from a rice paddy field. Int. J. Syst. Evol. Microbiol. 2011, 61, 2568–2572. 

22. Hoefman, S.; van der Ha, D.; Iguchi, H.; Yurimoto, H.; Sakai, Y.; Boon, N.; Vandamme, P.; Heylen, K.; de 

Vos, P. Methyloparacoccus murrellii gen. nov., sp. nov., a methanotroph isolated from pond water. Int. J. Syst. 

Evol. Microbiol. 2014, 64, 2100–2107. 

23. Khalifa, A.; Lee, C.G.; Ogiso, T.; Ueno, C.; Dianou, D.; Demachi, T.; Katayama, A.; Asakawa, S. 

Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice 

rhizosphere. Int. J. Syst. Evol. Microbiol. 2015, 65, 3527–3534. 

24. Frindte, K.; Maarastawi, S.A.; Lipski, A.; Hamacher, J.; Knief, C. Characterization of the first rice paddy 

cluster I isolate, Methyloterricola oryzae gen. nov., sp. nov. and amended description of Methylomagnum 

ishizawai. Int. J. Syst. Evol. Microbiol. 2017, 67, 4507–4514. 

25. Ghashghavi, M.; Belova, S.E.; Bodelier, P.L.; Dedysh, S.N.; Kox, M.A.; Speth, D.R.; Frenzel, P.; Jetten, 

M.S.M.; Lüker, S.; Lüke, C. Methylotetracoccus oryzae Strain C50 C1 Is a Novel Type Ib 

Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. Msphere 2019, 4, e00631–18. 

26. Islam, T.; Torsvik, V.; Larsen, Ø.; Bodrossy, L.; Øvreås, L.; Birkeland, N.K. Acid-tolerant moderately 

thermophilic methanotrophs of the class Gammaproteobacteria isolated from tropical topsoil with methane 

seeps. Front. Microbiol. 2016, 7, 851. 

27. Islam, T.; Larsen, Ø.; Torsvik, V.; Øvreås, L.; Panosyan, H.; Murrell, J.C.; Birkeland, N.K.; Bodrossy, L. 

Novel methanotrophs of the family Methylococcaceae from different geographical regions and habitats. 

Microorganisms 2015, 3, 484–499. 

28. Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, isolation and some properties of methane-

utilizing bacteria. J. Gen. Microbiol. 1970, 61, 205–218. 

29. Bodrossy, L.; Kovacs, K.L.; McDonald, I.R.; Murrell, J.C. A novel thermophilic methane-oxidising γ-

Proteobacterium. FEMS Microbiol. Lett. 1999, 170, 335–341. 

30. Kizilova, A.K.; Sukhacheva, M.V.; Pimenov, N.V.; Yurkov, A.M.; Kravchenko, I.K. Methane oxidation 

activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the 

Kunashir Island, Russian Far East. Extremophiles 2014, 18, 207–218. 

31. Lau, E.; Fisher, M.C.; Steudler, P.A.; Cavanaugh, C.M. The methanol dehydrogenase gene, mxaF, as a 

functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 

2013, 8:e56993 



Microorganisms 2020, 8, 250 17 of 18 

 

32. Baxter, N.J.; Hirt, R.P.; Bodrossy, L.; Kovacs, K.L.; Embley, T.M.; Prosser, J.I.; Murrell, J.C. The ribulose-1,5-

bisphosphate carboxylase/oxygenase gene cluster of Methylococcus capsulatus (Bath). Arch. Microbiol. 2002, 

177, 279–289. 

33. Tourova, T.P.; Kovaleva, O.L.; Sorokin, D.Y.; Muyzer, G. Ribulose-1, 5-bisphosphate 

carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing 

bacteria in hypersaline habitats. Microbiology 2010, 156, 2016–2025. 

34. Danilova, O.V.; Suzina, N.E.; Van De Kamp, J.; Svenning, M.M.; Bodrossy, L.; Dedysh, S.N. A new cell 

morphotype among methane oxidizers: A spiral-shaped obligately microaerophilic methanotroph from 

northern low-oxygen environments. ISME J. 2016, 10, 2734. 

35. Lanzén, A.; Simmachew, A.; Gessesse, A.; Chmolowska, D.; Jonassen, I.; Øvreås, L. Surprising Prokaryotic 

and Eukaryotic diversity, community structure and biogeography of Ehiopian soda lakes. PLoS ONE 2013, 

8, e72577. 

36. Islam, T.; Jensen, S.; Reigstad, L.J.; Larsen, O.; Birkeland, N.K. Methane oxidation at 55 degrees C and pH 

2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. USA 

2008, 105, 300–304. 

37. Graham, D.; Korich, D.; LeBlanc, R.; Sinclair, N.; Arnold, R. Applications of a colorimetric plate assay for 

soluble methane monooxygenase activity. Appl. Environ. Microbiol. 1992, 58, 2231–2236. 

38. Prior, S.; Dalton, H. Acetylene as a suicide substrate and active site probe for methane monooxygenase 

from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 1985, 29, 105–109. 

39. Bédard, C.; Knowles, R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation 

by methanotrophs and nitrifiers. Microbiol. Rev. 1989, 53, 68–84. 

40. Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0. Mol. 

Biol. Evol. 2016, 33, 1870–1874. 

41. Takeuchi, M.; Kamagata, Y.; Oshima, K.; Hanada, S.; Tamaki, H.; Marumo, K.; Maeda, H.; Nedachi, M.; 

Hattori, M.; Iwasaki, W.; et al. Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing 

bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int. J. 

Syst. Evol. Microbiol. 2014, 64, 3240–3246. 

42. Bowman, J.P.; Sly, L.I.; Nichols, P.D.; Hayward, A.C. Revised taxonomy of the methanotrophs: Description 

of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis 

species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int. J. 

Syst. Bacteriol. 1993, 43, 735–753. 

43. Deutzmann, J.S.; Hoppert, M.; Schink, B. Characterization and phylogeny of a novel methanotroph, 

Methyloglobulus morosus gen. nov., spec. nov. Syst. Appl. Microbiol. 2014, 37, 165–169. 

44. Weidler, G.W.; F.W.; Gerbl, H. Stan-Lotter, Crenarchaeota and Their Role in the Nitrogen Cycle in a 

Subsurface Radioactive Thermal Spring in the Austrian Central Alps. Appl. Environ. Microbiol. 2008, 74, 

5934–5942. 

45. Rattanachomsri, U.; Kanokratana, P.; Eurwilaichitr, L.; Igarashi, Y.; Champreda, V. Culture-Independent 

Phylogenetic Analysis of the Microbial Community in Industrial Sugarcane Bagasse Feedstock Piles. Biosci. 

Biotechnol. Biochem. 2011, 75, 232–239. 

46. Weidler, G.W.; Dornmayr-Pfaffenhuemer, M.; Gerbl, F.W.; Heinen, W.; Stan-Lotter, H. Communities of 

archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence 

of ammonia-oxidizing Crenarchaeota. Appl. Environ. Microbiol. 2007, 73, 259–270. 

47. McDonald, I.R.; Murrell, J.C. The particulate methane monooxygenase gene pmoA and its use as a 

functional gene probe for methanotrophs. FEMS Microbiol. Lett. 1997, 156, 205–210. 

48. Osaka, T.; Ebie, Y.; Tsuneda, S.; Inamori, Y. Identification of the bacterial community involved in methane-

dependent denitrification in activated sludge using DNA stable-isotope probing. FEMS Microbiol. Ecol. 

2008, 64, 494–506. 

49. Shrestha, M.; Abraham, W.R.; Shrestha, P.M.; Noll, M.; Conrad, R. Activity and composition of 

methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of 

pmoA gene and stable isotope probing of phospholipid fatty acids. Environ. Microbiol. 2008, 10, 400–412. 

50. Dumont, M.G.; Pommerenke, B.; Casper, P. Using stable isotope probing to obtain a targeted 

metatranscriptome of aerobic methanotrophs in lake sediment. Environ. Microbiol. Rep. 2013, 5, 757–764. 



Microorganisms 2020, 8, 250 18 of 18 

 

51. Lau, E.; Iv, E.J.; Dillard, Z.W.; Dague, R.D.; Semple, A.L.; Wentzell, W.L. High Throughput Sequencing to 

Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and 

Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms 2015, 3, 113–136. 

52. Knief, C.; Dunfield, P.F. Response and adaptation of different methanotrophic bacteria to low methane 

mixing ratios. Environ. Microbiol. 2005, 7, 1307–1317. 

53. Kong, J.Y.; Su, Y.; Zhang, Q.Q.; Bai, Y.; Xia, F.F.; Fang, C.R.; He, R. Vertical profiles of community and 

activity of methanotrophs in landfill cover soils of different age. J. Appl. Microbiol. 2013, 115, 756–765. 

54. Sengupta, A.; Dick, W.A. Methanotrophic bacterial diversity in two diverse soils under varying land-use 

practices as determined by high-throughput sequencing of the pmoA gene. Appl. Soil Ecol. 2017, 119, 35–

45. 

55. Ward, N.;  Larsen, Ø.; Sakwa, J.; Bruseth, L.; Khouri, H.; Durkin, A.S.; Dimitrov, G.; Jiang, L.; Scanlan, D.; 

Kang, K.H.; Lewis, M.; et al. Genomic insights into methanotrophy: The complete genome sequence of 

Methylococcus capsulatus (Bath). PLoS Biol. 2004, 2, e303. 

56. Kwon, M.; Ho, A.; Yoon, S. Novel approaches and reasons to isolate methanotrophic bateria with 

biotechnological potentials: Recent achievements and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 1–

8. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


