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Abstract	
	

Khan,	M.S.,	 2012.	Assessing	genetic	variation	 in	growth	and	development	of	potato.	

PhD	thesis,	Wageningen	University,	Wageningen,	the	Netherlands,	with	summaries	in	

English	and	Dutch,	245	pp.	
	

Due	 to	 increasing	 food	 demand	 and	 changing	 diets	 potato	 (Solanum	 tuberosum	 L.)	 is	

becoming	 a	 subsistence	 crop	 in	 many	 regions.	 However,	 the	 agronomy	 and	 whole	 crop	

physiology	of	tuber	yield	production	is	extremely	complex,	due	to	genotype	and	environment	

specific	 effects	 on	 crop	 physiological	 and	 morphological	 characteristics.	 Such	 intrinsic	

complexities	 complicate	 the	 manipulation	 of	 yield	 determining	 traits	 and	 make	 their	

prediction	 a	 challenging	 task.	 The	 genetic	 improvement	 of	 tuber	 yield	 can	 be	 understood	

more	mechanistically	by	 investigating	and	 interpreting	 the	 relationships	between	 the	main	

attributes	of	crop	growth.	

This	 thesis	aims	to	develop	an	approach	to	quantify	 the	yield	of	 individual	genotypes	

and	 to	 estimate	 parameters	 which	 may	 reveal	 the	 effects	 of	 genetic	 and	 environmental	

factors	on	the	important	plant	processes	controlling	tuber	yield	variation	among	a	large	set	of	

F1	 (SH83‐92‐488	 	 RH89‐039‐16)	 genotypes	 of	 potato	 and	 a	 set	 of	 standard	 cultivars	

covering	a	wide	range	of	maturity	types.		

It	first	presents	a	model	approach	to	analyse	the	time	course	of	canopy	cover	and	tuber	

bulking	during	the	entire	crop	cycle	as	a	function	of	thermal	time	in	terms	of	large	number	of	

physiological	 component	 traits	 and	 explain	 their	 inter‐relationships	 and	 impact	 on	 crop	

maturity	 and	 tuber	 yield	 production	 across	 six	 contrasting	 field	 experiments.	 The	 results	

indicated	that	the	length	of	the	canopy	build‐up	phase	(DP1)	was	conservative	with	respect	to	

genotype’s	maturity	 type,	but	 the	duration	of	maximum	canopy	cover	 (DP2)	and	 the	decline	

phase	(DP3)	varied	greatly,	with	later	genotypes	having	longer	DP2	and	DP3	and	thus	a	higher	

area	under	whole	green	canopy	curve	(Asum).	Values	of	tuber	bulking	rate	(cm)	were	highest	

for	 early	maturing	 genotypes	 followed	 by	mid‐late	 and	 then	 late	 genotypes.	 Late	maturing	

genotypes	had	longest	effective	duration	of	tuber	bulking	(ED)	followed	by	mid‐late	and	early	

genotypes.	As	a	result	tuber	yield	(wmax)	was	higher	in	late	genotypes	than	in	early	genotypes.	

The	radiation	use	efficiency	(RUE)	values	were	highest	for	early	maturing	genotypes	followed	

by	mid‐late	and	late	genotypes	whereas	nitrogen	(N)	use	efficiency	(NUE)	was	highest	in	late	

maturing	genotypes	followed	by	mid‐early	and	early	genotypes.		

High	 genetic	 variability	 and	 high	 heritability	 for	 most	 of	 these	 traits	 were	 found.	

Results	indicated	that	increased	tuber	yield	by	indirect	selection	for	optimal	combination	of	

important	 physiological	 traits	 can	 be	 achieved.	 While	 using	 these	 traits	 as	 a	 criterion	 for	

selection,	 the	 causal	 physiological	 relationships	 and	 trade‐offs	 must	 be	 considered	

simultaneously.		

Our	 molecular	 dissection	 of	 traits	 determining	 the	 dynamics	 of	 canopy	 cover,	 tuber	



 
 

bulking,	 and	 resource	 (radiation,	 nitrogen)	 use	 efficiencies	 identified	 several	 QTLs,	 the	

mapping	position	of	each	 identified	QTL,	 the	 interaction	of	QTL	with	environment	(QTLE)	

and	 the	 magnitude	 of	 the	 QTL	 effect	 in	 explaining	 genetic	 variance	 in	 both	 SH	 and	 RH	

parental	 genomes.	 The	 QTL	 results	 indicated	 that	 one	 particular	 chromosomal	 position	 at	

18.2	cM	on	paternal	(RH)	linkage	group	V	was	tightly	linked	to	the	genotype’s	earliness	and	

controlling	 nearly	 all	 the	 traits	 and	 explaining	 the	phenotypic	 variance	 by	up	 to	79%.	This	

suggested	the	pleiotropic	nature	of	the	QTL	for	most	of	the	traits	determining	crop	maturity	

and	tuber	yields.	A	number	of	QTLs	for	traits	were	not	detected	when	tuber	yield	per	se	was	

subjected	to	QTL	analysis.	The	phenotypic	variance	explained	by	the	QTLs	for	tuber	yield	per	

se	was	also	lower	than	for	other	traits.	

The	 physiological	 and	 quantitative	 knowledge	 gained	 was	 used	 to	 evaluate	 the	

conventional	system	of	maturity	type	and	to	quantify	and	re‐define	the	concept	of	maturity	

type	 on	 a	 physiological	 basis	 for	 a	 large	 set	 of	 genotypes.	 Four	 new	 physiological	 based	

maturity	 criteria	 were	 developed	 based	 on	 four	 canopy	 cover	 and	 tuber	 bulking	 traits.	

Physiological	maturity	 type	criteria	 tended	 to	define	maturity	classes	 less	ambiguously	and	

were	 easily	 and	 clearly	 interpretable	 compared	 to	 the	 conventionally	 used	 method	 of	

defining	maturity.	

The	capability	of	an	ecophysiological	model	‘GECROS’	was	tested	to	analyse	differences	

in	 tuber	 yield	 of	 potato.	 The	model	 yielded	 a	 reasonably	 good	 prediction	 of	 differences	 in	

tuber	 yield	 across	 environments	 and	 across	 genotypes.	 Model	 analysis	 identified	 the	

genotypic	key‐parameters	affecting	tuber	yield	production	and	Nmax	(i.e.	total	crop	N	uptake)	

contributed	most	 to	 the	determination	of	 tuber	yield.	The	results	concluded	that	genotypes	

with	higher	Nmax	and	lower	tuber	N	content	exhibited	higher	tuber	dry	matter	yield.	Further	

analysis	 of	 the	 genotypic	 parameters	 should	 be	 performed	 in	 conjunction	 with	 molecular	

markers	in	order	to	determine	their	genetic	control	and	to	proceed	towards	QTL‐based	crop	

modelling	approach.	

This	thesis	identified	the	dominant	component	traits	mostly	involved	in	the	formation	

of	 a	 tuber	 yield	 and	 gave	 insight	 into	 the	 possibilities	 of	 genetically	 and	 physiologically	

manipulating	 the	 size	 or	 number	 of	 such	 traits.	 The	 information	 obtained	 should	 help	 in	

marker‐assisted	 selection	 as	 well	 as	 in	 designing	 ideotypes	 for	 specific	 and/or	 diverse	

environments.	However,	 to	make	 significant	 contributions	 for	breeding,	 there	 is	 a	need	 for	

further	research	efforts	to	evaluate	the	combined	physiological	and	genetic	approach.		

	

Key	words:	Potato	(Solanum	tuberosum	L.),	segregating	population,	canopy	cover	dynamics,	

tuber	bulking	dynamics,	beta	 function,	 thermal	 time,	 components	of	variance,	genotype‐by‐

environment	 interaction	 (GE),	 heritability,	 QTL	 mapping,	 QTL‐by‐environment	 (QTLE)	

interaction,	 complex	 traits,	 ecophysiological	 crop	model,	 GECROS,	 cultivar	 choice,	maturity	

type,	ideotype	breeding,	tuber	yield.	
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Abbreviations	
 
Tb	 Base	temperature	(˚C)	

To	 Optimum	temperature	(˚C)	

Tc	 Ceiling	temperature	(˚C)	

tm1		 Inflexion	point	during	canopy	build‐up	phase	(td)	

t1,	DP1			 Period	 from	plant	 emergence	 to	maximum	canopy	 cover	 (moment	 and	

	 duration	since	emergence,	respectively)	(td)	

t2		 Onset	of	canopy	cover	senescence	(td)	

te	 Time	of	complete	senescence	of	canopy	cover	or	crop	maturity	(td)	

vmax		 Maximum	level	of	canopy	cover	(%)	

cm1	 Maximum	canopy	growth	rate	during	build‐up	phase	(%	td‐1)	

c1	 Average	canopy	growth	rate	during	build‐up	phase	(%	td‐1)	

c3	 Average	canopy	senescence	rate	during	decline‐	phase	(%	td‐1)	

DP2		 Total	duration	of	maximum	canopy	cover	phase	(td)	

DP3		 Total	duration	of	canopy	senescence	phase	(td)	

A1		 Area	under	canopy	curve	for	DP1	(td	%)	

A2		 Area	under	canopy	curve	for	DP2	(td	%)	

A3		 Area	under	canopy	curve	for	DP3	(td	%)	

Asum		 Area	under	whole	green	canopy	curve	(td	%)	

tB	 Onset	of	linear	phase	of	tuber	bulking	(td)	

tE	 End	of	linear	phase	of	tuber	bulking	(td)	

ED	 Total	duration	of	tuber	bulking	(td)	

cm		 Rate	of	tuber	bulking	(g	td‐1)	

wmax			 Maximum	tuber	dry	matter	at	crop	maturity	(g	m‐2)	

RUE	 Radiation	use	efficiency	(g	DM	MJ‐1)	

NUE	 Nitrogen	use	efficiency	(g	DM	g‐1	N)	

mV		 Period	from	plant	emergence	to	onset	of	tuber	bulking	(td)	

mR		 Duration	between	onset	of	tuber	bulking	and	crop	maturity	(td)	

Hmax	 Maximum	plant	height	(m)	

nSO	 Maximum	tuber	N	concentration	(g	N	g‐1	DM)	

Nmax	 Total	crop	N	uptake	at	crop	maturity	(g	N	m‐2)	

td	 Thermal	day	

cM	 centiMorgans	
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General	introduction	
 
 
Increasing	sustainable	yield	
A	major	agricultural	challenge	 facing	 the	world	 today	 is	providing	sufficient	 food	to	

meet	 the	demands	of	 a	 rapidly	 growing	population.	The	 goal	 of	 any	plant	 breeding	

programme	 is	 the	 development	 of	 new,	 improved	 cultivars	 or	 breeding	 lines	 for	

particular	target	areas	and	to	increase	the	sustainable	yield	and	quality	of	crop	plants	

to	 meet	 projected	 increases	 in	 global	 food	 demand	 (FAO,	 1996).	 This	 normally	

involves	manipulating	complex	traits	associated	with	plant	growth	and	development,	

usually	in	production	environments	that	are	highly	variable	and	unpredictable.		

Genetic	 improvement	can	be	achieved	by	selecting	directly	 for	a	primary	 trait	

(such	as	yield)	in	a	target	environment	(Ceccarelli	and	Grando,	1996).	This	has	been	

referred	to	as	empirical	or	 traditional	breeding.	Another	‐	 indirect	way	 ‐	 is	 to	select	

for	a	secondary	trait(s)	that	is	putatively	related	with	a	higher	yield	potential	and/or	

to	the	improved	behavior	of	the	crop	when	grown	in	a	particular	environment.	This	is	

known	as	analytical	or	physiological	breeding.			

Over	 the	past	century,	most	of	 the	progress	 in	breeding	 in	most	crops	species	

has	been	derived	from	empirical	breeding,	which	has	taken	yield	as	the	main	trait	for	

selection	(Austin	et	al.,	1989;	Khush,	1987;	Russell,	1993;	Evans,	1993;	Slafer	et	al.,	

1994).	For	instance,	in	cereals,	yield	increases	have	been	possible	through	the	gradual	

replacement	 of	 traditional	 tall	 cultivars	 by	 semi	 dwarf	 and	 fertiliser‐responsive	

varieties	with	 superior	harvest	 indices.	The	 term	 “Green	Revolution”	was	 coined	 to	

describe	this	process.		

However,	 most	 agronomic	 traits	 are	 physiologically	 and	 genetically	 complex	

(Lark	et	al.,	1995;	Orf	et	al.,	1999;	Daniell	and	Dhingra,	2002;	Stuber	et	al.,	1999).	For	

instance,	 yield	 is	 the	 outcome	 of	many	 underlying	morphological	 and	 physiological	

processes	 (Bezant	 et	 al.,	 1997).	 Furthermore,	 it	 is	 a	 quantitatively	 inherited	 trait	

under	polygenic	control,	and	characterised	by	 low	heritability	and	a	high	genotype‐

by‐environment	(GE)	interaction	(Allard	and	Bradshaw,	1964;	Jackson	et	al.,	1996;	
Tardieu,	 2003).	 Such	 intrinsic	 complexities	 complicate	 the	 manipulation	 of	

quantitative	crop	traits	and	make	their	prediction	a	challenging	task.	Therefore	new	

approache(s)	 which	 could	 complement	 traditional	 with	 analytical	 selection	

methodologies	 to	 further	 improve	 crop	 yields	 and	 the	 overall	 efficiency	 of	 the	

breeding	process	are	of	considerable	interest	to	plant	breeders.	
	



Chapter	1	

 
 
2

Genomics	based	approaches	
Recent	advances	in	agricultural	genomics	and	marker‐assisted	selection	have	totally	

revolutionised	and	enhanced	the	plant	breeding	process	(Somerville	and	Somerville,	

1999;	Yin	et	al.,	1999a;	Huang	et	al.,	2002;	Knight,	2003).	The	advent	of	DNA‐based	

molecular	markers	(Botstein	et	al.,	1980;	Paterson	et	al.,	1988)	and	new	state	of	the	

art	 statistical	methods	 (Lander	 and	Botstein,	 1989;	 Jansen,	 1993;	 Jansen	 and	 Stam,	

1994)	 have	made	 it	 possible	 to	 localise	 polygenes	 controlling	 complex	 quantitative	

traits	 and	 study	 the	 effect	 of	 individual	 genes	 on	 the	 trait,	 which	 was	 difficult	 in	

classical	quantitative	genetics.		

The	acronym	QTL	stands	for	Quantitative	Trait	Locus,	with	plural	QTLs,	and	has	

come	 to	 refer	 to	 a	 genomic	 region	 associated	 with	 a	 quantitative	 trait	 (Yin	 et	 al.,	

1999a).	Numerous	studies	have	been	reported	on	 identification	of	QTLs	 for	various	

quantitative	traits	 in	humans,	animals,	and	plants	(Yin	et	al.,	1999a).	The	increasing	

knowledge	on	QTLs	for	important	agronomic	traits	can	provide	new	avenues	for	the	

breeders	to	speed	up	the	process	of	increasing	crop	yields	(Morandini	and	Salamini,	

2003).		

Although	QTL	mapping	technologies	have	allowed	significant	advances	in	crop	

genetic	 improvement,	 there	 still	 exist	 challenges	 to	 increase	 the	 yield	 potential	 of	

crops	 (Yin	 et	 al.,	 2003a).	 One	 major	 difficulty	 in	 the	 use	 of	 QTLs	 of	 traits	 is	 their	

instability	 across	 environments	 (Reymond	 et	 al.,	 2003)	 due	 to	 complex	 QTL‐by‐

environment	(QTLE)	interactions.	For	instance,	Ribaut	and	Hoisington	(1998)	found	
13	QTLs	in	a	study	of	flowering	dates	of	maize,	but	only	three	were	common	to	three	

experiments	with	different	 levels	of	water	deficit.	 Consequently,	many	QTLs	 can	be	

only	detected	in	a	narrow	range	of	environmental	conditions	(Zhou	et	al.,	2007)	and	

the	classical	genetic	models	built	from	QTL	analysis	have	a	correct	predictive	ability	

only	in	a	limited	range	of	conditions.		

Popular	QTL‐analysis	methods	will	have	difficulties	handling	these	complexities.	

Without	 increasing	 population	 sizes,	 limited	 reliability	 in	 QTL	 detection	 and	

estimation	can	be	achieved	(Kearsey	and	Farquhar,	1998).	To	overcome	these	bottle	

necks,	 support	 from	 other	 disciplines	 is	 required.	 There	 is	 an	 identified	 need	 to	

separate	 factors	 influencing	 a	 given	 phenotypic	 trait	 and	 shifting	 from	 highly	

integrated	 traits	 to	more	 gene‐related	 traits	 (Yin	 et	 al.,	 2002).	 Several	 studies	have	

underlined	the	potential	interest	in	building	such	a	link	(Hammer	et	al.,	2002,	2006;	

Tardieu,	 2003;	 Yin	 et	 al.,	 2004).	 Functional	 genomics,	 systems	 biology,	 and	 crop	

physiology	can	jointly	improve	genetic	analysis	and	breeding	efficiencies.	

	
Role	of	systems	approaches	in	model	based	breeding	
There	is	increasing	advocacy	for	the	application	of	crop	physiological	knowledge	and	

integrative	modelling	in	breeding	for	complex	traits	(Campos	et	al.,	2004;	Edmeades	
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et	 al.,	 2004;	 Yin	 et	 al.,	 2004;	 Hammer	 et	 al.,	 2005).	 Crop	 modelling	 can	 play	 a	

significant	 part	 in	 system	 approaches	 by	 providing	 a	 powerful	 capability	 for	

phenotype	prediction	and	yield	scenario	analysis	(Hammer,	1998;	Cooper	et	al.,	2002;	

Hammer	et	al.,	2004).	

Crop	 growth	 models	 are	 simplified	 mathematical	 representations	 of	 the	

interacting	 biological	 and	 environmental	 components	 of	 the	 dynamic	 plant	 system.	

Ecophysiological	 crop	 growth	 models	 have	 been	 developed	 extensively	 during	 the	

last	 decades	 by	 integrating	 knowledge	 across	 many	 disciplines	 such	 as	 crop	

ecophysiology,	micrometeorology,	soil	science,	and	computing	technologies	(Loomis	

et	 al.,	 1979;	 Ritchie,	 1991;	 Boote	 et	 al.,	 1996;	 Bouman	 et	 al.,	 1996;	McCown	 et	 al.,	

1996).	 These	models	 have	 been	 conventionally	 used	 to	 predict	 the	 performance	 of	

given	 cultivars	 under	 various	 environmental	 conditions,	 and	 are	 now	 increasingly	

being	used	in	breeding	programmes	(Aggarwal	et	al.,	1997).		

One	 of	 the	main	 applications	 of	 ecophysiological	 crop	 growth	models	 is	 their	

explanation	of	 differences	 in	 yield	potential	 of	 genotypes	on	 the	basis	 of	 individual	

physiological	parameters	(Kropff	et	al.,	1995;	Haverkort	and	Kooman,	1997).	This	is	

possible	 because	 their	 parameters	 can	 be	 used	 to	 mimic	 genetic	 characteristics	 of	

plants	 when	 crop	 growth	 models	 become	 more	 mechanistic	 and	 comprehensive	

(Boote	 et	 al.,	 1996).	 Values	 of	 these	 parameters	 are	 specific	 to	 each	 genotype	 and	

constant	under	a	wide	range	of	environmental	conditions	therefore	are	often	referred	

to	as	genetic	coefficients	(Hoogenboom	et	al.,	1997;	Boote	et	al.,	2001;	Tardieu,	2003;	

Bannayan,	2007),	 reflecting	 the	awareness	 that	 the	variation	of	 these	parameters	 is	

under	genetic	control	(Stam,	1996).	These	parameters	could	be	therefore	considered	

as	quantitative	traits	and	are	amenable	to	further	analysis	(Yin	et	al.,	2004;	Quilot	et	

al.,	2005),	e.g.	for	QTL	mapping,	and	evaluating	and	designing	ideotypes	(Loomis	et	al.,	

1979;	Kropff	et	al.,	1995;	Boote	et	al.,	1996;	Haverkort	and	Kooman,	1997;	Yin	et	al.,	

2004;	Yin	and	Struik,	2008).		

Ecophysiological	 models	 can	 make	 it	 possible	 to	 explore	 the	 impact	 of	 new	

genotypes	 and	 the	 contribution	 of	 individual	 physiological	 traits	 on	 yield	 by	

simulating	genotypes	under	any	defined	environmental	scenarios	as	well	as	a	range	

of	 management	 options	 (Stam,	 1996;	 Bindraban,	 1997;	 Hoogenboom	 et	 al.,	 1997;	

Asseng	 and	 Turner,	 2007).	 Such	 models	 could	 help	 in	 understanding	 of	 GE	
interaction	 and	may	 speed	up	 crop	 improvement	 for	 specific	 environments	 (Kropff	

and	Goudriaan,	1994;	Roberts	et	al.,	1996;	Boote	et	al.,	2001;	Slafer,	2003;	Yin	et	al.,	

2004;	 Mayes	 et	 al.,	 2005)	 and	 to	 assist	 plant	 breeding	 to	 better	 quantify	 crop	

genotype‐phenotype	 relationships	 (Yin	 et	 al.,	 2000a,	 2004;	 Reymond	 et	 al.,	 2003;	

Hammer	et	al.,	2006).		

Improved	phenotypic	predictions	via	crop	modelling	result	from	their	ability	to	
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deal	with	the	complex	interactions	among	plant	growth	and	development	processes,	

environmental	 effects	 and	 genetic	 controls.	 This	predictive	 capacity	 of	 the	dynamic	

model	 could	 be	 used	 for	 favourably	 weighting	 more	 important	 QTLs	 during	 their	

selection	 in	 marker‐assisted	 breeding	 programmes.	 Crop	 physiology	 using	 crop	

models	 therefore	 can	 also	 reinforce	 the	 QTL	 analysis	 of	 complex	 traits,	 thereby	

improving	 breeding	 efficiency	 and	 enhancing	 genetic	 design	 (Yin	 et	 al.,	 1999a,b,	

2000a).	

When	QTL	 information	 is	 incorporated	 into	 crop	models,	 the	 ‘QTL‐based	crop	

models’	 could	 provide	 valuable	 insights	 into	 which	 combinations	 of	 alleles	 favour	

adaptation	 to	 specific	 environments,	 therefore	 should	 narrow	 down	 genotype–

phenotype	gaps.	They	can	potentially	be	a	powerful	tool	to	resolve	the	phenomenon	

of	GE	 interaction	and	 therefore	overcome	 the	 limitation	 that	QTL	mapping	 cannot	
extend	an	experimental	result	of	one	environment	to	another	environment	condition	

(Messina	et	al.,	2006).	Based	on	recent	studies	(e.g.	Reymond	et	al.,	2003;	Yin	et	al.,	

2005a;	 Gu	 et	 al.,	 2012),	 there	 is	 now	 increasing	 advocacy	 for	QTL‐based	modelling	

approaches,	i.e.	linking	crop	modelling	with	QTL	mapping	for	complex	traits.		

If	 crop	physiology	and	genetics	are	combined	 judiciously,	crop	physiology	and	

modelling	research	can	reinforce	 the	genetic	analysis	of	 complex	 traits	and	 thereby	

can	offer	the	possibilities	of	model‐based	breeding.	Promoting	this	novel	role	of	crop	

physiology,	however,	requires	a	new	generation	of	crop	models.	Such	models	should	

have	 robust	 model	 architecture,	 numerical	 consistency,	 stability,	 and	 enhanced	

heuristics.	 Most	 importantly,	 crop	 models	 should	 include	 genotype‐specific	

parameters	 for	 incorporating	 the	 latest	 findings	 offered	 by	 the	 rapid	 advances	 in	

functional	genomics	(Yin	et	al.,	2004).	Such	models	would	greatly	enhance	our	ability	

to	 translate	 short‐time	 scale	 gene‐level	 information	 to	 the	 crop	 performance	 in	

continuously	changing	field	environments.	

	
GECROS:	An	improved	state	of	the	art	ecophysiological	model	
Recently,	 a	 state	 of	 the	 art	 ecophysiological	 crop	 growth	 model	 called	 GECROS	

(Genotype‐by‐Environment	 interaction	 on	 CROp	 growth	 Simulator),	 based	 on	 the	

above	 lines	 of	 thinking	 for	 improved	 model	 structure	 and	 input	 parameters,	 was	

developed	by	Yin	and	Van	Laar	(2005).	GECROS	uses	new	algorithms	to	summarise	

current	 knowledge	 of	 individual	 physiological	 processes	 and	 their	 interactions	 and	

feedback	mechanisms.	It	attempts	to	model	each	sub‐process	at	a	consistent	level	of	

detail,	 so	 that	 no	 process	 is	 overemphasised	 or	 requires	 too	many	 parameters	 and	

similarly	no	process	is	treated	in	a	trivial	manner,	unless	unavoidable	because	of	lack	

of	 understanding.	 GECROS	 also	 tries	 to	 maintain	 a	 balance	 between	 robust	 model	

structure,	high	computational	efficiency,	and	accurate	model	output.	The	model	can	



General	introduction 

 
 

5

be	 used	 for	 examining	 responses	 of	 biomass	 and	 dry	 matter	 production	 in	 arable	

crops	to	both	environmental	and	genotypic	characteristics.	In	this	study	we	explored	

the	 ability	 of	 GECROS	 to	 analyse	 differences	 in	 tuber	 yield	 in	 a	 set	 of	 varieties	

covering	 a	wide	 range	of	maturity	 types	 and	 a	well‐adapted	diploid	F1	 segregating	

population	of	potato	(Solanum	tuberosum	L.).	

	

	
Potato:	Origin	and	importance	
Potato	(Solanum		tuberosum		L.)	is	an		annual		crop		from		the		genus	Solanum	(family	

Solanaceae)	 (Khurana	 et	 al.,	 2003).	 The	 potato	 originates	 from	 the	 mountains	 of	

South	America	where	it	has	been	an	important	food	crop	for	a	long	time	(Rowe,	1993).	

In	the	16th	century	the	potato	was	introduced	to	Europe	as	a	curiosity,	first	to	Spain	

and	 then	 into	England	 (Hawkes,	1990;	 Spooner	 et	 al.,	 2005).	Gradually	 it	 became	a	

major	food	crop,	especially	when	varieties	were	selected	which	were	adapted	to	long	

day	conditions.	In	the	18th	and	19th	centuries	it	was	already	an	important	food	crop,	

especially	for	the	poor	in	various	countries	in	Europe.	From	here,	potato	spread	to	all	

over	the	world	as	a	major	food	crop	(Harris,	1992).		

The	 genus	 Solanum	 comprises	 of	 many	 species	 of	 which	 over	 200	 are	 tuber	

bearing	according	 to	 the	 latest	 taxonomic	 interpretation	by	Hawkes	 (1990).	Within	

this	 genus,	 the	 section	 Tuberarium	 (Correll,	 1962),	 also	 known	 as	 section	 Petota	

(D'Arcy,	1972),	includes	the	tuber‐bearing	members,	of	which	the	cultivated	potato	is	

best	 known.	 Solanaceous	 plants	 can	 be	 found	 throughout	 the	 world,	 though	 most	

species	dwell	in	tropical	regions	of	Central	and	South	America.		

Potatoes	 can	 be	 grown	 wherever	 it	 is	 neither	 too	 hot	 (ideally	 average	 daily	

temperatures	 below	21	 oC)	 nor	 too	 cold	 (above	 5	 oC),	 and	 there	 is	 adequate	water	

from	 rain	 or	 irrigation	 (Govindakrishan	 and	Haverkort,	 2006).	 The	 growing	 season	

can	be	as	short	as	75	days	in	the	lowland	subtropics,	where	90‐120	days	is	the	norm,	

and	as	 long	as	180	days	in	the	high	Andes.	In	the	lowland	temperate	regions	where	

planting	 is	done	 in	spring	and	harvesting	 in	autumn,	crop	duration	is	 typically	120‐

150	 days,	 and	 yields	 are	 potentially	 high.	 Average	 fresh‐weight	 yields	 vary	

tremendously	 by	 country	 from	 2	 to	 45	 t	 ha‐1	 with	 a	 global	 average	 of	 17.4	 t	 ha‐1	

(FAOSTAT,	2010).	Like	many	other	important	crops,	potato	is	a	polyploid.	Cultivated	

potato	varieties	are	tetraploid	(4n	=	48)	and	many	wild	species	are	diploid	(2n	=	24)	

but	may	range	up	to	hexaploid	(6n	=	72).	Besides,	potato	is	outcrossing	in	nature	and	

phenotypic	 and	 genotypic	 variation	 is	 very	 common	 in	 potato.	 Therefore	 potato	 is	

heterozygous,	 a	 characteristic	 that	 contributes	 to	 its	 extreme	 genetic	 diversity	 and	

has	probably	been	a	key	factor	in	its	survival.		

Potato	is	among	the	world’s	most	important	agronomic	crops	and	is	the	highest	



Chapter	1	

 
 
6

ranked	non‐cereal.	The	role	of	potato	is	now	well	recognised	in	human	nutrition,	food	

security,	 and	 national	 economy	 of	many	 countries.	 Due	 to	 increasing	 food	 demand	

and	 changing	 diets	 the	 traditionally	 high	 consumption	 of	 potatoes	 in	 Europe	 and	

North	 America	 has	 recently	 combined	with	 potato	 becoming	 a	 subsistence	 crop	 in	

many	other	regions	particularly	in	areas	where	poverty	is	highly	concentrated	(Scott,	

2002;	http://www.cipotato.org).	Currently	the	crop	is	grown	at	a	significant	scale	in	

about	 130	 countries,	 and	 covers	 yearly	worldwide	 about	 18	million	 ha	 (Struik	 and	

Wiersema,	1999;	FAOSTAT,	2010).		

Potato	high	yield	potential	 and	high	nutritional	quality	has	made	 them	one	of	

the	most	important	plant	food	sources.	It	is	a	wholesome	food	with	all	the	extremely	

important	 and	 necessary	 dietary	 constituents,	 which	 are	 needed	 for	 health	 and	

growth	(Pushkarnath,	1978;	Li,	1985;	Burton,	1989)	(Figure	1.1).		

Compared	to	other	roots	and	tubers	and	also	many	cereals,	potato	tubers	have	a	

high	 ratio	 protein	 to	 carbohydrates	 with	 a	 high	 nutritional	 value	 of	 the	 protein	

(Shekhawat	et	al.,	1994).	Potato	can	be	used	not	only	as	a	human	food	or	animal	feed,	

but	 also	 for	 seed	 tuber	 production,	 and	 industrial	 use.	 Various	 food	 processing	

industries	 use	 potato	 to	 produce	 crisps,	 French	 fries,	 flakes,	 and	 canned	 potato,	

whereas	 	 the	 	non‐food	 	 industry	 	uses	 	potatoes	 	 to	 	produce	 	starch,	 	alcohol,	 	etc.		

(Feustel,	1987;	Struik	and	Wiersema,	1999;	Khurana	et	al.,	2003).		

	
	

	

	

	

	

	

	

	

	

	

	

Figure	1.1.	Nutrient	content	of	potatoes	per	100	g,	after	boiling	 in	skin	and	peeling	before	

consumption.	Source:	United	States	Department	of	Agriculture,	National	Nutrient	Database.		

	
	

In	 short,	 potato	 as	 a	 major	 food	 staple	 is	 contributing	 to	 the	 United	 Nations	

Millennium	Development	goals	of	providing	food	security	and	eradicating	poverty.	In	

recognition	of	these	important	roles,	the	UN	named	2008	as	the	International	Year	of	
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Potato.	With	 the	 growing	 global	 potato	 production	 requires	modernisation	 of	 crop	

improvement	 techniques	 and	 efficient	 utilisation	 of	 resources	 towards	 high	 yield	

production.		

	

	
Yield	determining	components	in	potato	
Yield	 production	 can	 be	 expressed	 as	 the	 integrated	 response	 of	 distinct	 plant	

processes	 to	 resources	 such	as	 radiation,	nitrogen	or	water.	This	 response	 involves	

the	 following	 two	main	 steps:	 the	production	of	photoassimilates,	 and	 their	 further	

transformation	 into	 an	 economic	 (usually	 harvestable)	 component.	 In	 potato	 tuber	

dry	 matter	 yield	 can	 be	 quantified	 by	 the	 summation	 of	 the	 daily	 incoming	

photosynthetically	 active	 radiation	 (PAR)	 times	 the	 daily	 fraction	 of	 that	 radiation	

intercepted	by	the	crop	times	the	radiation	use	efficiency	times	the	daily	fraction	of	

the	total	dry	matter	partitioned	to	the	tubers	(Struik	et	al.,	1990).	This	is	illustrated	

by	the	following	equation:	

	
	 		 1.1	

where	PARinc	=	daily	 incoming	photosynthetically	active	radiation,	 fPARint	=	 fraction	

of	the	PAR	intercepted,	RUE	=	radiation	use	efficiency,	and	HI	=	the	harvest	index.	

The	 seasonal	 rate	 of	 dry	 matter	 accumulation	 in	 potato	 is	 a	 function	 of	

interception	and	utilisation	of	incident	photosynthetic	active	radiation.	Differences	in	

the	 rate	 of	 dry	 matter	 accumulation	 can	 be	 attributed	 to	 differences	 in	 light	

interception	 caused	 by	 variability	 in	 maximum	 LAI	 (leaf	 area	 index),	 in	 leaf	

senescence	(e.g.,	 ‘canopy	cover’	 in	potato)	during	tuber	bulking,	and	in	canopy‐level	

efficiency	 of	 utilisation	 of	 intercepted	 radiation	 as	 a	 result	 of	 changes	 in	 the	

functionality	of	 leaf	photosynthesis	during	tuber	bulking	(Pashiardis,	1988;	Spitters,	

1988;	Van	Delden	et	al.,	2001).	Several	authors	(Allen	and	Scott,	1980;	Burstall	and	

Harris,	1983;	Van	der	Zaag	and	Doornbos,	1987;	Spitters,	1988;	Kooman	et	al.,	1996)	

have	analysed	the	differences	in	yield	of	potato	crops	based	on	intercepted	radiation,	

the	efficiency	of	the	use	of	this	radiation	for	dry	matter	production,	and	the	harvest	

index.		

The	genetic	 improvement	of	yield	can	be	understood	more	mechanistically	by	

inspecting	and	interpreting	the	relationships	between	the	main	attributes	of	growth	

and	by	partitioning	the	yield	components	described	above.	Studies	on	the	mechanistic	

basis	by	which	breeding	has	successfully	increased	yield	may	shed	light	on	potential	

future	alternatives.		

	
	

  HIRUE		PARPAR				Yield intinc   f
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Need	of	this	study	
The	agronomy	and	physiology	of	yield	development	 in	potato	 is	extremely	complex	

due	 to	 genotype	 specific	 and	 environmental	 effects	 (i.e.	 GE)	 on	 crop	 physiological	
and	 morphological	 characteristics	 that	 are	 conditioned	 by	 the	 combination	 of	

genotype	and	environment,	i.e.	GE	(Pashiardis,	1988;	Allen	and	Scott,	1992;	Jefferies	
and	MacKerron,	1993;	Tourneux	et	al.,	2003;	Schittenhelm	et	al.,	2006).	Despite	 the	

importance	of	this	fact,	few	studies	sought	to	understand	the	physiological	processes	

leading	to	yield	development	and	the	factors	affecting	these	processes	and	these	are	

still	not	well	understood.	Most	reports	are	concerned	with	experiments	carried	out	in	

growth	rooms,	which	often	use	very	short	stem	sections	as	planting	material	and	in	

which	environmental	conditions,	especially	light	intensity,	differed	greatly	from	those	

normally	 prevailing	 during	 the	 period	 of	 initiation	 in	 the	 field.	 Insight	 into	 the	

aboveground	 shoot	 development,	 particularly	with	 respect	 to	 canopy	 cover	 and	 its	

relation	 with	 whole‐plant	 physiology	 are	 still	 underdeveloped	 (Almekinders	 and	

Struik,	1996).			

Traditionally,	 crop	 growth	 simulation	 models	 have	 principally	 been	 used	 to	

study	 and	 predict	 crop	 performance	 in	 response	 to	 environmental	 conditions	 and	

management	practices,	whereas	genotypic	 impacts	on	crop	performance	(especially	

in	the	context	of	plant	breeding	where	large	numbers	of	genotypes	are	involved)	have	

received	little	attention.	Little	efforts	have	focused	on	modelling	canopy	dynamics	in	

relation	to	genotype	with	environment	interaction	(GE),	presumably	due	to	lack	of	
suitable	modelling	approaches	and	data	sets.	There	is	a	need	for	a	model	that	includes	

crop	reactions	 to	 temperature,	day	 length	and	soil	nitrogen	availability	on	 the	yield	

dynamics	 of	 the	 crop	 (Allen	 and	 Scott,	 1980;	Kooman	 and	Rabbinge,	 1996).	 Such	 a	

model	may	also	offer	breeders	the	scope	to	breed	for	cultivars	which	make	the	most	

effective	use	of	a	given	environment.		

	

	
Main	objectives	
The	 analysis	 conducted	 in	 this	 thesis	 is	 based	 primarily	 on	 data	 collected	 from	 six	

contrasting	 field	 experiments	 carried	 out	 in	 Wageningen	 (52˚	 N	 latitude),	 the	

Netherlands,	 during	 2002,	 2004	 and	 2005.	 The	 plant	 material	 used	 in	 this	 study	

consisted	 of	 100	 F1	 diploid	 (2n	=	 2x	=	 24)	 potato	 genotypes	 derived	 from	 a	 cross	

between	 two	 diploid	 heterozygous	 potato	 clones,	 SH83‐92‐488	 	 RH89‐039‐16	
(Rouppe	van	der	Voort	et	al.,	1997;	Van	Os,	2006)	referred	to	as	SH		RH.	Besides,	five	
standard	 cultivars	 (i.e.	 Première,	 Bintje,	 Seresta,	 Astarte,	 and	 Karnico)	 were	 also	

included	in	our	studies.	The	thesis	has	the	following	objectives:		

	

 To	 develop	 an	 approach	 to	 quantify	 and	 analyse	 the	 dynamics	 of	 important	
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growth	and	development	related	processes	(i.e.	dynamics	of	green	canopy	cover	

and	 tuber	 bulking),	 where	 these	 processes	 are	 dissected	 into	 biologically	

meaningful	 and	 genetically	 relevant	 component	 traits.	 We	 want	 to	 study	 the	

impact	of	these	processes	on	tuber	yield	production	under	diverse	environmental	

conditions;		

 To	 analyse	 how	 these	 processes	 are	 influenced	 quantitatively	 by	 genotype	 (G),	

environment	(E),	and	GE	interaction;	
 To	develop	a	physiology	based	unambiguous	method	of	assessing	maturity	type	

in	potato;	

 To	identify	favourable	QTL	alleles	for	yield	determining	physiological	component	

traits	 of	 potato	 for	 specific	 environment(s)	 to	 complement	 marker	 assisted	

breeding	programmes;	

 To	examine	 the	ability	and	potential	of	 the	ecophysiological	 crop	growth	model	

‘GECROS’	 in	 explaining	 yield	 differences	 in	 potato	 to	 help	 design	 strategies	 for	

potato	ideotype	breeding	for	specific	genotypes	and/or	environments;	

 To	identify	important	physiological	and	genotypic	traits	which	could	be	useful	as	

a	selection	criterion	for	improving	crop	yield	in	potato.	

	

	
Outline	of	the	thesis	
This	 thesis	 is	 composed	 of	 six	 chapters	 including	 this	 introduction	 (Chapter	 1).	

Chapters	2	 to	5	 present	 the	main	 results	 of	 the	 study.	Chapter	2	 and	Chapter	3	

describe	a	modelling	approach	to	analyse	and	quantify	the	dynamics	of	canopy	cover	

and	tuber	bulking,	respectively,	during	the	entire	crop	cycle	as	a	function	of	thermal	

time	and	its	variability	among	potato	genotypes	and	to	break	the	time	course	and	its	

variation	down	into	biologically	meaningful	and	genetically	relevant	component	traits.	

We	dissect	and	assess	 the	role	of	genotype	(G),	environment	 (E),	and	GE	on	 tuber	
yield	production;	discuss	the	heritability	of	these	traits	and	their	genetic	background	

(i.e.	QTLs)	on	the	paternal	genomes.	Using	this	approach,	the	aim	is	to	quantitatively	

analyse	 the	 sources	of	 variation	 into	useful	 components	 of	 canopy	 cover	 and	 tuber	

bulking	dynamics	and	get	 insights	 into	 the	most	vital	processes	 that	can	be	used	 to	

explore	 the	 possibilities	 of	 genetically	 manipulating	 potato	 tuber	 yield.	 Chapter	4	

discusses	how	to	quantify	and	assess	maturity	type	unambiguously	for	a	large	set	of	

genotypes.	 It	 presents	 an	 improved	 approach	 to	 re‐define	 the	 concept	 of	 maturity	

type	 in	 terms	 of	 important	 physiological	 traits	 thus	 relating	 the	 maturity	 to	 crop	

phenology	 and	 physiology.	 Chapter	 5	 examines	 the	 performance	 of	 the	

ecophysiological	crop	growth	model	‘GECROS’	to	analyse	differences	in	tuber	yield	in	

a	set	of	varieties	covering	a	wide	range	of	maturity	types	and	a	diploid	(SH		RH)	F1	
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segregating	population	of	potato.	Finally,	Chapter	6	discusses	the	main	findings	and	

overall	contribution	of	this	thesis.	It	concludes	with	new	directions	and	opportunities	

of	 linking	 crop	physiology	with	 genetic	 systems	 and	 indicates	ways	 to	 enhance	 the	

power	 of	molecular	 breeding	 strategies	 in	 potato.	 Figure	 1.2	 illustrates	 the	 overall	

framework	of	this	study,	while	Figure	1.3	further	elaborates	that	plan	and	provides	a	

schematic	outline	of	this	thesis.	

	

	

	

	
	
	
Figure	1.2.	Overall	framework	of	this	study.		
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Figure	1.3.	Schematic	thesis	outline.		



 



CHAPTER	2	
	
	

Analysing	genetic	variation	in	potato	(Solanum	tuberosum	L.)	using	
standard	cultivars	and	a	segregating	population.		

I.	Canopy	cover	dynamics*	
	

M.S.	Khan,	P.C.	Struik,	P.E.L.	van	der	Putten,	H.J.	Jansen,		
H.J.	van	Eck,	F.A.	van	Eeuwijk,	X.	Yin	

	
	

Abstract	
We	 present	 a	 model	 based	 on	 the	 beta	 function	 to	 analyse	 the	 genotype‐by‐
environment	 (GE)	 interactions	 for	 canopy	 cover	 dynamics	 in	 potato	 (Solanum	
tuberosum	 L.).	 The	 model	 describes	 the	 dynamics	 during	 the	 build‐up	 phase,	
maximum	 cover	 phase,	 and	 decline	 phase	 of	 canopy	 development	 through	 five	
parameters	 defining	 timing	 and	 duration	 of	 three	 phases	 and	 maximum	 canopy	
cover	 (vmax).	 These	 five	 parameters	 were	 estimated	 for	 100	 individuals	 of	 an	 F1	
population,	 their	 parents,	 and	 five	 standard	 cultivars,	 using	 data	 from	 six	 field	
experiments,	 and	 used	 to	 estimate	 secondary	 traits,	 related	 to	 rate	 of	 increase	 or	
decrease	of	canopy	cover	and	the	area	under	the	canopy	cover	curve	 for	 the	three	
phases.	The	length	of	the	canopy	build‐up	phase	was	conserved,	but	the	duration	of	
maximum	 canopy	 cover	 (DP2)	and	 the	 decline	 phase	 (DP3)	varied	 greatly,	 with	 late	
maturing	genotypes	having	longer	DP2	and	DP3	and	thus	a	higher	area	under	whole	
green	 canopy	 cover	 curve	 (Asum).	 Genetic	 variance	 of	 the	 onset	 (t2)	 or	 end	 (te)	 of	
canopy	senescence	and	Asum	contributed	greatly	 to	 the	phenotypic	variance.	Strong	
positive	phenotypic	and	genetic	correlations	were	observed	between	DP2	and	vmax	or	
te,	indicating	that	genotypes	with	longer	DP2	could	be	indirectly	obtained	by	selecting	
genotypes	 with	 high	 vmax	 or	 te.	 High	 broad‐sense	 heritability	 estimates	 across	 six	
environments	were	 recorded	 for	 t2,	 te,	DP2,	 and	Asum.	 Several	 quantitative	 trait	 loci	
(QTLs)	were	detected	 for	 our	model	 parameters	 and	derived	 traits	 explaining	 the	
variance	by	up	to	74%;	many	of	these	QTLs	were	located	on	paternal	linkage	group	
V.	 Some	 of	 the	 QTLs	 were	 mapped	 to	 similar	 positions	 in	 the	 majority	 of	
environments,	 but	 only	 few	 QTLs	 were	 stable	 across	 environments.	We	 conclude	
that	our	approach	yielded	estimates	for	agronomically	relevant	crop	characteristics	
for	 defining	 future	 breeding	 strategies	 in	 potato	 and	 the	 information	 obtained	
should	help	in	marker‐	assisted	selection.	
	
Key	words:	Potato	(Solanum	tuberosum	L.),	canopy	cover	dynamics,	beta	 function,	
thermal	time,	components	of	variance,	genotype‐by‐environment	(GE)	interaction,	
genetic	 variability,	 heritability,	 maturity	 type,	 QTL	 mapping,	 QTL‐by‐environment	
(QTLE)	interaction.			
	
	
_____________________________________	
*	Submitted	to	Field	Crops	Research.	
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1.	Introduction	

Tuber	 dry	matter	 yield	 in	 potato	 (Solanum	tuberosum	 L.)	 can	 be	 quantified	 by	 the	

summation	of	the	daily	incoming	photosynthetically	active	radiation	(PAR)	times	the	

daily	 fraction	 of	 that	 radiation	 intercepted	 by	 the	 crop	 times	 the	 radiation	 use	

efficiency	 times	 the	 daily	 fraction	 of	 the	 total	 dry	matter	 partitioned	 to	 the	 tubers	

(Struik	et	al.,	1990).	This	paper	is	on	the	first	part	of	the	equation:	the	fraction	of	the	

incoming	radiation	intercepted,	as	in	many	potato	growing	regions	the	ability	of	the	

crop	 to	 produce	 and	 maintain	 a	 green	 canopy	 able	 to	 absorb	 and	 use	 incoming	

radiation	 during	 the	 available	 growing	 season	 for	 biomass	 production	 determines	

tuber	yields	(Moll	and	Klemke,	1990).		

The	crop	canopy	cover	at	each	time	during	the	growing	season	is	the	resultant	

of	the	rate	and	duration	of	canopy	growth	and	the	rate	of	canopy	senescence	(or	the	

timing	 of	 the	 haulm	 killing)	 (Struik	 et	 al.,	 1990;	 Struik,	 2007).	 This	 canopy	 cover	

directly	 correlates	 with	 the	 fraction	 of	 incoming	 PAR	 absorbed	 (Khurana	 and	

McLaren,	1982;	MacKerron	and	Waister,	1985a;	Van	der	Zaag	and	Doornbos,	1987;	

Van	Delden	et	 al.,	 2001).	Under	 optimal	 conditions	 and	with	 long	 growing	 seasons,	

early	establishment	of	full	canopy	cover	and	its	persistence	over	a	long	period	lead	to	

a	 higher	 yield	 due	 to	 better	 interception	 of	 incoming	 radiation	 (Martin,	 1995),	

although	 the	 biomass	 needs	 to	 be	 partitioned	 to	 tubers	 to	 obtain	 economic	 yield.	

There	is	a	close,	positive	correlation	between	canopy	cover	and	tuber	yield	(Van	der	

Zaag,	 1982;	 Vander	 Zaag	 and	 Demagante,	 1987;	 Fahem	 and	 Haverkort,	 1988).	 The	

proper	 quantification	 of	 canopy	 dynamics	 is	 therefore	 one	 of	 the	 most	 important	

elements	of	modelling	potato	production	(Hodges,	1991).		

The	 variation	 in	 tuber	 yield	 among	 potato	 genotypes	 can	 –	 under	 conditions	

without	 abiotic	 or	 biotic	 stress	 −	be	 analysed	 in	 terms	of	 differences	 in	 cumulative	

light	 absorption,	 the	 efficiency	 with	 which	 the	 absorbed	 light	 energy	 is	 used	 for	

biomass	 production,	 and	 partitioning	 of	 dry	 matter	 to	 the	 desired	 plant	 organ	

(Pashiardis,	1988;	Spitters,	1988;	Van	Delden	et	al.,	2001).	Most	potato	genotypes	are	

indeterminate	 (Allen	 and	 Scott,	 1992;	 Struik	 and	 Ewing,	 1995,	 Almekinders	 and	

Struik,	 1996)	 and	 (the	 continuation	 of)	 canopy	 growth	 largely	 depends	 on	 the	

appearance	 of	 lateral	 (basal	 or	 sympodial)	 branches,	 and	 on	 the	 appearance,	

expansion,	 and	 senescence	of	 leaves	on	 those	branches	 (Allen	 and	Scott,	 1992;	Vos	

and	Biemond,	1992;	Vos,	1995a;	Almekinders	and	Struik,	1996;	Fleisher	et	al.,	2006).	

The	canopy	cover	in	potato	crops	may	therefore	comprise	of	leaves	from	main	stems,	

secondary	stems,	and	axillary	branches	(Allen,	1978).	Potato	genotypes	differ	in	the	

degree	 to	which	 they	branch	and	 the	extent	of	 sympodial	branching	 is	 indicative	of	

their	maturity	type	and	the	degree	of	determinacy	in	their	growth	habit	(Firman	et	al.,	

1995).	Once	 tuber	bulking	has	become	rapid,	 the	branch	 formation	comes	 to	a	halt	
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and	 the	 leaf	 senescence	 is	 no	 longer	 compensated	 by	 new	 leaf	 formation.	 The	

duration	of	canopy	cover	can	be	considered	a	 trait	 reflecting	 the	maturity	 type	of	a	

specific	cultivar	or	genotype	(Chapter	4).	

Genotypic	differences	in	potato	canopy	cover	are	large	(Spitters,	1988;	Jefferies	

and	MacKerron,	 1993;	 Tourneux	et	 al.,	2003).	 Spitters	 (1988)	 for	 example	 showed	

that	 differences	 in	 yields	 among	 five	 contrasting	 varieties	 could	 be	 explained	 by	

variation	 in	 canopy	 cover	 over	 time	 (resulting	 in	 differences	 in	 cumulative	 light	

absorption)	 and	 in	 light	use	 efficiency	and	harvest	 index.	 Like	many	other	 complex	

quantitative	 traits,	 canopy	 cover	 may	 be	 controlled	 by	 many	 interacting	 genes	 of	

which	 each	 only	 has	 a	 small	 effect	 (Lark	 et	 al.,	 1995;	 Orf	 et	 al.,	 1999;	 Daniell	 and	

Dhingra,	 2002;	 Stuber	 et	 al.,	 2003).	 The	 principal	 approach	 for	 the	 analysis	 of	

quantitative	traits	is	the	use	of	a	population	which	segregates	for	the	traits	of	interest	

(Tanksley	et	al.,	1989).	For	potato,	individuals	of	such	a	segregating	population	can	be	

produced	 by	 crosses	 made	 between	 commercial	 cultivars	 or	 with	 individual	

genotypes	developed	from	population	improvement	procedures	and	they	are	readily	

propagated	by	asexual	reproduction	(Bradshaw,	1994).	Commercial	cultivars	utilised	

as	 parents	 are	 heterozygous	 and	 segregation	 of	 characters	will	 be	 found	 in	 the	 F1	

generation	following	hybridisation.		

Canopy	 cover	 dynamics	 also	 shows	 a	 high	 genotype‐by‐environment	 (GE)	
interaction	 (Pashiardis,	1988;	Allen	and	Scott,	1992;	Schittenhelm	et	 al.,	2006).	The	

main	environmental	 factors	 influencing	 the	canopy	dynamics	under	 field	conditions	

are	temperature,	photoperiod,	light	intensity,	water	supply,	and	nitrogen	(N)	supply.	

For	 our	 study	 the	 effects	 of	 temperature	 and	 N	 are	 most	 relevant	 and	 these	 are	

therefore	summarised	in	this	introduction.		

Temperature	strongly	 influences	stem	elongation	and	branching	(Marinus	and	

Bodlaender,	1975;	Allen	and	Scott,	1980;	Struik	et	al.,	1989a,	Almekinders	and	Struik,	

1994,	 1996)	 and	 leaf	 appearance,	 expansion,	 and	 senescence	 (Kirk	 and	 Marshall,	

1992;	Vos,	1995a;	Firman	et	al.,	1995;	Struik	and	Ewing,	1995;	Van	Delden	et	al.,	2001;	

Fleisher	 and	 Timlin,	 2006;	 Fleischer	 et	 al.,	 2006;	 Struik,	 2007),	 with	 optimal	 and	

maximum	 temperatures	 for	 these	 processes	 contributing	 to	 canopy	 development	

being	 23‐25	 ˚C	 and	 about	 32	 ˚C,	 respectively	 (Struik,	 2007).	 N	 supply	 affects	 the	

number	 of	 lateral	 (basal	 and	 sympodial)	 branches,	 the	 number	 of	 leaves	 on	 those	

branches,	 the	 individual	 leaf	 size	 and	 leaf	 senescence	 (Fernando,	 1958;	Humphries	

and	French,	1963;	Vos	and	Biemond,	1992;	Almekinders	and	Struik,	1996).	Nitrogen	

helps	to	attain	complete	canopy	cover	early	in	the	season,	especially	under	relatively	

resource‐poor	conditions	(Haverkort	and	Rutavisire,	1986;	Vos,	2009),	to	extend	the	

period	of	full	canopy	cover;	and	to	slow	down	senescence	(Santeliz	and	Ewing,	1981),	

thus	leading	to	increased	light	interception	(Martin,	1995).		
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There	is	a	clear	need	to	investigate	the	components	of	genetic	variation	(e.g.	in	

canopy	 dynamics)	 and	 to	 determine	 the	 GE	 interaction	 for	 a	 diverse	 population	
under	contrasting	environmental	conditions	(Tarn	et	al.,	1992;	Bradshaw,	1994).	The	

genetic	 variation	 and	 the	 GE	 interaction	 for	 canopy	 cover	 need	 to	 be	 defined	 by	
precisely	assessing	the	rate	and	duration	of	the	build‐up	phase,	the	maximum	canopy	

cover	and	the	duration	of	the	period	during	which	this	maximum	is	maintained	and	

the	rate	and	duration	of	the	canopy	senescence.	These	variables	need	to	be	optimised	

in	 such	 a	 way	 that	 the	 crop	 can	 complete	 its	 growth	 cycle	 within	 the	 period	 of	

favourable	weather	 conditions	 thus	 realising	 a	 high	 yield	 and	 an	 adequate	 harvest	

index.	 There	 is	 a	 growing	 awareness	 that	 in	order	 to	 better	 analyse	 complex	 traits	

using	 increasingly	 available	 genomic	 information,	 integration	 of	 quantitative	 crop	

physiology	with	genetics	is	required	(Tardieu,	2003;	Yin	et	al.,	1999a;	Yin	et	al.,	2004;	

Hammer	et	al.,	2006;	Yin	and	Struik,	2008;	Chenu	et	al.,	2009;	Messina	et	al.,	2009;	

Hammer	et	al.,	2010;	Tardieu	and	Tuberosa,	2010;	Yin	and	Struik,	2010).		

In	 this	 paper	 we	 first	 describe	 a	 quantitative	 approach	 to	 analyse	 the	 time	

course	of	canopy	cover	during	the	entire	crop	cycle	as	a	function	of	thermal	time	and	

its	variability	among	potato	genotypes	and	to	break	the	time	course	and	its	variation	

down	 into	 biologically	meaningful	 and	 genetically	 relevant	 component	 traits.	 Using	

this	 approach,	 we	 aim	 to	 quantitatively	 analyse	 the	 sources	 of	 variation	 in	 canopy	

cover	 dynamics	 among	 full‐sibs	 of	 an	 outcrossing	 segregating	 population,	 their	

parents	 and	 a	 set	 of	 standard	 cultivars	 of	 potato.	 The	 heritability	 of	 and	 genetic	

variation	 among	 different	 component	 traits	 of	 canopy	 cover	 are	 estimated	 (Van	

Eeuwijk	 et	 al.,	 2005).	 Finally,	we	 perform	QTL	mapping	 of	 our	 traits	 to	 investigate	

their	genetic	basis	and	discuss	the	co‐locations	of	QTLs	for	these	traits	and	their	QTL‐

by‐environment	 (QTLE)	 interaction.	With	such	 information,	dominant	components	
of	canopy	cover	can	be	 identified	and	their	phenotypic	and	genetic	correlations	can	

be	 assessed,	 with	 the	 ultimate	 goal	 of	 designing	 an	 effective	 breeding	 strategy	 of	

potato.			

	

	

2.	Materials	and	methods	

	

	

2.1.	F1	segregating	population	of	SH		RH	and	standard	cultivars		
The	plant	material	used	in	this	study	consisted	of	100	F1	diploid	(2n	=	2x	=	24)	potato	

genotypes	 derived	 from	 a	 cross	 between	 two	 diploid	 heterozygous	 potato	 clones,	

SH83‐92‐488				RH89‐039‐16	(Rouppe	van	der	Voort	et	al.,	1997;	Van	Os	et	al.,	2006).	
Parent	material	was	also	 included	in	the	study.	The	female	parental	clone	SH82‐93‐
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488	 is	 referred	 to	 as	 “SH”	 and	 the	male	 parental	 clone	 RH89‐039‐16	 as	 “RH”.	 Like	

many	other	full‐sib	populations,	the	SH		RH	population	segregates	for	maturity	type,	
which	 is	 strongly	 associated	with	 the	duration	of	 canopy	 cover	 (Van	der	Wal	 et	 al.,	

1978;	Van	Oijen,	1991).	 It	 should	be	noted	 that	diploid	potatoes	perfectly	resemble	

tetraploid	cultivars	with	respect	to	many	developmental	processes,	including	canopy	

development,	 but	 the	 most	 noticeable	 difference	 is	 a	 somewhat	 smaller	 plant	 size	

(Hutten,	1994).		

We	also	 included	 five	 standard	 (tetraploid)	 cultivars	 in	our	 studies:	Première,	

Bintje,	 Seresta,	 Astarte	 and	 Karnico.	 These	 cultivars	 were	 chosen	 because	 of	 their	

differences	 in	maturity	 type	when	grown	 in	 the	Netherlands	 and	 they	 ranged	 from	

early	 (Première)	 to	 very	 late	 (Karnico).	 This	 selection	 of	 standard	 cultivars	 would	

allow	a	benchmarking	of	consequences	of	maturity	type	on	the	time	course	of	canopy	

cover.		

We	 aimed	 at	 using	 disease‐free,	 uniform‐sized	 seed	 tubers	 of	 similar	

physiological	quality	and	therefore	produced	seed	tubers	under	the	same	conditions	

and	 stored	 them	 together	 at	 4	 °C	 for	 approximately	 6	 months	 until	 planting.	 The	

graded	 seed	 tubers	 were	 disinfected	 chemically	 to	 control	 Rhizoctonia	 and	 pre‐

sprouted	before	planting.		

	

	

2.2.	Field	experiments	and	measurements	

Six	 field	 experiments	 were	 carried	 out	 in	 Wageningen,	 the	 Netherlands	 (52˚	 N	

latitude),	during	2002,	2004,	and	2005,	with	two	experiments	in	each	year,	to	record	

canopy	cover	dynamics	 for	100	F1	genotypes,	2	parents,	and	4	 (Exps	5	and	6)	or	5	

(Exps	 1‐4)	 standard	 cultivars.	 Karnico	was	 not	 included	 in	 the	 two	 experiments	 in	

2005.	 Experiments	 differed	 in	 environmental	 conditions	 because	 they	were	 carried	

out	 in	 different	 years,	 on	 different	 soils,	 and	 under	 different	 N	 fertiliser	 regimes,	

thereby	 creating	 six	 contrasting	 environments	 (Table	 2.1).	 Each	 experiment	 was	

conducted	using	a	randomised	complete	block	design	with	two	blocks.	The	genotypes	

were	randomised	within	each	block,	consisting	of	106	or	107	plots.	Each	plot	had	six	

rows	 of	 16‐18	 plants.	 The	 seed	 bed	 was	 prepared	 following	 standard	 cultivation	

practices.	 Seed	 tubers	were	planted	 in	 rows	 spaced	0.75	m	apart	with	0.27‐0.30	m	

between	plants	within	the	same	rows.	Nitrogen	fertiliser	was	broadcasted	at	planting	

in	 amounts	 depending	 on	 experiment	 (Table	 2.1).	 Soil	 phosphorus	 and	 potassium	

levels	 were	 kept	 sufficiently	 high	 to	 sustain	 normal	 crop	 growth.	 Crops	 were	

managed	well	to	ensure	that	they	were	free	of	pests,	diseases,	and	weeds.	Irrigation	

was	applied	when	necessary	to	avoid	drought	stress.		
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Table	2.1.	Description	of	the	experimental	sites	and	experimental	methods	applied	in	

Wageningen,	the	Netherlands.		
	

Experiment	no.	 1	 2	 3	 4	 5	 6	

Year	 2002	 2002	 2004	 2004	 2005	 2005	

Soil	type	 Clay	 Sand		 Clay	 Sand	 Sand	 Sand	

Planting	pattern	

(m		m)	
0.75		
0.30	

0.75		
0.30	

0.75		
0.27	

0.75		
0.27	

0.75		
0.27	

0.75		
0.27	

Planting	date	 25		April	 25	April	 28	April	 28	April	 4	May	 26	April	

Plant	density	

(plants	m‐2)	
4.4	 4.4	 4.9	 4.9	 4.9	 4.9	

Net	plot	size	

(m2)	
23.0	 23.0	 20.7	 20.7	 20.7	 20.7	

Soil	N	at	

planting		

(kg	ha‐1)	

n.d.1	 n.d.2	 12.5	 23.0	 81.0	 49.5	

Fertiliser	N		

(kg	ha‐1)	
143	 175		 70		 200		 125		 50		

Tuber	N	uptake	

(kg	ha‐1)	†	
−	 −	 112.3	 172.0	 153.6	 156.1	

	 	 	 	 	 	 	

Weather	conditions	during	growing	season	

	 2002	 	 2004	 	 2005	

Air	temperature	max	(oC)	 20.9	 	 20.6	 	 20.7	

Air	temperature	min	(oC)	 11.2	 	 10.4	 	 9.9	

Rainfall	(mm)	 364.1	 	 367.1	 	 369.1	

Relative	humidity	(%)	 78.2	 	 75.6	 	 76.5	

Solar	radiation	(MJ	m‐2	d‐1)	 15.3	 	 15.8	 	 15.8	
1	n.d.	=	no	data.	Guestimate:	40	kg	N	ha‐1.	
2	n.d.	=	no	data.	Guestimate:	60	kg	N	ha‐1.	
†	Data	for	Experiments	1	and	2	were	not	available	and	replaced	by	“−”.		

	

Plant	 emergence	date	was	 observed	 on	 the	date	when	50%	of	 the	 plants	 had	

emerged	 from	 the	 soil	 surface.	 Afterwards,	 green	 canopy	 cover	 (%)	 was	 visually	

assessed	on	weekly	basis	for	each	plot	during	the	whole	crop	cycle	by	using	a	grid	as	
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described	by	Burstall	 and	Harris	 (1983).	The	grid	consisted	of	an	aluminium	 frame	

with	 the	dimensions	0.75	m		0.90	m,	adjusted	 to	 the	common	planting	pattern	 for	
potato	(row	width	0.75	m,	planting	distance	within	the	row	0.30	m).	The	frame	was	

divided	into	100	equal	rectangles	of	0.075	m		0.090	m.	The	grid	was	placed	above	
the	 potato	 canopy	 at	 1	 m	 from	 the	 ground	 and	 only	 those	 rectangles	 more	 than	

half	filled	 with	 green	 leaves	 were	 counted	 by	 observing	 vertically	 above	 to	 avoid	

parallax	error	(Cadersa	and	Govinden,	1999).	The	grid	was	placed	half	way	on	each	

side	 of	 the	 potato	 row	 to	 sample	 three	 plant	 positions.	 Observations	 were	 always	

made	 at	 the	 same	 position	 in	 the	 field.	 The	 number	 of	 observations	 made	 on	 the	

canopy	cover	during	the	growing	season	per	individual	plot	was	17‐21.		

At	the	end	of	the	growing	season,	tubers	of	each	plot	were	harvested	and	dried	

in	an	oven	at	70	˚C	to	constant	weight.	In	samples	of	the	growing	seasons	of	2004	and	

2005,	 tuber	 nitrogen	 content	 was	 determined	 by	 micro‐Kjeldahl	 digestion	 and	

distillation	 (AOAC,	 1984)	 in	 a	 fully	 accredited	 commercial	 laboratory.	 Average	 N	

uptake	 was	 calculated	 and	 was	 used	 to	 characterise	 some	 of	 the	 environments	 in	

terms	of	total	N	available	for	crop	growth.	

	

	

2.3.	Model	approach		

	

	

2.3.1.	A	model	for	phasic	development	of	canopy	cover	dynamics	

Canopy	cover	dynamics	in	potato	as	quantified	by	the	grid	method	typically	follows	a	

pattern	that	can	be	subdivided	into	three	distinct	phases	(Fig.	2.1),	i.e.	build‐up	phase	

(P1),	maximum	cover	phase	(P2),	and	decline	phase	(P3).	

	

	

Build‐up	phase	(P1)	

This	 first	 phase	 covers	 the	 period	 from	 emergence	 to	 full	 canopy	 cover,	 and	 is	

dominated	 by	 appearance	 of	 stems,	 lateral	 branches	 and	 leaves,	 and	 expansion	 of	

those	organs	(Allen	and	Scott,	1992;	Vos	and	Biemond,	1992;	Vos,	1995a;	Fleisher	et	

al.,	2006).	To	obtain	flexible	and	asymmetrical	curves,	canopy	cover	during	P1	can	be	

written,	according	to	a	sigmoid	part	of	the	beta	function	for	determinate	growth	(Yin	

et	al.,	2003a),	as:		
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Figure	2.1.	Temporal	course	of	potato	canopy	development	(full	curve)	from	time	0	

to	 te	described	 by	 our	 three‐phase	 model,	 eqns	 (2.1‐2.3),	 respectively.	 P1	 (canopy	

build‐up	phase),	P2	(maximum	canopy	cover	phase),	and	P3	(canopy	decline	phase).	

The	dashed	curve	is	the	mathematical	extension	of	eqn	(2.1).	

	

	

where	 tm1	 is	 the	 inflexion	 point	and	 vmax	 is	 the	maximum	 value	 of	 canopy	 cover	 v,	

which	is	reached	at	time	t1	(Fig.	2.1).	Equation	(2.1)	can	be	applied	to	canopy	cover	

within	the	time	span	of	0	≤	t	≤	t1;	otherwise,	v	has	to	be	set	at	0	if	t	<	0	or	at	vmax	if	t	>	

t1.		

	

	

Maximum	cover	phase	(P2)	

During	this	phase	the	canopy	cover	retains	its	maximum	level	vmax.	The	canopy	cover	

during	P2	is	simply	given	by:	

	

21max 					with						 tttvv  	 (2.2)	
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where	t2	reflects	the	last	time	point	when	canopy	cover	is	still	at	its	maximum	and/or	

onset	of	canopy	senescence	(Fig.	2.1).	

	

	

Decline	phase	(P3)	

The	canopy	cover	 starts	 to	decline	after	 time	 t2,	 and	 reaches	 zero	at	 the	end	of	 the	

crop	cycle	i.e.	te.	Usually	this	decline	follows	a	reversed	sigmoid	pattern,	which	could	

be	 formulated	as	vmax[1‐f(t)]	 (cf.	Yin	et	al.,	2009),	where	 f(t)	 is	 the	 function,	such	as	

eqn	 (2.1),	 describing	 a	 normal	 sigmoid	 pattern	 with	 time.	 Therefore,	 for	 P3,	 an	

equation	could	be	formulated,	using	an	inflexion	point	of	the	decline	phase.	However,	

in	many	cases	the	estimates	for	parameters	showed	large	standard	errors,	indicating	

over‐fitting	when	a	model	having	 this	 inflexion	 is	applied	 in	combination	with	eqns	

(2.1)	and	(2.2)	to	describe	the	data	of	the	entire	time	course	of	canopy	dynamics.	To	

reduce	the	chance	of	over‐fitting,	we	developed	an	equation	for	the	canopy	cover	in	

Phase	3	excluding	this	second	inflexion,	yet	yielding	satisfactory	results:		
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where	te	reflects	the	time	point	when	canopy	cover	is	zero.	This	equation	is	based	on	

a	decline	part	of	the	beta	equation	(Yin	et	al.,	1995)	and	assumes	that	te	differs	from	

the	extended	end	point	of	eqn	(2.1)	by	(t2‐t1)	(Fig.	2.1).	Equation	(2.3)	can	be	applied	

within	the	time	span	of	t2	≤	t	≤	te;	otherwise,	v	has	to	be	set	at	0	if	t	>	te.	

Combining	eqns	(2.1,	2.2,	and	2.3)	yields	a	model	with	five	parameters:	tm1,	t1,	t2,	

te,	and	vmax.	Any	further	reduction	of	parameters	resulted	in	significant	loss	of	fit	(data	

not	shown).	The	model	describes	canopy	dynamics	for	a	given	genotype‐environment	

combination.	 The	 model	 contains	 three	 segments	 but	 is	 smooth	 because	 the	 first	

derivatives	 of	 v	with	 respect	 to	 t	are	 zero	 at	 the	 joining	 points	 t1	 and	 t2.	 Values	 of	

model	 parameters	 tm1,	 t1,	 t2,	 te,	and	 vmax	were	 estimated	 for	 each	 individual	 plot	 of	

every	 experiment	 with	 the	 iterative	 non‐linear	 least‐square	 regression	 using	 the	

Gauss	method,	as	implemented	in	the	PROC	NLIN	of	the	SAS	software	(SAS	Institute	

Inc.,	2004).	

	

	

2.3.2.	Calculating	secondary	traits		

Once	 the	model	 parameters	were	 estimated,	 several	 secondary	 traits	were	 derived	

reflecting	 the	 duration	 of	 the	 phases,	 the	 rates	 of	 canopy	 cover	 dynamics,	 and	 the	

overall	potential	to	intercept	light	during	the	different	phases.		
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As	defined	earlier,	our	model	sets	time	zero	as	the	onset	of	P1;	so	the	duration	

of	P1	 is	 numerically	 equal	 to	 t1,	 and	 the	duration	 of	 the	 entire	 cycle	 is	 numerically	

equal	to	te.	The	duration	of	P2	(DP2)	was	calculated	as	t2−t1.	The	duration	of	P3	(DP3)	

was	calculated	as	te−t2.		

Average	growth	rate	 for	P1	(c1)	 is	defined	as:	vmax/t1,	 and	average	senescence	

rate	 during	 P3	 (c3)	 is	 vmax/Dp3.	 Maximum	 growth	 rate	 during	 P1	 (cm1),	 which	 is	

achieved	 at	 tm1,	 could	 be	 estimated	 according	 to	 the	 equation	 given	 by	 (Yin	 et	 al.,	

2003a)	as:		
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The	area	under	each	section	of	the	curve	was	estimated	by	integrating	eqns	(2.1,	

2.2,	and	2.3)	over	time	for	the	respective	phases.	In	analogy	to	the	solution	to	the	area	

for	a	reversed	sigmoid	curve	(Yin	et	al.,	2009),	the	integral	for	P1	can	be	expressed	as:	
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The	integral	for	P2	is	simply	expressed	as:	

	
 				 12max2 ttvA  	 (2.6)	

The	integral	for	P3	is	more	complicated	and	can	be	found	as:		
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The	sum	of	A1,	A2,	and	A3	results	 in	 the	area	under	whole	green	canopy	curve,	Asum.	

The	value	of	Asum	reflects	the	capability	of	the	crop	to	intercept	solar	radiation	during	

the	whole	growing	season	(cf.	Vos	1995b,	2009).	

	

	

2.4.	Calculating	thermal	time	

Our	experiments	were	conducted	under	 field	conditions.	To	 take	account	of	diurnal	

and	 seasonal	 variation	 in	 temperature	 under	 these	 conditions,	 the	 time	 axis	 in	 the	
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above	equations	should	be	in	thermal	time,	which	has	long	ago	been	introduced	as	a	

scale	of	reference	for	ontogeny	(Gallagher,	1976,	1979;	Milford	and	Riley,	1980;	Ong,	

1983,	Milford	et	al.,	1985;	Bonhomme,	2000).		

We	followed	the	approach	of	Yin	et	al.	(1995,	2005),	who	developed	an	equation	

to	describe	the	non‐linear	relationship	between	temperature	(T)	and	rate	of	growth	

or	of	development	(g(T))	as	a	function	of	three	cardinal	temperatures,	 i.e.	base	(Tb),	

optimum	(To)	and	ceiling	temperature	(Tc):		
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where	 ct	 is	 the	 temperature	 response	 curvature	 coefficient.	 When	 T	≤	 Tb	or	 ≥	Tc,	

growth	or	development	does	not	take	place.	When	temperature	is	between	Tb	and	Tc,	

g(T)	has	a	bell‐shaped	curve	with	maximum	value	1	at	To.			

We	 used	 data	 sets	 of	 leaf	 appearance	 and	 leaf	 expansion	 rates	 from	 growth	

chamber	 experiments	 of	 Fleisher	 et	 al.	 (2006)	 and	 Fleisher	 and	 Timlin	 (2006)	 to	

estimate	the	values	of	Tb,	To,	Tc,	and	ct	of	eqn	(2.8).	Their	data	on	individual	leaf	area	

(cm2)	and	leaf	appearance	rate	(leaves	plant‐1	day‐1)	of	potato	cultivar	Kennebec	was	

used	to	estimate	leaf	area	per	plant	(cm2	plant‐1)	at	six	(14/10,	17/12,	20/15,	23/18,	

28/23,	and	34/29	˚C	for	day/night)	temperatures	with	a	16/8	h	diurnal	cycle	under	

ambient	 [CO2]	 of	 370	μmol	mol‐1.	 From	 this	 data	 set	 the	 values	 of	Tb,	To,	Tc,	 and	 ct	

were	 determined	 using	 the	 iterative	 procedure	 of	 SAS‐NLIN,	 which	 follows	 a	 non‐

linear	 least	 squares	method	 for	estimation	of	parameters	 (SAS	 Institute	 Inc.,	2004).	

Estimates	 (±	 standard	errors)	were:	Tb	=	5.5	 (±5.2)	 ˚C,	To	=	23.4	 (±0.5)	 ˚C,	Tc	=	34.6	

(±1.3)	 ˚C,	ct	 =	1.6	 (±0.5).	Based	on	 the	dataset,	much	extrapolation	was	 involved	 in	

estimating	Tb	which	 resulted	 in	 high	 standard	 error.	 Obviously,	we	 have	 to	 assume	

that	 the	 temperature	responses	were	 the	same	 for	all	genotypes	and	 for	all	phases,	

based	on	assertions	that	within	a	crop	species,	the	genetic	differences	in	temperature	

sensitivity	 of	 phenology	 are	 relatively	 small	 (Ellis	 et	 al.,	 1990)	 and	 that	 cardinal	

temperatures	in	various	developmental	processes	are	quite	close	in	potato	(e.g.	Struik,	

2007).	 A	 sensitivity	 analysis	 showed	 that	 uncertainties	 in	 cardinal‐temperature	

values	had	little	impact	on	assessing	genetic	differences	in	canopy	development	(data	

not	shown).	

After	 the	 estimation	 of	 the	 temperature	 response	 parameters,	 eqn	 (2.8)	 was	

used	 to	 convert	 days	 after	 emergence	 into	 thermal	 days	 after	 emergence	 (td).	

Because	 the	 function	 g(T)	 is	 non‐linear	 and	 temperature	 fluctuates	 diurnally,	 g(T)	
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was	estimated	on	an	hourly	basis	and	hourly	g(T)	values	were	averaged	to	obtain	the	

daily	 value	 (Yin	 et	 al.,	 2005a).	 By	 definition,	 one	 thermal	 day	 is	 equivalent	 to	 one	

actual	 day	 only	 if	 temperature	 at	 any	 moment	 of	 that	 day	 is	 at	 To	 (=	 23.4	 ˚C).	

Obviously,	 every	 actual	 day	 was	 less	 than	 one	 unit	 thermal	 day.	 Required	 data	 of	

hourly	air	temperatures	were	obtained	from	a	weather	station	in	Wageningen	located	

nearby	the	experimental	sites.	

	

	

2.5.	Statistical	and	genetic	analyses		

All	 statistical	 analyses	 were	 performed	 in	 Genstat	 (Payne	 et	 al.,	 2009).	 	 A	 general	

analysis	of	variance	across	environments	was	performed	to	test	the	significance	and	

extent	 of	 differences	 between	 environments,	 all	 genotypes	 (including	 the	 F1	

population,	 the	 parents,	 and	 standard	 cultivars)	 and	 GE	 interactions,	 where	 the	
effect	of	block	within	environment	was	included	in	the	model.	Means	of	genotype	(G),	

environment	(E),	and	GE	interaction	terms	were	compared	using	the	Fisher’s	 least	
significant	 difference	 (LSD)	 test.	 Further	 statistical	 analyses	were	 performed	 using	

only	the	100	genotypes	of	the	F1	population	and	these	are	described	below.		

	

	

2.5.1.	Estimation	of	variance	components	

We	used	a	statistical	model	(Van	Eeuwijk,	2003)	to	estimate	the	variance	components	

and	to	assess	what	the	contribution	was	of	the	genotypic	main	effects	and	the	GE	to	
the	total	phenotypic	variance	for	the	model	parameters	(i.e.	tm1,	t1,	t2,	te,	and	vmax)	and	

secondary	traits	(cm1,	c1,	c3,	DP2,	DP3,	A1,	A2,	A3,	and	Asum):		

	

ijkijijkjijk 		   GEGEy 	 (2.9)	

where	 i	=	 1,…,	 100;	 j	=	 1,…,	 6;	 k	=	 1,	 2;	 and	 yijk	 denotes	 the	 response	 variable	 of	

genotype	 i,	 in	 environment	 j,	 block	k;	µ	 is	 the	 grand	mean;	Ej	 is	 the	 environmental	

main	effect;	βjk	stands	 for	block	within	environment	effect;	Gi	 is	 the	genetic	effect	of	

genotype	 i;	GEij	 is	 the	 genotype‐by‐environment	 interaction	 effect	 for	 genotype	 i	 in	

environment	 j,	and	 ijk is	a	residual	 term.	The	underlined	terms	were	considered	as	

random	effects,	which	were	assumed	 to	be	normally	and	 independently	distributed	

with	zero	mean	and	a	proper	variance.		

The	restricted	maximum	likelihood	(REML)	procedure	was	used	to	estimate	the	

variance	components.	The	significance	of	the	variance	components	was	tested	using	

the	likelihood	ratio	(LR)	test	(Morrell,	1998).	This	test	determines	the	contribution	of	

a	single	(random)	factor	by	comparing	the	fit	(measured	as	the	deviance,	i.e.	‐2	times	
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the	 log	 likelihood	 ratio)	 for	 models	 with	 and	 without	 the	 factor.	 The	 phenotypic	

variance,	σ2Ph	was	estimated	from	these	variance	component	estimates	as	(Bradshaw,	

1994;	Falconer	and	Mackay,	1996;	Lynch	and	Walsh,	1998):	

	
2
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Ph 		   	 (2.10)	

where	σ2E	=	environmental	variance,	σ2B	=	block	variance,	σ2G	=		genetic	variance,	σ2GE	

=	GE	variance,	and	σ2ε	=	experimental	error	variance.		
	

	

2.5.2.	Phenotypic	and	genetic	coefficient	of	variation	

Scaling	of	 the	 variance	by	 the	 trait	mean,	 i.e.	 calculating	 the	 coefficient	 of	 variation	

provides	 a	 more	 appropriate	 way	 to	 compare	 traits	 (Johnson	 et	 al.,	 1955;	 Houle,	

1992).	 We	 therefore	 calculated	 the	 coefficient	 of	 variation	 (%)	 for	 each	 model	

parameter	and	derived	trait	across	six	experiments,	according	to:	

	

100	
2
 

 


CV 	 (2.11)	

where	 	is	 the	grand	mean	of	 the	population,	and	
2

 	is	a	variance	component	 (i.e.	

σ2ph	or		σ2G	or	σ2E	or	σ2GE)	from	eqn	(2.9).	

	

	
2.5.3.	GGE	biplot	analysis	
Studying	quantitative	 traits	 is	 complicated	due	 to	GE	 interactions	 (Uptmoor	 et	 al.,	
2008).	GGE	biplot	analysis	is	an	effective	method	to	fully	explore	multi‐environment	

trials	 for	 G	 and	 GE	 components	 of	 variation.	 It	 allows	 visual	 examination	 of	 the	
relationships	among	the	test	environments,	genotypes	and	the	GE	(Yan	et	al.,	2000).	
For	 any	 particular	 environment,	 genotypes	 can	 be	 compared	 by	 projecting	 a	

perpendicular	 from	the	genotype	symbols	 to	 the	environment	vector,	 i.e.	genotypes	

that	are	 further	along	in	the	positive	direction	of	 the	environment	vector	are	better	

performing	 and	 vice	 versa.	 The	 greater	 the	 distance	 from	 the	 origin	 to	 the	

intersection	 of	 a	 genotype	 projection	 on	 an	 environment	 vector,	 the	 more	 this	

genotype	 deviates	 from	 the	 average	 in	 this	 environment	 (Kroonenberg,	 1997;	

Chapman	 et	 al.,	 1997).	 GGE	 biplot	 analysis	 was	 performed	 to	 analyse	 the	 inter‐

relations	 among	 genotypes	 and	 environments.	 GGE	 biplots	 were	 constructed	 by	

plotting	 the	 first	 principal	 component	 (PC1)	 scores	 of	 the	 genotypes	 and	 the	

environments	 against	 their	 respective	 scores	 for	 the	 second	 principal	 component	
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(PC2).	The	environment‐standardised	method	of	Yan	(2002)	was	used.		

	

	

2.5.4.	Phenotypic	and	genetic	correlation	

Product‐moment	 (Pearson)	 correlations	 were	 calculated,	 using	 genotypic	 means	

across	blocks	within	trials,	among	model	parameters	and	secondary	traits.		

The	genetic	correlations	were	estimated	using	the	following	equation	(Holland,	

2006):	
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where	σ2Gij	is	the	estimated	genetic	covariance	between	traits	 i	and	 j;	σ2Gi	and	σ2Gj	are	

the	genetic	variances	of	traits	i	and	j,	respectively.	The	multivariate	REML	procedure	

was	 used	 to	 estimate	 the	 genetic	 variance	 and	 covariance	 estimates	 (Meyer,	 1985;	

Holland,	2006).	The	significance	of	genetic	correlations	was	determined	using	a	t‐test	

after	 a	 z‐transformation	 of	 the	 correlation	 coefficients	 (Sokal	 and	 Rohlf,	 1995;	

Gutteling	et	al.,	2007).	

	

	

2.5.5.	Heritability	

We	 estimated	 the	 broad‐sense	 heritability	 (H2)	 (%)	 across	 all	 six	 environments	 by	

using	 the	 estimated	variance	 components	 of	 the	 linear	model	 described	 as	per	 eqn	

(2.9),	through	the	following	equation	(Bradshaw,	1994;	Falconer	and	Mackay,	1996):	
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where	ne	=	6	represents	 the	number	of	environments,	and	nt	=	12	 is	 the	product	of	

number	of	blocks	and	environments.		

The	 broad‐sense	 heritability	 (H2)	 was	 also	 estimated	 for	 each	 individual	

experiment	by	using	the	following	formula	(Bradshaw,	1994):	
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	where	 σ2G	 =	 genetic	 variance;	 σ2ε	 =	 experimental	 error	 variance,	 and	 nb	 =	 2	

represents	 the	 number	 of	 blocks	 per	 individual	 environment.	 The	 variance	

components	were	estimated	per	individual	trial	basis.		

	

	

2.5.6.	Extension	of	an	AFLP	marker	map	of	the	SH		RH	population	
The	AFLP	primer	 combinations	 used	 in	 this	 study	 have	 been	 previously	 applied	 to	

create	the	ultra‐dense	genetic	map	of	130	SH		RH	genotypes	as	described	in	Van	Os	
et	al.	(2006).	As	our	100	F1	lines	were	only	partly	genotyped	for	creating	that	map,	

120	 new	 SH		 RH	 genotypes	were	 fingerprinted	with	 AFLPTM	 (Vos	 et	 al.,	 1995)	 to	
make	a	map	for	250	individuals.	Genomic	DNA	was	extracted	from	frozen	leaf	tissue	

according	to	Van	der	Beek	et	al.	(1992).	AFLP	markers	were	generated	according	to	

standard	 protocols	 with	 radioactive	 labels,	 using	 four	 Eco‐Mse	 primer	 combinations	

(Vos	et	al.,	1995).	The	AFLP	profiles	of	 the	parental	 clones	were	compared	with	an	

ultra‐dense	genetic	map	and	AFLP	products	of	equal	electrophoretic	mobility	which	

segregated	 in	both	sets	of	 the	 lines	were	 identified.	The	AFLP	(only	1:1	segregating	

markers)	were	 first	mapped	 in	 the	SH		RH	mapping	population	using	 JoinMap	4.1	
(Van	Ooijen,	2006)	using	a	bin	mapping	approach	(Van	Os	et	al.,	2006).	The	marker	

data	were	split	into	two	sets	on	the	basis	of	their	segregation	type.	Markers	that	were	

heterozygous	 in	 the	maternal	 parent	 (SH)	 and	 absent	 in	 the	 paternal	 parent	 (RH)	

were	scored	as	<ab		aa>;	“paternal”	markers	heterozygous	 in	RH	and	absent	in	SH	
were	scored	as	<aa		ab>.		

For	 map	 construction,	 recombination	 frequencies	 were	 converted	 into	 map	

units	 (cM)	 by	 the	 use	 of	 the	 Kosambi	 function.	 Only	 markers	 with	 recombination	

value	of	<	0.25	were	considered	as	described	by	Van	Os	et	al.	 (2006).	The	maternal	

and	paternal	 data	 sets	were	divided	 into	 12	 and	13	 linkage	 groups,	 respectively.	 A	

graphic	 representation	 of	 a	 map	 was	 made	 by	 the	 Map	 Chart	 software	 (Voorrips,	

2002).		

	

	

2.5.7.	QTL	detection	

Genstat	 version	 14	 (Payne	 et	 al.,	 2009)	 software	was	 used	 to	 identify	 QTLs	 for	 all	

component	 traits.	 Eighty‐eight	 genotypes	 of	 our	 100	 F1	 lines	 were	 covered	 in	 the	

sample	 of	 the	 aforementioned	 250	 lines	 of	 SH	 	 RH	 population	 for	 the	 extended	
marker	map;	data	of	these	88	lines	were	therefore	used	for	detection	of	QTLs	for	five	

model	 parameters	 and	 nine	 secondary	 traits.	 QTL	 analysis	 was	 performed	

individually	for	all	six	experiments	(environments).	 	

QTL	 models	 were	 fitted	 for	 the	 two	 parents	 separately.	 Initially,	 the	
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conventional	Simple	 Interval	Mapping	 (SIM)	procedure	as	described	by	Lander	and	

Bostein	(1989)	and	Hackett	et	al.	(2001)	was	used	to	scan	the	genome	for	the	major	

QTLs	per	individual	environment.	A	QTL	was	declared	to	be	significant	(P<0.05)	for	

the	 threshold	 value	 (‐log10	 (P)	 >	 3.4).	 Secondly,	 a	more	 sophisticated	QTL	mapping	

procedure,	 the	 Composite	 Interval	 Mapping	 (CIM)	 was	 performed	 to	 increase	 the	

reliability	 of	 the	 QTL	 analysis	 (Zeng,	 1994;	 Jansen,	 1993;	 Jansen	 and	 Stam,	 1994;	

Jansen,	 1995).	 In	 this	method,	 background	markers	were	 selected	 to	 take	 over	 the	

role	of	the	putative	QTLs	as	cofactors	to	reduce	the	residual	variance.	In	our	analysis,	

background	markers	closest	to	the	indicated	region	of	putative	QTLs	with	–log10	(P)	

scores	exceeding	the	threshold	were	gradually	used	as	cofactors.	This	procedure	was	

repeated	until	 no	 further	QTLs	were	 found.	The	percentage	of	 the	 total	 phenotypic	

variation	explained	by	QTLs	identified	for	each	trait	was	estimated	as	the	R2‐value.	

	

	

3.	Results	and	discussion		
	
	

3.1.	Model	performance	in	describing	canopy	cover	dynamics	of	genotypes	

The	use	of	data	in	thermal	days	resulted	in	a	more	stable	parameter	estimation	than	

the	use	of	data	 in	days	 (data	not	 shown),	 as	 the	 confounding	effects	of	diurnal	 and	

seasonal	 temperature	 fluctuations	 during	 the	 experimental	 period	 could	 effectively	

be	 removed	 using	 thermal	 days.	 The	 model	 for	 the	 canopy	 cover	 dynamics	 (i.e.	

combined	eqns		(2.1,	2.2,	and	2.3))	fitted	well	for	each	genotype	of	potato	segregating	

population,	their	parents	and	standard	cultivars	in	the	entire	data	set,	with	R2	values	

ranging	from	0.94	to	1.00	(n	=	17‐21;	data	not	shown).	Figure	2.2	shows	the	curve‐

fitting	 results	 for	 the	 SH	 and	 RH	 parents	 and	 for	 the	 standard	 cultivars	 that	 were	

present	 in	 each	 experiment.	 In	 most	 cases,	 the	 standard	 error	 (SE)	 values	 for	

observed	 points	 (i.e.	 average	 of	 two	 blocks)	 were	 much	 higher	 during	 the	 canopy	

decline	 phase	 than	 during	 the	 first	 two	 phases,	 consistent	 with	 the	 fact	 that	 the	

estimation	of	 te	 involved	much	extrapolation	due	 to	 lack	of	data	points	 in	 the	 third	

phase	 of	 canopy	 growth.	 Overall,	 combined	 eqns	 (2.1‐2.3)	 could	 be	 very	 useful	 in	

analysing	 the	 canopy	 cover	 dynamics	 of	 a	 diverse	 set	 of	 potato	 genotypes	 under	

various	 environments	 and	 making	 inferences	 about	 the	 underlying	 process	

controlling	canopy	growth.		

	

	

3.2.	Model	parameters	and	secondary	traits		

Usually,	the	estimated	value	of	each	model	parameter	differed	very	little	between	the		
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Figure	2.2.	Observed	(obs)	points	and	fitted	(fit)	curves	of	standard	cultivars	and	SH	

and	RH	parents	for	all	six	experiments	(environments).	Data	for	cv.	Karnico	were	not	

available	in	Exps	5	and	6	(see	the	text).	

	

	

two	blocks	and	there	was	a	good	positive	linear	correlation	between	the	two	blocks	

for	all	model	parameters	(R2	values	usually	above	0.7;	n	=	107).	Table	2.2	gives	the	

estimated	values	of	the	five	model	parameters	and	the	nine	derived	secondary	traits	

for	 two	parents	 (SH	and	RH),	 five	 standard	cultivars,	 and	 the	mean	value	of	 the	F1	

0

20

40

60

80

100
SH

0

20

40

60

80

100
Première

0

20

40

60

80

100

0 20 40 60 80

Seresta

0

20

40

60

80

100
Bintje

0

20

40

60

80

100

0 20 40 60 80

Astarte

0

20

40

60

80

100

RH

Thermal days (td) 

C
an

op
y 

co
ve

r 
(%

) 



Chapter	2	

 
 
30

population	for	all	six	environments.		

Environment	had	a	highly	significant	(P<0.01)	impact	on	all	model	parameters	

and	 derived	 secondary	 traits,	 at	 least	 partly	 due	 to	 the	 purposeful	 variation	 in	

availability	 of	N	 across	 trials	 (Table	 2.1).	 Nitrogen	 has	 a	main	 influence	 on	 canopy	

development	(Perumal	and	Sahota,	1986;	Vos,	1995a,b,	2009),	arising	from	effects	of	

N	on	rate	and	duration	of	appearance	of	leaves	and	branches	on	the	potato	plant,	and	

on	 the	 active	 life	 span	 of	 individual	 leaves.	 Due	 to	 the	 lack	 of	 precise	 information	

about	amount	of	mineral	N	becoming	available	during	the	course	of	canopy	growth,	

we	used	the	amount	of	N	uptake	by	tubers	as	an	indicator	of	N	availability	(Table	2.1).	

Crop	N	uptake	is	a	site‐specific	indicator	of	N	that	is	“available”	to	the	crop	(Sullivan	

et	 al.,	 2008).	 Experiments	 with	 lower	 N	 uptake	 (especially	 Exp	 3)	 also	 had	 lower	

estimates	 for	 vmax,	 DP2,	 and	 canopy	 growth	 rates	 (cm1,	 c1,	 and	 c3).	 In	 potato,	 the	

duration	 of	 P2	 and	 whether	 or	 not	 full	 canopy	 cover	 is	 attained	 are	 very	 much	

affected	by	N	supply.	The	total	growth	period	is	prolonged	for	larger	rate	of	N	supply	

because	P2	 extends	with	 better	N	 nutrition.	 Usually,	within	 agronomically	 relevant	

ranges,	N	has	comparatively	little	effect	on	P1	and	affects	the	rate	of	senescence	only	

marginally	 (Vos,	 2009).	 However,	 in	 our	most	 extreme	 experiment	 (Exp	 3)	we	 did	

observe	 such	 effects	 even	 to	 such	 an	 extent	 that	 the	 end	 of	 the	 crop	 cycle	 (i.e.	 te)	

occurred	later	in	the	low	N	environment	(i.e.	Exp	3)	in	comparison	to	environments	

with	higher	N	availability	(high	tuber	N	uptake)	(Table	2.2).		

The	mean	performance	of	 standard	cultivars,	parental	genotypes	(SH	and	RH)	

and	 the	 F1	 population	 across	 the	 experimental	 sites	 (i.e.	 environments)	 varied	

significantly	 (P<0.01)	 for	 all	 model	 parameters	 and	 secondary	 traits	 (Table	 2.2).	

Potato	genotypes	varied	in	the	duration	of	the	entire	crop	cycle	which	is	reflected	in	

variation	 in	 te.	 There	 were	 significant	 differences	 (P<0.05)	 among	 the	 standard	

cultivars	 and	 parents	 SH	 and	 RH	 for	 t1,	 t2,	 and	 te,	 whereas	 tm1	 did	 not	 differ	

significantly	among	genotypes	(Table	2.2).	Late	cultivars	gave	higher	values	for	t2	and	
te	 followed	by	mid‐late	and	early	cultivars.	There	were	small	differences	among	the	

cultivars	 for	 vmax,	 but	 under	 certain	 environmental	 conditions	 late	 cultivars	 might	

reach	 higher	 values	 than	 earlier	 ones,	 due	 to	 their	 comparatively	 later	 tuber	 set.	

Kooman	and	Rabbinge	(1996)	found	that,	compared	with	late	cultivars,	early	potato	

cultivars	allocate	a	 larger	part	of	 the	available	assimilates	 to	 the	tubers	early	 in	 the	

growing	season,	resulting	in	shorter	growing	periods	and	also	lower	yields.	The	initial	

phase	of	canopy	growth	(i.e.	t1	or	DP1)	was	not	much	affected	by	the	maturity	type	of	

the	genotypes,	but	there	were	very	large	differences	among	standard	cultivars	for	the	

duration	of	P2	and	P3	(i.e.	DP2	and	DP3,	respectively).		The	duration	of	P2	(DP2)	tended	

to	be	 longer	 for	 later	 cultivars.	Estimated	values	of	 canopy	growth	 rates	cm1	and	c1	

varied	significantly	(P<0.05)	among	the	standard	cultivars	and	two	parents.	However,		
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Table	2.2.	 Estimated	mean	 values	 of	 five	model	 parameters	 (tm1,	t1,	t2,	te,	 vmax)	and	

nine	derived	 secondary	 traits	 (cm1,	 c1,	c3,	DP2,	DP3,	A1,	A2,	A3,	Asum)	 as	 obtained	 from	

across	 environment	 ANOVA	 for	 the	 two	 parents	 (SH	 and	 RH)	 and	 five	 standard	

cultivars	(listed	in	order	of	increasingly	longer	crop	cycle).	td	stands	for	thermal	day.	

Data	for	cv.	Karnico	were	not	available	in	Exps	5	and	6	and	are	replaced	by	“−”.	
	

Parameter		 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	 Mean¶	

tm1	(td)	 	 	 	 	 	 	 	

SH	 16.0		 13.5		 9.4	 8.8		 10.8		 10.2		 11.4	a	

RH	 19.7		 15.3		 6.2	 9.6		 9.4		 8.7		 11.5	a	

Première	 16.3		 14.8		 8.4		 6.7		 11.7		 8.4		 11.1	a	

Bintje	 15.3		 14.0		 8.5		 8.9		 11.0		 8.3		 11.0	a	

Seresta	 14.4		 11.2	 11.1		 8.1		 13.0		 11.2		 11.5	a	

Astarte	 16.8		 13.0	 10.0	 9.3		 10.9		 8.6		 11.4	a	

Karnico	 14.0		 12.4		 9.3	 8.6	 −	 −	 11.1	a	

Mean†	 16.1	a	 13.5	b	 9.0	d	 8.6	e	 11.1	c	 9.2	d	 	

F1	mean‡	 18.0	a	 14.7	b	 9.7	e	 10.7	d	 11.6	c	 9.8	e	 	
	 	 	 	 	 	 	 	
t1	(td)		 	 	 	 	 	 	 	

SH	 30.1		 25.0	 21.5		 19.9		 24.1		 17.4	 23.0	a	

RH	 27.6		 26.1		 23.6		 16.5		 14.7	 14.4		 20.5	ab	

Première	 27.2		 22.3	 17.6		 14.9		 18.0		 13.3		 18.9	b	

Bintje	 26.8		 20.2		 23.8		 17.2		 17.8		 14.4		 20.0	ab	

Seresta	 26.3		 19.1		 22.6		 15.9		 20.1		 17.7	 20.3	ab	

Astarte	 27.9		 22.1		 36.0		 18.6		 17.0		 15.1		 22.8	a	

Karnico	 23.6		 19.2		 31.2		 16.9		 −	 −	 22.7	a	

Mean†	 27.1	a	 22.0	c	 25.2	b	 17.1	e	 18.6	d	 15.4	f	 	

F1	mean‡	 31.0	a	 23.0	d	 25.8	b	 19.7	e	 23.8	c	 16.4	f	 	
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Table	2.2.	(Continued)	
	

Parameter		 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	 Mean¶	

t2	(td)	 	 	 	 	 	 	 	

SH	 41.4		 38.6		 43.1		 29.7		 45.3		 40.3		 39.7	cd	

RH	 36.1		 35.9	 29.0	 31.1		 47.6		 28.3		 34.7	d	

Première	 42.2		 28.6	 31.6		 28.2		 40.6		 38.9		 35.0	d	

Bintje	 40.5	 36.5		 42.2		 45.9		 52.5	 41.1		 43.1	c	

Seresta	 52.1		 47.0		 56.3		 62.4		 69.8		 55.7		 57.2	ab	

Astarte	 43.2		 38.8		 70.3		 68.0		 75.7		 64.9		 60.2	a	

Karnico	 31.7		 28.5		 75.0		 72.3		 −	 −	 51.9	b	

Mean†	 41.0	e	 36.2	f	 49.6	b	 48.2	c	 55.3	a	 44.9	d	 	

F1	mean‡	 41.8	b	 34.0	e	 37.9	d	 40.2	c	 49.0	a	 40.9	bc	 	
	 	 	 	 	 	 	 	
te	(td)		 	 	 	 	 	 	 	

SH	 57.8		 51.8		 63.7	 57.8	 58.2	 54.4		 57.3	e	

RH	 51.3		 51.1	 52.9		 53.8	 57.1		 47.4		 52.3	f	

Première	 50.8	 45.7	 54.0		 41.3		 57.3		 51.3	 50.1	f	

Bintje	 67.7		 60.6	 76.9	 65.3		 65.5	 57.2		 65.5	d	

Seresta	 69.7		 71.7	 85.2		 73.3	 78.3		 72.1	 75.0	c	

Astarte	 80.6		 80.2	 79.4		 78.3		 84.5		 78.0		 80.2	b	

Karnico	 82.9		 82.5		 87.5		 90.4		 −	 −	 85.8	a	

Mean†	 65.8	c	 63.4	d	 71.4	a	 65.7	c	 66.8	b	 60.1	e	 	

F1	mean‡	 58.2	c	 53.4	e	 62.1	b	 58.1	c	 64.9	a	 57.2	d	 	
	 	 	 	 	 	 	 	
vmax	(%)	 	 	 	 	 	

SH	 100.0		 100.0		 64.7		 100.0		 98.0		 100.0		 93.8	c	

RH	 93.6		 64.2		 57.8		 100.0	 100.0		 100.0		 85.9	d	

Première	 100.0		 100.0		 68.9		 99.8		 100.0		 100.0		 94.8	bc	

Bintje	 100.0	 100.0		 96.1		 100.0	 100.0		 100.0		 99.4	ab	

Seresta	 100.0		 99.9		 88.2		 100.0		 100.0		 100.0		 98.0	abc	

Astarte	 100.0		 100.0		 93.6		 100.0		 100.0		 100.0		 98.9	ab	

Karnico	 100.0		 100.0	 100.0		 100.0		 −	 −	 100.0	a	

Mean†	 99.1	b	 94.9	c	 81.3	d	 100.0	a		 99.7	ab	 100.0	a	 	

F1	mean‡	 95.3	d	 99.2	ab	 71.0	e	 98.8	b	 97.5	c	 99.9	a	 	
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Table	2.2.	(Continued)	
	

Parameter		 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	 Mean¶	

cm1	(%	d‐1)	 	 	 	 	 	 	 	

SH	 5.1	 6.4	 4.7	 7.4	 6.0	 9.5	 6.5	b	

RH	 6.6	 4.1	 3.6	 9.6	 11.7	 11.7	 7.9	a	

Première	 6.0	 7.9	 5.9	 9.9	 9.7	 13.0	 8.8	a	

Bintje	 6.0	 9.3	 5.9	 9.0	 10.3	 11.2	 8.6	a	

Seresta	 5.9	 8.5	 6.0	 9.5	 9.3	 9.7	 8.2	a	

Astarte	 5.9	 7.6	 3.9	 8.4	 10.1	 10.8	 7.8	ab		

Karnico	 7.0	 9.0	 4.8	 8.9	 −	 −	 7.4	ab	

Mean†	 6.1	e	 7.5	d	 5.0	f	 9.0	c	 9.5	b	 11.0	a	 	

F1	mean‡	 5.1	e	 7.6	c	 4.3	f	 8.7	b	 7.0	d	 10.4	a	 	
	 	 	 	 	 	 	 	
c1 (%	td‐1)	 	 	 	 	 	 	 	

SH	 3.3	 4.1	 3.0	 5.0	 4.1	 5.9	 4.2	b	

RH	 3.4	 2.5	 2.5	 6.0	 6.8	 7.0	 4.7	b	

Première	 3.7	 4.5	 3.9	 6.7	 5.6	 7.5	 5.3	a	

Bintje	 3.7	 5.0	 4.0	 5.9	 5.7	 7.0	 5.2	ab	

Seresta	 3.8	 5.3	 3.9	 6.3	 5.1	 5.7	 5.0	ab	

Astarte	 3.6	 4.6	 2.7	 5.4	 5.9	 6.7	 4.8	ab	

Karnico	 4.3	 5.2	 3.2	 5.9	 −	 −	 4.7	b	

Mean†	 3.7	e	 4.4	d	 3.3	f	 5.9	b	 5.5	c	 6.6	a	 	

F1	mean‡	 3.1	d	 4.4	c	 2.8	e	 5.2	b	 4.4	c	 6.2	a	 	
	 	 	 	 	 	 	 	
c3 (%	td‐1)	 	 	 	 	 	

SH	 6.1	 7.6	 3.2	 3.9	 8.1	 8.2	 6.2	a	

RH	 6.2	 4.3	 2.5	 4.6	 11.1	 5.2	 5.7	a	

Première	 11.6	 5.9	 3.1	 7.4	 6.7	 8.1	 7.1	a	

Bintje	 3.8	 5.0	 2.8	 5.4	 8.6	 6.3	 5.3	a	

Seresta	 5.7	 4.1	 7.3	 11.2	 11.9	 7.2	 7.9	a	

Astarte	 2.7	 2.5	 11.0	 9.7	 12.7	 8.5	 7.9	a	

Karnico	 2.0	 1.9	 8.1	 8.0	 −	 −	 5.0	a	

Mean†	 5.4	c	 4.5	d	 5.4	c	 7.2	b	 	9.9	a	 7.2	b	 	

F1	mean‡	 6.5	b	 6.1	b	 3.4	c	 6.4	b	 7.5	a	 7.1	a	 	
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Table	2.2.	(Continued)	
	

Parameter		 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	 Mean¶	

DP2	(td)	 	 	 	 	 	

SH	 11.3		 13.6		 21.5		 9.8		 21.3	 22.9	 16.7	c	

RH	 8.5		 9.8		 5.3	 14.5		 33.0		 13.8		 14.2	c	

Première	 15.0		 6.2		 14.1		 13.3		 22.7		 25.6		 16.1	c	

Bintje	 13.7		 16.3	 18.4		 28.7		 34.7		 26.7		 23.1	b	

Seresta	 25.8		 27.9		 33.6		 46.5		 49.7		 38.1		 36.9	a	

Astarte	 15.4		 16.7		 34.3	 49.4		 58.8		 49.8		 37.4	a	

Karnico	 8.1	 9.3		 43.8		 55.4		 −	 −	 29.1	b	

Mean†	 14.0	e	 14.2	e	 24.4	d	 31.1	b	 36.7	a	 29.5	c	 	

F1	mean‡	 10.7	d	 11.1	cd	 12.0	c	 20.5	b	 25.1	a	 24.5	a	 	
	 	 	 	 	 	 	 	

DP3	(td)	 	 	 	 	 	

SH	 16.5		 13.2		 20.7		 28.1		 12.9		 14.1	 17.6	bc	

RH	 15.1		 15.3		 23.9		 22.7		 9.5		 19.2		 17.6	bc	

Première	 8.7		 17.2		 22.4		 13.1		 16.7		 12.4	 15.1	c	

Bintje	 27.1		 24.2		 34.7		 19.4		 13.0		 16.1		 22.4	b	

Seresta	 17.6		 24.7		 28.9		 10.9		 8.5		 16.4		 17.8	bc	

Astarte	 37.4		 41.5		 9.1		 10.3		 8.8		 13.1		 20.0	bc	

Karnico	 51.3		 54.0		 12.5		 18.1		 −	 −	 34.0	a	

Mean†	 24.8	b	 27.1	a	 21.7	c	 17.5	d	 11.6	f	 15.2	e	 	

F1	mean‡	 16.5	d	 19.4	b	 24.3	a	 17.9	c	 16.0	d	 16.3	d	 	
	 	 	 	 	 	 	 	

A1	(td	%)	 	 	 	 	 	 	 	

SH	 1455.5	 1192.3	 723	 1047.7	 1239.1	 785.4	 1074	a	

RH	 946.2	 743.1	 810	 753.8	 610	 636	 750	b	

Première	 1201.1	 900.3	 612.3	 777	 738.7	 561.2	 798	b	

Bintje	 1231.3	 763.7	 1286.5	 844.4	 756.8	 658.7	 924	ab	

Seresta	 1247.5	 862	 1011.7	 786.5	 827.7	 745.7	 914	ab	

Astarte	 1232.2	 995.2	 2023.2	 919.2	 708.6	 691.6	 1095	a	

Karnico	 1045.7	 795.8	 1811.1	 836.5	 −	 −	 1122	a	

Mean†	 1194	a	 893	b	 1183	a	 852	c	 813	d	 680	e	 	

F1	mean‡	 1331	a	 948	d	 1076	c	 904	e	 1159	b	 722	f	 	
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Table	2.2.	(Continued)	
	

Parameter		 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	 Mean¶	

A2	(td	%)	 	 	 	 	 	 	 	

SH	 1130	 1361	 1394	 978	 2091	 2288	 1540	d	

RH	 797	 610	 326	 1454	 3296	 1380	 1311	d	

Première	 1498	 623	 966	 1323	 2267	 2558	 1539	d	

Bintje	 1373	 1627	 1752	 2871	 3472	 2671	 2294	c	

Seresta	 2580	 2789	 3050	 4648	 4967	 3806	 3640	a	

Astarte	 1537	 1665	 3171	 4939	 5875	 4983	 3695	a	

Karnico	 807	 926	 4376	 5543	 −	 −	 2913	b	

Mean†	 1389	e	 1372	e	 2148	d	 3108	b	 3661	a	 2948	c	 	

F1	mean‡	 1050	c	 1098	c	 906	d	 2065	b	 2472	a	 2442	a	 	
	 	 	 	 	 	 	 	
A3		(td	%)	

SH	 1127.5	 903.6	 895.1	 1826.9	 859.9	 941.9	 1092	bc	

RH	 971.4	 679.9	 910.6	 1482	 645.8	 1257.8	 991	c	

Première	 605	 1158.1	 1010	 878.1	 1107.3	 828.5	 931	c	

Bintje	 1807.5	 1583.4	 2185.9	 1277.4	 875.5	 1065.5	 1466	b	

Seresta	 1196.8	 1622	 1545.7	 732.8	 588.5	 1095.1	 1130	bc	

Astarte	 2445.7	 2655.5	 584.1	 707.4	 604.2	 880	 1313	bc	

Karnico	 3257.6	 3373.6	 866.9	 1188.4	 −	 −	 2172	a	

Mean†	 1630	b	 1711	a	 1143	c	 1156	c	 780	e	 1011	d	 	

F1	mean‡	 1074	cd	 1286	a	 1112	bc	 1169	b	 1039	d	 1073	cd	 	

	 	 	 	 	 	 	 	

Asum	(td	%)	

SH	 3713		 3457		 3012		 3853		 4190	 4015		 3707	d	

RH	 2715		 2033		 2046		 3690		 4552		 3273		 3051	e	

Première	 3304		 2681		 2589		 2979		 4113		 3948		 3269	e	

Bintje	 4412		 3974		 5224		 4993		 5104		 4396		 4684	c	

Seresta	 5024		 5273		 5607		 6168		 6383		 5647		 5684	b	

Astarte	 5215		 5316	 5778		 6566		 7188		 6555		 6103	a	

Karnico	 5110		 5095		 7054		 7568		 −	 −	 6207	a	

Mean†	 4213	e	 3976	f	 4473	d	 5116	b	 5255	a	 4639	c	 	

F1	mean‡	 3455	d	 3332	e	 3094	f	 4138	c	 4685	a	 4246	b	 	

Means	 followed	 by	 different	 letters	 are	 significantly	 different	 according	 to	 Fisher’s	

Multiple	Range	Test	(P<0.05).	
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¶Genotype	(two	parents	and	four	or	five	cultivars)	mean	across	six	experiments	(i.e.	

environments).	

	†	Mean	of	each	individual	environment	across	genotypes	(two	parents	and	four	or	five	

cultivars).	

	‡	F1	mean	of	each	individual	environment	across	F1	population	(100	genotypes).	

	

tm1:	LSD	for	genotype	=	1.6;	LSD	for	environment	=	0.3;	LSD	for	GE	=	2.8	
t1:	LSD	for	genotype	=	3.0;	LSD	for	environment	=	0.5;	LSD	for	GE	=	5.1	
t2:	LSD	for	genotype	=	5.5;	LSD	for	environment	=	0.9;	LSD	for	GE	=	9.6	
te:	LSD	for	genotype	=	4.0;	LSD	for	environment	=	0.7;	LSD	for	GE	=		6.9	
vmax:	LSD	for	genotype	=	4.9;	LSD	for	environment	=	0.8;	LSD	for	GE	=	8.5	
cm1:	LSD	for	genotype	=	1.3;	LSD	for	environment	=	0.2;	LSD	for	GE	=	2.3	
c1:	LSD	for	genotype	=	0.5;	LSD	for	environment	=	0.1;	LSD	for	GE	=	0.9	
c3:	LSD	for	genotype	=	2.7;	LSD	for	environment	=	0.5;	LSD	for	GE	=	4.8	
DP2:	LSD	for	genotype	=	6.1;	LSD	for	environment	=	1.0;	LSD	for	GE	=	10.6	
DP3:	LSD	for	genotype	=	6.6;	LSD	for	environment	=	1.1;	LSD	for	GE	=	11.5	
A1:	LSD	for	genotype	=224.1;	LSD	for	environment	=	37.2;	LSD	for	GE	=	388.1		
A2:	LSD	for	genotype	=	568.2;	LSD	for	environment	=	94.3;	LSD	for	GE	=	984.2	
A3:	LSD	for	genotype	=	392.7;	LSD	for	environment	=	65.2;	LSD	for	GE	=	680.2		
Asum:	LSD	for	genotype	=	386.4;	LSD	for	environment	=	64.1;	LSD	for	GE	=	669.2	
	
	
the	 differences	 were	 not	 large.	 These	 rates	 were	 comparatively	 higher	 for	 early	

maturing	cultivars	than	those	maturing	late.	Average	senescence	rate	during	P3	(i.e.	

c3)	was	not	sensitive	to	the	maturity	type	of	the	genotypes.		

The	 total	 biomass	 production	 and	 accumulation	 of	 potato	 cultivars	 are	

dependent	 on	 the	 intercepted	 PAR	 (Spitters,	 1988;	 Vos	 and	 Groenwold,	 1989;	 Van	

Delden,	2001).	The	amount	of	light	intercepted	is	in	proportion	to	the	area	under	the	

whole	canopy	curve	(Vos,	1995b).	Mean	estimates	for	Asum	ranged	from	3051	to	6207	

td	%	for	five	standard	cultivars	and	two	parental	genotypes.	Asum	values	were	higher	

for	 late	 cultivars	 like	Karnico	and	Astarte	 than	 for	 early	 cultivars	 such	as	Première	

(Table	2.2).	The	area	under	canopy	cover	during	P2,	i.e.	A2,	significantly	contributed	

to	 the	 higher	 values	 of	 Asum	in	 late	 cultivars	 (Table	 2.2).	 Mean	 values	 of	 Asum	 also	

showed	highly	significant	(P<0.05)	variation	within	the	F1	population	across	the	six	

environments	(Table	2.2).		

The	 variation	 (the	 median,	 minimum	 and	 maximum	 values)	 of	 these	 model	

parameters	 and	 secondary	 derived	 secondary	 traits	 for	 the	 F1	 population	 per	

individual	experiment	is	illustrated	in	Figs.	2.3	and	2.4,	respectively.	The	ranges	of	the	
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five	 model	 parameters	 were	 consistently	 wider	 in	 Exp	 3	 than	 in	 the	 other	

experiments	(Fig.	2.3).	In	case	of	growth	rates	(i.e.	cm1,	c1,	and	c3)	wider	ranges	were	

observed	 in	 Exps	 4	 and	 5	 (Fig.	 2.4).	 Wide	 ranges	 of	 variation	 were	 observed	 for	

duration	of	 the	three	phases	of	canopy	development	 i.e.	t1	in	Exp	3,	 for	DP2	in	Exp	4,	

and	for	DP3	in	Exp	2.		In	the	case	of	the	areas	under	the	curves,	the	ranges	within	the	

population	were	largest	in	Exp	3	for	A1,	in	Exps	4	and	5	for	A2,	and	in	Exp	2	for	A3.	For	

Asum,	the	ranges	were	highest	in	Exp	3	and	values	were	between	1030	and	6101	td	%	

(Fig.	2.4).	These	results	were	in	line	with	the	results	for	the	length	of	three	phases	t1,	

DP2,	 and	 DP3.	 Within	 the	 F1	 population,	 some	 genotypes	 particularly	 SHRH34‐H6,	

SHRH83‐L9,	 and	 SHRH‐136)	 recorded	 the	 highest	 average	Asum	 with	 values	 (6146,	

5836,	 and	5739	 td%,	 respectively).	 This	 shows	 that	 genotypes	 like	 these	may	have	

higher	 potential	 to	 intercept	 the	 PAR	 and	 tuber	 yield	 production.	 Most	 of	 the	

parameters	were	nearly	normally	distributed	(Figs.	2.5	and	2.6)	which	might	indicate	

their	transgressive	segregation.		

	

	

3.3.	Phenotypic,	genetic	and	environmental	variances		

Table	 2.3	 presents	 estimated	 values	 of	 phenotypic,	 genetic,	 and	 environmental	

variances	for	all	the	parameters	and	the	derived	secondary	traits	in	the	F1	population.	

The	 results	 revealed	 considerable	 phenotypic	 and	 genetic	 variances	 for	 the	 traits.	

Almost	all	the	components	of	variation	were	significant	(P<0.01)	(Table	2.3).	

The	major	portion	of	the	phenotypic	variance	was	accounted	for	by	the	genetic	

variance	 component	 for	 t2,	 te,	 and	 Asum	 (Table	 2.3).	 The	 contribution	 of	 the	

environmental	variance	to	the	phenotypic	variance	was	relatively	large	for	tm1,	t1,	vmax,	

and	the	derived	secondary	traits	cm1,	c1,	c3,	DP2,	and	A2.	The	contribution	of	 the	GE	
interaction	variance	component	to	the	phenotypic	variance	was	large	for	traits	DP3,	A1,	

and	A3	(Table	2.3).	

Estimates	of	phenotypic	(CVPh)	and	genetic	(CVG),	environmental	(CVE),	and	GE	
interaction	 (CVGE)	 coefficients	 of	 variation	 for	 model	 parameters	 and	 derived	

secondary	traits	across	the	six	experiments	are	presented	in	Table	2.4.	Estimates	of	

CVPh	ranged	from	15.4%	to	69.4%.	These	estimates	were	smallest	for	te	and	vmax	and	

highest	 for	DP2	 and	A2.	Traits	with	 higher	CVPh	 exhibit	more	 total	 variance	 and	 are	

useful	 as	 selection	 criteria	 in	 breeding	 provided	 the	 trait	 is	 also	 heritable.	 Our	 F1	

population	 reflected	 high	 CVG	 for	 almost	 all	 traits	 except	 for	 tm1,	 t1,	 vmax,	 and	 A1.		
Relatively	 higher	CVG	 and	 lower	CVE	 estimates	were	 obtained	 for	 t2,	 te,	A3,	 and	Asum	

suggesting	 that	 these	 traits,	 compared	 with	 the	 other	 ones,	 are	 under	 a	 greater	

influence	of	genetic	control.	The	CVE	was	comparatively	higher	than	CVG	for	traits	tm1,		
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Figure	2.3.	Box	plots	of	genetic	means	of	an	F1	population	for	five	model	parameters	

in	all	 six	experiments.	The	boxes	span	 the	 interquartile	range	of	 the	 trait	values,	 so	

that	the	middle	50%	of	the	data	lay	within	the	box,	with	a	horizontal	 line	indicating	

the	median.	Whiskers	extend	beyond	the	ends	of	the	box	as	far	as	the	minimum	and	

maximum	values.		
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Figure	 2.4.	 Box	 plots	 of	 genetic	 means	 of	 an	 F1	 population	 for	 seven	 secondary	
derived	 traits	 in	 all	 six	 experiments.	 The	 boxes	 span	 the	 interquartile	 range	 of	 the	
trait	values,	so	that	the	middle	50%	of	the	data	lay	within	the	box,	with	a	horizontal	
line	indicating	the	median.	Whiskers	extend	beyond	the	ends	of	the	box	as	far	as	the	
minimum	and	maximum	values.		
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Figure	2.5.	 Distribution	 of	 five	 model	 parameters	 among	 F1	 genotypes	 across	 six	

experiments.	The	values	of	two	parents	‘SH’	and	‘RH’	are	indicated	by	full	arrow	and	

dashed	arrow,	respectively.	
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Figure	 2.6.	 Distribution	 of	 seven	 secondary	 derived	 traits	 among	 F1	 genotypes	

across	six	experiments.	The	values	of	two	parents	‘SH’	and	‘RH’	are	indicated	by	full	

arrow	and	dashed	arrow,	respectively.		
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Table	2.3.	 Variance	 components	 for	 five	 model	 parameters	 (tm1,	 t1,	 t2,	 te,	 vmax)	and	

nine	 derived	 secondary	 traits	 (cm1,	 c1,	 c3,	 DP2,	DP3,	 A1,	 A2,	 A3,	 Asum)	 within	 the	 F1	

population	across	all	six	experiments.	
	

Parameter	
2

ph 	 2

E 	 2

β 	 2

G 	 2

GE 	 2

ε 	

tm1	(td)	 14.4	 10.7**	 0.1**	 0.5**	 1.2**	 1.9	

t1	(td)	 47.8	 25.1**	 0.5**	 1.7**	 13.6**	 6.9		

t2	(td)	 98.0	 22.8**	 2.1**	 36.2**	 13.7**	 23.2	

te	(td)	 88.2	 15.4**	 0.9**	 54.1**	 6.3**	 11.5	

vmax	(%)	 207.6	 124.9**	 0.2NS	 16.9**	 45.7**	 19.9	

cm1	(%	td‐1)	 8.4	 4.9**	 0.4**	 0.6**	 1.0**	 1.4	

c1	(%	td
‐1)	 2.2	 1.5**	 0.1**	 0.2**	 0.2**	 0.2	

c3	(%	td‐1)	 9.6	 1.9**	 0.1**	 0.3**	 1.5**	 5.8	

DP2	(td)	 128.5	 44.3**	 2.2**	 33.5**	 19.9**	 28.6	

DP3	(td)	 59.9	 8.4*	 2.5**	 5.1**	 11.6**	 32.3	

A1	(td	%)	 166690	 42225**	 3096**	 0.01	 81689**	 39680	

A2	(td	%)	 1348961	 527517**	 13971**	 376931**	 184725**	 245817	

A3	(td	%)	 197626	 4618	NS	 4557**	 30015**	 44409**	 114027	

Asum	(td	%)	 1206327	 372964**	 9647**	 611003**	 99925**	 112788	
**	Significant	at	1%,	*	Significant	at	5%,	NS	Non‐significant.	
1	The	variance	estimate	was	negative	so	assumed	zero.	

σ2Ph	 =	 phenotypic	 variance,	 σ2ß	 =	 block	 variance,	 σ2G	 =	 genetic	 variance,	 σ2	 E	 =	

environmental	variance,	σ2	GE	=	genotype		environmental	interaction	variance,	σ2	ε	=	
residual	variance.	

	

	

t1,	vmax,	cm1,	c1,	c3,	DP2,	DP3,	and	A2,	thus	reflect	environmental	sensitivity	of	these	traits.	

The	CVGE	 ranged	 from	4.3%	 to	28.0%	among	 the	 traits.	The	 results	 further	 showed	

that	CVGE	 exceeded	 the	CVG	 for	 traits	tm1,	 t1,	 vmax,	 cm1,	 c3,	DP3,	 and	A3.	 These	 results	

show	the	major	contribution	of	GE	to	the	CVPh	of	these	traits	in	our	experiments.	It	is	
normally	 difficult	 to	 select	 for	 traits	 that	 are	 sensitive	 to	 environmental	 factors.	

However,	 our	 results	 indicated	 that	 overall	 considerable	 genetic	 variability	 existed	

for	 most	 traits	 which	 could	 be	 exploited	 for	 improvement	 	 of	 light	 interception	

efficiency.	
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Table	 2.4.	 The	 phenotypic	 coefficient	 of	 variation	 (CVPh%),	 	 genetic	 coefficient	 of	

variation	(CVG%),		environmental	coefficient	of	variation	(CVE%),	and	GE	interaction	
coefficient	of	variation	(CVGE%)	for	five	model	parameters	(tm1,	t1,	t2,	te,	vmax)	and	nine	

derived	secondary	traits	(cm1,	c1,	c3	,	DP2,	DP3,		A1,	A2,	A3,	Asum)	within	the	F1	population	

across	all	six	experiments.	
	

Parameter	 Mean¶	 CVPh	 CVG	 CVE	 CVGE	

tm1	(td)	 12.4	 30.5	 5.7	 26.3	 8.8	

t1	(td)	 23.3	 29.7	 5.6	 21.5	 15.8	

t2	(td)	 40.7	 24.3	 14.8	 11.7	 9.1	

te	(td)	 59.0	 15.9	 12.5	 6.7	 4.3	

vmax	(%)	 93.6	 15.4	 4.4	 11.9	 7.2	

cm1	(%	td‐1)	 7.2	 40.3	 10.8	 30.9	 14.2	

c1	(%	td
‐1)	 4.3	 33.9	 9.6	 28.7	 9.4	

c3	(%	td‐1)	 6.2	 50.4	 9.3	 22.3	 19.7	

DP2	(td)	 17.4	 65.1	 33.3	 38.3	 25.6	

DP3	(td)	 18.4	 42.1	 12.3	 15.8	 18.5	

A1	(td	%)	 1021	 40.0	 0.0	 20.1	 28.0	

A2	(td	%)	 1674	 69.4	 36.7	 43.4	 25.7	

A3	(td	%)	 1129	 39.4	 15.3	 6.0	 18.7	

Asum	(td	%)	 3801	 28.9	 20.6	 16.1	 8.3	

¶Grand	mean	of	the	F1	segregating	population	across	all	six	experiments.	

	

	

3.4.	GGE	biplot	analysis	
Here	 we	 discuss	 only	 the	 results	 for	 trait	 t1,	 which	 had	 both	 a	 strong	 G	 and	 GE	

component.	The	GGE	biplots	revealed	that	the	1st	and	the	2nd	principal	components	

accounted	 for	 85.84%	 of	 the	 GE	 variation	 (Fig.	 2.7).	 The	 environment	 vectors	
covered	 a	 wide	 range	 of	 Euclidean	 space,	 indicating	 the	 existence	 of	 strong	 GE	
interactions	among	the	six	environments	evaluated.		

The	results	were	further	analysed	for	uniqueness	of	environments.	As	shown	by	

Fig.	2.7,	four	environments	(Exps	1,	2,	4,	and	6)	were	grouped	together.	This	suggests	

that	these	environments	were	highly	correlated	and	relatively	similar	in	the	manner		
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Figure	 2.7.	 GGE	 biplot	 chart	 showing	 relationships	 among	 six	 experiments	

(environments)	 for	 model	 parameter	 t1	 in	 an	 F1	 segregating	 population.	 AEC	

indicates	 average	 environment	 coordinate	 (Yan,	 2001;	 Yan	 and	Kang,	 2003).	A	 line	

that	 passes	 through	 the	 biplot	 origin	 and	 average	 environment	 indicates	 the	mean	

performance	of	genotypes.	

	

	

they	discriminate	among	genotypes.	For	any	particular	environment,	genotypes	can	

be	 compared	 by	 projecting	 a	 perpendicular	 from	 the	 genotype	 symbols	 to	 the	

environment	vector,	 i.e.	genotypes	that	are	further	along	in	the	positive	direction	of	

the	 environment	 vector	 are	 better	 performing	 and	 vice	 versa.	 The	 greater	 the	

distance	 from	 the	 origin	 to	 the	 intersection	 of	 a	 genotype	 projection	 on	 an	

environment	 vector,	 the	 more	 this	 genotype	 deviates	 from	 the	 average	 in	 this	

environment	 (Kroonenberg,	 1997;	 Chapman	 et	 al.,	 1997).	 The	 results	 showed	 that	

environments	 (Exps	 2	 and	 6)	 fell	 close	 to	 the	 origin.	 This	 could	 mean	 that	 these	
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environments	 may	 have	 little	 variability	 across	 genotypes	 (Kroonenberg,	 1997).	

However,	marker	of	environment	(Exp	3)	was	standing	furthest	apart	from	the	origin	

which	 may	 suggest	 that	 this	 environment	 caused	 maximum	 variability	 across	 the	

genotypes.	 These	 results	 are	 in	 line	 with	 our	 earlier	 described	 results	 that	 Exp	 3	

caused	the	maximum	variability	for	some	traits.	This	environment	might	therefore	be	

the	main	contributor	to	the	overall	GE	on	account	of	its	lowest	N	availability	than	the	
rest	of	the	environments.	It	would	not	be	expected	that	the	same	genotype	would	be	

the	 most	 effective	 in	 most	 of	 the	 environments	 and	 therefore	 a	 focus	 on	 why	

particular	genotypes	perform	exceptionally	well	in	either	low	or	high	input	situations	

could	enable	selection	strategies	to	be	developed	for	improved	varieties.	This	analysis	

therefore	 allowed	 a	 partial	 understanding	 of	 the	 environmental	 causes	 of	 the	

observed	GE	interaction.	
	

	

3.5.	Phenotypic	correlations	of	model	parameters	and	the	secondary	traits		

Table	2.5	illustrates	the	phenotypic	correlation	coefficients	among	all	the	traits	within	

the	F1	population.	The	results	showed	variation	in	the	relationship	across	individual	

experiments.	For	the	case	of	the	five	model	parameters,	there	were	weak	correlations	

(r	≤	0.50)	between	tm1	and	t1,	and	between	t1	and	t2	in	most	experiments,	but	not	in	

Exps	2	and	3,	where	moderate	positive	correlations	were	found.	There	were	stronger	

positive	correlations	(r	≥	0.80)	between	t2	and	te	in	Exps	3,	4,	5,	and	6.	Exps	1	and	2,	

however,	showed	moderate	(r	=	0.63)	to	low	(r	=	0.44)	t2‐te	correlations,	respectively	

(Table	 2.5).	 The	 results	 further	 showed	 little	 phenotypic	 correlation	 between	 the	

thermal	days	required	for	the	different	phases	and	the	maximum	soil	cover:	tm1‐vmax,	

t1‐vmax,	 t2‐vmax,	 and	 te‐vmax.	 Only	 Exp	 3	 showed	positive	 strong	correlations	with	 r	 =	

0.51,	0.79,	0.69,	0.69,	respectively	(Table	2.5).		

There	were	strong	negative	phenotypic	correlations	between	growth	rates	(cm1	
and	c1)	and	t1	and	between	c3	and	DP3,	which	suggests	a	 trade‐off	between	rate	and	

duration	of	the	canopy	build‐up	and	senescence,	respectively	(Table	2.5).	The	results	

further	 showed	 strong	 negative	 correlations	 between	 t1	 and	 DP2	 in	 several	

experiments.	 The	 correlations	 between	 DP2	 and	 DP3	were	 mostly	 weak	 and	 non‐

significant,	 only	 Exps	 3	 and	 4	 showed	 significant	 (P<0.05)	 and	 strong	 (r	 =	 ‐0.59)	

negative	 correlations	 (Table	 2.5).	 These	 results	 suggest	 that	 genotypes	 with	 slow	

canopy	 build‐up	 had	 a	 relatively	 short	 period	 of	 maximum	 canopy	 cover	 (DP2).	

Furthermore,	t1	and	DP2	also	depended	upon	vmax,	with	t1	generally	being	long	with	a	
low	vmax	but	with	DP2	generally	being	short	when	vmax	was	below	100%,	whereas	DP2	

could	 be	 (much)	 longer	when	 the	 canopy	 reached	 100%	 cover.	 The	 results	 further	

revealed	 strong	 positive	 correlations	 between	 DP2	 and	 te,	 whereas	 in	 half	 of	 the	



Chapter	2	

 
 
46

experiments	DP3	and	te	were	positively	correlated.	This	suggests	that	both	DP2	and	DP3	

contribute	 positively	 to	 higher	 values	 of	 te.	 Later	 cultivars	 tended	 to	 senesce	more	

slowly	 (i.e.	 tended	 to	 have	 a	 longer	DP3)	 than	 earlier	 cultivars.	 The	 results	 showed	

weak	 correlations	 between	 A1,	 A2,	 and	 A3	 (Table	 2.5).	 The	 correlation	 coefficient	

ranged	 from	−0.03	 to	0.44.	These	 results	 are	 in	 line	with	 those	 for	 t1,	DP2,	 and	DP3.	
There	 was	 a	 strong,	 positive	 correlation	 between	 A2	and	 Asum	 in	 all	 experiments,	

underlining	the	important	contribution	of	variation	in	A2	to	variation	in	Asum.		

In	short,	our	results	suggest	a	large	complexity	of	the	genetic	and	physiological	

inter‐relations	between	the	various	model	parameters	and	derived	secondary	traits.		

	

	

3.6.	Genetic	correlations	of	model	parameters	and	the	secondary	traits					

Table	 2.5	 illustrates	 the	 genetic	 correlation	 coefficients	 between	 the	 model	

parameters	and	secondary	traits	within	the	F1	population.	The	results	showed	weak	

(r	≤	0.50)	genetic	correlations	between	tm1	and	t1	in	Exps	4	and	5,	and	between	t1	and	

t2	in	all	experiments	except	Exp	2.	The	other	experiments	showed	positive	and	strong	

(r	>	0.50)	tm1‐t1	and	t1‐t2	genetic	correlations.	Positive	genetic	correlations	between	t2	

and	te	were	strong	in	all	experiments	(Table	2.5).	There	was	little	genetic	correlation	

between	 the	 thermal	 days	 required	 for	 the	 different	 phases	 and	 the	maximum	 soil	

cover:	 tm1‐vmax,	 t1‐vmax,	 t2‐vmax,	and	 te‐vmax	 showed	poor	correlations.	However,	 these	

correlations	 were	 stronger	 and	 positive	 in	 Exp	 3	 with	 r	 =	 0.59,	 0.87,	 0.75,	 0.75,	

respectively	 (Table	 2.5).	 There	 were	 strong	 negative	 genetic	 correlations	 between	

growth	rates	(cm1	and	c1)	and	t1	and	between	c3	and	DP3.		

The	 results	 further	 revealed	 weak	 genetic	 correlations	 between	 t1	 and	DP2	in	

Exps	2,	3,	and	6,	whereas	Exps	1,	4,	and	5	showed	strong	negative	correlations	(Table	

2.5).	 The	 genetic	 correlations	 between	 DP2	 and	 DP3	were	 mostly	 weak	 and	 non‐

significant,	only	Exp	5	showed	significant	a	negative	genetic	correlation	with	r	=	‐0.79.	

There	 were	 strong	 positive	 genetic	 correlations	 between	 DP2	 and	 vmax	 in	 all	 the	

experiments	except	in	Exps	3	and	6.	The	trait	DP2	also	showed	strong	positive	genetic	

correlations	with	te	in	all	experiments.	About	half	of	experiments	also	showed	strong	

positive	genetic	correlations	between	DP3	and	te.	These	results	indicate	that	genotypes	

with	longer	DP2	and	DP3	could	be	indirectly	obtained	by	selecting	genotypes	with	high	

vmax	and	te.		

There	were	weak	genetic	correlations	between	A1	and	A2,	and	between	A2	and	A3	

in	 most	 experiments.	 However,	 there	 were	 strong	 positive	 genetic	 correlations	

between	 A2	 and	 Asum	 in	 all	 experiments	 and	 between	 A3	 and	 Asum	 in	 half	 of	 the	

experiments	(Table	2.5).	These	results	are	 in	 line	with	those	 for	 t1,	DP2,	and	DP3	and	

highlight	the	importance	of	both	A2	and	A3	to	be	used	as	an	indirect	selection	measure		
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for	plants	with	high	Asum.		

	

	

3.7.	Estimates	of	broad‐sense	heritability		

The	estimates	of	broad‐sense	heritability	 (H2)	across	 six	environments	 (eqn	 (2.13))	

varied	 greatly	 with	 traits	 under	 investigation	 (Table	 2.6).	 The	 heritability	 values	

ranged	from	31.1%	to	96.4%.	High	estimates	(H2	>	70%)	were	recorded	for	t2,	te,	c1,	

DP2,	A2,	 and	Asum.	Moderate	estimates	 (50%	<	H2	<70%)	were	recorded	 for	 tm1,	vmax,	

DP3,	 and	A3	 (Table	2.6).	On	 the	other	hand	 t1	and	c3	had	a	weak	heritability	 (37.4%	

and	31.1%,	respectively).	However,	highly	significant	genetic	variation	in	model	trait	

among	 the	 F1	 population	 may	 offset	 the	 relatively	 low	 heritability	 estimates,	 thus	

making	them	responsive	to	selection.	Also	according	to	Jones	et	al.	(1986),	heritability	

estimates	as	low	as	40%	could	be	considered	favourable	provided	that	the	selection	

techniques	 have	 enough	 precision.	 Table	 2.6	 also	 presents	 the	 estimates	 of	 broad‐	

	
	
Table	2.6.	 	 Broad‐sense	 heritability	H2	 (%)	 estimates	 across	 six	 experiments	 (eqn	

2.13)	and	per	individual	experiment	(eqn	2.14)	for	five	model	parameters	(tm1,	t1,	t2,	

te,	vmax)	and	nine	derived	secondary	traits	(cm1,	c1,	c3,	DP2,	DP3,	A1,	A2,	A3,	Asum)	within	

the	F1	population	per	individual	experiment.	
	

Parameter	 H2†	 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	

tm1	(td)	 58.3	 59.2	 52.5	 68.7	 40.8	 74.3	 69.2	

t1	(td)	 37.4	 79.9	 55.7	 89.2	 69.5	 77.6	 75.6	

t2	(td)	 89.6	 70.6	 64.6	 86.4	 85.6	 79.0	 79.8	

te	(td)	 96.4	 89.2	 92.1	 92.8	 92.0	 85.8	 89.4	

vmax	(%)	 64.6	 88.2	 22.9	 92.6	 56.5	 46.1	 0.0	

cm1 (%	td‐1)	 67.6	 82.5	 57.8	 30.4	 66.5	 76.4	 68.6	

c1 (%	td‐1)	 79.4	 91.2	 59.3	 46.8	 72.3	 81.4	 78.6	

c3	(%	td‐1)	 31.1	 59.7	 55.4	 55.5	 49.0	 9.3	 32.9	

DP2	(td)	 85.5	 82.6	 64.4	 54.5	 88.6	 80.8	 81.2	

DP3	(td)	 52.4	 60.6	 73.3	 30.0	 51.3	 23.3	 39.6	

A1	(td	%)	 0.0	 57.6	 41.3	 93.2	 57.6	 70.1	 65.5	

A2	(td	%)	 88.0	 84.8	 65.0	 72.4	 89.3	 82.3	 81.3	

A3	(td	%)	 64.0	 69.2	 73.0	 69.1	 48.7	 0.0	 41.0	

Asum	(td	%)	 95.9	 92.3	 90.6	 94.9	 94.0	 88.1	 92.6	
†	Broad‐sense	heritability	across	six	environments.		
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sense	 heritability	 (H2)	 per	 individual	 experiment	 (eqn	 (2.14)),	 which,	 in	 principle,	

should	 be	 higher	 than	 the	 estimates	 across	 environments,	 because	 for	 individual	

environments	the	genetic	and	GE	interaction	effects	are	less	confounded.		
	 The	 high	 heritability	 estimates	 showed	 that	 most	 of	 the	 traits	 were	 little	

influenced	by	the	environment	and	genetic	differences	are	expected	to	remain	stable	

under	 varied	 environmental	 conditions.	 Furthermore,	 high	 estimates	 of	 heritability	

indicated	 that	 these	 traits	 could	 be	 used	 readily	 in	 breeding	 for	 light	 interception	

efficiency	in	potato.	A	trait	can	respond	to	selection	only	when	it	has	heritable	genetic	

variation	(Falconer	and	Mackay,	1996).	

	
	
3.8.	Genetic	mapping	
Among	a	total	of	566	markers,	325	segregated	due	to	polymorphism	in	the	maternal	

(SH)	parent	<ab		aa>,	while	241	segregated	from	the	paternal	(RH)	parent	<aa		ab>.	
Out	of	566	markers,	a	total	of	407	markers	were	mapped	and	the	total	data	set	was	

split	 into	 maternal	 (SH)	 and	 paternal	 (RH)	 data	 sets.	 Lack	 of	 sufficient	 bridging	

markers	prevented	making	an	integrated	map.		

	 The	maternal	data	set	could	be	split	into	12	linkage	groups	at	a	recombination	

frequency	threshold	of	0.25.	Twelve	parent	specific	linkage	groups	were	obtained	for	

both	 SH	 and	 RH	 (Figs.	 2.8‐2.9).	 However,	 linkage	 group	 I	 was	 divided	 into	 two	

subgroups	(denoted	as	IA	and	IB,	respectively)	in	the	paternal	(RH)	map	due	to	a	lack	

of	 a	 sufficient	 number	 of	 in‐between	 markers.	 	 Ninety‐five	 of	 the	 325	 AFLP	 SH	

markers	could	not	be	assigned	to	the	SH	linkage	groups.	In	case	of	RH	markers,	64	out	

of	241	markers	could	not	be	assigned	to	the	RH	linkage	groups.	The	number	of	AFLP	

markers	 finally	 retained	 in	 the	maternal	 and	paternal	maps	was	 therefore	230	 and		

177,	respectively,	covering	the	genome	size	of	1902.9	cM.	

The	 length	 of	 the	 linkage	 groups	 in	 SH	parental	map	 ranged	 from	35.7	 cM	 to	

129.3	 cM	with	a	median	distance	of	2.0	 cM	between	 the	 loci.	The	RH	parental	map	

ranged	from	28.0	to	101.1	cM	and	the	median	distance	between	 loci	was	2.5	cM.	 In	

both	parental	maps,	the	largest	gap	between	loci	was	on	linkage	group	X	of	10.5	cM	

and	14.1	cM	in	SH	and	RH,	respectively.		

	 Our	 linkage	map	was	generally	consistent	with	 the	ultra‐dense	map	described	

by	Van	Os	et	al.	(2006).	However,	the	SH	linkage	groups	VIII	and	X	were	37%	and	RH	

linkage	group	VII	was	29%	shorter	than	in	the	ultra‐dense	map	of	Van	Os	et	al.	(2006).	

This	discrepancy	may	 simple	be	due	 to	differences	 in	 the	 size	of	 SH		RH	mapping	
populations	(cf.	Materials	and	Methods).		
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3.9.	QTL	detection	
QTL	 analysis	 for	 the	 five	model	 parameters	 and	 nine	 derived	 traits	was	 conducted	

separately	 for	 the	 six	 environments	 (i.e.	 experiments).	 In	 total	 41	 QTLs	 were	

identified	on	both	SH	and	RH	parental	genomes	across	all	six	environments	(Figs.	2.8‐

2.9).	In	the	SH	genome,	23	QTLs	were	associated	with	eight	linkage	groups	(I,	II,	IV,	V,	

VI,	 VIII,	 IX,	 and	 XI).	 Eighteen	 QTLs	 were	 shared	 by	 the	 RH	 genome	 on	 six	 linkage	

groups	 (I,	 II,	 IV,	 V,	 VI,	 and	 VII).	 The	 numbers	 of	 QTLs	 detected	 for	 each	 parental	

chromosome	are	listed	in	(Table	2.7).		

	 Table	2.8	summarises	the	list	of	QTLs	detected,	their	parental	chromosomes	and	

map	positions	 and	 their	 characteristics	 (i.e.	 additive	 effects	 and	 variance	 explained	

(R2)	 for	 each	 of	 the	 trait	 investigated	 for	 individual	 environment).	 All	 the	 QTLs	

detected	 were	 significant	 at	 (P<0.05)	 with	 –log10	(P)	 values	 ranging	 from	 3.47	 to	

52.33.	The	total	fraction	of	phenotypic	variance	explained	by	effects	of	each	QTL	were	

moderate	(ranging	from	<0.1%	to	74%),	but	a	high	percentage	of	phenotypic	variance	

was	accounted	for	when	considering	the	global	R2	(ranging	from	28%	to	82%)	(Table	

2.8).		

	 Detailed	investigation	of	the	QTLs	identified	for	five	model	parameters	showed	

that	five	QTLs	were	detected	for	tm1	scattered	across	linkage	groups	(SH	I,	SH	VI,	SH	

XI,	RH	IV,	and	RH	V)	in	all	the	experiments	except	Exps	4	and	6,	where	no	QTL	was	

found	(Table	2.8).	The	fraction	of	phenotypic	variance	explained	by	individual	QTLs	

ranged	 from	 12%	 to	 16%.	 The	 QTL	 (116_5_17)	 detected	 in	 Exp	 3	 shared	 the	

maximum	 negative	 additive	 effect	 (‐4.1	 td)	 and	 explained	 the	 maximum	 (16%)	

phenotypic	 variance.	 However,	 two	 QTLs	 detected	 in	 Exp	 5	 (i.e.	 66_1_52	 and		

	

Table	2.7.	Distribution	of	QTLs	detected	on	parental	genomes.	
	

SH	 RH	

Linkage	group	 No.	of	QTLs	 Linkage	group	 No.	of	QTLs	

I	 12	 IA	 1	

II	 1	 IB	 1	

IV	 1	 II	 3	

V	 3	 IV	 5	

VI	 2	 V	 5	

VIII	 1	 VI	 2	

IX	 1	 VII	 1	

XI	 2	 	 	

	
Total	 23	 	 18	
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293_11_20)	 together	 explained	 29%	of	 the	 phenotypic	 variance	with	 their	 additive	

effects	ranging	from	(2.4	td	to	‐2.1	td).	

	 Six	QTLs	were	associated	with	t1	on	linkage	groups	(SH	I,	SH	XI,	RH	IV,	and	RH	V)	

across	environments	with	their	additive	effects	ranging	from	(‐2.9	td	to	‐26.6	td)	with	

phenotypic	variance	explained	by	individual	QTL	ranging	from	(11%	to	60%)	(Table	

2.8).	Majority	of	environments	showed	one	QTL	except	Exp	4,	where	two	QTLs	were	

found	with	28%	combined	explained	phenotypic	variance.	No	QTL	could	be	found	in	

Exp	5.	Among	the	QTLs	detected,	 the	QTL	(116_5_17)	on	 linkage	group	RH	V	was	a	

major	one	with	maximum	additive	effect	of	(‐26.6	td).	This	QTL	was	detected	in	both	

Exps	1	and	3	explaining	23%	and	60	%	of	phenotypic	variance,	respectively.	

	 A	total	of	eight	different	QTLs	were	detected	for	t2	across	the	environments	with	

their	additive	effects	ranging	from	(1.9	td	 to	‐31.7	td)	(Table	2.8).	These	QTLs	were	

associated	with	 five	 parental	 linkage	 groups	 (SH	 I,	 SH	 VI,	 RH	 IB,	 RH	 II,	 and	 RH	 V)	

explaining	 the	 phenotypic	 variance	 ranging	 from	 (1%	 to	 55%).	 Two	 or	more	QTLs	

were	 detected	 for	 the	 majority	 of	 environments.	 The	 QTL	 (116_5_17)	 on	 linkage	

group	 RH	 V	 was	 a	 major	 one	 detected	 consistently	 throughout	 the	 environments	

apart	from	Exp	2.	This	QTL	had	a	negative	additive	effect	throughout	the	experiments	

with	maximum	effect	in	Exp	3.	The	maximum	phenotypic	variance	by	this	QTL	was	in	

Exp	4	(i.e.	55%).			

	 	Four	QTLs	were	associated	with	te	across	the	environments	explaining	the	total	

phenotypic	variance	ranging	 from	2%	to	74%	(Table	2.8).	These	QTLs	were	mainly	

located	 on	 three	 paternal	 linkage	 groups	 (RH	 IV,	 RH	 V,	 RH	 VI)	 with	 their	 additive	

effects	ranging	from	7.1	td	to	‐49.9	td.	The	majority	of	environments	showed	one	QTL	

except	 Exps	 2	 and	 3,	 where	 two	 and	 three	 QTLs	 were	 found	 with	 62%	 and	 68%	

combined	explained	phenotypic	variance,	respectively.	Among	the	QTLs	detected,	the	

QTL	(116_5_17)	on	 linkage	group	RHV	was	a	major	one	 in	all	 the	six	environments	

with	maximum	additive	effect	of	(‐49.9	td)	in	Exp	6.	Only	three	additional	minor	QTLs,	

one	 in	Exp	2	(108_4_72)	and	two	in	Exp	3	(101_4_35	and	153_6_28)	were	detected,	

with	their	additive	effects	ranging	from	7.1	td	to	8.4	td	with	only	2‐3%	of	associated	

phenotypic	variance.			

	 Four	individual	QTLs	were	found	for	vmax	located	on	the	three	parental	linkage	

groups	 (SH	 I,	 SH	V,	 and	RH	V)	 (Table	2.8).	 Their	 associated	 additive	 effects	 ranged	

from	 4.2%	 to	 ‐54.9%	 and	 the	 phenotypic	 variance	 ranged	 from	 2%	 to	 56%.	 QTLs	

were	detected	 in	only	half	of	 the	environments	 (i.e.	Exps	1,	3,	 and	4).	Among	 these	

environments,	a	total	of	three	QTLs	were	detected	in	Exp	3	with	their	65%	combined	

phenotypic	 explained	 variance.	 The	 QTL	 (116_5_17)	 on	 linkage	 group	 RHV	 was	 a	

major	 one	 in	 this	 environment	 with	maximum	 additive	 effect	 of	 (‐54.9	%).	 A	 QTL	

(170_5_44)	associated	with	linkage	group	SH	V	was	commonly	detected	in	both	Exps	
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1	and	4	with	 a	maximum	of	 22.7	%	additive	 effect	 and	21%	associated	phenotypic	

variance	in	Exp	1.		

	 For	the	traits	related	with	canopy	growth	rate,	four	QTLs	were	detected	for	cm1,	

five	QTLs	for	c1,	and	four	QTLs	for	c3	(Table	2.8).	These	QTLs	were	scattered	on	six	

parental	 linkage	 groups	 (SH	 I,	 SH	 V,	 SH	 IX,	 SH	 XI,	 RH	 V,	 RH	 VII).	 The	 phenotypic	

variance	explained	by	QTLs	 ranged	 from	(3%	 to	29%).	 In	 case	of	cm1,	one	and	 four	

QTLs	 were	 found	 in	 Exps	 1	 and	 4,	 respectively.	 No	 QTLs	 were	 found	 in	 other	

environments.	The	four	QTLs	found	in	Exp	4	jointly	explained	41%	of	the	phenotypic	

variance.	 However,	 among	 these	 QTLs,	 (116_5_17)	 on	 linkage	 group	 RH	 V	 was	 a	

major	 QTL	 with	 the	 maximum	 additive	 effect	 of	 ‐3.9	 %	 td‐1.	 This	 QTL	 was	 also	

common	in	both	environments	(Exps	1	and	4)	explaining	28%	and	16%	phenotypic	

variance	for	cm1.	In	case	of	c1,	one	QTL	was	detected	in	Exps	1,	2,	and	6,	whereas	four	

QTLs	could	be	found	in	Exp	4.	No	QTLs	were	found	in	Exps	3	and	5.	The	three	QTLs	

found	 in	 Exp	 4	 jointly	 explained	 44%	 of	 the	 phenotypic	 variance.	 The	 major	 QTL	

(116_5_17)	on	linkage	group	RH	V	was	commonly	found	in	Exps	1,	2,	and	4	with	the	

additive	 effect	 ranging	 from	 ‐0.7	 to	 ‐1.17	 %	 td‐1	 and	 13%	 to	 26%	 explained	

phenotypic	variance.	In	total	four	QTLs	were	detected	for	c3,	two	each	in	Exps	2	and	6,	

one	in	Exp	3,	whereas	no	QTLs	were	found	in	the	other	environments.	The	combined	

phenotypic	variance	in	Exps	2	and	6	was	39%	and	28%,	respectively.	The	major	QTL	

(116_5_17)	 located	on	 linkage	group	RH	V	was	commonly	detected	 in	Exps	2	and	3	

with	 positive	 (4.6	%	 td‐1)	 and	 negative	 (‐5.3	%	 td‐1)	 additive	 effects	with	 29%	and	

28%	 explained	 phenotypic	 variance,	 respectively	 (Table	 2.8).	 This	 switch	 from	

positive	to	negative	effect	is	very	interesting	phenomenon	and	might	be	related	with	

the	uniqueness	of	these	two	environments	as	Exp	3	was	clearly	lower	in	N	availability	

than	Exp	2	(Table	2.1).	Growth	rate	can	be	seen	as	the	integration	of	a	wide	range	of	

processes	 and	 thus	 may	 depend	 on	 many	 factors.	 As	 we	 already	 mentioned	 in	

previous	 sections,	 the	 canopy	 senescence	 rate	was	 slowed	 down	 to	 such	 an	 extent	

that	the	end	of	crop	cycle	(te)	occurred	very	late	in	the	said	environment	(Table	2.2).			

	 For	 the	 traits	 related	 with	 total	 duration	 of	 canopy	 maximum	 and	 decline	

phases	(i.e.	DP2	and	DP3),	six	and	five	QTLs	for	each	were	detected,	respectively	across	

the	environments	(Table	2.8).	These	QTLs	were	scattered	on	seven	parental	 linkage	

groups	(SH	I,	SH	IV,	SH	V,	SH	VI,	SH	VIII,	RH	IB,	and	RH	V).	The	phenotypic	variance	

explained	by	QTLs	ranged	from	2%	to	56%.	For	DP2,	one	QTL	was	detected	in	Exps	2	

and	5,	while	three,	four	and	two	QTLs	were	detected	in	Exps	2,	4,	and	6,	respectively.	

No	QTL	could	be	detected	 in	Exp	3.	The	 four	QTLs	 found	 in	Exp	4	 jointly	explained	

70%	 of	 the	 phenotypic	 variance.	 Among	 the	 total	 QTLs	 detected	 for	 this	 trait,	

116_5_17	on	linkage	group	RHV	was	a	major	QTL	detected	in	nearly	all	environments	

with	its	additive	effects	ranging	from	‐10.2	td	to	‐31.3	td	and	explaining	14%	to	56%	
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phenotypic	variance	for	DP2.	In	case	of	DP3,	one	QTL	was	detected	in	Exps	1,	2,	and	5,	

whereas	three	QTLs	were	found	in	Exp	6.	No	QTLs	were	found	in	Exps	3	and	4.	The	

three	 QTLs	 found	 in	 Exp	 6	 jointly	 explained	 46%	 of	 the	 phenotypic	 variance.	 The	

major	QTL	was	116_5_17	on	linkage	group	RHV	commonly	found	in	Exps	1	and	2	with	

the	 additive	 effect	 ranging	 from	 ‐9.8	 td	 to	 ‐19.6	 td	 and	 20%	 to	 42%	 explained	

phenotypic	variance,	respectively.		

	 For	the	traits	related	with	the	area	under	the	canopy	growth	curve	(i.e.	A1,	A2,	A3,	

and	Asum),	QTLs	detected	were	scattered	on	nine	parental	linkage	groups	(SH	I,	SH	II,	

SH	 V,	 SH	 VI,	 SH	 VIII,	 RH	 IA,	 RH	 IB,	 RH	 II,	 and	 RH	 V)	 (Table	 2.8).	 The	 phenotypic	

variance	 explained	 by	 QTLs	 ranged	 from	 <0.1%	 to	 69%.	 A	 total	 four	 QTLs	 were	

detected	for	A1,	i.e.	two	in	Exp	1	and	one	each	in	Exps	3	and	4,	whereas	no	QTLs	were	

found	in	the	other	environments.	The	phenotypic	variance	explained	by	QTLs	ranged	

from	13%	to	64%.	The	combined	phenotypic	variance	for	two	QTLs	in	Exp	1	was	33%.	

Among	the	QTLs	detected	116_5_17	located	on	linkage	group	RHV	was	considered	a	

major	 QTL	 with	 its	 associated	 additive	 effect	 of	 ‐2246.4	 td	 %	 and	 with	 64%	

phenotypic	 variance	 in	 Exp	 3.	 Seven	 QTLs	 were	 found	 for	 A2	 throughout	

environments	 with	 their	 explained	 variance	 ranging	 from	 2%	 to	 55%.	 Among	 the	

environments,	 one	QTL	was	 detected	 in	 Exps	 1,	 2,	 3,	 and	 5,	whereas	 four	 and	 two	

QTLs	 were	 estimated	 in	 Exps	 4	 and	 6,	 respectively.	 The	 combined	 phenotypic	

variance	 accounted	 by	QTLs	 in	 Exps	 4	 and	 6	was	 70%	 and	 37%,	 respectively.	 The	

major	QTL	(116_5_17)	on	 linkage	group	RH	V	was	commonly	 found	 in	Exps	1,	4,	5,	

and	6	with	the	additive	effect	ranging	from	‐1215.6	td	%	to	‐3198.4	td	%	and	18%	to	

55%	 explained	 phenotypic	 variance.	 In	 total	 five	 QTLs	 were	 detected	 for	 A3	 with	

phenotypic	variance	ranging	from	8%	to	43%.	One	QTL	was	found	each	in	Exps	1,	2,	3	

and	 5;	 three	 in	 Exp	 6,	whereas	 no	QTLs	were	 found	 in	 Exp	 4.	 The	 combined	QTLs	

explained	phenotypic	variance	 in	Exp	6	was	46%.	QTL	116_5_17	 located	on	 linkage	

group	RHV	was	a	major	one	and	commonly	detected	in	Exps	1,	2,	and	3	with	additive	

effects	 ranging	 from	 ‐771.5	 td	%	 to	 ‐1251.1	 td	%	 with	 18%	 to	 43%	 range	 of	

phenotypic	 explained	 variance.	 In	 case	 of	Asum,	we	 estimated	 the	maximum	of	 nine	

QTLs	across	the	environments.	The	phenotypic	variance	explained	by	individual	QTLs	

ranged	 from	<1%	 to	69%.	The	number	of	QTLs	 found	 in	 the	various	 environments	

was:	one	QTL	in	Exp	6,	two	in	Exps	1,	2,	and	5,	three	in	Exp	4,	and	four	QTLs	in	Exp	3	

were	 found	 (Table	 2.8).	 The	 combined	 phenotypic	 variance	 explained	 by	 the	 QTLs	

ranged	from	57%	to	82%.	The	QTL	116_5_17	on	linkage	group	RH	V	was	detected	in	

all	 the	 environments	 explaining	 the	 range	 of	 49%	 to	 69%	 phenotypic	 variance	 for	

Asum.	This	QTL	was	associated	with	a	major	additive	effect	of	‐4112.1	td	%	in	Exp	3.		

In	 summary,	 QTLs	 with	 major	 effects	 were	 associated	 with	 paternal	 (RH)	

linkage	groups,	especially	RH	V	(Table	2.9),	where	in	total	of	five	QTLs	were	detected	



Genetic	variation	in	potato	canopy	cover	dynamics 

 
 

75

(Table	2.7).	QTLs	on	this	 linkage	group	had	negative	additive	effects,	 indicating	that	

RH	alleles	on	this	linkage	group	share	an	antagonistic	effect	on	the	physiological	traits	

related	with	canopy	cover.	One	particular	QTL	(116_5_17)	on	this	linkage	group	was	

detected	 for	nearly	all	 traits	with	a	major	additive	effect	and	explained	most	of	 the	

total	phenotypic	variance.	Large	number	of	 additional	QTLs	with	minor	effects	was	

mostly	associated	with	maternal	(SH)	linkage	groups	(Tables	2.8	and	2.9).	Our	results	

are	in	line	with	those	by	Van	den	Berg	et	al.	(1996),	who	also	reported	that	most	of	

the	loci	had	small	effects,	but	a	QTL	with	main	effect	was	found	on	chromosome	V.	We	

also	observed	 the	co‐localisation	of	QTLs	 for	many	 traits.	For	 instance	clustering	of	

many	QTLs	were	 found	on	position	18.2	 cM	on	paternal	 (RH)	 linkage	group	 (Table	

2.10).	 Here	 most	 of	 the	 traits	 (e.g.	 t2,	 DP2,	 A2,	 Asum)	 were	 tightly	 linked	 with	 QTL	

(116_5_17)	 in	most	of	the	environments.	This	could	mean	that	this	QTL	is	playing	a	

pleiotropic	role	in	determining	these	traits.	The	phenomenon	of	pleiotropy	can	have	

important	 implications	 for	 our	 understanding	 of	 the	 nature	 of	 genetic	 correlations	

between	 different	 traits	 in	 certain	 regions	 of	 a	 genome	 and	 also	 for	 practical	

applications	 in	 breeding	 because	 one	 of	 the	 major	 goals	 in	 breeding	 is	 to	 break	

unfavourable	linkage	(Jiang	and	Zeng,	1995).	High	genetic	correlations	between	these	

traits	confirm	these	relations	(Table	2.5).		

	

	

Table	2.9.	List	of	parental	linkage	groups	with	major	and	additional	minor	QTLs.		
	

Parameter	 SH	linkage	group	 RH	linkage	group	

	 Minor	QTLs	 Major	QTLs	 Minor	QTLs	

tm1		 I,	VI,	XI	 V	 IV	

t1		 I,	XI	 V	 IV	
t2		 I,	VI	 V	 IB,	II,	VI	
te		 −	 V	 IV,	VI	
vmax	 I,	V	 V	 −	
cm1		 I	 V	 VII	
c1 	 I,	XI	 V	 VII	
c3		 V,	IX	 V	 −	
DP2		 I,	IV,	VI	 V	 IB	
DP3		 I,	V,	VIII	 V	 −	
A1		 I,	II	 V	 −	
A2		 I	 V	 IB	
A3		 I,	V,	VIII	 V	 −	
Asum		 I,	V,	VI	 V	 IA,	II	



Chapter	2	

 
 
76

Q
T
L	

Li
nk
ag
e	

gr
ou
p	

M
ar
ke
r	
na
m
e	

Po
si
ti
on
	

(c
M
)	

Ex
p.
	1
	

Ex
p.
	2
	

Ex
p.
	3
	

Ex
p.
	4
	

Ex
p.
	5
	

Ex
p.
	6
	

14
_1
_3
0	

SH
	I	

EA
G
T
M
CA
G
_4
58
__
1_
30
	

33
.1
	

	
	

	
D
P2
,		
A
2	

	
	

18
_1
_3
2	

SH
	I	

EA
A
CM

CA
G
_1
87
.9
__
1_
32
	

36
.3
	

	
	

	
c m

1,c
1	

	
	

39
_1
_3
2	

SH
	I	

EA
A
CM

CC
T
_2
17
.8
__
1_
32
	

41
.6
	

	
	

t 2
,		
A s

um
	

	
t 2
,	D

P3
	

	
62
_1
_3
6	

SH
	I	

EA
G
A
M
CA
G
_2
28
.3
__
1_
36
	

63
.9
	

	
	

	
D
P2
,	A

2	
	

	
63
_1
_4
2	

SH
	I	

PA
G
/M

A
CC
_3
22
.2
__
1_
42
	

68
.9
	

	
	

v m
ax
,	

A
su
m
	

t 1
,	c

m
1	

	
	

66
_1
_5
2	

SH
	I	

EA
A
CM

CT
G
_1
93
.9
__
1_
52
	

81
.5
	

	
	

	
A
su
m
	

t m
1	

	
76
_1
_8
4	

SH
	I	

PA
T
/M

A
A
C_
25
9.
4_
_1
_8
4	

10
9.
9	

	
	

	
D
P2
,	A

2	
	

	
1_
5_
12
	

SH
	IV
	

SH
05
B
01
2_
m
at
ur
it
y_
lo
cu
s	

0	
	

	
	

	
	

c 3
,	D

P3
,	

A
3	

19
9_
6_
48
	

SH
	V
I	

EA
CA
M
CC
T
_1
38
.9
__
6_
48
	

61
.8
	

t m
1	

A
su
m
	

	
	

	
	

20
0_
6_
56
	

SH
	V
I	

PA
T
/M

A
A
C_
15
5.
4_
_6
_5
6	

73
.5
	

	
t 1
,	D

P2
		

	
	

	
	

24
2_
8_
29
	

SH
	V
II
I	

PA
T
/M

A
A
C_
28
3.
7_
_8
_2
9	

33
.2
	

	
	

	
	

	
D
P3
,	A

3	
29
1_
11
_7
	

SH
	X
I	

EA
CA
M
CA
C_
37
2_
_1
1_
7	

9.
2	

	
	

	
	

	
t 1
,	c

1	
47
_1
_6
3	

R
H
	IB
	

EA
CA
M
CC
T
_1
44
.5
__
1_
63
	

27
.8
	

	
	

	
	

	
t 2
,	D

P2
,	

A
2	

11
5_
5_
4	

R
H
	V
	

PA
C/
M
A
G
T
_1
90
.2
__
5_
4	

1.
6	

	
	

	
	

	
c 3
,	D

P3
,	

A
3	

11
6_
5_
17
	

R
H
	V
	

EA
G
A
M
CT
C_
47
0_
_5
_1
7	

18
.2
	

t 1
,	t
2,	
t e
,	

c m
1,	
c 1
,	

D
P2
,	D

P3
,	

A
2,	
A
3,	

A
su
m
	

t e
,	c

1,	
c 3
,	

D
P2
,	D

P3
,	

A
3,	
A
su
m
	

t m
1,	
t 1
,	

t 2
,	t
e,	

v m
ax
,	c

3,	
A
1,	
A
3,	

A
su
m
	

	

t 2
,		
t e
,	

c m
1,	
c 1
,		

D
P2
,		
A
2,	

A
su
m
	

t 2
,	t
e,	

D
P2
,	A

2,	
	

A
su
m
	

	

t 2
,	t
e,	

D
P2
,	A

2,	
A
su
m
	

		

17
3_
7_
68
	

R
H
	V
II
	

PA
C/
M
A
A
C_
16
4.
8_
_7
_6
8	

21
.1
	

	
	

	
c m

1,	
c 3
	

	
	

 

	 	
T
ab
le
	2
.1
0
.	L
is
t	o
f	c
o‐
lo
ca
lis
ed
	Q
T
Ls
	i.
e.
	Q
T
Ls
	w
er
e	
sa
m
e	
fo
r	
m
or
e	
th
an
	o
ne
	tr
ai
t.	
	



Genetic	variation	in	potato	canopy	cover	dynamics 

 
 

77

This	 may	 indicate	 the	 difficulties	 of	 manipulating	 correlated	 traits	

simultaneously.	 However,	 QTLs	 with	 similar	 behaviours	 could	 also	 be	 interesting	

targets	for	breeding	programmes	as	they	are	more	likely	to	be	stable	under	various	

environments.	Moreover,	it	is	well	known	that	linkage	group	V	harbours	the	QTL	for	

plant	maturity	and	vigour	in	potato	(Collins	et	al.,	1999;	Oberhagemann	et	al.,	1999;	

Visker	et	al.,	2003;	Bradshaw	et	al.,	2008).	Our	results	also	confirm	this	fact	as	most	of	

our	canopy	growth	and	development	traits	(particularly	Asum)	could	be	very	useful	in	

defining	the	maturity	type	in	potato	(see	Chapter	4).	Our	results	give	a	clear	picture	

that	maturity	in	potato	is	mainly	expressed	from	the	paternal	(RH)	side.	Besides,	we	

also	 found	 large	number	of	 independent	QTLs	(i.e.	 they	did	not	coincide	with	other	

traits)	(Table	2.11).	These	QTLs	however,	with	minor	effects	could	be	of	great	value	

to	breeders	for	further	zooming	in.		

Although	many	of	the	QTLs	identified	were	mapped	to	a	similar	position	in	most	

experiments,	most	of	them	were	expressed	in	one	environment	but	not	 in	the	other	

ones	(i.e.	QTLE).	This	was	mostly	evident	for	traits	(tm1,	t1,	vmax,	cm1,	c1,	c3,	DP3,	A1,	and	
A3)	(Table	2.12).	For	all	these	traits	the	GE	component	of	phenotypic	variance	was	
greater	than	the	G	variance	component	(Table	2.3).	QTLs	controlling	such	traits	often	

show	 low	 stability	 (Veldboom	 and	 Lee,	 1996;	 Reymond	 et	 al.,	 2004).	 There	 were	

marked	differences	among	the	environments	due	to	N	availability	(Table	2.1).	Besides,	

the	 population	 was	 segregating	 for	 maturity.	 Variation	 in	 maturity	 type	 would	 be	

expected	to	cause	variation	in	a	number	of	the	parameters	presented	(and	final	yield)	

because	 of	 its	 relationship	 with	 the	 crop	 duration	 (e.g.	 te)	 and	 its	 effect	 on	 the	

alignment	 between	 crop	 development	 processes	 and	 environment.	 These	 complex	

interactions	 might	 have	 caused	 the	 lower	 repeatability	 of	 many	 QTLs	 over	 the	

environments	due	to	QTLE.	Several	researchers	have	identified	loci	that	 interacted	
with	 the	 environment	 in	 different	 plant	 species	 e.g.,	 photoperiod	 plasticity	 in	

Arabidopsis	(Ungerer	et	al.,	2003),	growth	and	yield	in	rice	(Hittalmani	et	al.,	2003),	

flowering	phenology	in	barley	(Yin	et	al.,	2005b)	and	yield	in	barley	(Yin	et	al.,	1999b;	

Teulat	et	al.,	2001;	Voltas	et	al.,	2001).		

Only	 few	 QTLs	 were	 stable	 across	 the	 environments	 and	 therefore	 did	 not	

show	 much	 of	 the	 QTLE	 (Table	 2.13).	 For	 instance,	 the	 QTL	 116_5_17	 on	 RH	 V	
showed	up	in	all	the	experiments	for	Asum	(Fig.	2.10).	 	Such	QTLs	could	be	useful	for	

marker	assisted	breeding.		
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Table	 2.12.	 Number	 of	 QTLs	 detected	 across	 six	 experiments	 (environments).	

Symbol	‘−’	means	no	QTL	was	detected.	
	

Parameter	 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	

tm1		 1	 1	 1†	 −	 2	 −	

t1		 1	 1	 1†	 2	 −	 1	

t2		 1	 1	 2†	 4	 3	 2	

te		 1	 2	 3	 1	 1	 1†	

vmax	 1	 −	 3†	 1	 −	 −	

cm1		 1	 −	 −	 4†	 −	 −	

c1		 1	 1	 −	 4†	 −	 1	

c3		 −	 2	 1†	 −	 −	 2	

DP2		 1	 3	 −	 4	 1†	 2	

DP3		 1	 1†	 −	 −	 1	 3	

A1		 2	 1	 1†	 1	 −	 −	

A2		 1	 1	 1	 4	 1†	 2	

A3		 1	 1†	 1	 −	 1	 3	

Asum		 2	 2	 4†	 3	 2	 1	

Total	QTLs	 15	 17	 18	 28	 12	 18	

†	QTLs	with	maximum	additive	effects.	
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Figure	2.10.	QTLE	additive	 effects	 for	 total	 area	under	 canopy	 curve	 (Asum,	 td	%)	
across	paternal	(SH	and	RH)	genomes	for	six	experiments.	Letters	above	or	below	the	

bars	indicate	different	linkage	groups.		

	

	

4.	Conclusions	

In	 this	 study,	 we	 presented	 a	 quantitative	 model	 to	 describe	 canopy	 dynamics	 of	

potato.	Combined	with	genetic	analysis	we	aimed	to	further	our	knowledge	regarding	

both	 the	 genetics	 and	 physiology	 of	 this	 trait	 of	 potato.	 The	 model	 successfully	

described	the	quantitative	differences	in	canopy	dynamics	of	diverse	genotypes	in	a	

segregating	 F1	 population	 of	 potato	 under	 varied	 environments	 and	 gave	

physiological	 insight	using	agronomically	meaningful	traits	that	characterise	canopy	

formation	 in	 potato.	 These	 traits	 are	 directly	 related	 to	 the	 ability	 of	 the	 adapted	

genotypes	 to	 intercept	photosynthetically	 active	 radiation	 (PAR)	and	 thus	 to	 create	

high	 tuber	 yields,	 as	 we	 will	 show	 in	 Chapter	 3.	 In	 this	 way,	 our	model	 approach	

yielded	estimates	 for	agronomically	 relevant	crop	characteristics	 that	are	useful	 for	

defining	future	breeding	strategies	in	potato.			

The	 scope	 of	 crop	 improvement	 by	 breeding	 is	 determined	 by	 the	 amount	 of	

heritable	 or	 genetic	 variation	 relative	 to	 that	 of	 non‐heritable	 or	 environmental	

variation,	and	by	the	nature	and	magnitude	of	GE	interaction	which	may	complicate	
selection	and	 testing	 in	breeding	programmes	and	result	 in	reduced	overall	genetic	

gain.	 For	most	 traits	 quantified	 in	 the	model,	 considerably	 high	 genetic	 variability	

along	 with	 high	 heritability	 were	 recorded	 among	 the	 F1	 population	 under	 study.	

There	are	opportunities,	 therefore,	 to	exploit	 the	genetic	variability	available	 in	 the	
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F1	population	and	to	select	 for	highly	heritable	 traits	 in	order	 to	 improve	radiation	

interception	efficiency.		

In	 our	 second	 analysis,	 estimated	 physiological	 traits	 were	 subject	 to	 QTL	

analysis.	The	AFLP	markers	were	 therefore	generated	 for	an	extended	marker	map	

(Fig.	2.9),	to	which	QTL	were	mapped	for	the	model	parameters	and	derived	traits.	In	

total	 42	 QTLs	 were	 identified	 on	 both	 SH	 and	 RH	 parental	 genomes	 across	 all	 six	

environments.	 QTLs	with	major	 effects	were	 associated	mainly	with	 paternal	 (RH)	

linkage	group	V.	One	particular	QTL	(116_5_17)	on	 this	 linkage	group	was	detected	

for	 nearly	 all	 traits	 with	 a	 major	 additive	 effect	 and	 explained	 most	 of	 the	 total	

phenotypic	variance.	Some	of	the	QTLs	were	mapped	to	similar	positions	in	majority	

of	the	environments.	Only	few	QTLs	were	stable	across	the	environments	and	most	of	

them	 showed	 QTLE.	 The	 stable	 QTLs	 across	 environments	 could	 be	 useful	 for	
marker	assisted	breeding.		

Many	researchers	identified	QTLs	for	different	traits	like	tuber	dormancy	(Van	

den	 Berg	 et	 al.,	 1996),	 tuber	 yield	 and	 starch	 content	 (Schäfer‐Pregl	 et	 al.,	 1998),	

tuber	shape	(Van	Eck	et	al.,	1994),	tuber	flesh	colour	(Bonierbale	et	al.,	1988),	tuber	

skin	colour	(Gebhardt	et	al.,	1991),	yield,	agronomic,	and	quality	traits	(Bradshaw	et	

al.,	2008)	in	potato	under	normal	conditions.	However,	knowledge	about	genetics	and	

physiology	of	traits	related	to	canopy	dynamics	and	light	interception	is	still	 limited	

and	hardly	any	QTLs	have	been	identified	for	these	traits	in	potato.		

Our	quantitative	approach	in	combination	with	markers	of	the	widely	available	

and	 easy‐to‐use	 AFLP	 marker	 system	 identified	 QTLs	 that	 could	 be	 useful	 in	 the	

development	of	marker	assisted	breeding	strategies	in	potato.			

We	highlighted	 the	potential	of	using	a	model	 to	assist	 the	genetic	 analysis	of	

quantitative	 crop	 trait	 like	 canopy	 cover.	 Potato	 models	 intended	 for	 use	 in	yield	

predictions	 should	 first	 focus	 on	 improving	 genotype‐specific	 estimates	 of	 canopy	

light	 interception	 under	 varied	 environmental	 conditions.	 Research	 investigations,	

such	 as	 identifying	 potato	 canopy	 characteristics	 important	 for	 breeding	 trials,	can	

benefit	 by	 using	 our	 approach	 to	 provide	 an	 additional	 level	 of	 detail	 in	 canopy	

development.		
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Analysis	of	genetic	variation	of	potato	(Solanum	tuberosum	L.)		
using	standard	cultivars	and	a	segregating	population.	

II.	Tuber	bulking	and	resource	use	efficiency*	
	

M.S.	Khan,	X.	Yin,	P.E.L.	van	der	Putten,	H.J.	Jansen,		
H.J.	van	Eck,	F.A.	van	Eeuwijk,	P.C.	Struik	

	
Abstract	
Quantitative	 differences	 in	 the	 dynamics	 of	 tuber	 bulking	 of	 100	 genotypes	 in	 a	
segregating	F1	population,	 their	parents	 (SH,	RH)	and	 five	 contrasting	 cultivars	of	
potato	(Solanum	tuberosum	L.)	under	various	environments	were	analysed	using	a	
piece‐wise	 expolinear	 function.	 Tuber	 bulking	 was	 characterised	 by	 three	
parameters:	 cm,	 ED	 and	 wmax,	 where	 cm	 and	 ED	 were	 growth	 rate	 and	 effective	
duration,	 respectively,	 of	 the	 linear	phase	of	 tuber	bulking,	 and	wmax	was	 the	 final	
tuber	 dry	 weight.	We	 also	 analysed	 radiation‐	 and	 nitrogen‐use	 efficiencies	 (RUE	
and	NUE,	respectively),	and	their	relationships	with	the	model	parameters.	Values	of	
cm	were	 highest	 for	 early	maturing	 genotypes	 followed	 by	mid‐late	 and	 then	 late	
genotypes.	Late	maturing	genotypes	had	longest	period	of	tuber	bulking	followed	by	
mid‐late	and	early	genotypes.	As	a	result	wmax	was	higher	in	late	genotypes	than	in	
early	 genotypes.	 The	 RUE	 values	 were	 highest	 for	 early	 maturing	 genotypes	
followed	by	mid‐late	and	late	genotypes	whereas	NUE	was	highest	in	late	maturing	
genotypes	 followed	 by	 mid‐early	 and	 early	 genotypes.	 Genetic	 variability	 and	
heritability	were	high	for	most	traits	and	phenotypic	and	genetic	correlations	were	
high	(r	>	0.50)	for	these	traits	as	well.	Path	coefficient	analysis	showed	that	RUE,	cm,	
and	 a	 previously	 quantified	 parameter	 for	 total	 canopy	 cover	 Asum,	 had	 a	 major	
influence	on	wmax.	
	 Sixteen	 QTLs	 were	 detected	 for	 our	 model	 parameters	 and	 derived	 traits	
explaining	the	phenotypic	variance	by	up	to	66%.	QTLs	controlling	most	of	the	traits	
were	on	paternal	(RH)	linkage	group	V.	One	particular	QTL	(116_5_17)	on	paternal	
linkage	 group	 V	 at	 position	 18.2	 cM	 was	 detected	 for	 all	 the	 traits	 with	 a	 major	
additive	effect	and	explained	most	of	the	total	phenotypic	variance.	Additional	QTLs	
mostly	associated	with	RH	linkage	groups	were	detected	for	traits	(cm,	tE,	and	ED),	
whereas	both	SH	and	RH	linkage	groups	were	associated	with	traits	NUE	and	wmax	
for	minor	QTLs.	A	number	of	QTLs	for	traits	were	not	detected	when	tuber	yield	per	
se	was	subjected	to	QTL	analysis.	The	phenotypic	variance	explained	by	the	QTLs	for	
tuber	yield	per	se	was	also	lower	than	for	other	traits.	The	genetic	parameters	found	
in	 this	 study	 indicate	 that	 there	 are	 opportunities	 for	 improving	 tuber	dry	matter	
yield	by	selection	for	optimal	combination	of	important	physiological	traits	RUE,	cm,	
and	Asum.		
	
Key	words:	 Potato	 (Solanum	 tuberosum	 L.),	 tuber	 bulking	 dynamics,	 piece‐wise	
expolinear	 function,	 components	 of	 variance,	 genotype‐by‐environment	 (GE)	
interaction,	genetic	variability,	heritability,	path	coefficient	analysis,	maturity	 type,	
QTL	mapping,	QTL‐by‐environment	(QTLE)	interaction.			

___________________________________	
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1.	Introduction	

Tuber	formation	in	potato	(Solanum	tuberosum	L.)	consists	of	a	complex	and	dynamic	

sequence	of	several	independently	regulated	events	(Ewing	and	Struik,	1992;	Jackson,	

1999),	 including	 induction,	 initiation,	set,	bulking,	and	maturation	(Vreugdenhil	and	

Struik,	 1989).	 These	 events	 are	 only	 possible	 when	 environment‐dependent	 steps	

occur	in	an	orchestrated	way,	including	the	arrest	of	stolon	growth	(Vreugdenhil	and	

Struik,	1989),	initiation	of	radial	growth	(Catchpole	and	Hillman,	1969;	Mingo‐Castel	

et	al.,	1976;	Struik	et	al.,	1988;	Vreugdenhil	and	Struik,	1989;	Ewing	and	Struik,	1992)	

and	resource	storage	(Park,	1990;	Müller‐Röber	et	al.,	1992).	The	different	steps	and	

events	 can	 occur	 independently	 of	 each	 other	 and	 are	 regulated	 by	 specific	 genes	

(Struik	 et	 al.,	 1999;	 Kloosterman	 et	 al.,	 2005).	 The	 resulting,	 economically	 relevant	

process	 of	 tuber	 bulking	 is,	 therefore,	 regulated	 by	 a	 large	 set	 of	 interacting	 genes	

(Bachem	et	al.,	2000).		

The	 onset	 of	 tuber	 bulking	 greatly	 impacts	 subsequent	 growth,	 development,	

and	physiology	of	the	entire	potato	crop	(Ewing,	1990,	Ewing	and	Struik,	1992;	Van	

Dam	 et	 al.,	 1996;	 Walworth	 and	 Carling,	 2002),	 because	 the	 developing	 tubers	

become	 the	dominant	sink	of	both	carbon	and	nitrogen	assimilates	 (Oparka,	1985).	

The	onset	of	tuber	bulking	leads	to	a	more	or	less	abrupt	preferential	partitioning	of	

assimilates	 to	 the	 tubers,	 thereby	 causing	 a	 reduction	 in	 the	 growth	 rate	 and	

ultimately	a	complete	halting	of	growth	of	foliage	and	roots	(Moorby	and	Milthorpe,	

1975;	 Ewing	 and	 Struik,	 1992).	 However,	 the	 abruptness	 depends	 on	 the	maturity	

type	and	other	aspects	of	the	genotype‐specific	physiology	(Struik,	2007).	Early	onset	

of	 tuber	 bulking	 may	 result	 in	 small	 plants	 with	 limited	 canopy	 cover	 and	

consequently	 low	final	 tuber	yields,	whilst	 late	onset	of	 tuber	bulking	 leads	to	 large	

plants	with	high	final	tuber	yields	(Bremner	and	Radley,	1966;	Struik,	2007).		

Information	 on	 the	 different	 processes	 involved	 and	 factors	 affecting	 plant	

development	and	tuber	formation	in	potato	are	abundant	(Ivins	and	Bremner	1965;	

Ewing	 and	 Struik,	 1992;	 Almekinders	 and	 Struik	 1996;	 Kolbe	 and	 Stephan‐	

Beckmann,	1997;	O’Brien	et	al.,	1998;	Jackson,	1999;	Struik	et	al.	1999;	Claassens	and	

Vreugdenhil,	2000,	and	references	therein).	However,	most	studies	have	 focused	on	

one	or	very	few	of	these	developmental	processes,	or	on	one	or	a	very	limited	number	

of	genotypes	(cultivars).	Moreover,	the	physiological	and	genetic	bases	of	variability	

among	such	traits	have	not	been	thoroughly	investigated,	although	some	efforts	have	

been	 made	 to	 study	 the	 temporal	 dynamics	 of	 important	 potato	 developmental	

processes	under	diverse	environmental	conditions	on	a	set	of	contrasting	genotypes.	

For	 instance,	Spitters	 (1988)	analysed	 the	genotypic	differences	 in	 tuber	bulking	of	

potato	on	a	large	set	of	commercial	varieties.	Celis‐Gamboa	et	al.	(2003)	used	a	highly	

segregating	 diploid	 population	 of	 potato	 to	 study	 the	 temporal	 relationships	
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underlying	the	dynamics	of	tuber	formation	and	other	developmental	processes.	

Difficulties	in	manipulating	yield	are	related	to	its	genetic	complexity:	polygenic	

nature,	 interactions	 between	 genes	 (epistasis),	 and	 environment‐dependent	

expression	of	genes	(Ribaut	and	Hoisington,	1998).	Many	environmental	and	physical	

factors,	 such	 as	 temperature,	 day	 length,	 light	 intensity,	 water	 availability,	 and	

nitrogen	 (N),	 have	 been	 demonstrated	 to	 influence	 potato	 tuberisation	 (Ewing	 and	

Struik,	1992;	 Jackson,	1999).	For	example,	 temperature	exerts	a	major	 influence	on	

tuberisation	and	dry	matter	partitioning	to	tubers	(Ewing,	1981,	1985),	with	cool	air	

temperatures	 favouring	 induction	 to	 tuberise	 (Bodlaender,	 1963;	 Gregory,	 1965;	

Epstein,	 1966;	 Ewing,	 1981;	 Manrique	 et	 al.,	 1984;	 Struik	 and	 Kerckhoffs,	 1991),	

whereas	 an	 increase	 in	 air	 temperature	may	 reduce	 tuber	 dry	matter	 content	 and	

yield	(Struik	et	al.,	1989b).	Nitrogen	also	plays	a	major	role	in	tuberisation	(Werner,	

1934;	 Gregory,	 1965).	 Nitrogen	 helps	 to	 attain	 complete	 canopy	 cover	 early	 in	 the	

season,	 especially	 under	 relatively	 resource‐poor	 conditions	 (Haverkort	 and	

Rutavisire,	 1986;	 Vos,	 2009)	 and	 to	 extend	 the	 period	 of	 full	 canopy	 cover	 thus	

leading	 to	 increased	 light	 interception	 and	 tuber	 yield	 (Martin,	 1995).	 Radiation	 is	

important	 for	 dry	 matter	 accumulation	 (Monteith,	 1977;	 Goudriaan	 and	 Monteith,	

1990)	 and	 affects	 the	 early	 processes	 in	 tuber	 formation	 (Ewing	 and	 Struik,	 1992)	

and	the	rate	of	tuber	bulking	(Burstall	and	Harris,	1983)	and	its	duration.	Therefore,	

resource	(radiation,	N)	use	efficiency	may	have	a	strong	bearing	on	tuber	bulking	and	

final	tuber	yields.		

In	 our	 companion	 paper	 (Chapter	 2),	 we	 have	 quantitatively	 analysed	 potato	

canopy	 cover	 dynamics,	 using	 a	 set	 of	 varieties	 covering	 a	wide	 range	 of	maturity	

types	and	a	well‐adapted	diploid	F1	segregating	population.	Here,	using	the	same	set	

of	plant	materials,	we	aim	to	analyse	the	dynamics	of	tuber	bulking	and	its	variability	

by	 breaking	 them	 down	 into	 biologically	 meaningful	 and	 genetically	 relevant	

component	 traits.	We	 also	 analyse	 radiation	 use	 efficiency	 (RUE)	 and	 nitrogen	 use	

efficiency	 (NUE)	 and	 study	 their	 relationships	 with	 the	 tuber	 bulking	 traits.	 We	

quantify	 the	genetic	parameters	(variance	components	and	heritability),	phenotypic	

and	genetic	correlations,	and	path	coefficients	of	these	traits.	Finally,	we	perform	QTL	

mapping	of	the	traits	and	discuss	their	genetic	basis.	The	combined	information	from	

Chapters	2	and	3	should	give	insights	into	the	most	vital	processes	that	can	be	used	to	

explore	the	possibilities	of	genetically	manipulating	potato	tuber	yield.		
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2.	Materials	and	methods	

	

	

2.1.	F1	segregating	population	of	SH		RH	and	standard	cultivars		
The	plant	material	used	in	this	study	consisted	of	100	F1	diploid	(2n	=	2x	=	24)	potato	

genotypes	 derived	 from	 a	 cross	 between	 two	 diploid	 heterozygous	 potato	 clones,	

SH83‐92‐488		RH89‐039‐16	(Rouppe	van	der	Voort	et	al.,	1997;	Van	Os	et	al.,	2006),	
or	simply	the	‘the	SH		RH	population’.		The	population	segregates	for	maturity	type.		

Besides	the	individual	F1	genotypes	and	their	two	parents,	we	also	included	five	

standard	 cultivars	 in	 our	 studies:	 Première,	 Bintje,	 Seresta,	 Astarte,	 and	 Karnico.	

These	 cultivars	 were	 chosen	 because	 of	 their	 differences	 in	 maturity	 type	 when	

grown	in	the	Netherlands,	ranging	from	early	(Première)	to	very	late	(Karnico).	This	

selection	 of	 standard	 cultivars	 would	 allow	 a	 benchmarking	 of	 consequences	 of	

maturity	type	on	the	temporal	dynamics	of	tuber	bulking.	Further	information	about	

plant	materials	is	given	in	Chapter	2.	

	

	

2.2.	Field	experiments	and	measurements	

Six	 field	 experiments	 were	 carried	 out	 in	 Wageningen	 (52˚	 N	 latitude),	 the	

Netherlands,	during	2002,	2004,	and	2005,	with	two	experiments	in	each	year,	using	

the	 aforementioned	 plant	 materials.	 Details	 on	 the	 methodology	 and	 the	

environmental	conditions	have	been	described	in	Chapter	2.	Karnico	was	not	present	

in	the	two	experiments	in	2005.	

Tuber	dry	matter	was	measured	at	 three	harvests	during	 the	growing	period.	

The	first	and	second	harvests	were	planned	in	such	a	way	to	measure	the	tuber	dry	

matter	in	the	linear	bulking	phase,	while	the	last	harvest	was	performed	at	maturity.	

Tubers	of	each	plot	were	harvested	and	dried	in	an	oven	at	70	˚C	to	constant	weight.	

For	samples	of	the	growing	seasons	of	2004	and	2005,	nitrogen	(N)	concentration	in	

tubers	sampled	at	the	end	of	the	growing	season	was	determined	by	micro‐Kjeldahl	

digestion	and	distillation	(AOAC,	1984).	Total	amount	of	N	 in	 tubers	was	calculated	

from	the	N	concentration	and	tuber	dry	weight.		

	

	

2.3.	A	model	for	tuber	bulking	dynamics	

Like	the	life	cycle	of	any	plant	or	its	organ,	potato	tuber	growth	as	a	function	of	time	

follows	a	sigmoid	pattern,	including	an	early	accelerating	phase,	a	linear	phase	and	a	

ripening	phase	(Fig.	3.1).	We	used	the	expolinear	function	of	Goudriaan	and	Monteith	

(1990)	to	describe	the	tuber	growth	during	the	exponential	phase:	
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where	w	is	 tuber	mass,	t	is	 time,	tB	is	 the	moment	at	which	the	 linear	phase	of	 tuber	

bulking	effectively	begins,	rm	is	the	relative	growth	rate	in	the	‘exponential	phase’,	and	

cm	is	the	growth	rate	in	the	‘linear	phase’.			

	 	 Eqn	 (3.1)	 can,	 in	principle,	 be	used	 to	describe	 the	 tuber	 growth	of	 the	 linear	

phase	 as	 well.	 However,	 eqn	 (3.1)	 tends	 to	 under‐estimate	 the	 true	 growth	 rate	

because	of	its	curvilinear	nature.	To	obtain	an	objective	estimation	of	the	growth	rate	

of	the	linear	phase,	we	used	the	following	linear	model	to	quantify	the	second	phase:	

	
  EBBmB 		with								 tttttcww  	 (3.2)	

where	tE	is	 the	end	 time	of	 the	 linear	phase,	wB	is	 the	 tuber	weight	at	 time	 tB.	 If	we	

know	rm	and	cm,	then	wB	can	be	estimated	from	eqn	(3.1)	as	0.693	cm/rm.	

	 	 To	 represent	 a	 deflection	 in	 growth	 towards	 the	 third	 phase,	Goudriaan	 and	

Monteith	(1990)	suggested	a	 truncated	curve	 that	 terminates	growth	at	 the	 time	 tE,	

when	 the	 maximum	 weight	 (wmax)	 is	 achieved.	 	This	 is	 a	 brutal	 method,	 because	

growth	stops	gradually	rather	 than	abruptly.	However,	given	 the	 limited	number	of	

measurements	 in	 the	 time	 series	 (see	 above),	 we	 adopted	 the	 truncated	 curve	

approach,	with:		

	

Emax 	with						 ttww  	 (3.3)	

where	tE	is	calculated	as	tB	+	(wmax	−	wB)/cm.	

		

	 Combining	eqns	(3.1,	3.2,	and	3.3)	yields	a	model	with	four	parameters:	rm,	cm,	

tB,	and	wmax,	while	the	two	other	parameters	wB	and	tE	are	calculated	as	0.693	cm/rm	

and	tB	+	(wmax	−	wB)/cm,	respectively.	Obviously	an	over‐fitting	would	be	obtained	if	all	

the	 four	parameters	were	to	be	directly	 fitted	 from	our	 limited	data	points	 for	each	

genotype.	 Ingram	and	McCloud	 (1984)	 and	Van	Dam	et	 al.	 (1996)	 reported	 that	 rm	

was	conservative	across	potato	cultivars	at	a	given	temperature.	Their	rm	value	0.34	

d‐1	 at	 the	 optimum	 temperature	 was	 used	 here	 for	 all	 genotypes.	 We	 also	 fixed	

parameter	wmax	as	 the	average	of	 two	blocks	of	 the	 final	measured	weight.	The	 two	

remaining	parameters	 (i.e.	cm,	 tB)	 can	be	 estimated,	 but	with	 the	 value	of	 tB	 having	

large	 standard	 error,	 probably	 due	 to	 insufficient	 data	 points	 for	 the	 early	 season.	

Using	 these	 estimated	 values,	 we	 found	 that	 the	 initial	 weight	 (w0)	 at	 time	 zero,	

calculated	using	eqn	(3.1),	did	not	vary	much	across	genotypes.	We,	therefore,	used	

the	 value	 for	 w0	 =	 0.13	 (g	 m‐2),	 the	 averaged	 w0	 across	 all	 six	
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Figure	 3.1.	 Tuber	 bulking	 dynamics	 in	 potato	 represented	 by	 the	 piece‐wise	
expolinear	growth	function.		
	

	

experiments	 and	 all	 genotypes,	 to	 further	 reduce	 the	 number	 of	 parameters	 to	 be	

estimated.	When	w0	is	fixed,	parameter	tB	can	be	calculated	from	eqn	(3.1)	as:	
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This	 is	 in	accordance	with	Goudriaan	 (1994),	who	suggested	 that	 it	may	be	a	more	

natural	sequence	to	express	tB	as	a	function	of	initial	weight	(w0)	at	emergence.		

	 	 Eqn	(3.4)	and	the	formulae	for	calculating	wB	and	tE,	were	combined	with	eqns	

(3.1‐3.3),	 for	 curve	 fitting.	 The	 fitting	 was	 performed	 for	 each	 genotype	 of	 every	

experiment	 with	 the	 iterative	 non‐linear	 least‐square	 regression	 using	 the	 Gauss	

method,	 as	 implemented	 in	 the	 PROC	NLIN	 of	 the	 SAS	 software	 (SAS	 Institute	 Inc.,	

2004).	 Obviously,	 our	 procedure	 estimated	 only	 cm,	 which	 together	 with	 wmax	 as	

primary	 model	 parameters,	 characterises	 genotypic	 and	 environmental	 effects	 on	

tuber	growth.	Parameters	tB,	tE,	and	wB	were	calculated	from	the	equations	described	

earlier.	 The	 effective	 duration	 of	 tuber	 bulking	 (ED),	 an	 additional	 useful	 trait,	was	

calculated	as	tE−tB.		

	 	 As	 in	 our	 first	 analysis	 for	 canopy	 cover	 (Chapter	 2),	 all	 time	 variables	 and	
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duration	were	expressed	as	thermal	days	(td)	to	account	for	the	influence	of	daily	and	

seasonal	temperature	fluctuations	on	tuber	growth.	The	method	for	conversion	of	the	

actual	 days	 into	 td	was	 given	by	Yin	 et	 al.	 (2005)	 and	 its	 application	 to	 our	 potato	

genotypes	 has	 been	 described	 in	 Chapter	 2.	Note	 that	 the	 td	 is	 equal	 to	 or	 smaller	

than	the	number	of	chronological	days.		

	

2.4.	Calculation	of	Radiation	Use	Efficiency	(RUE)	

The	radiation	use	efficiency	(RUE;	g	DM	MJ‐1	PARint)	was	estimated	for	each	individual	

plot	by	dividing	the	total	tuber	dry	matter	at	maturity	(g	DM	m−2)	by	the	cumulative	

intercepted	photosynthetically	active	radiation	(MJ	PARint	m−2)	for	the	entire	growth	

period.	Data	of	incident	global	solar	radiation	were	obtained	from	a	weather	station	

in	 Wageningen	 located	 nearby	 the	 experimental	 sites.	 Daily	 incident	 PAR	 was	

calculated	 as	 half	 of	 the	 global	 solar	 radiation	 (Spitters,	 1988).	 To	 calculate	

cumulative	PARint,	our	extensive	data	on	the	percentage	green	canopy	cover	(Chapter	

2)	were	converted	to	PAR‐interception	percentage,	using	a	 linear	relationship	given	

by	Burstall	 and	Harris	 (1983)	as	PARint	(%)	=	0.956canopy	cover	 (%)	–	4.95.	Daily	
values	 of	 PARint	 were	 summed	 and	 the	 obtained	 cumulative	 PARint	 was	 used	 to	

calculate	seasonal	average	RUE	on	the	tuber‐dry	weight	basis.	

	

	

2.5.	Calculation	of	Nitrogen	Use	Efficiency	(NUE)	

As	we	 did	 not	measure	 dry	weight	 and	N	 content	 in	 the	 organs	 other	 than	 tubers,	

nitrogen	 use	 efficiency	 (NUE;	 g	 DM	 g‐1	 N)	 was	 expressed	 on	 the	 tuber	 dry	matter	

basis,	 as	was	RUE,	by	dividing	 the	 total	 tuber	dry	matter	 (g	DM	m−2)	by	 total	 tuber	

nitrogen	 uptake	 (g	 N	 m−2).	 This	 way	 of	 presenting	 NUE	 means	 that	 NUE	 is	

mathematically	equivalent	to	the	inverse	of	tuber	N	concentration	(g	N	g‐1	DM).	

	

	

2.6.	Statistical	and	genetic	analysis		

All	 statistical	 analyses	 were	 performed	 in	 Genstat	 (Payne	 et	 al.,	 2009).	 Combined	

analysis	of	variance	across	experiments	(i.e.	environments)	was	performed	to	test	the	

significance	and	extent	of	differences	among	environments	and	genotypes	(including	

the	 F1	 population,	 the	 parents,	 and	 standard	 cultivars).	 Means	 of	 genotype	 and	

environment	terms	were	compared	using	the	Fisher’s	least	significant	difference	(LSD)	

test.	Further	statistical	analyses	were	performed	only	using	the	F1	population	means	

(100	genotypes)	across	six	environments	as	described	below.		
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2.6.1.	Estimation	of	variance	components	

The	 variance	 components	 for	 genetic,	 environmental	 and	 experimental	 error	 were	

estimated	 through	 the	 REML	 procedure	 to	 assess	 their	 contribution	 to	 the	 total	

phenotypic	 variance	 of	 the	 traits	 cm,	 tE,	ED,	RUE,	 NUE,	 and	wmax.	 Significance	 levels	

were	determined	with	a	likelihood	ratio	test	(Morrell,	1998),	which	tests	the	change	

in	deviation	after	removing	the	respective	variance	component	from	the	model.	The	

change	in	deviation	is	approximately	chi‐square	distributed	(Littell	et	al.,	1996).	Once	

these	 variance	 components	 were	 estimated,	 phenotypic	 variance	 (σ2Ph)	 was	

calculated	as	per	 following	equation	 (Bradshaw,	1994;	Falconer	and	Mackay,	1996;	

Lynch	and	Walsh,	1998):	

	
2
ε

2
E

2
G

2
Ph 		   	 (3.5)					

where	 σ2G	 is	 genetic	 variance,	 σ2E	 represents	 environmental	 variance,	 and	 σ2ε	 is		

experimental	error	variance.		

	

	

2.6.2.	Phenotypic	and	genetic	coefficients	of	variation		

Coefficients	of	variation	(%)	were	calculated	according	to	the	following	equation:	

	

100
2
 

 


CV 	 (3.6)	 	

where	 is	 the	 grand	mean	of	 the	population,	 and	σ2X	 is	 a	 variance	 component	 (i.e.	
σ2Ph	or		σ2G	or	σ2E).	

	

	
2.6.3.	GGE	biplot	analysis	
GGE	biplot	 analysis	was	 performed	 to	 analyse	 the	 inter‐relations	 among	 genotypes	

and	 environments.	 GGE	 biplots	 were	 constructed	 by	 plotting	 the	 first	 principal	

component	 (PC1)	 scores	 of	 the	 genotypes	 and	 the	 environments	 against	 their	

respective	 scores	 for	 the	 second	 principal	 component	 (PC2).	 The	 environment‐

standardised	method	of	Yan	(2002)	was	used.		

	

	

2.6.4.	Heritability	

Estimates	of	broad‐sense	heritability	(H2)	(%)	were	calculated	by	using	the	estimated	

variance	components	(Falconer	and	Mackay,	1996;	Holland	et	al.,	2003):	
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where	(nt	=	6)	is	the	product	of	number	of	blocks	and	environments.		

	

	

2.6.5.	Phenotypic	and	genetic	correlation	

Phenotypic	 correlations	 were	 calculated	 using	 the	 Pearson	 Correlation	 Coefficient.	

The	 genetic	 correlations	 were	 calculated	 using	 the	 following	 equation	 (Holland,	

2006):	
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 	 (3.8)					

where	σ2Gij	is	the	estimated	genetic	covariance	between	traits	 i	and	 j;	σ2Gi	and	σ2Gj	are	

the	 genetic	 variances	 of	 traits	 i	 and	 j,	 respectively.	 	 The	 variance	 and	 covariance	

components	were	estimated	from	multivariate	REML	analyses	(Meyer,	1985;	Holland,	

2006).	The	significance	of	genetic	correlations	was	determined	using	a	t‐test	after	a	z‐

transformation	of	the	correlation	coefficients	(Sokal	and	Rohlf,	1995;	Gutteling	et	al.,	

2007).	

	

	

2.6.6.	Path	coefficient	analysis	

The	 inter‐associations	 between	 the	 important	 yield	 determining	 components	 were	

ascertained	 across	 all	 six	 experiments	 by	working	 out	 the	 path	 coefficient	 analysis	

following	 the	 procedure	 of	 Dewey	 and	 Lu	 (1959).	 This	 was	 accomplished	 by	

partitioning	 the	 direct	 and	 indirect	 effects	 of	 various	 physiological	 traits	 upon	 the	

final	 tuber	dry	matter.	 The	 final	 tuber	 dry	matter	 (i.e.	wmax)	was	 considered	 as	 the	

response	 variable	while	 traits	 cm,	ED,	Asum,	 RUE,	 and	NUE	were	 assumed	 to	 be	 the	

predictor	variables,	where	Asum	is	the	area	under	the	whole	canopy‐cover	curve	and	

reflects	 the	 capability	 of	 the	 crop	 to	 intercept	 solar	 radiation	 during	 the	 whole	

growing	season,	as	quantified	 in	Chapter	2.	The	direct	effects	of	predictor	variables	

were	the	path	coefficients	computed	through	multiple	regression.	A	path	coefficient	is	

a	 standardized	 regression	 coefficient	 (Li,	 1975).	 Indirect	 effects	were	 computed	 as	

the	 product	 of	 the	 correlation	 coefficient	 between	 two	 variables	 and	 the	 path	
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coefficient	 from	 the	 second	variable	 to	 the	 response	 variable.	 Let	 variables	 x1	 to	 x5	

refer	 to	 cm,	 ED,	 Asum,	 RUE,	 and	 NUE,	 respectively.	 The	 total	 effect	 of	 a	 predictor	

variable	 x1	 correlated	with	 other	 predictor	 variables	 x2,	 x3,	 x4,	 and	 x5	 on	 response	

variable	z,	would	be	given	by,	for	example:	

	
		rzx1=	Pzx1	+	(Pzx2×	rx1x2)	+	(Pzx3×	rx1x3)	+	(Pzx4×rx1x4)	+	(Pzx5×rx1x5)	 (3.9)					

where	rzx1	is	total	correlation	between	z	and	x1,	Pzx1	represents	path	coefficient	from	

x1	to	z	rx1xi	(i	=2,	3,	4	and	5)	is	correlation	coefficient	between	variables	x1	and	xi,	and	

Pzxi	denotes	path	coefficient	from	xi	to	z.	The	same	logic	was	applied	to	compute	rzx2,	

rzx3,	…,	rzx5.		

	

	

2.6.7.	QTL	detection	

The	parental	(SH,	RH)	genetic	map	described	in	Chapter	2	was	used	for	QTL	mapping	

of	 traits.	 	 Eighty‐eight	genotypes	of	 our	100	F1	 lines	were	 covered	 in	 the	extended	

ultra‐dense	genetic	map	of	250	 lines	of	SH		RH	population	 (cf.	Chapter	2);	data	of	
these	 88	 lines	 were	 therefore	 used	 for	 detection	 of	 QTLs	 for	 model	 parameters,	

derived	traits	and	(N,	radiation)	use	efficiencies.	QTL	analysis	was	done	individually	

for	all	six	experiments	(environments)	using	Genstat	version	14	(Payne	et	al.,	2009)	

software.	For	more	details	about	the	mapping	procedure,	see	Materials	and	Methods	

of	Chapter	2.		

	

	

3.	Results	and	discussion		

	

	

3.1.	Model	performance	in	describing	tuber	bulking	dynamics	of	genotypes	

The	model	for	tuber	bulking	dynamics	(i.e.	combined	eqns	3.1‐3.3)	fitted	well	for	each	

genotype	of	the	potato	segregating	population,	the	parents	and	the	standard	cultivars	

in	the	entire	data	set,	with	R2	values	ranging	from	0.90	to	1.00	(n	=	6).	The	estimated	

tuber	bulking	curves	for	the	two	parents	(SH	and	RH)	and	four	standard	cultivars	are	

shown	in	Fig.	3.2.	The	transformation	of	calendar	days	into	thermal	time	resulted	in	a	

more	 stable	 parameter	 estimation	 (data	 not	 shown),	 as	 thermal	 time	 effectively	

removed	 the	 confounding	 effect	 of	 diurnal	 and	 seasonal	 temperature	 fluctuations	

during	 the	experimental	period.	Overall,	 combined	eqns	 (3.1‐3.3)	are	very	useful	 in	

analysing	 the	 tuber	 bulking	 dynamics	 of	 a	 diverse	 set	 of	 potato	 genotypes	 under	

various	environments.		
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Figure	3.2.	Observed	(obs)	points	and	fitted	(fit)	curves	of	parents	(SH	and	RH)	and	

four	standard	cultivars	for	all	six	experiments	(environments).		

	

	

3.2.	Model	parameters	and	secondary	traits		

Results	of	combined	analysis	of	variance	showed	highly	significant	(P<0.01)	effects	of	

genotype	(including	100	F1	genotypes,	the	parents,	and	standard	cultivars)	across	the	

experimental	 sites	 (i.e.	 environments)	 on	 all	 model	 parameters	 and	 derived	 traits.	

However,	as	expected,	differences	between	cultivars	and	across	environments	in	the	

onset	 of	 tuber	 bulking	 (tB)	 were	 very	 small,	 because	 as	 mentioned	 earlier	 tB	 was	

calculated	by	eqn	(3.4)	where	wo	and	rm	were	fixed	due	to	limited	data	points	for	the	

early	growth	phase.	Similarly,	the	tuber	weight	(wB)	achieved	at	tB	was	calculated	in	

relation	 to	 rm	 and	 cm	 (see	 Materials	 and	 Methods).	 Therefore,	 we	 will	 no	 longer	

analyse	the	variation	of	tB	and	wB.	
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There	were	significant	differences	(P<0.05)	among	the	standard	cultivars	for	cm,	

tE,	 ED,	 and	 wmax	 (Table	 3.1).	 Values	 of	 cm	 were	 comparatively	 higher	 for	 early	

maturing	cultivars	like	Première	and	mid‐early	cultivars	like	Bintje	than	for	late	ones	

like	Astarte	and	Karnico.		

	 The	values	 for	 tE	and	ED	were	higher	 for	 late	maturing	cultivars	 than	 for	mid‐

late	 and	 early	 cultivars.	 The	maximum	 tuber	 dry	matter	 yield	 (wmax),	 on	 the	 other	

hand	was	higher	for	late	maturing	cultivars	than	for	mid‐late	and	early	cultivars.	The	

higher	values	of	wmax	in	 late	maturing	cultivars	might	be	due	 to	 their	comparatively	

higher	 tE	 and	 longer	 ED.	 This	 is	 in	 line	 with	 the	 result	 of	 Kooman	 and	 Rabbinge	

(1996),	who	found	that	compared	with	late	cultivars,	early	potato	cultivars	allocate	a	

larger	 part	 of	 the	 available	 assimilates	 to	 the	 tubers	 early	 in	 the	 growing	 season,	

resulting	 in	 shorter	 growing	 periods	 and	 also	 lower	 yields.	 Moreover,	 cultivars	

differences	with	respect	to	tuber	yielding	potential	could	be	attributed	to	variation	in	

efficiency	of	assimilate	partitioning	to	the	tubers	(bulking	rate)	and	maturity	period.	

Hammes	and	De	Jager	(1990)	and	Gawronska	et	al.	(1990)		reported		the		existence		of		

varietal		differences		with		respect		to		the		rate		of		net	photosynthesis	and	dry	matter	

production.		

Table	 3.2	 shows	 trait	 values	 of	 the	 F1	 segregating	 population	 in	 comparison	

with	their	parents	(SH	and	RH).	The	means	of	the	F1	segregating	population	were	not	

within	the	ranges	of	the	parental	clones	for	parameters	tE	and	ED.	Wide	ranges	were	

observed	 for	all	model	parameters	and	derived	 traits.	Most	of	 the	parameters	were	

	

	

Table	3.1.	Estimated	mean	values	of	different	traits	for	five	standard	cultivars	(listed	

in	order	of	increasingly	longer	crop	cycle),	as	obtained	from	combined	ANOVA	across	

six	environments.	td	stands	for	thermal	day.		
	

Cultivar	
cm		

(g	DM	td‐1)	

tE		

(td)	

ED		

(td)	

RUE	

(g	DM	MJ‐1)

NUE	

(g	DM	g‐1	N)	

wmax		

(g	DM	m‐2)	

Première	 55.7	a	 37.3	c	 16.1	c	 2.7	a	 70.4	c	 1122	b	

Bintje	 48.2	ab	 47.9	b	 27.4	b	 2.4	a	 72.1	c	 1375	ab	

Seresta	 36.7	bc	 62.4	a	 42.8	a	 2.4	a	 88.5	b	 1579	a	

Astarte	 35.4	bc	 63.0	a	 43.5	a	 2.2	ab	 90.9	b	 1533	a	

Karnico	 31.2	c	 63.7	a	 44.4	a	 1.9	b	 101.8	a	 1487	a	

LSD	

(P<0.05)	
13.2	 10.1	 10.7	 0.5	 7.7	 263	

Means	within	a	column	followed	by	different	letters	are	significantly	different	

according	to	Fisher’s	Multiple	Range	Test	(P<0.05).	
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nearly	normally	distributed	displaying	transgressive	segregation	(Fig.	3.3).	

Environment	 had	 highly	 significant	 (P<0.01)	 effects	 on	 all	 model	 parameters	

and	 derived	 traits.	 There	 were	 significant	 differences	 (P<0.05)	 between	 the	

experiments	 for	 cm,	 tE,	 ED,	 and	 wmax	 (Table	 3.3),	 within	 five	 standard	 cultivars.		

This	 was	 at	 least	 partly	 due	 to	 the	 purposeful	 variation	 in	 availability	 of	 N	 across	

trials	 (Chapter	 2).	 Figure	 3.4	 illustrates	 the	 variation	 (the	 median,	 minimum	 and	

maximum	values)	of	these	model	parameters	and	derived	traits	for	the	F1	population	

per	 individual	 experiment.	 The	 ranges	 of	 the	 parameters	 cm,	 and	 wmax	 were	

consistently	wider	in	Exp	3	than	in	the	other	experiments	(Fig.	3.4).	In	case	of	tE	and	

ED,	wider	ranges	were	observed	in	Exps	4	and	5,	respectively	(Fig.	3.4).	This	could	be	

attributed	to	varied	availability	of	N	per	experiment	(Chapter	2)	 in	 interaction	with	

genotype	specific	behaviour,	 causing	different	 trade‐offs	between	rate	and	duration	

of	tuber	bulking	and	tuber	final	dry	matter	production.		

	

	

3.3.	Radiation	Use	Efficiency	(RUE)		

The	RUE	differed	significantly	(P<0.01)	among	the	genotypes	(standard	cultivars	and	

F1	segregating	population).	The	values	of	RUE	ranged	between	1.9	and	2.7	g	DM	MJ‐1	

(Table	 3.1).	 The	 calculated	 values	 of	 RUE	 were	 within	 the	 range	 reported	 in	 the	

literature	 for	 Solanum	 tuberosum	genotypes	 under	 temperate	 conditions	 (Spitters,	

1988;	 Scott	 and	 Wilcockson,	 1978;	 Allen	 and	 Scott,	 1980;	 Khurana	 and	 McLaren,	

1982;	 MacKerron	 and	 Waister,	 1985a;	 Stol	 et	 al.,	 1991;	 Kooman	 and	 Haverkort,	

1995).		

	

	

Table	3.2.	 Estimated	mean	 values	 of	 different	 traits	 (across	 six	 environments)	 for	

two	 parents	 (SH	 and	 RH)	 and	mean,	 minimum	 (Min),	 maximum	 (Max),	 and	 range	

within	the	F1	population.	td	stands	for	thermal	day.	
	

Parameter		 SH	 RH	 ‡Mean	(±S.E.)	 Min	 Max	 Range	

cm	(g	td‐1)	 39.8		 29.0		 35.5	(±4.2)	 19.9	 47.4	 27.5	

tE	(td)	 50.8	 46.9		 51.0	(±2.9)	 42.5	 62.9	 20.4	

ED	(td	)	 30.9		 27.8		 31.8	(±3.3)	 22.4	 45.1	 22.7	

RUE	(g	DM	MJ‐1)	 2.7		 2.4		 2.1	(±0.2)	 1.5	 2.6	 1.1	

NUE	(g	DM	g‐1	N)	 69.6		 67.2		 68.2	(±5.6)	 54.4	 81.6	 27.2	

wmax	(g	m‐2)	 1219		 847		 955.6	(±50.0) 830.4	 1115.7	 285.3	
‡	Mean	of	F1	segregating	population	(100	genotypes)	across	six	environments.	
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Table	3.3.	Estimated	mean	values	of	different	traits	for	each	individual	environment	

as	 obtained	 from	 combined	 ANOVA	 across	 five	 standard	 cultivars.	 td	 stands	 for	

thermal	day.		
	

Parameter		 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	 LSD	

cm	(g	td‐1)	 30.6	d	 41.6	c 46.1	b 50.0	a 30.9	d 48.3	a	 2.2	
tE	(td)	 55.4	d	 42.9	f	 61.1	b	 59.4	c	 64.6	a	 53.0	e	 1.7	

ED	(td	)	 36.3	d	 22.8	f	 40.8	b	 38.8	c	 45.5	a	 32.5	e	 1.8	

RUE	(g	DM	MJ‐1)	 2.1	d	 2.0	e	 2.8	a	 2.6	b	 2.0	e	 2.4	c	 0.09	

NUE	(g	DM	g‐1	N)	 −	 −	 102.5	a	 80.8	c	 69.4	d	 84.8	b	 1.5	

wmax	(g	m‐2)	 1086	e	 1003	f	 1834	b	 1954	a	 1341	d	 1555	c	 44	

Means	within	a	row	followed	by	different	letters	are	significantly	different	according	

to	Fisher’s	Multiple	Range	Test	(P<0.05).	

	

	

Significant	 (P<0.05)	 differences	 were	 observed	 among	 the	 standard	 cultivars	

with	respect	to	RUE.	The	RUE	values	were	comparatively	high	for	early	and	mid‐early	

cultivars	(Première	and	Bintje,	respectively)	 followed	by	mid‐late	(Seresta)	and	late	

cultivars	(Karnico).	These	results	were	expected	because	cumulative	light	absorption	

tended	 to	 be	 greater	 for	 the	 later	 maturing	 cultivars,	 but	 on	 the	 other	 hand,	 they	

exhibited	a	smaller	harvest	index	(data	not	shown).		Owing	to	these	opposite	trends		

for	 cumulative	 light	 absorption	 and	harvest	 index,	 tuber	 yield	 showed	 an	 optimum	

relationship	with	maturity	class.	Early	maturing	cultivars	allocate	already	in	an	early	

phase	 the	major	 part	 of	 their	 current	 assimilates	 to	 tuber	 growth,	 which	 is	 at	 the	

expense	of	canopy	growth	(Spitters,	1988).	Senescence	of	leaves,	without	significance	

formation	 of	 new	 leaves,	 causes	 an	 early	 senescence	 of	 foliage.	 Early	 cultivars	 had,	

therefore,	a	smaller	cumulative	light	absorption	but	a	greater	harvest	index	and	RUE.	

On	 the	 other	 hand,	 late	 maturing	 cultivars	 maintain	 green,	 active	 foliage	 for	 an	

extended	period	of	time	(Spitters	and	Schapendonk,	1990).	However,	the	investment	

in	canopy	growth	is	at	the	expense	of	tuber	growth.		

Table	3.2	compares	the	mean,	and	ranges	of	RUE	between	the	two	parents	(SH	

and	RH)	and	F1	segregating	population.	RUE	values	varied	from	2.7	g	DM	MJ‐1	for	SH	

and	 2.4	 g	 DM	 MJ‐1	 for	 RH	 parent,	 compared	 with	 mean	 (2.1	 g	 DM	 MJ‐1)	 of	 F1	

population.	The	mean	RUE	of	F1	population	was	lower	than	the	value	of	either	parent,	

but	this	was	associated	with	a	wide	variation	in	the	population	for	RUE	with	values	

ranging	 from	 1.5	 g	 DM	 MJ‐1	 to	 2.6	 g	 DM	 MJ‐1	 (Table	 3.2)	 and	 therefore	 displayed	

transgressive	segregation	(Fig	3.3).	There	are	possibilities	therefore	for	the	breeders	

to	exploit	this	variation	for	improving	RUE.		
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Figure	3.3.	 Distribution	 of	 five	 model	 parameters	 among	 F1	 genotypes	 across	 six	

experiments	(environments).	The	values	of	two	parents	‘SH’	and	‘RH’	are	indicated	by	

full	arrow	and	dashed	arrow,	respectively.	
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Figure	3.4.	Box	plots	of	genetic	means	of	an	F1	population	of	different	traits	in	all	six	

experiments.	 The	boxes	 span	 the	 interquartile	 range	of	 the	 trait	 values,	 so	 that	 the	

middle	 50%	 of	 the	 data	 lay	 within	 the	 box,	 with	 a	 horizontal	 line	 indicating	 the	

median.	 Whiskers	 extend	 beyond	 the	 ends	 of	 the	 box	 as	 far	 as	 the	 minimum	 and	

maximum	values.		
	 	

Experiment no. 
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The	RUE	 showed	 significant	 (P<0.05)	variation	amongst	 environments	 for	 the	

set	of	standard	cultivars	as	well	as	for	the	F1	segregating	population.	For	the	standard	

cultivars	RUE	mean	values	were	higher	in	Exp	3	and	lower	in	Exp	5	(Table	3.3).	For	

the	 F1	 population	 a	 similar	 trend	 was	 observed	 with	 wider	 and	 lower	 ranges	 of	

variation	in	Exp	3	and	Exp	5,	respectively	(Fig.	3.4)	than	in	the	other	experiments.	We	

surmise	 that	 such	 within	 and	 between	 experimental	 variations	 are	 the	 combined	

result	 of	 differences	 in	 Asum	 associated	 with	 variation	 in	 maturity	 class	 and	 with	

varied	availability	of	N	(Chapter	2).	Plant	nitrogen	status	and	crop	growth	cycle	both	

affect	RUE,	in	addition	to	the	effects	of	other	factors	(Green,	1987;	Muchow	and	Davis,	

1988;	Sinclair	and	Horie,	1989;	Trapani	et	al.,	1992).	

The	RUE	has	been	used	to	explain	genotypic	differences	in	potato	under	diverse	

environments	 (Sibma,	1970,	1977;	Van	der	Zaag	and	Burton,	1978;	MacKerron	and	

Waister,	 1985a;	 Van	 der	 Zaag	 and	 Doornbos,	 1987;	 Vander	 Zaag	 and	 Demagante,	

1987;	Trebejo	and	Midmore,	1990;	Koman	et	al.,	1996).	Van	der	Zaag	and	Doornbos	

(1987)	concluded	from	their	trials	with	19	cultivars	that	cultivar	differences	in	tuber	

dry	 matter	 yield	 were	 mainly	 due	 to	 variation	 in	 RUE	 under	 varied	 growing	

conditions.	It	is	concluded	that	analysis	of	yield	variation	between	potato	genotypes	

can	 be	 obtained	 by	 interpreting	 that	 variation	 in	 terms	 of	 accumulated	 light	

absorption,	average	RUE,	and	harvest	index.	
	
	
3.4.	Nitrogen	Use	Efficiency	(NUE)		

Highly	significant	(P<0.01)	effects	of	genotype	(standard	cultivars	and	F1	segregating	

population)	 were	 observed	 for	 NUE	 (data	 not	 shown).	 Mean	 estimates	 for	 NUE	

ranged	between	69.6	to	101.8	g	DM	g‐1	N	(Table	3.1).	NUE	varied	significantly	(P<0.05)	

among	 the	 standard	 cultivars.	 NUE	 values	 were	 comparatively	 higher	 for	 late	

maturing	 cultivars	 like	 Karnico	 and	 Astarte	 than	 for	 mid‐early	 and	 early	 cultivars	

such	as	Bintje	and	Première,	respectively	(see	also	Zebarth	et	al.,	2004).	These	effects	

were	mainly	associated	with	differences	in	maturity	type	(Van	Kempen	et	al.,	1996).	

Late	maturing	cultivars	combine	a	long	canopy	cover	with	a	long	tuber	bulking	period	

(ED)	and	therefore	achieve	more	tuber	dry	matter	yield	(wmax)	per	unit	of	N	uptake	

than	mid	early	and	early	maturing	cultivars	(Zebarth	et	al.,	2008).	Previous	research	

has	 also	 demonstrated	 that	 there	 is	 significant	 variation	 in	 crop	 uptake	 and	 use	

efficiency	of	N	among	commercial	potato	cultivars	and	advanced	clones	(Kleinkopf	et	

al.	1981;	Lauer	1986;	Sattelmacher	et	al.,	1990;	Porter	and	Sisson,	1991a,b;	Johnson	

et	 al.	 1995;	 Errebhi	 et	 al.,	 1998a,b,	 1999;	 Sharifi	 et	 al.,	 2007;	 Zebarth	 et	 al.,	 2004,	

2008).		

Mean	comparison	of	NUE	between	two	parents	(SH	and	RH)	and	within	the	F1	

population	is	given	by	(Table	3.2).	NUE	in	the	F1	population	was,	on	average,	68.2	g	
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DM	g‐1	N	which	was	close	to	the	values	of	the	two	parents	(SH:	69.6	g	DM	g‐1	N;	RH:	

67.2	 g	 DM	 g‐1	N).	 However,	 there	 was	 a	 very	 wide	 variation	 in	 NUE	within	 the	 F1	

population;	 it	 ranged	 from	 54.4	 g	 DM	 g‐1	N	 to	 81.6	 g	 DM	 g‐1	N.	 This	 wide	 range	

suggested	 a	 transgressive	 segregation	 in	 F1	 population	 for	 NUE	 (Fig.	 3.3),	 which	

could	 be	 further	 genetically	 manipulated	 for	 improving	 N	 use	 efficiency	

characteristics	in	potato.		

There	was	significant	(P<0.05)	variation	in	NUE	among	the	six	environments	for	

the	standard	cultivars	(Table	3.3),	as	well	as	 for	the	F1	segregating	population	(Fig.	

3.4);	 trends	were	consistent	 for	 the	 two	groups	of	genotypes.	The	highest	NUE	was	

recorded	in	Exp	3	and	the	lowest	in	Exp	5,	in	line	with	lower	tuber	N	uptake	(11.3	g	

m‐2)	 observed	 in	 Exp	 3	 and	 higher	 tuber	 N	 uptake	 (15.3	 g	m‐2)	 observed	 in	 Exp	 5	

(Chapter	2).	Responses	to	N	can	vary	greatly	from	site	to	site	and	from	year	to	year.	

They	depend	on	the	capacity	of	 the	soil	 to	supply	N	when	the	crop	needs	 it	(Meyer,	

1998)	and	on	the	capacity	of	the	crop	to	make	efficient	use	of	that	N.		

The	 NUE	 also	 varied	 within	 the	 experiments,	 with	 wide	 ranges	 of	 variation	

observed	 in	 Exp	 6	 (Fig.	 3.4).	 This	 might	 be	 due	 to	 the	 indirect	 effects	 of	 different	

maturity	groups	within	the	F1	population.	The	different	durations	of	the	crop	cycle,	

as	expressed	by	maturity	classes,	is	an	obvious	factor	one	might	expect	to	affect	the	N	

response	too	(Vos,	2009).		

	

	

3.5.	Phenotypic,	genetic	and	environmental	variances	

Table	 3.4	 presents	 estimated	 values	 of	 phenotypic,	 genetic	 and	 environmental	

variances	 for	 all	 the	 parameters	 and	 the	 derived	 traits	 in	 the	 F1	 population.	 The	

results	 revealed	 considerable	 phenotypic	 and	 genetic	 variances	 for	 all	 the	 traits	

studied.	 All	 genetic	 and	 environmental	 components	 of	 variation	 were	 significant	

(P<0.01)	(Table	3.4).		

The	genetic	variance	component	contributed	a	major	portion	to	the	phenotypic	

variance	 in	 traits	 cm,	 tE,	 and	ED	 (Table	 3.4).	 The	 contribution	 of	 the	 environmental	

variance	to	the	phenotypic	variance	was	relatively	large	in	wmax,	RUE,	and	NUE	(Table	

3.4),	 probably	 because	 these	 traits	 were	 sensitive	 to	 nitrogen	 as	 we	 purposefully	

applied	varied	doses	of	nitrogen	for	creating	contrasting	environments	(see	Materials	

and	Methods,	Chapter	2).		A	number	of	studies	have	also	shown	a	varying	response	to	

rates	of	N	on	the	dry	matter	yield	production	in	potato	crops	(e.g.	Porter	and	Sisson,	

1991b;	Maier	et	al.	1994;	Feibert	et	al.	1998;	Belanger	et	al.	2000).	

	 Estimates	 of	 phenotypic	 (CVPh)	 and	 genetic	 (CVG),	 and	 environmental	 (CVE)	

coefficients	 of	 variation	 for	 traits	 across	 the	 six	 experiments	 are	 presented	 in		

Table	 3.5.	 Estimates	 of	 CVPh	 ranged	 from	 19.5%	 to	 54.7%.	 These	 estimates	 were		
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Table	3.4.	Variance	components	 for	different	traits	within	the	F1	population	across	

all	six	experiments.	
	

Parameter		 σ2Ph	 σ2E	 σ2G	 σ2ε	

cm	(g	td‐1)	 297.5	 107.6** 120.6** 69.2	
tE	(td)	 253.9	 51.1**	 169.1**	 33.7	

ED	(td	)	 301.0	 65.1**	 197.3**	 38.6	

RUE	(g	DM	MJ‐1)	 0.34	 0.15**	 0.09**	 0.10	

NUE	(g	DM	g‐1	N)	 177.2	 125.9**	 20.7**	 30.6	

wmax	(g	m‐2)	 47025	 14706**	 9902**	 22417	
**	Significant	at	1%.	

σ2Ph	=	phenotypic	variance,	σ2E	=	environmental	variance,	σ2G	=	genetic	variance,	σ2ε	=	

residual	variance.	

	

	

smallest	for	NUE	and	highest	for	ED.	Traits	with	high	CVPh	exhibit	large	total	variance	

and	are	useful	as	selection	criteria	in	breeding	provided	the	trait	is	also	heritable.	The	

CVG	estimates	were	higher	than	CVE	estimates	for	all	traits	investigated.	However,	the	

ratio	of	CVG	over	CVE	was	much	greater	in	traits	NUE,	te,	and	ED,	followed	by	RUE	and	

wmax,	 whereas	 the	 lowest	 ratios	 were	 observed	 in	 cm.	 Our	 results	 indicated	 that	

significant	 genetic	 variability	 existed	within	 the	 F1	 population	 for	most	 traits.	 It	 is	

therefore	 possible	 to	 utilise	 this	 wide	 genetic	 variability	 available	 for	 a	 breeding	

programme	 aimed	 at	 improving	 tuber	 bulking	 dynamics,	 RUE,	NUE,	 and	 ultimately	

tuber	dry	matter	production.		

	

	

Table	 3.5.	 The	 phenotypic	 coefficient	 of	 variation	 (CVPh	 ),	 genetic	 coefficient	 of	

variation	 (CVG),	 environmental	 coefficient	 of	 variation	 (CVE),	 and	 broad‐sense	

heritability	(H2)	of	different	traits	within	the	F1	population	across	all	six	experiments.	
	

Parameter		 ¶Mean	 CVPh	(%)	 CVG	(%)	 CVE	(%)	 H2	(%)	

cm	(g	td‐1)	 35.5	 48.6	 30.9	 29.2	 91.3	

tE	(td)	 51.0	 31.3	 25.5	 14.0	 96.8	

ED	(td	)	 31.7	 54.7	 44.3	 25.5	 96.8	

RUE	(g	DM	MJ‐1)	 2.1	 27.1	 17.9	 13.9	 84.2	

NUE	(g	DM	g‐1	N) 68.1	 19.5	 16.5	 6.7	 80.2	

wmax	(g	m‐2)	 957	 22.7	 12.7	 10.4	 72.6	
¶Grand	mean	of	the	F1	segregating	population	across	all	six	experiments.	
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3.6.	GGE	biplot	analysis	
GGE	 biplot	 analysis	 allows	 visual	 examination	 of	 the	 relationships	 among	 the	 test	

environments,	 genotypes,	 and	 the	 GE	 interaction	 (Yan,	 2000).	 As	 N	 is	 the	 key	
environmental	 variable	 affecting	 the	 important	 yield	 determining	 components	 of	

potato	(Honeycutt	et	al.,	1996),	here	we	discuss	only	the	results	for	trait	NUE	among	

the	 four	experiments	(Exps	3‐4).	The	GGE	biplots	revealed	that	 the	1st	and	the	2nd	

principal	components	accounted	for	84.04%	of	the	GE	variation	(Fig.	3.5).	
For	 any	 particular	 environment,	 genotypes	 can	 be	 compared	 by	 projecting	 a	

perpendicular	 from	the	genotype	symbols	 to	 the	environment	vector,	 i.e.	genotypes	

that	are	 further	along	in	the	positive	direction	of	 the	environment	vector	are	better	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	

Figure	3.5.	GGE	biplot	 chart	 for	nitrogen	use	efficiency	 (NUE)	 in	an	F1	 segregating	

population.	AEC	indicates	average	environment	coordinate	(Yan,	2001;	Yan	and	Kang,	

2003).	A	line	that	passes	through	the	biplot	origin	and	average	environment	indicates	

the	mean	performance	of	genotypes.	
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performing	 and	 vice	 versa.	 The	 biplot	 chart	 indicated	 that	 genotypes	 performed	

exceptionally	well	 in	either	 low	or	high	input	environments	(Fig.	3.5).	This	suggests	

that	 selection	 strategies	 can	 be	 developed	 for	 varieties	 with	 improved	 NUE.	 The	

results	further	showed	that	two	environments	(Exps	4	and	5)	were	grouped	together.	

This	suggests	 that	 these	environments	were	highly	correlated	and	relatively	similar	

in	the	manner	they	discriminate	among		genotypes.	The	results	further	revealed	that	

environments	 (Exps	 4	 and	 5)	 fell	 close	 to	 the	 origin.	 This	 could	 mean	 that	 these	

environments	 might	 have	 little	 variability	 across	 genotypes	 (Kroonenberg,	 1997).	

However,	markers	of	environments	(Exps	3	and	6)	were	standing	furthest	apart	from	

the	 origin	which	might	 suggest	 that	 this	 environment	 caused	maximum	 variability	

across	the	genotypes.	These	environments	might	therefore	be	the	main	contributor	to	

the	overall	GE	on	account	of	 their	 lowest	and	high	N	availability,	 respectively	 (see	
Table	2.1	in	Chapter	2)	than	the	other	environments.		

	

	
3.7.	Estimates	of	broad‐sense	heritability	
All	 estimates	 of	 broad‐sense	 heritability	 (H2)	 (eqn	 (3.7))	 were	 very	 high	 and	 they	

ranged	 from	80.2	 to	96.8%	(Table	3.5).	 In	a	previous	section	we	showed	 that	 traits		

like	wmax,	 RUE,	 and	NUE	were	 sensitive	 to	 environment.	However,	 these	 traits	 also	

had	 very	 high	 heritability	 estimates,	 which	 could	 mean	 that	 they	 can	 respond	 to	

selection	 (Falconer	 and	 Mackay,	 1996).	 High	 heritability	 estimates	 illustrate	 that	

these	traits	have	a	strong	genetic	basis,	hence	could	be	reliably	assessed	and	used	in	

breeding	 for	 resource	 (radiation,	 N)	 use	 efficiency	 as	 well	 as	 tuber	 dry	 matter	

production	in	potato.		

	

	

3.8.	Phenotypic	and	genetic	correlations	of	model	parameters	and	the	secondary	

traits	

Table	 3.6	 illustrates	 the	 phenotypic	 correlation	 coefficients	 among	 all	 the	 model	

parameters	and	secondary	 traits	within	 the	F1	segregating	population	across	all	 six	

experiments.	All	phenotypic	correlations	were	highly	significant	(P<0.01)	(Table	3.6).	

The	results	showed	strong	negative	phenotypic	correlations	between	cm	and	tE	(r	=	‐

0.83)	 and	 between	 cm	 and	ED	 (r	=	 ‐0.84).	 These	 results	 suggest	 trade‐off	 between	

tuber	bulking	rate	and	duration	of	tuber	bulking.	As	mentioned	earlier	tB	was	stable,	

which	 means	 that	 ED	 was	 almost	 exclusively	 determined	 by	 tE;	 so,	 unsurprisingly	

there	 was	 a	 strong	 positive	 correlation	 between	 tE	 and	 ED.	 The	 results	 further	

revealed	 negative	 correlation	 (r	 =	 ‐0.37)	 between	 RUE	 and	 NUE.	 This	 suggested	 a	

trade‐off	 between	 RUE	 and	 NUE,	 mainly	 caused	 by	 their	 negative	 and	 positive		
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Table	 3.6.	 Phenotypic	 (lower	 triangle)	 and	 genetic	 (upper	 triangle)	 correlation	

coefficients	among	all	pair	wise	comparisons	of	different	traits	across	six	experiments	

of	an	F1	population	of	potato.	td	stands	for	thermal	day.		
	

Parameter		 cm		 tE		 ED	 RUE	 NUE	 wmax	

cm	(g	td‐1)	 −	 ‐0.91**	 ‐0.93**	 0.95**	 ‐0.41**	 ‐0.20**	

tE	(td)	 ‐0.83**	 −	 1.00**	 ‐0.91**	 0.65**	 0.66**	

ED	(td	)	 ‐0.84**	 1.00**	 −	 ‐0.93**	 0.64**	 0.64**	

RUE	(g	DM	MJ‐1)	 0.69**	 ‐0.65**	 ‐0.65**	 −	 ‐0.75**	 ‐0.25**	

NUE	(g	DM	g‐1	N)	 ‐0.28**	 0.53**	 0.52**	 ‐0.37**	 −	 0.43**	

wmax	(g	m‐2)	 ‐0.10**	 0.55	**	 0.53	**	 ‐0.02	**	 0.43**	 −	
**	Significant	at	1%,	NS	Non‐significant.	
	
	
relationships	with	ED,	respectively	(Table	3.6).	

There	were	weak	but	negative	 (r	=	 ‐0.10)	phenotypic	 correlations	between	cm	

and	wmax	(Table	3.6).	However,	 the	results	 indicated	strong	and	positive	phenotypic	

correlations	between	tE,	ED,	and	wmax	(i.e.	r	=	0.55	and	0.53,	respectively).	From	these		

results,	 it	 seems	 that	 both	 rate	 and	 duration	 of	 tuber	 bulking	 are	 of	 importance	 in	

determining	 final	 yield	 of	 potato	 crop.	 The	 positive	 role	 of	 NUE	was	 evident	 from	

these	results	due	to	its	positive	phenotypic	correlation	with	wmax	(i.e.	r	=	0.43).	This	

suggests	that	genotypes	with	high	NUE	may	exhibit	high	tuber	yield.	The	underlying	

relationships	 of	 wmax	 with	 important	 traits	 are	 elaborately	 discussed	 in	 the	 next	

section.	

Table	 3.6	 also	 illustrates	 the	 genetic	 correlation	 coefficients	 between	 the	

model	 parameters	 and	 secondary	 traits	 within	 the	 F1	 population.	 The	 results	 of	

genetic	correlations	were	in	line	with	those	of	phenotypic	correlations.	As	a	whole	the	

coefficient	values	for	genetic	correlations	were	comparatively	higher	than	phenotypic	

correlations.	
	
	
3.9.	Path	coefficient	analysis	

Table	 3.7	 presents	 the	 results	 of	 path	 coefficient	 analysis	 describing	 the	direct	 and	

indirect	 effects	 of	 different	 traits	 on	 tuber	 dry	 matter	 yield	 (wmax),	 while	 Fig.	 3.6	

presents	 the	 path	 coefficient	 structural	 model	 describing	 important	 relationships	

among	 selected	 traits.	The	 traits	Asum,	RUE	and	 cm	had	 the	highest	direct	 effects	 on	

tuber	dry	matter	yield	(wmax)	(Table	3.7).	On	the	other	hand,	very	 low	direct	effects	

on	wmax	were	observed	for	traits	ED	and	NUE	(i.e.	0.06	and	‐0.04,	respectively).	The	

results	 further	 illustrated	 that	 higher	 value	of	 direct	 effect	 of	Asum	 on	wmax	was	 the		
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Table	3.7.	Path	coefficient	analysis	of	direct	and	indirect	effects	of	different	traits	on	

the	tuber	dry	yield	(wmax)	of	an	F1	population.	td	stands	for	thermal	day.	
	

Variable	 †Effect	

Asum	(td	%)	
Direct	effect 1.34	

Indirect	effect	via 	
cm	 ‐0.20	
ED	 0.05	

RUE	 ‐0.47	
NUE	 ‐0.02	

Total	correlation 0.69	
cm	(g	td‐1)	 	

Direct	effect 0.32	
Indirect	effect	via 	

Asum	 ‐0.85	
ED	 ‐0.05	

RUE	 0.47	
NUE	 0.01	

Total	correlation ‐0.10	
ED	(td)	 	

Direct	effect 0.06	
Indirect	effect	via 	

Asum	 1.21	
cm	 ‐0.27	

RUE	 ‐0.46	
NUE	 ‐0.02	

Total	correlation 0.53	
RUE	(g	DM	MJ‐1)	 	

Direct	effect 0.69	
Indirect	effect	via 	

Asum	 ‐0.91	
cm	 0.22	
ED	 ‐0.04	

NUE	 0.01	
Total	correlation ‐0.02	

NUE	(g	DM	g‐1	N)	 	
Direct	effect ‐0.04	

Indirect	effect	via 	
Asum	 0.78	
cm	 ‐0.09	
ED	 0.03	

RUE	 ‐0.25	
Total	correlation 0.43	

†Across	six	environments.		
	
	 	



Chapter	3	

 
 
106

AsumRUE
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-0.720.52

0.90-0.28

-0.65 0.69

-0.84

0.320.06

0.69

	

	

	

	

	

Figure	3.6.	Path	coefficient	structural	model	describing	direct	and	indirect	effects	of	

different	 traits	 on	 the	 tuber	 dry	 yield	 (wmax)	 across	 six	 experiments	 for	 an	 F1	

segregating	population	of	potato.	The	solid	line	represents	the	correlation	coefficient	

between	two	predictor	variables;	dashed	line	represents	the	path	coefficient	from	the	

predictor	variable	to	response	variable	(wmax).	
	
	
result	of	significant,	strong	positive	correlation	of	Asum	with	ED	(r	=	0.90)	and	NUE	(r	

=	 0.59).	 On	 the	 other	 hand	 significant,	 strong,	 and	 positive	 correlations	 (r	=	 0.80)	

between	 RUE	 and	 cm	were	 reflected	 in	 their	 higher	 values	 of	 direct	 effect	 on	wmax.	

Result	further	indicated	that	total	correlation	(i.e.	sum	of	direct	and	indirect	effects)	

between	RUE	and	wmax	was	only	 ‐0.02.	This	was	mainly	due	 to	 the	 strong	negative	

indirect	effect	(‐0.91)	of	Asum	on	RUE.	The	total	correlation	between	cm	and	wmax	was	

also	low	(‐0.10).	 In	this	case	the	strong	indirect	negative	effect	(‐0.85)	of	Asum	on	cm	

also	played	its	role.		

The	 above	 results	were	 further	 supported	by	 the	 strong	negative	 correlations	

between	 RUE	 and	 Asum	 (r	 =	 ‐0.79)	 and	 Asum	 and	 cm	 (r	 =	 ‐0.72)	 (Fig.	 3.6).	 These	

suggested	 that	 genotypes	 with	 higher	 Asum	exhibit	 slow	 tuber	 bulking	 rate	 in	 the	
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linear	phase	and	may	be	less	efficient	in	converting	the	radiation	intercepted	into	dry	

matter	yield	of	tubers.	This	could	be	related	with	the	assimilation	of	dry	matter	and	

its	distribution	within	the	plant.	Higher	investment	in	terms	of	biomass	allocation	to	

vegetative	 organs	may	 give	 high	Asum	 and	 thereby	 higher	 total	 biomass,	 but	 on	 the	

other	 hand	 a	 relatively	 low	 proportion	 may	 be	 used	 for	 the	 production	 of	 tubers,	

especially	if	the	maintenance	requirements	are	high.	Excessive	vegetative	growth	can	

be	 compensated	 to	 only	 a	 limited	 extent	 by	 redistribution	 of	 dry	 matter	 from	

vegetative	parts	to	tubers	(Van	Heemst,	1986).		

Based	on	these	results	it	can	be	strongly	concluded	that	Asum,	RUE,	and	cm	could	

be	 the	 traits	 having	 the	 strongest	 influence	 on	 the	 temporal	 dynamics	 of	 yield	

formation	in	potato.	From	a	breeding	perspective,	an	ideal	genotype	should	have	an	

optimal	Asum,	 without	 compromising	 RUE	 and	 cm.	 Our	 path	 analysis	 between	 traits	

indicated	 the	 direction	 and	magnitude	 of	 correlated	 responses	 to	 selection	 and	 the	

relative	 efficiency	 of	 indirect	 selection.	 In	 addition,	 our	 results	 suggest	 that	 while	

using	 these	 traits	 as	 a	 criterion	 for	 selection,	 other	 causal	 relationships	 must	 be	

considered	simultaneously.			

	

	

3.10.	QTL	detection	

In	total	16	QTLs	were	identified	on	both	SH	and	RH	parental	genomes	across	all	six	

environments.	 In	 the	 SH	 genome,	 three	 QTLs	 were	 associated	 with	 two	 linkage	

groups	(I	and	V).	Thirteen	QTLs	linked	to	seven	linkage	groups	(IB,	II,	 III,	IV,	V,	VIII,	

and	VIII)	 on	 the	RH	 genome.	Table	 3.8	 describes	 the	number	 of	QTLs	detected	per	

parental	chromosome.		

	 Table	3.9	summarises	the	list	of	QTLs	detected,	their	parental	chromosomes	and	

map	positions	 and	 their	 characteristics	 (i.e.	 additive	 effects	 and	 variance	 explained	

(R2))	for	each	of	the	trait	investigated	for	individual	environment.	All	QTLs	detected	

were	 significant	 at	 (P<0.05)	with	 –log10	(P)	 values	 ranging	 from	3.52	 to	 67.99.	 The	

total	 fraction	 of	 phenotypic	 variance	 explained	 by	 effects	 of	 individual	 QTL	 ranged	

from	<0.1%	 to	79%.	The	percentage	of	phenotypic	 variance	was	even	higher	when	

considering	their	global	effects	(ranging	from	27%	to	71%)	(Table	3.9).		

	 Three	QTLs	were	detected	for	cm	(Table	3.9).	These	QTLs	were	associated	with	

linkage	 groups	 (RH	V	 and	RH	VIII).	 Two	QTLs	were	detected	 in	Exps	1	 and	3	with	

63%	and	35%	associated	combined	QTL	phenotypic	variance,	respectively.	The	other	

environments	showed	only	one	QTL.	The	major	QTL	116_5_17	on	linkage	group	RH	V	

was	commonly	detected	 in	most	of	environments.	This	QTL	had	maximum	negative	

additive	effect	that	ranged	from	21.488	g	td‐1	 to	53.663	g	td‐1	and	explained	24%	to	

57%	phenotypic	variance.	The	other	 two	additional	QTLs	(188_8_83	and	189_8_83)		
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Table	3.8.	Distribution	of	QTLs	detected	on	parental	genomes.	
	

	 SH	 RH	

	
Linkage	

group	
No.	of	QTLs	

Linkage	

group	
No.	of	QTLs	

	 I	 2	 IB	 1	

	 V	 1	 II	 3	

	 	 	 III	 1	

	 	 	 IV	 1	

	 	 	 V	 4	

	 	 	 VIII	 2	

	 	 	 X	 1	

	 	 	 	 	

Total	 3	 13	
	
	
on	linkage	group	RH	VIII	had	positive	additive	effects	(i.e.	23.719	g	td‐1	and	12.058	g	

td‐1)	with	7%	to	13%	associated	phenotypic	variance,	respectively.		

	 Two	QTLs	were	detected	for	tE	and	ED	associated	with	two	linkage	groups	(RH	

IB	and	RH	V)	(Table	3.9).	One	QTL	was	detected	in	all	the	environments	a	part	from	

Exp	 4	 where	 two	 QTLs	 were	 detected.	 The	 phenotypic	 variance	 associated	 with	

combined	QTLs	detected	 in	Exp	4	was	about	70	%.	QTL	116_5_17	on	 linkage	group	

RH	V	was	detected	consistently	 in	all	 the	environments	with	associated	phenotypic	

variance	ranging	from	62%	to	79%.	Here,	this	QTL	had	a	maximum	negative	additive	

effect	 that	 ranged	 from	 ‐24.133	 td	 to	 ‐66.019	 td.	 The	 additional	 QTL	 48_1_71	 on	

linkage	group	RH	IB	had	positive	additive	effects	ranging	from	9.561	td	to	10.369	td.	

However,	 phenotypic	 variance	 explained	 by		

these	additional	QTLs	was	less	than	1%.	

	 In	the	case	of	RUE,	at	least	one	QTL	was	detected	in	most	of	environments	apart	

from	Exps	2	and	6,	where	two	QTLs	and	no	QTLs	were	detected,	respectively	(Table	

3.9).	The	two	QTLs	found	in	Exp	2	jointly	explained	47%	of	the	phenotypic	variance.	

The	 major	 QTL	 (116_5_17)	 on	 linkage	 group	 RH	 V	 was	 consistently	 found	 in	

environments	with	additive	effects	ranging	from	0.641	g	DM	MJ‐1	to	1.732	g	DM	MJ‐1	

with	24%	to	55%	associated	phenotypic	variance.		

	 In	 total	 seven	 individual	 QTLs	 were	 detected	 for	 NUE	 (Table	 3.9).	 The	

distribution	of	QTL	s	were	such	as	three	were	found	in	Exp	3,	two	in	Exps	5	and	6	and	

one	in	Exp	4	(Table	3.9).	The	phenotypic	variance	associated	with	multiple	QTLs	per	

environment	ranged	from	27%	to	56%.	Among	the	QTLs,	116_5_17	at	position	18.2	
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cM	on	the	linkage	group	RH	V	was	consistently	detected	in	half	of	the	environments	

explaining	12%	to	48%	phenotypic	variance	for	NUE.	This	was	a	major	QTL	with	its		

additive	effects	ranging	from	‐8.79	g	DM	g‐1	N	to	‐30.187	g	DM	g‐1	N	in	Exps	3	and	6,	

respectively.	 These	 results	 indicated	 a	 threefold	 decrease	 in	 additive	 effects	 of	 this	

QTL	in	the	 	 low	N	environment	(i.e.	Exp	3;	see	Table	2.1	in	Chapter	2),	which	might	

suggest	that	alleles	on	paternal	chromosome	V	at	position	18.2	cM	may	reduce	NUE	

less	drastically	under	such	low	N	conditions	(Fig.	3.4).	Moreover,	four	additional	QTLs	

were	 detected	 on	 linkage	 groups	 (RH	 II,	 RH	 III,	 SH	 I	 and	 SH	V)	with	 their	 additive	

effects	(‐8.005,	8.881,	‐6.291,	and	10.299	g	DM	g‐1	N,	respectively).	Interestingly,	QTL	

179_5_77	at	position	77.2	 cM	on	 the	maternal	 (SH)	 linkage	group	V	was	associated	

with	a	positive	additive	effect	in	Exp	6.	This	could	suggest	that	alleles	on	the	maternal	

and	 paternal	 linkage	 groups	 V	 are	 associated	with	 negative	 and	 positive	 effects	 on	

NUE,	respectively.	

	 QTL	mapping	 for	 tuber	yield	(wmax)	per	se	 showed	six	QTLs	(Table	3.9).	These	

QTLs	were	scattered	over	four	parental	linkage	groups	(SH	I,	RH	II,	RH	IV,	and	RH	V).	

The	phenotypic	variance	explained	by	QTLs	ranged	from	(6%	to	44%).	One	QTL	was	

detected	in	Exps	1,	2,	and	4,	whereas	two	QTLs	were	detected	in	Exps	3	and	6.	No	QTL	

could	be	detected	in	Exp	5.	The	multiple	QTLs	found	in	Exps	3	and	6	jointly	explained	

53%	 and	 41%	 of	 the	 phenotypic	 variance,	 respectively.	 Among	 the	 total	 QTLs	

detected	for	this	wmax,	(116_5_17)	on	linkage	group	RH	V	was	a	major	QTL	detected	in	

most	 of	 environments	 (i.e.	 Exps	 3	 and	 6)	 with	 its	 additive	 effects	 ranging	 from																

‐458.44	 g	m‐2	 to	 ‐630.531	 g	m‐2	with	 29%	 to	 44%	 associated	 phenotypic	 variance,	

respectively	(Table	3.9).		These	results	are	in	line	with	NUE	and	suggest	also	that	QTL	

(116_5_17)	 at	 position	 18.2	 cM	 on	 paternal	 linkage	 group	 V	 is	 sensitive	 to	 the	

environment	particularly	N	as	negative	effects	caused	by	alleles	associated	with	this	

QTL	changed	in	magnitude	with	respect	to	N	availability.	It	is	interesting	to	note	that	

mean	wmax	for	Exp	3	was	even	higher	than	Exp	6	with	high	N	availability	(Table	3.3).	

As	 previously	mentioned,	 variability	 among	 the	 genotypes	was	 higher	 in	 Exp	 3	 for	

most	 traits	 (Fig.	 3.4).	 It	 would	 be	 expected	 that	 the	 some	 genotype	 were	 most	

effective	 in	 this	environment	especially	 for	NUE	as	 suggested	by	 the	biplot	analysis	

(Fig.	3.5).	Therefore	a	focus	on	why	particular	genotypes	perform	exceptionally	well	

in	 low	or	high	input	situations	could	enable	selection	strategies	to	be	developed	for	

improved	varieties.		

In	order	to	summarise	the	QTL	mapping	results,	QTLs	with	major	effects	were	

associated	with	paternal	(RH)	linkage	group	V,	where	maximum	number	of	four	QTLs	

was	detected	(Table	3.8	and	3.9).	One	particular	QTL	(i.e.	116_5_17)	on	paternal	(RH)	

linkage	group	V	at	position	18.2	cM	was	detected	for	all	traits	with	a	major	additive	

effect	 and	 explained	most	 of	 the	 total	 phenotypic	 variance	 (Table	 3.10).	 Additional	
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QTLs	 with	 minor	 effects	 was	 mostly	 associated	 with	 only	 paternal	 (RH)	 linkage	

groups	 for	 traits	 (cm,	 tE,	 and	 ED),	 whereas	 both	 maternal	 (SH)	 and	 paternal	 (RH)		

linkage	groups	were	associated	with	traits	NUE	and	wmax	for	minor	QTLs		(Tables	3.9	

and	3.10).	Our	results	are	in	line	with	those	by	Van	den	Berg	et	al.	(1996),	who	also	

reported	 that	most	 of	 the	 QTLs	 had	 small	 effects,	 but	 a	 QTL	with	main	 effect	 was	

found	 on	 chromosome	 V.	 It	 was	 further	 noted	 that	 paternal	 QTL	 (116_5_17)	 was	

associated	with	its	negative	additive	effects	for	most	of	the	traits	including	tuber	yield	

(wmax)	per	se	except	for	cm	and	RUE,	where	this	QTL	showed	the	positive	effects.	This	

indicates	that	RH	alleles	for	this	QTL	cause	synergistic	effects	during	the	early	phase	

of	plant	growth	when	the	tuber	bulking	rates	and	RUE	are	at	their	maximum.	

	 It	was	evident	 from	our	results	 that	variation	 in	 tuber	yield	 is	associated	with	

variation	in	bulking	rate,	duration	of	canopy	cover,	and	associated	extent	of	radiation	

interception	 (Fig.	 3.6).	 However,	 these	 components	 are	 not	 physiologically	

independent	 as	 genotypes	with	 a	 large	 tuber	 bulking	 rate	may	 effectively	 limit	 the	

crop	growth	and	duration	(via	enhanced	internal	plant	competition)	leading	to	their	

identified	'earliness'.			

We	 also	 observed	 co‐localisation	 of	 QTLs	 with	 many	 traits.	 For	 instance	

clustering	 of	many	QTLs	were	 found	 on	 position	18.2	 cM	on	 paternal	 (RH)	 linkage	

group	 (Table	 3.11).	Here	most	 of	 the	 traits	 (e.g.	 cm,	 tE,	 and	ED)	were	 tightly	 linked	

with	QTL	116_5_17	in	majority	of	the	environments.	This	could	mean	that	this	QTL	is	

playing	a	pleiotropic	role	in	determining	these	traits.	The	strong	genetic	correlations	

between	 these	 traits	 confirm	 these	 relations	 (Table	 3.6).	 This	 may	 indicate	 the	

difficulties	 of	 manipulating	 correlated	 traits	 simultaneously.	 However,	

QTLs	 with	 similar	 behaviours	 could	 also	 be	 interesting	 targets	 for	 breeding	

programmes	 as	 they	 are	more	 likely	 to	 be	 stable	 under	 various	 environments.	Our		

	

	

Table	3.10.	List	of	parental	linkage	groups	with	major	and	additional	minor	QTLs.		
	

Parameter	 SH	linkage	group	 RH	linkage	group	

	 Minor	QTLs	 Major	QTLs	 Minor	QTLs	

cm		 −	 V	 VIII	

tE		 −	 V	 IB	

ED		 −	 V	 IB	

RUE		 −	 V	 −	

NUE	 I,	V	 V	 II,	III,	X	

wmax		 I	 V	 II,	IV	



Chapter	3	

 
 
114

results	also	indicated	a	number	of	independent	QTLs	mainly	for	NUE.	These	QTLs	did	

not	coincide	with	other	traits	(Table	3.12).	These	QTLs	however,	with	minor	effects	

could	be	of	great	value	for	breeding	for	NUE.	

Several	 authors	 have	 indicated	 that	 some	 yield	 QTL	 coincide	 with	 those	 for	

component	 traits,	 whereas	 other	 yield	 QTL	 map	 independently	 from	 component	

traits	 (Xiao	 et	 al.,	 1995;	 Bezant	 et	 al.,	 1997).	 Few	 QTLs	 were	 expressed	 in	 one	

environment	but	not	in	the	other	(Table	3.13).	This	was	mostly	evident	for	traits	RUE,	

NUE	and	wmax.	The	lower	repeatability	of	some	QTLs	over	the	environments	suggests	

QTLE	 interaction.	 Our	 results	 support	 this	 as	 for	 these	 traits	 the	 environmental	
variance	 component	 contributed	majorly	 to	 the	 total	 phenotypic	 variance	 for	 these	

traits	 (Table	 3.4).	 QTLs	 controlling	 such	 traits	 often	 show	 low	 stability	 (Veldboom	

and	 Lee,	 1996;	 Reymond	 et	 al.,	 2004).	 Several	 researchers	 have	 identified	 loci	 that	

interacted	with	the	environment	in	different	plant	species	e.g.	yield	in	barley	(Yin	et	

al.,	1999a,b;	Teulat	et	al.	2001;	Voltas	et	al.,	2001).		

	Only	one	QTL	116_5_17	on	RH	V	showed	up	in	all	the	experiments	(Table	3.14).		

This	QTL	was	 therefore	stable	across	 the	environments	and	therefore	did	not	show	

much	of	the	QTLE.	Such	QTLs	could	be	useful	for	marker	assisted	breeding.		
	
	
4.	Conclusions	
In	this	chapter	we	tried	to	elucidate	the	onset,	rate,	and	duration	of	tuber	bulking	as	

yield‐determining,	 complex	 quantitative	 traits	 in	 a	 set	 of	 varieties	 covering	 a	wide	

range	 of	maturity	 types	 and	 a	 well‐adapted	 diploid	 F1	 segregating	 population.	We	

presented	 a	 physiological	 and	 quantitative	 genetic	 analysis	 of	 the	 traits	 underlying	

the	dynamics	of	tuber	bulking.	Our	model	described	well	the	tuber	bulking	dynamics	

and	gave	insight	into	the	vital	underlying	component	traits	influencing	the	tuber	dry	

matter	 production.	 Our	 results	 showed	 that	 tuber	 bulking	 growth	 rate	 (cm)	 was	

comparatively	higher	for	early	maturing	cultivars	followed	by	late	cultivars.	However,	

the	effective	period	of	tuber	bulking	(ED)	was	longer	for	late	maturing	genotypes.	As	a	

result,	 tuber	dry	matter	yield	 (wmax)	was	higher	 in	 late	maturing	genotypes	 than	 in	

mid‐late	and	early	genotypes.		

We	 also	 studied	 resource	 (radiation	 and	 N)	 use	 efficiencies	 and	 their	

relationships	 with	 tuber	 dry	 matter	 yield	 production	 and	 with	 other	 important	

physiological	 traits.	 The	 RUE	 values	 were	 higher	 for	 early	 maturing	 genotypes	

followed	 by	 mid‐late	 and	 late	 genotypes.	 Mean	 NUE	 values	 were	 higher	 for	 late		

maturing	 genotypes	 than	 for	mid	 early	 and	 early	 cultivars.	 Late	maturing	 cultivars	

have	 maximum	 canopy	 cover	 as	 well	 as	 a	 long	 tuber	 bulking	 period	 (ED)	 and	

therefore	the	highest	tuber	dry	matter	yields	(wmax)	per	unit	of	N	uptake.		

	



Genetic	variation	in	tuber	bulking	and	resource	use	efficiency	of	potato 

 
 

115

Q
T
L	

Li
nk
ag
e	

gr
ou
p	

M
ar
ke
r	
na
m
e	

Po
si
ti
on
	

(c
M
)	

Ex
p.
	1
	

Ex
p.
	2
	

Ex
p.
	3
	

Ex
p.
	4
	

Ex
p.
	5
	

Ex
p.
	6
	

48
_1
_7
1	

R
H
	IB
	

EA
CA
M
CG
T
_2
96
.2
__
1_
71
	

33
.9
	

	
	

	
t E
,	E
D
	

	
	

11
6_
5_
17
	
R
H
	V
	

EA
G
A
M
CT
C_
47
0_
_5
_1
7	

18
.2
	

c m
,	t
E,
	

ED
,	R
U
E	

c m
,	t
E,
	

ED
,	R
U
E	

c m
,	t
E,
	

R
U
E,
	

N
U
E,
	

w
m
ax
	

c m
,	t
E,
	

ED
,	R
U
E 	

c m
.,	
t E
,	

ED
,	R
U
E	

c m
,	t
E
,	

ED
,	

N
U
E,
	

w
m
ax
	

 

	
	 	

	T
ab
le
	3
.1
2
.	L
is
t	o
f	i
nd
ep
en
de
nt
	Q
T
Ls
	(
i.e
.	Q
T
Ls
	d
et
ec
te
d	
on
ly
	o
nc
e	
fo
r	
a	
pa
rt
ic
ul
ar
	tr
ai
t	i
n	
an
y	
en
vi
ro
nm

en
t)
.	

Q
T
L	

Li
nk
ag
e	

gr
ou
p	

M
ar
ke
r	
na
m
e	

Po
si
ti
on
	

(c
M
)	

Ex
p.
	1
	

Ex
p.
	2
	

Ex
p.
	3
	

Ex
p.
	4
	

Ex
p.
	5
	

Ex
p.
	6
	

6_
1_
2	

SH
	I	

PA
C/
M
A
CT
_2
32
.4
__
1_
2	

6.
6	

	
	

	
	

N
U
E	

	

18
_1
_3
2	

SH
	I	

EA
A
CM

CA
G
_1
87
.9
__
1_
32
	

36
.3
	

	
	

	
w
m
ax
	

	
	

17
9_
5_
77
	

SH
	V
	

PA
C/
M
A
T
A
_2
01
.4
__
5_
77
	

77
.2
	

	
	

	
	

	
N
U
E	

68
_2
_3
2	

R
H
	II
	

PA
T
/M

A
A
C_
57
0.
4_
_2
_3
2	

32
.2
	

	
	

	
	

N
U
E	

	

75
_2
_5
1	

R
H
	II
	

EA
G
T
M
CA
C_
24
9_
_2
_5
1	

50
.9
	

	
	

	
N
U
E	

	
	

84
_3
_3
	

R
H
	II
I	

PA
T
/M

A
A
C_
29
8.
3_
_3
_3
	

0	
	

	
N
U
E	

	
	

	

99
_4
_3
5	

R
H
	IV
	

EA
CA
M
CT
G
_6
9.
5_
_4
_3
5	

11
.2
	

	
	

	
	

	
w
m
ax
	

11
7_
5_
37
	

R
H
	V
	

EA
CA
M
CG
T
_2
50
.1
__
5_
37
	

35
.7
	

w
m
ax
	

	
	

	
	

	

12
1_
5_
46
	

R
H
	V
	

EA
A
CM

CA
G
_2
31
.8
__
5_
46
	

52
.6
	

	
R
U
E	

	
	

	
	

13
1_
5_
55
	

R
H
	V
	

PA
C/
M
A
T
A
_9
9.
4_
_5
_5
5	

62
.6
	

	
w
m
ax
	

	
	

	
	

18
9_
8_
83
	

R
H
	V
II
I	

PA
T
/M

A
G
G
_1
49
.8
__
8_
83
	

74
.5
	

c m
	

	
	

	
	

	

18
8_
8_
83
	

R
H
	V
II
I	

PA
G
/M

A
G
C_
29
8.
8_
_8
_8
3	

76
.1
	

	
	

c m
	

	
	

	

20
4_
10
_3
4	

R
H
	X
	

EA
A
CM

CC
A
_2
16
.8
__
10
_3
4	

31
.4
	

	
	

N
U
E	

	
	

	
 	T
ab
le
	3
.1
1
.	L
is
t	o
f		
co
‐l
oc
al
is
ed
	Q
T
Ls
	(
i.e
.	Q
T
Ls
	w
er
e	
sa
m
e	
fo
r	
m
or
e	
th
an
	o
ne
	tr
ai
t)
.	



Chapter	3	

 
 
116

QTL	 Group	 Marker	name	
Position	
(cM)	

Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6

116_5_17	 RH	V	 EAGAMCTC_470__5_17	 18.2	 ×	 ×	 ×	 ×	 ×	 ×	

 

Table	 3.13.	 Number	 of	 QTLs	 detected	 across	 six	 experiments	 (environments).	

Symbols	‘−’	and	‘*’	mean	lack	of	QTL	and	data,	respectively.	
	

Parameter	 Exp.	1	 Exp.	2	 Exp.	3	 Exp.	4	 Exp.	5	 Exp.	6	

cm		 2	 1†	 2	 1	 1	 1	

tE		 1†	 1	 1	 2	 1	 1	

ED		 1	 1	 1	 2	 1†	 1	

RUE		 1†	 2	 1	 1	 1	 −	

NUE	 *	 *	 3	 1	 2	 2†	

wmax		 1	 1	 2†	 1	 −	 2	

	 	 	 	 	 	 	

Total	QTLs	 6	 6	 10	 8	 6	 7	
†	QTLs	with	maximum	additive	effects.	

	

	

Table	3.14.	 List	 of	 stable	QTLs	 across	 six	 experiments	 (i.e.	 Same	QTLs	 detected	 in	

majority	of	environments).	

	
	

The	prospects	of	improving	a	target	trait	by	selecting	for	component	traits	are	

determined	 by	 the	 genetic	 variation	 for	 the	 particular	 component	 traits	 and	 their	

correlation	with	the	target	 trait.	High	genetic	variability	along	with	high	heritability	

was	recorded	for	most	of	the	traits.	Phenotypic	and	genetic	correlations	were	high	(r	

>	0.50)	for	these	traits.	The	phenotypic	and	genetic	correlations	among	model	traits	

suggest	 a	 trade‐off	 between	 cm	 and	 ED	 and	 between	 RUE	 and	 NUE.	 Path	 analysis	

showed	that	cm,	RUE,	and	Asum	had	a	major	influence	on	wmax.			

	 The	 genetic	 parameters	 found	 in	 this	 study	 indicated	 existence	 of	 significant	

genetic	variability	within	 the	F1	population	 for	most	 traits	 studied.	 It	was	possible,	

therefore,	 to	 further	 analyse	 this	 wide	 genetic	 variability	 available,	 which	 could	

potentially	be	exploited	 in	breeding	programmes	aimed	at	 improving	 tuber	bulking	

dynamics,	RUE,	NUE,	and	ultimately	tuber	dry	matter	production.		

	 The	AFLP	markers	were	therefore	used	to	perform	QTL	mapping	of	the	model	

traits	and	resource	(radiation,	N)	use	efficiencies.	In	total	16	QTLs	were	identified	on	

both	 SH	 and	 RH	 parental	 genomes	 across	 all	 six	 environments.	 QTLs	 with	 major	
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effects	 were	 associated	mainly	with	 paternal	 (RH)	 linkage	 group	 V.	 One	 particular	

QTL	 (116_5_17)	 on	 this	 linkage	 group	was	 detected	 for	 nearly	 all	 the	 traits	with	 a	

major	additive	effect	and	explained	most	of	the	total	phenotypic	variance.	Additional	

minor	QTLs	were	mostly	associated	with	only	paternal	(RH)	linkage	groups	for	traits	

(cm,	tE,	and	ED),	whereas	both	maternal	(SH)	and	paternal	(RH)	linkage	groups	were	

associated	with	traits	NUE	and	wmax	for	minor	QTLs.		

	 Our	quantitative	approach	 in	 combination	with	AFLP	markers	 identified	QTLs	

that	 could	 be	 useful	 in	 the	 development	 of	 marker	 assisted	 breeding	 strategies	 in	

potato	 yield	 improvement.	 It	 was	 evident	 from	 our	 results	 that	 variation	 in	 tuber	

yield	 is	 associated	 with	 variation	 in	 bulking	 rate,	 duration	 of	 canopy	 cover,	 and	

associated	 extent	 of	 radiation	 interception.	 However,	 these	 components	 are	 not	

physiologically	 independent	 as	 genotypes	 with	 a	 large	 tuber	 bulking	 rate	 may	

effectively	 limit	 the	 crop	 growth	 and	 duration	 (via	 enhanced	 internal	 plant	

competition)	leading	to	their	identified	'earliness'.					
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Model‐based	evaluation	of	maturity	type	of	potato	using	a	diverse	set	of	

standard	cultivars	and	a	segregating	diploid	population*	

	

M.S.	Khan,	H.J.	van	Eck,	P.C.	Struik	

	
 

Abstract	
The	 objective	 of	 this	 chapter	 is	 to	 evaluate	 the	 performance	 of	 the	 conventional	
system	of	classifying	maturity	 type	 in	potato	and	 to	provide	a	concept	of	maturity	
type	based	on	crop	physiology.	We	present	an	approach	in	which	physiological	traits	
are	used	to	quantify	and	assess	maturity	 type	unambiguously	 for	a	set	of	varieties	
covering	a	wide	range	of	maturity	classes	and	a	diploid	F1	population	separating	for	
maturity	 and	 well‐adapted	 to	 Dutch	 growing	 conditions,	 both	 grown	 in	 six	
environments.	We	defined	physiological	maturity	based	on	four	traits:	the	duration	
of	maximum	green	canopy,	the	area	under	the	green	canopy	cover	progress	curve,	
and	the	rate	and	duration	of	tuber	bulking.	The	results	indicated	that	physiological	
maturity	 type	criteria	 tended	 to	define	maturity	 classes	 less	ambiguously	 than	 the	
conventional	 criterion.	 Moreover,	 the	 conventional	 criterion	 was	 subject	 to	 more	
random	 noise	 and	 lacked	 stability	 and/or	 repeatability	 compared	 with	 the	
physiological	 traits.	 The	 physiological	 maturity	 criteria	 also	 illustrated	 the	
physiological	trade‐offs	that	existed	between	the	selected	traits	and	underlined	the	
subtle	 complexities	 in	 classifying	 maturity	 type.	 This	 study	 highlighted	 the	
capabilities	 of	 different	maturity	 type	 criteria	 in	 discriminating	 between	 different	
maturity	classes	among	the	large	set	of	genotypes.	Our	new	approach	involving	key	
physiological	 traits	 could	 be	 beneficial	 in	 offering	 physiology‐based	 criteria	 to	 re‐
define	maturity	type.	An	improved	criterion	based	on	important	physiological	traits	
would	 allow	 relating	 the	 maturity	 to	 crop	 phenology	 and	 physiology.	 This	 new	
criterion	may	be	amenable	 to	 further	genetic	analysis	and	could	help	 in	designing	
strategies	for	potato	ideotype	breeding	for	genotypes	with	specific	maturity	types.	
	
Key	words:	Potato	(Solanum	tuberosum	L.),	tuber	bulking,	earliness,	maturity	type,	
breeding,	segregating	population,	cultivar	choice,	statistical	tools.	
	
	
	
	
	
	
	
	

_____________________________________	
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1.	Introduction	
Crops	undergo	sequential	developmental	phases	from	emergence	to	senescence	that	

are	 characterised	 by	 their	 chronological	 age,	 but	 also	 by	 their	 phenology	 and	

reproductive	capacity.	In	most	annual	crop	plants,	the	transition	from	the	vegetative	

to	the	reproductive	phase	is	marked	by	the	onset	of	flowering	and	seed	production;	

hence	fully	reproductive	plants	are	considered	mature	(Bond,	2000).	However,	in	the	

case	 of	 potato	 (Solanum	 tuberosum	 L.),	 most	 genotypes	 maintain	 the	 capacity	 to	

develop	new	leaves	and	continue	to	grow	throughout	the	major	part	of	their	life	cycle	

thanks	to	the	fact	that	at	least	some	vegetative	meristems	remain	indeterminate	(Vos	

and	 Biemond,	 1992;	 Struik	 and	 Ewing,	 1995;	 Vos,	 1995a;	 Almekinders	 and	 Struik,	

1996;	 Fleisher	 et	 al.,	 2006).	 Progress	 to	maturity	 is	 therefore	 difficult	 to	 assess	 in	

potato.	

Crop	development	in	potato	is	a	complex	trait	that	may	be	comprised	of	a	series	

of	 phenological	 events	 such	 as	 completion	 of	 canopy	 growth,	 termination	 of	

sympodial	growth,	the	onset	of	tuber	formation,	or	the	onset	of	the	rapid	increase	in	

harvest	index,	sagging	of	plants,	senescence	of	leaves,	etc.	(Struik	et	al.,	2005;	Struik,	

2010).	 The	 sequential	 phases	 of	 growth	 determining	 the	 duration	 of	 phenological	

stages	 of	 potato	 genotypes	 could	 be	 used	 to	 understand	 and	 define	 the	 concept	 of	

maturity	type	and	to	clearly	classify	genotypes.		

The	conventionally	used	definition	of	maturity	type	in	potato,	however,	is	rather	

ambiguous	 (Haga	 et	 al.,	 2012).	 Many	 public	 and	 private	 institutions	 have	 tried	 to	

define	 the	maturity	 in	 potato	 and	 have	 come	 up	with	 their	 own	 definitions.	 Public	

institutions	 such	 as	 the	 International	 Union	 for	 the	 Protection	 of	 New	 Varieties	 of	

Plants	 (UPOV),	 and	 the	 authorities	 involved	 in	 granting	 plant	 breeders’	 rights	 use	

foliage	 maturity	 as	 descriptor	 among	 the	 many	 traits	 for	 DUS	 (Distinct,	 Uniform,	

Stable)	 criteria.	Maturity	 (Trait	 36)	 in	 the	 UPOV	 document	

(http://www.upov.int/edocs/tgdocs/en/tg023.pdf)	is	using	the	criterion	“The	time	of	

maturity	 is	 reached	when	80%	of	 the	 leaves	are	dead.”	 Private	 institutions,	 such	 as	

breeding	 companies	 and	 marketing	 boards	 release	 brochures	 to	 advertise	 the	

specificities	of	their	cultivars.	Maturity	type	indications	in	these	brochures	are	usually	

based	 on	 the	 personal	 scale	 of	 the	 breeder.	 Furthermore,	 several	 databases	 on	 the	

World	Wide	Web	are	available	such	as	“the	European	cultivated	potato	database”,		

(http://europotato.org/display_character.php?char_no=18&character=Maturity).		

It	is	remarkable,	that	many	seem	to	know	how	to	classify	plants	into	a	specific	

scale,	 and	 even	 to	 make	 conversion	 from	 one	 scale	 to	 another,	 without	 a	 proper	

definition	 of	 this	 complex	 syndrome	 of	 developmental	 events.	 As	 a	 whole,	 the	

conventional	 method	 or	 criterion	 of	 elucidating	 the	 maturity	 type	 used	 is	 mostly	

based	on	visual	observations	made	in	the	field	at	particular	time	intervals	during	the	



Model	based	analysis	of	maturity	type	of	potato 

 
 

121

crop	cycle	and	transferring	that	information	to	unit‐less	ordinal	scales.	This	criterion	

does	not	have	any	biological	meaning	and	involves	ambiguity	and	much	speculation	

in	 understanding	 the	 background	 of	 maturity,	 partly	 because	 of	 the	 different	

viewpoints	 of	 growers	 and	 processors.	 For	 instance,	 the	 grower	 may	 consider	

maturity	 as	 the	 onset	 of	 canopy	 senescence	 and/or	 when	 there	 is	 no	 further	 net	

growth	 (Bodlaender	 and	 Reestman,	 1968).	 The	 processor	 on	 the	 other	 hand	 may	

consider	 the	 declining	 levels	 of	 reducing	 sugars	 in	 the	 tubers	 as	 an	 indication	 of	

approaching	 maturity	 (Burton	 and	Wilson,	 1970).	 Yet	 others	 think	 maturity	 to	 be	

synonymous	with	tuber	dry	matter	concentration	(Beukema	and	van	der	Zaag,	1979).		

On	account	of	such	discrepancies,	the	conventional	maturity	criterion	may	also	

not	be	 stable	 (changes	of	 the	maturity	 class	of	 a	particular	 variety	have	often	been	

reported),	 subject	 to	 personal	 bias	 and	 showing	 strong	 genotype‐by‐environment	

(GE)	 interaction.	 Hence,	 there	 is	 a	 strong	 need	 for	 a	 clear	 and	 unambiguous	
definition	of	the	maturity	type	of	potato	genotypes	based	on	a	clear	understanding	of	

potato	 physiology	 and	 of	 the	 GE.	 Crop	 physiologists,	 agronomists	 and	 breeders	
would	all	profit	from	such	a	clear	definition.	Studies	by	Struik	et	al.	(2005)	and	Struik	

(2010)	have	shown	that	redefining	the	potato	maturity	based	on	physiological	traits	

is	promising.			

	Current	 state	 of	 the	 art	 in	 statistical	 knowledge	 and	 techniques	 has	 made	 it	

possible	 to	 properly	 analyse	 large	 amounts	 of	 available	 physiological	 and	 genetic	

information.	For	instance,	cluster	analysis	and	path	coefficient	analysis	are	useful	 in	

explorative	 data	 mining,	 information	 retrieval,	 and	 data	 summarisation.	 Cluster	

analysis	 offers	 a	 meaningful	 grouping	 and/or	 sub‐grouping	 based	 on	 similarities	

found	in	the	data.	Additionally,	it	offers	ways	to	characterise	each	group	in	terms	of	a	

cluster	prototype,	 i.e.	a	data	object	 that	 is	 representative	of	 the	other	objects	 in	 the	

group.	This	may	help	in	pattern	recognition,	targeting	appropriate	treatment(s),	and	

studying	 typologies	 as	 well	 as	 finding	 the	 genetic	 relationships	 and/or	 diversity	

among	the	large	set	of	genotypes	(Dunemann	et	al.,	1994;	Piluzza	et	al.,	2005;	Arshad	

et	 al.,	 2006;	Ram	et	 al.,	 2008).	 In	addition,	procedures	 like	path	 coefficient	 analysis	

has	 proven	 to	 be	 useful	 in	 giving	 thorough	 understanding	 of	 relationships	 and	

contribution	of	 various	 characters	 to	 the	 target	 trait	 by	partitioning	 the	 correlation	

coefficient	into	components	of	direct	and	indirect	effects.	Bhatt	(1972)	reported	that	

merely	correlation	studies	do	not	clearly	reveal	such	type	of	information	and	can	be	

misleading	if	the	high	correlation	between	two	traits	is	a	consequence	of	the	indirect	

effect	of	the	traits	(Dewey	and	Lu,	1959).		

	 Given	 the	 rich	 quantitative	 data	 set	 at	 hand	 from	 Chapters	 2	 and	 3	 and	 the	

availability	of	state	of	the	art	statistical	tools,	this	chapter	aims	to	evaluate,	quantify,	

and	re‐define	the	concept	of	maturity	type	of	a	large	set	and	diverse	set	of	genotypes	
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of	potato.	Our	objective	is	to	develop	a	physiological	approach	of	assessing	maturity	

type	during	the	whole	course	of	plant	development.	This	method	should	be	reliable,	

robust	 and	 should	 allow	 the	 phenotyping	 of	 large	 numbers	 of	 genotypes	 across	

diverse	 environments.	 This	 study	 will	 also	 provide	 more	 insight	 into	 the	 genetic–

physiological	linkage	of	maturity	type	in	potato.			

	

	

2.	Materials	and	methods	

	

	

2.1.	Set‐up	of	experiments	

Data	sets	for	our	analysis	came	from	six	field	experiments,	performed	in	Wageningen	

(52˚	N	latitude),	the	Netherlands,	during	2002,	2004,	and	2005	with	two	experiments	

in	 each	year.	These	experiments	differed	 in	environmental	 conditions	because	 they	

were	carried	out	in	different	years,	on	different	soils,	and	under	different	N	fertiliser	

regimes	(for	details,	see	Chapter	2).	The	experiments	were	conducted	under	stress‐

free	growing	conditions	and	the	statistical	designs	used	were	randomized	complete	

block	 designs	 with	 two	 blocks.	 The	 planting	 material	 consisted	 of	 disease‐free,	

uniform	 sized	 seed	 tubers	 of	 similar	 physiological	 quality	 from	 an	 F1	 diploid	

(2n=2x=24)	 potato	 population	 (100	 genotypes)	 derived	 from	 a	 cross	 between	 two	

diploid	 heterozygous	 potato	 clones,	 SH83‐92‐488	 	 RH89‐039‐16,	 or	 simply	 the	
‘SHRH	 population’	 (Rouppe	 van	 der	 Voort	 et	 al.,	 1997;	 Van	 Os	 et	 al.,	 2006).	 This	
population	segregates	for	maturity	type	and	is	well‐adapted	to	Dutch	conditions	(Van	

der	Wal	et	al.,	1978;	Van	Oijen,	1991)	thus	making	it	ideal	for	this	study.	A	set	of	five	

standard	 cultivars	 (viz.	 Première,	 Bintje,	 Seresta,	 Astarte,	 and	 Karnico)	 covering	 a	

wide	range	of	maturity	types	under	Dutch	conditions	were	also	included	in	this	study	

to	bench	mark	the	effects	of	maturity	type	among	known	genotypes.		

	

	

2.2.	Analytical	approach	

	

	

2.2.1.	Selection	of	physiological	traits	

Maturity	is	a	complex	phenomenon	affected	by	many	components	of	crop	growth	and	

development.	 However,	 the	 variation	 in	 maturity	 between	 the	 genotypes	 could	 be	

reflected	in	differing	periods	of	attaining	critical	physiological	stages	such	as	canopy	

development,	tuber	initiation,	filling,	and	their	total	duration.	In	Chapters	2	and	3,	we	

developed	physiological	approaches	to	quantify	the	dynamics	of	canopy	development	
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and	 of	 tuber	 bulking	 of	 potato	 during	 the	 entire	 crop	 cycle	 in	 the	 aforementioned	

large	 set	of	 genotypes.	This	work	yielded	a	 large	 set	of	biologically	meaningful	 and	

genetically	relevant	component	traits	directly	related	to	the	ability	of	 the	genotypes	

to	 intercept	 photosynthetically	 active	 radiation	 and	 tuber	 dry	 matter	 production.	

Most	 of	 these	 traits	 successfully	 explained	part	 of	 the	 genetic	 variation	 in	maturity	

type	and	could	be	used	to	enhance	the	breeding	efforts	aiming	at	elucidating	potato	

maturity.	In	this	study,	however,	for	the	sake	of	simplicity,	we	selected	only	four	traits:	

DP2,	cm,	ED,	and	Asum	based	on	their	strong	genetic	nature	and	very	high	response	to	

direct	 selection	 (Chapter	 6).	 DP2	 is	 the	 duration	 of	 the	 phase	 with	 maximum	 and	

constant	 canopy	 cover	 (in	 thermal	 days	 (td)).	 Asum	 is	 the	 area	 under	 whole	 green	

canopy	cover	curve	(in	td	%),	cm	is	the	rate	of	tuber	bulking	(in	g	m‐2	td‐1)	and	ED	 is	

the	duration	of	tuber	bulking	(in	td).	

	

	

2.2.2.	Criteria	for	re‐defining	genotype	maturity	type	

In	 the	 Netherlands,	 according	 to	 the	 conventional	 system,	 potato	 varieties	 are	

officially	classified	into	four	main	maturity	classes:	very	early,	early/mid‐early,	mid‐

late/late,	 and	 very	 late.	 However,	 for	 the	 sake	 of	 simplicity	 maturity	 classes	

early/mid‐early	 and	 mid‐late/late	 were	 considered	 as	 early	 and	 late,	 respectively,	

throughout	the	text,	tables,	and	figures.	Genotypes	were	allocated	to	maturity	classes	

(very	early,	early,	late,	and	very	late)	based	on	each	of	the	four	selected	physiological	

trait	 using	 the	 Ward’s	 minimum‐variance	 clustering	 method	 in	 SAS	 software	 (SAS	

Institute	 Inc.	 2004).	 A	 schematic	 representation	 of	 cluster	 analysis	 for	 identifying	

different	maturity	classes	is	described	by	Fig.	4.1.	The	input	data	consisted	of	means	

of	 F1	 genotypes,	 their	 two	 parents,	 and	 five	 standard	 cultivars	 across	 six	

environments.		

After	 the	 identification	 of	 the	 maturity	 classes,	 further	 sub‐clustering	 of	

genotypes	 within	 each	 maturity	 class	 was	 done	 using	 the	 nearest	 neighbour	

clustering	method.	Each	sub‐cluster	of	genotypes	within	each	of	the	maturity	classes	

was	 assigned	 different	 maturity	 scores	 according	 to	 the	 Netherlands	 Potato	

Consultative	Foundation	(NIVAP,	2007),	for	instance,	maturity	scores	8.0,	8.5,	9.0	and	

9.5	in	the	cluster	of	very	early	genotypes,	maturity	scores	2.0,	2.5,	3.0,	3.5	for	very	late,	

etc.	Table	4.1	describes	the	ranges	of	scales	for	each	maturity	type.	Finally,	this	whole	

procedure	resulted	into	re‐defined	maturity	type	criteria	based	on	our	four	selected	

physiological	 traits.	 The	 scoring	 procedure	 was	 employed	 in	 order	 to	 make	 later	

comparison	 possible	 between	 the	 conventional	 and	 newly	 re‐defined	 criteria	 of	

genotype	 maturity	 type,	 now	 referred	 to	 as	 “physiological	 maturity	 type	 criteria”	

throughout	 the	 remaining	 text.	 For	 the	 conventional	 criterion,	 we	 followed	 the	



Chapter	4	

 
 
124

	

	
	

Figure	4.1.	A	schematic	representation	of	cluster	analysis	for	single	trait	x	within	F1	

population,	where	x	=	DP2	 or	cm	or	ED	 or	Asum.	The	dashed	 line	 shows	hypothetical	

intersection	of	four	main	clusters	for	the	selection	of	four	maturity	classes	(very	early,	

early,	late,	and	very	late).		
	
	
general	practice	used	by	breeders,	 i.e.	visual	observations	were	made	 in	the	 field	at	

particular	time	intervals	during	the	crop	cycle	and	the	information	was	transferred	to	

unit‐less	ordinal	scales.		For	the	F1	population	we	had	the	breeders’	assessments	(i.e.	

genotype	maturity	scales)	based	on	two	experiments	(environments)	during	2002.	

	

	

Table	4.1.	List	of	ordinal	scale	values	for	different	maturity	classes.	
	

Maturity	class	 Type	 Scale	values	

1	 Very	early	 8.0,	8.5,	9.0,	9.5	

2	 Early	 6.0,	6.5,	7.0,	7.5	

3	 Late	 4.0,	4.5,	5.0,	5.5	

4	 Very	late	 2.0,	2.5,	3.0,	3.5	
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2.3.	Statistical	analysis	

All	statistical	analyses	were	carried	out	using	Genstat	computer	software	(Payne	et	al.,	

2009).	 Path	 coefficient	 analysis	 was	 performed	 to	 ascertain	 the	 inter‐associations	

between	 our	 selected	 physiological	 traits	 following	 the	 approach	 of	 Dewey	 and	 Lu	

(1959).	The	non‐parametric	Mann‐Whitney	U	test	was	used	to	check	the	significance	

of	differences	between	the	conventional	and	physiological	maturity	criteria	for	the	F1	

population.	 Descriptive	 statistics	 was	 performed	 and	 the	 relationships	 between	

maturity	scores	per	maturity	criterion	(i.e.	conventional	and	re‐defined	criteria)	were	

assessed	 using	 the	 Pearson	 correlation	 coefficient.	 Finally,	 regression	 analysis	 was	

performed	to	check	the	capability	of	conventional	and	physiological	maturity	criteria	

to	 predict	 the	maturity	 type	 of	 genotypes.	 As	 data	 consisted	 of	 ordinal	 scales,	 data	

was	 log‐transformed	 prior	 performing	 the	 correlation	 and	 regression	 analysis	 to	

satisfy	test	assumptions.	

	

	
3.	Results	and	discussion	
	

	

3.1.	Path	coefficient	analysis	

We	surmised	based	on	our	previous	results	(see	Chapters	2	and	3)	that	Asum	could	be	

seen	 as	 an	 expression	 of	 a	 series	 of	 underlying	 physiological,	 genetic,	 and	

environmental	processes	and	interactions	affecting	the	maturity	and	yield	production	

in	potato	(cf.	Vos,	1995b;	2009).	Path	coefficient	analysis	was	therefore	accomplished	

by	partitioning	the	direct	and	indirect	effects	of	our	selected	physiological	traits	upon	

Asum.	 	Figure	4.2	presents	the	path	coefficient	structural	model	describing	important	

relationships	among	selected	physiological	 traits.	Among	the	selected	 traits,	ED	and	

DP2	had	the	highest	direct	effects	on	Asum	(0.69	and	0.51,	respectively,	see	dashed	lines	

in	Fig.	4.2).	On	the	other	hand,	cm	showed	the	lowest	(0.22)	direct	effect	on	Asum.	The	

results	further	indicated	a	strong	positive	correlation	between	DP2	and	ED	(r	=	0.79)	

and	negative	correlations	between	cm	and	DP2	(r	=	‐0.63);	cm	and	ED	(r	=	‐0.93)	(Fig.	

4.2).	These	results	suggest	that	genotypes	with	higher	tuber	bulking	rates	(cm)	exhibit	

lower	 DP2	 or	 ED	 and	 may	 mature	 early.	 Compared	 with	 late	 genotypes,	 early	

genotypes	allocate	a	large	part	of	their	available	assimilates	to	the	tubers	early	in	the	

growing	 season,	 leading	 to	 shorter	 crop	 cycle	 (Kooman	 and	 Rabbinge,	 1996).	 In	

conclusion,	path	coefficient	analysis	 indicated	 that	progress	 to	maturity	 in	potato	 is	

strongly	influenced	by	our	selected	physiological	traits.	Based	on	the	strength	of	their	

direct	effects	on	crop	maturity,	such	traits	could	be	categorised	in	following	order:			

ED	>	DP2	>	cm.	
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3.2.	Descriptive	analysis	of	different	maturity	type	defining	criteria		

The	 first	 step	 in	 the	 analysis	 was	 to	 apply	 some	 standard	 descriptive	 statistical	

methods	to	the	data.	Table	4.2	shows	the	means,	standard	deviations,	and	minimum,	

maximum	values	of	genotypes	allocated	 in	maturity	classes	under	conventional	and	

	

	

ED

Asum
(Maturity type)

DP2

0.79

0.51 0.69

- 0.93
cm

0.22

-0.63

	
	
Figure	4.2.	Path	coefficient	structural	model	describing	direct	and	indirect	effects	of	

different	 traits	 on	 the	 maturity	 type	 (defined	 by	 Asum	i.e.	 area	 under	 whole	 green	

canopy	 curve)	 across	 six	 experiments	 in	 an	 F1	 population.	 DP2	 represents	 the	

duration	of	maximum	green	 canopy	phase,	cm	and	ED	 are	growth	 rate	and	effective	

duration	of	the	 linear	phase	of	tuber	bulking,	respectively.	The	solid	 line	represents	

the	 correlation	 coefficient	 between	 two	predictor	 variables;	 dashed	 line	 represents	

the	 path	 coefficient	 from	 the	 predictor	 variable	 to	 response	 variable	 (Asum).	 See	

Materials	and	Methods	for	further	details.	
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	Table	4.2.	Mean,	minimum	 (Min),	maximum	 (Max)	 values	 of	maturity	 scores,	 and	

percentage	 (%)	 of	 genotypes	 allocated	 to	 each	 maturity	 class	 for	 five	 different	

maturity	type	criteria	within	the	F1	population	(100	genotypes).		
	

Maturity	type	criterion1	

and	class	

Mean	(±S.E.)2	 Min	 Max	
%	

Conventional		 	 	 	 	

Very	early	 8.3	(±0.1)	 8.0	 9.5	 35.4	

Early	 7.0	(±0.1)	 6.0	 7.5	 53.8	

Late	 4.9	(±0.1)	 4.5	 5.5	 8.6	

Very	late	 3.0	(±0.5)	 2.5	 3.5	 2.2	

DP2		 	 	 	 	

Very	early	 8.3	(±0.2)	 8.0	 9.0	 7.3	

Early	 6.9	(±0.1)	 6.0	 7.5	 69.7	

Late	 4.8	(±0.1)	 4.0	 5.5	 16.5	

Very	late	 2.8	(±0.2)	 2.0	 3.5	 6.4	

cm		 	 	 	 	

Very	early	 8.6	(±0.1)	 8.0	 9.5	 18.5	

Early	 6.5	(±0.1)	 6.0	 7.5	 33.3	

Late	 4.9	(±0.1)	 4.0	 5.5	 34.3	

Very	late	 2.9	(±0.1)	 2.0	 3.5	 13.9	

ED		 	 	 	 	

Very	early	 8.7	(±0.1)	 8.0	 9.5	 52.8	

Early	 7.1	(±0.1)	 6.0	 7.5	 16.7	

Late	 4.6	(±0.2)	 4.0	 5.5	 10.2	

Very	late	 2.7	(±0.1)	 2.0	 3.5	 20.4	

Asum		 	 	 	 	

Very	early	 8.8	(±0.2)	 8.0	 9.5	 7.3	

Early	 7.0	(±0.1)	 6.0	 7.5	 62.4	

Late	 4.8	(±0.1)	 4.0	 5.5	 23.9	

Very	late	 2.9	(±0.2)	 2.0	 3.5	 6.4	
1	Conventional	 scale:	 based	 on	 breeders’	 criteria;	 DP2	 scale:	 based	 on	 duration	 of	

maximum	green	canopy	cover;	cm	scale:	based	on	tuber	bulking	rate;	ED	scale:	based	

on	 effective	 duration	 of	 linear	 tuber	 bulking;	 Asum	scale:	 based	 on	 the	 area	 under	

whole	green	the	canopy	curve.		
2	Mean	of	F1	segregating	population	(100	genotypes)	across	six	environments.	
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physiological	 maturity	 type	 criteria.	 The	 mean	 values	 of	 maturity	 scaling	 varied	

significantly	 (P<0.01)	 across	 four	maturity	 classes	 (very	 early,	 early,	 late,	 and	 very	

late)	 for	 each	maturity	 type	 criterion.	 Examination	 of	 the	minimum	 and	maximum	

values	 illustrated	 that	 mean	 ranges	 of	 maturity	 classes	 were	 consistently	 similar	

between	different	maturity	type	criteria.	This	was	a	kind	of	check	and	proved	that	our	

procedure	of	assigning	the	maturity	scores	was	satisfactory.	However,	the	percentage	

of	 genotypes	 allocated	 to	 each	maturity	 class	differed	among	maturity	 type	 criteria	

(Table	 4.2).	 For	maturity	 class	 ‘very	 early’,	 the	DP2	 and	Asum	maturity	 type	 criteria	

allocated	minimum	 (7.3%)	 of	 total	 genotypes,	 while	 the	ED	 criterion	 allocated	 the	

maximum	(52.8%)	number	of	genotypes.	In	case	of	maturity	class	‘early’,	the	ED	and	

DP2	criteria	allocated	the	minimum	(16.7%)	and	maximum	(69.7%)	of	total	genotypes,	

respectively.	 For	 ‘late’	 maturity	 class,	 the	 conventional	 criterion	 allocated	 the	

minimum	(8.6%)	whereas	the	criterion	based	on	cm	allocated	the	maximum	(34.3%)	

of	 total	 genotypes.	 On	 the	 other	 hand,	minimum	 (2.2%)	 and	maximum	 (20.4%)	 of	

total	genotypes	were	allocated	 to	maturity	 class	 ‘very	 late’	by	 the	conventional	and	

ED	maturity–type	criteria,	respectively.		 	

These	 results	 illustrated	 the	 capabilities	 of	 these	 different	 maturity	 type	

defining	 criteria	 in	 describing	 the	 extent	 of	 maturity	 type	 among	 the	 large	 set	 of	

unknown	genotypes.	

	
	
3.3.	Comparison	of	different	maturity	type	criteria	
The	statistical	comparison	of	different	maturity	type	criteria	for	the	F1	population	is	

presented	 in	Table	4.3.	Results	of	 the	non‐parametric	Mann‐Whitney	U	test	showed	

that	 there	 were	 significant	 (P<0.01)	 differences	 in	 maturity	 scores	 among	 the	 five	

criteria	except	between	conventional	and	ED	and	between	DP2	and	Asum	(Table	4.3).			

Figure	 4.3	 evaluates	 differences	 in	 maturity	 scales	 for	 standard	 cultivars.	 All	

maturity	criteria	gave	different	scales	to	the	standard	cultivars.	More	or	less	similar	

trend	 of	 maturity	 scaling	 was	 observed	 across	 the	 criteria	 following	 the	 order:	

Première	>	Bintje	>	Seresta	>	Astarte	>	Karnico	(Fig.	4.3).		

The	results	indicated	furthermore	that	Première	was	marked	as	‘very	early’	by	

most	of	the	criteria.	However,	according	to	DP2	and	Asum	criteria,	Première	was	placed	

in	 the	 ‘early’	 category.	 Bintje	 was	 marked	 as	 ‘early’	 by	 all	 criteria,	 except	 the	 cm	

criterion	which	put	Bintje	in	the	‘very	early’	category.	Cultivar	Seresta	was	marked	as	

‘late’	 by	 the	 conventional,	cm	and	ED	 criteria,	 but	 the	 same	 cultivar	was	 considered	

‘very	late’	by	DP2	and	Asum	criteria.	Astarte	and	Karnico	were	marked	as	‘very	late’	by	

all	 criteria	 except	 cm	 which	 considered	 these	 cultivars	 ‘late’.	 Apparently	 cm	 and	

conventional	 criterion	 showed	 least	 and	 maximum	 resolution,	 respectively	 for	

maturity	type	among	the	standard	cultivars.	
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Table	 4.3.	 Mann‐Whitney	 U	 test	 for	 checking	 extent	 of	 variation	 among	 different	

maturity	type	criteria.	
	

Maturity	class1	 Mann‐Whitney	U		test2	

Conventional	scale	versus	 	

DP2	scale	 **	

cm	scale	 **	

ED	scale	 NS	

Asum	scale	 **	

	 	

DP2	scale	versus	 	

cm	scale	 **	

ED	scale	 **	

Asum	scale	 NS	

	 	

cm	scale	versus	 	

ED	scale	 **	

Asum	scale	 **	

	 	

ED	scale	versus	 	

Asum	scale	 **	
1	Conventional	 scale:	 based	 on	 breeders’	 criteria;	 DP2	 scale:	 based	 on	 duration	 of	

maximum	green	canopy	cover;	cm	scale:	based	on	tuber	bulking	rate;	ED	scale:	based	

on	effective	duration	of	linear	tuber	bulking;	Asum	scale:	based	on	the	area	under	the	

whole	green	canopy	progress	curve.		
2	**	Significant	at	1%,	NS=	non‐significant.	

	

	

These	results	highlighted	the	complexities	in	defining	the	maturity	type	in	potato.	It	

was	 notable	 that	 although	 conventional	maturity	 criterion	was	 able	 to	 classify	 the	

genotypes	 into	 different	 maturity	 classes,	 it	 could	 not	 offer	 a	 clear	 definition.	 In	

contrast,	 results	 from	 physiological	 maturity	 type	 criteria	 were	 easily	 and	 clearly	

interpretable.	 Our	 integrated	 approach	 involving	 different	 physiological	 traits	

therefore	 could	 be	 very	 beneficial	 in	 offering	physiology‐based	 criteria	 to	 re‐define	

maturity	type.	
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Figure	4.3.	Comparison	of	conventional	and	physiological	maturity	 type	criteria	 for	

five	standard	cultivars.	DP2	represents	the	duration	of	maximum	green	canopy	phase,	

cm		and	ED	are	growth	rate	and	effective	duration	of	the	linear	phase	of	tuber	bulking,	

respectively,	Asum	is	area	under	whole	green	canopy	curve.	

	

	

3.4.	Performance	and	stability	of	conventional	maturity	type	criterion		

Our	 next	 objective	 was	 to	 check	 the	 performance	 of	 the	 conventional	 criterion	 in	

terms	of	its	capacity	to	clearly	pick	up	genotypes	for	each	physiological	trait	(i.e.	DP2,	

cm,	ED,	and	Asum).	Considerable	overlapping	among	the	maturity	classes	was	observed	

in	the	conventional	criterion	(Fig.	4.4).	The	extent	of	stability	and/or	repeatability	of	

maturity	 scores	 from	 the	 conventional	 criterion	were	 checked	 for	 the	 quantitative	

physiological	traits.		

Figure	 4.5	 compares	 the	 maturity	 scores	 from	 conventional	 method	 for	 one	

physiological	 trait	 Asum.	 The	 results	 indicated	 that	 Asum	 values	 showed	 a	 lot	 of	

variation	both	within	and	throughout	different	maturity	classes.	For	instance,	it	was	

noted	that	the	conventional	criterion	could	not	identify	genotypes	with	high	Asum		(i.e.	

very	 late	genotypes)	as	evident	 from	the	 lack	of	maturity	scores	 in	the	range	of	2‐4	

(Fig.	4.5).		

These	 results	 indicated	 the	 weakness	 and	 lack	 of	 robustness	 of	 conventional	

maturity	criterion	in	dealing	with	rather	complex	physiological	quantitative	traits.	It	

can	 be	 concluded	 that	 such	 criterion	 is	 not	 quite	 able	 to	 clearly	 interpret	 and	

discriminate	 between	 maturity	 classes	 for	 the	 crucial	 growth	 related	 processes	 of		
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Figure	4.4.		Box	plots	illustrating	the	ranges	of	genotypes	in	four	maturity	classes	as	

assessed	 by	 conventional	 criterion	 for	 physiological	 traits:	 DP2,	 cm,	 ED,	 and	 Asum,	

within	the	F1	population	(100	genotypes).	DP2	represents	the	duration	of	maximum	

green	 canopy	phase,	cm	and	ED	 are	 growth	 rate	 and	effective	duration	of	 the	 linear	

phase	of	tuber	bulking,	respectively	and	Asum	is	area	under	whole	green	canopy	curve.	

The	boxes	span	the	interquartile	range	of	the	trait	values,	so	that	the	middle	50%	of	

the	 data	 lay	within	 the	 box,	with	 a	 horizontal	 line	 indicating	 the	median.	Whiskers	

extend	beyond	the	ends	of	the	box	as	far	as	the	minimum	and	maximum	values.	VE=	

very	early;	E=early;	L=late;	VL=very	late.		

	

	

potato.	 An	 improved	 criterion	 based	 on	 important	 physiological	 traits	would	 allow	

relating	 the	 maturity	 to	 crop	 phenology	 and	 physiology.	 Haga	 et	 al.	 (2012)	 used	

flower	development,	 leaf	chlorophyll	content	and	 leaf	peroxidase	activity	 to	classify	

maturity	 of	 potato	 cultivars	 under	 temperate	 conditions.	 They	 observed	 that	 leaf	

chlorophyll	content	was	the	most	reliable	 indicator	among	these	three	variables,	an	

indicator	 related	 to	Asum	 as	 both	 reflect	 leaf	 senescence.	 However,	 leaf	 chlorophyll	

content	 was	 mainly	 capable	 of	 discriminating	 between	 late	 and	 early‐medium	 or	

	medium‐late;	it	did	not	separate	early‐medium	from	medium‐late	cultivars	well.	
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Figure	 4.5.	 Extent	 of	 stability	 and/or	 repeatability	 of	 maturity	 scores	 from	 a	

conventional	criterion	for	quantitative	traits,	 for	instance	Asum	(i.e.	area	under	whole	

green	canopy	cover	curve)	within	the	F1	population.		

	

	

	 Our	 physiological	 based	 criteria	 of	 defining	 the	 maturity	 type	 could	 allow	 in	

clear	discriminating	between	all	classes.	

	

	

3.5.	Predictive	capability	of	different	maturity	type	criteria	

Different	maturity	criteria	were	analysed	for	their	capabilities	to	predict	the	maturity	

in	 a	 large	 number	 of	 unknown	 genotypes	 across	 diverse	 environments.	 The	

regression	 analysis	 was	 performed	 on	 the	 maturity	 scores	 from	 each	 maturity	

criterion.	So	far	our	results	indicated	that	nearly	all	physiological	traits	satisfactorily	

defined	the	maturity	type.	However,	for	the	sake	of	simplicity,	here	we	consider	only	

one	trait	Asum	as	a	synonym	to	the	response	variable	“maturity”.	Figure	4.6	shows	the	

results	 of	 regression	 between	 the	 observed	Asum	 and	 the	Asum	 (“maturity	 type”)	 as	

predicted	 by	 regression	 analysis	 from	 the	 individual	 maturity	 criteria.	 The	 results	

indicated	 that	almost	all	maturity	criteria	predicted	 the	maturity	well,	 i.e.	R2	>	0.50.	

However,	 the	 conventional	 and	 cm	 based	 criteria	 predicted	 the	 maturity	

comparatively	 less	 accurately	 with	 R2	 values	 0.68	 and	 0.51,	 respectively.	 Maturity	

criterion	based	on	ED	gave	the	best	(R2	=	0.81)	predictions	for	maturity	type	followed		
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Figure	4.6.		Comparison	of	different	maturity	type	criteria	for	predicting	the	Asum	(as	

a	proxy	for	maturity	type)	within	the	F1	population	across	six	environments.	Panels	

show	 regression	 analysis	 based	 on	 different	 maturity	 type	 criteria,	 i.e.	 (a)	

conventional,	(b)	DP2	(duration	of	maximum	green	canopy	phase),	(c)	cm	(growth	rate	

during	 linear	 phase	 of	 tuber	 bulking),	 (d)	ED	 (effective	 duration	 of	 tuber	 bulking).	

Note	that	variable	on	Y‐axis	(i.e.	Asum:	area	under	whole	green	canopy	cover	curve)	is	

considered	equivalent	to	maturity,	see	text.		

	

by	criterion	based	on	trait	DP2	(i.e.	R2	=	0.77).	These	results	were	in	line	with	our	path	

coefficient	analysis	conclusions	(Fig.	4.2).	These	results	concluded	that	overall,	most	

of	 the	 physiological	 maturity	 type	 criteria	 were	 fully	 capable	 of	 reproducing	 the	

maturity	type	of	genotypes	across	diverse	environments.		

	
	
3.6.	Direct/indirect	selection	possibilities	for	maturity	type	
Figure	 4.7	 illustrates	 the	 relationships	 between	 maturity	 scores	 (Table	 4.1)	 from	

different	maturity	 type	criteria	within	 the	F1	population	across	all	 six	experiments.	

All	correlations	were	highly	significant	(P<0.01)	and	positive.	
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Figure	4.7.	Relationships	between	maturity	scale	values	from	different	maturity	type	

criteria	within	F1	population	across	six	environments.	Values	on	the	X‐axis	and	Y‐axis	

represent	log‐transformed	maturity	scales	(cf.	Materials	and	Methods).	

	

	 The	 results	 indicated	 very	 strong	 phenotypic	 correlations	 between	 the	 Asum	

criterion	and	DP2	and	ED,	and	between	cm	and	ED	criteria	(r=	0.89).	This	shows	that	

both	rate	and	duration	of	tuber	bulking	are	important	in	controlling	the	total	duration	

of	 crop	 growth	 and	 the	 capacity	 of	 the	 crop	 to	 intercept	 radiation,	 crucial	 in	

determining	 final	 yield	 (Kooman	 and	Rabbinge,	 1996).	 These	 results	 indicated	 that	

maturity	 type	 of	 the	 genotypes	 based	 on	 Asum	 could	 be	 indirectly	 obtained	 by	

selecting	genotypes	with	the	proper	DP2	criterion.	Our	results	in	previous	chapters	(2	

and	 3)	 showed	 that	 quantitative	 trait	 loci	 (QTL)	 for	 these	 physiological	 traits	 are	
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mostly	 co‐localised	 on	 chromosome	 V	 of	 the	 paternal	 (i.e.	 RH)	 genome	 in	 the	 F1	

segregating	population	of	potato	and	explain	more	than	50%	of	the	total	phenotypic	

variance.	Moreover,	 our	 results	 in	 Chapter	 2	 indicated	 that	maximum	QTL	 additive	

effects	were	associated	with	Asum	throughout	different	environments	(see	Fig.	2.12),	

illustrating	 the	close	association	of	maturity	with	 this	physiological	 trait.	Therefore,	

this	 locus	 could	 be	 used	 as	 an	 explanatory	 variable	 for	 further	 elucidating	 the	

physiological	 as	 well	 as	 genetic	 aspects	 of	 maturity	 in	 potato.	 The	 conventional	

criterion	 on	 account	 of	 its	 subjective	 nature	 does	 not	 explain	 maturity	 type	 any	

further,	 in	spite	of	 its	high	correlation	with	some	of	 the	physiological	maturity	 type	

criteria.	

	

	

3.7.	Applications	of	re‐defining	maturity	type	based	on	physiological	traits	

Our	 study	 showed	 that	 re‐defining	 the	maturity	 type	 on	 the	 basis	 of	 physiological	

traits	 is	 useful.	 The	 new	 physiology‐based	 maturity	 definition	 could	 be	 applied	 in	

plant	breeding	and	in	crop	management	(Struik,	2010).		

	 The	physiological	maturity	 criteria	 can	play	 a	 significant	 role	 in	devising	 crop	

escape	 strategies	 to	 cope	 with	 biotic	 stresses,	 such	 as	 late	 blight	 (Struik,	 2010).	

Strategies	like	advancing	the	crop	growth	before	the	stress	becomes	too	harmful	may	

prove	 very	 useful.	 For	 instance,	 genotypes	 with	 early	 tuber	 set	 and	 faster	 tuber	

bulking	 can	 better	 escape	 the	 disease	 severity.	 The	 physiological	 based	 maturity	

criteria	may	also	 allow	 the	 selection	of	 the	genotypes	 for	maturity	 type	 in	order	 to	

break	the	correlation	between	resistance	and	late	maturity.	Characteristics	that	could	

be	useful	indicators	of	competitive	ability	against	weeds	may	include	a	growth	habit	

that	allows	early	attainment	of	full	canopy	cover	and	its	presence	for	longer	periods	

(i.e.	genotypes	with	high	DP2	and	late	maturity	(e.g.	high	Asum)	(Joenje	and	Kropff,1987;	

Lotz	et	al.,1991;	Grevsen,	2003;	Williams	et	al.,	2008).	This	can	help	potato	growers	to	

choose	those	genotypes	with	a	high	tolerance	to	weed	pressure	and	able	to	maintain	

high	yields	in	the	presence	of	weeds,	especially	in	organic	agriculture.	In	this	context,		

inclusion	of	maturity	type	based	on	physiological	characters	in	breeding	programmes	

could	allow	 the	 selection	of	 competitive	genotypes	 in	 field	 conditions	where	weeds	

are	always	present	as	well	as	enhance	the	efficacy	of	overall	weed	control.	

	 The	physiological	maturity	 type	 criteria	would	also	give	more	 insight	 into	 the	

physiological	nature	of	genotype’s	maturity	type	and	therefore	would	help	in	proper	

planning	 of	 haulm	 killing.	 This	 would	 give	 the	 benefits	 of	 increased	 tuber	 quality	

(Halderson	et	al.,	1985)	and	economical	savings	(cost	of	desiccant).		

	 	 The	 physiological	 maturity	 type	 criteria	 take	 into	 account	 the	 quantitative	

knowledge	 of	 the	 influence	 of	 environmental	 factors	 on	 the	 length	 of	 the	 growing	
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season	 and	 on	 dry	matter	 partitioning,	 necessary	 for	 designing	 genotypes	 for	 such	

environments	(Haverkort	and	Kooman,	1997).	Our	approach	therefore	would	help	in	

designing	strategies	for	breeding	for	genotypes	with	specific	maturity	type.		

	

	

4.	Conclusions	

In	this	chapter	we	tried	to	create	a	clear	definition	of	maturity	type	and	to	develop	a	

quantitative,	reproducible	method	to	assess	the	maturity	type	in	a	large	set	of	potato	

genotypes.	We	presented	an	approach	whereby	potato	physiological	traits	were	used	

to	 explain	 the	maturity	 type	 in	 a	 set	of	 varieties	 covering	a	wide	 range	of	maturity	

types	and	a	well‐adapted	diploid	F1	segregating	population.	This	procedure	resulted	

in	 four	 re‐defined	 criteria	 of	 defining	 maturity	 type	 which	 we	 call	 “physiological	

maturity	type	criteria”	as	opposed	to	the	conventionally	used	criterion.		 	

	 The	 physiological	 maturity	 type	 criteria	 were	 based	 on	 physiological	 and	

quantitative	knowledge	and	were	easily	interpretable	in	terms	of	physiological	trade‐

offs	that	existed	between	the	selected	traits.	The	conventional	maturity	type	criterion	

could	 not	 offer	 this	 advantage	 on	 account	 of	 its	 subjective	 and	 ordinal	 nature.	 Our	

results	 showed	 that	 the	 conventional	 maturity	 criterion	 showed	 considerable	

overlapping	among	the	maturity	classes	with	maximum	variability.	Besides,	 it	could	

not	offer	a	clear	definition	of	maturity	on	account	of	its	subjective	nature.	In	contrast,	

physiological	maturity	 type	 criteria	 tended	 to	explain	maturity	 type	 in	potato	more	

clearly	and	were	better	capable	of	predicting	 the	maturity	 type	of	genotypes	across	

diverse	environments	than	the	conventional	criterion.		

This	 study	 gave	more	 understanding	 about	 the	 nature	 of	 genotype’s	maturity	

type,	besides,	it	also	highlighted	the	complexity	of	defining	maturity	type	in	a	potato.	

Our	 results	 however,	 showed	 that	 re‐defining	 the	 maturity	 type	 of	 a	 large	 set	 of	

genotypes	on	the	basis	of	physiological	traits	is	possible	and	may	prove	useful.	A	new	

physiology‐based	 maturity	 definition	 could	 offer	 wider	 applications	 in	 potato	

breeding	 and	 crop	 management	 studies.	 This	 new	 criterion	 may	 be	 amenable	 to	

further	 genetic	 analysis	 and	 could	 also	 help	 in	 designing	 strategies	 for	 potato	

ideotype	 breeding	 for	 genotypes	 with	 specific	 maturity	 type	 for	 specific	 growing	

conditions	and/or	environments.	
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Abstract	
We	tested	the	capability	of	the	generic	ecophysiological	model	‘GECROS’	to	analyse	
differences	 in	 tuber	 yield	 of	 potato	 in	 a	 set	 of	 cultivars	 covering	 a	wide	 range	 of	
maturity	types	and	a	diploid	F1	population	segregating	for	maturity	type.	The	model	
predicts	 crop	 growth	 and	 development	 as	 affected	 by	 genetic	 characteristics	 and	
climatic	 and	 edaphic	 environmental	 variables.	 The	 genotype‐specific	 model‐input	
parameter	values	were	estimated	and	the	model	was	used	for	predicting	the	tuber	
yield	 of	 an	 F1	 population,	 their	 parents	 and	 a	 set	 of	 cultivars	 in	 multiple	 field	
experiments.	The	model	yielded	a	reasonably	good	prediction	of	differences	in	tuber	
yield	 across	 environments	 and	 across	 genotypes.	 Trends	 of	 growth	 and	 nitrogen	
uptake	 were	 adequately	 reproduced	 by	 the	 model.	 Model	 analysis	 identified	 the	
genotypic	key‐parameters	affecting	tuber	yield	production	and	Nmax	(i.e.	total	crop	N	
uptake)	contributed	most	to	the	determination	of	tuber	yield.	Genotypes	with	higher	
Nmax	and	lower	tuber	N	concentration	exhibited	higher	tuber	dry	matter	yield.	These	
results	were	largely	confirmed	by	statistical	path	coefficient	analysis.	GECROS	model	
is	a	useful	tool	in	analysing	the	contribution	of	individual	physiological	traits	to	yield	
across	 different	 environments.	 Such	 information	 can	 greatly	 facilitate	 the	
development	of	potato	ideotypes	for	specific	environments.	
	
	
Key	words:	Potato	(Solanum	tuberosum	L.);	ecophysiological	crop	model;	GECROS;	
genotype‐by‐environment	 (GE)	 interaction;	 complex	 traits;	 yield;	 sensitivity	
analysis;	path	coefficient	analysis;	ideotype;	plant	breeding.	
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1.	Introduction	

Potato	 (Solanum	tuberosum	 L.)	 is	 one	 of	 the	most	 important	 and	widely	 cultivated	

non‐cereal	 crops,	 in	many	 parts	 of	 the	world	 (Walker	 et	 al.,	 1999;	Hijmans,	 2001).	

Due	to	increasing	food	demand	and	changing	diets	potato	is	becoming	a	subsistence	

crop	 in	 many	 growing	 areas.	 There	 is	 a	 need	 to	 increase	 potato	 yield	 via	 genetic	

improvement	 and/or	 altered	 crop	management.	 In	 order	 to	 efficiently	 improve	 the	

target	traits,	prediction	of	the	phenotypic	characteristics	of	genotypes	under	various	

environmental	conditions	is	crucial	(Asseng	and	Turner,	2007).		

	 Most	agronomic	traits	are	genetically	complex	(Daniell	and	Dhingra,	2002;	Lark	

et	 al.,	 1995;	 Orf	 et	 al.,	 1999;	 Stuber	 et	 al.,	 2003);	 they	 have	 low	 heritability,	 are	

strongly	 dependent	 on	 environmental	 changes	 and	 often	 show	 high	 genotype‐by‐

environment	(GE)	interactions	(Allard	and	Bradshaw,	1964;	Tardieu,	2003;	Cooper	
et	 al.,	 2002,	 2005).	There	 is	 a	 need	 to	dissect	 complex	 traits	 like	 yield	 into	 simpler	

characters	 and	 to	 separate	 factors	 influencing	 a	 given	phenotypic	 trait	 and	 shifting	

from	 highly	 integrated	 traits	 to	 genotype‐specific	 traits	 (Yin	 et	 al.,	 2002).	

Ecophysiological	crop	growth	models	have	the	potential	to	assess	a	complex	trait	at	a	

higher	 organizational	 level,	 via	 integrating	 the	 information	 about	 processes	 at	 the	

lower	level.	Their	ability	to	incorporate	knowledge	of	physiological	traits	to	simulate	

crop	 growth	 and	 yield	 as	 influenced	 by	 growing	 environment,	 and	 agronomic	

practices	suggests	the	possibility	of	using	models	as	a	crop	breeding	tool	(Boote	and	

Tollenaar,	 1994;	 Aggarwal	 et	 al.,	 1997;	 Bastiaans	 et	 al.,	 1997;	 Boote	 et	 al.,	 1998;	

Uehara,	1998;	White,	1998;	Boote	et	al.,	2001;	Mavromatis	et	al.,	2001,	2002;	Hammer	

et	al.,	2002,	2006;	Tardieu,	2003;	Banterng	et	al.,	2004;	Hoogenboom	et	al.,	2004;	Yin	

et	al.,	2004;	Asseng	and	Turner,	2007;	Herndl	et	al.,	2007;	Letort	et	al.,	2007).		

	 One	of	 the	main	 applications	of	 these	models	 is	 to	describe	 the	differences	 in	

yield	potential	of	genotypes	between	or	within	a	breeding	population	on	the	basis	of	

individual	 physiological	 parameters.	 These	 parameters	 could	 be	 considered	 as	

quantitative	traits	and	are	amenable	to	further	analysis	(Yin	et	al.,	2004;	Quilot	et	al.,	

2005),	e.g.	 for	evaluating	and	designing	 ideotypes	(Loomis	et	al.,	1979;	Kropff	et	al.,	

1995;	 Boote	 et	 al.,	 1996;	 Cilas	 et	 al.,	 2006;	 Yin	 et	 al.,	 2003c,	 2004;	 Yin	 and	 Struik,	

2008).	 This	 is	 possible	 because	 these	 parameters,	 often	 regarded	 as	 ‘genetic	

coefficients’,	are	specific	to	each	genotype	and	supposed	to	be	constant	under	a	wide	

range	 of	 environmental	 conditions	 (Boote	 et	 al.,	 2001;	 Tardieu,	 2003;	 Bannayan,	

2007).	 This	 model	 feature	 makes	 it	 possible	 to	 make	 predictions	 about	 the	 plant	

developmental	processes	of	genotype	in	a	wide	range	of	environments	(Stam,	1996;	

Bindraban,	1997;	Hoogenboom	et	al.,	1997).	Such	models	can	quantify	crop	genotype‐

phenotype	relationships	(Yin	et	al.,	2000b,	2004;	Reymond	et	al.,	2003;	Hammer	et	al.,	

2006)	 and	 therefore	 are	 highly	 suitable	 for	 studying	 the	 GE	 (Shorter	 et	 al.,	 1991;	



An	ecophysiological	model	analysis	of	yield	differences	in	potato 

 
 
 

139

Hunt,	1993;	Kropff	and	Goudriaan,	1994;	Hammer	et	al.,	1996;	Chapman	et	al.,	2002;	

Yin	et	al.,	2003c;	Banterng	et	al.,	2004,	2006;	Yin	et	al.,	2004;	Suriharn	et	al.,	2007)	

and	could	assist	with	multi‐location	evaluation	of	crop	breeding	lines	(Liu	et	al.,	1989;	

Aggarwal	et	al.,	1995;	Palanisamy	et	al.,	1995;	Piper	et	al.,	1998;	Boote	et	al.,	2001;	

Slafer,	 2003;	 Banterng	 et	 al.,	 2004;	 Mayes	 et	 al.,	 2005).	 For	 potato,	 Kooman	 and	

Spitters	 (1995)	 showed	 that	 simulation	 models	 can	 be	 useful	 for	 predicting	 tuber	

yield	and	gaining	insight	into	crop	growth	processes	and	can	help	to	explore	options	

for	crop	improvement.		

	 However,	 traditionally,	 crop	 models	 have	 principally	 been	 used	 to	 study	 and	

predict	crop	performance	in	response	to	environmental	conditions	and	management	

practices,	whereas	genotypic	impacts	on	crop	performance	(especially	in	the	context	

of	plant	breeding	where	large	numbers	of	genotypes	are	involved)	have	received	less	

attention.	This	is	partly	due	to	the	constraints	imposed	by	time,	resources,	and	large	

number	of	genotypes	that	makes	it	difficult	to	measure	detailed	growth	dynamics	to	

fully	derive	the	genotype‐specific	model	coefficients	(Anothai	et	al.,	2008),	and	partly	

due	 to	 the	 restricted	 capabilities	 of	models	 to	 represent	 genetic	 differences	 (White	

and	Hoogenboom,	1996;	Hoogenboom	et	al.,	1997).	

To	 be	 useful,	 the	 physiological	 frameworks	 used	 for	 trait	 dissection	 and	

modelling	 at	whole‐crop	 level	must	 realistically	 capture	 the	 functional	 basis	 of	 the	

genetic	variation	for	complex	traits	of	interest	(Yin	et	al.,	2000b).	Most	existing	crop	

models,	which	were	constructed	 to	deal	mostly	with	agronomic	 issues,	are	not	well	

structured	in	this	regard	for	instance	for	capture	and	use	of	nitrogen	(N)	(Jeuffroy	et	

al.,	2002)	and	for	carbon	(C)	and	N	partitioning	(Dingkuhn,	1996).	They	also	lack	the	

ability	 to	 describe	 subtle	 complexities	 associated	 with	 the	 differences	 between	

genotypes	(White	and	Hoogenboom,	1996;	Yin	et	al.,	2004).		

	 In	this	respect,	crop	physiological	modes	of	action	of	the	complex	trait	must	be	

understood	 and	 quantified	 and	 the	 crop	 model	 must	 be	 sufficiently	 detailed	 to	

simulate	 the	 consequences	on	 growth	 and	development	 generated	by	 the	 genotype	

(G),	environment	(E)	and	ultimately	GE	(Hammer	et	al.,	1996).	To	become	effective	
tools	 for	 addressing	 GE,	 existing	 models	 have	 to	 be	 improved,	 both	 in	 terms	 of	
model	structure	and	input	parameters	(Yin	et	al.,	2004;	Yin	and	Struik,	2008).	Studies	

are	 thus	 needed	 to	 develop	 and/or	 test	 the	 potential	 capabilities	 of	 current	 crop	

models	 for	 plant	 breeding	 and	 to	 specify	 the	 necessary	 modifications	 for	 such	

applications.	

	 	 The	 objectives	 of	 this	 study	 are	 (i)	 to	 examine	 the	 ability	 of	 a	 recent	

ecophysiological	crop	growth	model	‘GECROS’	to	explain	yield	differences	among	100	

genotypes	 from	 an	 F1	 segregating	 population,	 their	 parents	 and	 a	 set	 of	 standard	

cultivars	 of	 potato,	 and	 (ii)	 to	 analyse	 the	 relative	 importance	 of	 individual	
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physiological	 traits	 in	 determining	 yield	 differences.	 These	 analyses	 could	 have	 a	

strong	implication	in	exploring	the	extent	to	which	our	model	dissects	the	role	of	G,	E,	

and	GE	on	 tuber	 yield	 production,	 and	 in	designing	 strategies	 for	 potato	 ideotype	
breeding	for	specific	environments.		

	

	

2.	Materials	and	methods	

	

	

2.1.	The	GECROS	model	

The	 model	 GECROS	 (Genotype‐by‐Environment	 interaction	 on	 CROp	 growth	

Simulator)	 is	 a	 generic	 ecophysiological	 model	 that	 predicts	 crop	 growth	 and	

development	 as	 affected	 by	 genetic	 characteristics	 and	 climatic	 and	 edaphic	

environmental	 variables.	 For	 a	 detailed	 description	 of	 the	model,	 see	 Yin	 and	 Van	

Laar	(2005).	Here,	only	the	key	processes	modelled	 in	GECROS	(version	2.0	as	used	

by	Yin	and	Struik,	2010)	are	summarised.		

Coupled	 modelling	 of	 CO2	 diffusional	 (stomatal	 and	 mesophyll)	 conductance,	

leaf	 photosynthesis	 and	 transpiration	 in	 dependence	 of	 leaf	 nitrogen	 content	 is	

implemented	 according	 to	 Yin	 and	 Struik	 (2009).	 Subsequently,	 the	 results	 are	

integrated	 for	 the	whole	 canopy,	based	on	 the	 sun/shade	approach	of	De	Pury	and	

Farquhar	(1997).	The	Gaussian	integration	is	used	to	extend	the	instantaneous	rates	

into	the	daily	total	photosynthesis	and	transpiration.	

Daily	 crop	 respiration	 is	 simulated	 based	 on	 the	 theoretical	 framework	 of	

respiration	 components:	 (i)	 growth	 respiration,	 (ii)	 respiration	 for	 ammonium	 and	

nitrate	uptake	and	nitrate	reduction;	uptake	of	other	 ions,	phloem	 loading,	and	(iii)	

residual	maintenance	respiration	(Cannell	and	Thornley,	2000).		

Nitrogen	 demand	 is	modelled	 as	 the	maximum	 value	 of	 the	 deficiency‐driven	

and	 the	 growth	 activity‐driven	 demand.	 The	 first	 guarantees	 the	 actual	 plant	 N	

concentration	 being	 above	 a	 critical	 value;	 the	 second	 is	 modelled	 based	 on	 the	

optimum	 N‐C	 ratio	 for	 maximising	 the	 relative	 carbon	 gain,	 using	 the	 equation	 of	

Hilbert	 (1990).	The	actual	N	uptake	 is	 limited	by	 the	maximum	daily	N	supply	 rate	

from	the	soil.		

Partitioning	of	the	newly	produced	C	and	absorbed	N	is	modelled	in	two	steps:	

first,	between	the	root	and	the	shoot,	and	then	among	organs	within	the	shoot.	Root‐

shoot	partitioning	 for	C	 and	N	 responds	 to	 environmental	 conditions,	 based	on	 the	

root‐shoot	 functional	balance	theory	(e.g.	Charles‐Edwards,	1976)	adjusted	in	order	

to	maximize	relative	growth	rate.	

Intra‐shoot	 carbon	 partitioning	 to	 the	 structural	 stems	 and	 to	 the	 tubers	 are	
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determined	according	 to	 their	expected	daily	carbon	demands,	which	are	described	

by	 the	 differential	 form	 of	 a	 sigmoid	 function	 for	 asymmetric	 determinate	 growth	

(Yin	et	al.,	2003a).	 In	 the	model,	 the	potential	 tuber	sink	size	 is	calculated	 from	the	

estimated	amount	of	N	available	for	tuber	growth.	The	remaining	shoot‐carbon	goes	

either	to	the	leaves	or	to	the	C	reserve	pool,	depending	on	whether	the	green‐surface	

area	index	becomes	C‐	or	N‐limited.		

The	 intra‐shoot	 N	 partitioning	 is	 based	 on	 pre‐defined	 maximum	 tuber	 N	

concentration	(nSO,	which	is	a	genotype‐specific	parameter,	Table	5.1)	and	minimum	

N	 concentration	 in	 the	 stems.	 If	 the	 N	 requirements	 for	 the	 tubers	 and	 structural	

stems	are	met	from	the	current	N	uptake,	the	remaining	shoot	N	goes	to	the	leaves,	

which	 include	 the	 photosynthetically	 active	 green	 surfaces	 of	 other	 organs.	 If	 the	

requirements	for	the	tubers	are	not	met,	remobilisation	of	N	first	 from	the	reserves	

and	 then	 from	 the	 leaves	 and	 the	 roots	 takes	place,	 until	 the	 reserves	 are	depleted	

and	 the	N	concentrations	 in	 the	 leaves	and	 roots	 reach	 their	minimum	values.	This	

remobilisation	results	 in	 leaf	and	root	senescence,	reflecting	the	phenomenon	of	so‐

called	 ‘self‐destruction’	 (Sinclair	 and	De	Wit,	1975).	 If	 the	 tuber	N	 requirements	are	

not	met	by	shoot	N	and	remobilization,	the	tuber	N	concentration	declines.	

Green‐surface	area	index	is	modelled	as	the	minimum	value	of	C‐limited	and	N‐

limited	 areas.	 The	 underlying	 principle	 is	 described	 in	 detail	 by	 Yin	 et	 al.	 (2000c,	

2003b).	As	such,	senescence	of	leaves	is	computed	as	a	function	of	N	reduction	in	the	

canopy.	Similarly,	senescence	of	roots	depends	on	N	reduction	in	the	roots.	

	 	 Daily	phenological	development	rate	(i),	which	has	a	unit	of	d‐1,	 is	calculated	

both	 for	 the	 pre‐tuberisation	 period	 and	 for	 the	 tuber	 bulking	 period,	 respectively,	

using	 genotype‐specific	 parameters	 mV	 and	 mR,	 representing	 the	 pre‐tuberisation	

phase	 and	 the	 duration	 between	 onset	 of	 tuber	 bulking	 and	 crop	 maturity,	

respectively	(Table	5.1).	Phenological	response	to	temperature	is	based	on	a	flexible	

bell‐shaped	non‐linear	beta	function	(Yin	et	al.,	1995).	This	function	is	implemented	

on	an	hourly	basis	 to	account	 for	 the	diurnal	 temperature	 fluctuation.	Values	of	 the	

cardinal	temperatures	in	this	function	were	taken	from	Chapter	2	for	potato.		

	 	 In	the	model,	plant	height	is	required	mainly	for	calculating	the	carbon	demand	

for	structural	stems.	Plant	height	 is	modelled	 to	 follow	a	sigmoid	pattern,	assuming	

that	maximum	plant	height	(Hmax,	Table	5.1)	 is	reached	at	a	midway	between	tuber	

bulking	 and	 crop	maturity.	 The	 increment	 of	 plant	 height	 is	 decreased	 if	 available	

carbon	assimilates	do	not	meet	the	potential	carbon	demand	for	stem	growth.	

	 GECROS	runs	with	a	time	step	of	one	day.	Required	daily	weather	data	include	

minimum	and	maximum	temperature,	global	solar	radiation,	vapour	pressure,	wind	

speed,	and	rainfall.	Air	CO2	concentration	should	be	provided.	Other	required	inputs	

are	daily	supply	of	water	and	N	available	for	crop	uptake.	
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2.2.	Experimental	data	

Datasets	 for	 our	 model	 analysis	 came	 from	 six	 field	 experiments,	 performed	 in	

Wageningen	(52˚	N	latitude),	the	Netherlands,	with	two	experiments	in	each	year,	i.e.	

2002	(Exps	1	and	2),	2004	(Exps	3	and	4),	and	2005	(Exps	5	and	6)	(For	details	see	

Chapters	2	and	3).	These	experiments	differed	in	environmental	conditions	because	

they	 were	 carried	 out	 in	 different	 years,	 on	 different	 soils	 and	 under	 different	

nitrogen	 (N)	 fertiliser	 regimes,	 thereby	 creating	 six	 contrasting	 environments.	 The	

plant	material	for	these	experiments	consisted	of	100	F1	diploid	(2n	=	2x	=	24)	potato	

genotypes	 derived	 from	 a	 cross	 between	 two	 diploid	 heterozygous	 potato	 clones,	

SH83‐92‐488	 	 RH89‐039‐16,	 hereafter	 referred	 to	 as	 the	 ‘SH	 	 RH	 population’	
(Rouppe	van	der	Voort	et	al.,	1997;	Van	Os	et	al.,	2006).	This	population	segregates	

for	maturity	type	(Van	der	Wal	et	al.,	1978;	Van	Oijen,	1991).	Besides,	 five	standard	

cultivars	 (viz.	Première,	Bintje,	 Seresta,	Astarte	and	Karnico)	were	also	 included	on	

the	basis	of	their	maturity	type	under	Dutch	conditions.		

To	 evaluate	 model	 performance	 in	 representing	 growth	 dynamics,	 field	

measurements	were	performed	on	few	genotypes	during	year	2004	(Exps	3	and	4),	

and	2005	(Exps	5	and	6).	A	total	of	five	harvests	were	carried	out	at	intervals	of	1‐2	

weeks	during	the	crop	period.	At	least	four	representative	plants	per	sampling	point	

were	 taken	and	measurements	were	made	on	both	above‐	 and	below‐ground	plant	

parts	 for	 dry	 matter	 and	 N	 content	 in	 different	 plant	 parts.	 To	 determine	 the	 dry	

weight,	 the	 plants	 were	 divided	 into	 their	 constituents	 of	 living	 and	 dead	 leaves,	

stems,	stolon,	and	tubers,	and	sub‐samples	of	each	portion	were	dried	at	70	 ˚C	 to	a	

constant	 weight.	 Roots	 were	 not	 measured	 since	 they	 are	 difficult	 to	 harvest	

(Kooman,	 1995).	 Further	 sub‐samples	were	used	 to	 determine	nitrogen	 content	 by	

means	of	micro‐Kjeldahl	digestion	and	distillation.			

To	measure	the	model	predictability	for	the	full	set	of	100	genotypes,	tuber	dry	

matter	was	measured	at	only	three	harvests	during	the	growing	period	and	tuber	N	

content	 was	 measured	 at	 maturity	 (see	 Materials	 and	 Methods,	 Chapter	 3).	 These	

data	sets	created	the	basis	for	the	estimation	of	genotype‐specific	parameters	and	for	

model	 testing	 as	 described	 later.	 In	 addition,	 green	 canopy	 cover	 (%)	was	 visually	

assessed	on	weekly	basis	during	the	whole	crop	cycle	for	all	genotypes	(Chapter	2).	

	

	

2.3.	Estimation	of	model	parameters	

Table	 5.1	 gives	 the	 description	 of	 genotype‐specific	 parameters	 of	 GECROS,	 which	

include	 total	 crop	 N	 uptake	 at	 maturity	 (Nmax).	 Nmax	 per	 se,	 as	 an	 accumulative	

quantity	in	the	crop	life	cycle,	should	not	have	been	considered	as	an	input	parameter.	

However,	 there	was	 not	 sufficient	 information	 about	 the	 soil	 and	modelling	 of	 soil		
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Table	5.1.	List	of	genotype‐specific	parameters	of	GECROS	model	(See	Materials	and	

Methods,	section	2.3).	td	stands	for	thermal	day.	
	

Trait		 Description	 Unit	

mV		 Period	from	plant	emergence	to	onset	of	tuber	bulking	 td	

mR		 Duration	between	onset	of	tuber	bulking	and	crop	 td	

Hmax	 Maximum	plant	height	 m	

nSO	 Maximum	tuber	N	concentration	 g	N	g‐1	DM	

Nmax	 Total	crop	N	uptake	at	crop	maturity	 g	N	m‐2	

	

	

processes	is	usually	full	of	uncertainties.	To	reduce	an	influence	of	large	uncertainties	

in	predicting	edaphic	variables	for	N	supply,	we	took	a	simple	approach,	using	Nmax	as	

a	 model‐input	 parameter.	 The	 value	 of	 Nmax	 was	 estimated	 on	 the	 basis	 of	 the	

assertion	 that	 the	 distribution	 of	 N	 over	 tubers	 and	 other	 components	 is	 probably	

fairly	conservative	(Biemond	and	Vos,	1992),	assuming	that	N	accumulation	in	tubers	

and	haulm	accounts	for	77.5%	and	15%	(own	measured	data	on	few	genotypes),	and	

N	 accumulation	 in	 the	 roots	 for	 7.5%	 (see	 data	 of	 Sharifi	 et	 al.,	 2005),	 of	 Nmax.	

Procedures	 for	 estimation	 and	 correction	 for	 experiment‐specific	 parameter	 values	

are	described	below.	

Of	 the	 five	 parameters,	 values	 of	 phenological	 parameters	 mV	 and	 mR	 were	

derived	 from	 Chapters	 2	 and	 3,	 where	 using	 the	 afore‐mentioned	 data	 sets,	 we	

analysed	 the	 dynamics	 of	 potato	 canopy	 cover	 development	 and	 tuber	 bulking,	

respectively	as	a	 function	of	 thermal	 time.	 	Chapter	2	describes	 the	 three	phases	of	

canopy	cover	development	(i.e.	build‐up	phase,	maximum	cover	phase,	decline	phase),	

using	biologically	meaningful	component	traits.	The	end	of	the	canopy	build‐up	phase	

is	marked	by	t1	at	which	the	canopy	cover	attains	its	maximum	level	(see	Fig.	2.1	in	

Chapter	 2).	 The	 end	 of	 canopy	 senescence	 (or	 crop	 maturity)	 is	 marked	 by	 te.	 In	

Chapter	3,	we	quantified	 the	 tuber	growth	during	exponential	and	 linear	phases,	 in	

which	 tB	characterises	 the	 onset	 of	 linear	 phase	 of	 tuber	 bulking	 (see	 Fig.	 3.1	 in	

Chapter	3).		

For	few	genotypes	with	more	data	for	growth	dynamics,	availability	of	sufficient	

data	points	allowed	the	estimation	of	mV	as	tB.	However,	for	other	genotypes,	the	pre‐

tuberisation	 phase	mV	is	 hard	 to	 estimate	 accurately.	 A	 sensitivity	 analysis	 showed	

that	 this	 trait	 mattered	 little	 for	model	 prediction	 of	 tuber	 yield	 (see	 Results),	 we	

assumed	that	mV		=	t1.	Because	t1	is	sensitive	to	the	environmental	variation	(see	Fig.	

2.7),	and	Exp	6	showed	comparatively	lower	variation	for	t1	(Chapter	2),	values	of	t1	
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based	on	Exp	6	were	used	for	genotype‐specific	mV.	Parameter	mR	was	calculated	as	

(te‐mv).	Here	again,	 in	order	 to	 reduce	 the	 random	noise,	mean	 te		per	F1	genotypes	

across	six	experiments	was	used	for	estimating	mR.	

	 	 Not	surprisingly,	values	of	plant	height,	tuber	N	concentration,	and	total	crop	N	

uptake	 differed	 among	 the	 experiments	 (Fig.	 5.1).	 To	 reduce	 the	 influence	 of	

environmental	noise	yet	reflect	the	differences	among	the	experiments,	Hmax,	nSO,	and	

Nmax	 were	 estimated	 as	 across‐experiment	 mean	 times	 a	 correction	 factor	 per	

individual	 experiment.	 The	 correction	 factor	 was	 calculated	 as	 a	 slope	 of	 the	

regression	 line	 between	 experiment‐specific	 parameter	 values	 versus	 its	 across‐

experiment	 mean.	 In	 the	 case	 of	 Exps	 1	 and	 2,	 for	 which	 we	 lacked	 the	 data	 for	

parameters	 nSO,	 Hmax	 and	 Nmax	 (Fig.	 5.1),	 combined	 information	 from	 other	

experiments	for	these	parameters	was	used,	with	the	correction	factor	obtained	from	

the	slope	of	the	regression	between	observed	tuber	yield	per	Exps	1	or	2	versus	mean	

observed	tuber	yield	across	the	other	four	experiments.	

Crops	were	not	subject	to	any	water	stress	during	the	growth;	so,	a	high	value	of	

daily	water	 supply	 from	 soil	 was	 given	 for	 simulation	 to	mimic	 no	 drought	 stress.	

Daily	N	 supply	 from	 soil	was	 derived	 from	Nmax,	 based	 on	 the	 fitted	 pattern	 of	 the	

dynamics	of	the	accumulative	crop	N	uptake	as	observed	for	the	few	genotypes	with	

the	detailed	measurements.	

	

	

2.4.	Model	analysis	to	identify	major	yield‐determining	traits	

Sensitivity	 analysis	 was	 performed	 to	 determine	 the	 importance	 of	 individual	

genotype‐specific	 parameters	 in	 determining	 tuber	 yield	 potential.	 Data	 sets	 from	

Exps	3‐6	were	used	for	this	purpose.	We	followed	the	approach	of	Yin	et	al.	(2000b,	

2005).	 First,	 the	 baseline	 simulation	 was	 conducted,	 where	 all	 genotype‐specific	

parameter	 values	were	 used	 as	 input	 for	 simulation.	 Then,	 parameters	were	 fixed,	

one	at	a	time,	at	their	across‐genotype	mean.	The	extent,	to	which	the	percentage	of	

variance	explained	by	the	model	was	decreased	relative	to	the	percentage	explained	

by	 the	 baseline	 simulation,	 was	 used	 to	 rank	 the	 relative	 importance	 of	 the	

parameters	in	determining	tuber	yields.		

	

	

2.5.	Statistical	path	coefficient	analysis	

To	confirm	the	result	of	ecophysiological	modeling	analysis,	path	coefficient	analysis	

was	performed,	also	to	check	out	the	important	direct	and	indirect	inter‐associations	

between	 the	 genotypic‐specific	 parameters	 and	 final	 tuber	 yield.	 This	 analysis	was		
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Figure	5.1.	Box	plots	of	means	of	an	F1	population	for	three	measured	parameters	in	

four	experiments.	The	boxes	span	the	 interquartile	range	of	the	trait	values,	so	that	

the	middle	50%	of	 the	data	 lay	within	 the	box,	with	a	horizontal	 line	 indicating	 the	

median.	 Whiskers	 extend	 beyond	 the	 ends	 of	 the	 box	 as	 far	 as	 the	 minimum	 and	

maximum	values.	Points	were	missing	for	Exps	1	and	2	because	these	traits	were	not	

measured	therein	(see	the	text).	
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performed	 on	 the	 mean	 of	 F1	 genotypes	 across	 environments	 following	 the	

procedure	of	Chapter	3.		

	

	

3.	Results	and	discussion	

	

	

3.1.	Model	parameters		

The	 evaluation	 of	 genotype‐specific	 model	 parameters	 indicated	 that	 there	 were	

strong	 genetic	 differences	 among	 the	 standard	 cultivars	 (Table	 5.2).	 As	 expected,	

values	of	most	of	these	parameters	except	nSO	were	higher	for	late	maturing	cultivars	

(Astarte	 and	 Karnico)	 than	 for	 mid‐late	 (Seresta),	 mid‐early	 (Bintje),	 and	 early	

cultivars	 (Première).	 In	 contrast,	 values	 of	 nSO	 were	 higher	 for	 early	 maturing	

cultivars	like	Première	followed	by	mid‐late	and	late	cultivars	(Table	5.2).	It	has	been	

found	 in	 previous	 research	 that	 N	 uptake	 and	 use	 efficiency	 differ	 by	 cultivar	

(Johnson	et	al.,	1995;	Kleinkopf	et	al.,	1981;	Lauer,	1986;	Porter	and	Sisson,	1991a,b).	

Early‐maturing	 cultivars	 stop	 leaf	 growth	 earlier	 than	 late‐maturing	 cultivars	 and	

therefore	 exhibit	 less	 vegetative	 growth	 and	 a	 shorter	 tuber	 bulking	 period.	 This	

pattern	 results	 in	 lower	 N	 use	 efficiencies	 and	 higher	 tuber	 N	 concentrations	 in	

earlier	genotypes	(Vos,	1997;	Chapter	3).	

The	 results	 for	 the	F1	population	 indicated	 that	most	 of	 the	parameters	were	

nearly	normally	distributed,	apart	 from	mR	and	Hmax	 for	which	 the	distribution	was	

bimodal	(Fig.	5.2).	The	F1	population	displayed	transgressive	segregation,	with	more	

extreme	values	in	the	population	than	their	parents	(SH	and	RH).		

	

	

Table	5.2.	Estimated	mean	values	of	genotype‐specific	parameters	for	five	standard	

cultivars	(listed	in	order	of	increasingly	longer	crop	cycle).	td	stands	for	thermal	day.	

(−)		represents	lack	of	data.	See	Table	5.1	for	parameter	descriptions.	
	

Cultivar	 mV		

(td)	

mR	

(td)	

Hmax	

(m)	

nSO		

(g	N	g‐1	DM)	

Nmax	

(g	N	m‐2)	

Première	 13.3	 36.7	 0.53	 0.018	 21.9	

Bintje	 14.4	 51.1	 0.82	 0.017	 25.8	

Seresta	 17.7	 57.4	 1.05	 0.014	 25.4	

Astarte	 15.1	 65.1	 1.14	 0.013	 24.6	

Karnico	 −	 −	 1.39	 0.012	 25.8	
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Figure	5.2.	Distribution	of	genotype‐specific	parameters	of	GECROS	model	for	100	F1	

genotypes.	The	 values	of	 two	parents	 ‘SH’	 and	 ‘RH’	 are	 indicated	by	 full	 arrow	and	

dashed	arrow,	respectively.	See	Table	5.1	for	parameter	descriptions.	
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3.2.	Model	performance	in	representing	growth	dynamics		

The	 GECROS	 model	 efficiently	 simulated	 the	 dynamics	 of	 important	 potato	

physiological	growth	processes	under	a	range	of	environmental	conditions.	Here	we	

present	the	results	of	two	experiments	of	2004	(i.e.	Exps	3	and	4).	These	experiments	

were	 low	 and	 high	 in	 N	 availability,	 respectively	 (Fig.	 5.1;	 Chapter	 2).	 Figure	 5.3	

presents	modelled	and	observed	data	of	plant	and	tuber	N	uptake	and	dry	matter	for	

the	 two	 parental	 genotypes.	 Model	 evaluation	 showed	 good	 agreements	 between	

observed	and	simulated	growth	pattern	of	these	processes.	

The	N	accumulation	in	tubers	showed	an	S‐shaped	growth	pattern,	 in	contrast	

to	 the	 pattern	 of	 plant	 N	 uptake	 (Fig.	 5.3).	 The	 results	 further	 showed	 that	 at	 the	

beginning	 of	 the	 season	 the	 tuber	 dry	matter	was	 underestimated	while	 plant	 dry	

matter	was	 estimated	 rather	well,	 whereas	 at	 the	 end	 of	 the	 season	 the	 simulated	

tuber	dry	matter	yields	compared	well	with	the	measured	data.	The	current	data	(Fig.	

5.3)	 also	 indicated	 that	 the	 tuber	 as	well	 as	plant	dry	matter	 is	 reduced	when	N	 is	

limiting	 (i.e.	 Exp	 3),	 most	 likely	 via	 limited	 leaf	 expansion	 and	 interception	 of	

radiation	(Vos	and	Biemond,	1992).		

	

	

3.3.	Model	performance	in	explaining	yield	differences	among	genotypes	

To	 evaluate	 the	 model’s	 ability	 to	 reproduce	 the	 observed	 yield‐based	 variation,	

differences	 in	 the	 actual	 and	 modelled	 yield	 were	 compared	 across	 different	

environments	 for	 the	 F1	 population,	 their	 parents	 and	 a	 set	 of	 standard	 cultivars.	

Overall,	 the	 model	 adequately	 simulated	 differences	 in	 tuber	 yields	 among	 these	

genotypes	 in	all	experiments	(Fig.	5.4).	However,	 there	were	discrepancies	between	

simulated	and	measured	tuber	yields,	especially	in	Exp	3,	where	the	predicted	tuber	

yield	 was	 under‐estimated	 in	 high‐yielding,	 and	 over‐predicted	 in	 low‐yielding	

genotypes.	With	the	concept	used	in	GECROS	for	tuber	N	accumulation,	the	fraction	of	

tuber	 N	 is	 a	 very	 sensitive	 input	 parameter,	 not	 only	 affecting	 the	 final	 N	

concentration,	but	also	the	harvest	 index	and	the	potential	tuber	yield	(Yin	and	Van	

Laar,	2005).		

The	model	explained	variations	in	the	tuber	yield,	with	R2	ranging	from	35%	

to	 65%	 for	 the	 F1	 population,	 and	 80%	 to	 96%	 for	 the	 parents	 and	 five	 standard	

cultivars,	among	the	Exps	3‐6	(Fig.	5.4).	However,	in	case	of	Exps	1	and	2,	the	model	

could	 not	 satisfactorily	 explain	 the	 variation	 in	 the	 tuber	 yield	 (Fig.	 5.4).	 This	 is	

because	 there	 was	 a	 lack	 of	 information	 about	 N	 availability	 and	 therefore	

assumptions	 had	 to	 be	 made	 for	 defining	 the	 related	 input	 parameters	 for	 those		

experiments	(see	Materials	and	Methods).		
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Figure	5.3.	Modelled	 (lines)	 and	 observed	 (symbols)	 for	 genotypes	 (a)	 SHRH‐469	

and	(b)	RH89‐039‐16,	 in	Experiment	3,	and	(c)	SHRH‐469	and	(d)	RH89‐039‐16,	 in	

Experiment	4,	performed	during	2004.	
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Figure	5.4.	Comparison	between	predicted	and	observed	tuber	yield	for	(a)	100	F1	

genotypes	(small	circles),	(b)	5	standard	cultivars	and	2	parental	genotypes	(SH	and	

RH),	 tested	per	 each	 individual	 experiment	 (large	 circles).	R2	 values	were	 obtained	

from	 a	 linear	 regression;	 rRMSE	 is	 the	 relative	RMSE,	calculated	 as	 the	 root‐mean‐

square	error	divided	by	the	mean	observed	tuber	yield.		
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The	model	also	predicted	well	(i.e.	R2	=	86%)	the	mean	tuber	yield	across	four	

environments	 (i.e.	 Exps	 3‐6)	 (Fig.	 5.5a).	 Furthermore,	 the	 model	 satisfactorily	

predicted	 variation	 in	 the	 mean	 tuber	 yield	 across	 the	 F1	 genotypes	 among	 the	

environments	 (Fig.	5.5b).	The	model	predicted	57%	of	 the	 total	observed	variation,	

when	 all	 observations	 for	 the	 F1	 genotypes	 in	 the	 four	 environments	were	 pooled	

(Fig.	5.5c).			

The	 model	 performance	 was	 also	 evaluated	 by	 calculating	 the	 relative	 root	

mean	square	error	(rRMSE;	Figs	5.4‐5.5).	The	rRMSE	values	ranged	from	0.10	to	0.42	

in	 F1	 population	 and	 0.09	 to	 0.46	 for	 the	 two	 parents	 and	 five	 standard	 cultivars,	

among	the	Exps	3‐6	(Fig.	5.4).	As	expected,	the	rRMSE	values	were	higher	for	the	first	

two	experiments	(Exps	1	and	2)	mainly	due	to	lack	of	good	fit	as	described	earlier.	In	

other	experiments,	rRMSE	values	were	reasonably	good.	The	results	further	indicated	

low	rRMSE	values	for	the	mean	tuber	yield	across‐environments	(i.e.	0.09),	across	the	

F1	genotypes	among	the	environments	(i.e.	0.06),	and	when	all	observations	for	the	

F1	genotypes	in	the	four	environments	were	pooled	(i.e.	0.17)	(Fig.	5.5).		

Overall,	 our	 results	 indicated	 that	 using	 as	 few	 as	 five	 measured	 genotype‐

specific	 parameters	 (Table	 5.1),	 the	 GECROS	 model	 showed	 a	 good	 potential	 in	

explaining	the	observed	yield	differences	among	genotypes.		

	

	

3.4.	Model‐based	sensitivity	analysis	to	identify	important	yield‐defining	traits	

Ecophysiological	 models	 can	 serve	 as	 an	 important	 tool	 to	 determine	model	 input	

parameters	 critical	 for	 yield	 potential	 (Yin	 et	 al.,	 2000b).	 Sensitivity	 analysis	 was	

performed	to	evaluate	the	 importance	of	 individual	genotype‐specific	parameters	 in	

determining	 tuber	 yield	 potential.	 The	 results	 of	 the	 baseline	 simulation,	 in	 which	

genotype‐specific	values	were	applied	 for	all	model‐input	parameters,	were	already	

presented	 in	 the	 previous	 section	 for	 individual	 experiments	 (Fig.	 5.4).	 When	 the	

parameters	 were	 fixed,	 one	 at	 a	 time	 at	 their	 across‐genotype	 mean,	 the	 model	

explained	percentage	variance	dropped	from	the	baseline	simulation	for	most	of	the	

parameters	 throughout	 the	 environments	 (Table	 5.3).	 This	 reduction	 in	 variance	

explained	was	more	evident	for	Nmax	followed	by	nSO	throughout	the	experiments.	For	

other	 parameters,	 in	 some	 cases,	 the	 percentage	 variance	 accounted	 for	 was	 even	

higher	 than	 that	 obtained	 from	 the	 baseline	 simulation.	 This	was	 evident	 for	mV	 in	

Exps	3,	4,	and	5	and	Hmax	 in	Exps	3	and	6.	Almost	similar	 trends	were	recorded	 for	

observations	in	across‐environment	means	as	well	as	when	data	were	pooled.	These	

results	 conclude	 that	 the	 relative	 importance	 of	 parameters	 for	 tuber	 yield	

determination	can	be	ranked	as:	Nmax	>	nSO	>	mR	>	mV	and	Hmax.	Obviously,	Nmax	and	

nSO	 were	 the	 most	 important	 parameters	 as	 they	 contributed	 most	 to	 the	
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Figure	5.5.	Comparison	between	predicted	and	observed	tuber	yield	(g	m‐2)	tested	in	

across‐environment	 mean	 of	 100	 F1	 genotypes	 (n	 =	 100	 points)	 (a),	 in	 across‐

genotype	mean	 of	 four	 environments	 (i.e.	 Exps	 3‐6)	 (b),	 and	 when	 data	 from	 100	

genotypes	 tested	 in	 the	 four	 experiments	 are	 pooled	 (n	=	 400)	 (c).	R2	 values	were	

obtained	from	a	linear	regression;	rRMSE	is	the	relative	RMSE,	calculated	as	the	root‐

mean‐square	error	divided	by	the	mean	observed	tuber	yield.		
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determination	of	tuber	yield	among	the	F1	population	(Table	5.3).	Li	et	al.	(2006)	also	

performed	a	similar	sensitivity	analysis	and	reported	that	N	availability	was	the	key	

trait	affecting	potato	tuber	yield.	Crop	N	status	affects	photosynthesis	which	in	turn	is	

a	 function	of	 intercepted	 radiation	by	 above‐ground	vegetative	parts	 (Khurana	 and	

McLaren,	1982;	Moll,	1983;	Marcelis	et	al.,	1998).	There	is	a	linear	relation	between	

total	N	uptake	and	canopy	growth	and	development	until	a	maximum	level	is	reached	

(Lemaire,	1997).	The	duration	of	the	period	with	full	canopy	cover	is	longer	and	the	

stage	of	decline	starts	later	in	time	the	higher	the	N	available	(Chapter	2).	

The	 sensitivity	 analysis	 gave	 further	 insight	 into	 whether	 or	 not	 the	 relative	

importance	of	the	five	model‐input	traits	varies	with	environment.	Such	information	

about	 the	 relevance	 of	 different	 plant	 traits	 for	 yield	 under	 different	 growth	

conditions	can,	therefore,	improve	the	efficiency	of	a	breeding	programme	(Heuvelink	

et	al.,	2007).	However,	our	results	for	experiment‐specific	sensitivity	analysis	showed	

that	the	relative	importance	of	the	five	model‐input	traits	varied	little	among	the	four	

experiments.	

	

	

3.5.	Path	coefficient		analysis	

Path	coefficient	analysis	was	performed	 to	understand	 the	underlying	 relationships	

among	 the	 genotype‐specific	 parameters	 and	 with	 observed	 tuber	 yield	 (Fig.	 5.6;	

Table	5.4).	The	results	revealed	that	parameters	Nmax	and	nSO	had	highest	significant	

(P	<	0.01)	positive	and	negative	direct	effects	(i.e.	0.91	and	‐0.47,	respectively)	on	the	

final	tuber	yield	(Fig.	5.6),	whereas	mV,	mR,	and	Hmax	had	least	(P	>	0.05)	direct	effects	

on	final	tuber	yield	(i.e.	‐0.05,	‐0.10,	0.00,	respectively).	The	sum	of	direct	and	indirect	

effects	 of	 parameters	 from	 path	 coefficient	 analysis	 revealed	 that	 there	 existed	

significant	 (P	 <	 0.01)	 positive	 effects	 of	 mR,	 Hmax,	 and	 Nmax	 on	 tuber	 yield	 (their	

correlation	coefficients	as	0.45,	0.41,	and	0.81,	respectively;	Table	5.4).	

Path	 coefficient	 analysis	 has	 been	 very	 useful	 in	 partitioning	 the	 correlation	

coefficient	 into	 components	 of	 direct	 and	 indirect	 effects	 and	 give	 thorough	

understanding	of	 actual	 causal	 relationships	 and	 contribution	of	 various	 characters	

on	 the	 target	 trait	 (Dewey	 and	 Lu,	 1959;	 Samonte,	 1998).	 Our	 results	 further	

indicated	 that	relationships	of	parameters	(mR,	Hmax)	with	 tuber	yield	were	actually	

driven	by	indirect	effects,	mainly	through	Nmax	(Table	5.4).	These	results	are	largely	in	

line	 with	 our	 GECROS‐based	 sensitivity	 analysis,	 suggesting	 that	 genotypes	 with	

higher	Nmax	may	exhibit	more	final	tuber	yield	provided	nSO	is	low	(Casa	et	al.,	2005;	

Chapter	3).		
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Figure	5.6.	Path	coefficient	structural	model	describing	direct	and	indirect	effects	of	

different	genotype‐specific	parameters	(mR,	mV,	Hmax,	nSO,	and	Nmax;	see	Table	5.1	for	

their	descriptions)	on	the	tuber	yield	across	six	experiments	for	an	F1	population	of	

potato.	 The	 solid	 line	 represents	 the	 correlation	 coefficient	 between	 two	 predictor	

variables;	dashed	 line	represents	 the	path	coefficient	 from	the	predictor	variable	 to	

response	variable	(tuber	yield).	**	Significant	at	P	<	0.01,	NS	Non‐significant	(P	>	0.05).	

	

	

4.	Conclusions	

Yield	 variation	 in	 terms	 of	 growth	 and	 development	 of	 the	 crop	 is	 complex,	 for	 it	

involves	 the	 effect	 of	 external	 factors	 on	 all	 the	 physiological	 processes,	 the	 inter‐

relationships	 between	 different	 processes	 and	 their	 dependence	 on	 the	 genetic	

constituent	of	the	plant.	In	this	study	we	explored	the	ability	of	the	ecophysiological	

model	‘GECROS’	to	analyse	differences	in	tuber	yield	in	a	set	of	cultivars	of	maturity	

types	 and	 a	 diploid	 F1	 segregating	 population.	 The	 model	 described	 well	 the	

dynamics	 of	 important	 growth	 related	 processes	 in	 potato	 and	 gave	 important	

insights	 into	 the	underlying	 component	 traits	 and	 factors	 influencing	 the	 tuber	dry	

matter	production.	Using	five	measured	genotype‐specific	parameters	(mV,	mR,	Hmax,	
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Table	5.4.	Path	coefficient	analysis	of	direct	and	indirect	effects	of	genotype‐specific	

parameters	on	the	tuber	yield	of	an	F1	population	of	potato.	td	stands	for	thermal	day.	

See	Table	5.1	for	parameter	descriptions.	
	

Variable	 Effect†	
mV	(td	)	 	
Direct	effect	 ‐0.052	
Indirect	effect	via	 	

mR	 0.008	
Hmax	 0.000	
nSO	 ‐0.028	
Nmax	 ‐0.090	

Total	correlation ‐0.161	
mR	(td)	 	
Direct	effect	 ‐0.098	
Indirect	effect	via	 	

mV	 0.004	
Hmax	 0.000	
nSO	 0.226	
Nmax	 0.318	

Total	correlation 0.451	
Hmax	(m)	 	
Direct	effect	 0.000	
Indirect	effect	via	 	

mV	 0.002	
mR	 ‐0.089	
nSO	 0.213	
Nmax	 0.287	

Total	correlation 0.413	
nSO	(g	N	g‐1)	 	
Direct	effect	 ‐0.473	
Indirect	effect	via	 	

mV	 ‐0.003	
mR	 0.047	
Hmax	 0.000	
Nmax	 0.131	

Total	correlation ‐0.298	
Nmax	(g	N	m‐2)	 	
Direct	effect	 0.908	
Indirect	effect	via	 	

mV	 0.005	
mR	 ‐0.034	
Hmax	 0.000	
nSO	 ‐0.068	

Total	correlation 0.811	
†Across	experiments		
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nSO,	 and	 Nmax),	 GECROS	 showed	 a	 good	 potential	 in	 explaining	 the	 observed	 yield	

differences	among	the	genotypes.	Simulated	trends	of	growth	were	in	agreement	with	

the	measured	data.	The	model	yielded	reasonable	predictions	of	differences	in	tuber	

yield	 across	 environments	 and	 across	 genotypes.	 The	 simulation	 results	 suggested		

that	genotype‐specific	parameter	Nmax	contributed	most	to	the	determination	of	tuber	

yield.	These	results	were	further	proved	by	path	coefficient	analysis	suggesting	that	

genotypes	 with	 higher	 Nmax	and	 low	 nSO	 may	 exhibit	 more	 final	 tuber	 yield.	 Such	

information	 would	 greatly	 facilitate	 the	 development	 of	 ideotypes	 for	 specific	

environment(s).	

As	a	whole	this	study	highlighted	the	usefulness	of	GECROS	crop	growth	model	

for	 exploring	 the	 impact	 of	 new	 genotypes	 and	 the	 contribution	 of	 individual	

physiological	traits	on	yield	by	simulating	the	responses	of	genotypes	across	different	

environments.	In	addition,	our	model	approach	shed	light	on	some	of	the	mechanisms	

causing	 genotype	 differences	 in	 tuber	 yield	 and	 provided	 support	 for	 important	

aspects	 of	 hypothesis	 regarding	 N	 accumulation.	 The	 model	 analysis	 identified	 N	

uptake	 and	 use	 efficiency	 as	 possible	 areas	 for	 improvements	 in	 tuber	 dry	matter	

production.	 Opportunities	 for	 improving	 the	 modelling	 of	 and	 understanding	 of	 N	

dynamics	 and	 source‐sink	 dynamics	 in	 potato	 have	 become	 apparent	 during	 the	

study.	 Further	 analysis	 of	 the	 genotypic	 parameters	 should	 be	 performed	 in	

conjunction	with	molecular	markers	in	order	to	determine	their	genetic	control.	Such	

information	would	 guide	 research	 towards	 key	 processes	 affecting	 crop	 yields	 and	

may	help	orientate	breeding	programmes	as	suggested,	e.g.	by	Yin	et	al.	(2004);	Yin	

and	Struik	(2008).	
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General	discussion	
 
 
Breeding	for	high‐yielding	genotypes:	A	challenge		
Breeding	 for	 high‐yielding	 cultivars	 for	 specific	 and/or	 varied	 environments	 is	 a	

major	challenge	to	achieve	world	food	security	in	the	new	century.	The	pace	at	which	

progress	 has	 been	 made	 in	 achieving	 higher	 crop	 yields	 has	 become	 stagnant	

compared	with	that	required	by	the	growing	demands	(Cassman,	1999).	The	pace	and	

efficiency	of	 genetic	progress	must	now	 increase	 to	meet	 the	projected	demand	 for	

agricultural	products	(FAO,	2009).		

	 Molecular	biology	has	delivered	commercial	 successes	 in	enabling	crop	plants	

to	 better	 resist	 pests	 and	 tolerate	 herbicides	 and,	 more	 recently,	 in	 improving	

product	 quality.	However,	 the	 challenge	 remains	 as	 to	 how	 to	 manipulate	 more	

complex	 growth	 and	development	 traits	 associated	with	 crop	 adaptation	 and	 yield.	

The	 inability	 to	 connect	 information	 at	 gene	 level	 to	 the	 expressed	 phenotype	 in	 a	

manner	 that	 is	 useful	 for	 selection	 and	 plant	 breeding	 has	 restricted	 adoption	 of	

molecular	 approaches	 in	 plant	 breeding	 (Miflin,	 2000).	 Enhanced	 capabilities	 in	

genotyping	 have	 not	 been	 matched	 by	 development	 of	 enhanced	 capabilities	 in	

phenotyping	 or	 by	 development	 of	 enhanced	 approaches	 to	 link	 genotype	 and	

phenotype	(Campos	et	al.,	2004).	The	situation	is	particularly	challenging	for	complex	

traits	 associated	 with	 crop	 adaptation	 and	 yield	 (e.g.	 grain	 or	 tuber	 dry	matter	 or	

resource	 use	 efficiencies)	 as	 they	 are	 regulated	 by	 multiple	 interacting	 genes	 and	

environmental	 conditions,	 so	 that	 gene‐to‐phenotype	 relationships	 are	 not	

straightforward	 (Li	et	 al.,	 2001;	 Luo	et	 al.,	 2001).	Hence,	 new	 approaches	 must	 be	

developed	 to	 accelerate	 breeding	 through	 improving	 genotyping	 and	 phenotyping	

methods	and	by	increasing	the	available	genetic	diversity	in	breeding	germplasm.	

	

	
Potato:	A	complex	crop	
In	potato,	breeding	for	yield	potential	and	range	of	adaptation	(or	degree	of	stability	

in	performance	over	a	wide	range	of	environments)	is	particularly	difficult	due	to	the	

complexity	 of	 the	 crop’s	 whole‐plant	 physiology	 (cf.	 Van	 Dam	 et	 al.,	 1996;	 Celis‐

Gamboa	et	al.,	2003).	Growth	and	yield	are	determined	by	a	diversity	of	complex	crop	

factors	including	(a)	the	rate	of	leaf	appearance,	individual	leaf	growth,	final	leaf	size,	

and	 the	 life	 span	 of	 individual	 leaves,	 (b)	 the	 number	 of	 lower	 and	 sympodial	

branches,	 (c)	 the	 overall	 rate	 of	 canopy	 development	 (e.g.	 increasing	 of	 N	 supply	
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levels	 accelerates	 crop	 development	 and	 the	 time	when	maximum	 canopy	 cover	 is	

reached),	(d)	light	interception	by	the	crop	over	time,	(e)	the	rate	of	photosynthesis,	

(f)	the	onset	of	tuberisation,	and	(g)	final	tuber	yield	and	harvest	index.	Furthermore,	

like	many	other	complex	quantitative	traits,	each	developmental	stage	and	crop	factor	

in	 potato	 is	 likely	 to	 be	 regulated	 and	 controlled	 by	 a	 large	 set	 of	 interacting	

expressed	genes	throughout	the	plant	growth	and	the	strong	influence	of	genotype‐

by‐environment	 (GE)	 interactions	 (Allard	 and	 Bradshaw,	 1964;	 Jefferies	 and	
MacKerron,	 1993;	 Bachem	 et	 al.,	 2000;	 Schittenhelm	 et	 al.,	 2006).	 All	 these	

complexities	make	the	manipulation	of	yield	determining	traits	and	their	prediction	a	

challenging	task	in	potato.		

The	 traditional	 system	 of	 potato	 breeding	 is	 a	 laborious	 and	 time‐consuming	

process,	 and	 the	 probability	 of	 finding	 superior	 cultivars	 is	 very	 low.	 Breeding	

generally	involves	evaluation	and	selection,	based	on	many	different	traits	including	

yield,	 disease	 resistance	 and	 quality,	 of	 the	 clonally	 propagated	 progeny	 of	 a	 cross	

between	 two	 clones.	 These	 parent	 clones	 can	 be	 existing	 cultivars	 or	 clones	 with	

introgression	 from	 wild	 species.	 Normally,	 it	 takes	 more	 than	 10	 to	 15	 years	 to	

produce	a	new	cultivar	(Caligari,	1992;	Hunt,	1993;	Haverkort	and	Kooman,	1997).		

	
	
Role	of	multi‐environment	trials		
Plant	 breeders	 are	 mostly	 interested	 in	 characterising	 genotypes	 in	 diverse	

environments	 to	 understand	 how	 a	 particular	 genotype	 performs	 in	 different	

environments.	 Individuals	 in	 genetic	 populations	 are	 studied	 in	 replicated	

experiments	and	distributed	over	 ‘discrete’	 environments	which	are	often	 locations	

and/or	years.	The	main	task	of	data	analysis	is	to	estimate	parameters	which	reveal	

the	effects	of	genetic	and	environmental	factors	controlling	the	expression	of	specific	

traits.	 The	 parameters	 concerning	 effectiveness	 of	 selection	 strategies	 of	 individual	

genotypes,	 for	example,	are	aimed	to	examine	performance	of	traits	and	correlation	

between	 them	 across	 environments,	 variability	 of	 entries	 due	 to	 genetic	 and	

environmental	 components,	 heritability,	 and	 genetic	 gain	 over	 generations	 of	

selection	for	new	superior	varieties	in	growing	regions	(Tai,	2007).	Information	like	

these	could	help	to	better	understand	the	type	and	size	of	genetic	(G),	environmental	

(E),	 and	 GE	 interaction	 components	 of	 variation,	 and	 the	 reasons	 for	 their	
occurrence;	 and	 if	 necessary,	 a	 strategy	 to	 develop	 genotypes	 for	 particular	 target	

environments.			

The	 G	 or	 E	 components	 of	 variation	 for	 any	 trait	 normally	 show	 average	

differences	between	genotypes	or	environments,	respectively.	Purely	environmental	

effects,	 reflecting	 the	 different	 ecological	 potential	 of	 sites	 and	 management	
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conditions,	 are	 not	 of	 direct	 concern	 for	 the	 breeding	 or	 recommendation	 of	 plant	

varieties.	 However,	 differences	 between	 genotypes	 may	 vary	 widely	 among	

environments	in	the	presence	of	GE	interaction	effects.	Therefore,	there	is	a	need	to	
quantify	the	 impacts	of	GE	in	order	to	explore	the	potential	opportunities	towards	
yield	improvement	under	the	specific	and/or	varied	environments.	This	could	help	to	

better	understand	the	type	and	size	of	G,	E,	and	GE	components	of	variation,	and	the	
reasons	for	their	occurrence.	It	could	also	help	to	develop,	if	necessary,	a	strategy	to	

design	an	ideal	genotype	(i.e.	ideotype	breeding)	in	potato.			

In	potato,	however,	very	 little	systematic,	quantitative	 information	 is	available	

about	 genotypic	 differences	 in	 response	 to	 contrasting	 environmental	 conditions	

and/or	 input	 levels,	 e.g.	 temperature,	 precipitation,	 and	 nitrogen	 (N)	 fertilisation	

regimes.	 A	 better	 understanding	 of	 the	 physiological,	 genetic	 and	 environmental	

regulation	 of	 relationships	 between	 the	 main	 attributes	 of	 growth	 and	 yield	

determining	components	will	facilitate	the	breeding	of	varieties	able	to	perform	well	

under	specific	sets	of	environmental	conditions.	In	order	to	achieve	this	goal	we	need	

useful	 tools	 and	 more	 concerted	 efforts	 to	 understand	 GE,	 and	 the	 benefits	 of	
integrating	accumulated	and	expensive	datasets.	
	
	
Role	of	crop	physiology	
Besides		recent		developments		in		genomics		(such		as	genome	sequencing)	that	will	

provide	 useful	 tools	 and	massive	 	 amounts	 	 of	 	 information	 to	 speed	 up	 the	 plant	

breeding	process	(Stuber	et	al.,	1999;	Miflin,	2000),	an	option	for	improving	breeding	

efficiency	 is	 to	 develop	 and	 utilise	 a	 thorough	 understanding	 of	 underlying	

morphological	and	physiological	processes	that	determine	important	traits	like	yield		

(Bindraban,		1997).		

	 Crop	physiology,	as	a	powerful,	 rapidly	developing	and	quantitative	discipline,	

has	the	ability	to	complement	plant	breeding	as	physiological	studies	provide	a	way	

to	dissect	complex	traits	into	simpler	components	that	might	be	under	separate	and	

probably	simpler	genetic	control	(Yin	et	al.,	2002).	Any	increase	in	yield	must	have	a	

physiological	 basis	 that,	 if	 targeted,	 should	 permit	 a	 significant	 advance	 in	 the	

identification	 of	 superior	 genotypes	 (Richards,	 1996).	 So	 far,	 however,	 only	 in	 a	

limited	number	of	 instances	physiological	approaches	have	been	applied	to	support	

crop	 improvement	programmes	(Sinclair	et	al.,	2004).	This	situation	may	change	 in	

the	 future	 if	 the	 links	 between	 physiology	 and	 genetics	 are	 established	 or	

strengthened	 (Miflin,	 2000).	 There	 is	 a	 growing	 awareness	 that	 in	order	 to	 better	

analyse	phenotypes	of	complex	traits	for	any	crop	genotype	under	any	environmental	

scenario	 using	 increasingly	 available	 genomic	 information,	 integration	 of	 genetics	
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with	quantitative	crop	physiology	is	required	(Tardieu,	2003).		

	

	
Systems	approaches:	Their	role	in	assisting	breeding	
As	highlighted	in	previous	sections,	progress	in	crop	improvement	and	particularly	in	

molecular	 approaches	 to	 plant	 breeding	 is	 limited	 by	 our	 ability	 to	 predict	 plant	

phenotype	based	on	its	genotype,	especially	for	complex	traits	like	yield	(Hammer	et	

al.,	2010).	New	approaches	could	complement	traditional	approaches	with	analytical	

selection	methodologies	 to	 further	 improve	crop	yields	and	 the	overall	efficiency	of	

the	breeding	process.	Such	new	approaches	will	be	of	considerable	interest	to	plant	

breeders	(Chapter	1).	

An	 important	 advance	 in	 crop	 physiology	 during	 the	 last	 four	 decades	 is	 the	

development	 of	 dynamic	 process‐based	 crop	 growth	 models	 for	 predicting	 yields	

under	varied	environments	(Boote	et	al.,	1996).	Process‐based	ecophysiological	crop	

growth	 models	 have	 been	 developed	 by	 integrating	 knowledge	 across	 multi‐

disciplines	such	as	plant	physiology,	ecology,	agronomy,	soil	science,	and	meteorology	

(Loomis	et	al.,	1979).		

	 	 As	quantitative	crop	models	represent	causality	between	component	processes	

and	yield,	they	can	predict	crop	performance	beyond	the	environments	for	which	the	

model	 parameters	 were	 estimated.	 In	 this	 respect,	 systems	 approaches	 based	 on	

physiologically	sound	crop	growth	models	can	quantify	and	integrate	crop	responses	

to	genetic,	environmental,	and	management	factors.	Such	an	integrated	approach	can	

guide	 research	 on	 questions	 such	 as	 bridging	 the	 gap	 between	 genotype	 and	

phenotype	and	to	potentially	resolve	GE	interactions	(Chenu	et	al.,	2009;	Messina	et	
al.,	 2009;	Hammer	et	 al.,	 2010;	Tardieu	and	Tuberosa,	2010;	Yin	and	Struik,	2010),	

and	in	proposing	ideotypes	for	particular	target	environments	(Hammer	et	al.,	1999;	

Yin	et	al.,	2000a,	2004;	Yin	and	Struik,	2008).	This	offers	a	major	potential	of	applying	

modelling	 based	 approaches	 in	 plant	 breeding	 strategies	 (Jackson	 et	 al.,	 1996;	

Chapter	1).	

	

	
Yield	improvement	in	potato	
Tuber	 yield	 is	 still	 the	most	 important	 trait	 to	 be	 selected	 for,	 since	 it	 remains	 the	

basis	on	which	the	grower	obtains	an	economic	return.	Yield	production	in	potato	can	

be	 explained	 in	 terms	 of	 an	 integrated	 response	 of	 distinct	 plant	 physiological	

processes	(see	equation	1.1,	Chapter	1).	Physiological	traits	explaining	the	dynamics	

of	canopy	cover	and	tuber	bulking	are	very	useful	as	they	are	important	determinants	

of	yield	(Hodges,	1991).	The	 total	biomass	production	and	accumulation	depend	on	
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the	 intercepted	 photosynthetically	 active	 radiation	 (PAR),	 which	 is	 directly	

proportional	 to	 the	 crop	 green	 canopy	 cover	 (Burstall	 and	 Harris,	 1983;	 Spitters,	

1988;	 Tekalign	 and	 Hammes,	 2005).	 Differences	 in	 the	 rate	 of	 dry	 matter	

accumulation	 can	 be	 attributed	 to	 differences	 in	 light	 interception	 caused	 by	

variability	 in	 growth	 and	 duration	 of	 maximum	 green	 canopy	 cover	 and	 its	

senescence,	and	in	canopy‐level	efficiency	of	utilisation	of	intercepted	radiation	as	a	

result	 of	 changes	 in	 the	 functionality	 of	 leaf	 photosynthesis	 during	 tuber	 bulking	

(Pashiardis,	1987;	Spitters,	1988;	Van	Delden	et	al.,	2001).	The	tuber	yield	is	then	the	

product	of	 intercepted	radiation	and	radiation	use	efficiency	(RUE)	and	determined	

by	the	fraction	of	total	biomass	that	is	partitioned	to	the	tubers,	influenced	by	the	rate	

and	duration	of	tuber	bulking	(Van	der	Zaag	and	Doornbos,	1987;	Spitters	et	al.,	1989;	

Struik	 et	 al.,	 1990).	 All	 this	 shows	 that	 yield	 production	 in	 potato	 is	 the	 result	 of	

interactions	 among	 several	 crop	 characters	 which	 are	 greatly	 influenced	 by	 both	

genetic	and	environmental	and/or	management	factors.		

	 The	genetic	 improvement	of	yield	can	be	understood	more	mechanistically	by	

partitioning	 the	yield	 into	 component	 traits	 (Chapters	2	 and	3)	 and	analysing	 their	

inter‐relationships	(Bezant	et	al.,	1997;	Araus	et	al.,	2008).	It	is	a	very	useful	approach	

for	 the	 breeder	 to	 split	 a	 complex	 trait	 into	more	 simple	 ones,	 provided	 sufficient	

genetic	variation	exists	for	these	traits;	that	they	have	clearly	higher	heritability	than	

the	complex	trait,	and	their	assessment	would	be	easier	than	that	of	tuber	yield	itself.		

	 Until	now,	limited	efforts	have	been	made	to	study	the	physiological	and	genetic	

basis	of	variability	among	traits	determining	crop	performance.	The	key	physiological	

and	 genetic	 processes	 leading	 to	 yield	 development	 and	 the	 factors	 affecting	 these	

processes	are	still	not	well	understood.	Furthermore,	limited	information	is	available	

on	 the	 temporal	 dynamics	 of	 important	 above‐	 and	 below	 ground	 developmental	

processes	 in	 potato	 under	 diverse	 environmental	 conditions	 on	 a	 large	 set	 of	

contrasting	 genotypes.	 Majority	 of	 studies	 have	 focussed	 on	 one,	 or	 a	 very	 limited	

number	 of	 genotypes	 and/or	 cultivars.	 This	 has	 made	 more	 difficult	 the	

understanding	of	complex	regulatory	mechanisms	underlying	the	dynamics	of	tuber	

formation	and	other	developmental	processes.	
	
	
Thesis	approach		
Keeping	 in	 view	 the	 above	 discussion,	 this	 thesis	 aims	 to	 develop	 an	 approach	 to	

quantify	 and	 predict	 the	 temporal	 dynamics	 of	 yield	 formation	 of	 individual	

genotypes	from	a	large	population	and	to	estimate	parameters	which	could	reveal	the	

effects	 of	 genetic	 and	 environmental	 factors	 on	 the	 important	 plant	 processes	

controlling	yield	formation	in	potato.	Besides,	this	study	also	explores	the	question	of	
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whether	 using	 a	 crop	 growth	 and	 development	 modelling	 framework	 can	 link	

phenotypic	complexity	to	underlying	genetic	systems	in	a	way	that	may	contribute	to	

new	 insights	 into	 molecular	 breeding	 strategies	 as	 well	 as	 into	 possibilities	 to	

indirectly	 select	 for	 higher	 yield.	 We	 approach	 this	 question	 by	 physiological	

dissection	 and	 integrative	 modelling	 of	 complex	 traits	 in	 potato.	 Figures	 1.2‐1.3	

(Chapter	1),	present	a	schematic	representation	of	the	overall	approach	employed	in	

this	thesis.	Like	most	genetic	studies	in	potato,	we	chose	a	diploid	(2n	=	2x	=	24)	F1	

segregating	population	(i.e.	SH		RH)	in	order	to	avoid	the	complexity	of	tetrasomic	
inheritance	(Bradshaw	and	Mackay,	1994;	Meyer	et	al.,	1998).	This	population	is	well	

adapted	 to	 the	 growing	 conditions	 of	 the	 Netherlands	 and	 segregates	 for	maturity	

(Van	 der	 Wal	 et	 al.	 1978;	 Van	 Oijen	 1991).	 Besides,	 we	 also	 used	 five	 standard	

cultivars	with	very	different	maturity	types	(i.e.	Première,	Bintje,	Seresta,	Astarte,	and	

Karnico)	as	standard	genotypes.	The	data	sets	used	in	thesis	are	primarily	based	on	

six	 contrasting	 field	 experiments	 carried	 out	 in	 Wageningen	 (52˚	 N	 latitude),	 the	

Netherlands,	 during	 2002,	 2004,	 and	 2005.	 These	 experiments	 differed	 in	

environmental	 conditions	 because	 they	 were	 carried	 out	 in	 different	 years,	 on	

different	 soils	 and	 under	 different	 N	 fertiliser	 regimes,	 thereby	 creating	 six	

contrasting	 environments.	 For	 more	 details	 about	 the	 plant	 material	 used	 and	

experimental	details	(see	Materials	and	methods,	Chapter	2).			

In	the	following	sections,	I	discuss	the	main	findings	and	overall	contribution	of	

this	thesis.		

	

	
An	approach	for	analysing	the	dynamics	of	canopy	cover	and	tuber	bulking		
As	 mentioned	 in	 the	 previous	 section,	 intercepted	 radiation	 has	 been	 found	 to	 be	

linearly	 correlated	with	 the	 quantity	 of	 dry	matter	 produced	which,	 in	 the	 case	 of	

potatoes,	 depends	 on	 the	 leaf	 canopy	 size,	 rate,	 and	 the	duration	 over	 the	 growing	

season	 to	 intercept	 radiant	 energy	 (Van	 der	 Zaag,	 1984;	 MacKerron	 and	 Waister,	

1985a,b;	Van	der	Zaag	and	Doornbos,	1987;	Fahem	and	Haverkort,	1988;	Van	Delden	

et	al.,	2001).	Tuber	bulking	in	potato,	on	the	other	hand	is	the	determinant	process	in	

the	 formation	 of	 harvestable	 products	 of	 potato	 crop.	 It	 marks	 the	 onset	 of	 the	

production	 phase	 of	 the	 potato	 crop	 after	 a	 dynamic	 sequence	 of	 several	 complex	

physiological	 events	 (Ewing	 and	 Struik,	 1992;	 Jackson,	 1999;	 Struik	 et	 al.,	 2005).	

Quantitative	understanding	of	both	canopy	and	tuber	bulking	dynamics	 is	 therefore	

imperative	to	explain	potato	production	under	particular	conditions.		

Research	 has	 addressed	 many	 aspects	 of	 potato	 canopy	 growth	 and	

development	(e.g.	Fleisher	and	Timlin,	2006;	Fleisher	et	al.,	2006;	Vos	and	Biemond,	

1992);	however,	insights	into	the	relationships	among	environment,	nutritional,	and	
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other	factors,	particularly	with	respect	to	canopy	cover	and	its	relation	with	whole‐

plant	 physiology	 are	 still	 lacking	 (Almekinders	 and	 Struik,	 1996).	 Despite	 the	

importance	 of	 potato	 tubers	 as	 a	 source	 of	 food	 and	 a	 means	 of	 propagation,	 the	

initiation,	growth	and	development	of	tubers	and	the	factors	affecting	these	processes	

are	 not	 well	 understood,	 especially	 in	 the	 context	 of	 large	 number	 of	 contrasting	

genotypes	 and	 diverse	 multi‐environments	 under	 field	 conditions.	 Until	 now,	 few	

studies	 have	 quantitatively	 and	 systematically	 explored	 the	 temporal	 dynamics	 of	

tuber	 bulking	 for	 a	 wide	 range	 of	 genotypes,	 with	 the	 exception	 of	 the	 work	 by	

Spitters	(1988)	and	Celis‐Gamboa	et	al.	(2003).		

In	Chapter	2,	we	therefore	developed	a	quantitative	approach	to	break	down	the	

time	course	of	canopy	cover	during	the	entire	crop	cycle	as	a	function	of	thermal	time	

into	 component	 traits.	 Canopy	 cover	 development	 pattern	 was	 subdivided	 into	

distinct	stages	using	a	beta	function	based	on	Yin	et	al.	(2003,	2009).	The	model	(eqns	

2.1‐2.3,	Chapter	2)	describes	three	phases	of	canopy	development	(i.e.	canopy		build‐

up	 phase,	 maximum	 cover	 phase,	 and	 canopy	 decline	 phase)	 through	 multiple	

parameters	 defining	 the	 timing,	 rate,	 duration	 and	 area	 under	 green	 canopy	 curve	

((see	Fig.	2.1	in	Chapter	2);	Table	6.1).	These	traits	were	biologically	meaningful	and	

directly	related	to	the	ability	of	the	adapted	genotypes	to	intercept	PAR	and	thus	to	

create	high	tuber	yields.	Many	of	these	traits	showed	significant	genetic	variation.		

In	addition,	Chapter	3	presents	a	quantitative	approach	to	analyse	the	dynamics	

of	tuber	bulking	during	the	entire	crop	cycle	and	its	variability	among	a	 large	set	of	

potato	 genotypes	 and	 to	 break	 the	 time	 course	 and	 its	 variation	 down	 into	

biologically	 meaningful	 and	 genetically	 relevant	 component	 traits.	 Tuber	 bulking	

results	 from	 two	 basic	 processes,	 tuber	 initiation	 and	 tuber	 growth.	 Tuber	 growth	

normally	 follows	 a	 sigmoid	 pattern	 as	 a	 function	 of	 time,	 including	 an	 early	

accelerating	phase,	a	linear	phase,	and	a	maturation	phase	(see	Fig.	3.1	in	Chapter	3).	

These	processes	can	be	described	by	using	the	expolinear	function	of	Goudriaan	and	

Monteith	 (1990)	 as	 described	 by	 eqn	 3.1	 (Chapter	 3).	 However,	 because	 of	 its	

curvilinear	 nature	 the	 true	 growth	 rate	 in	 the	 linear	 phase	 is	 under‐estimated.	We	

therefore	modified	 the	 approach	 of	 Goudriaan	 and	Monteith	 (1990)	 and	 quantified	

these	phases	together	with	a	piece‐wise	expolinear	function	(i.e.	combined	eqns	3.1‐

3.3;	Chapter	3).	Several	parameters	were	generated	describing	the	rate	and	duration	

of	linear	phase	of	tuber	bulking	(Table	6.1).	

To	account	for	the	influence	of	daily	and	seasonal	temperature	fluctuations	on	

tuber	 growth,	 all	 time	 variables	 and	 duration	were	 expressed	 as	 thermal	 days	 (td)	

following	our	 approach	 in	Chapter	2.	According	 to	 the	 results,	 our	model	 approach	

successfully	 described	 the	 sigmoidal	 time‐course	 curve	 of	 canopy	 growth	 (Fig.	 2.2,	

Chapter	 2)	 and	 the	 dynamics	 of	 tuber	 bulking	 (Fig.	 3.2,	 Chapter	 3)	 of	 individual	



Chapter	6	
 

 
 
 
166 

genotypes	 from	 a	 large	 set	 of	 population	 across	 varied	 environments	 via	

agronomically	meaningful	traits	(as	discussed	later).	
	
	
Quantification	of	resource	use	efficiencies	
Productivity	 increase	 can	 also	 be	 accompanied	 by	 an	 increase	 in	 the	 genotype’s	

resource	 use	 efficiency.	 Efficient	 utilisation	 requires	 both	 effective	 capture	 of	

resources	 and	 efficient	 conversion	 into	 useable	 biomass.	 In	 potato,	 plant	 growth	

including	canopy	production	 for	efficient	 light	 interception	and	photosynthesis	 (see	

earlier	text)	depends	on	adequate	nutrition,	and	optimised	fertiliser	inputs,	especially	

N.	Both	radiation	and	N	are	therefore	essential	resources	for	efficient	crop	production.	

The	variation	in	dry	matter	content	among	cultivars	can	also	partly	be	attributed	to	

the	 variation	 in	 efficiency	 of	 diverting	 of	 more	 dry	 matter	 to	 the	 tubers	 (Spitters,	

1988;	 Struik	 et	 al.,	 1990).	 Therefore	 the	 interpretation	 of	 plant	 growth	 in	 terms	 of	

accumulated	intercepted	PAR,	N	uptake	and	the	efficiency	with	which	these	resources	

are	 used	 for	 dry	 matter	 production	 should	 receive	 adequate	 attention	 in	 potato	

breeding	programmes.		

The	 aim	 of	 this	 thesis	 was	 also	 to	 produce	 tools	 and	 materials	 suitable	 for	

breeding	 new	 crop	 varieties	 with	 improved	 resource	 (i.e.	 radiation	 and	 N)	 use	

efficiencies	 and	 to	 study	 how	 they	 are	 influenced	 by	 genetic	 and	 environmental	

influences.	 Nonetheless,	 interventions	 in	 breeding	 based	 on	 understanding	 of	 the	

genetic	and	physiological	basis	of	crop	performance	have	the	potential	to	accelerate	

genetic	gains	for	yield	and	resource	use	efficiencies.	We	therefore	analysed	radiation‐	

and	N	use	efficiencies	(RUE	and	NUE,	respectively),	and	their	relationships	with	our	

estimated	physiological	model	traits.		

The	term	RUE	refers	to	the	slope	of	the	relation	between	total	dry	matter	(g	m‐2)	

and	 cumulative	 intercepted	 radiation	 (MJ	 m‐2)	 (Haverkort	 and	 Harris,	 1987).	

Similarly,	NUE	 is	 generally	defined	 as	 the	 ratio	between	 total	 plant	dry	weight	 and	

plant	N	uptake.	In	this	thesis,	however,	due	to	lack	of	detailed	measurements	of	total	

plant	 biomass	 for	 our	 large	 set	 of	 genotypes,	 radiation	 and	N	 use	 efficiencies	were	

estimated	on	the	basis	of	 tuber‐dry	weight	 for	each	 individual	genotype/cultivar	by	

dividing	 the	 total	 tuber	 dry	 matter	 at	 maturity	 (g	 DM	 m−2)	 by	 the	 cumulative	

intercepted	 PAR	 (MJ	 PARint	m−2)	 and	 total	 tuber	 N	 uptake	 (g	 N	 m−2),	 respectively	

(Chapter	3).		

The	results	indicated	that	there	existed	a	significant	(P<0.01)	wide	variation	for	

both	RUE	and	NUE	within	the	F1	population	with	values	ranging	from	1.5	g	DM	MJ‐1	

to	 2.6	 g	 DM	 MJ‐1	 and	 54.4	 g	 DM	 g‐1	N	 to	 81.6	 g	 DM	 g‐1	N,	 respectively	 (Table	 3.2,	

Chapter	 3).	 These	wide	 variations	 (see	 Fig.	 3.3,	 Chapter	 3)	 suggested	 transgressive		
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Table	6.1.	Description	of	parameters	reproduced	from	Chapters	2	and	3.	td	stands	for	

thermal	day.	
	

Trait		 Description	 Unit	

	 	
Canopy	cover	dynamics	 	

tm1		 Inflexion	point	during	canopy	build‐up	phase	 td	

t1,	DP1			 Period	from	plant	emergence	to	maximum	canopy	cover		 td	

	 (moment	and	duration	since	emergence,	respectively)	 	

t2		 Onset	of	canopy	cover	senescence	 td	

te	 Time	of	complete	senescence	of	canopy	cover	or	crop	 td	

vmax		 Maximum	level	of	canopy	cover	 %	

cm1	 Maximum	canopy	growth	rate	during	build‐up	phase	 %	td‐1	

c1	 Average	canopy	growth	rate	during	build‐up	phase	 %	td‐1	

c3	 Average	canopy	senescence	rate	during	decline‐	phase	 %	td‐1	

DP2		 Total	duration	of	maximum	canopy	cover	phase		 td	

DP3		 Total	duration	of	canopy	senescence	phase	 td	

A1		 Area	under	canopy	curve	for	DP1			 td	%	

A2		 Area	under	canopy	curve	for	DP2			 td	%	

A3		 Area	under	canopy	curve	for	DP3			 td	%	

Asum		 Area	under	whole	green	canopy	curve	 td	%	
	

Tuber	growth	

tB	 Onset	of	linear	phase	of	tuber	bulking	 td	

tE	 End	of	linear	phase	of	tuber	bulking		 td	

ED	 Total	duration	of	tuber	bulking	 td	

cm		 Rate	of	tuber	bulking	 g	td‐1	

wmax			 Maximum	tuber	dry	matter	at	crop	maturity	 g	m‐2	

	

segregation.	

The	 continuous	 selection	 in	 most	 breeding	 programmes	 has	 very	 much	

narrowed	 down	 the	 genetic	 base	 for	 important	 resource	 use	 efficiencies	 in	 most	

modern	day	potato	cultivars	 (Brown,	1993;	Love,	1999).	This	 thesis	 concluded	 that	

there	 are	 enough	 possibilities	 to	 exploit	 the	 available	 variation	 in	 the	 SH	 	 RH	
breeding	 population	 and	 may	 offer	 more	 efficient	 screening	 possibilities	 for	
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improving	resource	(radiation	and	N)	use	efficiencies.	In	the	coming	sections	we	will	

discuss	the	basis	of	this	variation.		

	

	
Genetic	analysis		
The	prospects	of	improving	a	target	trait	by	selecting	for	component	traits	is	mostly	

determined	by	their	correlation	with	the	target	trait	(e.g.	yield)	as	well	as	amount	of	

heritable	or	 genetic	 variation	 for	 the	particular	 component	 traits	 relative	 to	 that	of	

non‐heritable	or	 environmental	 variation,	 and	by	 the	nature	 and	magnitude	of	GE	
interaction.	 Therefore,	 an	 understanding	 of	 such	 relationships	 within	 potato	

germplasm	is	important	to	establish	a	broad	genetic	base	for	breeding	purposes.	

Results	 of	 the	 current	 thesis	 demonstrated	 that	 standard	 cultivars	 exhibited	

significant	 (P<0.05)	 differences	 with	 respect	 to	 component	 traits	 controlling	 the	

dynamics	of	canopy	cover	and	tuber	bulking,	resource	(radiation,	N)	use	efficiencies,	

and	final	tuber	yield.	Not	surprisingly,	in	most	cases,	performance	of	the	commercial	

potato	cultivars	was	superior	to	that	of	the	diploid	F1	population	(Tables	2.2;	3.1‐3.2).	

Tetraploid	 potatoes	 are	 typically	more	 vigorous	 and	 high	 yielding	 (DeMaine,	 1984;	

Hutton,	1994).	The	somewhat	decreased	vigour	and	yield	 in	diploids	may	be	due	to	

their	ploidy	reduction	and	inbreeding	depression	(Kotch,	1987).		

Estimates	 of	 different	 components	 of	 variance	 can	 be	 used	 to	 formulate	 the	

most	efficient	breeding	strategy	for	improved	genotypes.	Study	of	sources	of	variation	

among	the	tested	F1	genotypes	indicated	that	there	was	significant	(P<0.01)	genetic	

variation	 for	 most	 traits	 determining	 the	 course	 of	 canopy	 development,	 tuber	

bulking,	and	(radiation,	N)	resource	use	efficiencies	(Chapters	2	and	3).		

The	 results	 further	 indicated	 that	 some	 genotypes	 performed	 best	 across	 the	

environments.	 Table	 6.2	 presents	 the	means	 of	 top	 10%	 of	 the	 out‐performing	 F1	

genotypes	for	 few	selected	physiological	 traits.	Such	genotypes	could	be	very	useful	

for	selection	and	further	testing	in	breeding	programmes.		

Heritability	of	a	 trait	 is	a	key	component	 in	determining	genetic	advance	 from	

selection	 (Nyquist,	 1991).	 The	 results	 indicated	 high	 broad‐sense	 heritability	 (H2)	

estimates	 across	 environments	 for	 most	 traits.	 For	 instance,	 >80%	H2	values	 were	

recorded	 for	 traits	 (t2,	 te,	 DP2,	 A2,	 Asum,	 cm,	 tE,	 ED,	 RUE,	 and	 NUE)	 (cf.	 Tables	 2.6	

(Chapter	2)	and	3.5	 (Chapter	3)).	These	results	suggested	 that	 these	are	repeatable	

traits	 and	 strongly	 expressed	 across	 a	 range	 of	 environmental	 conditions.	 On	 the	

other	hand	 low	broad‐sense	heritability	as	well	as	minimum	CVG	estimates	 for	t1	or	

DP1	and	c3	indicated	that	total	duration	of	canopy	build‐up	phase	and	rate	of	canopy	

senescence,	 respectively	 is	 sensitive	 to	 the	 environment	 (mainly	 N)	 (Table	 2.4,	

Chapter	2).		
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GE	 interaction	 is	 an	 extremely	 important	 issue	 in	 potato	 breeding	 as	 such	
interaction	 impedes	plant	breeding	progress	 for	 complex	 traits	 such	as	yield	and	 is	

considered	to	be	among	the	major	factors	limiting	response	to	selection	(Tarn	et	al.,	

1992;	Bradshaw,	1994;	Kang,	1998).	The	development	of	shoots	and	tubers	in	potato	

is	strongly	influenced	by	both	genetic	and	environmental	factors.	In	this	study,	it	was	

noted	 that	 proportion	 of	 GE	 interaction	 variance	was	 greater	 than	 the	 G	 variance	
component	for	traits	determining	the	canopy	build‐up	and	senescence	phases,	see	Fig.	

2.2	(Chapter	2).	These	traits	mainly	included	maximum	canopy	cover	(vmax),	rates	of	

canopy	growth	and	senescence	(cm1,	c1,	and	c3),	duration	(DP1)	and	area	under	canopy	

cover	(A1)	when	canopy	cover	reaches	 its	maximum,	duration	(DP3)	and	area	under	

canopy	cover	(A3)	of	canopy	senescence	(Table	2.3,	Chapter	2).	This	could	mean	that	

these	 traits	 may	 show	 a	 range	 of	 phenotypic	 expressions	 when	 subject	 to	 diverse	

environments	due	to	GE	interaction.	The	larger	the	GE	interaction	component,	the	
smaller	 the	heritability	estimate;	 thus,	selection	progress	would	be	reduced	as	well.	

However,	 the	moderate	 (50%	 <	H2	<	 70%)	 heritability	 estimates	 for	most	 of	 these	

traits	indicated	that	these	traits	are	responsive	to	selection	(Table	2.6,	Chapter	2).	

Our	 results	 further	 indicated	 that	 some	 important	 physiological	 traits	 were	

stable	 across	 the	 environments	 on	 account	 of	 their	 G	 component	 of	 variance	 being	

higher	than	the	GE	interaction.	These	traits	included	onset	of	canopy	senescence	(t2),	
crop	maturity	 (te),	 duration	 (DP2)	 and	 area	 under	 canopy	 cover	 (A2),	 when	 canopy	

cover	is	at	maximum	level	(or	100%),	and	total	area	under	green	canopy	cover	(Asum)	

(Table	2.3,	Chapter	2).	

In	case	of	traits	related	to	the	dynamics	of	tuber	bulking	and	resource	(radiation	

and	N)	use	efficiencies,	the	nature	of	the	data	sets	(i.e.	lack	of	independent	replication	

of	 estimations)	 did	 not	 allow	 estimating	 the	 GE	 component	 of	 variation	 for	 these	
traits.	 However,	 high	CVG	 estimates	 for	 these	 traits	 along	with	 high	 (>80%)	 broad‐

sense	H2	 (as	discussed	earlier)	 indicated	strong	genetic	basis	 for	 these	 traits	(Table	

3.5,	Chapter	3).		

Study	of	sources	of	variation	for	tuber	yield	per	se	on	the	other	hand,	indicated	

high	 contribution	 of	 environmental	 (E)	 variance	 in	 its	 total	 observed	 phenotypic	

variance	(Table	3.4,	Chapter	3).	This	is	not	surprising	as	yield	is	a	complex	trait	and	

the	net	result	of	many	plant	physiological	processes	and	their	relationships	with	the	

environment	particularly	N	as	discussed	in	the	later	sections.		

For	 a	 successful	 breeding	 programme,	 genetic	 diversity	 and	 variability	 in	 a	

population	plays	a	vital	role	(Omoigui	et	al.,	2006).	This	thesis	clearly	indicated	that	

there	exists	strong	genetic	diversity	in	the	SHRH	germplasm	for	nearly	all	the	model	
traits.	 There	 are	 opportunities	 to	 further	 analyse	 and	 exploit	 this	 wide	 genetic	

variability	available,	which	could	potentially	be	used	in	breeding	programmes	aimed	
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at improving canopy, as well as tuber bulking dynamics and resource (radiation, N) use 

efficiencies and ultimately tuber dry matter production. 
 
 
Role	of	environment	
Plant	 breeders	 are	 mostly	 interested	 in	 characterising	 genotypes	 in	 diverse	

environments	to	understand	how	a	particular	set	of	genotypes	perform	differently	in	

different	 environments.	 A	 thorough	 understanding	 of	 the	 relationship	 between	 the	

crop	 and	 the	 environment	 may	 help	 to	 increase	 potato	 productivity	 for	 specific	

environments.		

In	this	thesis,	environment	represents	a	combination	of	year,	site,	and	different	

N	 availability	 regimes	 (Chapter	 2).	 Typically,	 N	 is	 the	 key	 environmental	 variable	

affecting	 the	 important	 yield	 determining	 growth	 and	 development	 processes	 of	

potato	(Honeycutt	et	al.,	1996).	N	management	is	therefore	a	high	priority	in	potato	

cropping	 systems.	 In	 this	 study	 we	 lacked	 precise	 information	 about	 amount	 of	

mineral	 N	 becoming	 available	 during	 the	 course	 of	 crop	 growth.	 However,	 crop	 N	

uptake	 can	 be	 used	 as	 a	 site‐specific	 indicator	 of	 N	 that	 is	 “available”	 to	 the	 crop	

(Sullivan	et	al.,	2008).	Therefore,	to	assess	the	role	of	N,	total	amount	of	N	uptake	by	

tubers	was	 used	 as	 an	 indicator	 of	N	 availability	 per	 each	 environment	 (Table	 2.1,	

Chapter	2).		

Our	 results	 further	 indicated	 good	 correlations	 among	 the	 environments	 for	

most	of	physiological	traits,	e.g.	Asum.	However,	the	correlations	varied	much	for	some	

traits	 like	 t1	 or	vmax.	 It	 is	 obvious	 that	 traits	more	 sensitive	 to	 environment	 and/or	

GE	 interaction	 show	 more	 heterogeneity	 among	 the	 environments	 (Fig.	 6.1).	
Ranking	of	 genotypes	 changed	 across	 the	 environments	 (Table	6.2)	with	maximum	

variability	observed	within	 the	F1	population	under	 low	N	environment	(i.e.	Exp	3)	

(Table	2.1,	Figs.	2.3‐2.4	(Chapter	2);	Table	3.4	(Chapter	3)).	Such	changes	in	genotype	

ranking	have	been	defined	as	cross‐over	GE	interactions	(Baker,	1988).	Cross‐over	
types	 of	 interactions	 are	 important	 to	 breeders	 and	 production	 agronomists	 for	

identifying	 adapted	 traits	 and	 may	 enable	 selection	 strategies	 for	 developing	

improved	varieties.		

Plant	breeders	and	geneticists	have	a	long‐standing	interest	in	investigating	and	

integrating	 G	 and	 GE	 interaction	 in	 selecting	 superior	 genotypes	 for	 specific	
applications	and	for	particular	target	environments	with	highest	possible	economical	

yield	and	resource	use	efficiencies	(Kang	and	Pham,	1991).	It	was	remarkable	to	note	

that	some	genotypes	 ‐	besides	performing	best	 in	N	sufficient	environments	–	were	

also	highly	ranked	under	resource	poor	conditions	(i.e.	Exp	3	with	low	N	availability).		
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Table	6.2	 indicates	such	genotypes	 for	 few	selected	physiological	model	 traits.	

For	 instance	 genotypes	 SHRH34‐H6	 and	 SHRH‐136	 showed	maximum	values	 for	 te	

(time	of	crop	maturity),	Asum	(area	under	whole	green	canopy	curve)	whereas	some	

other	 genotypes	 (e.g.	 SHRH11‐F10,	 SHRH53‐J8)	 indicated	 high	 cm	 (rates	 of	 tuber	

bulking).	 It	 was	 further	 noted	 that	 the	 majority	 of	 best	 performing	 genotypes	

indicated	high	resource	(radiation	and	N)	use	efficiencies	under	low	N	environment	

(Chapter	 3;	 Table	 6.2).	Moreover,	 some	 of	 the	 best	 yielding	 genotypes	 also	 yielded	

relatively	very	well	under	low	N	conditions	(e.g.	SHRH42‐H12,	SHRH‐406,	SHRH53‐J8,	

and	 SHRH83‐L9;	 Table	 6.2).	 Such	 genotypes	 therefore	 could	 be	 very	 useful	 for	

breeding	for	widely	adapted	potato	lines.		

In	 addition,	 focus	 on	why	 particular	 genotypes	 perform	 exceptionally	 well	 in	

low	 or	 high	 input	 situations	 could	 enable	 selection	 strategies	 to	 be	 developed	 for	

improved	varieties.	

Overall,	these	results	indicate	that	N	availability	might	be	one	of	the	key	driving	

factors	 for	 causing	 trade‐offs	 between	 the	 physiological	 traits	 in	 different	

environments.	Moreover,	results	suggested	that	N	availability	and	its	interaction	with	

genotype’s	maturity	type	mainly	contribute	to	the	GE	interaction	of	the	growth	and	
development	 related	 processes	 in	 potato	 (see	 Fig.	 3.5,	 Chapter	 3).	 This	 thesis	

therefore	 allowed	 a	 partial	 understanding	 of	 the	 environmental	 causes	 of	 the	

observed	GE	interactions.		
	

	
Understanding	maturity	in	potato	
Crops	undergo	sequential	developmental	phases	from	emergence	to	senescence	that	

are	not	only	characterised	by	their	chronological	age,	but	also	by	their	phenology	and	

reproductive	 capacity.	 In	most	 annual	 crop	 plants,	 the	 transition	 to	 the	maturity	 is	

marked	by	the	onset	of	flowering	and	seed	production	(Bond,	2000).	However,	in	the	

case	of	potato,	progress	to	maturity	is	difficult	to	assess.	This	is	mainly	because	most	

potato	genotypes	possess	 indeterminate	growth	pattern	and	therefore	maintain	 the	

capacity	 to	develop	new	 leaves	 and	 continue	 to	 grow	 throughout	 the	major	part	of	

their	life	cycle	(Struik	and	Ewing,	1995;	Almekinders	and	Struik,	1996;	Fleisher	et	al.,	

2006).		

The	 sequential	 phases	 of	 growth	 determining	 the	 duration	 of	 phenological	

stages	of	potato	genotypes	could	be	used	to	define	the	maturity	type	of	genotype(s).	

In	 order	 to	 better	 understand	 the	 maturity	 type	 in	 potato	 and	 to	 study	 the	

consequences	of	maturity	 type	on	 the	 canopy	cover	and	 tuber	bulking	dynamics	as	

well	as	resource	(radiation,	N)	use	efficiencies,	a	set	of	cultivars	covering	a	wide	range	

of	maturity	types	were	included	in	this	thesis,	see	Material	and	Methods	(Chapter	2).				
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The	results	 indicated	 that	 length	of	 the	canopy	build‐up	phase	 (t1	or	DP1)	was	

conservative.	 Genotypic	 differences	 during	 early	 growth	 stages	 of	 potato	 are	 less	

distinct	 (Spitters,	 1988).	 The	 duration	 of	 maximum	 canopy	 cover	 (DP2)	 and	 the	

canopy	 decline	 phase	 (DP3)	varied	 greatly	 with	 maturity	 type,	 with	 late	 maturing	

genotypes	having	longer	DP2	and	DP3	and	thus	accumulated	higher	area	under	whole	

green	canopy	curve	(Asum)	(Table	2.2,	Chapter	2).	The	amount	of	light	intercepted	is	in	

proportion	to	the	area	under	the	whole	green	canopy	curve	(Vos,	1995a;	Fig.	6.2).		
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Figure	6.2.	Relationship	between	cumulated	PAR	interception	and	area	under	whole	

green	canopy	curve	(Asum)	in	an	F1	population	of	potato	across	environments.		
	

	
The	tuber	bulking	rate	(cm)	was	highest	for	early	maturing	genotypes	followed	

by	mid‐late	and	then	late	genotypes.	Late	maturing	genotypes	had	longest	period	of	

tuber	 bulking	 (ED)	 followed	 by	 mid‐late	 and	 early	 genotypes.	 As	 a	 result	 crop	

matured	(tE)	 later	and	tuber	yield	(wmax)	was	higher	 in	 late	genotypes	than	 in	early	

genotypes	(Table	3.1,	Chapter	3).	This	was	in	line	with	Kooman	and	Rabbinge	(1996)	

and	 Spitters	 (1988),	 who	 reported	 that,	 compared	with	 late	 cultivars,	 early	 potato	

cultivars	allocate	a	 larger	part	of	 the	available	assimilates	 to	 the	tubers	early	 in	 the	

growing	 season,	 resulting	 in	 shorter	 growing	periods	 and	 also	 lower	 yields.	On	 the	

other	hand,	 late	maturing	 cultivars	 combine	 a	 long	 canopy	 cover	with	 a	 long	 tuber	

bulking	 period	 (ED)	 and	 therefore	 achieve	more	 tuber	 dry	matter	 yield	 (wmax)	 per	
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unit	of	N	uptake	 than	mid‐early	and	early	maturing	cultivars	 (Zebarth	et	al.,	2008).	

Figure	6.3	illustrates	the	relationship	between	crop	maturity	and	final	tuber	yield	for	

a	set	of	standard	cultivars	and	(SH		RH)	segregating	population.	
The	 results	 were	 further	 evaluated	 for	 relationship	 between	 maturity	 and	

resource	(radiation,	N)	use	efficiencies.	RUE	values	were	highest	 for	early	maturing	

genotypes	followed	by	mid‐late	and	late	genotypes	(Table	3.1,	Chapter	3).	This	might	

be	related	with	the	leaf	age,	which	is	linked	with	the	partitioning	of	dry	matter.	If	the	

foliage	 of	 a	 crop	 remains	 green	 for	 a	 longer	 period,	 for	 example	 in	 late‐maturing	

cultivars,	 and	no	new	 leaves	are	 formed	 in	 the	 late	part	of	 the	growing	 season,	 the	

leaves	can	become	so	old	that	the	rate	of	photosynthesis	declines	towards	the	end	of	

the	 season	 resulting	 into	 low	 RUE	 values	 (Van	 der	 Zaag	 and	 Doornbos,	 1987).	 In	

contrary,	results	indicated	high	NUE	estimates	for	potato	cultivars	with	later	maturity	

(Zebarth	et	al.,	2003,	2004).	The	reduced	canopy	senescence	and	greater	partitioning	

of	N	 to	 above	 ground	parts	most	 likely	 contributed	 to	 the	high	measured	values	of	

NUE	for	late	cultivars	(Sharifi	et	al.,	2005).			

This	 thesis	 indicated	 that	 most	 of	 the	 physiological	 model	 traits	 (either	

individually	 or	 in	 combination)	 elaborately	 explained	 the	 genetic	 variation	 in	

maturity	type.	Our	approach	could	be	useful	in	elucidating	the	role	of	maturity	type	in	

potato.		

The	definition	of	maturity	type	as	a	genotypic	trait	in	potato,	however,	is	rather	

ambiguous	and	currently	there	are	so	many	unclear	interpretations.	Many	public	and	

private	institutions	have	tried	to	define	the	maturity	type	in	potato	and	have	come	up	

with	 their	own	definitions.	The	 conventional	method	or	 criterion	of	 elucidating	 the	

maturity	 type	 used	 is	 mostly	 based	 on	 visual	 observations	 made	 in	 the	 field	 at	

particular	 time	 intervals	 during	 the	 crop	 cycle	 and	 transferring	 that	 information	 to	

unit‐less	 ordinal	 scales.	 This	 criterion	 does	 not	 have	 any	 biological	 meaning	 and	

involves	 ambiguity	 and	 much	 speculation	 in	 understanding	 the	 background	 of	

maturity,	partly	because	of	the	different	viewpoints	of	growers	and	processors.	The	

added	 physiological	 and	 quantitative	 knowledge	 gained	 in	 Chapters	 2	 and	 3	 were	

therefore	used	to	evaluate	the	conventional	system	of	maturity	type	and	to	quantify	

and	 re‐define	 the	 concept	 of	maturity	 type	 on	 physiological	 basis	 for	 a	 large	 set	 of	

genotypes.	 Four	 traits	 (DP2,	 cm,	ED,	 and	Asum,)	were	 selected	 among	 the	 large	 set	 of	

physiological	traits	based	on	their	high	direct	response	to	selection	(Table	6.3),	a	re‐

defined	physiological	based	maturity	criteria	was	developed	and	compared	with	the	

conventionally	 used	 criterion	 (Chapter	 4).	 The	 results	 indicated	 that	 the	

conventional‐criterion	 based	 maturity	 scores	 showed	 more	 chances	 of	 errors	 and	

lack	 of	 repeatability	 in	 maturity	 scoring	 throughout	 the	 different	 maturity	 classes	

(very	early,	 early/mid‐early,	mid‐late/late,	 and	very	 late).	Moreover,	 the	method	of		
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Figure	 6.3.	 Final	 tuber	 yields	 of	 100	 F1	 genotypes,	 5	 standard	 cultivars,	 and	 2	

parental	genotypes	(SH	and	RH),	measured	in	each	individual	experiment.		
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classification	 lacked	 the	 capability	 to	 clearly	 interpret	 and	 discriminate	 between		

maturity	classes	for	the	crucial	growth	related	processes	of	potato	(e.g.	Asum)	(see	Fig.	

4.5,	Chapter	4).		

The	 re‐defined	 criteria	 of	 maturity	 type	 based	 on	 physiological	 traits	 on	 the	

other	 hand	 tended	 to	 define	 maturity	 classes	 less	 ambiguously	 and	 with	 a	 clear	

conceptual	basis.	This	study	therefore	indicated	that	re‐defining	the	maturity	type	of	

a	large	set	of	genotypes	is	possible	on	the	basis	of	physiological	traits	and	may	prove	

very	useful.		

The	physiological	 traits	 related	 to	 the	 capability	 of	 genotype	 to	 intercept	PAR	

and	 its	 rate	 and	 duration	 of	 tuber	 bulking	were	 indicated	 crucial	 for	maturity	 and	

therefore	 could	 be	 used	 to	 quantify	 variation	 in	maturity	 type	 among	 sets	 of	 new,	

unknown	potato	genotypes	(Chapter	4).		

The	new	physiology‐based	maturity	definition	would	not	only	allow	relating	the	

maturity	to	crop	phenology	and	physiology	but	could	also	offer	wider	applications	in	

potato	breeding	and	crop	management	studies.	One	such	application	would	be	to	help	

in	designing	breeding	strategies	for	potato	ideotypes	with	specific	maturity	type	for	

specific	growing	conditions	and/or	environments.	
	
	
Inter‐relationships	among	the	physiological	traits		
Yield	 is	 a	 complex	 trait	 associated	 with	 many	 inter‐related	 components	 (Yan	 and	

Wallace,	 1995).	 The	 knowledge	 of	 quantitative	 relationships	 among	 physiological	

characters	determining	yield	can	provide	useful	 insights	into	how	differences	of	the	

complex	 trait	 and	 the	significance	 in	 correlations	between	component	and	complex	

traits	(e.g.	yield)	come	about	(Chapter	1).		In	addition,	determining		the		physiological		

traits		most		involved		in		the		formation		of		a		yield	component	could	give	insight	into	

the	possibilities	of	manipulating	the	size	or	number	of	the	component.	

Although	 information	 about	 the	 correlation	 of	 agronomic	 and	 morphological	

characters	 with	 yields	 is	 helpful	 in	 the	 identification	 of	 the	 components	 of	 this	

complex	character,		yet		these		do		not		provide		precise		information		on		the		relative		

importance		of	direct		and		indirect		influences		of		each		of		the		component		characters.	

Many	researchers	(e.g.	Bhatt,	1972)	have	reported	that	merely	correlation	studies	do	

not	 clearly	 reveal	 such	 type	 of	 information	 and	 can	 be	 misleading	 if	 the	 high	

correlation	 between	 two	 traits	 is	 a	 consequence	 of	 the	 indirect	 effect	 of	 the	 traits	

(Dewey	 and	 Lu,	 1959).	 Procedures	 like	 path	 coefficient	 analysis	 permit	 a	 thorough	

understanding	 of	 relationships	 and	 contribution	 of	 various	 characters	 to	 the	 target	

trait	by	partitioning	the	correlation	coefficient	into	components	of	direct	and	indirect	

effects.			
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Path	 coefficient	 analysis	 was	 therefore	 performed	 to	 quantify	 the	 inter‐

relationships	of	our	physiological	model	traits	and	to	indicate	whether	their	influence	

is	directly	reflected	in	the	tuber	yield	(wmax)	or	 if	they	take	some	other	pathways	to	

produce	an	effect.	The	results	 revealed	 that	 traits	 like	Asum	 followed	by	RUE	and	cm	

exerted	 the	 highest	 direct	 influence	 on	 wmax	 (Table	 3.7;	 Fig.	 3.6,		

Chapter	3).	

The	results	indicated	that	high	direct	effects	of	Asum	on	wmax	were	mainly	due	to	

significant	 (P<0.05),	 strong	 positive	 phenotypic	 correlations	 between	Asum,	ED,	 and	

NUE	(Fig.	3.6,	Chapter	3).	On	the	other	hand	significant,	strong,	positive	phenotypic	

correlations	 (r	=	0.69)	between	RUE	and	cm	were	reflected	 in	 their	higher	values	of	

direct	effect	on	wmax.	However,	 results	 indicated	 that	 total	effects	 (i.e.	 sum	of	direct	

and	 indirect	 effects)	 of	 traits	 cm	 and	RUE	 on	wmax	were	 reduced	mainly	 due	 to	 the	

strong,	 negative,	 indirect	 effects	 of	Asum	 on	 these	 traits	 (Table	 3.7,	 Chapter	 3).	 The	

results	further	indicated	that	effects	of	traits	ED	and	NUE	on	the	tuber	yield	consisted	

mostly	 of	 positive	 indirect	 influences	mainly	 through	Asum,	 suggesting	 a	 correlated	

response	in	selection	(Table	3.7,	Chapter	3).		

These	 findings	 therefore	suggested	 that	selection	 for	Asum,	RUE,	and	cm	should	

be	 emphasised	 in	 breeding	programmes	 for	 improving	 tuber	 yields.	Donald	 (1968)	

proposed	that	an	ideal	genotype	is	that	with	a	specific	combination	of	characteristics	

favourable	for	growth	and	yield	production	based	on	the	knowledge	of	plant	and	crop	

physiology	 and	 morphology.	 Our	 results	 further	 indicated	 that	 an	 ideal	 potato	

genotype	 from	 a	 breeding	 perspective	 is	 characterised	 by	 green	 canopy	 cover	 that	

intercepts	 solar	 radiation	 for	 as	 long	 as	 possible	 (i.e.	 with	 higher	Asum)	 during	 the	

available	growing	season	to	accumulate	as	much	dry	matter	as	possible	maintaining	a	

maximum	capacity	to	divert	dry	matter	to	the	tubers	(i.e.	with	greater	period	of	tuber	

bulking	(ED))	without	compromising	the	optimal	levels	of	growth	rates	(cm)	and	RUE	

ensuring	highest	possible	economical	tuber	yields.	Figure	6.4	schematically	highlights	

various	situations	of	potato	ideotypes	under	both	optimum	and	resource	poor	(low	N)	

conditions.	Researchers	could	then	strive	to	obtain	an	optimum	combination	of	yield	

components	 that	would	best	suit	 the	requirement	 for	high	yielding	ability	 in	potato	

genotypes	for	any	particular	environment.		
	
	
Indirect	selection	for	yield	in	potato	
In	a	traditional	crop	breeding	programme,	elite	 lines	are	 inter‐crossed	and	then	the	

highest	 yielding	 lines	are	 selected.	However,	 yield	 selection	 is	 empirical	due	 to	 low	

heritability	and	a	high	genotype–environment	 interaction	 (Reynolds	et	al.,	1999).	 It	

also	requires	 the	evaluation	of	a	 large	number	of	advanced	 lines	 in	 field	yield	trials		
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Figure	6.4.	Schematic	representation	of	the	course	of	green	canopy	cover	and	tuber	

dry	matter	production	of	5	standard	cultivars,	and	2	parental	genotypes	(SH	and	RH)	

for	(a)	low	N	situation	(Exp	3)	and	(b)	optimum	N	situation	(Exp	6).	
	
	

over	 several	 years	 and	 locations	 (Ball	 and	 Konzak,	 1993).	 Potato	 breeding	

programmes	 therefore	 constantly	 need	 new	 strategies	 to	 improve	 efficiency	 by	

increasing	the	frequency	of	selected	genotypes	and	reducing	time	and	costs.		

An	 alternative	 strategy	 that	 gives	 a	 high	 indirect	 response	 to	 selection	 for	

average	yield	over	the	production	environments	has	the	potential	for	screening	large	

numbers	 of	 genotypes	 in	 breeding	 programmes	 for	 identifying	 and	 selecting	 high‐

yielding	 lines	 (Shorter	 et	 al.,	 1991;	 Cooper	 et	 al.,	 1995;	 Marti	 et	 al.,	 2007).	 In	 this	

context,	the	best	approach	would	be	to	select	for	component	traits	that	are	putatively	

related	with	 a	higher	yield	potential	 and/or	 to	 the	 improved	behaviour	of	 the	 crop	

when	grown	in	a	particular	environment.	This	is	known	as	analytical	or	physiological	
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breeding	(Chapter	1).	

One	of	the	key	objectives	of	this	thesis	was	to	identify	physiological	traits	which	

could	be	useful	as	a	selection	criterion	to	improve	crop	yield	in	potato.	Therefore,	in	

this	 section,	our	aim	was	 to	estimate	 the	expected	direct	 selection	response	 (R)	 for	

tuber	yield	and	also	 for	physiological	 traits,	 correlated	selection	response	(CR),	and	

efficiency	of	indirect	selection	(CR/R)	for	tuber	yield	from	physiological	traits.	Mean	

values	 of	 F1	 population	 were	 used	 to	 estimate	 the	 genetic	 correlations	 between	

physiological	traits	and	measured	tuber	yield	(Chapters	2	and	3);	estimates	for	R,	CR,	

and	CR/R	were	estimated	following	the	methods	described	by	Falconer	(1996)	as:		

	

x
2
xiHR  	 (6.1)	

yGyx rHiHCR
	 (6.2)	

xGy // HrHRCR  		 (6.3)	

where,	 i	 is	the	selection	differential	(i	=	1.76	at	10%	selection	intensity);	 2
xH and	 x

are	the	heritability	and	phenotypic	standard	deviation	values	for	trait	x,	respectively;	

Hx	and	Hy	are	the	square	root	of	the	heritability	of	the	trait	x	and	y,	respectively;	 Gr is	

the	genetic	correlation	between	trait	x	and	y,	 y is	the	phenotypic	standard	deviation	

for	trait	y.		

The	heritability	and	genetic	correlations	were	estimated	as	per	eqns	3.7	and	3.8,	

respectively	(cf.	Chapter	3).	Values	of	R,	CR,	and	CR/R	were	expressed	as	percentage	

of	the	genotypes	mean	for	each	trait	in	order	to	allow	comparison	among	traits	with	

different	units	(Table	6.3).		

The	results	 indicated	high	(>50%)	expected	or	direct	response	to	selection	for	

physiological	model	 traits:	DP2,	A2,	Asum,	cm,	tE,	and	ED.	However,	 it	was	notable	that	

direct	 selection	 response	 to	 tuber	 yield	per	se	 (wmax)	was	 very	 low	 (i.e.	 only	 29%)	

(Table	 6.3).	 This	 was	 also	 supported	 by	 relatively	 lower	 proportion	 of	 genetic	

component	of	variance	in	the	total	phenotypic	variance	observed	for	tuber	yield	per	

se	(Chapter	3).	These	results	showed	the	added	value	and	superiority	of	physiological	

traits	over	tuber	yield	per	se.		

The	 results	 furthermore	 indicated	 that	 correlated	 response	 to	wmax	 based	 on	

most	 physiological	 traits	 was	 higher	 than	 the	 direct	 selection	 for	 wmax.	 Using	 an	

alternative	 indirect	 selection	 tool	 for	 yield	 is	 appropriate	 if	 the	 genetic	 correlation	

between	 the	 target	 trait	 (e.g.	 yield)	 and	 component	 traits	 is	 very	 high,	 and	 the	

correlated	response	in	the	unselected	trait	based	on	the	selected	trait	is	higher	than	
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Table	 6.3.	 Genetic	 correlation	 coefficients	 (rG)	 between	 physiological	 traits	 and	

measured	tuber	yield	(wmax),	expected	selection	response	(R)	for	physiological	traits	

and	 for	wmax,	 correlated	 selection	 response	 (CR)	 and	 efficiency	 of	 indirect	 selection	

(CR/R)	for	wmax	estimated	from	physiological	traits	of	potato.	Estimations	were	based	

on	F1	population	mean	across	experiments.	td	stands	for	thermal	day.	For	description	

about	parameters,	see	Table	6.1.		
	

Trait	 Unit	 rG	 R	 CR	 CR/R	

tm1		 td	 0.24**	 0.31	 0.06	 0.29	

t1/DP1		 td	 ‐0.05NS	 0.20	 ‐0.01	 ‐0.09	

t2		 td	 0.70**	 0.22	 0.22	 0.57	

te	 td	 0.75**	 0.27	 0.25	 0.57	

vmax		 %	 0.84**	 0.18	 0.23	 0.94	

cm1		 %	td‐1	 0.53**	 0.48	 0.15	 0.57	

c1		 %	td‐1	 0.46**	 0.48	 0.14	 0.42	

c3		 %	td‐1	 0.17**	 0.27	 0.03	 0.40	

DP2		 td	 0.85**	 0.98	 0.27	 0.73	

DP3		 td	 0.15**	 0.39	 0.04	 0.20	

A1†		 td	%	 −	 −	 −	 −	

A2		 td	%	 0.84**	 1.07	 0.27	 0.69	

A3		 td	%	 0.41**	 0.44	 0.11	 0.46	

Asum		 td	%	 0.78**	 0.49	 0.26	 0.59	

cm		 g	td‐1	 ‐0.20**	 0.78	 ‐0.06	 ‐0.16	

tE	 td	 0.66**	 0.53	 0.22	 0.49	

ED	 td	 0.64**	 0.93	 0.21	 0.48	

RUE	 g	DM	MJ‐1	 ‐0.25**	 0.41	 ‐0.08	 ‐0.22	

N	uptake	 g	m‐2	 0.85**	 0.29	 0.24	 0.91	

NUE	 g	DM	g‐1	N	 0.43**	 0.28	 0.13	 0.39	

wmax	 g	m‐2	 	 0.29	 	 	
**	Significant	at	1%,	NS	Non‐significant.	
†	Estimation	 was	 not	 possible	 due	 to	 zero	 genetic	 variance	 ( 2

G ),	 see	 Table	 2.3,	

Chapter	2.		

	

the	direct	response	to	selection	of	the	unselected	trait	(Falconer,	1996).	Our	results	

further	indicated	significant	(P<0.01)	and	strong	genetic	correlations	between	tuber	
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yield	and	most	of	physiological	model	traits	(Table	6.3).	For	instance,	traits	such	as	t2,	

te,	vmax,	cm1,	DP2,	A2,	Asum,	tE,	ED,	N	uptake,	and	use	efficiency	showed	very	high	(>	0.80)	

genetic	 correlations	 with	 wmax.	 The	 results	 therefore	 suggested	 that	 high	 indirect	

response	could	be	obtained	by	selecting	genotypes	for	these	traits	to	improve	tuber	

yield	in	potato.	However,	our	results	also	suggested	that	while	using	these	traits	as	a	

criterion	 for	 selection,	 their	 causal	 physiological	 inter‐relationships	 and	 trade‐offs	

must	 be	 considered	 simultaneously	 (see	 Fig.	 3.6,	 Chapter	 3).	 Finally,	 the	 results	

concluded	 that	 indirect	 selection	 efficiency	 of	 most	 physiological	 traits	 was	 higher	

than	the	direct	selection	efficiency	 for	 tuber	yield.	The	selection	efficiency	 from	our	

physiological	 traits	 ranged	 up	 to	 94%	 (Table	 6.3).	 However,	 it	 was	 noted	 that	

efficiency	of	 indirect	 selection	was	not	high	 for	 traits	 like	cm	and	RUE	despite	 their	

high	 direct	 physiological	 relationship	 with	 tuber	 yield	 determination	 (Fig.	 3.6,	

Chapter	3).	This	was	mainly	due	to	the	weak	phenotypic	(Table	3.6,	Chapter	3)	as	well	

as	genetic	correlations	(Table	6.3)	with	tuber	yield	observed	for	these	traits,	mainly	

influenced	by	the	strong	negative	indirect	effects	of	Asum	(as	explained	in	the	previous	

section).		

According	to	our	results,	the	relative	importance	of	traits	based	on	their	(>50%)	

indirect	selection	efficiency	for	tuber	yield	determination	can	be	ranked	as:	vmax	>	N	

uptake	>	DP2	>	A2	>	Asum	>	t2	>	te	>	cm1.	These	findings	strongly	concluded	that	most	

physiological	 traits	 can	 be	 used	 successfully	 as	 indices	 of	 selection	 for	 yield	

improvement	in	potato.	

This	thesis	thus	indicated	the	direction	and	magnitude	of	correlated	responses	

to	selection	for	tuber	yield	and	the	relative	efficiency	of	indirect	selection.	In	addition,	

our	 results	 suggest	 that	 the	 development	 of	 such	 a	 selection	 index	must	 integrate	

several	 key	 physiological	 traits,	 their	 inter‐relationships	 and	 repeatability	 (high	

heritability)	 for	 assessing	 yield	 in	 breeding	 programmes	 (Baker,	 1986;	 Bouman,	

1995).		

	

	
QTL	mapping	of	physiological	traits	
While	 environmental	 characterisation	 and	 physiological	 knowledge	 help	 to	 explain	

and	unravel	gene	and	environment	context	dependencies,	the	analysis	of	gene	effects	

on	 yield	 in	 diverse	 environments	 unmasks	 some	 of	 the	 key	 effects	 of	 genetic	 and	

environmental	 variability	 on	 the	 target	 trait.	The	 phenotype	 of	 most	 plant	

characteristics	 varies	 quantitatively	 as	 it	 is	 under	 the	 influence	 both	 of	 the	

environment	 and	 of	 genetic	 factors	 encoded	 at	 quantitative	 trait	 loci	 (QTLs)	

(Gelderman,	1975).	Understanding	the	basis	of	the	interaction	responses	at	the	whole	

plant	 level	 (Reynolds	 et	 al.,	 2005;	 Raven	 et	 al.,	 2005;	 Trethowan	 et	 al.,	 2005)	 and		
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identifying	QTL	and	molecular	markers	associated	with	desirable	traits	(Price	et	al.,	

2002;	Nigam	et	al.,	2005;	Habash	et	al.,	2007)	are	likely	to	have	a	large	impact	on	the	

research	aimed	at	improving	yield	in	potato.	

	 Many	 studies	 have	 identified	QTLs	 for	 different	 traits	 in	 potato	 under	 normal	

conditions	 for	 various	 agronomic,	 and	quality	 traits	 (e.g.	Van	den	Berg	et	 al.,	 1996;	

Van	 Eck	 et	 al.,	 1994;	 Schäfer‐Pregl	 et	 al.,	 1998;	 Bradshaw	 et	 al.,	 2008).	 However,	

knowledge	about	genetic	basis	of	important	physiological	traits	closely	linked	to	the	

temporal	dynamics	of	yield	formation	and	resource	(radiation	and	N)	use	efficiencies	

is	still	limited	and	hardly	any	QTLs	have	been	identified	for	these	traits	in	potato.	In	

other	words,	physiological	aspects	of	complex	quantitative	traits	in	potato	have	so	far	

received	 little	 attention	 from	 geneticists	 in	 QTL	 analysis	 although	 there	 are	 some	

recent	studies	that	use	statistical	models	to	analyse	data	based	on	semi‐quantitative	

scales	describing	canopy	development	(e.g.	Hurtado	et	al.,	2012).		

In	 this	 study,	 our	 molecular	 dissection	 of	 traits	 determining	 the	 dynamics	 of	

canopy	 cover,	 tuber	 bulking,	 and	 resource	 (radiation,	 N)	 use	 efficiencies	 identified	

several	QTLs,	the	mapping	position	of	each	identified	QTL,	the	interaction	of	QTL	with	

environment,	and	the	magnitude	of	QTL	effect	on	explaining	genetic	variance	in	both	

SH	and	RH	parental	genomes	(Chapters	2	and	3).		

The	 QTL	 results	 clearly	 showed	 that	 one	 particular	 chromosomal	 position	 at	

18.2	cM	on	paternal	(RH)	linkage	group	V	was	controlling	nearly	all	the	traits	(Tables	

2.9	and	3.10),	rendering	the	population	on	which	this	research	was	done	less	suitable,	

albeit	it	is	agronomically	well	adapted.	For	example,	it	was	notable	that	QTL	for	traits	

like	te,	t2,	DP2,	A2,	Asum,	cm,	tE,	ED,	and	tuber	yield	per	se	were	co‐localised	in	majority	of	

the	environments.	This	QTL	was	associated	with	major	additive	effects	on	most	of	the	

traits	 and	 explained	 more	 than	 50%	 of	 the	 phenotypic	 variance.	 Strong	 genetic	

correlations	 among	 most	 of	 these	 traits	 (Chapters	 2	 and	 3)	 and	 with	 tuber	 yield	

(Table	6.3)	 further	 supported	 these	 results	 and	 suggested	pleiotropic	nature	of	 the	

QTL	for	most	of	the	traits.		

It	 is	well	known	that	linkage	group	V	harbours	the	QTL	for	plant	maturity	and	

vigour	in	potato	(Collins	et	al.,	1999;	Oberhagemann	et	al.,	1999;	Visker	et	al.,	2003;	

Bradshaw,	 et	 al.,	 2008).	 Our	 results	 also	 confirmed	 this	 fact	 as	 most	 of	 the	 traits	

linked	to	this	chromosome	were	related	with	maturity,	 for	 instance	DP2,	cm,	ED,	and	

Asum	(Chapter	3).	In	other	words,	this	thesis	gave	a	clear	picture	about	maturity	in	a	

SH	 	 RH	 segregating	 population	 of	 potato	 and	 indicated	 that	 maturity	 is	 mainly	
expressed	from	the	paternal	(RH)	side	on	linkage	group	V.	It	was	further	notable	that	

this	 linkage	 group	 is	 mainly	 controlling	 earliness	 in	 genotypes	 on	 account	 of	 the	

negative	 additive	 effects	 associated	with	 a	major	QTL	 found	here	 for	most	 of	 traits	

including	tuber	yield	per	se	(Chapters	2	and	3).	This	information	could	be	very	useful	
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in	 elucidating	 the	 genetic	 basis	 of	 yield	 determination	 in	 early	 and	 late	 maturing	

genotypes.			

The	QTL‐by‐environment	(QTLE)	interaction	phenomenon	was	evident	mainly	
for	traits	determining	the	canopy	build‐up	and	senescence	phases,	maximum	canopy	

cover	 (vmax)	 rates	of	 canopy	growth	and	 senescence	 (cm1,	c1,	 and	c3),	 duration	 (DP1)	

and	area	under	canopy	cover	(A1)	when	canopy	cover	reaches	its	maximum,	duration	

(DP3)	 and	 area	 under	 canopy	 cover	 (A3)	 of	 canopy	 senescence,	 resource	 (radiation	

and	N)	use	efficiencies	and	tuber	yield	per	se.	These	results	were	expected	due	to	the	

presence	of	relatively	lower	genetic	variance	than	their	GE	or	E	component	of	total	
phenotypic	variance	in	these	traits,	as	described	in	previous	sections	(see	Tables	2.3	

(Chapter	 2)	 and	 3.4	 (Chapter	 3)).	 Figure	 6.5	 illustrates	 such	 genetic	 complexity	 in	

tuber	yield	per	se.	Such	inconsistencies	in	QTL	behaviour	can	cause	major	problems	in	

the	detection	of	QTLs	 and	 their	 effective	use	 in	molecular	breeding.	However,	 such	

QTLs	 could	 be	 useful	 for	 marker	 assisted	 breeding	 for	 specific	 environments.	 Our	

thesis	 as	 a	 whole	 provided	 a	 better	 understanding	 of	 the	 genetic	 background	 of	

important	physiological	components	traits	determining	maturity	type	as	well	as	tuber	

yield	in	potato.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	 6.5.	 QTLE	 additive	 effects	 for	 tuber	 yield	 (g	 m‐2)	 parental	 (SH	 and	 RH)	

genomes	 for	 six	 experiments.	 Letters	 above	 or	 below	 the	 bars	 indicate	 different	

linkage	groups.		
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An	ecophysiological	model	to	analyse	genetic	variation	in	tuber	yield		
As	 already	 highlighted	 in	 previous	 sections,	 yield	 variation	 in	 terms	 of	 growth	 and	

development	of	the	crop	is	complex,	for	it	involves	the	effect	of	external	factors	on	all	

the	physiological	processes,	 the	 inter‐relationships	between	different	processes	and	

their	dependence	on	 the	genetic	 constituent	of	 the	plant.	One	of	 the	applications	of	

processed‐based	 ecophysiological	 crop	 growth	models	 is	 their	 capability	 to	 explain	

differences	in	the	yield	potential	of	cultivars	on	the	basis	of	 individual	physiological	

parameters,	and	the	use	of	 this	knowledge	 for	evaluating	and	designing	plant	 types	

(Kropff	et	al.,	1995;	Yin	et	al.,	2003c).	This	is	possible	because,	as	they	become	more	

mechanistic	 and	 comprehensive,	 crop‐growth	 models	 can	 be	 used	 to	 mimic	 the	

genetic	characteristics	of	plants	(Chapter	1).	

However,	 a	 major	 limitation	 of	 current	 crop	 models	 in	 accounting	 for	 GE	
interactions	 is	 the	 low	 resolution	 and	 accuracy	 of	 the	model	 in	 comparison	 to	 the	

subtle	 differences	 between	 genotypes	 commonly	 observed	 in	many	well‐conducted	

multi‐environment	trials	(White	and	Hoogenboom,	1996).	A	contrasting	point	of	view	

is	 that	 crop	 physiological	 frameworks	 that	 are	 more	 readily	 aligned	 with	 plant	

breeders’	modes	of	action	are	required	(e.g.	Shorter	et	al.,	1991;	Yin	et	al.,	2004;	Yin	

and	Struik,	2008).	Studies	where	simulation	analyses	of	variation	in	a	trait	have	been	

confirmed	in	the	field	are	rare.	Certainly,	it	seems	logical	that	if	crop	models	are	to	be	

incorporated	into	a	crop	improvement	programme,	it	is	essential	that	the	parameters	

are	easily	and	simply	obtained	so	that	breeders	can	use	them	and	apply	them	without	

substantial	investment	in	time	and	data	collection.	

Yin	and	Van	Laar	(2005),	along	the	aforementioned	lines	of	thinking,	presented	

a	 crop	 model,	 GECROS	 (Genotype‐by‐Environment	 interaction	 on	 CROp	 growth	

Simulator),	 to	 overcome	 some	 of	 the	 weaknesses	 of	 earlier	 crop	 models.	 GECROS	

captures	traits	of	genotype‐specific	responses	to	environment	based	on	quantitative	

descriptions	 of	 complex	 traits	 related	 to	 the	 phenology,	 root	 system	 development,	

photosynthesis,	 stomatal	 conductance,	 and	 stay‐green	 traits.	 GECROS	 uses	 new	

algorithms	 to	 summarise	 current	 knowledge	 of	 individual	 physiological	 processes	

and	 their	 interactions	 and	 feedback	mechanisms	 (Chapter	 5).	 It	 attempts	 to	model	

each	sub‐process	at	a	consistent	level	of	detail,	so	that	no	process	is	overemphasised	

or	 requires	 too	 many	 parameters	 and	 similarly	 no	 process	 is	 treated	 in	 a	 trivial	

manner,	unless	unavoidable	because	of	 lack	of	understanding.	GECROS	also	 tries	 to	

maintain	 a	 balance	 between	 robust	model	 structure,	 high	 computational	 efficiency,	

and	 accurate	 model	 output.	 The	 model	 can	 be	 used	 for	 examining	 responses	 of	

biomass	 and	 dry	 matter	 production	 in	 arable	 crops	 to	 both	 environmental	 and	

genotypic	characteristics.	

In	 this	 study	 (Chapter	5),	we	 therefore	examined	 the	potential	of	 the	GECROS	
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crop	 growth	 model	 in	 predicting	 yield	 differences	 of	 individual	 genotypes	 in	 a	

segregating	population	of	potato,	their	parents	and	a	set	of	cultivars	covering	a	wide	

range	 of	 maturity	 types.	 We	 focused	 mainly	 on	 the	 genotype‐specific	 input	

parameters	 of	 the	model.	 Table	 5.1	 (Chapter	 5)	 gives	 the	 description	 of	 genotype‐

specific	 parameters	 of	 GECROS,	 which	 include	mV	 and	mR	 (i.e.	 period	 from	 plant	

emergence	to	onset	of	tuber	bulking	and	duration	between	onset	of	tuber	bulking	and	

crop	maturity,	respectively);	Hmax,	plant	height;	Nmax,	total	crop	N	uptake	at	maturity;	

nSO,	maximum	potato	seed	tuber	N	concentration.	Calibration	data	for	the	model	input	

parameters	 were	 obtained	 from	 our	 extensive	 data	 sets	 of	 Chapter	 2	 and	 3.	

Procedures	 for	 estimation	 and	 correction	 for	 experiment‐specific	 parameter	 values	

are	described	in	Chapter	5.	

The	model	described	well	the	dynamics	of	important	growth	related	processes	

in	 potato	 and	 gave	 important	 insights	 into	 the	 underlying	 component	 traits	 and	

factors	 influencing	 the	 tuber	dry	matter	production.	Using	 as	 few	as	 five	measured	

genotype‐specific	 parameters	 (Table	 5.1,	 Chapter	 5),	 the	 model	 showed	 a	 good	

potential	 in	 explaining	 the	 observed	 yield	 differences	 among	 genotypes.	 Simulated	

trends	of	growth	were	in	close	agreement	with	the	measured	data	(Fig.	5.3,	Chapter	

5).	 The	 model	 yielded	 reasonable	 predictions	 of	 differences	 in	 tuber	 yield	 across	

environments	and	across	genotypes	(Figs.	5.4	and	5.5).		

Simulation	models	can	be	very	useful	to	evaluate	critical	traits	needed	for	high	

yield	 potential	 (Penning	 de	 Vries,	 1991;	 Kooman	 and	 Haverkort,	 1995;	 Yin	 et	 al.,	

2000b).	 The	model	 based	 sensitivity	 analysis	 indicated	 that	Nmax	 and	nSO	were	 the	

most	 important	 parameters	 of	 GECROS	 model	 as	 they	 contributed	 most	 to	 the	

determination	of	tuber	yield	(see	Chapter	5,	section	3.4)	.	The	results	suggested	that	

genotypes	with	higher	Nmax	may	exhibit	more	final	tuber	yield	(Fig.	6.6),	provided	nSO	

is	low	or	in	other	words	genotypes	with	high	NUE	(Casa	et	al.,	2005;	Chapter	3).	Our	

path	 coefficient	 analysis	 also	 further	 indicated	 that	 relationships	 of	 most	

physiological	 traits	 with	 tuber	 yield	 are	 actually	 driven	 mainly	 through	 plant’s	

capability	to	uptake	maximum	N	(Table	5.4,	Chapter	5).	These	results	further	proved	

our	earlier	described	results	that	plant	N	uptake	could	be	proposed	as	a	criterion	to	

indirectly	select	for	tuber	yield.	

This	 thesis	 therefore	 confirmed	 the	 usefulness	 of	 an	 ecophysiological	 model	

‘GECROS’	in	exploring	the	impact	of	new	genotypes	and	the	contribution	of	individual	

physiological	traits	on	yield	by	simulating	the	responses	of	genotypes	across	different	

environments.	 In	 addition,	 our	model	 analysis	 allowed	 us	 to	 identify	 the	 genotypic	

key	 parameters	 and	 shed	 light	 on	 some	 of	 the	 vital	 physiological	 mechanisms	

responsible	 for	 genotypic	 differences	 in	 tuber	 yield.	 The	 concepts	 captured	 in	 the	

model	draw	more	attention	to	N	uptake	and	use		
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Figure	6.6.	Relationships	between	measured	plant	N	uptake	and	tuber	dry	matter	in	

F1	population	of	potato	across	environments.		
	
	
efficiency,	as	possible	areas	for	improvements	in	tuber	dry	matter	production.		

The	 identification	 of	 both	 genotype‐specific	 key	 parameters	 and	 main	

physiological	 processes	 involved	 in	 tuber	 yield	 formation	 should	 be	 useful	 from	 a	

genetic	point	of	 view.	 	They	 could	guide	 research	 towards	 these	key	processes	 and	

orientate	breeding	programmes	as	suggested	by	Yin	et	al.	(2004).	Further	analysis	of	

the	 genotypic	 parameters	 should	 be	 performed	 in	 conjunction	 with	 molecular	

markers	in	order	to	determine	their	genetic	control.		Such	information	would	greatly	

facilitate	the	development	of	ideotypes	for	specific	environments.	

	

	
Conclusions	
The	work	presented	in	this	thesis	intends	to	increase	our	physiological	knowledge	of	

those	 factors	 applicable	 to	 plant	 breeding	 determining	 the	 yield	 of	 potato.	 We	

presented	 a	 robust	 physiological	 framework	 for	 quantitatively	 dissecting	 the	

phenotypic	 variation	 in	 potato	 growth	 and	 development	 to	 aid	 understanding	 of	

underlying	 causes	 while	 simultaneously	 providing	 means	 to	 predict	 emergent	

phenotypic	consequences	by	integrating	effects	of	variation	in	component	factors	and	

processes	leading	to	yield	formation	in	potato.		
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	 This	thesis	indicated	that	yield	potential	in	potato	can	be	enhanced	by	selecting	

for	morphological,	 physiological,	 and	 phenological	 traits.	 Once	 this	 is	 accepted,	 the	

challenge	 is	 in	 finding	 which	 traits	 to	 modify	 and	 the	 optimum	 phenotype	 or	

expression	for	these	traits.	It	was	concluded	that	parameters	of	the	growth	functions	

determining	 the	temporal	dynamics	of	canopy	cover	and	tuber	bulking	have	a	clear	

meaning	with	regards	to	the	processes	of	resource	capture	by	the	plant,	thus	allowing	

a	more	 easy	 interpretation	 of	 the	 value	 and	magnitude	 of	 the	 growth	 components	

associated	with	variation	in	tuber	yield	among	cultivars	and/or	genotypes.	However,	

these	components	are	not	physiologically	independent	as	genotypes	with	a	high	tuber	

bulking	 rate	 may	 effectively	 limit	 the	 crop	 growth	 and	 duration	 (via	 enhanced	

internal	plant	competition)	leading	to	their	identified	'earliness'.		

In	 this	 context,	 this	 study	 also	 highlighted	 such	 trade‐offs	 among	 key	

physiological	traits	causing	subtle	complexities	in	defining	the	maturity	type	in	potato.	

Our	 results	 indicated	 that	 re‐defining	 the	 maturity	 type	 of	 a	 large	 set	 of	 new	

genotypes	based	on	physiological	traits	is	possible	and	would	prove	useful.	The	new	

physiology‐based	 maturity	 definition	 could	 allow	 relating	 the	 maturity	 to	 crop	

phenology	and	physiology	and	could	help	in	designing	potato	ideotypes	with	specific	

maturity	type	for	specific	growing	conditions	and/or	environments.		

This	 study	 also	 highlighted	 the	 characterisation	 of	 the	 role	 of	 environments	

mainly	N.	Overall,	results	concluded	that	N	availability	is	the	driving	factor	for	causing	

trade‐offs	 between	 the	 physiological	 traits	 and	 different	 environments.	 Moreover,	

results	suggested	that	N	availability	and	its	interaction	with	genotype’s	maturity	type	

mainly	 contribute	 to	 the	 GE	 interaction	 of	 the	 growth	 and	 development	 related	
processes	in	potato	in	a	large	set	of	F1	segregating	(SH		RH)	potato	genotypes.	This	
thesis	 therefore	allowed	a	partial	understanding	of	 the	environmental	causes	of	 the	

observed	GE	interactions.		
Our	quantitative	approach	in	combination	with	markers	of	the	widely	available	

and	 easy	 to	 use	 AFLP	 marker	 system	 identified	 QTLs	 that	 could	 be	 useful	 in	 the	

development	 of	 marker	 assisted	 breeding	 strategies	 in	 potato	 yield	 improvement.	

The	 QTL	 results	 showed	 that	 nearly	 all	 the	 physiological	 traits	 co‐localised	 at	 one	

particular	 chromosomal	position	at	18.2	 cM	on	paternal	 (RH)	 linkage	group	V	with	

major	 effects.	 This	 QTL	 was	 associated	 with	major	 additive	 effects	 on	most	 of	 the	

traits	and	explained	more	 than	50%	of	 the	phenotypic	variance.	This	suggested	 the	

pleiotropic	 nature	 of	 the	QTL	 for	most	 of	 the	 traits	 determining	 crop	maturity	 and	

tuber	yields.	A	number	of	QTLs	for	traits	were	not	detected	when	tuber	yield	per	se	

was	 subjected	 to	QTL	 analysis.	 The	 phenotypic	 variance	 explained	 by	 the	QTLs	 for	

tuber	yield	per	se	was	also	lower	than	for	other	traits.		

Our	 results	 also	 confirmed	 previous	 studies	 that	 most	 of	 the	 traits	 linked	 to	
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linkage	group	V	were	related	with	maturity.	 It	was	 further	notable	 that	 this	 linkage	

group	is	mainly	controlling	earliness	in	genotypes	on	account	of	the	negative	additive	

effects	associated	with	a	major	QTL	found	here	for	most	of	traits	including	tuber	yield	

per	se.		

The	capability	of	an	ecophysiological	model	‘GECROS’	was	tested	in	this	thesis	to	

analyse	differences	in	tuber	yield	of	potato	and	analyse	the	importance	of	genotype‐

specific	model‐input	parameter	towards	tuber	yield	production.	The	model	yielded	a	

reasonably	 good	 prediction	 of	 differences	 in	 tuber	 yield	 across	 environments	 and	

across	genotypes.	Trends	of	growth	and	nitrogen	uptake	were	adequately	reproduced	

by	the	model.	The	GECROS	model	based	sensitivity	analysis	indicated	that	total	crop	

N	uptake	and	tuber	N	concentration	were	the	most	important	parameters	of	GECROS	

model	 as	 they	 contributed	 most	 to	 the	 determination	 of	 tuber	 yield.	 The	 results	

concluded	 that	 GECROS	 model	 is	 a	 useful	 tool	 in	 analysing	 the	 contribution	 of	

individual	physiological	traits	to	tuber	yield	by	simulating	the	responses	of	genotypes	

across	different	environments.	Further	analysis	of	 the	genotypic	parameters	 should	

be	 performed	 in	 conjunction	 with	 molecular	 markers.	 They	 could	 guide	 research	

towards	key	processes	and	orientate	breeding	programmes	as	suggested	by	Yin	et	al.	

(2004).		

To	 conclude,	 breeding	 efforts	 aimed	 at	 meeting	 ongoing	 challenges,	 such	 as	

breaking	yield	barriers	and	improving	performance	under	diverse	environments,	are	

more	 likely	 to	achieve	success	 if	physiological	understanding	 is	used	to	compliment	

traditional	 breeding	 approaches.	 This	 thesis	 yielded	 estimates	 for	 agronomically	

relevant	 crop	 physiological	 and	 genetic	 characteristics	 and/or	 traits	 that	 are	

promising	 for	defining	 future	breeding	 strategies	 in	potato.	High	 genetic	 variability	

along	 with	 high	 heritability	 for	 most	 of	 these	 traits	 indicated	 that	 a	 more	 general	

breeding	 goal,	 increased	 tuber	 dry	matter	 yield	 by	 indirectly	 selection	 for	 optimal	

combination	of	important	physiological	traits	can	be	achieved.	Results	also	indicated	

that	 while	 using	 these	 traits	 as	 a	 criterion	 for	 selection,	 the	 causal	 physiological	

relationships	and	trade‐offs	must	be	considered	simultaneously.		

The	approach	described	in	this	thesis	is	promising	for	defining	future	breeding	

strategies	in	potato	and	the	information	obtained	may	help	in	designing	ideotypes	for	

specific	and/or	diverse	environments	as	well	as	 in	marker	assisted	selection	(MAS).	

As	mentioned	in	Chapter	1,	current	approaches	to	MAS	for	complex	traits	 lack	good	

predictive	 power	 due	 to	 complex	 interactions	 among	 genes	 and/or	 environments.	

One	 strategy	 to	 overcome	 these	 difficulties	 would	 be	 to	 combine	 QTL	 and	

ecophysiological	 models,	 i.e.	 a	 step	 forward	 towards	 QTL‐based	 crop	 modelling.	

However,	small	data	sets	 for	QTL	mapping	(i.e.	only	88	genotypes,	cf.	Materials	and	

Methods,	Chapter	2)	and	lower	numbers	of	independent	QTLs	found	for	single	traits	
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(see	Tables	2.8	 (Chapter	2)	and	3.9	 (Chapter	3))	did	not	allow	achieving	 this	novel	

goal.	 In	 this	 context,	 future	 research	 should	 focus	 on	 this	 area	 and	 further	 steps	

should	 be	 taken	 in	 linking	 crop	modelling	with	 QTL	mapping	 for	 physiological	 and	

genotypic	traits	generated	by	this	thesis.	We	hope	that	the	strong	foundation	set	by	

this	thesis	would	help	 in	achieving	broader	goal	of	proceeding	towards	model	based	

plant	breeding	(Chapter	1).	On	these	lines,	a	follow	up	PhD	research	is	currently	well	

underway	 including	 the	 same	 SH	 	 RH	 population	 as	 well	 as	 a	 very	 large	 set	 of	
cultivars	 are	 grown	 in	 experiments	 in	 which	 nitrogen	 supply	 is	 included	 as	 an	

experimental	factor	.		

However,	making	significant	contributions	in	these	areas	requires	much	closer	

collaborative	 research	 efforts	 between	 physiologists	 and	 plant	 breeders.	 Until	 such	

research	 is	 conducted,	 and	 the	 benefits	 of	 shifting	 resources	 into	 the	 systems	

approach	 can	 be	weighed	 against	 reducing	 the	 resources	 put	 into	 the	 conventional	

empirical	approach,	widespread	acceptance	of	the	new	methods	is	unlikely.		
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Summary	
	
	
The	sustained	increase	in	global	food	production	is	unprecedented.	A	major	challenge	

for	plant	and	crop	science	is	discovering	new	ways	to	continue	to	increase	crop	yield	

in	 a	 sustainable	manner.	 Potato	 (Solanum	tuberosum	 L.)	 is	 among	 the	world’s	most	

important	 crops	with	 a	well‐recognised	 role	 in	 human	nutrition,	 food	 security,	 and	

national	 economy	of	many	 countries.	Due	 to	 increasing	 food	demand	 and	 changing	

diets	potato	is	becoming	a	subsistence	crop	in	many	regions.	However,	the	agronomy	

and	 whole	 crop	 physiology	 of	 tuber	 yield	 production	 are	 difficult	 as	 each	

developmental	stage	in	potato	is	likely	to	be	regulated	and	controlled	by	a	large	set	of	

interacting	 expressed	 genes	 and	 because	 the	 genotype‐by‐environment	 (GE)	
interactions	 are	 strong.	 Breeding	 for	 highly‐yielding	 crop	 cultivars	 for	 specific	

environments	 and	 the	 prediction	 of	 their	 behaviour	 are	 major	 challenges.	 New	

technologies	 must	 be	 developed	 to	 accelerate	 breeding	 through	 improving	

genotyping	 and	 phenotyping	 methods	 and	 by	 increasing	 the	 available	 genetic	

diversity	in	breeding	germplasm.		

Interventions	 in	 breeding	 based	 on	 understanding	 of	 the	 genetic	 and	

physiological	basis	of	crop	performance	have	the	potential	to	accelerate	genetic	gains	

for	 yield	 and	 resource	 use	 efficiency.	 The	 genetic	 improvement	 of	 yield	 can	 be	

understood	more	mechanistically	by	investigating	and	interpreting	the	relationships	

between	 the	 main	 attributes	 of	 growth.	 Such	 studies	 may	 shed	 light	 on	 potential	

future	alternatives	for	sustainable	yield	improvement.		

Crop	modelling	can	play	a	significant	part	in	system	approaches	by	providing	a	

powerful	 tool	 for	 phenotype	 prediction	 and	 yield	 scenario	 analysis;	 to	 explore	 the	

impact	 of	 new	 genotypes	 and	 the	 contribution	 of	 individual	 physiological	 traits	 on	

yield	 by	 simulating	 genotypes	 under	 various	 environmental	 scenarios	 and	

management	 options.	Modelling	may	 also	 prove	 useful	 in	 understanding	 GE,	 thus	
helping	to	speed	up	the	currently	stagnant	pace	of	crop	improvement.	Nevertheless,	

insights	into	the	physiological	processes	leading	to	yield	development	and	the	factors	

affecting	these	processes	are	still	underdeveloped.			

This	 thesis	 aims	 to	 develop	 an	 approach	 to	 quantify	 and	 predict	 the	 yield	 of	

individual	 genotypes	 and	 to	 estimate	 parameters	 which	 may	 reveal	 the	 effects	 of	

genetic	 and	 environmental	 factors	 on	 important	 plant	 processes	 controlling	 tuber	

yield	 variation.	 The	 analysis	 conducted	 in	 this	 thesis	 is	 based	 primarily	 on	 data	

collected	 from	 six	 contrasting	 field	 experiments	 carried	 out	 in	Wageningen	 (52˚	N	

latitude),	 the	Netherlands,	during	2002,	2004	and	2005.	The	plant	material	used	in	

this	study	consisted	of	100	F1	diploid	(2n	=	2x	=	24)	potato	genotypes	derived	from	a	
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cross	between	two	diploid	heterozygous	potato	clones,	SH83‐92‐488		RH89‐039‐16.	
Five	 standard	 cultivars	 (Première,	 Bintje,	 Seresta,	 Astarte,	 and	 Karnico)	 and	 the	

parental	clones	were	also	included	in	this	study.		

The	 thesis	 is	 composed	 of	 six	 chapters.	 Chapter	 1	 gives	 an	 overview	 of	

complications	 in	dealing	with	quantitative	traits	 like	yield	and	highlights	 the	role	of	

systems	 approaches	 via	 incorporating	 crop	 modelling	 and	 crop	 physiological	

knowledge	 in	 potato	 breeding	 programmes.	 It	 presents	 the	 possible	 opportunities	

from	such	combined	efforts	towards	reinforcing	the	genetic	analysis	of	complex	traits.		

Chapter	2	presents	a	quantitative	model	approach	based	on	the	beta	function	to	

analyse	the	time	course	of	canopy	cover	during	the	entire	crop	cycle	as	a	function	of	

thermal	time.	The	model	describes	the	canopy	development	dynamics	in	three	phases	

(build‐up	 phase,	 maximum	 cover	 phase,	 canopy	 decline	 phase)	 through	 five	

parameters	 defining	 the	 timing	 and	 duration	 of	 the	 phases	 and	 maximum	 canopy	

cover	 (vmax).	 These	 five	 parameters	 were	 further	 used	 to	 derive	 secondary	 traits,	

related	 to	 rate	 of	 increase	 or	 decrease	 of	 canopy	 cover,	 and	 the	 area	 under	whole	

green	 canopy	 cover	 curve	 (Asum).	 The	 latter	 trait	 Asum	 was	 directly	 related	 to	 the	

ability	 of	 the	 genotypes	 to	 intercept	 photosynthetically	 active	 radiation	 (PAR)	 and	

thus	to	realize	tuber	yield.	The	model	successfully	described	quantitative	differences	

in	 canopy	dynamics	of	 a	diverse	set	of	 genotypes	 in	a	 segregating	F1	population	of	

potato	under	varied	environments.	

The	results	 indicated	 that	 length	of	 the	canopy	build‐up	phase	 (t1	or	DP1)	was	

conservative,	but	the	duration	of	maximum	canopy	cover	(DP2)	and	the	decline	phase	

(DP3)	varied	 greatly,	with	 later	 genotypes	having	 similar	DP1,	 but	longer	DP2	 and	DP3	

and	 thus	 generate	 higher	 values	 of	 Asum.	 Strong	 positive	 phenotypic	 and	 genetic	

correlations	 were	 observed	 between	 DP2	 and	 vmax,	 indicating	 that	 genotypes	 with	

longer	DP2	could	be	indirectly	obtained	by	selecting	genotypes	with	maximum	value	

of	canopy	cover	(vmax).	For	most	traits	quantified	in	the	model,	high	genetic	variability	

and	high	heritability	were	recorded.	Genetic	variance	contributed	greatly	to	the	total	

phenotypic	variance	for	most	traits,	for	instance,	time	of	onset	(t2)	or	end	of	canopy	

senescence	(te),	DP2,	and	Asum,	indicating	their	strong	genetic	background	and	stability	

across	environments.		

Several	QTLs	were	detected	across	 the	experiments	 for	 the	model	parameters	

and	 derived	 traits	 determining	 the	 canopy	 dynamics.	 One	 particular	 chromosomal	

position	at	18.2	cM	on	paternal	 (RH)	 linkage	group	V	was	controlling	nearly	all	 the	

traits	 and	 showed	 its	 pleiotropic	 nature.	 This	 QTL	 had	 major	 additive	 effects	 and	

explained	 74%	of	 the	 phenotypic	 variance.	Most	 of	 the	 traits	 linked	 to	 this	 linkage	

group	 were	 related	 with	 earliness.	 Such	 information	 could	 be	 very	 useful	 in	

identifying	the	genetic	basis	of	maturity	type	in	potato.	This	chapter	yielded	estimates	
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for	agronomically	 relevant	crop	characteristics	 that	could	be	promising	 for	defining	

future	 breeding	 strategies	 for	 traits	 influencing	 the	 radiation	 interception	 and	

thereby	final	yield.	

Chapter	3	describes	a	quantitative	model	approach	to	analyse	the	dynamics	of	

tuber	bulking	during	the	entire	crop	cycle	as	a	function	of	thermal	time	using	a	piece‐

wise	 expolinear	 function.	 The	 model	 breaks	 down	 tuber	 growth	 into	 parameters	

related	 with	 the	 growth	 rate	 and	 effective	 duration	 of	 the	 linear	 phase	 of	 tuber	

bulking.	Furthermore,	 radiation‐	 and	 nitrogen	 use	 efficiencies	 (RUE	 and	 NUE,	

respectively),	 and	 their	 relationships	 with	 the	 model	 parameters	 are	 also	 studied.	

Rate	of	tuber	bulking	(cm)	was	highest	for	early‐maturing	genotypes	followed	by	mid‐

late	and	then	late	genotypes.	On	the	other	hand,	late‐maturing	genotypes	had	longest	

effective	duration	of	tuber	bulking	(ED)	followed	by	mid‐late	and	early	genotypes.	As	

a	result,	final	tuber	yield	(wmax)	was	higher	in	late	genotypes	than	in	early	genotypes.	

The	 results	 further	 illustrated	 that	 RUE	 values	 were	 highest	 for	 early‐maturing	

genotypes	followed	by	mid‐late	and	late	genotypes	whereas	NUE	was	highest	in	late‐

maturing	genotypes	followed	by	mid‐early	and	early	genotypes.	The	phenotypic	and	

genetic	correlations	suggested	physiological	trade‐offs	between	cm	and	ED	as	well	as	

between	 RUE	 and	 NUE.	 High	 genetic	 variability	 along	 with	 high	 heritability	 was	

recorded	 for	 most	 traits	 which	 illustrated	 their	 strong	 genetic	 background.	 Path	

coefficient	analysis	showed	that	RUE,	cm,	and	Asum	(previously	defined	in	Chapter	2),	

had	a	major	 influence	on	wmax.	Sixteen	QTLs	were	detected	 for	traits	studied	in	this	

chapter,	 explaining	 the	 phenotypic	 variance	 by	 up	 to	 79%.	 In	 accordance	 with	

Chapter	2,	QTLs	controlling	most	of	 the	traits	were	detected	at	position	18.2	cM	on	

paternal	(RH)	linkage	group	V	with	major	additive	effects	and	explained	most	of	the	

total	phenotypic	variance.	Our	results	indicated	that	a	number	of	QTLs	for	traits	were	

not	detected	when	tuber	yield	per	se	was	subjected	to	QTL	analysis.	The	phenotypic	

variance	explained	by	 the	QTLs	 for	 tuber	yield	per	se	was	also	 lower	 than	 for	other	

traits.	This	suggests	 that	complex	traits	 like	these	are	controlled	by	QTLs	that	often	

show	 low	 stability	 across	 environments.	 Overall,	 parameters	 found	 in	 this	 chapter	

indicated	that	there	are	opportunities	for	improving	tuber	dry	matter	yield	in	potato	

by	 selection	 for	 optimal	 combination	 of	 important	 physiological	 traits	 like	RUE,	 cm,	

and	Asum.		

Chapter	4	addresses	the	issue	of	maturity	type	in	potato,	as	currently	there	are	

so	many	unclear	 interpretations.	This	 chapter	 tries	 to	 create	 a	 clear	 and	 consistent	

definition	 of	 the	 concept	 of	 maturity	 type	 and	 presents	 an	 approach	 to	 assess	 the	

maturity	type	in	a	large	set	of	potato	genotypes	in	a	rather	simple	and	reproducible	

way.	 The	 added	 physiological	 and	 quantitative	 knowledge	 gained	 from	 Chapters	 2	

and	3	were	used	to	quantify	maturity	type	unambiguously	for	a	set	of	varieties	and	a	
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segregating	 population	 across	 diverse	 environments.	 The	 re‐defined	 physiological	

based	maturity	criteria	are	based	on	four	traits:	DP2,	cm,	ED,	and	Asum.	The	re‐defined,	

four	 physiological	 maturity	 criteria	 were	 compared	 with	 the	 conventionally	 used	

criterion.	 The	 results	 indicated	 that	 physiological	 maturity	 type	 criteria	 tended	 to	

define	maturity	classes	less	ambiguously	in	comparison	to	the	conventional	criterion.	

Moreover,	 the	conventional	criterion	was	subject	 to	more	random	noise	and	 lacked	

stability	and/or	repeatability	with	respect	to	physiological	quantitative	traits.	The	re‐

defined	 criteria	 also	 clearly	 illustrated	 the	 physiological	 trade‐offs	 that	 existed	

between	 the	 selected	 traits	 and	 underlined	 the	 subtle	 complexities	 in	 defining	 the	

maturity	 type.	 The	 new	 definition	 would	 not	 only	 allow	 relating	 maturity	 to	 crop	

phenology	and	physiology	but	could	also	offer	wider	applications	in	potato	breeding	

and	 crop	management	 studies.	 One	 such	 application	would	 be	 to	 help	 in	 designing	

strategies	for	potato	ideotype	breeding	for	genotypes	with	specific	maturity	types.	

Chapter	 5	 sheds	 light	 on	 some	 of	 the	 key	 mechanisms	 causing	 genotype	

differences	 in	 tuber	yield	and	provides	support	 for	 important	aspects	of	hypothesis	

regarding	 nitrogen	 accumulation.	 It	 tests	 the	 capability	 of	 the	 generic	

ecophysiological	 model	 ‘GECROS’	 to	 analyse	 differences	 in	 tuber	 yield	 of	 potato	

within	an	F1	population,	the	parents,	and	a	set	of	cultivars.	The	model	predicts	crop	

growth	 and	 development	 as	 affected	 by	 genetic	 characteristics	 and	 climatic	 and	

edaphic	 environmental	 variables.	 The	 genotype‐specific	 model‐input	 parameter	

values	were	estimated	and	the	model	was	used	for	predicting	the	tuber	yield	of	afore‐

mentioned	plant	material	 in	multiple	 field	 experiments.	 The	model	was	 reasonably	

good	 in	 predicting	 the	 differences	 in	 tuber	 yield	 across	 environments	 and	 across	

genotypes.	Trends	of	growth	and	nitrogen	uptake	were	adequately	reproduced	by	the	

model.	Model	analysis	 identified	 the	genotypic	key‐parameters	affecting	 tuber	yield	

production	and	Nmax	(i.e.	total	crop	N	uptake)	contributed	most	to	the	determination	

of	tuber	yield.	The	results	showed	that	genotypes	with	higher	Nmax	and	lower	tuber	N	

content	 exhibited	 higher	 tuber	 dry	 matter	 yield.	 Such	 information	 can	 greatly	

facilitate	the	development	of	potato	ideotypes	for	specific	environments.	The	results	

confirmed	that	the	GECROS	model	is	useful	for	exploring	the	impact	of	new	genotypes	

and	 the	 contribution	 of	 individual	 physiological	 traits	 on	 yield	 by	 simulating	 the	

responses	of	genotypes	across	different	environments.	

Chapter	6	 finally	 discusses	 the	main	 findings	 and	 overall	 contribution	 of	 this	

thesis.	 It	 indicates	ways	 to	 enhance	 the	 power	 of	molecular	 breeding	 strategies	 as	

well	as	ideotype	breeding	in	potato.	It	stresses	upon	the	use	of	combined	knowledge	

from	 the	 fields	 of	 crop	 physiology,	 modelling,	 and	 genetics	 in	 elucidating	 and	

understanding	 the	 complex	 traits.	 Such	 an	 integrated	 approach	 can	 reinforce	 the	

genetic	analysis	of	complex	traits	like	yield,	thereby	improving	breeding	efficiency.		In	
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this	 context,	 future	 research	 should	 focus	 on	 this	 area	 and	 further	 steps	 should	 be	

taken	 in	 linking	 crop	modelling	with	 QTL	mapping	 for	 physiological	 and	 genotypic	

traits	 generated	 by	 this	 thesis.	 The	 strong	 base	 set	 by	 this	 thesis	 could	 help	 in	

achieving	 this	 broader	 goal	 of	model	based	 plant	 breeding.	 However,	 to	make	 such	

significant	strides,	much	closer	collaborative	 research	efforts	between	physiologists	

and	plant	breeders	are	direly	needed	



 



Samenvatting	
	
	
Wereldwijd	blijft	de	vraag	naar	voedsel	toenemen.	Een	grote	uitdaging	voor	plant‐	en	

gewaswetenschappen	 is	het	ontdekken	van	nieuwe	manieren	om	op	een	duurzame	

manier	de	gewasopbrengsten	te	blijven	verhogen.	De	aardappel	(Solanum	tuberosum	

L.)	 is	 één	 van	 de	 belangrijkste	 gewassen	 in	 de	 wereld.	 Het	 gewas	 speelt	 een	

belangrijke	 rol	 in	 de	 humane	 voeding,	 voedselzekerheid,	 en	 de	 nationale	 economie	

van	 vele	 landen.	 Door	 de	 toenemende	 vraag	 naar	 voedsel	 en	 veranderende	

voedingspatronen	wordt	de	aardappel	in	vele	regio’s	een	belang‐rijker	basisvoedsel.	

In	 het	 algemeen	 zijn	 agronomie	 en	 gewasfysiologie	 van	 opbrengstvorming	 lastig	

aangezien	 elk	 ontwikkelingsstadium	 waarschijnlijk	 wordt	 gereguleerd	 en	

gecontroleerd	door	een	grote	reeks	tot	expressie	gebrachte	en	op	elkaar	inwerkende	

genen	 en	 omdat	 de	 genotypemilieu	 (GE)	 interacties	 sterk	 zijn.	 Veredeling	 voor	
hoog‐opbrengende	rassen	voor	specifieke	milieus	en	het	voorspellen	van	hun	gedrag	

zijn	 daarbij	 belangrijke	 uitdagingen.	 Nieuwe	 technologieën	 moeten	 worden	

ontwikkeld	om	het	veredelingsproces	te	versnellen.	Denk	aan	verbeterde	methoden	

voor	genotypering	en	 fenotypering,	 alsmede	modellen	die	het	 fenotype	voorspellen	

uit	 het	 genotype.	 Daarmee	 kan	 bestaande	 en	 nieuwe	 genetische	 diversiteit	 beter	

benut	worden	in	het	veredelingsproces.	

Inzicht	 in	 de	 genetische	 en	 fysiologische	 basis	 van	 opbrengstvorming	 kan	

bijdragen	aan	meer	efficiënte	selectiemethoden	voor	de	gewenste	genetische	aanleg,	

in	 het	 bijzonder	 voor	 eigenschappen	 die	 bijdragen	 aan	 betere	 benutting	 van	 de	

hulpbronnen	 licht	en	stikstof	 (RUE,	NUE).	De	genetische	opbrengst‐verbetering	kan	

meer	mechanistisch	worden	begrepen	door	het	onderzoeken	en	interpreteren	van	de	

relaties	 tussen	 de	 belangrijkste	 groeikarakteristieken.	 Door	 het	 onderzoeken	 en	

interpreteren	 van	 de	 relaties	 tussen	 de	 belangrijkste	 processen	 tijdens	 de	 groei	 en	

ontwikkeling	van	de	plant	in	genetisch	divers	materiaal	kan	meer	specifiek	gestuurd	

worden	in	de	veredeling	van	opbrengst‐componenten.	Dergelijke	studies	kunnen	licht	

werpen	 op	 mogelijke	 toekomstige	 alternatieven	 voor	 duurzame	

opbrengstverbetering.	

Gewasmodellering	 kan	 een	 belangrijke	 rol	 spelen	 in	 systeembenaderingen	

omdat	modellen	krachtige	 instrumenten	zijn	voor	het	voorspellen	van	het	 fenotype	

en	 voor	 het	 analyseren	 van	 opbrengstscenarios.	Modellen	 kunnen	 ook	 behulpzaam	

zijn	 bij	 verkennen	 van	 het	 opbrengstpotentieel	 van	 nieuwe	 genotypen	 en	 van	 de	

bijdrage	 van	 individuele	 fysiologische	 kenmerken	 aan	 deze	 opbrengst,	 omdat	 ze	

gebruikt	 kunnen	 worden	 voor	 het	 simuleren	 van	 de	 groei	 van	 genotypen	 onder	

verschillende	milieu‐scenario's	 en	 teelttechniek.	Modellering	 kan	ook	nuttig	 zijn	 bij	
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het	begrijpen	van	GE.	Toch	zijn	de	inzichten	in	de	fysiologische	processen	die	leiden	
tot	de	opbrengstvorming	en	de	 factoren	die	van	invloed	zijn	op	deze	processen	nog	

onderontwikkeld.	

Dit	 proefschrift	 beoogt	 een	 aanpak	 te	 ontwikkelen	 voor	 het	 kwantificeren	 en	

voorspellen	van	de	opbrengst	voor	 individuele	genotypen	en	voor	het	 schatten	van	

relevante	 parameters.	 Het	 gaat	 daarbij	 om	 parameters	 die	 de	 effecten	 kunnen	

blootleggen	 van	 genetische	 factoren	 en	 omgevingsfactoren	 op	 belangrijke	

plantprocessen	die	gezamenlijk	de	variatie	 in	knolopbrengst	bepalen.	De	analyse	 in	

dit	 proefschrift	 is	 hoofdzakelijk	 gebaseerd	 op	 gegevens	 die	 zijn	 verzameld	 in	 zes	

contrasterende	 veldexperimenten	 uitgevoerd	 nabij	 Wageningen	 (52˚	

Noorderbreedte),	Nederland,	 in	de	 jaren	2002,	2004	en	2005.	Het	plantmateriaal	 in	

deze	 studie	 bestond	 uit	 een	 diploïde	 F1	 populatie	 (2n	 =	 2x	 =	 24)	 van	 100	

nakomelingen	 verkregen	 uit	 een	 kruising	 tussen	 twee	 heterozygote	 diploïde	

aardappelklonen,	 SH83‐92‐488	 en	 RH89‐039‐16.	 Vijf	 standaardrassen	 (Première,	

Bintje,	 Seresta,	Astarte	en	Karnico)	en	de	oorspronkelijke	ouderklonen	werden	ook	

opgenomen	in	deze	studie.	

Het	proefschrift	bestaat	uit	zes	hoofdstukken.	Hoofdstuk	1	geeft	een	overzicht	

van	 complicaties	 in	 het	 omgaan	 met	 kwantitatieve	 kenmerken	 zoals	 opbrengst	 en	

benadrukt	 de	 rol	 van	 de	 systeembenaderingen	 via	 het	 inpassen	 van	

gewasmodellering	 en	 gewasfysiologische	 kennis	 in	 aardappelveredelings‐

programma's.	 Het	 presenteert	 de	 mogelijkheden	 van	 dergelijke	 gecombineerde	

inspanningen	om	te	komen	tot	een	genetische	analyse	van	complexe	eigenschappen.	

In	 Hoofdstuk	 2	 wordt	 een	 kwantitatieve	 modelbenadering	 op	 basis	 van	 de	

bètafunctie	 gepresenteerd	 om	 het	 verloop	 van	 de	 bodembedekkingsgraad	 te	

analyseren	 tijdens	 de	 gehele	 gewascyclus	 als	 functie	 van	 de	 thermotijd.	 Het	model	

beschrijft	 de	 dynamiek	 van	 de	 ontwikkeling	 van	 de	 bodembedekkingsgraad	 in	 drie	

fasen	 (opbouwfase,	 fase	 van	maximale	 bodembedekking,	 afstervingsfase).	 Het	 doet	

dat	 door	middel	 van	 vijf	 parameters	 die	 samen	 aanvang,	 eind	 en	 duur	 van	 de	 drie	

fasen	 bepalen	 alsmede	 de	 maximale	 bedekkingsgraad	 (vmax).	 Deze	 vijf	 parameters	

werden	 verder	 gebruikt	 om	 secundaire	 kenmerken	 te	 schatten,	 gerelateerd	 aan	

snelheid	 van	 toe‐	 of	 afname	 van	 de	 bedekkingsgraad,	 en	 de	 oppervlakte	 onder	 de	

totale	 curve	 van	 de	 bodembedekking	 tegen	 de	 thermotijd	 (Asum).	 Deze	 laatste	

eigenschap,	 Asum,	 was	 direct	 gerelateerd	 aan	 het	 vermogen	 van	 de	 genotypen	 om	

fotosynthetisch	actieve	straling	(PAR)	te	onderscheppen	en	dus	om	knolopbrengst	te	

realiseren.	Het	model	beschreef	met	succes	kwantitatieve	verschillen	in	dynamiek	in	

bodembedekking	van	deze	genetisch	diverse	set	van	genotypen	in	een	uitsplitsende	

F1	populatie	van	aardappel	geteeld	onder	uiteenlopende	omstandigheden.	

De	 resultaten	 gaven	 aan	 dat	 de	 lengte	 van	 de	 opbouwfase	 van	 de	 bodem‐
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bedekking	 (t1	 of	 DP1)	 conservatief	 was,	 maar	 de	 duur	 van	 de	 maximale	

bodembedekkingsgraad	 (DP2)	 en	 de	 duur	 van	 de	 fase	 van	 afsterving	 (DP3)	 liepen	

uiteen,	waarbij	latere	genotypen	vergelijkbare	DP1,	maar	langere	DP2	en	DP3	hadden	en	

dus	hogere	waarden	voor	Asum	genereerden.	Er	werden	sterke,	positieve	fenotypische	

en	 genetische	 correlaties	 gevonden	 tussen	 DP2	 en	 vmax,	 hetgeen	 aangeeft	 dat	

genotypen	met	een	langere	DP2	 indirect	zouden	kunnen	worden	verkregen	door	het	

selecteren	 van	 genotypen	 met	 een	 hoge	 waarde	 voor	 de	 maximale	

bodembedekkingsgraad	 (vmax).	 Voor	 de	 meeste	 met	 het	 model	 gekwantificeerde	

eigenschappen	 was	 de	 F1	 populatie	 uitermate	 variabel	 in	 vergelijking	 met	 de	

standaardrassen.	 Voor	 de	meeste	 eigenschappen	werd	 een	 hoge	 erfelijkheidsgraad	

waargenomen;	 met	 andere	 woorden	 de	 genetische	 variantie	 droeg	 in	 belangrijke	

mate	 bij	 aan	 de	 totale	 fenotypische	 variantie.	 Dit	 was	 bijvoorbeeld	 het	 geval	 voor	

tijdstip	van	aanvang	(t2)	of	het	einde	van	loofafsterving	(te),	DP2,	en	Asum,	duidend	op	

een	sterke	genetische	basis	en	stabiliteit	over	milieus.	

Over	 de	 verschillende	milieus	werden	 voor	 de	modelparameters	 en	 afgeleide	

kenmerken	 die	 de	 bodembedekkingsdynamiek	 bepalen	 verschillende	 QTLs	

gedetecteerd.	 De	 ouder	 RH89‐039‐16	 bleek	 heterozygoot	 voor	 een	 bijzonder	

genetische	 locus	 op	 18.2	 cM	 op	 chromosoom	 5.	 De	 uitsplitsende	 allelen	 van	 deze	

ouder	bepaalden	 in	de	nakomelingen	bijna	alle	gemeten	eigenschappen	en	 toonden	

zo	 een	 pleiotroop	 karakter.	 De	 andere	 ouder	 SH83‐92‐488	 splitste	 voor	 deze	 locus	

niet	uit.	De	allelen	van	deze	locus	(QTL)	had	grote	additieve	effecten	en	verklaarde	tot	

74%	van	de	 fenotypische	variantie.	Er	was	 sprake	van	genetische	koppeling	 tussen	

QTLs	voor	vroegheid	en	modelparameters.	Dergelijke	informatie	kan	zeer	nuttig	zijn	

bij	 het	 identificeren	 en	 karakteriseren	 van	 de	 genetische	 factoren	 betrokken	 bij	

vroegrijpheid	 in	 aardappel	 en	 daaraan	 gerelateerde	 kenmerken.	 Dit	 hoofdstuk	

leverde	 schattingen	 op	 voor	 landbouwkundig	 relevante	 gewaskenmerken	 die	

veelbelovend	kunnen	zijn	 voor	het	bepalen	van	 toekomstige	veredelingsstrategieën	

voor	 eigenschappen	 die	 de	 lichtonderschepping,	 en	 daarmee	 uiteindelijk	 de	

opbrengst,	beïnvloeden.	

Hoofdstuk	 3	 beschrijft	 een	 kwantitatieve	 modelbenadering	 waarmee	 de	

dynamiek	van	de	knolgroei	gedurende	de	gehele	gewascyclus	werd	geanalyseerd	als	

functie	 van	de	 thermotijd	met	behulp	 van	 een	 in	 trajecten	opgedeelde	 expolineaire	

functie	 te	 analyseren.	 Het	 model	 ontleedt	 knolgroei	 tot	 parameters	 die	 betrekking	

hebben	op	de	groeisnelheid	en	de	feitelijke	duur	van	de	lineaire	fase	van	knolvorming.	

Bovendien	werden	de	gebruiksefficiëntie	van	straling	en	stikstof	(respectievelijk	RUE	

en	 NUE),	 en	 hun	 relaties	 met	 de	 modelparameters	 bestudeerd.	 Snelheid	 van	

knolvorming	 (cm)	 was	 het	 hoogst	 voor	 de	 vroegrijpe	 genotypen	 gevolgd	 door	

middellate	en	dan	late	genotypen.	Anderzijds,	laatrijpe	genotypen	hadden	de	langste	
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knolvormingsduur	 (ED)	 gevolgd	 door	 middellate	 en	 vroege	 genotypen.	

Dientengevolge	 was	 de	 uiteindelijke	 knolopbrengst	 (wmax)	 hoger	 voor	 de	 late	

genotypen	dan	voor	de	vroege	genotypen.	Er	werd	tevens	gevonden	dat	de	waarden	

voor	RUE	het	hoogst	waren	voor	vroegrijpe	genotypen,	gevolgd	door	middellate	en	

late	 genotypen,	 terwijl	 NUE	 juist	 het	 hoogst	 was	 in	 late	 genotypen,	 gevolgd	 door	

middelvroege	 en	 vroege	 genotypen.	 De	 waargenomen	 fenotypische	 en	 genetische	

correlaties	suggereren	dat	er	om	fysiologische	redenen	een	afruil	bestaat	tussen	cm	en	

ED.	Hetzelfde	geldt	 tussen	RUE	en	NUE.	Voor	de	meeste	kenmerken	werd	een	hoge	

genetische	variatie	 en	een	hoge	erfelijkheidsgraad	gevonden,	 suggererend	dat	 ze	 in	

sterke	mate	genetisch	bepaald	zijn.	Padcoëfficiëntanalyse	toonde	aan	dat	RUE,	cm,	en	

Asum	(eerder	beschreven	in	Hoofdstuk	2)	een	grote	invloed	op	wmax	hadden.	Voor	de	

eigenschappen	die	in	dit	hoofdstuk	werden	bestudeerd	werden	16	QTLs	gedetecteerd,	

die	maximaal	 79%	van	de	 fenotypische	 variantie	 verklaarden.	Overeenkomstig	met	

wat	 in	 Hoofdstuk	 2	werd	 gevonden,	 beheerste	 de	 locus	 op	 positie	 18.2	 cM	 van	 de	

vaderlijke	(RH)	koppelingsgroep	V	het	grootste	deel	van	de	eigenschappen.	Voor	alle	

eigenschappen	 vertoonde	 deze	 locus	 grote	 additieve	 effecten	 en	 verklaarde	 het	

grootste	deel	van	de	totale	fenotypische	variantie.	Onze	resultaten	laten	zien	dat	een	

aantal	 QTLs	 die	 voor	 de	 deeleigenschappen	 werden	 gedetecteerd	 niet	 werden	

gevonden	wanneer	 knoldrogestofopbrengst	per	se	werd	 onderworpen	 aan	 een	QTL	

analyse.	 De	 fenotypische	 variantie	 verklaard	 door	 de	 QTLs	 voor	

knoldrogestofopbrengst	 per	 se	 was	 ook	 lager	 dan	 voor	 andere	 eigenschappen.	 Dit	

suggereert	 dat	 complexe	 eigenschappen	 als	 knoldrogestofopbrengst	 worden	

gecontroleerd	 door	 QTLs	 die	 vaak	 slechts	 in	 beperkte	 mate	 stabiel	 zijn	 over	 de	

milieus.	Over	het	 geheel	 genomen	gaven	de	parameters	 in	dit	hoofdstuk	aan	dat	 er	

kansen	zijn	om	de	knoldrogestofopbrengst	 in	aardappel	 te	verbeteren	door	selectie	

op	een	optimale	combinatie	van	belangrijke	fysiologische	eigenschappen,	zoals	RUE,	

cm,	en	Asum.	

Hoofdstuk	 4	 gaat	 in	 op	 de	 kwestie	 van	 vroegheid	 in	 aardappel,	 omdat	

momenteel	 veel	 onduidelijk	 is	 over	 dit	 concept.	 Dit	 hoofdstuk	 probeert	 een	

eenduidige	 en	 consistente	 definitie	 van	 het	 begrip	 vroegheid	 te	 geven	 en	 geeft	 een	

benadering	om	vroegheid	te	bepalen	in	een	grote	reeks	aardappelgenotypen,	op	een	

vrij	 eenvoudige	 en	 reproduceerbare	 manier.	 De	 nieuwe	 fysiologische	 en	

kwantitatieve	 kennis	 opgedaan	 in	 de	 Hoofdstukken	 2	 en	 3	 werd	 gebruikt	 om	

vroegheid	 eenduidig	 te	 kwantificeren	 voor	 een	 set	 van	 rassen	 en	 een	 uitsplitsende	

populatie	 geteeld	 in	 diverse	 milieus.	 De	 nieuwe	 definitie	 van	 vroegheid	 werd	

gebaseerd	op	vier	verschillende	fysiologische	kenmerken:	DP2,	cm,	ED	en	Asum.	De	vier	

nieuwe,	 fysiologische	 vroegheidscriteria	 werden	 vergeleken	 met	 het	 gebruikelijke	

criterium.	De	resultaten	gaven	aan	dat	de	fysiologische	vroegheidscriteria	doorgaans	
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de	 vroegheidsklassen	 op	 een	 minder	 dubbelzinnige	 manier	 definieerden	 dan	 het	

conventionele	criterium.	Bovendien	gaf	het	conventionele	criterium	meer	ruis	en	was	

het	 minder	 stabiel	 en	 minder	 herhaalbaar	 dan	 de	 fysiologische	 kenmerken.	 De	

nieuwe	 criteria	 blijken	 overigens	 ook	 de	 fysiologische	 wisselwerkingen	 te	

onderstrepen	 die	 bestonden	 tussen	 de	 geselecteerde	 eigenschappen	 en	

onderstreepten	 tevens	 de	 complexiteit	 van	 vroegheid	 bij	 aardappel.	 De	 nieuwe	

definitie	 maakt	 het	 niet	 alleen	 mogelijk	 vroegheid	 te	 relateren	 aan	 fenologie	 en	

fysiologie,	 maar	 kan	 ook	 breed	 worden	 toegepast	 in	 de	 aardappelveredeling	 en	

onderzoek	naar	de	teeltechniek	van	aardappel.	Eén	van	die	toepassingen	zou	kunnen	

zijn	 het	 ontwerpen	 van	 strategieën	 voor	 veredeling	 van	 aardappelideotype	 voor	

specifieke	vroegheids‐klassen.	

Hoofdstuk	5	werpt	licht	op	enkele	van	de	belangrijkste	mechanismen	die	er	toe	

leiden	 dat	 genotypen	 verschillen	 in	 knoldrogestofopbrengst	 en	 biedt	 houvast	 voor	

belangrijke	 veronderstellingen	 aangaande	 de	 ophoping	 van	 stikstof.	 Het	 test	 de	

mogelijkheid	 om	 met	 het	 generieke	 gewasgroeimodel	 GECROS	 ecofysiologische	

verschillen	 in	 knoldrogestofopbrengst	 van	 nakomelingen	 uit	 een	 F1	 populatie,	 de	

ouders,	 en	 een	 reeks	 cultivars	 te	 analyseren.	 Het	 model	 voorspelt	 de	 groei	 en	

ontwikkeling	van	gewassen	onder	 invloed	van	genetische	kenmerken	en	bodem‐	en	

klimaatfactoren.	 De	 genotype‐specifieke	 model‐input	 parameterwaarden	 werden	

geschat	en	het	model	werd	gebruikt	voor	het	voorspellen	van	de	knolopbrengst	van	

voornoemd	plantmateriaal	in	verschillende	veldexperimenten.	Het	model	voorspelde	

de	 verschillen	 in	 knoldrogestofopbrengst	 over	 omgevingen	 en	 tussen	 genotypen	

tamelijk	 goed.	 Het	 model	 reproduceerde	 op	 adequate	 wijze	 de	 trends	 in	 groei	 en	

stikstofopname.	 Met	 behulp	 van	 de	 modelanalyse	 konden	 de	 belangrijkste	

genotypische	 parameters	 worden	 geïdentificeerd	 die	 van	 invloed	 zijn	 op	 de	

knoldrogestofopbrengst.	De	Nmax	(de	maximale	totale	N	opname)	droeg	het	meest	bij	

aan	 de	 uiteindelijke	 knoldrogestofproductie.	 De	 resultaten	 toonden	 aan	 dat	

genotypen	 met	 een	 hogere	 Nmax	 en	 een	 lager	 N‐gehalte	 in	 de	 knol	 een	 hogere	

knoldrogestofopbrengst	hadden.	Dergelijke	informatie	kan	aanzienlijk	bijdragen	aan	

de	ontwikkeling	van	aardappelideotypen	voor	specifieke	omgevingen.	De	resultaten	

bevestigden	dat	het	model	GECROS	handig	is	voor	het	verkennen	van	het	belang	van	

nieuwe	 genotypen	 en	 van	 de	 bijdrage	 van	 individuele	 fysiologische	 eigenschappen	

aan	de	opbrengst	door	het	simuleren	van	de	reacties	van	genotypen	in	verschillende	

milieus.	

Hoofdstuk	6	 behandelt	 tot	 slot	 de	 belangrijkste	 bevindingen	 en	 de	 algemene	

bijdrage	 van	 dit	 proefschrift	 aan	 de	 wetenschap.	 Het	 geeft	 manieren	 aan	 om	

moleculaire	 veredelingsstrategieën	 en	 ideotypeveredeling	 in	 de	 aardappel	 te	

versterken.	 Het	 benadrukt	 de	 noodzaak	 om	 kennis	 op	 de	 terreinen	 van	 de	
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gewasfysiologie,	 modellering,	 en	 de	 genetica	 te	 combineren	 teneinde	 complexe	

eigenschappen	 beter	 te	 begrijpen.	 Een	 dergelijke	 geïntegreerde	 aanpak	 kan	 de	

genetische	 analyse	 van	 complexe	 eigenschappen	 zoals	 opbrengst	 versterken	 en	

verhoogt	 aldus	 de	 efficiëntie	 van	 het	 veredelen.	 In	 dit	 verband	 dient	 toekomstig	

onderzoek	 zich	 te	 richten	 op	 dit	 gebied	 en	 dienen	 verdere	 stappen	 te	 worden	

genomen	om	gewasmodelleren	te	koppelen	aan	QTL	mapping	van	de	fysiologische	en	

genotypische	 eigenschappen	die	 in	 dit	 proefschrift	 zijn	 beschreven.	Dit	 proefschrift	

legt	een	stevige	basis	voor	het	bredere	doel	van	door	gewasmodellen	ondersteunde	

plantenveredeling.	 Echter,	 dergelijke	 stappen	 kunnen	 alleen	 gezet	 worden	 als	 de	

samenwerking	tussen	fysiologen	en	genetici	geïntensiveerd	wordt.	
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