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“There is nothing permanent except change.” 

Heraclitus of Ephesus 
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Summary 

Arctic ecosystems are facing unprecedented changes today. Annual surface 

temperatures increased almost twice the rate than the global average, and both 

sea ice thickness and extent decreased drastically, reaching a record low in 

summer 2012. Sea ice is the main structuring force in the Arctic environment as it 

modulates water column stratification and light intensities, and subsequently also 

pelagic and benthic production. Changes in sea ice conditions accordingly will 

lead to unforeseeable changes and consequences for the entire arctic ecosys-

tem. This situation stresses the need for more information to enable us to predict 

upcoming scenarios. However, studies that link benthic production patterns to 

ecosystem processes on large spatial scales are still scarce, and baseline data 

from which change could be identified are lacking. Studies that focus on the eco-

logical functioning of Arctic benthic communities are equally rare.  

The aim of this thesis is to fill knowledge gaps of macro- and megabenthic com-

munity dynamics on the Barents Sea shelf and the adjacent Eurasian deep sea 

by means of an integrated approach. Benthic secondary production was estimat-

ed for the first time on Arctic shelf-wide scale and in the Arctic deep sea. Envi-

ronmental drivers significantly explaining the observed patterns were identified by 

using geostatistical modeling and multivariate statistics. A biological trait ap-

proach was applied to estimate and compare the ecological functioning of Arctic 

benthos between shelf, slope and basin communities and between datasets from 

1991 and 2012. A thorough literature review supported the discussion of our re-

sults and expected future scenarios in a wider context. 

The results of this study showed significantly higher benthic secondary produc-

tion in the northeastern, seasonally ice covered region of the Barents Sea shelf 

than in the permanently ice-free southwestern areas. In the deep-sea areas a 

significant decrease of secondary production with increasing water depth was 

apparent, but also with distance from the marginal ice zone. The major conclu-

sion of this thesis is that food input and the tight pelagic-benthic coupling in the 

marginal ice zone are explaining the observed patterns. As ongoing warming 

drags the productive sea ice edge closer towards the North Pole, we expect shelf 
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food webs to shift from a state favoring the benthic production towards one favor-

ing the pelagic food web. Regions in the central Arctic could on the other hand 

benefit from increased food input associated with the approaching ice edge. The 

comparison of macrobenthic functioning at stations from the central Arctic sam-

pled recently with stations sampled 20 years ago indicates that functional chang-

es are already happening. 

The present thesis provides for the first time estimates of Arctic macro-and 

megabenthic secondary production on a shelf- and basin-wide scale and contrib-

utes to a better understanding of Arctic benthic energy flow and ecosystem func-

tioning. Results presented here provide a valuable input into prospective Arctic 

food web models and will help to improve our predictions of the future Arctic bio-

sphere. 
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Zusammenfassung 

Das arktische Ökosystem steht heute noch nie da gewesenen Veränderungen 

gegenüber. Im Vergleich zum globalen Durchschnitt ist die durchschnittliche Jah-

restemperatur in der Arktis beinahe um das Doppelte angestiegen, und sowohl 

Dicke als auch Ausdehnung des arktischen Meereises sind drastisch zurückge-

gangen. Das Meereis ist der zentralen Faktor im arktischen Ökosystem, da es die 

Lichtbedingungen und die Stratifizierung im Oberflächenwasser reguliert, und 

dadurch auch die pelagische, sowie in weiterer Folge auch die benthische Pro-

duktion. Änderungen der Eisbedingungen führen demnach zu Veränderungen im 

gesamten arktischen Ökosystem, deren weitreichende Konsequenzen heute 

noch schwer abzuschätzen sind. Diese Situation unterstreicht die Notwendigkeit 

von Datenerhebungen als Basis zu denen Veränderungen in Bezug gesetzt wer-

den könnten und für genauere Zukunftsvorhersagen. Dennoch sind großräumige 

Studien benthischer Produktionsmuster und ihrer zugrunde liegenden Umweltfak-

toren selten. Ähnlich rar sind Studien, welche sich mit den funktionellen Merkma-

len (im Englischen „functional traits“) arktisch benthischer Gemeinschaften be-

schäftigen. 

Das Ziel dieser Doktorarbeit ist Wissenslücken über makro- und 

megabenthische Gemeinschaften und deren Dynamik auf dem Barentssee 

Schelf und in den angrenzenden Tiefseegebieten zu füllen. Benthische Sekun-

därproduktion wurde zum ersten Mal in einem großflächigen Ansatz ermittelt und 

die erklärenden Umweltfaktoren mittels geostatistischer Methoden und multivaria-

ter Statistik bestimmt. Mittels „Biological Trait Analysis“, einer biologischen 

Merkmalsanalyse, wurden erstmals ökologische Funktionen zwischen 

benthischen Gemeinschaften von arktischen Schelf-, Hang- und Tiefseegebieten, 

sowie zwischen Datensätzen aus den Jahren 1991 und 2012 verglichen. Gründli-

che Literaturrecherche ermöglichte und unterstütze die Diskussion der Ergebnis-

se und möglicher Zukunftsszenarien in einem weiteren Kontext. 

Die hier ermittelten Ergebnisse zeigen eine signifikant höhere benthische Se-

kundärproduktion in den nordöstlichen, saisonal eisbedeckten Regionen des Ba-

rentssee Schelfs, als in den permanent eisfreien Gebieten der südlichen Barents 
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See. In den angrenzenden Tiefseegebieten wurde ein signifikanter Abfall der 

benthischen Sekundärproduktion mit zunehmender Tiefe, aber auch mit zuneh-

mender Entfernung von der Eisrandzone festgestellt. Die zentrale Schlussfolge-

rung lautet, dass der höhere Nahrungseintrag und die enge pelagisch-benthische 

Kopplung an der Eisrandzone die beobachteten Muster erklären. Da die laufende 

Erwärmung der Arktis die produktive Eisrandzone immer weiter nach Norden 

zieht, erwarten wir, dass sich die Nahrungsnetze des arktischen Schelfs von ei-

nem benthisch-dominierten Zustand mehr in Richtung eines pelagisch-

dominierten Zustandes verändern werden. Die Gebiete der zentralen Arktis hin-

gegen könnten von den erhöhten Nahrungseinträgen durch die sich nähernde 

Eisgrenze profitieren Der Vergleich zwischen makrobenthischen Gemeinschaften 

der zentralen Arktis von 1991 und 2012 deutet darauf hin, dass funktionelle Ver-

änderungen bereits stattgefunden haben.  

Die vorliegende Doktorarbeit liefert erste großflächige Analysen der arktischen 

makro- und megabenthischen Sekundärproduktion und trägt damit zu einem 

besseren Verständnis der arktischen Energieflüsse und Ökosystemfunktionen 

bei. Die hier präsentierten Ergebnisse bilden einen wertvollen Beitrag zur Model-

lierung von arktischen Nahrungsnetzen und werden zur Vorhersage exakterer 

Zukunftsszenarien beitragen. 
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1 Introduction 

1.1 Benthic ecosystems  

The sea floor represents one of the largest, but least explored habitats on earth 

(Kaiser et al. 2005). Zoobenthic organisms (here further referred to as benthos) 

are animals inhabiting the sea bottom from the intertidal zone down to the deep-

sea basins and trenches. Apart from taxonomic and phylogenetic classification, 

benthic fauna is traditionally divided into four compartments or size classes: 

microbenthos (<0.06 mm), meiobenthos (0.06–1 mm), macrobenthos (>1 mm) 

and megabenthos (visible on seabed photographs or videos) (Gulliksen et al. 

2009). Further common classifications of benthos relate to its motility (sessile to 

mobile), habitat (epifauna or infauna), trophic status (herbivore, carnivore or om-

nivore) or feeding type (grazer, suspension feeder, surface or sub-surface depos-

it feeder, predator or scavenger).  

1.1.2 Role of benthos in marine ecosystems 

All benthic compartments are involved in important ecological functions, ranging 

from processes structuring the local habitat to biogeochemical processes that 

affect the entire marine carbon budget, and accordingly also the global carbon 

budget (Fig. 1). Humanity benefits - directly or indirectly - from all these functions, 

in this context termed ecosystem services (Daily 1997).  

Secondary structures 

Epifauna, i.e. larger animals inhabiting the sediment surface (Gage & Tyler 

1991), can create secondary structures that serve as living space for a variety of 

associated species and provide protection from environmental stress and/or pre-

dation (Bruno & Bertness 2001; Cochrane et al. 2009). Infauna can fulfill the 

same function within the sediment by creating three-dimensional structures and 

channels. Such contributions to local heterogeneity of the seabed have been 

shown to enhance biodiversity (Bruno et al. 2003). The most prominent examples 

are tropical coral reefs. Scleractinian corals can modify ecosystems on land-
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scape-level and play an important role in sediment stabilization, prevention of 

coastal erosion and provide protection from storms and rising sea levels (Ferrario 

et al. 2014). 

Bioturbation 

Bioturbation, i.e. the biogenic modification of sediments through particle rework-

ing and burrow ventilation (Queirós et al. 2013), can enhance sediment re-

suspension and several biogeochemical processes like oxygenation/oxygen con-

sumption and remineralization of sequestered carbon and nutrients (Cochrane et 

al. 2012 and references therein; Bonaglia et al. 2014). It can further promote bio-

geochemical heterogeneity within the sediment, thus stimulating microbial activi-

ty, in turn again enhancing mineralization (Kristensen 1988; Gage & Tyler 1991; 

Smith et al. 2008). 

Carbon cycle 

The carbon that reaches the ocean floor is processed in three ways: One part is 

buried in the sediment and sequestered from the atmosphere for probably mil-

lions of years (Klages et al. 2004). Although this process is of highest societal 

interest regarding the increasing levels of atmospheric CO2, it represents only a 

small fraction of the overall carbon reaching the ocean floor (approximately 0.2 

PgC  y-1) (Ciais et al. 2013; IPCC report). A larger part is remineralized by the 

benthos into CO2, dissolved organic carbon (DOC) and nutrients, which are re-

mixed into the hydrosphere (Klages et al. 2004). The remaining carbon is stored 

in the benthic biomass and available as food source for higher trophic levels. This 

third part of stored carbon can be channeled back into the pelagic food chain, 

thus contributing to overall marine energy flow (Fig. 1 and 2). 

Human interest 

Humanity benefits from all the previously mentioned functions of benthic commu-

nities and even more could be listed, but the most prominent human interest re-

lates to fisheries production (Petersen & Lubchenco 1997). Several benthic or-

ganisms are of high commercial importance (e.g. crabs, lobsters, shrimps, scal-

lops, mussels, oysters), or gain commercial importance by serving as prey for 

commercially important demersal fish (e.g. sole, plaice, cod).  
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Fig. 1 Examples for the role of benthos in the marine ecosystem. Images from N. Hall (up left), 
ACIA 2004 (down left) and NOAA (down right).  

1.1.3 Factors structuring benthic communities 

Food input is reported to be the main driver of distribution and biomass of all ben-

thic compartments on a large scale perspective (Rowe 1971; Pearson & 

Rosenberg 1978; Piepenburg 2005). Several factors, i.e. surface production, wa-

ter depth, distance from shore, width of the continental shelve, water column as-

similation efficiency and latitude determine the benthic community structure, all of 

them related to the amount and quality of food reaching the seafloor (Gage & Ty-

ler 1991).  

At local scales other factors like seabed attributes, predation and/or disturb-

ance, environmental stability, competition and hydrodynamics can explain benthic 

community patterns (Pearson & Rosenberg 1978; Grebmeier et al. 1989; 
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Piepenburg 2005). In particular, hydrodynamics play an important role in commu-

nity function, with feeding types shifting towards suspension feeders in dynamic 

areas, and towards deposit feeders in more stagnant and therefore depositional 

areas (Feder et al. 2005). Grebmeier et al. (1989) showed that, together with food 

supply, sediment heterogeneity and temperature are the major regulating factors 

in benthic community structure. 

 

1.2 Arctic benthic ecosystems 

In several characteristics Arctic benthic ecosystems are not differing from non-

polar marine realms. The main difference in the Arctic ecosystem though, affect-

ing also the benthos, is the strong seasonality in solar radiation and nutrient 

availability as well as the long-lasting sea-ice cover (Carmack & Wassmann 

2006). The Arctic ice cap consists of a permanent sea ice cover in the central 

Arctic (about 6 x 106 km² in summer) and a surrounding seasonally moving mar-

ginal ice zone (MIZ) (about 15 x 106 km² in winter) that reaches as far south as 

44° N (IPCC 2013). This sea ice cover is the main factor structuring Arctic eco-

systems, as it controls pelagic and benthic production through modulating water 

column stratification and light fields (Bluhm & Gradinger 2008). The productive 

season starts at the end of the polar night, with sunlight triggering the ice-edge 

bloom which moves along with the seasonal ice-melt in pole-ward direction 

(Wassmann et al. 2011b). These episodic pulses of pelagic and ice-related or-

ganic carbon form the most important food supply to the benthos below the eu-

photic zone, which relies in its nutrition entirely on horizontal or lateral input from 

productive layers (Carmack and Wassman 2006). Although phytoplankton consti-

tutes the bulk of overall primary production, ice algae can contribute up to 25 %, 

potentially even more in the central Arctic (Gosselin et al. 1997; Wassmann et al. 

2006; von Quillfeldt et al. 2009). Furthermore, ice algal blooms occur earlier in 

the season than phytoplankton blooms, hence providing an important early-

season supply of very fresh organic material (Carroll & Ambrose 2012). 

Despite the mentioned environmental constraints in the Arctic, benthic abun-

dance and biomass can be very high. This is explained by the efficient energy 
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transfer from the water column to the sea floor, i.e. the tight pelagic-benthic cou-

pling on Arctic shelves (Petersen & Curtis 1980, Grebmeier and Barry 1991). Due 

to the large proportion of shallow shelf seas in the Arctic Ocean (Fig. 4), the ben-

thic food web is considered to be of relatively more importance than at lower lati-

tudes (Gulliksen et al 2009). Accordingly, also the proportion of benthic produc-

tion relative to primary productivity has been hypothesized to be greater at high 

latitudes (Brey and Clarke 1993; Grebmeier et al. 2006a). However, studies that 

focus on benthic secondary production in the Arctic are scarce and restricted to 

shallow shelf areas (see 1.2.1). Benthic secondary production corresponds to the 

newly formed biomass per unit of area an time (mostly given in g C m-2 y-1) (Brey 

2001). It provides important ecological information, as it depicts exactly that 

quantity of energy that is available as food for the next trophic level in the food 

web (Fig. 2).  

 

Fig. 2 Arctic marine food web. ACIA 2004. 
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1.2.1 Arctic Shelves 

Continental shelves extend from the low water mark on the shoreline down to an 

average depth of 200 m (Fig. 3). The ecology is strongly influenced by physical 

processes such as waves, tides, currents, erosion and input from the adjacent 

land mass; processes that generate a great diversity of ecosystems and habitats 

on regional and local scale (Kaiser et al. 2005). Arctic shelves are additionally 

characterized by a pronounced seasonality in solar radiation, nutrient availability 

and sea ice cover as well as by temperatures close to the freezing point 

(Carmack and Wassmann 2006). The Southern Chukchi Sea, the Bering Shelf 

and the Barents Sea (Fig. 4) are Arctic shelves exhibiting complex food webs and 

some of the highest densities of benthic invertebrate fauna in the world’s Oceans 

(Grebmeier et al. 1989, 2006a). These rich benthic communities support a variety 

of upper tropic level consumers, ranging from commercially important fish stocks 

up to marine mammals (Carmack and Wassmann 2006; Gulliksen et al 2009). 

The benthic production is fueled by high pelagic primary production and by the 

episodic flux of organic matter linked to the brief passage of the ice-edge blooms 

during the seasonal ice melt (Carmack and Wassman 2006).  

Macro- and megafauna generally contribute more to overall benthic biomass 

(>50 %) in shallow water than meiofauna and nanobiota, while this pattern is re-

versed in deeper areas (Gage & Tyler 1991). The previously described heteroge-

neity of Arctic shelf habitats is mirrored in the diversity of macrobenthic living and 

feeding habits. Hard substrata in areas of moderate current can be inhabited by 

rich epifauna assemblages of sessile particle or suspension feeders and mobile 

predators or grazers. In deeper or sheltered areas finer sediments can accumu-

late and harbor communities of burrowing deposit or suspension feeding infauna 

and fewer sessile filter feeders or mobile scavengers (Grebmeier et al. 1989; 

Feder et al. 2005; Kaiser et al. 2005). 

Megafauna is highly abundant on Arctic shelves and represents an important 

pathway of the benthic carbon and energy flow (Clough et al. 2005; Piepenburg 

2005; Renaud et al. 2007). Although this importance of macro- and megabenthic 

secondary production on Arctic shelves is widely recognized, the few existing 

studies set focus only on one taxonomic group (e.g. Highsmith & Coyle 1990) or 
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are rather small scaled (Kedra et al. 2013). Studies that analyze patterns of total 

community macro- and megabenthic secondary production on a large scale are 

lacking completely.  

1.2.2 Arctic Basins 

Beyond the shelf break (>200 m water depth) the continental shelf slopes down 

towards the deep Arctic Basin with average water depths of 4000 m (Jakobsson 

et al. 2008) (Fig. 3). The Arctic basin is separated by the Lomonosov Ridge into 

the Amerasian and the Eurasian part. The first is further separated into the 

Makarov Basin and the Canadian Basin and the latter is separated by the Gakkel 

Ridge system into the Nansen and the Amundsen Basin (Fig. 4). To a vast extent 

the deep sea floor can be depicted as a mostly stable, soft bottom habitat, char-

acterized by consistent physical conditions (cold, dark, high pressure) and food 

limitation (Kaiser et al 2005). The central Arctic Ocean is characterized by ex-

treme limitations in solar radiation and nutrient availability, permanent ice cover 

and temperatures always close to the freezing point (Piepenburg 2005). Accord-

ingly, overall surface productivity is very low, resulting in low food fluxes to the 

benthos (Klages et al. 2004; Fahl & Nöthig 2007; Wassmann et al. 2010). Tech-

nical equipment and logistics have significantly improved in the last years, never-

theless, sampling great depths in remote areas with dense sea ice cover and dur-

ing Arctic winter remains challenging (Klages et al. 2004). Consequently, the Arc-

tic central Basins remain very poorly studied, even when compared to other 

deep-sea areas (Bluhm et al. 2011). The few existing studies describe the Arctic 

deep sea as an oligotrophic area with steep gradients in faunal abundance and 

biomass from the slopes to the basins, primarily driven by food availability, but 

overall not different from other deep-sea regions that are equally characterized by 

remoteness from land and low surface productivity (Gage & Tyler 1991; Bluhm et 

al. 2011).  

In the deep sea basins Meiofauna and Nanobiota contribute significantly more 

to overall benthic abundance and biomass than macrofauna (Gage & Tyler 

1991). While on shelves complex food webs and a variety of feeding types are 

reported (Grebmeier et al. 1989), benthic deep-sea communities are reported to 
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be dominated by deposit feeders (Gage and Tyler 1991; Kröncke 1994, 1998). 

Exceptions can occur in areas of high bottom current flow, where suspension 

feeders can become prominent (Gage & Tyler 1991). At abyssal depths the pro-

portion of sessile deposit feeders appears to shift towards mobile deposit feed-

ers, potentially related to the fact that fewer sessile feeders are able to reach a 

large enough area to survive (Thistle 2003). The proportion of mobile carnivores 

was reported to decrease with increasing depth towards mobile opportunistic 

scavengers (Gage & Tyler 1991).  

 

Fig. 3 Simplified scheme of factors influencing benthic communities on Arctic shelves, slopes and 
basins. Triangles symbolize basic trends in food flux, sea ice concentration, water depth and habi-
tat heterogeneity; the small arrow symbolizes bottom slope water movement. Images provided by 

D. Piepenburg, M. Bergmann (both AWI) and ArcOD (from left to right). 

1.2.3 Shelf – Basin interactions 

Generally, continental shelves are characterized by strong lateral exchange of 

matter between each other and by export to adjacent deep-sea regions. As 

shelves are usually much more productive than oceanic regions, this export of 

organic carbon across the continental margin was reported to cause enhanced 

activity and abundance of benthic organisms at depth (Piepenburg 2005). It was 

assumed that such shelf-basin interactions might be particular intense in the Arc-

tic, which is surrounded by mostly very productive shelves like the Bering, Chuk-



1 Introduction 

 

9 
 

chi and Barents Sea shelves (Fig. 4). However, until today it is still not clear how 

significant these exports are (Piepenburg 2005).  

 

Fig. 4 The Arctic Ocean with its shelves and Basins. Bathymetry after Amante & Eakins (2009).  

1.3 Climate change in the Arctic 

Climate change has a more pronounced impact at high northern latitudes com-

pared to low latitudes, and annual average temperatures in the Arctic have in-

creased almost twice the rate than the global average over the past few decades 

(ACIA 2004). Climate warming induces higher water temperatures, increased 

fluvial run-off and reduced sea-ice extent and thickness. Since the late 1970ies, 

the annual mean Arctic sea ice extent has decreased significantly, showing most 

dramatically during summers, where decreases ranging from 9.4 to 13.6 % per 

decade have been registered (Fig. 5) (Vaughan et al. 2013). In September 2012, 
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a record sea ice minimum was reached, 49 % below the 1979–2000 average 

(NSIDC). As the Arctic sea ice is the main regulatory component controlling pe-

lagic and benthic production (Bluhm & Gradinger 2008) (see also 1.2), this ob-

served changes might have cascading effects through all trophic levels in the 

Arctic ecosystem.  

 

Fig. 5 Arctic summer (July-August-September) sea-ice extent. All time-series (coloured lines indi-
cate different data sets) show annual values, uncertainties are indicated by coloured shading 

(Vaughan et al. 2013, IPCC report). 

1.3.1 Benthos as indicator of change 

Benthic community parameters like species composition, biomass, diversity, and 

growth reflect the overlying primary production regime, hence they can be used 

as indicators of changes in water column processes as currently observed in the 

Arctic Ocean (Carroll & Ambrose 2012). But not all compartments of the benthos 

are responding on the same time scales. While macro- and megafauna integrate 

changes over longer, seasonal and annual time scales, microbenthos was re-

ported to react on time scales of hours to days, and also meiobenthos might react 

very fast and is accordingly an indicator of short-term changes (Klages et al. 

2004). Major obstacles are our lack of knowledge regarding the current state of 

the Arctic ecosystem and of the Arctic deep-sea floor in particular, and the lack of 
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reliable baseline information (“pre-change system state”) from which change can 

be identified (Wassmann et al. 2011a). This holds especially true for benthic sec-

ondary production, as only a few spatially confined studies exist from Arctic 

shelves and none so far from the Arctic deep sea.  

1.4 Objectives 

Albeit the acknowledged importance of benthic energy flow in Arctic ecosystems, 

studies that link benthic production patterns to ecosystem processes on large 

spatial scales are still scarce (e.g. Highsmith & Coyle 1990). The principal aim of 

this thesis was – in the light of the substantial environmental changes observed in 

the Arctic – to estimate the secondary production of the macro- and megabenthic 

compartment of the Arctic biosphere and to employ it as an indicator of the ongo-

ing changes. The focus is set on the benthic secondary production as it quantita-

tively links the pelagic and benthic energy flow and provides a suitable baseline 

for regional comparisons and assessment of a potential system change. The first 

step in achieving this goal is the estimation of benthic secondary production on 

shelf- and basin-wide scale and the identification of spatial and temporal patterns 

(1.4.1). Subsequently, the observed patterns should be linked to environmental 

parameters to identify the environmental drivers significantly explaining the ob-

served patterns (1.4.2). The last objective is to identify spatial patterns also in the 

functioning of macrobenthic shelf, slope and basin communities and to test 

whether changes in functioning are already visible today (1.4.3).  

The objectives raised here are investigated in the corresponding Manuscripts 

I–III and further discussed in the synthesis (chapter 4). The aim of Manuscript IV 

was a large-scale assessment of the current knowledge on the structure of Arctic 

marine food webs (Fig. 2) and their response to climate change, and the main 

outcome of this review is equally discussed in section 4.  

1.4.1 Spatial and temporal patterns 

The aim of assessing spatial patterns of benthic secondary production on the 

Barents Sea shelf (Manuscript I) and in the Eurasian Arctic deep sea (Manuscript 
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II) implied different approaches of data acquisition and processing regarding the 

two different environmental settings. Due to its economical importance and the 

relatively good accessibility, the Barents Sea shelf is among the best-studied Arc-

tic shelves, and monitoring approaches reach back to the early 20th century. In 

Manuscript I a huge trawl dataset resulting from the joint Norwegian-Russian 

Ecosystem Survey (Michalsen et al. 2013) is analyzed. Based on this spatially 

inclusive and comprehensive dataset the objective of Manuscript I is to estimate 

for the first time megabenthic secondary production on a shelf-wide scale and to 

identify spatial patterns and trends. The data situation in the Arctic deep sea is 

strikingly different, and only few studies exist that assessed benthic abundance 

and biomass, both parameters necessary for the estimation of secondary produc-

tion in the multiparameter ANN model used in this thesis (see 2.3). Accordingly, 

here an integrated approach of field work (RV POLARSTERN Expeditions ARK-

XXVII/2 & ARK-XXVII/3) and data mining (see section 2.1.3) was required to in-

crease the amount of useable data. The objective in Manuscript II is to estimate 

for the first time macrobenthic secondary production in the Arctic deep-sea and to 

identify spatial patterns and trends. 

1.4.2 Environmental drivers  

In order to understand how ongoing changes like sea ice retreat affect benthic 

energy flow, we have to identify the drivers behind patterns in benthic community 

production. The huge and dense set of benthic and environmental data on the 

Barents Sea shelf enables us to apply global and local regression models to ex-

amine the spatial relationship of secondary production and the environment. Ac-

cordingly the objective in Manuscript I is to identify the environmental drivers sig-

nificantly explaining the observed patterns of megabenthic secondary production. 

The Arctic deep-sea dataset is smaller and wider distributed, preventing the ap-

plication of spatial models. Accordingly stations were grouped into clusters and 

analyzed with multivariate statistics. The objective of Manuscript II is to identify 

significant differences in secondary production among stations when grouped into 

regional clusters and clusters related to water depth, latitude and sea ice concen-

tration.  
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1.4.3 Changes in functioning 

Secondary production is probably the most important function in benthic commu-

nities, and changes in secondary production can indicate environmental change 

(see 1.3.1). The biological trait analysis (BTA) is another approach to indicate 

environmental change (Bremner et al. 2006). It is based on a set of life history, 

morphological and behavioral traits to indicate ecosystem functioning, and 

changes in the trait composition or relative importance of traits can indicate 

changes in the environment (see 2.5). The objectives of Manuscript III are to 

compare the secondary production weighted trait composition between Arctic 

shelf, ridge and deep-sea basin communities and between stations samples in 

the year 1991 and 2012 to detect if changes in functioning are already apparent.  
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2 Materials and methods 

This section gives a brief overview of the sampling methodology and the ap-

proaches used in this thesis. More detailed information can be found in the Meth-

ods section of the respective Manuscripts.  

2.1 Data acquisition 

2.1.1 Macrofauna sampling 

For quantitative sampling of benthic macrofauna commonly benthic grabs or box 

corers with sample areas of 0.1–0.25 m2 are used (Eleftheriou & Moore 2005). 

For deep-sea use the 0.25 m² USNEL box corer (Hessler and Jumars 1974) is 

preferred as it proved to be a reliable sample gear in obtaining deep and relative-

ly undisturbed samples from a variety of sediments (Gage & Bett 2005) (Fig. 6a). 

Less commonly used gears are the nine-core multibox corer that samples an ar-

ea of 0.22 m² over 2–3 m² of seafloor (Gerdes 1990) (Fig. 6b) and benthic cham-

bers of bottom lander systems (Fig. 6c). Independently of the used gear, usually 

several subsamples are taken to aggregate an area of up to 0.5–0.1 m² per sta-

tion, a sample size considered to be adequate for quantitative determinations of 

the more common species and measurements of abundance and biomass 

(Eleftheriou & Moore 2005). However, in Arctic deep-sea studies often smaller 

sample areas are accepted due to the difficulties involved sampling these remote 

sites, e.g. challenging sea ice and weather conditions, time constraints and the 

often interdisciplinary nature of the benthic research on board ship, which in-

volves the sharing of samples among groups (Kröncke 1994, 1998).  

2.1.2 Megafauna sampling 

Dredges and trawls are used for qualitative sampling of the epifauna and 

megafauna (Fig. 6e). Several types of nets exist that are designed to skim over 

the surface of the sea bottom. Because they can cover a large area they are con-

sidered useful for collecting scarcer members of the epifauna that might be un-
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derrepresented in benthic grabs or box corers (see 2.1.1.) (Eleftheriou & McIntire 

2005). The gear has to be considered as qualitative or at best semi-quantitative, 

as the efficiency (i.e. the numbers of animals captured in relation to those in the 

area swept by the net) is generally low, and it is selective for particular species 

(Eleftheriou & McIntire 2005). 

 

Fig. 6. Sampling devices used in the manuscripts I–III of this thesis. USNEL or giant box corer (a) 
(H. Grobe, AWI), multibox corer (b) (A. Rose, AWI), benthic lander system (d) (F. Wenzhöfer, 

AWI), beam trawl (NEFSC). Picture (d) shows a haul of a Campelen 1800 bottom trawl on deck of 
the Norwegian RV Johan Hjort.  

2.1.3 Data mining 

In the context of large scale ecological studies, data mining or data recovery re-

fers to the effort of finding unpublished datasets and consolidating them in large 

databases accessible to the scientific community (Zeller et al. 2005). Such da-

tasets might be recovered in unpublished scientific cruise data, technical reports, 
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or any other form of grey literature (Piepenburg et al. 2011). Data mining is of 

high importance, as large temporal and spatial scale biological datasets are 

scarce, especially in the Arctic deep sea, and there is an imminent danger that 

such data will disappear from scientific memory (Zeller et al. 2005; Vandepitte et 

al. 2010). Additionally, in the light of ongoing climate warming and expanding Arc-

tic shelf and deep-sea exploitation, there is an urgent need for baseline invento-

ries from which change can be identified (Bluhm et al. 2011; Wassmann et al. 

2011a). Consolidating data from different sources and collected for various pur-

poses and under diverse circumstances requires standardization efforts, i.e. the 

harmonization of taxonomic and geographical information and of units 

(Vandepitte et al. 2010). Additionally, the potentially different sampling methods 

and further sample treatment have to be considered in subsequent analyses (see 

e.g. Bluhm et al. 2011). 

2.3 Productivity (P/B) model 

Secondary production of benthic communities is of special interest for ecologists 

as it allows direct insight into the energy flow through benthic systems and tells 

us how much food there is available for the next trophic level in the food web 

(Fig. 2). Classical methods to assess the secondary production in freshwater and 

marine ecosystems (cohort and size based methods) are expensive and time 

consuming, and in regions like the deep sea or in studies on very large scale 

simply not applicable (Rigler & Downing 1984; Cusson & Bourget 2005). Using 

empirical models bypasses the requirement of intense sampling programs need-

ed in the classical approach, as they are based on empirical relations of produc-

tion and P/B and other characteristic, but easily obtained parameters (e.g. mean 

body mass, bottom water temperature and water depth) (Brey 2001). Artificial 

Neural Network (ANN) models can learn and generalize from example data and 

perform slightly better than other empirical models (Brey 1996; Cusson & Bourget 

2005; Dolbeth et al. 2005). The model used in the manuscripts I–III is an ANN 

P/B model published by Brey (2012), more detailed information about the model 

can be found in the method part of Manuscript II and in Brey (2012).  
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2.4 GIS 

A Geographical Information System or GIS is a computerized data management 

system used to visualize, question, analyze, and interpret large datasets in order 

to understand spatial relationships, patterns, and trends (ESRI 2011). Data are 

georeferenced to the coordinates of a particular projection system, allowing spa-

tially congruent placement of features and the analysis of spatial relationships 

between the mapped features. Examples of spatial statistics used in benthic 

ecology include the identification of statistically significant clusters (e.g. Hotspot 

Analysis), the assessment of overall spatial patterns (e.g. Spatial Autocorrelation) 

and the modeling of relationships (e.g. Geographically Weighted Regression). 

Here we used all previously mentioned tools in Manuscript I, in Manuscript II-IV 

we used GIS to map and visualize data distribution (ESRI 2011, ArcGIS Desktop: 

Release 10. Redlands, CA: Environmental Systems Research Institute).  

2.5 The biological trait analysis (BTA) 

The biological trait analysis describes the contribution of a suite of ecological 

characteristics (i.e. life history, morphological and behavioral traits) to species’ 

abundance or biomass patterns (Bremner et al. 2006; Darr et al. 2014). As there 

are strong links between functional traits and ecosystem processes, this ap-

proach is both valid to describe the ecological functioning of benthic communities 

and to detect changes in functioning related to changes or gradients in the envi-

ronment (Bremner et al. 2006, Van der Linden et al. 2012). Here we used this 

approach for the first time with a dataset of macrobenthic secondary production 

from an Arctic shelf and the adjacent deep sea region. Further details on the BTA 

can be found in the method section of Manuscript III.  

(References of chapters 1 and 2 provided in chapter 5) 
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3 Manuscripts 

The following section provides an overview of the four manuscripts that constitute 

the core of this thesis and explains the contribution of co-authors. Information 

about the respective publication status is provided.  

Manuscript I 

Higher Benthic Secondary Production in the Northern, Seasonally Ice-
Covered Barents Sea  
Renate Degen, Lis Lindal Jørgensen, Pavel Lyubin, Ingrid Ellingsen, Hendrik 

Pehlke and Thomas Brey. 

RD performed study design, data standardization, data mining, P/B modeling, 

GIS techniques and further data analysis and writing of the manuscript. LLJ and 

PL provided the trawl dataset (raw data) from the joint Norwegian-Russian 

Ecyosystem Survey (IMR-PINRO) from the years 2008 and 2009. IE provided 

NPP data. HP programmed an R code for downloading and extracting sea ice 

cover satellite images, calculating relevant statistical sea ice parameters and for 

storing the data in a GIS compatible format. TB supervised the writing of the 

manuscript.  

The manuscript will be submitted to Global Ecology and Biogeography 

Manuscript II 

Patterns and Trends of Macrobenthic Abundance, Biomass and Production 
in the Deep Arctic Ocean 

Renate Degen, Andrey Vedenin, Manuela Gusky, Antje Boetius and Thomas 

Brey. 

RD performed study design, field work, taxonomic identification, data mining, da-

ta standardization, P/B modeling, data analysis and writing of the manuscript. AV 

contributed the dataset ARK-XXVII/2 (HAUSGARTEN). MG assisted in             
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taxonomic identification and data mining. AB and TB supervised the writing of the 

manuscript.  

The manuscript is in press at Polar Research. 

Manuscript III 

Changes in Functioning of Arctic Macrozoobenthos  
Renate Degen and Thomas Brey. 

RD performed study design, field work, data mining, building of a functional trait 

database (see Appendix chapter 7), BTA, further data analysis and writing of the 

manuscript. TB supervised the writing of the manuscript. 

Manuscript in preparation. 

Manuscript IV 

Status and trends in the structure of Arctic benthic food webs 
Monika Kędra, Charlotte Moritz, Emily S. Choy, Carmen David, Renate Degen, 

Steven Duerksen, Ingrid Ellingsen, Barbara Górska, Jacqueline M. Grebmeier, 

Dubrava Kirievskaya, Dick van Oevelen, Kasia Piwosz, Annette Samuelsen and 

Jan Marcin Węsławski 

This literature review is an output of the first joint Arctic in Rapid Transition (ART) 

and Association of Polar Early Career Scientists science workshop, in Sopot, Po-

land, October 2012. RD contributed to manuscript writing, figure design (Fig.1), 

proof reading and to the editing process. MK was lead author and responsible for 

consolidating the input of the other co-authors. CM contributed most of the gaps 

& recommendations section. Other co-authors contributed to a varying extent. 

The manuscript is published in Polar Research. 
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Abstract 

The Barents Sea is one of the most productive Arctic shelf regions in terms of 

pelagic primary and secondary production. A significant share of the overall en-

ergy flow is channeled through the benthic compartment towards top predators. 

Megabenthos is acknowledged to play a major role in this process, but quantita-

tive data are lacking so far. Based on a unique dataset from the joint Norwegian-

Russian Ecosystem survey we estimated for the first time megabenthic second-

ary production on the entire Barents Sea shelf. Contradictory to the generally in-

verse correlation of sea ice cover and primary production, we found significantly 

higher secondary production of benthic megafauna in the northeastern, seasonal-

ly ice-covered regions of the Barents Sea, than in the permanently ice-free 

southwest. The observed pattern indicates tight pelagic-benthic coupling in the 

realm of the productive seasonal ice zone. Ongoing decrease of winter sea ice 

extent and the associated pole-ward movement of the seasonal ice-edge point 

towards a strong decline of benthic secondary production in the northeastern 

Barents Sea in the future. 

Keywords 
Benthos, Megafauna, Pelagic-benthic coupling, MIZ, GWR, Geostatistic  
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Introduction 

Benthic secondary production constitutes an important pathway of energy flow on 

Arctic shelves. Accordingly, it is of particular ecological and economical interest in 

the Barents Sea, which holds one of the world oceans´ richest fisheries 

(Wassmann et al. 2006b). The Barents Sea ecosystem is characterized by the 

antagonistic interplay of polar and Atlantic water masses, and by a seasonal ice 

cover. However, the ongoing rapid retreat of sea ice raises questions concerning 

its current and future productivity. The joint Norwegian-Russian Ecosystem Sur-

vey (Michalsen et al. 2013) produced a huge dataset on megabenthos that co-

vers the entire Barents Sea. This dataset is unique in spatial coverage and reso-

lution and thus allows for the first time to model megabenthic secondary produc-

tion for an entire Arctic shelf.  

Macrozoobenthos of Arctic shelves is a significant player in benthic carbon cy-

cling and serves as food for a variety of higher trophic level commercially im-

portant species like cod or halibut (Clough et al. 2005; Renaud et al. 2007). Es-

pecially the abundant megafauna represents an important compartment of ben-

thic energy flow (Piepenburg et al. 1995). While the macrobenthic fauna (i.e. size 

class of animals < 1-2 cm, usually sampled with grabs or box cores) of the Bar-

ents Sea has been studied extensively in the last century (Cochrane et al. 2009 

and references therein), significantly less information is available on benthic 

megafauna (animals of a size visible on pictures or caught via bottom trawling). 

Moreover, little is known about Barents Sea benthic secondary production, de-

spite the general awareness of the benthic compartment’s role in energy flow and 

food web (Piepenburg et al. 1995; Cochrane et al. 2009). So far just one study 

(Kedra et al. 2013) deals with benthic secondary production, compared to the 

numerous publications on primary production and pelagic secondary production 

(Sakshaug et al. 2009; Dalpadado et al. 2014). Kedra et al. (2013) estimated 

benthic infauna and epifauna secondary production on the Spitsbergen bank to 

amount to ~2 g C m-2 y-1 and ~22 g C m-2 y-1 respectively. The first systematic 

large-scale study on Barents Sea megafauna results from the joint Norwegian-

Russian Ecosystem Survey (Michalsen et al. 2013) and was published recently 

(Anisimova et al. 2010; Jørgensen et al. 2014). Jørgensen et al. 2014 provide the 
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first explicit, large scale analysis of Barents Sea megafauna community composi-

tion and distribution patterns and identified a northern and a southern megafauna 

assemblage. The border between these coincides quite well with the Polar Front, 

but as it is defined by the encounter of cold and warm bottom water it is hence 

termed the “Benthic Polar Front” (Fig.1) (Jørgensen et al. 2014). The northern 

assemblage shows more taxa, higher abundance and higher biomass than the 

southern assemblage (Jørgensen et al. 2014).  

Generally food input is seen as the main driver of benthic fauna distribution 

and biomass at large, regional scales, while seabed attributes explain patterns 

more significantly at local scales (Pearson & Rosenberg 1978; Piepenburg 2005). 

Arctic shelves communities have been found to reflect the primary production 

regime of the overlying water column in terms of biomass, abundance and pro-

duction, suggesting a tight pelagic-benthic coupling (Tamelander et al. 2006). 

This holds true for the Barents Sea macrofauna, too, which shows areas of high-

est biomass in those areas that are predicted to have the highest primary produc-

tion (Wassmann et al. 2006b). Zenkevich (1963) pointed out that in the Barents 

Sea highest benthic biomass correlates inversely with water temperature, pre-

sumably related to the fact that areas of coolest water coincide with the areas of 

most active mixing, and subsequent upwelling (Zenkevich 1963).  However, stud-

ies that link benthic production patterns to ecosystem processes on large spatial 

scales are scarce (e.g. Highsmith & Coyle 1990), this is even more the case for 

benthic megafauna. Currently, we are quite ignorant of regional patterns in 

megafauna production on the Barents Sea shelf and of their environmental driv-

ers. Consequently we are not able to develop reliable future scenarios for this 

rapidly changing ecosystem. 

Here we analyze for the first time megabenthic community production for an 

entire Arctic shelf, i.e. the Barents Sea. We estimated secondary production by 

means of a species-based empirical model (Brey 2012) and use a global regres-

sion model to identify significant drivers of the observed production pattern. Ow-

ing to the substantial regional variations of environmental conditions (water 

depth, temperature, salinity, sediment structure, and sea ice concentration) and 

human impact (commercial trawling); we apply a Geographically Weighted Re-

gression (GWR) model to examine the relationship of secondary production and 
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the environment in space (Fotheringham et al. 2002). To our knowledge this is 

the first time such geo-statistical techniques are used to map and spatially ana-

lyze marine benthic secondary production. 

In brief we aim to (1) estimate total and major group secondary production (P) 

of megafauna for the entire Barents Sea shelf, (2) identify regional patterns, (3) 

identify the significant environmental drivers behind the observed patterns and (4) 

analyze their regionally varying relationship to P. 

Methods 

Study area  

The Barents Sea is the deepest of all circum-Arctic shelf seas with depths down 

to 500 m in the western troughs (Jakobsson et al. 2004). Generally the bathyme-

try is characterized by several shallow shelf banks that are segregated by a com-

plex pattern of deeper depressions (>200 m), the average depth is 230 m 

(Piepenburg et al. 1995; Ingvaldsen & Loeng 2009). The Barents Sea covers an 

area of 1.6 million km² and is surrounded by the Arctic Ocean in the north, the 

island Novaya Zemlya in the east, the Norwegian and Russian mainland in the 

south, and the Norwegian Sea and Fram Strait in the west (Ozhigin et al. 2011) 

(Fig. 1). Three main water masses characterize the Barents Sea (see Fig 1): nu-

trient rich Atlantic water (AW) with temperatures >3° C and salinity of >35 and 

coastal water with temperatures in a wider range and salinity <34.7 enter the 

Barents Sea in the south-west, and Arctic water (ArW) with temperatures <0° C 

(core temp. <-1.5) and salinity of 34.4-34.7 enters the shelf between Svalbard 

and Franz Josef Land, between Franz Josef Land and Novaya Zemlya, and via a 

small inflow from the Kara Sea south of Novaya Zemlya (Ingvaldsen & Loeng 

2009). A Polar Front (grey line in Fig. 2) separates the warm AW from the cold 

ArW respectively the permanently ice-free areas in the south-west from the sea-

sonally ice-covered north-eastern areas (Loeng et al. 1997). Regarding bottom 

temperature the front runs slightly different and is termed the “Benthic Polar 

Front”, separating a northern from a southern fauna assemblage (Jørgensen et 

al. 2014) (dashed grey line in Fig. 1). Sediment structure on the shelf is hetero-
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geneous, fine mud dominates deeper areas and coarser substrates are found in 

shallower areas with stronger currents (Jørgensen et al. 2014). Current speed on 

the Barents shelf is moderate, with highest values of >0.25 m/s in the Norwegian 

Coastal Current, but just ±0.1 m/s in the western outflow (Ingvaldsen & Loeng 

2009). Pelagic primary production is highest in the southwestern regions influ-

enced of nutrient rich AW with values >100 g C m-2 y-1 and supposedly lowest in 

the seasonally ice covered northeast (Wassmann et al. 2006b), though infor-

mation on annual rates of sea-ice associated production is still insufficient. Trawl-

ing impact on the benthos is highest in the areas harboring rich accessible fish 

stocks, i.e. the ice-free southern areas in particular (Ljubin et al. 2011), but relia-

ble geo-referenced information of trawling pressure for the entire Barents Sea is 

lacking currently. 
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Fig. 1 Barents Sea bathymetry and scheme of the main water masses. The approximate position 
of the Polar Front and the Benthic Polar Front is indicated by a grey and a dashed grey line. Ba-
thymetry is based on the IBCAO basemap (http://www.ibcao.org). Abbreviations in alphabetical 
order: BIC – Bear Island Channel, CB – Central Bank, HID – Hopen Island Deep, KI – Kolguyev 

Island, NB – North Bank, NZB – Novaya Zemlya Bank, PS – Pechora Sea, SB – Spitsbergen 
Bank. 

Fauna dataset  

Benthic megafauna abundance and biomass data were derived via the joint Nor-

wegian-Russian Ecosystem Survey (Michalsen et al. 2013). The dataset of 398 

bottom trawl stations presented in this study was compiled by experts on three 

Norwegian and one Russian research vessel in August to October 2008 and Au-
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gust to October 2009. Samples were taken with a Campelen 1800 bottom trawl, 

towed for 15 min at 3 knots. The standard distance between stations was 65 km. 

On board ship the benthic megafauna was separated from the fish and shrimp 

catch, identified on species level, counted and wet-weight biomass was meas-

ured with electronical scales. For more information on the joint Norwegian-

Russian Ecosystem Survey, the used gear and the exact sampling protocol see 

Michalsen et al. 2013 and Jørgensen et al. 2014. 

Environmental dataset 

Water depth (m) was estimated with a Seabird CTD at each sampling station. 

Mean annual bottom temperature (° C), salinity (psu) and currents speed (m s-1) 

was derived from a numerical ocean model (Lien et al. 2014).  The standard de-

viation of mean sea ice concentration (%) of the period 2001-2008 was estimated 

from monthly average sea ice concentration maps provided by NORMAP (10 km 

grid, http://normap.met.no) via an algorithm in R software. Mean New Primary 

Production (g C m-2 y-1) for the period 2001-2008 was derived from the SINMOD 

model (see Wassmann et al. 2006a). New production is a measure of the maxi-

mum harvestable production or export production from the system (Wassmann et 

al. 2006a). We presume that – as invertebrate megafauna are on average long-

lived – the integration of the previous eight years to be appropriate. Sediment 

types are characterized by six classes based on the classification scheme of 

Vinogradova & Litvin (1960), with class 1 being sand, class 2 silty sand, class 3 

sandy silt, class 4 mud, class 5 clay-silt and class 6 being clay. There is insuffi-

cient information on sediments in the Spitsbergen area hence we estimated the 

sediment class for several stations based on information from environmentally 

comparable example stations. As geo-referenced information on trawling pres-

sure in the Barents Sea is lacking, we categorized the trawling intensity infor-

mation provided in the illustrations of Lyubin et al. (2011) into four classes with 1 

= no trawling, 2 = low trawling, 3 = intermediate trawling and 4 = high trawling 

pressure. Table 1 provides minimum, maximum and mean of the environmental 

parameters considered in this study.  
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Table 1: Environmental parameters longitude (°W), latitude (°N), water depth (m), temperature 
(°C), salinity (psu), standard deviation of mean sea ice concentration from 2001-2008 (%) and 

New Primary Production (NPP, g C m-2 y-1). 

 Long. Lat. Depth Temp. Salinity Current Sea Ice NPP 
Min 8.90 68.47 20.00 -1.49 33.34 0.00 0.00 20.23 

Max 75.88 82.05 485.00 5.92 35.03 0.16 39.43 93.77 

Mean 35.59 74.51 248.28 1.55 34.85 0.03 15.18 65.78 

Estimating Production and P/B 

The secondary production (P) of Barents Sea megafauna was estimated with an 

empirical ANN model (for detailed information on the model see Brey 2012, for 

another application in Arctic regions see Nilsen et al. 2006 and Degen et al. in 

press). The model is implemented in an excel spreadsheet and can be freely as-

sessed via http://www.thomas-brey/science/virtualhandbook. Abundance and 

biomass data – previously given as individuals and biomass (g wet weight) per 15 

min haul – were recalculated to m-2 by assuming an average trawled area of 

18000 m2 (Anisimova et al. 2010). As mean body mass (M) in Joule is the main 

model input parameter, biomass was divided by abundance for each species and 

station and converted to Joule using the conversion factor database of Brey et al. 

(2012, database version 4, www.thomas-brey.de/science/virtualhandbook). Fur-

ther model input parameters are bottom temperature (K), water depth (m), five 

taxonomic categories (Mollusca, Annelida, Crustacea, Insecta, Echinodermata), 

seven lifestyle categories (infauna, sessile, crawler, facultative swimmer, herbi-

vore, omnivore, carnivore), four environmental categories (lake, river, marine, 

subtidal), and a marker for exploitation. All categorical variables were binary (0 or 

1). The necessary ecological information for each species was extracted from 

literature and online resources (see supplement S1 for a list of sources). Species 

that did not belong to any of the five taxonomic categories of the model were 

grouped by the category their body form resembled to most. The output of the 

model is population P/B ratio (y-1), including upper and lower 95% confidence 

limits. Population P was calculated by multiplying the P/B ratio with population 

biomass, previously converted to g C m-2 y-1. Total community P was calculated 

by adding up all population values per station. Production per phylum was calcu-
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lated for Annelida, Arthropoda, Cnidaria, Echinodermata, Mollusca and Porifera. 

The phyla Brachyopoda, Bryozoa, Cephalorhyncha, Chordata, Echiura, 

Nemertea, Platyhelminthes and Sipuncula occurred in very low abundances (<0.1 

Ind. m-2) and biomasses (<5 mg C m-2) and were added up in the group “Others”. 

Geostatistical Analysis 

P, P/B, NPP, trawling pressure, water depth, temperature, salinity, current speed, 

standard deviation of mean sea ice concentration and sediment structure were 

projected spatially using a GIS environment (ESRI 2011, ArcGIS Desktop: Re-

lease 10. Redlands, CA: Environmental Systems Research Institute). The WGS 

1984 Stereographic North Pole projection was used. The data distribution was 

visually inspected (scatterplot) and outliers (2 stations) were eliminated from the 

dataset. All analytical methods applied can be found in the spatial statistics 

toolbox of ArcGIS. Grouping analysis based on bottom temperature was used to 

separate the dataset into a south-western (SW) and a north-eastern (NE) group. 

Hotspot analysis (Getis-Ord Gi*) was used to identify regions of significantly 

higher P and P/B. This method identifies statistically significant hotspots, i.e. re-

gions where stations with high (or low) values cluster together. The global re-

gression model Ordinary Least Squares (OLS) was used to determine the envi-

ronmental parameters significantly correlated to the observed patterns of P and 

P/B. The independent input variables in the OLS model were water depth, tem-

perature, salinity, current speed, sea ice concentration, NPP, trawling pressure, 

and sediment structure. The significant variables were consequently used as in-

put in the GWR model. GWR accounts for the spatial variability of input data by 

incorporating spatially varying relationships in the regression analysis 

(Fotheringham et al. 2002) and was used to visualize the regionally varying rela-

tionships between P, P/B and the explaining variables. This model is appropriate 

when more than 100 features (here sample stations) are available, no binary out-

comes are predicted and a projected coordinate system is used. All skewed input 

data were previously transformed to approach normal distribution. Salinity data 

had to be grouped in classes because transformation did not reduce skewness 

sufficiently. The graphical output of the GWR model are maps of correlation coef-

ficients with hot-to-cold rendering indicating regional variation in the relationship 



Manuscript I 

31 
 

of the dependent and the independent variables. The models were tested to fulfill 

all required assumptions necessary to guarantee a reliable model output. Moran’s 

I. was used to test for potential spatial autocorrelation of the regression residuals. 

Further statistics 

ANOVA was conducted to test for significant differences between the group SW 

and the group NE (previously identified with grouping analysis in GIS) using the 

JMP® software package, Version 10.0 by SAS Institute Inc., Cary, NC, 1989-

2007. 

Results 

Total community P and P/B 

Total community production per station ranged from 0.015 mg C m-2 y-1 to 105 

mg C m-2 y-1 (Table 2; Fig. 2a). The grouping analysis based on bottom tempera-

ture separates the dataset into a north-eastern (NE) and a south-western (SW) 

part (R2=0.70). Production was significantly higher in the NE part than in the SW 

part (F=106.27; p<0.0001). The hotspot analysis performed on boxcox trans-

formed P data identified four hotspots in the northern region and three coldspots 

in the south and northwest (Fig. 3). The largest hotspot area is located west of 

Novaya Zemlya, the hotspot with highest local benthic production is located SW 

of Franz-Josef-Land (North Bank). Another hotspot is located on the southern 

slope of Novaya Zemlya and the smallest resides in the central Barents Sea 

(Hopen Island Deep and western slopes of the Central Bank). The largest 

coldspot is in the southwestern Barents Sea, the area of Atlantic water inflow. 

The two other and much smaller coldspots are located northwest of Spitsbergen 

and in the southeast, west of Kolguyev Island. Total community productivity (P/B) 

ranged from 0.038 to 0.841 (Table 2a; Fig. 2b). P/B was not found to be signifi-

cantly different between the SW and the NE region (F=3.00; p=0.084). The 

hotspot analysis identified one large hotspot in the central Barents Sea and two 
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smaller hotspots northwest of Spitsbergen and in the southwest deep Bear Island 

Channel (Fig. 3b).  

 

Fig. 2 Total community production (P) (mg C m-2 y-1) (a) and productivity (P/B) (y-1) (b). 

 

Fig. 3 Interpolated (Inverse Distance Weighting method) standard-deviation of G* scores of the 
Hotspot analysis of total community P (a) and P/B (b). Red color indicates significantly higher 

values than the mean; blue indicates significantly lower values than the mean. 
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Major Group P and P/B 

Echinodermata clearly dominate the megabenthic production in the Barents Sea 

by contributing 50% to the total production, followed by Arthropoda (18%), An-

nelida (12%), and Mollusca (7%). Cnidaria, Porifera and all other taxa contribute 

below 5% (Fig. 4). The overall pattern of P is mainly shaped by Echinodermata 

and Arthropoda, with both showing clear hotspots in the northern Barents Sea in 

the western area of Franz Josef Land and in the SE Barents Sea. Arthropods 

have a third hotspot on the Novaya Zemlya bank. Highest productivity was found 

in the phyla Annelida (mean 0.61), Arthropoda (0.20) and Mollusca (0.17). An-

nelida have productivity hotspots in the southwest Barents Sea, north of Spits-

bergen and north of Novaya Zemlja, Arthropods have a hotspot in the southwest-

ern Barents Sea, north of Novaya Zemlja and in the Pechora Sea, and Mollusca 

have a P/B hotspot in the southwestern and southern  Barents Sea and in the 

Pechora Sea. The figures of results per major group can be found in the supple-

mentary material (S1), detailed information about regional megafauna community 

composition can be found in Jørgensen et al. (2014). 
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Table 2 Min., max., and mean of total community abundance (Ind. m-2), biomass (mg C m-2), 
secondary production (mg C m-2 y-1), and productivity (P/B) and per major taxonomic group. The 
group “Others” includes taxa occurring in very low numbers (<0.1 Ind. m-2) and biomass (<5 mg 
C m-2), i.e. Brachiopoda. Bryozoa. Cephalorhyncha. Echiura. Nemertea. Platyhelminthes and 

Sipuncula. Highest mean values for P and P/B are highlighted in bold. 

  Abundanc (Ind. m-2) Biomass 
(mg C m-2) 

Production 
(mg C m-2 y-1) 

P/B 
(y-1) 

Total 

min 0.00 0.08 0.01 0.04 

max 3.12 950.09 104.87 0.84 

mean 0.11 45.16 5.32 0.15 

Annelida 

min 0.00 0.00 0.00 0.00 

max 1.26 57.96 33.62 1.49 

mean 0.02 0.79 0.65 0.61 

Arthropoda 

min 0.00 0.00 0.00 0.00 

max 0.29 139.83 15.37 0.73 

mean 0.01 6.49 0.94 0.20 

Chordata 

min 0.00 0.00 0.00 0.00 

max 0.48 19.45 2.89 0.41 

mean <0.01 0.27 0.04 0.07 

Cnidaria 

min 0.00 0.00 0.00 0.00 

max 0.41 261.62 21.01 0.49 

mean 0.01 3.06 0.26 0.12 

Echinodermata 

min 0.00 0.00 0.00 0.00 

max 2.98 762.91 81.14 0.44 

mean 0.06 27.60 2.68 0.14 

Mollusca 

min 0.00 0.00 0.00 0.00 

max 0.17 210.53 33.70 0.46 

mean 0.01 2.24 0.37 0.17 

Porifera 

min 0.00 0.00 0.00 0.00 

max 0.17 267.41 12.90 0.39 

mean <0.01 3.74 0.23 0.07 

Others 

min 0.00 0.00 0.00 0.00 

max 0.09 80.08 11.42 0.09 

mean <0.01 0.17 0.02 <0.01 

Global model (OLS)  

The Ordinary Least Squares (OLS) model for secondary production fitted the da-

ta with R2=0.41 and a corrected Akaike Information Criteria AICc=1800.12. The 

AICc is a measure of the relative quality of a statistical model for a given dataset; 
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accordingly it can be used to compare OLS and GWR models based on the same 

input parameters. The OLS model identified 6 parameters that explained the ob-

served production patterns significantly (table 3). The P/B OLS model had a 

model fit of R2=0.15 and an AICc=-1114.12 and identified four parameters to sig-

nificantly explain the variance in the P/B data (table 3). Here a significant Jarque-

Bera statistic (p=0.0036) indicated severe model bias.  

Table 3 Results of the Ordinary Least Squares (OLS) and Geographically Weighted Regression 
(GWR) models for total community P and P/B. Significant parameters (p<0.05) are highlighted in 

bold. 

OLS     

 Production P/B 

 Coefficient p Coefficient p 

Depth (m) -0.002 0.1778 0.000 0.2785 

Temperature (°C) -0.835 <0.0001 0.005 0.0457 

Salinity (class) 0.947 <0.0001 0.001 0.7534 

Current Speed (m s-1) -46.990 0.0112 1.293 0.0069 

Sea Ice Concentration (Stdv.) 1.138 0.0048 0.028 0.0079 

NPP (mg C m-2 y-1) -0.034 0.0082 0.002 <0.0001 

Trawling Pressure 0.320 0.0015 -0.006 0.0144 

Sediment (class) 0.118 0.3961 0.005 0.1853 

     

R² 0.415 0.151 

AICc 1800.112 -1114.108 

     
GWR     

 Production P/B 

R² 0.734 0.527 

AICc 88.402 -59.511 

Local model (GWR) 

The GWR model for production based on the six parameters identified with OLS 

(table 3) displayed an overall model fit of R2=0.73 and an AICc=88.40. The GWR 

model for productivity P/B based on the four parameters identified with OLS had 

an overall model fit of R2=0.53 and AICc=-59.51. The higher R2 value and the 
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distinct difference in AICc between the OLS and the GWR models indicate that 

GWR is the appropriate model for the production dataset. The spatial distribution 

of stations with highest model fit is shown in Fig. 4. The six significant correlation 

coefficients identified with GWR (shown in Fig. 5 a-f) highlight the regionally vary-

ing relationships of production and the environment. As the GWR model of P/B is 

based on potentially biased assumptions from the OLS model, it should be inter-

preted cautiously. Consequently we restrain from interpreting spatial P/B patterns 

and model output in this study. 

 

Fig. 4 Mapped R2 values from the GWR model of P. Dark red points indicate areas with highest 
model fit (R2 values 0.62-0.82). 
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Fig. 5 Correlation coefficients derived from the GWR production model for the six significant pa-
rameters bottom temperature (a), salinity (b), sea ice concentration (Standard Deviation) (c), NPP 
(d), trawling pressure (e) and current speed (f). Red circles indicate significant positive correlation; 
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blue circles indicate significant negative correlation of P and the respective parameter. The maps 
on the right show the interpolated (IDW) environmental parameters, with red areas indicating 

high, blue indicating low, and yellow indicating intermediate values. 

Discussion 

Methodical remarks 

Data from trawl samples are generally considered semi-quantitative and gross 

estimates (Eleftheriou & Moore 2005). However, when trawling is carried out 

consistently over a large number of stations, like in the joint Norwegian-Russian 

Ecosystem Survey (Michalsen et al. 2013), relative spatial patterns can be identi-

fied (Anisimova et al. 2010). In this study we accordingly do not present estimat-

ed secondary production per station and in detail, but rather focus on the regional 

differences and relations. 

Patterns of megabenthic secondary production 

Secondary production of Barents Sea megafauna is significantly higher in the 

north-eastern seasonally ice-covered areas than in the permanently ice-free 

south-western areas (p<0.0001).  

We detected four hotspots of megabenthic secondary production: the area 

west of and on the southern slope of Novaya Zemlya, the region southwest of 

Franz-Josef-Land, and a smaller hotspot in the central Barents Sea. These re-

gions of high megafauna production correspond approximately to the hot spots of 

benthic biomass reported in previous studies (Wassmann et al. 2006b). Regard-

ing the contribution of major taxonomic groups to overall benthic secondary pro-

duction we found echinoderms clearly dominating, followed by arthropods and 

annelids (table 2). The overall biomass pattern in the Barents Sea is reportedly 

vice versa, molluscs (predominantly bivalves) dominate before echinoderms 

(Wassmann et al. 2006b).  
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Drivers of megabenthic secondary production 

At large regional scales, food input is reported to be the main driver of distribution 

and biomass of benthos, and of benthic production accordingly (Grebmeier et al. 

1988, Piepenburg 2005). Arctic benthic biomass hotspots sharply coincide with 

areas of highest primary production and with ice edge areas (Denisenko 2002, 

Wassmann et al. 2006b). We used New Primary Production (NPP) (Wassmann 

et al. 2006a) as a proxy of food input to the benthos in our regression model and 

expected a positive correlation with megabenthic production, i.e. high P values in 

areas of high NPP. However, we found a reversed pattern: P is related to NPP 

negatively (p=0.0082), and P is significantly higher in regions that are seasonally 

sea ice covered and reported to be of distinctly lower pelagic primary production 

(Wassmann et al. 2006b). Furthermore, we found P to be negatively correlated to 

bottom water temperature (p<0.0001), positively to salinity (p<0.0001) and posi-

tively to the standard deviation of sea ice concentration (p=0.0048). All these fac-

tors relate to some extent to the marginal ice zone (MIZ). Temperature relates to 

MIZ because in the Barents Sea the maximum extent of colder Arctic water 

masses respectively the Polar Front often coincides with the sea ice extent in 

winter or early spring (Wassmann et al. 2006b). Salinity effects on P were found 

to be significant in areas where strong mixing between Atlantic and Arctic water 

masses occurs, i.e. along the Polar Front (Wassmann et al. 2006b). And the 

standard deviation of sea ice concentration is an obvious proxy for the MIZ.  

The bulk of the total annual primary production of the northern and northeast-

ern Barents Sea takes place in the MIZ (Piepenburg et al. 1995). Spring ice melt 

gives rise to a nutrient rich euphotic zone that supports a distinct phytoplankton 

bloom in the MIZ which moves constantly pole-ward while receding from its win-

ter position at the Polar Front (Piepenburg et al. 1995; Wassmann et al. 2006a). 

Tamelander et al. (2006) analyzed the pelagic-benthic coupling in the Barents 

Sea MIZ during summer and detected tight coupling between surface production 

and the benthic community over relatively small scales. Additionally they detected 

a high degree of heterogeneity, determined by water mass properties like local 

upwelling and primary production regimes. Our benthic secondary production 

estimates reflect this patchiness (Fig. 2), there are four significant hotspots and 

high variability between stations that are on average just 65 km apart (Fig. 3). We 
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further investigate the strength of the pelagic-benthic coupling in the northern 

seasonally ice-covered region compared to the ice-free southern regions by 

means of an “inverse” approximation. The ratio of mean secondary production (P) 

to mean NPP (0.003:76 g C m-2 y-1) in the southern region is 0.00004, in the 

northern region it is 0.00016 (0.008:50 g C m-2 y-1). This distinctly higher ratio in 

the north indicates that here either a larger part of NPP is channeled to the ben-

thos (i.e. tighter pelagic-benthic coupling), or there is further NPP not accounted 

for so far. Kedra et al. (2013) estimated a benthic carbon demand of up to 70 g C 

m-2 y-1 to sustain the mean epibenthic production of ~22 g m-2 y-1 at the Spitsber-

gen bank. As this region was a coldspot in our study we might have to consider a 

significantly higher benthic carbon demand in the regions south and west of No-

vaya Zemlya or SW of Franz-Josef-Land, which we identified as hotspots of ben-

thic production (Fig. 3a). The mean estimated NPP for this regions is 50 g C m-2 

y-1, if we add a suggested contribution of ice algae primary production of max 

25% (Wassmann et al. 2006b) we would reach around 60 g C m-2 y-1, not enough 

to fulfill a carbon demand of potentially much more than 70 g C m-2 y-1. We as-

sume that in this regions sea ice production might be considerably higher than 

previously anticipated. Additionally there might be a substantial contribution of 

advected material originating from pelagic production or shallower macroalgae 

areas. 

Apart from the parameters that are related to the MIZ, we further detected a 

significant negative correlation between P and current speed (p=0.0112) and a 

positive correlation between P and trawling pressure (p=0.0015). The former can 

be related to the fact that regions with high current speed often are dominated by 

filter feeders like bivalves that contributed little to overall P. The positive correla-

tion to trawling pressure probably relates to the fact that long term bottom trawl-

ing changes the age and size spectrum of benthic communities from long-lived, 

large sized individuals to short lived, smaller sized individuals and species. As 

P/B is inversely related to body size, this shift increases community P/B and most 

likely community P, too (see e.g. Callaway et al. 2007).  
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Regional varying relationships 

Overall our geo-statistical approach shows that the tight pelagic-benthic coupling 

along the productive, seasonally moving ice-edge is of crucial importance for 

Barents Sea megabenthic production. The geographically weighted approach 

(GWR) enables us further to investigate the regional variation in the correlation 

between P and environmental parameters (Fig. 5a-f). Here we want to focus on 

salinity (Fig. 5b) and on sea ice concentration (Fig. 5c). Salinity is correlated posi-

tively to P in a regional band resembling the position of the Benthic Polar Front 

(Fig. 1, Fig. 5b), thus indicating the relevance of mixed water masses along the 

MIZ for benthic production. The standard deviation of sea ice concentration 

shows the highest positive correlation with P in the central north of the Barents 

Sea, the region where the highest P values were observed in this study (Fig 5c). 

This may point towards the importance of sea ice algae for benthic secondary 

production in this region, as ice-algal contribution was reported to be proportion-

ally more important in areas where sea-ice retreats later in the year (Gosselin et 

al. 1997). Either way, our findings highlight the effectiveness of GWR in identify-

ing areas of particular relationships between environmental and ecological fea-

tures that should be studied in more detail.  

Conclusions 

We found significantly higher benthic production in the northern, seasonal ice-

covered Barents Sea than in the southern, ice-free region. Although annual pri-

mary production is reported to be generally lower in the north, the tighter pelagic-

benthic coupling along the MIZ facilitates higher secondary production than in the 

south. Additionally, a higher contribution of sea ice associated primary production 

and advection processes are to be considered. These novel insights into the pat-

terns of benthic secondary production and its relationships to different environ-

mental parameters will facilitate the improvement of regional carbon flux models. 

Regarding the continuous warming and a subsequent pole-ward moving MIZ, our 

findings indicate that future benthic production might be significantly impover-

ished. This prospect, which will have cascading effects on all levels of the Bar-
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ents Sea ecosystem, stresses the importance of continuous integrated monitoring 

programs like the joint Norwegian-Russian Ecosystem Survey that will provide 

the information required for sound scientific advice to ecosystem management.  
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Supplementary material 

S1 Production (P) (mg C m-2 y-1) of the major taxonomic groups Echinodermata (a), Arthropoda 
(b), Annelida (c), Mollusca (d), Cnidaria (e) and Porifera (f). 
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S2 Productivity (P/B) (y-1).of the major taxonomic groups Echinodermata (a), Arthropoda (b), An-
nelida (c), Mollusca (d), Cnidaria (e) and Porifera (f). 
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Abstract 

Little is known on the distribution and dynamics of macrobenthic communities of 

the deep Arctic Ocean. The few previous studies report low standing stocks and 

confirm a gradient with declining biomass from the slopes down to the basins as 

commonly reported for deep-sea benthos. In this study we have investigated re-

gional differences of faunal abundance and biomass, and made for the first time 

ever estimates of deep Arctic community production by using a multi-parameter 

Artificial Neural Network model. The underlying dataset combines data from re-

cent field studies with published and unpublished data from the past 20 years, to 

analyze the influence of water depth, geographical latitude and sea ice concen-

tration on Arctic benthic communities. We were able to confirm the previously 

described negative relationship of macrofauna standing stock with water depth in 

the Arctic deep sea, whilst also detecting substantial regional differences. Fur-

thermore, abundance, biomass and production decreased significantly with in-

creasing sea ice extent (towards higher latitudes) down to values <200 ind m-2, < 

65 mg C m-2 and <73 mg C m-2 y-1, respectively. In contrast, stations under the 

seasonal ice zone regime showed much higher standing stock and production 

(up to 2500 mg C m-2 y-1), even at depths down to 3700 m. We conclude that par-

ticle flux is the key factor structuring benthic communities in the deep Arctic 

Ocean, explaining both the low values in the ice-covered Arctic basins and the 

higher values in the seasonal ice zone. 

Keywords  

Deep sea, benthos, macroinvertebrate, carbon flux 
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Introduction 

The density and biomass of marine benthic macrofauna generally decreases with 

increasing water depth, distance from land, and with decreasing latitude from po-

lar and temperate towards tropical latitudes (Gage and Tyler 1991; Levin and 

Gooday 2003; Wei et al. 2010). The driving force behind this pattern is the de-

crease in food input, depending on the regionally varying surface production and 

the assimilation efficiency in the water column (Gage and Tyler 1991; Levin and 

Gooday 2003 and references therein). Following Thiel (1975) the low food con-

centration in the deep sea leads to a higher share of smaller organisms in total 

community metabolism (“size structure hypothesis”), an observation corroborated 

also in more recent studies that found a decrease in mean body mass or size 

with increasing water depth (McClain et al. 2006; Rex et al. 2006, Wei et al. 

2010). Additional to food availability also substrate characteristics and hydrody-

namic processes are important factors structuring benthic communities (Rosen-

berg 1995). Accordingly deposit-feeding organisms are reported to dominate are-

as of reduced flow like the abyssal plains, while suspension feeders are promi-

nent in areas with high bottom current flow as on continental slopes or mid-ocean 

ridges (Gage & Tyler 1991; Thistle 2003).  

Compared to standing stock, only little is known about patterns of benthic sec-

ondary production (P) and productivity (P/B) in the deep sea. The production to 

biomass (P/B) ratio represents the rate of biomass turnover and is inversely re-

lated to life span (Benke 2012). Populations whose size structure is dominated by 

small, fast growing organisms will show a higher P/B ratio than one consisting of 

older and slower growing adults (Gage & Tyler 1991). Secondary production (P) 

corresponds to the newly formed biomass per unit of area and time and depicts – 

contrary to pure measurements of biomass – exactly that quantity of energy that 

is available as food for the next trophic level (Brey 2001). Thus secondary pro-

duction constitutes the quantitative base of energy flow in benthic food webs and 

is as such an essential variable for ecosystem models. The few existing studies 

on deep-sea benthic production report a negative correlation with water depth 

and low values of 0.1-0.2 g C m-2 y-1 at depths below 1500 m (Gage 1991; Brey & 

Gerdes 1998; Cusson & Bourget 2005). Benthic community P/B ratios of 0.49 y-1 
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(Gage 1991) and 0.55 y-1 (Brey & Gerdes 1998) are reported from 2900 m depth 

in the Rockall Trough (North Atlantic) and in the Weddell Sea. While two studies 

detected a negative correlation of P/B ratios with water depth (Brey and Gerdes 

1993; Cusson & Bourget 2005), no significant correlation was found by Brey & 

Gerdes in 1998. All the previously mentioned studies detected a positive relation 

of P/B with temperature.  

Today, even less information than from the deep-sea in general is available 

about the Arctic deep sea benthic communities. This is due to the logistical chal-

lenges of sampling the remote, seasonally or permanently ice-covered Arctic ba-

sins. Bluhm et al. (2011) found a significant negative correlation of macrobenthic 

abundance and biomass with water depth and latitude. Based on a thorough lit-

erature review they summarized the Arctic deep sea to be an oligotrophic area 

with steep gradients in faunal abundance and biomass from the slopes to the ba-

sins, but with overall density and biomass comparable to other deep-sea areas. 

Due to the permanent ice cover in the central Arctic surface productivity and as-

sociated fluxes are low and previous studies detected extremely small abun-

dances, <200 individuals m-2 and biomasses, <0.2 g carbon (C) m-2 (Klages et al. 

2004; MacDonald et al. 2010; Bluhm et al. 2011). Nevertheless, comparably low 

values of 100 individuals m-2 and 0.5 g wet biomass m-2 have been reported from 

deep-sea regions equally characterized by remoteness from land and low surface 

productivity, namely the central North Pacific, the Sargasso Sea and the Porcu-

pine Abyssal Plain (Gage and Tyler 1991).  

The recent substantial decrease in ice cover of the Arctic Ocean (Arrigo et al. 

2008) has fueled speculation as to the future of its productivity and related 

changes in community structure and distribution. The shift from an Arctic Ocean 

that is covered with a thick layer of multi year ice (MYI) in the center, and sur-

rounded by a seasonal ice zone (SIZ), to a system with a mostly seasonal ice 

zone is already happening (Notz 2009). Arctic marine ecosystems are expected 

to change accordingly (Wassmann et al. 2011). Currently, neither the direction 

nor mode of these ecological developments is understood sufficiently to predict 

forthcoming changes in Arctic marine ecosystem functions, goods and services. 

One major obstacle is our lack of knowledge regarding the current system state, 

as quite often there is no reliable baseline information (“pre-change system 
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state”) from which change can be identified (Wassmann et al. 2011). As the 

changes in sea-ice cover and surface productivity are ongoing, it is highly im-

portant to increase efforts in establishing such baseline information, including the 

synthesis of previously unpublished data. Here, we focus on the Arctic deep-sea 

macrozoobenthos. Deep-water benthic communities are depicted as good indica-

tors of change as they are on average more stationary and long-lived compared 

to pelagic communities and rely in their nutrition almost entirely on the organic 

flux from euphotic layers. Hence they reflect changes in surface layer production 

in their own dynamics (Sibuet et al. 1989; Gage and Tyler 1991).  

We compiled data on macrozoobenthic communities sampled during expedi-

tions of RV Polarstern between 1990-1997 and in 2012, to the deep Fram Strait 

and the Central Arctic (Fig. 1; Table 1) and estimated benthic productivity (P/B) 

and secondary production (P) by applying the empirical ANN model developed by 

Brey (2012). Based on this dataset we tested patterns previously reported (i.e. 

decrease of standing crop with depth and latitude, decrease of mean body mass 

with depth, distribution patterns of feeding types), and investigated additional 

drivers of macrozoobenthic community patterns. In order to identify the major 

spatial patterns in the dataset we grouped the sample stations into regional and 

latitudinal clusters, depth zones, and zones of different sea ice concentration and 

tested this groups for significant differences in their community properties abun-

dance, biomass, mean body mass (M), secondary production (P), productivity 

(P/B) and feeding structure. Only few estimates on total macrobenthic secondary 

production exist from deep-sea regions (Gage 1991; Brey and Gerdes 1998) and 

high latitudes (Nilsen et al. 2006; Kedra et al. 2013), but none are available yet 

from the Central Arctic deep sea. Our first estimates of benthic secondary pro-

duction in the Arctic deep sea can serve as an initial baseline for comparisons on 

a regional and basin wide scale to help understanding and predicting upcoming 

changes in the Arctic Ocean. 

Briefly, the main hypotheses tested were: 1) a negative relationship of 

macrobenthic standing stock (N, B) and production (P) with increasing water 

depth; 2) an increase of community P/B with depth as a consequence of mean 

body mass (M) decreasing with depth; 3) a regional variation and a negative rela-

tionship of macrobenthic standing stock (N, B) and production (P) with increasing 
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latitude and sea ice coverage; 4) a dominance of deposit feeding organisms in 

the basins but more evenly distributed feeding structures on the slopes and 

ridges. 

Methods 

Study area and dataset 

The study area ranges from the seasonally ice covered Eastern Fram Strait (78° 

N) up to the permanently ice covered central Arctic Ocean at 90° N. In the NW-

Spitsbergen and Fram Strait region water depths down to 5600 m are reached at 

its deepest site, the Molloy Hole (Soltwedel et al. 2005). Inflow of warm Atlantic 

water that enters the Arctic Ocean via the West Spitsbergen Current (WSC) ex-

plains that the southern stations are only seasonally ice-covered. Eastward the 

WSC splits up into the Svalbard Branch and the Yermak Branch, both affecting 

the sea ice conditions on the Yermak Plateau. This shallow, marginal plateau, 

located between 80 and 82° N northwest of Spitsbergen, ranges from 500-800 m 

on the crest down to 3000 m as it merges into the Nansen Basin (Soltwedel et al. 

2000). Northwards the Nansen and the Amundsen Basin adjoin with average 

depths of 4000 m and most areas permanently covered with sea ice. The two 

basins are separated by the Gakkel Ridge, a slow spreading ridge system rising 

up to 1000 m below sea level (Jakobsson et al. 2012). The Amundsen Basin is 

limited by the Lomonosov Ridge, which rises 3000 m above the abyssal plains 

and separates the Eurasian from the Amerasian Basin (Kristoffersen et al. 2007). 

The Makarov Basin, flanking the Lomonosov Ridge from the opposite side is the 

only region from the Amerasian part of the Arctic included in this study. The 

western Amundsen Basin merges into the steep slopes of the Morris Jesup Rise, 

which reaches up to 1000 m below sea level and then transitions into the Green-

land slope (Jakobsson et al. 2012) (for detailed station information see table 2 

and S1). 
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Fig. 1: Sample stations (yellow – stations from 1991, blue – stations from 1997, red – stations 
from 2012; number of stations in brackets) and September sea-ice extent (blue line – 2012 sea 

ice minimum; grey line – 1981-2011 median sea ice extent). 

The dataset used for this study 

(http://doi.pangaea.de/10.1594/PANGAEA.828348; Fig. 1) constitutes a compila-

tion of AWI Arctic macrozoobenthos data (PANABIO – pan-Arctic database of 

benthic biota - project, in progress) selected using the following criteria: 1) abun-

dance and biomass data available on species level, 2) comparable sampling and 

sample treatment (comparable sampling device and sample area and sieving of 
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samples with 250 µm or 500 µm sieve sizes) to keep comparison errors to a min-

imum and 3) data distributed along a transect from the Fram Strait (78° N) to the 

Central Arctic (90° N) with a focus on the Eurasian basins. The samples were 

taken during several RV POLARSTERN cruises between 1991 and 2012 (Table 

1). Data from the cruise ARK-VIII/3 in 1991 (Fütterer 1991; 47 stations from 

northern Svalbard, Yermak Plateau, Morris Jesup Rise and Arctic Ridges and 

Basins) were published by Kröncke (1994 and 1998) and samples from cruise 

ARK-XXVII/2 (11 stations from the longtime deep-sea observatory “Hausgarten”, 

hereby referred to as group “NW-Spitsbergen”) by Soltwedel 2013. Data from 

ARK-XXVII/3 in 2012 (Boetius 2013a; 5 and 7 stations, Nansen and Amundsen 

Basin) as well as samples from the cruise ARK-XIII/2 in 1997 (Stein and Fahl 

1997; 23 stations, Yermak Plateau, Fram Strait) are provided in this study (Table 

1; Fig. 1). 

Table 1: Overview of stations sampled with RV Polarstern used for this study. More detailed sta-
tion information (coordinates, date, water depth) are provided in S 1. BL = Bottom Lander. MG = 

Multigrab. 

Expedition Year Gear Region Reference 

ARK-VIII/3 1991 Giant Box Corer 
(0.25 m-2) 

N-Svalbard, Yermak Plateau, 
Nansen and Amundsen Basin, 
Gakkel and Lomonosov Ridge, 
Morris Jesup Rise 

Kröncke 
(1994, 1998) 

ARK-XIII/2 1997 Giant Box Corer 
(0.25 m-2) 

Fram Strait, Yermak Plateau this study 

ARK-XXVII/2 2012 Giant Box Corer 
(0.25 m-2) 

Fram Strait / NW Spitsbergen, 
"HAUSGARTEN" 

Vedenin et al. 
(unpubl. ms.) 

ARK-XXVII/3_BL 2012 Bottom Lander 
Chambers (3 x 
0.04 m-2) 

Nansen Basin, Amundsen 
Basin 

this study 

ARK-XXVII/3_MG 2012 Multigrab (9 x 
0.024 m-2) 

Nansen Basin, Amundsen 
Basin 

Vedenin et al. 
(in press) 

Sampling procedure 

Giant box corers of 0.25 m2 surface area (USNEL-type) were used for sampling 

benthic macrofauna on ARK-VIII/3 (see Kröncke 1994, 1998), ARK-XIII/2 and 

ARK-XXVII/2. Up to 7 subsamples of 0.02 m² were taken per box core on ARK-
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VIII/3 and ARK-XIII/2. The total surface of a box core was sampled in ARK-

XXVII/2 (Soltwedel 2013). On ARK-XXVII/3 samples were taken with a Multigrab 

(9 x 0.024 m2) and benthic chambers of a Bottom Lander system (3 x 0.04 m2). 

Single chambers from Lander and Multigrab deployments were treated like repli-

cate subsamples of box corers from other cruises. The samples from ARK-VIII/3 

and ARK-XXVII/2 were washed over 500 µm sieves (top 14 cm), the samples 

from ARK-XIII/2 with 250 µm sieves (top 2 cm) and 500 µm sieves (2 to max. 20 

cm) and samples from ARK-XXVII/3 only with 250 µm sieves (top 10 cm). All 

samples were stored in 4% (at ARK-XXVII/2 10%) Borax-buffered Formalin.  

In the respective home laboratories macroinvertebrates were counted, 

weighed (wet weight) and identified to the lowest possible taxonomic level. Gen-

erally all metazoan animals retained on a sieve with 250 or 500 µm mesh size 

were included in the analysis, only significantly larger animals belonging to the 

size class “megafauna” (>2 cm) were excluded.  We are aware that estimates of 

macrofauna distribution are affected by the gear design, sampling area, sample 

depth and sieve mesh sizes (Wei et al. 2010). Especially abundance estimates 

seem to be more affected by differing sieve mesh sizes than biomass estimates 

(Shirayama & Horikoshi 1989; Romero-Wetzel & Gerlach 1991; Gage et al. 

2002). Gage et al. (2002) showed that 95% of the biomass retained on a sieve 

with 250 µm mesh size could still be retained on a much coarser sieve of 1 mm 

mesh size, while about 40% of abundance would be lost when switching from a 

250 µm sieve to a sieve with only 500 µm mesh size. Due to this effect we have 

to consider an underestimation of abundances by 500 µm samples. Sample area 

and depth of sample horizon are thought to have comparatively less impact on 

both abundance and biomass (Gage et al. 2002; Hammerstrom et al. 2010). To 

exclude potential effects of sampling procedure on our results we performed a 

three-way ANOVA of the factors sieve size, sample area, and year of sampling 

on the residuals of an ANOVA of abundance (p=0.97) and biomass (p=0.80) vs. 

regions (see also “Statistical Analysis” and “Results” part). The ARK-VIII/3 da-

taset was provided as the median of all subsamples / station (Kröncke 1994, 

1998) while the remaining dataset consists of mean values / station. No signifi-

cant “median/mean-effect” was detected by an a priori pairwise test mean vs. 

median across all ARK-XXVII/3_BL stations (p=0.708).  
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Data Harmonization 

All geographical coordinates were converted to decimal degree. The station data 

were plotted on a modified polar stereographic IBCAO base map 

(http://www.ibcao.org; Jakobsson et al. 2012) in the WGS84 coordinate system 

using ESRI ArcGIS 10.1. 

The taxonomic name of each species was matched with the World Register of 

Marine Species (WoRMS) as first authority and also with the Integrated Taxo-

nomic Information Service (ITIS) for reasons of comparability with other datasets. 

When abundance and biomass data were not already provided per m² from the 

start they were recalculated to individuals and g wet mass (WM) per m2. A com-

plete list of species taxonomy, abundance, biomass and production can be found 

in the Open Access library PANGAEA 

(http://doi.pangaea.de/10.1594/PANGAEA.828348).  

Environmental data 

Water depth refers to the recorded depth at the time the sampling device was 

deployed at the seafloor; bottom water temperature (°C) data were compiled us-

ing the Open Access library PANGAEA (http://www.pangaea.de). If temperature 

was not measured during sampling we used data from nearby CTD stations from 

the same cruise.  If no such data were available we searched for the spatially and 

temporally closest measurement available from other cruises. This approach is 

reasonable as the seasonal variations in bottom water temperature from stations 

below 800 m depth are negligible (Langehaug et al. 2012). Information about sea 

ice concentration (%) per station was extracted from GeoTiff pictures of sea ice 

concentration for the respective year and month (25 km raster cells). Sea-ice 

maps used for the cruises from 2012 were provided by the Institute of Environ-

mental Physics University of Bremen (www.iup.uni-bremen.de). For stations 

sampled before 2002 the pictures used were provided by NISDC 

(http://nsidc.org/). 
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The P/B model 

Estimation of benthic production was performed using the empirical ANN model 

developed by Brey (2012). The difference and advantage of an “artificial neural 

network” (ANN) model compared to other empirical models which are based on 

multiple linear regression is that it can model complex, nonlinear and non-

continuous relationships between independent and dependent variables by learn-

ing and generalizing from example data (Brey et al. 2012). The P/B model used 

here is based on an initial database of 1258 datasets, each providing information 

on annual production P, biomass B, mean body mass M, annual P/B ratio, taxon-

omy and ecology per species as well as the applied methods.  The final model 

(which is implemented in an excel spread sheet and can be assessed via 

http://www.thomas-brey/science/virtualhandbook (Brey 2001)) consists of three 

continuous and 17 categorical input parameters: mean body mass (log(M), [J]), 

temperature (1/T, [K]), water depth (log(D), [m]), five taxonomic categories (Mol-

lusca, Annelida, Crustacea, Insecta, Echinodermata), seven lifestyle categories 

(infauna, sessile, crawler, facultative swimmer, herbivore, omnivore, carnivore), 

four environmental categories (lake, river, marine, subtidal), and a marker for ex-

ploitation. 

All categorical variables were binary (0 or 1). The necessary ecological infor-

mation for each species was extracted from literature and online resources (see 

paragraph below and supplementary material S 3 for details). Mean body mass 

(M) was calculated for each species by dividing biomass by abundance. Biomass 

data were previously converted to Joule, using the conversion factor (CF) data-

base of Brey (2012, database version 4, www.thomas-

brey.de/science/virtualhandbook). When no CF was found for a certain species 

the CF of the next higher taxonomical level was used. Species that did not belong 

to any of the five taxonomic categories of the model were grouped by the catego-

ry their body form resembled to most. Accordingly we grouped Porifera, Tunicata, 

Cnidaria and Bryozoa by category Mollusca, and Sipuncula, Nemertea, 

Entoprocta and Cephalorhyncha were grouped by category Annelida. The exploi-

tation marker indicates whether a species is commercially exploited and was set 

to zero for each species in this study. Model output is population P/B ratio (y-1), 

including upper and lower 95% confidence limits; population P was calculated by 
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multiplying the P/B ratio with population biomass and community P by adding up 

all population values. For further details on the model see Brey (2012).  

Functional Traits 

Information about life style, motility and alimentation type needed as input into the 

P/B model (see before) was obtained from literature and through web search en-

gines like WoRMS (www.marinespecies.org), MARLIN (www.marlin.ac.uk) and 

the Marine Species Identification Portal (http://species-identification.org/). When 

no information was found for a certain species the next taxonomic level was tried 

until reliable information was found.  A list of used sources is included in the sup-

plementary material S3 (mainly for the two most prominent taxonomic groups in 

this study, the Annelida and Arthropoda).  

For the analysis of the trophic group structure of macrozoobenthic communities 

the feeding types were assessed from the same sources as above and assigned 

to one of the four groups carnivore/predator/scavenger, filter- and suspension 

feeder, interface feeder or deposit feeder (combining surface and subsurface de-

posit feeders). 

GIS 

For mapping benthic abundance, biomass and production ESRI 2011. ArcGIS 

Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute 

was used. Shapefiles containing the georeferenced sea ice extent from 2013 and 

a 30 years mean were provided by NSIDC (http://nsidc.org/data/; Fetterer et al. 

2002). 

Statistical Analyses 

We tested for differences in abundance, biomass, mean body mass (M), produc-

tion (P), productivity (P/B) and feeding structure between (i) regions (NW-

Spitsbergen, Fram Strait, Yermak Plateau, Nansen Basin, Gakkel Ridge, Amund-

sen Basin, Lomonosov Ridge, Morris Yesup Rise), (ii) sea ice zone (i.e. sea ice 

concentration in month of sampling) (“ice free” – sea ice concentration < 10%; 
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marginal ice zone “MIZ” - pack-ice with concentrations between 10-80%; “ice 

covered” – sea ice concentration between > 80%), (iii) depth zone (upper slope < 

1500 m, lower slope 1500-3000 m, and Basin > 3000 m) and (iv) latitudinal zone 

(78-80°, 80-82°, 82-84°, 84-86°, 86-88°, 88-90° N). The SIMPROF approach was 

used to test if the environmental parameters (water depth, temperature, sea ice 

concentration, longitude, latitude) significantly differ between the compared re-

gions and thus justify the applied regional clustering. As P/B and M are known to 

be largely influenced by temperature we tested for a correlation of temperature 

with P/B and M and also for regional differences in bottom temperature. Statisti-

cal approaches included regression, ANOVA, multi-way ANOVA, ANCOVA and 

Post Hoc Tests (Student's t) using the JMP® software package, Version 10.0 by 

SAS Institute Inc., Cary, NC, 1989-2007. Due to limited number of samples we 

performed one-way ANOVAs and ANCOVAs with water depth used as co-

variable to test for significant differences between stations (grouped by regions, 

latitudes and sea ice concentration) after eliminating the generally acknowledged 

impact of depth on benthic communities. As depth and temperature are co-

varying in the Arctic Ocean, we performed an ANOVA on the residuals of a tem-

perature versus depth regression to test for temperature differences among re-

gions. The region Makarov Basin was excluded from the statistical comparison of 

regions due to the minor sample size of only two stations, all other regions con-

tained 4 – 20 stations (Table 2). To exclude potentially distorting effects of sam-

pling procedure (i.e. sieve size, sample area, year of sampling) on our regional 

comparison we performed a 3-way ANOVA of these factors on the residuals of an 

ANOVA of abundance vs. depth and biomass vs. depth. Data from regions that 

were sampled in 1991 and 2012 (Nansen Basin, and Amundsen Basin) were ad-

ditionally tested with ANCOVA for an effect of time. Data were transformed using 

power (Box-Cox) and log transformation. ANOSIM was used to test for differ-

ences in the relative contribution of different feeding types to overall biomass and 

production. SIMPROF and ANOSIM were performed with PRIMER Version 6; 

Clarke, KR, Gorley, RN, 2006.  
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Results 

Effects of environment and sampling procedure 

The SIMPROF test based on latitude, longitude, temperature and sea ice con-

centration found eight significantly different groups (p< 0.001) that correspond to 

the 9 regional groups except for the two Makarov Basin stations which were 

grouped together with Lomonosov Ridge stations. Temperature differed signifi-

cantly between regions (ANOVA with the residuals of a temperature vs. depth 

regression; F=2.17; p=0.0449). 

The 3-way ANOVA of the residuals of an ANOVA of abundance per regions 

(F=20.81; p=0.001) and biomass per regions (F=9.96; p=0.001) on the factors 

sieve size, sample area, and year of sampling did not find them explaining any 

variance in abundance (F=0.25; p=0.97) and biomass data (F=0.54; p=0.8022). 

The a priori pairwise test of median vs. mean abundances did not detect signifi-

cant differences for the ARK-XXVII/3 stations (F=0.15; p=0.708). ANCOVA with 

depth as co-variable found abundance and biomass in Nansen Basin significantly 

higher in 1991 compared to 2012 (F=11.52; p=0.007 and F=5.44; p=0.042), but in 

Amundsen Basin significantly higher in 2012 compared to 1991 (F=6.58; p=0.021 

and F=11.13; p=0.004). 

Abundance 

Mean abundance (individuals (ind.) m-2) per region varied between 10 (Gakkel 

Ridge) and 1053 ind. m-2 (Yermak Plateau) (Table 2; Fig. 2). The highest abun-

dance by far was found at Yermak Plateau at a water depth of 517 m (4136 ind. 

m-2). Stations from NW-Spitsbergen, Morris Jesup Rise and Fram Strait showed 

relatively high average abundances of 552, 410 and 326 ind. m-2, respectively. All 

other regions showed lower mean abundances that ranged between 10 and 203 

ind. m-2. The lowest abundances were found at the stations in the central Arctic 

with means of 90 ind. m-2 and lowest counts of 0 ind. m-2 in Amundsen Basin and 

at Gakkel Ridge (Table 2). Because water depth was found to have a significant 

effect on abundances (ANOVA, F=41.53; p<0.0001, Table 3) it was accordingly 

used as a co-variable in ANCOVAs to test for differences between stations 
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grouped by regions, latitudes and sea ice concentration (Table 3, Fig. 7). Abun-

dance (ind. m-2) was significantly different between the different regions (F=9.99; 

p<0.0001), latitudinal zones (F=12.46; p<0.0001) and areas of different sea ice 

concentration (F=10.52; p=0.0005) (Fig. 4). The Post Hoc Tests (Student’s t) 

grouped the regions with highest abundance values per m2, i.e. NW-Spitsbergen 

and Yermak Plateau (mean abundance per station 552 and 1053 ind. m2) as sig-

nificantly different from the regions with stations in greater depths and higher lati-

tudes (i.e. Nansen Basin, Amundsen Basin, Lomonosov Ridge and Morris Jesup 

Rise; with average abundances between 61 and 410 ind. m-2). The Gakkel Ridge 

stations were also significantly different from all the other stations as they showed 

the lowest abundances (zero abundance in four of five stations and one station 

with 50 ind. m-2. Regarding latitude, abundance was significantly higher between 

78-82° N compared to 82-90° N, whereas the stations between 86-88° N showed 

significantly lower values than all the other stations. The northernmost stations 

between 88-90° N were ranked third highest, although not significantly different 

from the stations between 82-86° N. When stations were grouped according to 

percentage of sea ice concentration with water depth as co-variable, the stations 

in the group “ice free” and “MIZ” did not show significantly different abundances, 

but were both grouped as significantly different from the group “ice covered” 

(F=10.52; p<0.0001) (Table 3, Fig. 7). Regarding the major taxonomic groups 

Annelida were by far the most prominent group ranging from 21% at Lomonosov 

Ridge up to 68% at NW-Spitsbergen (Fig. 3). The second dominant taxonomic 

group was Arthropoda with ranges of 25-50% at Gakkel Ridge, Makarov Basin, 

Amundsen Basin and Fram Strait, but lower contributions in all other regions (1-

20%). Porifera were the third most prominent group with a high share of 27-54% 

at Lomonosov Ridge, Makarov Basin and Morris Jesup Rise and lower contribu-

tions of 0-14% in the other regions. Mollusca had a higher share of the total 

community with 22% only at NW-Spitsbergen. They grouped with all other phyla 

(Bryozoa, Cephalorhyncha, Chordata, Cnidaria, Echinoidea, Entoprocta, 

Nematoda, Nemertea and Sipuncula) in the lower range of 0-14% at other re-

gions (Fig. 3, S2). 
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Fig. 2 Macrobenthic abundance (ind. m-2). 

 

Fig. 3 Relative abundance of major groups Annelida, Arthropoda, Porifera, Mollusca, Cnidaria 
and Echinodermata. The group “Others” combines Bryozoa, Cephalorhyncha, Chordata, 

Entoprocta, Nematoda, Nemertea and Sipuncula. 
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Biomass 

Mean biomass per region ranged from 2 mg C m-2 at Gakkel Ridge up to 410 mg 

C m-2 at Yermak Plateau (Table 2). Highest biomass by far was found at Yermak 

Plateau and Nansen Basin stations (max. 2009 and 3026 mg C m-2), while all 

other regions showed low mean biomass ranging between 2 and 65 mg C m-2. 

Because water depth was found to have a significant effect on biomass (ANOVA, 

F=19.55; p<0.0001, Table 3) it was used as co-variable in the following 

ANCOVAs (Table 3, Fig. 7). ANCOVAs detected significant differences in bio-

mass between regions (F=5.07; p<0.0001) (Table 3; Fig. 7). Post Hoc tests 

grouped the stations from Yermak Plateau (mean biomass 410 mg C m-2) to be 

significantly different to those of Amundsen Basin, Morris Jesup Rise and Gakkel 

Ridge. No significant difference was detected to stations from NW-Spitsbergen, 

Fram Strait, Nansen Basin and Lomonosov Ridge. Also regarding latitudes, a 

significant difference was found between stations (F=5.53; p=0.0002). Here the 

stations between 80° and 82° N were found to be significantly higher in biomass 

than all the stations of the areas 82-84, 84-86 and 86-88° N, but were not found 

to be significantly different from the southernmost (78-80° N) and northernmost 

(88-90° N) stations. Comparing stations by sea ice concentration showed signifi-

cantly higher biomasses for the stations in the group “MIZ” (F=3.11; p=0.0496) 

compared to the group “ice covered”. The group “ice free” was not significantly 

different from the other two groups (Table 3; Fig. 7). Annelids contributed most to 

community biomass at Morris Jesup Rise (86%) and NW-Spitsbergen (74%), and 

between 10 and 60% elsewhere (Fig. 4). Arthropoda contributed 58% of the bio-

mass in Amundsen Basin, 40% at Gakkel Ridge and 34% in Fram Strait, but only 

between 0–17% in all other regions. Echinoderms dominated biomass in Nansen 

Basin (66%), but showed rather low percentages at all other regions (0–12%). 

Porifera dominated the community biomass in Makarov Basin (60%) and contrib-

uted a lot in Fram Strait (45%), at Lomonosov Ridge (32%) and Nansen Basin 

(21%). Mollusca showed relevant shares of 29% at Lomonosov Ridge, in other 

regions they contributed ≤4%. All other groups did not contribute significantly to 

community biomass and ranged between 0-10% in all regions (Fig. 4; S2). Re-

garding trophic structure, deposit feeders were the dominant group, while inter-

face feeders had significantly lower biomasses (F=14.61; p<0.0001). Deposit 
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feeders had a much higher share with 66% of total biomass at Nansen Basin and 

4–60% in the other regions except Makarov Basin. Carni-

vores/Predators/Scavengers contributed most at Morris Jesup Rise (84%) and 

Amundsen Basin (67%). Filter feeders dominated the biomass at Makarov Basin 

(60%) and Lomonosov Ridge (53%) (S5). ANOSIM did not detect differences in 

the relative contribution of different feeding types between any of the tested 

groups (depth, latitude, sea ice, and region) (Global R<0.20). 

Fig. 4 Relative biomass of major groups Annelida, Arthropoda, Porifera, Mollusca, Cnidaria and 
Echinodermata. The group “Others” combines Bryozoa, Cephalorhyncha, Chordata, Entoprocta, 

Nematoda, Nemertea and Sipuncula. 

 
.
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Table 2 Number of sample stations, depth range, number of species and major taxonomical groups and the mean, minimum and maximum parameters 
abundance (individuals m-2), biomass (mg C m-2) and production (mg C m-2 y-1). 

Stations Stations Depth (m) Species Major 
Groups Abundance (Ind m-2) Biomass (mg C m-2) Production (mg C 

m-2 y-1) 
     mean min max mean min max mean min max 
Fram Strait /  
NW Spitzbergen 11 2340 - 2740 23 7 586 248 976 8 3 19 12 5 29 
Fram Strait 4 2530 - 4130 22 6 767 275 1739 667 110 2206 466 66 1394 
Yermak Plateau 13 520 - 2530 180 12 2737 100 7323 1620 5 4689 1401 9 3706 
Nansen Basin 15 2650 - 4050 46 9 153 6 800 339 < 1 3026 164 < 1 1585 
Gakkel Ridge 5 1790 - 4420 2 2 10 0 50 2 0 8 2 0 12 
Amundsen Basin 20 3400 - 4480 36 7 63 0 346 49 0 492 33 0 247 
Lomonosov Ridge 10 1020 - 3840 27 8 203 75 450 65 26 126 73 42 130 
Makarov Basin 2 4000 - 4010 4 3 75 50 100 23 10 35 29 8 51 
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Mean body mass (M)  

Mean body mass of the stations from Nansen Basin, Lomonosov Ridge and 

Yermak Plateau with values between 0.4-2.5 mg C were significantly higher than 

at NW-Spitsbergen, Morris Jesup Rise and Gakkel Ridge with values of 0.03-0.1 

mg C (F=3.12; p=0.0028). While no significant differences in mean body mass 

were found within the different water depths (F=0.73; p=0.4835) and sea ice 

zones (F=1.87; p=1398), we detected significant differences between latitudinal 

zones (F=2.83; p=0.0207). Post Hoc tests ranked the groups 86-88° N and 78-

80° N to be significantly lower than the groups 88-90° N, 80-82° N and 82-84° N. 

M was not significantly related to bottom water temperature (F=0.01; p=0.9144). 

Secondary production (P) 

Mean macrobenthic secondary production was lowest at Gakkel Ridge with 2 mg 

C m-2 y-1 and highest at Yermak Plateau with 385 mg C m-2 y-1 (Table 2; Fig. 5). 

The highest production per station was found at Yermak Plateau (reaching up to 

2534 mg C m-2 y-1), followed by Nansen Basin with values reaching 1585 mg C 

m-2 y-1. The production at NW-Spitsbergen and Lomonosov Ridge was rather 

similar with means of 70 and 73 mg C m-2 y-1 respectively. All other regions 

ranged in their means between 2 and 46 mg C m-2 y-1. Because water depth was 

found to have also a significant effect on production (ANOVA, F=25.88; 

p<0.0001, Table 3) it was used again as co-variable in ANCOVAs (Table 3, Fig. 

7). ANCOVAs showed that there were significant differences between regions 

(F=5.32; p<0.0001) (Table 3). Post Hoc tests grouped the regions with highest 

mean production (Yermak Plateau, NW-Spitsbergen and Lomonosov Ridge) and 

the stations with lowest production (Morris Yesup Rise and Gakkel Ridge) to be 

significantly different from each other. Also when grouped by latitude, significant 

differences were found by ANCOVA (F=5.95; p<0.0001). Post Hoc tests revealed 

that the benthic secondary production from stations between 80–82° N, 78-80° N 

and 88-90° N was significantly higher than in the groups between 84-88° N. 

Comparison of stations grouped after their sea ice concentration showed as well 

significant differences in production (F=4.25; p=0.0173). Like for biomass, Post 

Hoc tests showed significantly higher benthic production in the group “MIZ” 
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(mean 0.5 g C m-2 y-1) compared to group “ice covered” (mean 0.06 g C m-2 y-1) 

(Table 3; Fig. 7). Annelids contributed most to the overall production at NW-

Spitsbergen (73%), at Morris Jesup Rise (67%), at Yermak Plateau and Gakkel 

Ridge (both 64%) and at Amundsen Basin (51%) (Fig. 6; S2). At the other re-

gions they contributed between 14 and 25% to the overall production. Porifera 

were the most productive group at Makarov Basin (70%), Nansen Basin (49%) 

and Lomonosov Ridge (47%). Arthropoda contributed 45% at Fram Strait, 39% at 

Amundsen Basin and 36% at Gakkel Ridge, but only between 0 and 16% in all 

other regions. All other groups contributed much less to the overall production. 

Echinoderms contributed 23% to the overall production at Nansen Basin but only 

between 0-6% in other regions. Molluscs only showed a higher percentage at 

Lomonosov Ridge (12%) but ranged at all other stations between 0 and 3%. 

Suspension feeders had the largest share in production, while deposit feeders 

showed the significantly lowest values (F=30.22; p<0.0001). Regarding the three 

depth zones, suspension feeders contributed most in the group “lower slope” 

(50%) and comparably less to the group “upper slope” (17%) and “basins” (24%). 

At a regional scale, filter- and suspension feeders contributed most to production 

at Makarov Basin (70%), Nansen Basin (64%) and Lomonosov Ridge (55%), 

predators at Morris Jesup Rise (65%), deposit feeders at Gakkel Ridge (64%), 

Amundsen Basin (50%) and Yermak Plateau (48%), and interface feeders at NW 

Spitsbergen (42%) (Fig. 8). ANOSIM did not detect differences in the relative 

contribution of different feeding types in any of the categories tested (depth, lati-

tude, sea ice, region) (Global R always <0.20). 
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Fig. 5 Macrobenthic secondary production (mg C m-2 y-1). 

 

Fig. 6 Relative production of major groups Annelida, Arthropoda, Porifera, Mollusca, Cnidaria and 
Echinodermata. The group “Others” combines Bryozoa, Cephalorhyncha, Chordata, Entoprocta, 

Nematoda, Nemertea and Sipuncula. 
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Fig. 7 Comparison of macrobenthic abundance (a), biomass (b) and production (c) between 
depth zones (upper slope, lower slope, basin), sea ice zones (Ice free, MIZ, Ice covered) and 
latitudinal bands (78-80°, 80-82°, 82-84°, 84-86°, 86-88°, 88-90° N) in a box-plot (min, max and 
mean). Letters above bars indicate significant differences between groups as identified by ANO-
VA (Depth Zone) and ANCOVA with depth as co-variable (Sea Ice Zone, Latitude) and (Student's 
t) Post Hoc test on differences between means. Plots are based on transformed (Box-Cox) data 
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to meet ANOVA/ANCOVA preconditions; the y-axis shows the corresponding non-transformed 
raw data (making the scale non-linear). 

Table 3 Differences in macrofaunal abundance, biomass and estimated production between re-
gions (see Table 2, Fig. 1 and Fig. 2), latitudinal bands (78-80°, 80-82°, 82-84°, 84-86°, 86-88°, 
88-90° N) and areas differing in sea ice concentration (ice free < 10%, MIZ, ice covered > 80%) 

as identified by one-way ANCOVA with water depth as covariate. Differences between depth 
ranges (upper slope < 1500 m, lower slope 1500 – 3000 m, basin > 3000 m) were tested with 

ANOVAs. 

 F p 
Region   

Abundance  9.99 <0.0001 

Biomass  5.07 0.0001 

Production 5.32 <0.0001 

Latitude   

Abundance  12.46 <0.0001 
Biomass  5.53 0.0002 
Production  5.95 <0.0001 
Sea Ice Concentration   

Abundance  10.52 <0.0001 

Biomass  3.11 0.0496 

Production  4.25 0.0173 

Depth   

Abundance  41.53 <0.0001 
Biomass  19.55 <0.0001 
Production  25.88 <0.0001 

Productivity (P/B) 

Production to biomass ratios (P/B) ranged from 0.14–2.22 and were highest at 

Morris Jesup Rise, Lomonosov Ridge, and NW-Spitsbergen with means per re-

gion ranging from 1.17-1.42 y-1. Gakkel Ridge was the region with the significant-

ly (F=3.13; p=0.0057) lowest P/B ratio (mean=0.29 y-1). ANOVA and ANCOVA 

did not detect differences in P/B between depth zones (F=1.34; p=0.265), latitude 

zones (F=1.56; p=0.1690) and zones of different sea ice concentration (F=1.15; 

p=0.3212). Among major taxonomic groups Porifera and Arthropoda had highest 

mean ratios of 1.28 and 1.25 y-1. Regarding trophic structure, deposit and sus-
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pension feeders showed significantly higher ratios than interface feeders and 

predators (F=2.96; p=0.03). P/B was significantly positively related to bottom wa-

ter temperature (F=10.01; p=0.002), but not to mean body mass (M) (F=3.28; 

p=0.0733). 

Discussion 

Macrofauna standing stock and secondary production in the Arctic deep-sea de-

crease with increasing water depth. In addition, we detected significant regional 

differences for all studied community properties (abundance, biomass, mean 

body mass, secondary production and P/B). Stations in the vicinity of the highly 

productive marginal ice zone (MIZ) (latitudes 80-82° N) showed secondary pro-

duction levels comparable to shallower regions and lower latitudes (Table 4). In 

the permanently ice-covered central Arctic Amundsen Basin, mean macrobenthic 

production was estimated to be as low as 25 mg C m-2 y-1 (Table 2). Assuming an 

average production-to-consumption ratio (P/C) of macrofauna of about 0.2 (0.239 

± 0.190, N = 97; unpublished data collection of T. Brey), this production would 

require a particulate organic carbon (POC) input of at least 165 mg C m-2 y-1 for 

the macrofaunal consumption only, which is presumably 20% of all benthic size 

classes including bacteria (Piepenburg et al. 1995). Based on the assumption 

that < 10% of surface primary production reaches the deep-sea floor (Bauerfeind 

et al. 2009), a gross primary production (GPP) of around 8 g C m-2 y-1 would be 

sufficient to cover this benthic demand. This number is well in the range of re-

ported GPP estimates of 1-25 g C m-2 y-1 for the central Arctic (Wassmann et al. 

2010). Sufficiently high POC fluxes of >1 g C m-2 y-1 were also recorded via sedi-

ment traps situated at 1550 m of depth (Fahl & Nöthig 2007). In contrast to the 

Central Arctic stations we estimated a mean secondary production of 385 mg C 

m-2 y-1 at the Yermak Plateau. Taking into account that at shallower depths (mean 

1500 m) a higher percentage of GPP can reach the seafloor, a GPP of approxi-

mately 30-90 g C m-2 y-1 would be required to enable the estimated community 

production. In the Arctic such a high primary productivity can be found regionally 

along the highly productive seasonal ice zone (SIZ) and in productive shelf areas 

like in the Barents Sea (Klages et al. 2004; Wassmann et al. 2010), which are 
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both in the vicinity of and most likely affecting our sample stations. We conclude 

that particle flux induced by vertical and lateral transport processes is the key 

factor structuring benthic communities in the deep Arctic Ocean, explaining both 

the very low values in the ice-covered Arctic Basins and the higher values in the 

seasonal ice zone.  

Depth-related patterns 

Our study confirms the trends shown earlier (Gage & Tyler 1991; Klages et al. 

2004; Bluhm et al. 2011): Significantly lower mean abundances and biomasses 

are found in the deep basins compared to the upper slopes adjacent to the large 

Arctic shelves (F=41.53; p<0.0001; respectively F=19.55; p<0.0001; Table 3; Fig. 

7). Mean abundance at the upper slope below 1500 m water depth ranges be-

tween 100 and 4130 ind. m-2 (table 2; Fig. 3), consistent with abundances sum-

marized in Bluhm et al. 2011 and Budaeva et al. 2008, and comparable to or 

even higher than abundances at lower latitudes from previous studies at similar 

depth ranges (see e.g. Levin and Gooday 2003). Estimated benthic production 

was shown to follow the same pattern, i.e. significant differences between shal-

lower and deeper stations (F=25.88; p<0.0001) (table 2; Fig. 7). This corrobo-

rates the pattern of community production decreasing exponentially with water 

depth, as reported previously by Brey & Gerdes (1998) for a combined dataset 

from Antarctic, Arctic and non-polar regions and by Cusson & Bourget (2005) 

who analyzed global patterns of community production. 

Extreme food limitation as found in the deep sea creates selection pressure 

towards smaller body sizes (Thiel 1975; Wei et al. 2010). Smaller size often coin-

cides with a higher growth rate and thus a higher production to biomass (P/B) 

ratio (Brown et al. 2004). Accordingly, mean body mass (M) should decrease and 

community P/B should increase with increasing water depth (Peters 1983). How-

ever, M and P/B ratios did not significantly relate to water depth (F=0.73; 

p=0.4835 and F=1.34; p=0.265), in accordance with Polloni et al. (1979) who did 

not find a decline in mean macrofaunal organism size from 400–4000 m. Distinct-

ly larger body size seems to be restricted to very shallow (neritic or coastal) wa-

ters. Accordingly, datasets that exclude the upper 500 m like in this study may 
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not show depth effects on mean body mass, and models that include shallow 

depths may overstate the depth effect in the deep sea (Wei et al. 2010). On the 

other hand, Kaariainen & Bett (2006) found clear evidence of smaller body size in 

the deep sea when evaluating body size accumulation curves, stressing the need 

for size structure analysis. While no correlation of P/B ratios and water depth was 

found here, Cusson & Bourget (2005) even found a negative relation of P/B with 

water depth (and a positive relation to temperature), and presume that certain life 

history traits may explain patterns in P/B ratios better than environmental varia-

bles. 
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Table 4 Mean community Production (P) (g C m-2 y-1) and productivity (P/B) values found in 
literature, ordered after increasing water depth (m). When originally given in other units, data was 
converted to carbon using conversion factors from the database of Brey (2012, database version 

4, www.thomas-brey.de/science/virtualhandbook). 

Region Latitude Water 
Depth P P/B Authors 

Wadden Sea Tidal Flat 
(DE) 

54° N 1 8-234 0.4-1.8 Asmus (1987) 

North East Coast (GB) 54° N 15 1.97-4.25 0.9-1.7 Rees (1983) 
Laizhou Bay and Bohai 
Sea (CN) 

37-39° N 20-25 2.25-3.47 0.9-1.2 Hua et al. (2010) 

New York Bight (US) 40° N 25 8.3 1.4 Steimle (1985) 

Phangnga Bay (TH) 8°N 30-50 1.6 5 
Petersen & Curtis 
(1980) 

Bay of Fundy (CAN) 45° N 0-70 9-18 - Wildish et al. 1986 

North Sea 51-57° N 0-100 0.6- > 20 0.7-2.5 
Duinevald et al. 
(1991) 

Sørfjord (NO) 69° N 
18-
128 

4.74 0.4 
Nilsen et al. 
(2006) 

Continental Shelf (GB) 50° N 
10-
137 

0.4-3.8 1.2-1.9 
Bolam et al. 
(2010) 

Barents Sea Bank 
(Infauna) 

75-76 °N 
40-
150 

0.2-5.3 - Kedra et al. (2013) 

Southern Plateau (NZ) 50° S 750 0.25 1 
Bradford-Grieve et 
al. (2003) 

Global study 77° S-69° N 0-930 < 0.01-1869 < 0.1-36.7 
Cusson & Bourget 
(2005) 

Magellan Region (CL) 48-56° S 
8-
1140 

0.4-1.1 0.2-0.3 
Thatje &Mutschke 
(1999) 

Weddell Sea 
(Antarctica) 

69-78 °S 
200-
2900 

0.12-4.83 0.2-0.6 
Brey & Gerdes 
(1998) 

Rockall Trough (NE-
Atlantic) 

54° N 2900 0.122 0.5 Gage (1991) 

Arctic Deep Sea (MIZ) 80-82 ° N 
500-
3500 

< 0.01-2.5 0.5-1.8 this study 

Arctic Deep Sea (North) 82-90° N 
500-
5400 

< 0.01-0.6 0.1-2.2 this study 

Regional patterns 

Here we detected significant regional differences – beyond those caused by wa-

ter depth – for all studied community properties (abundance, biomass, mean 

body mass, secondary production and P/B). The regions Yermak Plateau and 

NW-Spitsbergen (latter only in abundance) showed significantly higher values 

than the regions in higher latitudes (i.e. Amundsen Basin and Gakkel Ridge) (Ta-
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ble 3; Fig. 5). This pattern is corroborated when stations were grouped by latitude 

(significantly higher values at “80–82° N” and for abundance at “78-80° N) or by 

ice zone (significantly higher values in the group “MIZ”) (Table 3; Fig. 7). The 

generally higher values at Yermak Plateau might be explained by the vicinity to 

the highly productive Barents and Spitsbergen Shelves and the high primary pro-

duction in this region (gross primary production GPP 30-100 g C m-2 y-1 

(Wassmann et al. 2010). The high GPP is supported by Atlantic water supply and 

the fertile conditions generally found along the MIZ (Sakshaug 2004), which co-

vers a large fraction of Northern Fram Strait (Sakshaug 2004; Wassmann et al. 

2010). Along ice edges POC fluxes of >300 mg C m-2 d-1 are recorded, greatly 

exceeding those found in open water (intermediate export fluxes 12-27 mg m-2 d-

1) (Klages et al. 2004). The estimated benthic production in the group MIZ (high-

est value 2.5 g C m-2 y-1, mean 0.5 g C m-2 y-1; depth of 500-3500 m) is in the 

lower range of but still comparable to benthic production estimates from the shal-

low Barents Sea Bank (0.02-5.3 g C m-2 y-1) in depths between 40 and 150 m 

(Kedra et al. 2013; Table 4), and to shallow areas from temperate regions like the 

UK Continental Shelf with means ranging from 0.4–3.8 g C m-2 y-1 (Bolam et al. 

2010; Table 4). Regarding regional groups, the highest mean production was 

found at Yermak Plateau with 385 mg C m-2 y-1. The values from the second most 

productive area (Nansen Basin, mean production of 138 mg C m-2 y-1) from 

depths between 3000-4000 m are – although covered with sea ice throughout 

most of the year – comparable to values reported from the Rockall Trough in the 

NE-Atlantic (122 mg C m-2 y-1) in depths of 2900 m (Gage 1991). These compari-

sons indicate that benthic communities from the Arctic deep-sea can be compa-

rable in production to other regions, if they are in the vicinity to the highly produc-

tive seasonal ice zone and the continental shelf. The third most productive areas 

are the southernmost stations in NW-Spitsbergen and the northernmost stations 

on the Lomonosov Ridge (70 and 73 mg C m-2 y-1). While the stations NW of 

Spitsbergen benefit from the conditions mentioned previously, the stations in the 

high north are far from any input from the marginal ice zone and the productive 

shelf areas. We assume that benthic production at the Lomonosov Ridge could 

be fueled by organic matter that gets transported with sea ice along the Transpo-

lar Drift, enhancing export via seasonal melting processes. The stations far off 

the seasonal ice edge, e.g. in Amundsen or Makarov Basin or on the Gakkel 
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Ridge, show as low production as anticipated for the most oligotrophic deep-sea 

regions, as primary production under the permanent ice cover is very low (1-25 g 

C  m-2 y-1) (Wassmann et al. 2010). Recent studies have found indications for 

much higher carbon fluxes associated with sea-ice minima in 2007 (Lalande et al. 

2009) and 2012 (Boetius et al. 2013 b), and the rapid export of sea-ice algae to 

the seafloor. Our results corroborate these observations, as the significantly 

higher benthic biomass in the Central and Eastern Amundsen Basin in 2012 

compared to 1991 (F=11.13; p=0.004) may indicate an increase in vertical flux 

over these two decades. However, there are just five samples from 2012 and 

these were not taken in exactly the same area of Amundsen Basin as in 1991. 

Hence, this finding should not be over-interpreted; distinctly higher sampling ef-

fort is required to produce more reliable data. Nevertheless, ongoing decline in 

sea-ice cover and thickness in the central basins are likely to cause future 

changes in macrozoobenthos abundance, biomass and production.  

While we found no correlations of mean body mass (M) and productivity (P/B) 

with water depth, we did detect significant regional differences (F=3.12; 

p=0.0028; F=3.13; p=0.0057). Highest P/B ratios were found in the region Morris 

Jesup Rise, ranging from 0.8–2.2 y-1. The most important factors influencing the 

community P/B ratio are body mass, temperature and food (Brey and Clarke 

1993 and references therein). Overall we found no correlation of P/B ratios with 

mean body mass M (F=3.28; p=0.0733), but we did detect a positive relation of 

P/B to temperature (F=10.01; p=0.002). However, as the temperature difference 

among regions is small, and the region with the highest P/B values (Morris Jesup 

Rise) is not the one with the highest temperatures (Lomonosov Ridge), we as-

sume that additional drivers have to be considered. The third proposed explana-

tory factor, food input, is quite difficult to determine in the ice-covered Arctic 

Ocean. We presume the highest food fluxes to be in areas influenced by the MIZ 

and close to shelf regions, i.e. those regions where we found the highest second-

ary production. But unlike production, P/B ratios where highest in the northern 

most regions under permanent sea ice (i.e. Morris Jesup Rise and Lomonosov 

Ridge), where low POC fluxes of >1 g C m-2 y-1 were measured (Fahl & Nöthig 

2007). To summarize, although we found a correlation of P/B with temperature, 

none of the usual drivers of P/B (mean body mass, temperature and food input) 
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could satisfyingly explain the observed regional pattern. This may partially be due 

to the high degree of inter-correlation between temperature, depth, and food input 

in the Arctic deep-sea hampering statistical analysis.  

Patterns in feeding structure 

Structure and function of benthic communities can be analyzed beyond the as-

sessment of basic community parameters, by dividing organisms in groups with 

shared behavioral traits or with shared resource bases (Cochrane et al. 2012). 

Here we analyzed feeding mechanisms, as they are one of the central determi-

nants of marine ecosystem structure (Bremner et al. 2003), and information can 

be found in literature or be inferred from feeding or mouth structures (S 3). 

Cusson & Bourget (2005) found highest secondary production for suspension 

feeders and highest P/B ratios for omnivores and predators. They explain this 

result by the fact that this feeding guild is dominated by annelids and arthropods 

with short life span, small body mass and high mobility, all factors assumed to 

enhance the metabolic rate and as such also P/B ratios. The effect of mobility on 

P/B ratios is discussed controversially though. On one hand motile species po-

tentially use more energy for respiration than for growth, leading to lower P/B ra-

tions. On the other hand mobility enables access to higher quality food, which 

might lead to higher P/B ratios. This is an important factor especially in the Arctic 

deep sea, where food falls like carcasses or ice-algae deposits (Boetius et al. 

2013b) form an important source of nutrition. However, we found suspension 

feeders to contribute most to overall production (F=30.22; p<0.0001), while de-

posit and suspension feeders displayed higher P/B ratios than interface feeders 

and predators (F=2.96; p=0.03). This result might be explained by the fact that 

highly mobile predators and scavengers are underrepresented in our study, as in 

the deep sea this group is predominantly represented in the megafauna size 

class (Gage & Tyler 1991).  

Physical dynamics play an important role in determining trophic community 

structure, with fauna shifting to suspension feeders in hydrographically dynamic 

areas and deposit feeders in depositional areas (Rosenberg 1995). Accordingly, 

deep-sea areas with reduced flow and with low amount and low quality food input 
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such as abyssal plains are dominated by deposit feeders, while suspension feed-

ers are abundant in areas with high bottom current flow as on continental slopes 

or mid-ocean ridges (Gage & Tyler 1991; Thistle 2003). Our findings confirm this 

general view; deposit feeders contribute most to overall production in the Amund-

sen Basin (50%), and suspension feeders at the Lomonosov Ridge (55%). How-

ever, other regions show a less clear pattern. In the Nansen Basin suspension 

feeders contributed 64% and deposit feeders only 24% to overall production. 

Highest production in the Nansen Basin was found at the stations on the lower 

Barents Sea and Yermak Plateau slope (Fig. 5), presumably benefitting from bot-

tom current flows and food advection from the Barents Sea shelf. Generally, 

when stations were grouped into three depth zones (upper slope, lower slope, 

basin), the highest contribution of suspension feeders was found in the group 

“lower slope” (50%). The region with highest secondary production (Yermak Plat-

eau) shows a more even distribution of feeding types than the low productivity 

regions (Gakkel Ridge, Amundsen Basin) (Fig. 8). This indicates a complex ben-

thic food web well adapted to handle the high POC input found along the MIZ in 

the vicinity to the productive continental shelf. Although certain patterns are ap-

parent, the ANOSIM analysis failed to detect significant differences in the relative 

contribution of different feeding types between regions, depth zones, latitudinal 

zones and areas of different sea ice concentration. Bremner et al. (2003) could 

show that the biological trait analysis (BTA) provides more information on the 

ecological functions of benthic communities than taxonomical or trophic group 

approaches. Accordingly the BTA might be a more suitable approach here, but 

our knowledge about behavioral and life history traits of deep-sea taxa is current-

ly still limited.  
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Fig. 8 Macrofauna feeding types (%) based on production data per region. 

Outlook 

This study is a first step in providing baseline data of macrobenthic community 

parameters in the Arctic deep sea based on a data synthesis covering the years 

1990-2012 and different regions of the Arctic deep-sea slopes and basins. A ma-

jor limitation to assessing changes in the Arctic deep-sea ecosystem status re-

mains the poor spatial and temporal resolution of sampling. In light of the ob-

served climatic changes and the rapid decrease of sea ice volume and cover, it is 

important to collect more data at higher spatial resolution now. Furthermore, qual-

ity control procedures, such as standardized study design (i.e. sample size, sam-

ple depth and sieve mesh size) should be implemented. We support the recom-

mendations already stated in previous large scale studies on deep-sea 

macrozoobenthos (e.g. Bluhm et al. 2011), to apply consistent sampling sizes 

and to use sieves with 250 μm mesh size as a standard, to account for the small 

body sizes of deep-sea taxa. We further want to stress the importance of geo-

referenced data archives and international efforts to synthesize available data, to 

improve our understanding of current and future changes in the Arctic Ocean 

ecosystem. 
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Expedition Station Long Lat Region Date Depht 
(m) 

ARK-VIII/3 PS2157-7 29,99 81,75 Nansen Basin 06.08.1991 2950 
ARK-VIII/3 PS2158-1 29,93 82,78 Nansen Basin 07.08.1991 3800 
ARK-VIII/3 PS2159-7 30,34 83,95 Nansen Basin 09.08.1991 3950 
ARK-VIII/3 PS2161-5 44,30 85,44 Nansen Basin 11.08.1991 4005 
ARK-VIII/3 PS2162-1 50,83 85,79 Nansen Basin 12.08.1991 3981 
ARK-VIII/3 PS2163-5 59,23 86,24 Gakkel Ridge 13.08.1991 3047 
ARK-VIII/3 PS2164-7 59,29 86,33 Gakkel Ridge 14.08.1991 2035 
ARK-VIII/3 PS2165-6 60,07 86,44 Gakkel Ridge 14.08.1991 1794 
ARK-VIII/3 PS2166-4 59,76 86,86 Gakkel Ridge 15.08.1991 3636 
ARK-VIII/3 PS2167-4 59,07 86,93 Gakkel Ridge 15.08.1991 4425 

ARK-VIII/3 PS2168-4 55,93 87,51 Amundsen 
Basin 17.08.1991 3845 

ARK-VIII/3 PS2170-1 60,77 87,59 Amundsen 
Basin 18.08.1991 4226 

ARK-VIII/3 PS2171-1 68,98 87,59 Amundsen 
Basin 19.08.1991 4384 

ARK-VIII/3 PS2172-5 68,54 87,26 Amundsen 
Basin 20.08.1991 4478 

ARK-VIII/3 PS2174-7 91,69 87,48 Amundsen 
Basin 22.08.1991 4427 

ARK-VIII/3 PS2175-6 103,68 87,58 Amundsen 
Basin 23.08.1991 4413 

ARK-VIII/3 PS2176-7 108,14 87,77 Amundsen 
Basin 25.08.1991 4364 

ARK-VIII/3 PS2177-7 134,89 88,03 Lomonosov 
Ridge 27.08.1991 1388 

ARK-VIII/3 PS2178-6 159,17 88,00 Makarov Basin 29.08.1991 4009 

ARK-VIII/3 PS2179-4 138,09 87,74 Lomonosov 
Ridge 30.08.1991 1230 

ARK-VIII/3 PS2180-1 156,68 87,63 Makarov Basin 31.08.1991 4005 

ARK-VIII/3 PS2181-1 153,06 87,60 Lomonosov 
Ridge 31.08.1991 3112 

ARK-VIII/3 PS2182-6 151,35 87,57 Lomonosov 
Ridge 01.09.1991 2609 

ARK-VIII/3 PS2183-5 148,92 87,60 Lomonosov 
Ridge 01.09.1991 2031 

ARK-VIII/3 PS2184-4 148,20 87,61 Lomonosov 
Ridge 01.09.1991 1654 

ARK-VIII/3 PS2185-3 144,17 87,53 Lomonosov 
Ridge 02.09.1991 1073 

ARK-VIII/3 PS2186-6 140,18 88,51 Lomonosov 
Ridge 04.09.1991 1867 

ARK-VIII/3 PS2187-6 126,99 88,73 Lomonosov 
Ridge 05.09.1991 3844 

ARK-VIII/3 PS2189-6 144,67 88,77 Lomonosov 
Ridge 06.09.1991 1018 

ARK-VIII/3 PS2190-6 0,00 90,00 Amundsen 
Basin 07.09.1991 4273 

ARK-VIII/3 PS2191-4 9,01 88,99 Amundsen 
Basin 09.09.1991 4348 

ARK-VIII/3 PS2192-1 9,86 88,26 Amundsen 
Basin 10.09.1991 4375 

ARK-VIII/3 PS2193-2 11,48 87,51 Amundsen 
Basin 10.09.1991 4399 
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Expedition Station Long Lat Region Date Depht 
(m) 

ARK-VIII/3 PS2195-4 9,62 86,25 Amundsen 
Basin 12.09.1991 3793 

ARK-VIII/3 PS2196-2 0,17 85,96 Amundsen 
Basin 13.09.1991 3958 

ARK-VIII/3 PS2198-1 -9,06 85,56 Morris Jesup 
Rise 15.09.1991 3820 

ARK-VIII/3 PS2199-5 -11,91 85,43 Morris Jesup 
Rise 15.09.1991 1789 

ARK-VIII/3 PS2200-3 -14,02 85,33 Morris Jesup 
Rise 16.09.1991 1073 

ARK-VIII/3 PS2201-2 -12,14 85,42 Morris Jesup 
Rise 17.09.1991 1353 

ARK-VIII/3 PS2202-11 -14,37 85,11 Morris Jesup 
Rise 18.09.1991 1081 

ARK-VIII/3 PS2205-7 -6,77 84,64 Amundsen 
Basin 21.09.1991 4283 

ARK-VIII/3 PS2209-3 8,57 83,23 Nansen Basin 26.09.1991 4046 
ARK-VIII/3 PS2210-1 10,12 83,05 Nansen Basin 27.09.1991 3949 
ARK-VIII/3 PS2212-1 15,67 82,02 Yermak Plateau 29.09.1991 2531 
ARK-VIII/3 PS2213-1 8,21 80,47 Yermak Plateau 30.09.1991 897 
ARK-VIII/3 PS2214-1 6,63 80,27 Yermak Plateau 01.10.1991 552 
ARK-XIII/2 PS2830-6 17,49 80,98 Yermak Plateau 04.07.1997 517 
ARK-XIII/2 PS2831-5 16,97 81,09 Yermak Plateau 04.07.1997 942 
ARK-XIII/2 PS2832-12 16,22 81,11 Yermak Plateau 05.07.1997 2065 
ARK-XIII/2 PS2833-5 11,83 80,97 Yermak Plateau 06.07.1997 1964 
ARK-XIII/2 PS2834-6 9,82 80,92 Yermak Plateau 08.07.1997 1001 
ARK-XIII/2 PS2835-5 7,07 81,10 Yermak Plateau 10.07.1997 847 
ARK-XIII/2 PS2836-6 5,65 81,13 Yermak Plateau 11.07.1997 657 
ARK-XIII/2 PS2837-6 2,42 81,23 Yermak Plateau 12.07.1997 1028 
ARK-XIII/2 PS2838-9 0,44 81,29 Yermak Plateau 14.07.1997 2325 
ARK-XIII/2 PS2839-5 -0,97 81,40 Fram Strait 14.07.1997 2926 
ARK-XIII/2 PS2840-4 -5,31 81,42 Fram Strait 15.07.1997 3524 
ARK-XIII/2 PS2843-2 -7,35 81,57 Fram Strait 17.07.1997 2526 
ARK-XIII/2 PS2847-3 -4,54 81,87 Fram Strait 18.07.1997 4130 
ARK-XIII/2 PS2849-7 1,50 82,65 Nansen Basin 21.07.1997 3247 
ARK-XIII/2 PS2851-2 3,62 82,38 Yermak Plateau 23.07.1997 2927 
ARK-XIII/2 PS2853-9 3,71 82,32 Yermak Plateau 24.07.1997 2008 
ARK-XIII/2 PS2854-2 3,90 82,20 Yermak Plateau 25.07.1997 1805 
ARK-XIII/2 PS2855-7 5,29 82,05 Yermak Plateau 26.07.1997 1454 
ARK-XIII/2 PS2859-10 10,19 81,75 Yermak Plateau 29.07.1997 1180 
ARK-XIII/2 PS2860-7 11,85 81,58 Yermak Plateau 30.07.1997 2032 
ARK-XIII/2 PS2861-11 13,05 81,27 Yermak Plateau 31.07.1997 2309 

ARK-XIII/2 PS2868-5 3,10 79,11 NW 
Spitsbergen 04.08.1997 5416 

ARK-XXVII/2 PS80/165-
9 4,18 79,07 NW 

Spitsbergen 16.07.2012 2465,
5 

ARK-XXVII/2 PS80/174-
1 4,99 78,93 NW 

Spitsbergen 19.07.2012 2609,
2 
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Expedition Station Long Lat Region Date Depht 
(m) 

ARK-XXVII/2 PS80/177-
1 5,33 78,78 NW 

Spitsbergen 20.07.2012 2469,
5 

ARK-XXVII/2 PS80/185-
6 4,51 79,74 NW 

Spitsbergen 23.07.2012 2668 

ARK-XXVII/2 PS80/186-
4 3,17 79,94 NW 

Spitsbergen 24.07.2012 2513,
1 

ARK-XXVII/2 PS80/188-
4 5,17 79,60 NW 

Spitsbergen 25.07.2012 2741,
8 

ARK-XXVII/2 PS80/191-
3 4,69 79,41 NW 

Spitsbergen 26.07.2012 2505,
7 

ARK-XXVII/2 PS80/194-
3 4,33 79,28 NW 

Spitsbergen 26.07.2012 2363,
5 

ARK-XXVII/2 PS80/195-
3 4,10 79,08 NW 

Spitsbergen 27.07.2012 2458,
3 

ARK-XXVII/2 PS80/197-
1 5,00 78,92 NW 

Spitsbergen 27.07.2012 2594,
4 

ARK-
XXVII/3_BL PS80/0236 78,67 83,92 Nansen Basin 14.08.2012 3462,

8 
ARK-
XXVII/3_BL 

PS80/0251
-3 108,87 82,64 Nansen Basin 19.08.2012 3560,

7 
ARK-
XXVII/3_BL PS80/0334 123,18 85,16 Amundsen 

Basin 07.09.2012 4354 

ARK-
XXVII/3_BL 

PS80/0371
-1 55,67 88,76 Amundsen 

Basin 23.09.2012 4369,
1 

ARK-
XXVII/3_BL PS80/221 29,92 84,00 Nansen Basin 08.08.2012 4014,

2 
ARK-
XXVII/3_MG PS80/229 31,32 84,00 Nansen Basin 10.08.2012 4008,

3 
ARK-
XXVII/3_MG PS80/241 76,71 83,93 Nansen Basin 15.08.2012 3431,

8 
ARK-
XXVII/3_MG PS80/262 109,92 82,98 Nansen Basin 21.08.2012 3601,

4 
ARK-
XXVII/3_MG PS80/278 129,95 82,88 Amundsen 

Basin 25.08.2012 4166,
9 

ARK-
XXVII/3_MG PS80/339 122,74 85,06 Amundsen 

Basin 08.09.2012 4351,
8 

ARK-
XXVII/3_MG PS80/355 61,01 87,93 Amundsen 

Basin 19.09.2012 4380,
7 

ARK-
XXVII/3_MG PS80/368 17,72 84,36 Nansen Basin 23.09.2012 4023,

5 
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S2 Mean macrobenthic abundance, biomass and production per m2 and region per major taxo-
nomic group Annelida (1), Arthropoda (2), Bryozoa (3), Cephalorhyncha (4), Chordata (5), 
Cnidaria (6), Echinodermata (7), Entoprocta (8). Mollusca (9), Nematoda (10), Nemertea (11), 
Porifera (12) and Sipuncula (13). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

Abundance (Ind. m-2) 

NW Spitzbergen 374 6 0 0 0 2 0 0 11
9 7 12 26 6 

Fram Strait 176 81 0 0 0 11 4 0 11 22 0 22 0 

Yermak Plateau 529 19
7 10 1 0 15 17 <1 12

0 60 6 55 41 

Nansen Basin 59 15 <1 0 7 5 6 0 0 2 <1 15 0 

Gakkel Ridge 5 5 0 0 0 0 0 0 0 0 0 0 0 

Amundsen Basin 34 16 2 0 0 2 3 0 4 0 0 <1 0 
Lomonosov 
Ridge 43 40 0 0 0 28 3 0 20 13 0 55 3 

Makarov Basin 25 25 0 0 0 0 0 0 0 0 0 25 0 
Morris Jesup 
Rise 100 20 0 0 0 10 0 0 20 10 10 22

0 20 

Biomass (mg C m-2) 

NW Spitzbergen 45 <1 0 0 0 <1 0 0 2 <1 1 11 1 

Fram Strait 5 17 0 0 0 2 2 0 <1 <1 0 22 0 

Yermak Plateau 213 58 9 <1 0 15 50 <1 15 25 <1 18 5 

Nansen Basin 33 4 <1 0 <1 6 21
1 0 0 0 <1 66 0 

Gakkel Ridge <1 <1 0 0 0 0 0 0 0 0 0 0 0 

Amundsen Basin 11 23 2 0 0 3 <1 0 <1 0 0 0 0 
Lomonosov 
Ridge 16 5 0 0 0 <1 <1 0 19 3 0 21 <1 

Makarov Basin 5 4 0 0 0 0 0 0 0 0 0 14 0 
Morris Jesup 
Rise 42 <1 0 0 0 <1 0 0 <1 <1 <1 5 <1 

Production (mg C m-2 y-1) 

 NW Spitzbergen 52 <1 0 0 0 <1 0 0 2 <1 1 14 1 

Fram Strait 8 18 0 0 0 1 1 0 <1 <1 0 9 0 

Yermak Plateau 247 54 4 <1 0 6 23 <1 10 21 <1 11 7 

Nansen Basin 33 4 <1 0 <1 2 31 0 0 0 <1 68 0 

Gakkel Ridge 1 <1 0 0 0 0 0 0 0 0 0 0 0 

Amundsen Basin 13 10 <1 0 0 1 <1 0 <1 0 0 <1 0 
Lomonosov 
Ridge 18 7 0 0 0 <1 <1 0 9 3 0 35 <1 

Makarov Basin 4 5 0 0 0 0 0 0 0 0 0 21 0 
Morris Jesup 
Rise 30 1 0 0 0 <1 0 0 <1 <1 <1 12 <1 
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S3 Literature and web sources used in research for taxonomic and functional trait information. 
Since online platforms were repeatedly visited during a longer time period in 2013 no accessed 
date is included in the reference.  

Books 

Bamber, R. N., & Thurston, M. H. (1995). The deep-water pycnogonids (Arthropoda: 
Pycnogonida) of the northeastern Atlantic Ocean. Zoological journal of the Linnean Socie-
ty, 115(2), 117-162. 

Barnard J. L. 1969. The Families and Genera of Marine Gammaridean Amphipoda. Washington: 
Smithonian Institution Press. 

Biseswar, R. (2010). Report on deep-sea bonelliids (Echiura) from the East Equatorial Atlantic 
Ocean. Zoosystema, 32(1), 139-154. 

Boughet, P., & Warén, A. (1979). The abyssal molluscan fauna of the Norwegian Sea and its 
relation to other faunas. Sarsia, 64(3), 211-243. 

Caspers H. (ed.) 2009. Annelida. Borstenwürmer. Polychaeta. - DAHL “Die Tierwelt Deutsch-
lands”. 58. Jena: VEB Gustav Fischer Verlag. doi: 10.1002/iroh.19720570214 

D'UDEKEM D'ACOZ, C. (2007). The genera Haliragoides and Neohela in the North Atlantic, with 
the description of two new deepwater species from Norway and Svalbard (Crustacea: 
Amphipoda). Cahiers de biologie marine, 48(1), 17-35. 

Fauchald K. 1977. The Polychaete Worms. Definitions and Keys to the Orders. Families and 
Genera. Los Angeles: Natural History Museum of Los Angeles County. Science Series. 

Gage, J. D., & Billett, D. S. M. (1986). The family Myriotrochidae Théel (Echinodermata: 
Holothurioidea) in the deep northeast Atlantic Ocean. Zoological Journal of the Linnean 
society, 88(3), 229-276. 

Gurjanova, E. F. (1951). Amphipods of the USSR seas and adjacent waters (Amphipoda–
Gammaridea). Izdatelstvo Akademii Nauk SSSR, Moskva+ Leningrad (in Russian). 

Hayward P.J. & Ryland J. S. 1996. Handbook of the Marine Fauna of North-West Europe. Oxford: 
Oxford University Press Lincoln R. J. 1979. British Marine Amphipoda: Gammaridea. 
London: British Museum (Natural History). 

Kavanagh, F. A., & Wilson, G. D. (2007). Revision of the genus Haplomesus (Isopoda: Asellota: 
Ischnomesidae) with erection of four new genera. Invertebrate Systematics, 21(5), 487-
535. 

Keuning, R., & Schander, C. (2010). Thyasira ockelmanni (Mollusca: Bivalvia: veneroidea), A new 
species of Thyasiridae from the Norwegian Sea. Fauna norvegica, 30, 21-24. 

Menzies, R. J. (1962). The isopods of abyssal depths in the Atlantic Ocean (pp. 79-206). New 
York: Columbia University Press. 

Sirenko, B. I. (Ed.). (2001). List of species of free-living invertebrates of Eurasian Arctic seas and 
adjacent deep waters. Russian Academy of Science, Zoological Institute.Vassilenko S.V. 
& V.V. Petryashov (eds.) 2009. Illustrated Keys to Free-Living Invertebrates of Eurasian 
Arctic Seas and Adjacent Deep Waters. Vol. 1. Rotifera.  
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Pycnogonida. Cirripedia. Leptostraca. Mysidacea. Hyperiidea. Caprellidea. Euphausiacea. Natan-
tia. Anomura. and Brachyura. Fairbanks: Alaska Sea Grant. University of Alaska Fair-
banks. 

Warén, A. (1989). Taxonomic comments on some protobranch bivalves from the northeastern 
Atlantic. Sarsia, 74(4), 223-259. 

Zhirkov, I. A. (2001). Polychaetes of the Arctic Ocean. Moscow: Yanus-K.   

Web sources 

WoRMS Editorial Board 2014. World Register of Marine Species. Available from 
http://www.marinespecies.org at VLIZ. 

Integrated Taxonomic Information System (ITIS) 2013. Available from http://www.itis.gov. 

Marine Species Identification Portal 2014. Available from http://species-
identification.org/index.php. 

MarLIN (Marine Life Information Network) 2009. Marine Life Information Network. Plymouth: Ma-
rine Biological Association of the United Kingdom. Available from: www.marlin.ac.uk. 

Marine Macrofauna Genus Trait Handbook. 2013. Available from 
http://www.genustraithandbook.org.uk/. 

Annelid Resources. 2014. Available from http://www.annelida.net/. 
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S 4 Macrofauna feeding types (%) based on abundance data. 

 

S5 Macrofauna feeding types (%) based on biomass data. 
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Abstract 

The shift towards a seasonally ice-free Arctic Ocean raises questions related to 

the future of productivity and functioning of Arctic ecosystems. We use biological 

trait analysis (BTA) to study macrobenthic functions and responses based on two 

datasets from 1991 and 2012, ranging from the northern Barents Sea shelf down 

to the deep Amundsen Basin. Life history, morphological and behavioral charac-

teristics (= traits) were weighed with secondary production (mg C m-2 y-1) and 

used to indicate ecological functioning. The composition of relevant traits in terms 

of secondary production and the functional diversity were compared between re-

gions and between the years 1991 and 2012. Our results showed that the traits 

living habit, bioturbation, body form and morphology contribute most to differ-

ences among regions and that there was a substantial change in trait composi-

tion and secondary production between 1991 and 2012. We conclude that food 

input is the main structuring force in benthic communities. The shift of the mar-

ginal ice zone (MIZ) and the corresponding modification of export processed are 

likely causes of the observed changes in benthic ecosystem functioning.  

Keywords 

BTA, traits, secondary production, FCA, functional diversity, climate change 
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Introduction 

The ongoing retreat of Arctic sea ice and the prospect of a seasonally ice-free 

Arctic Ocean by the year 2040 (Polyakov et al. 2010) fuels speculations about 

future productivity and functioning of the whole Arctic ecosystem. Benthic com-

munities mirror long term changes of pelagic production in their own dynamics; 

accordingly we can use them as bioindicators of pelagic change (Pearson & 

Rosenberg 1978). Knowledge on the structural variability of Arctic benthos is ra-

ther limited (Bluhm et al. 2011 and references therein, Degen et al. in press), but 

information on functional variability is lacking almost completely so far (Bolam et 

al. 2014). Functional characteristics or ‘traits’ include the interactions of organ-

isms with each other and with their physical and chemical environments. Their 

distribution may be directly related to the mechanisms structuring the ecosystem. 

Consequently, a change in the trait composition of a community mirrors changes 

in the structure of the respective ecosystem (Bremner et al. 2006).  

Biological trait analysis (BTA) uses a series of life history, morphological and 

behavioral characteristics of species present in assemblages to indicate ecologi-

cal functioning (Statzner et al. 1994, Bremner et al. 2006). As the method is 

based on characteristics shared by different taxa and not by taxonomy, it is a val-

uable tool for measuring ecosystem structure independent of biogeographical 

location. Integral part of the BTA is the estimation of the functional diversity (FD), 

i.e. the diversity of species traits in an ecosystem. This index – an analog to tax-

onomic diversity indices – considers also the functional redundancy, an important 

property of ecosystem stability (Díaz and Cabido 2001; Petchey and Gaston 

2006; van der Linden 2012). Originating in freshwater science, the BTA has been 

successfully applied in various marine systems, especially due to the cutting-

edge work of Julie Bremner (see Bremner et al. 2003, 2006). The approach was 

applied to detect differences in ecosystem functioning between regions (Bremner 

et al. 2006; Bolam et al. 2014), along environmental gradients (van der Linden 

2012; Darr et al. 2014; Törnroos et al. in press) and to assess effects of pollution, 

fishing or climate change (Bremner et al 2003; Tillin et al 2006; Neumann and 

Kröncke 2010) on marine benthic communities. Previous studies used either 

abundance or biomass data for weighing functional traits, but no study so far 
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used secondary production weighted traits. Study areas range from very shallow 

estuaries (van der Linden et al. 2012) over costal waters (Darr et al. 2014) to en-

tire shelf sees (Bolam et al. 2014), but so far the BTA was never applied on ben-

thic communities in water depths below 500 m or in Arctic regions beyond 75° N.   

Here we use the BTA for the first time to study benthic ecosystem functioning 

in the Eurasian part of the Arctic Ocean and along a gradient of increasing depth 

and latitude. As biological trait composition was shown to be stable over regional 

and continental scales (Bremner et al. 2006) we use the same set of 11 traits 

along a transect from the shallow Barents Sea shelf down to the deep Amundsen 

Basin. We regard secondary production the most important benthic function; ac-

cordingly the analysis is based on secondary production weighted traits. We use 

fuzzy correspondence analysis (FCA) to explore differences between regions and 

stations and to identify the traits that contribute most to the differences in func-

tioning between the regions. We further estimate functional diversity (FD) by cal-

culating the Rao’s quadratic entropy (RQE). RQE is the most common multivari-

ate index in BTA as it considers functional richness, functional evenness and 

functional divergence (van der Linden et al. 2012).  

In brief our aim is to (1) compare the production weighted trait composition and 

the functional diversity of Arctic shelf, ridge and deep-sea basin communities, 

and (2) compare the trait composition and functional diversity between Nansen 

and Amundsen Basin sampled in 1991 and 2012.  

Methods 

Study area 

The study area ranges from the seasonally ice-covered northern Barents Sea 

shelf around 80° N up to the permanently ice-covered central Arctic Ocean 

around 90° N and spans across the entire Eurasian Basin from 7° E to 70° E (Fig. 

1). The Barents Sea is among the most productive subarctic shelves, with report-

ed values of mean primary production of ±80 g C m-2 y-1 (Wassmann et al. 2006). 

Water depth in the sampled region ranges from 80-260 m. Primary production in 

the central Arctic was reported to be significantly lower at 1-25 g C m-2 y-1 
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(Wassmann et al. 2010). The depth range sampled is 3000-4000 m in the Nan-

sen Basin, 3800-4400 m in the Amundsen Basin and 1000-3800 m on the 

Lomonosov Ridge. 

 

Fig. 1 Study area and sampling stations. 
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Dataset  

In 1991 samples were taken with a giant box corer of 0.25 m2 surface area during 

the RV POLARSTERN cruises ARK-VIII/2 (Rachor & Hempel 1992) and ARK-

VIII/3 (Fütterer 1992). Barents Sea data (four stations) were published by Kendall 

(1996), data from Nansen Basin, Amundsen Basin and Lomonosov Ridge (7, 9 

and 10 stations) by Kröncke (1994, 1998) (table 1). The 14 samples from the 

cruise ARK-XXVII/3 (2012, Boetius et al. 2013) were taken with a multigrab (9 x 

0.024 m2) and with benthic chambers of a Bottom Lander system (3 x 0.04 m2) 

and published in Degen et al. (in press).  

Table 1 Study area: Region, mean coordinates, mean water depth, number of stations and Expe-
dition. For detailed station information see supplementary material (S1). 

Region Longitude 
°W (decimal) 

Latitude 
°N (decimal) Depth (m) Stations Expedition 

Barents Sea 31.55 79.86 167 4 ARK-VIII/2 

Nansen Basin 29.16 83.71 3812 7 ARK-VIII/3 

Amundsen Basin 39.83 87.62 4231 9 ARK-VIII/3 

Lomonosov Ridge 143.05 87.97 1983 10 ARK-VIII/3 

Nansen Basin 2012 64.73 83.69 3729 7 ARK-XXVII/3 

Amundsen Basin 2012 107.72 84.48 4152 7 ARK-XXVII/3 

Benthic secondary production  

Macrobenthic secondary production (mg C m-2 y-1) on the Barents Sea shelf was 

estimated with an empirical ANN model (Brey 2012). Production data from Nan-

sen Basin, Amundsen Basin and Lomonosov Ridge were previously estimated 

and published in Degen et al. (in press). For detailed explanation of the model 

see Brey (2012), for the application with Arctic macrobenthos see Degen et al. (in 

press). We used ANOVA to test on differences in secondary production between 

regions and between 1991 and 2012. 
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The biological trait approach (BTA)  

Functional traits 

We considered 11 different traits for our study that relate to life history (adult size, 

larval development), morphology (body form, morphology) and behavior (habitat, 

living habit, mobility, movement, feeding habit, alimentation, bioturbation) (table 

2). The 11 traits were divided into 39 subcategories or trait modalities that display 

the organism’s strategy more in detail. If not specified otherwise, all modalities 

relate to adult stages. Trait information was gathered via literature and various 

internet sites and databases. A detailed list of sources is provided in the supple-

ment (S2). Table 2 displays the traits in detail. 
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Table 2 Functional traits, trait modalities and abbreviations used in this study. 

Trait Abbreviation Modality 

Life history   

Size S 1 < 5 mm 

 S 2 5 - 20 mm 

 S 3 > 20 mm 

Larval Development LD1 benthic  

 LD2 pelagic 

Morphology   

Body Form BF1 flat 

 BF2 mound  

 BF3 erect 
Morphology Mor1 soft 

 Mor2 tunic 

 Mor3 exoskeleton 

 Mor4 crustose 

 Mor5 cushion 

 Mor6 stalked 

Behavior   

Habitat H 1 infauna 

 H 2 epifauna 

Living Habit LH1 attached 

 LH2 tube dweller 

 LH3 burrow (channel) dweller 

 LH4 motile tube/case 

 LH5 free 

Mobility Mob1 sessile 

 Mob2 semi-motile 

 Mob3 motile 

Movement Mov1 no movement 

 Mov2 burrower 

 Mov3 crawler 

 Mov4 facultative swimmer 

Feeding Habit FH1 suspension Feeder 

 FH2 deposit Feeder 

 FH3 grazer 

 FH4 scavenger 

 FH5 predator 

Alimentation Type AT1 omnivor 

 AT2 carnivor 
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Bioturbation BT1 surface mixing 

 BT2 deeper mixing 

 BT3 transport  

 BT4 none 

Matrices & Fuzzy coding 

The biological trait approach as used here requires three different numerical ma-

trices: (1) the secondary production of each taxon per station (matrix ‘taxa by sta-

tions’), the biological traits of the taxa (matrix ‘taxa by traits’), and a combination 

of the previous two, the production weighted biological traits per station (matrix 

‘traits per station’) (Bremner et al. 2003, van der Linden et al. 2012). The ‘taxa by 

traits’ matrix is designed following the ‘fuzzy coding’ approach (Chevenet et al. 

1994). Herewith, each trait modality is valued 0, 1, 2, or 3 in each taxon, with 0 

indicating no affinity and 3 indicating highest affinity. Where trait information was 

not available for a taxon, the mean trait profile of all other taxa at that station was 

given, so the respective taxon could not distort the result in any direction 

(Statzner and Beche 2010). The fuzzy coded ‘taxa by trait’ matrix is included in 

the appendix. The ‘traits by station’ matrix is constructed by multiplying the trait 

modality values of every taxon (‘taxa by traits’ matrix) with the secondary produc-

tion of the respective taxon at this station (‘taxon by stations’ matrix).  

Fuzzy Correspondence Analysis (FCA) 

The fuzzy correspondence analysis (FCA) is a form of correspondence analysis 

(CA) appropriate for fuzzy coded biological trait data (Chevenet et al. 1994, 

Theodorou et al. 2007). FCA will identify the traits most relevant for the observed 

differences between regions (or times) and is performed on a contingency table 

of the ‘traits by stations’ matrix. Like a classical CA the FCA creates orthogonal 

components (FCA plot) and a set of scores for each item in the table. The eigen-

values are indicating the total variance on each axis, and can be used to select 

the number of axes that describe the structure of the data best and should be 

studied in detail (Chevenet et al. 1994). The correlation ratios tell us how much of 

the variance of a certain trait are explained by a given axis and can be used to 



Manuscript III 

 

104 
 

order the relevance of traits for the various axes (Chevenet et al. 1994). We per-

formed FCA (a) on pooled station data per region (Barents Sea, Nansen Basin, 

Amundsen Basin, Lomonosov Ridge, Nansen Basin 2012 and Amundsen Basin 

2012) and (b) on all 44 stations. 

Functional Diversity Index (FDI) 

Rao's quadratic entropy index (RQE) was used to estimate the functional diversi-

ty FD (RAO 1982; Champely and Chessel 2002), i.e. the diversity of species 

traits in the different Arctic regions. The RQE index is most commonly used to 

calculate FD as it takes functional richness, functional evenness and functional 

divergence into account (van der Linden et al. 2014). This approach requires two 

tables as input; here it is performed on the ‘taxa by traits’ matrix and the “taxa by 

stations” matrix. We used ANOVA to test for differences in RQE between regions. 

Used Software 

For all analysis R-2.12.2 open-source software (R Development Core Team, 

2011), with ‘ade4’ (version 1.4-17; Chessel et al. 2004) was used. The ‘ade4’ 

package can be downloaded via http://cran.r-

project.org/web/packages/ade4/ade4.pdf. 

Results 

Number of taxa & traits 

The overall number of trait modalities in this study was 39; the overall number of 

taxa occurring was 188. Highest numbers of species per station occurred in the 

Barents Sea shelf where altogether 130 taxa expressed 38 functional trait modali-

ties. The trait modality Mor6 (“stalked”) did not occur in the Barents Sea samples 

(see table 2 for all following abbreviations). The samples from Nansen and 

Amundsen Basin included 14 and 12 taxa that expressed 36 trait modalities. The 

trait modalities LH4 (“motile tube/case”) and FH3 (“grazer”) did not occur in the 
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basins. The samples from Lomonosov Ridge contained 27 taxa that expressed 

37 functional trait modalities. At Lomonosov Ridge the traits Mor4 (“crustose”), 

Mor5 (“cushion”) and LH4 (“motile tube/case”) did not occur. The species num-

bers from the 2012 samples increased compared to the 1991 samples in Nansen 

Basin to 16 and in Amundsen Basin to 32, while the type and number of ex-

pressed traits (36) stayed the same (Table 3).  

Table 3 Number of taxa and functional traits per region and mean secondary production  
(mg C m-2 y-1) 

Region Number Taxa Number of Trait modalities Production 
(mg C m-2 y-1) 

Barents Sea 130 38 3834.27 
Nansen Basin 14 36 279.57 
Amundsen Basin 12 36 9.41 
Lomonosov Ridge 27 37 73.45 
Nansen Basin 2012 16 36 16.22 
Amundsen Basin 2012 32 36 91.94 

Secondary production 

Secondary production decreased significantly from the Barents Sea shelf (> 6 g C  

m-2 y-1) towards the deep-sea basins (<2 mg C m-2 y-1; F=5.95, p<0.0001) (Fig. 2) 

(see S1 for exact results per station). Secondary production was significantly 

higher in the Barents Sea and significantly lower in the Amundsen Basin com-

pared to the Nansen Basin and at the Lomonosov Ridge (post hoc test). Second-

ary production in Nansen Basin did not differ between 1991 and 2012 (F=2.6647, 

p=0.1285), while in Amundsen Basin production was significantly higher in 2012 

than in 1991 (F=7.0802; 0.0058). 
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Fig. 2 Patterns of secondary production (mg C m-2 y-1) in 1991 (yellow) and 2012 (green) (note 
the different scale range between 1991 and 2012). 

Comparison of relative trait composition per region 

Except for the region Amundsen Basin that shows a higher contribution of the 

smallest size classes (<5 mm), there is no obvious difference in the relative con-

tribution of modalities of the life history trait Size among regions and between 

Nansen and Amundsen Basin from 1991 and 2012. The trait Larval Development 

at Nansen Basin is clearly dominated by the modality LD2 (“pelagic”), otherwise 

the modalities are evenly distributed. Regarding Morphology, Nansen and 

Amundsen Basin (1991) showed a higher relative contribution of the trait modality 

Mor5 (“cushion”). Lomonosov Ridge and Nansen Basin 2012 showed a higher 

contribution of the trait modalities BF3 (“erect”) and Mor6 (“stalked”). In Amund-
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sen Basin 2012 the trait modalities BF1 (“flat”) and Mor1 (“soft”) dominate com-

pared to Amundsen Basin 1991. Regarding behavioral traits the relative contribu-

tion of the modalities of the trait Habitat (infauna or epifauna) are quite evenly 

distributed, with a higher contribution of H1 (“infauna”) in the Barents Sea and in 

the Amundsen Basin 2012. The trait modality LH1 (“attached”) is underrepre-

sented in these regions. The highest relative contribution of the trait modality 

“sessile” (Mob1) and “no movement” (Mov1) is found in Nansen Basin in 2012. 

The Movement modality “facultative swimmer” (Mov4) is found to contribute more 

only in Amundsen Basin 2012. Regarding the trait Feeding Habit (FH) the modali-

ty FH1 (“suspension feeder”) contributes more in Nansen Basin, Lomonosov 

Ridge and Nansen Basin 2012 to the overall distribution. In Nansen Basin 2012 

the trait modalities FH1 (“suspension feeder”) and FH2 (“deposit feeder”) clearly 

dominate, while in the other regions modalities are more evenly distributed. Gen-

erally the trait modality AT1 (“omnivore”) contributes more than the modality AT2 

(“carnivore”). Regarding the trait Bioturbation, BT4 (“no bioturbation”) is dominant 

in Nansen Basin, Lomonosov Ridge and Nansen Basin 2012. BT1 (“surface mix-

ing”) is dominant on the Barents Sea shelf and in Amundsen Basin, in Amundsen 

Basin 2012 the trait modality “transport” is dominating. 
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Fig. 3 Relative contribution of life history trait modalities Size (<5mm, 5-20mm, >20mm) and Lar-
val Development (benthic, pelagic) between the different regions (for number code see table 2). 
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Fig. 4 Relative contribution of morphological trait modalities Body Form (flat, mound, erect) and 
Morphology (soft, tunic, exoskeleton, crustose, cushion, stalked) (for detailed trait information see       

table 2). 
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Fig. 5 Relative contribution of behavioral trait modalities Habitat (infauna, epifauna), Living Habit 
(attached, tube dweller, burrow/channel dweller, motile tube/case, free), Mobility (sessile, semi 

motile, motile), Movement (no movement, borrower, crawler, facultative swimmer). Feeding Habit 
(suspension feeder, deposit feeder, grazer, scavenger, predator), Alimentation Type (herbivor, 
omnivore, carnivore) and Bioturbation (surface mixing, deeper mixing, transport, none) (for de-

tailed trait information see table 2). 
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Fuzzy correspondence analysis (FCA) 

Regions 

FCA explained 26% of total variability in the regional comparison (six regions). 

Thereof 50% were explained by axis 1, 35% by axis 2 and 11% by axis 3. The 

correlation ratio reflects the contribution of each trait to the overall variability (ta-

ble 4). Traits contributing most to the variation along axis 1 were Body Form, 

Morphology and Bioturbation, traits contributing most to the variation along axis 2 

were Bioturbation, Living Habit and Larval Development. Fig. 6 shows the distri-

bution of the trait categories (a) and the corresponding position of regions (b).  

Table 4 The amount of variability in the production-weighted trait data explained by the first three 
FCA plot axes and the correlation ratios of traits along these axes in the regional comparison. 

Traits Ax1 (50%) Ax2 (35%) Ax3 (11%) 

Size 3 1 9 

Larval development 0 15 0 

Body form 34 13 1 

Morphology 33 13 10 

Habitat 7 0 2 
Living habit 19 20 2 

Mobility 13 6 2 

Movement 20 2 3 

Feeding habit 14 8 6 

Alimentation 3 3 6 

Bioturbation 24 23 5 
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Fig. 6 FCA plots showing the distribution of trait modalities (a) and regions (b) along the first two 
axes (1-Barents Sea, 2-Nansen Basin, 3-Amundsen Basin, 4-Lomonosov Ridge, 5-Nansen Basin 

2012, 6-Amundsen Basin 2012) (for trait modality code see table 2). 

(a) 

(b) 
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Stations 

FCA explained 80% of total variability in the comparison of stations (44 stations). 

Thereof 40% were explained by axis 1, 20% by axis 2 and 17% by axis 3. Corre-

lation ratios can be found in table 5. Traits contributing most to the variation along 

axis 1 were Living Habit, Bioturbation, Body Form and Morphology; traits contrib-

uting most to the variation along axis 2 were Living Habit, Morphology and 

Bioturbation. Along axis 3 Larval Development, Morphology and Movement con-

tribute most to overall variation (table 5). Fig. 7 shows the distribution of the trait 

categories (a) and regions (b).  

Table 5 The amount of variability in the production-weighted trait data explained by the first three 
FCA plot axes and the correlation ratios of traits along these axes in the comparison of stations. 

Traits Ax1 (40%) Ax2 (20%) Ax3 (17%) 

Size 2 17 13 

Larval development 9 2 30 

Body form 41 20 3 

Morphology 40 31 20 
Habitat 21 15 1 

Living habit 57 37 14 

Mobility 34 18 1 

Movement 36 12 20 

Feeding habit 32 11 5 

Alimentation 2 5 4 
Bioturbation 57 30 14 
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Fig. 7 FCA plots showing the distribution of trait modalities (a) and stations (b) along the first two 
axes of the ordination plot. Colored circles indicate clusters of the trait modalities most important 
along axis 1 (red), axis 2 (green) and axis 3 (blue) and the accordingly grouped stations (for trait 

modality code see table 2, for station code see S1). 

(a) 

(b) 
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Functional Diversity 

The functional diversity was found to be significantly higher at Barents Sea and 

Lomonosov Ridge compared to Amundsen Basin (F=3.151, p=0.0418). The re-

maining regions Nansen Basin, Nansen Basin 2012 and Amundsen Basin 2012 

were not significantly different from the previous. 

 

Fig. 8 Mean Functional Diversity Index (FDI) for the regions Barents Sea, Nansen Basin, Amund-
sen Basin and Lomonosov Ridge in 1991 and for Nansen and Amundsen Basin in 2012. The 

letters above the bar charts indicate significant differences between regional groups as identified 
with ANOVA and Post Hoc test (Student’s t) on differences between means. 

Discussion  

Patterns of benthic functioning across Arctic shelf, ridge and basin sys-
tems 

Functional diversity (mean FDI=1.0), number of species (130) and secondary 

production (>6 g C m-2 y-1) were highest on the Barents Sea shelf, and decreased 
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distinctly towards the Arctic basins (table 2, Fig. 8, S1). This trend reflects the 

decrease in food input to the benthos from the shallow shelf towards the deep-

sea basins that is caused by the consumption of sedimenting organic matter on 

its passage through the water column (Gage & Tyler 1991) and by the lower pri-

mary production in the permanently ice covered central Arctic (Wassmann et al. 

2010). The number of trait modalities present in the communities, however, de-

creased comparatively less (table 1). Regarding the relative composition of func-

tional traits we observed clear differences between regions (Fig. 3, 4, 5). In the 

deep Amundsen basin smallest size classes (<5 mm) dominate the communities, 

while in other regions size classes are more evenly distributed (Fig. 3). This phe-

nomenon was previously described in deep-sea regions as “dwarfism” related to 

the strong food limitation (Gage & Tyler 1991). Regions differ more clearly re-

garding morphological and behavioral traits (Fig. 4, 5). Nansen and Amundsen 

Basin associations show a higher share of the “cushion-shaped” morphology, 

while on the Lomonosov Ridge the body form “erect” and the morphology 

“stalked” contribute more. The latter may be indicative of more turbulence and 

associated particle flux in slope systems, as an erect or stalked position might be 

favorable for feeding under these conditions. This is also supported by the domi-

nance of the trait modalities “suspension feeding, “no movement”, “sessile” and 

“no bioturbation” in this region. In the Barents Sea “infauna” dominates the 

macrobenthic communities, while in the other regions the trait modality “epifauna” 

is dominant. This could be related to the higher sedimentation rates on the shal-

low Barents Sea shelf that enrich surface sediment layers with organic matter to 

an extent that can maintain a rich infauna and bioturbating fauna. In the food de-

pleted deeper regions the little organic matter that arrives in the sediment-water 

interface is mostly already consumed at the sediment surface (Gage & Tyler 

1991).  

The FCA identified the traits Body Form, Morphology, Bioturbation and Living 

Habit to explain most of the variance between the regions (table 4, Fig. 6). The 

trait modalities distributed along axis 1 are depicting a “flow or turbulence com-

munity” of attached, stalked or erect suspension feeding taxa (Fig. 6a). The traits 

along axis 2 depict a typical “soft bottom community” dominated by tube dwelling, 

sediment transport initiating infauna taxa (Fig 6a). The traits along the third axis 
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depict an “opportunistic community” dominated by mobile, large, deposit feeding 

taxa (Fig. 6a). While the Lomonosov Ridge group is plotted close to the “flow or 

turbulence community” on axis 1, the productive Barents Sea shelf is grouped 

closer to the food depleted Amundsen Basin group on axis 2 (Fig 6b). Although 

these two regions differ strikingly in terms of secondary production (Fig. 2), they 

are both described as classical soft bottom habitats and share associated func-

tional traits (Kröncke 1994, Kendal 1996).  

The functional diversity, however, is significantly lower in the Amundsen Basin, 

while all other regions are not significantly different from each other (Fig. 8). 

Törnroos et al. (in press) proposed that functional diversity may be de-coupled 

from taxonomic richness above a certain threshold. We presume that such a 

threshold is crossed in the Amundsen Basin, where we detected the lowest spe-

cies numbers (table 3). Low FDI and low species numbers indicate a low func-

tional redundancy in an ecosystem (van der Linden 2012). Low redundancy again 

points to a low resilience against disturbance, as in the event that species are lost 

also a loss of function might occur (Díaz and Cabido, 2001; Loreau et al., 2001). 

Changes in benthic functioning between 1991 and 2012 

Changes in benthic functioning between 1991 and 2012 are visible, although 

quite different in the two Arctic Basins. While the number and type of trait modali-

ties stayed the same in both basins, the composition of traits relevant for second-

ary production changed in Nansen Basin only. Apparently the fauna changed 

from an association dominated by mobile deposit feeders towards one dominated 

by sessile suspension feeders. Accordingly, the region Nansen Basin 2012 is 

plotted closer to the Lomonosov Ridge group in the FCA ordination plot (Fig 6b). 

This shift towards a sessile suspension feeder community could indicate an in-

crease in food input at least at some of the stations, making a sedentary life style 

possible. The groups Amundsen Basin 1991 and 2012 are plotted close together, 

indicating that the composition of traits relevant for production did not change. 

However, we detected an increase in species numbers (table 3), in functional 

diversity (Fig. 8) and in secondary production (table 3). The majority of stations 

sampled in 2012 were in the range of the marginal ice zone (MIZ), while the sta-
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tions in 1991 were all under permanent sea ice cover (Fig. 9). Along the MIZ 

higher export rates of POC and tighter pelagic-benthic coupling are reported 

(Wassmann et al. 2006). The changes observed in this study indicate that the 

change in sea ice concentration has a direct effect on the functioning of the 

macrobenthic communities. However, as not all stations from 2012 are exactly in 

the same location than in 1991, a direct comparison is currently not possible. Fu-

ture studies should aim at re-sampling those stations where historical datasets 

are available from.   

 

Fig. 9 Sample stations from Nansen and Amundsen Basin in 1991 (yellow) and 2012 (green). The 
red line indicates the minimum sea ice extent of the year 1991. Sea ice concentration of the sea 
ice minimum in the year 2012 is given with dark red indicating high, and blue-green indicating 

very low sea ice concentration (Spreen et al. 2008).  
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Summary & Outlook 

Our findings indicate that BTA is an appropriate method to study benthic function-

ing also in Arctic and deep-sea regions. Here we detected significant changes in 

functioning along a spatial gradient of decreasing food supply as well as in time 

(1991 versus 2012) in the Nansen and the Amundsen Basin. However, the 26% 

share of overall variability explained in the FCA comparison of regions is rather 

low, indicating a high degree of within-region heterogeneity (Darr et al. 2014). 

The FCA performed on all stations without the regional clustering explained 80% 

of the data variance. This approach indicates that several stations group rather 

different from the regional cluster we assigned them to. We suggest that future 

studies should sample on smaller scales and group stations according to an a 

priori environmental clustering method that accounts for differences in water 

depth, bottom structure and turbulence. So far sample data from the Arctic deep 

sea are scarce, and as such even more valuable. To enable direct comparison to 

previous studies, future sampling should re-visit historical sampling sites and the 

corresponding classical benthic sampling design with a giant box-corer and a 

sieve size of 0.5 mm should be applied. The latter would enable also the reliable 

calculation of changes in taxonomic diversity which reacts sensitive to sampling 

effort and sieve size.  
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Supplementary material 

S1 Station information. “Code” is referring to the respective station in the FCA plot (Fig. 6 & 7). 

  

Region Station Co
de Long Lat Year Depth 

(m) 
Production 

(mg C m-2 y-1) 
Barents Sea PS104 1 81.45 31.48 1991 258 1039.86 

Barents Sea PS117 2 80.82 30.10 1991 193 6111.56 

Barents Sea PS132 3 79.18 31.70 1991 75 6374.07 

Barents Sea PS136 4 77.98 32.93 1991 143 1811.58 

Nansen Basin PS2157 1 29.99 81.75 1991 2950 1584.66 

Nansen Basin PS2158 2 29.93 82.78 1991 3800 69.46 

Nansen Basin PS2159 3 30.34 83.95 1991 3950 15.44 

Nansen Basin PS2161 4 44.30 85.44 1991 4005 214.78 

Nansen Basin PS2162 5 50.83 85.79 1991 3981 63.80 

Nansen Basin PS2209 6 8.57 83.23 1991 4046 1.08 

Nansen Basin PS2210 7 10.12 83.05 1991 3949 7.78 

Amundsen Basin PS2168 1 55.93 87.51 1991 3845 11.24 

Amundsen Basin PS2171 2 68.98 87.59 1991 4384 9.36 

Amundsen Basin PS2175 3 103.68 87.58 1991 4413 9.49 

Amundsen Basin PS2176 4 108.14 87.77 1991 4364 21.91 

Amundsen Basin PS2190 5 0.00 90.00 1991 4273 15.85 

Amundsen Basin PS2191 6 9.01 88.99 1991 4348 5.32 

Amundsen Basin PS2192 7 9.86 88.26 1991 4375 6.45 

Amundsen Basin PS2195 8 9.62 86.25 1991 3793 1.08 

Amundsen Basin PS2205 9 -6.77 84.64 1991 4283 3.97 

Lomonosov Ridge PS2177 1 134.89 88.03 1991 1388 95.96 

Lomonosov Ridge PS2179 2 138.09 87.74 1991 1230 52.03 

Lomonosov Ridge PS2181 3 153.06 87.60 1991 3112 45.36 

Lomonosov Ridge PS2182 4 151.35 87.57 1991 2609 48.28 

Lomonosov Ridge PS2183 5 148.92 87.60 1991 2031 42.07 

Lomonosov Ridge PS2184 6 148.20 87.61 1991 1654 48.56 

Lomonosov Ridge PS2185 7 144.17 87.53 1991 1073 88.48 

Lomonosov Ridge PS2186 8 140.18 88.51 1991 1867 125.43 

Lomonosov Ridge PS2187 9 126.99 88.73 1991 3844 58.69 

Lomonosov Ridge PS2189 10 144.67 88.77 1991 1018 129.69 

2012-Nansen Basin PS80/023
6 1 78.67 83.92 2012 3463 4.93 
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Region Station Co
de Long Lat Year Depth 

(m) 
Production 

(mg C m-2 y-1) 

2012-Nansen Basin PS80/025
1 2 108.87 82.64 2012 3561 58.82 

2012-Nansen Basin PS80/221 3 29.92 84.00 2012 4014 13.35 

2012-Nansen Basin PS80/229 4 31.32 84.00 2012 4008 0.31 

2012-Nansen Basin PS80/241 5 76.71 83.93 2012 3432 20.69 

2012-Nansen Basin PS80/262 6 109.92 82.98 2012 3601 5.11 

2012-Nansen Basin PS80/368 7 17.72 84.36 2012 4024 10.32 
2012-Amundsen 
Basin 

PS80/029
0 1 130.60 79.67 2012 3400 214.83 

2012-Amundsen 
Basin 

PS80/033
4 2 123.18 85.16 2012 4354 246.52 

2012-Amundsen 
Basin 

PS80/037
1 3 55.67 88.76 2012 4369 109.28 

2012-Amundsen 
Basin PS80/278 4 129.95 82.88 2012 4167 37.23 

2012-Amundsen 
Basin PS80/326 5 130.92 81.93 2012 4038 13.25 

2012-Amundsen 
Basin PS80/339 6 122.74 85.06 2012 4352 10.83 

2012-Amundsen 
Basin PS80/355 7 61.01 87.93 2012 4381 11.62 
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Abstract 

Ongoing climate warming is causing a dramatic loss of sea ice in the Arctic 

Ocean, and it is projected that the Arctic Ocean will become seasonally ice-free 

by 2040. Many studies of local Arctic food webs now exist, and with this review 

paper we aim to synthesize these into a large-scale assessment of the 35 current 

status of knowledge on the structure of various Arctic marine food webs and their 

response to climate change, and to sea-ice retreat in particular. Key drivers of 

ecosystem change and potential consequences for ecosystem functioning and 

Arctic marine food webs are identified along the sea-ice gradient, with special 

emphasis on the following regions: seasonally ice-free Barents and Chukchi 

seas, loose ice pack zone of the Polar Front and Marginal Ice Zone, and perma-

nently sea-ice covered High Arctic. Finally, we identify knowledge gaps in differ-

ent Arctic marine food webs and provide recommendations for future studies. 

Key words 
Arctic; food web; climate change; sea-ice retreat; trophic transfer;  

pelagic-benthic coupling. 
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Introduction 

The Arctic Ocean is currently experiencing significant warming of approximately 

three times the global average (Steele et al. 2008; Serreze et al. 2009; Polyakov 

et al. 2010) and, despite a very pronounced seasonality, recent winter warming 

far exceeds that occurring in summer (Screen & Simmonds 2010). One of the 

characteristic features of the Arctic Ocean is sea ice, present permanently at high 

latitudes and seasonally at lower latitudes in winter (Fig. 1). Presently, The most 

conspicuous sign of warming is the dramatic loss of sea ice (Higgins & Cassano 

2009; Parkinson & Comiso 2013): its summer extent has decreased by nearly 

50% over the past decade (Fig. 1), and the Arctic Ocean has undergone a regime 

shift from multiyear ice to largely seasonal and much thinner ice cover (Comiso 

2012). The Arctic Ocean may become seasonally ice-free by as early as 2040 

(Polyakov et al. 2010). Reductions in sea-ice cover are being further amplified by 

increased heat fluxes into the Arctic Ocean through the Bering (Woodgate et al. 

2006; Woodgate et al. 2010; Woodgate et al. 2012) and Fram straits (Piechura & 

Walczowski 2009). This enhanced ocean temperature further delays the growth 

of sea ice in the fall (Steele et al. 2008). In terms of ecosystem functioning, these 

patterns indicate a shift towards an earlier spring transition between sea-ice-

covered and sea-ice-free conditions (Grebmeier et al. 2006b; Steele et al. 2008). 

Therefore, in the Arctic, climate change is not only affecting the physical struc-

tures such as sea ice, but is also responsible for multiple ecological changes on 

ecosystem functioning, including food-web structure, stability and efficiency, es-

pecially by affecting components at the base of the food web. 

The two main sources of primary production in Arctic ecosystems are sea-ice 

algae and phytoplankton (Søreide et al. 2006). The growth of both ice algae and 

phytoplankton takes place within a one to four month period during spring and 

summer (Søreide et al. 2006; Renaud, Carroll et al. 2008; Iken et al. 2010). The 

productive season starts at the end of the polar night with sunlight triggering the 

bloom of sea-ice algae. Ice algae, even Though they constitute only a small-to-

moderate portion (<20%) of total annual primary production (Hegseth 1998; 

Gradinger 2009), ice algae can contribute to Arctic benthic food webs during 

springtime on shallow continental shelves with seasonal ice cover because they 
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occur early and sink fast following sea-ice retreat (Hobson et al. 1995; 

Tamelander et al. 2006). This ice algal contribution is proportionally more im-

portant in areas where sea-ice cover lasts later in the year (Gosselin et al. 1997) 

but is expected to decrease with current sea-ice retreat (Leu et al. 2011). A phy-

toplankton spring bloom follows the ice algae bloom as the sea-ice cover melts 

(Leu et al. 2011). In the summer, limited nutrients support a low phytoplankton 

biomass (Wassmann & Reigstad 2011), with episodic bloom conditions facilitated 

by occasional nutrient availability (Grebmeier et al. 2006a). These phytoplankton 

blooms, although responsible for the bulk of annual production, are usually re-

stricted to open waters (but see Arrigo et al. 2012; Mundy et al. 2014). In 2012, 

Boetius et al. (2013) also showed that sinking ice algae aggregates constitute an 

important food input to benthos in the Arctic basins. In addition to phytoplankton 

and ice algal production, microbial oceanic phototrophs can contribute up to 50% 

of total inorganic carbon assimilation and play a leading role in nutrient cycling 

(Falkowski et al. 1998). Bacterial-primary production ratios have been estimated 

to reach more than 240% above 81° N (Rich et al. 1997) compared to 1-143% 

(32±6%) in the Barents Sea (Sturluson et al. 2008). The bacterial contribution to 

respiration in the water column may be substantial: 3-60% in the Chukchi Sea 

and Canada Basin, and 25% on average in the Arctic (Kirchman et al. 2009). 

Moreover, bacterial activity on sinking particles, an important habitat that harbors 

distinct communities of Arctic bacteria (Hansell & Ducklow 2003; Hodges et al. 

2005), directly affects the quantity and quality of the organic matter that reaches 

the sea floor. In coastal areas and interior shelves, coastal erosion, river and gla-

cial discharge can become an important sources of terrestrial organic matter in-

puts that can also be further utilized in benthic food webs (Dunton et al. 2006; 

Dunton et al. 2012; Kędra et al. 2012; Kuliński et al. 2014). 

The quality and quantity of primary production, including ice algae and phyto-

plankton, reaching the seafloor have a strong impact on benthic communities 

(Pearson & Rosenberg 1978), which further cascades through the whole food 

web, especially in the highly seasonal Arctic marine ecosystems. Shallow Arctic 

shelves in particular are currently characterized by tight pelagic–benthic coupling 

due to low grazing in the water column during the bloom (Grebmeier et al. 1988; 

Grebmeier & McRoy 1989; Renaud, Carroll et al. 2008; Tamelander et al. 2008). 
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This results in large export of organic matter, produced in the surface layers and 

descending to the seafloor and benthos (Grebmeier et al. 2006a), especially in 

spring, when production is far greater than zooplankton consumption 

(Tamelander et al. 2006). For example, almost 70% of the organic carbon pro-

duced in the water column during spring in the Pacific Arctic region reaches the 

seafloor (Walsh et al. 1989), supporting high biomass, abundance and diversity 

of benthic organisms (Grebmeier & McRoy 1989; Grebmeier et al. 2006a; Iken et 

al. 2010; Bluhm, Gradinger et al. 2011), which are important prey items for higher 

trophic level animals foraging on the seafloor, including diving sea ducks 

(Merginae), bearded seals (Erignathus barbatus),  walrus  (Odobenus rosmarus) 

and grey whales (Eschrichtius robustus) (Lovvorn et al. 2003; Grebmeier et al. 

2006a; Grebmeier & Barry 2007; Grebmeier 2012). This contrasts with the sum-

mer period, when grazing of phytoplankton by zooplankton may reach up to 97% 

of daily water column primary production in more pelagic-oriented areas like the 

Barents Sea (Tamelander et al. 2006), thus limiting carbon export to the benthos. 

Therefore During summer, reworked organic matter consisting of zooplankton 

fecal pellets and carcasses, moults and bacteria, as well as phytodetritus, pri-

marily fuels benthic food webs. Currently, Many shallow shelf Arctic systems, es-

pecially in the Pacific Arctic, have a high efficiency of energy transfer from the 

water column to the benthos (Ambrose & Renaud 1995). Macro- and mega-fauna 

appear to play a prominent role in carbon recycling (up to 30% efficiency for Arc-

tic benthos; Clough et al. 2005; Renaud et al. 2007), but studies focusing on par-

titioning of carbon recycling for bacterial, meiofaunal, macrofauna and 

megafaunal components are rare (Piepenburg et al. 1995). 
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Fig. 1 Map of the Arctic Ocean showing the minimum sea-ice extent September 2012 and the 
median sea-ice extent February 1981-2010 (blue line). Locations of published food-web studies 
and the case study areas of this review are marked with yellow (seasonally ice-free areas), blue 
(Marginal Ice Zone [MIZ]) and grey (permanently ice-covered High Arctic) stars. Red circles indi-

cate areas that require more investigation. Bathymetry after Amante & Eakins (2009); sea-ice 
data from Fetterer et al. (2002). 
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Trophic transfer efficiency describes the efficiency with which energy is trans-

ferred from one trophic level to the next, in particular the relative percentage of 

primary production that reaches top predators (Kozlovsky 1968). Species interac-

tions, of which many are sea-ice related in Arctic ecosystems (Fortier et al. 2002; 

Gradinger & Bluhm 2004; Søreide et al. 2006; Gradinger 2009), control energy 

and organic matter flow which determine ecological efficiencies and can limit 

productivity and patterns of species dominance and food-web stability (McCann 

2000). In the changing Arctic Ocean, species shifts and local extinctions and in-

vasions may occur, leading to new interactions between species that have not 

co-evolved (Hobbs et al. 2006). New or missing links in established food webs 

may lead to large energy inefficiencies, changes in energy pathways that current-

ly support key top predators, and destabilization of food-web dynamics (Vander 

Zanden et al. 1999; Pauly et al. 2002). However, this process is also dependant 

on the level of trophic and functional redundancy in a system (Layman et al. 

2007). Understanding how Arctic food webs will become structured in the future 

will therefore entail disentangling the factors with most impact on interspecific 

interactions.  

The aim of this paper is to present the current status of knowledge of the struc-

ture of various Arctic marine food webs and their observed responses to ongoing 

climate change, in particular to sea-ice retreat. Potential changes to food-web 

trophic transfer efficiency are also discussed. To date, most focused studies of 

Arctic food webs that exist are limited in space, time or taxonomic level (e.g., Iken 

et al. 2005; Aydin & Mueter 2007; Bergmann et al. 2009; Megrey & Aydin 2009; 

Iken et al. 2010; Feder et al. 2011; Dunton et al. 2012; Whitehouse et al. 2014), 

and large-scale syntheses across the Arctic are generally missing. Only a few 

pan-Arctic reviews currently exist have been published (Carmack & Wassmann 

2006; Piepenburg et al. 2011; Wassmann et al. 2011) and none has focused on 

species interactions and trophic pathways of food webs nor on food-web struc-

ture and with trophic transfer efficiency. To complement existing studies, this re-

view will focus on the key drivers of ecosystem changes in the Arctic, including 

sea-ice decline, temperature rise and changes in stratification and the conse-

quences for important ecosystem functions that are susceptible to change, in-

cluding nutrient regeneration, primary and secondary production, pelagic–benthic 
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coupling, structure of food webs and consequences for top predators. In particu-

lar, we aim to: (1) identify key drivers of ecosystem change and potential conse-

quences for ecosystem functioning; (2) present different scenarios and trends in 

Arctic marine food webs by analysing regional ecosystem case studies located 

along a sea-ice gradient: the seasonally ice-free Barents Sea and Chukchi Sea, 

the loose ice pack Polar Front (PF) and the Marginal Ice Zone (MIZ) and the 

permanent ice-covered High Arctic; and (3) identify knowledge gaps existing in 

Arctic marine food webs, and suggest possible methods to fill these gaps and 

provide recommendations for future studies.  

Primary and secondary drivers of ecosystem change: potential 
consequences  

Key drivers of ecosystem change 

The primary driver of the observed ecosystem change in high latitudes is ongoing 

climate change, and warming in particular (Symon et al. 2005). Increasing air 

temperature is the main cause of sea-ice decline, along with the secondary driv-

ers of Arctic ecosystem change, such as increase in sea-water temperature and 

altered stratification (Symon et al. 2005; Stocker et al. 2013). Sea ice is a major 

regulating component in controlling pelagic and benthic production through 

modulating water-column stratification and light fields (Bluhm & Gradinger 2008; 

Gradinger 2009) because it controls the exchange of heat between the atmos-

phere and ocean and, together with snow cover, limits the penetration of light into 

the water column. Also, in the Arctic Ocean, the thaw–freeze cycle of sea ice and 

large freshwater riverine inputs result in pronounced haline stratification within the 

surface layer (Carmack & Wassmann 2006). Shortly after the phytoplankton 

spring bloom, the polar mixed layer becomes and remains nitrogen-depleted be-

cause of strong vertical stratification, which prevents replenishment during the 

summer season (Tremblay et al. 2008). Analysis of model data shows that when 

less sea ice is produced and freshwater load is increasing in the Arctic Ocean, 

the water column stratification becomes stronger, which decreases winter mixing 

(Slagstad et al. 2011), subsequently affecting nutrient distribution in the water 
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column (Li et al. 2009; Codispodi et al. 2013; Matrai et al. 2013). In general, pat-

terns of nutrients availability in the euphotic zone are a function of the total 

transport at the Barents Sea Opening and Fram Strait, through Davis Strait in the 

Canadian Archipelago and Bering Strait in the Pacific Arctic region, along with 

nutrient input from rivers, upwelling, stratification patterns and local mixing of 

deep water (Codispoti et al. 2013). Both major sources of nutrients in the Arctic 

Ocean, oceanic inputs associated with waters of Pacific and Atlantic origin, and 

riverine nutrient fluxes, are likely to change with accelerating climate change (Pe-

terson et al. 2002; McClelland et al. 2006; Peterson et al. 2006; Shiklomanov & 

Lammers 2009). Changes in riverine freshwater runoff will likely be associated 

with changes in the quality and quantity of the nutrient supply, and while the 

loads of silicate, phosphate and dissolved and particulate organic matter are ex-

pected to increase in the future, trend in riverine nitrogen loads remain largely 

unknown (Frey et al. 2007; Raymond et al. 2007; Frey & McClelland 2009). Dif-

ferences between nutrient transport and availability over the shelf areas and cen-

tral Arctic may increase in the future: the already nutrient-depleted central Arctic 

Basin will likely become more oligotrophic, while shelf areas will be further en-

riched by increased transport of Atlantic and Pacific water masses and runoff. 

Biogeochemical processes and changes in adjacent basins as well as circulation 

changes may affect the future productivity of the Arctic Ocean. 

Primary production and its consumers 

Alterations of the seasonal cycle of primary productivity at the base of the food 

web is one of the most important consequences of rising temperature, sea-ice 

retreat and changes in nutrient patterns. In general, ice algae and pelagic phyto-

plankton production occur sequentially during the year, with the abundance of ice 

algae relative to pelagic phytoplankton increasing northward coincident with 

greater sea-ice cover (Leu et al. 2011; Wassmann et al. 2011; Rubao et al. 

2013). Although light availability and nutrients are often the prime limiting factors 

for primary production (Gradinger 2009; Leu et al. 2011), the timing of pelagic 

phytoplankton blooms is likely controlled by sea-ice retreat, whereas the timing of 

ice algae blooms is influenced by snow and sea-ice melt and start earlier than 

open water blooms. In many Arctic marginal seas, the timing of sea-ice retreat 
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may have a strong impact on the timing of phytoplankton production, but little or 

no impact on the timing of ice algae peaks. Changes in the timing of maximum 

phytoplankton production influence the variability in time-lags between ice algal 

and phytoplankton production peak production (from 45 to 90 days; Ji et al. 

2013). The timing of the sea-ice algal bloom is an important driver of spring sec-

ondary production as earlier ice algae bloom will export larger amounts of primary 

production to seafloor communities (Gradinger 1995), especially when water col-

umn grazing is low, strengthening pelagic–benthic coupling processes. Changes 

in timing of the pulses of ice algae and phytoplankton primary production and in 

the associated gap period between them will influence zooplankton grazer abun-

dances and activities (Søreide et al. 2010; Varpe 2012). Although the timing of 

primary production varies greatly over time and space in different regions, sys-

tematic shifts in the timing of production and export processes have the potential 

to increase the frequency of mismatch between marine grazers and their food, 

which in turn can subsequently alter the organic matter flux to the seafloor and/or 

the transfer to the higher trophic levels (Rubao et al. 2013).  

Because Arctic zooplankton reproduction is largely determined by the food 

quality of autotrophs (Müller-Navarra 2008), therefore production of lipids in sea-

ice diatoms early in the season is extremely important (Falk-Petersen et al. 2009; 

Søreide et al. 2010). These high-energy lipid compounds are rapidly transferred 

through the Arctic marine food chains. Changes in the initiation and duration of 

the growth season, and therefore in the timing, quality and quantity of sea-ice 

blooms, will directly affect, among others, calanoid copepods (Ji et al. 2012), 

which are critical to energy transfer between lower and higher trophic levels. Dia-

tom lipids are accumulated in large amounts by Calanus species and ice amphi-

pods, and further transferred to pelagic carnivorous zooplankton and pelagic fish 

stocks (Scott et al. 1999; Scott et al. 2001; Auel et al. 2002). Lipid levels increase 

from 10 - 20 % in phytoplankton to 50 - 70 % in herbivorous zooplankton and ice 

fauna that then become available as nutritious prey items for upper trophic level 

consumers (Daase et al. 2014). Dominant Arctic zooplankton taxa, like Calanus 

glacialis, switch from a diet of ice algae in spring towards phytoplankton in late 

summer, while others, like the sympagic amphipod Apherusa glacialis, feed main-

ly on ice algae during early spring (Scott et al. 1999; Falk-Petersen et al. 1999; 
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Falk-Petersen et al. 2006). Ice-associated amphipods Onisimus spp. switch from 

ice algae in spring to an omnivorous diet by the end of productive season (Wer-

ner & Auel 2005). The young ice amphipod Gammarus wilkitzkii feed on ice al-

gae, while their adults have a carnivorous diet, feeding preferentially on calanoid 

copepods (Scott et al. 2001; Werner et al. 2002). Although most benthic species 

do not feed directly on algal cells, changes in the timing and quality of bloom sed-

imentation (the latter additionally influenced by microbial processing) may impact 

those species’ composition and abundances (Ambrose & Renaud 1997). Chang-

es in the availability or abundance of ice algae or dependent zooplankton com-

munities may cause cascading impacts on higher trophic level populations. 

Microbial processes 

Earlier sea-ice melt and increased stratification of the water column will promote 

picophytoplankton occurrence. Because of their short generation times, microor-

ganisms respond quickly to environmental changes and are the first to react to 

ongoing global changes, affecting key ecosystem functions at the base of food 

webs (Sarmento et al. 2010). Significant changes in microbial communities and 

diversity have already been observed after a sharp decline of sea-ice cover in 

September 2007 (between 2002 and 2010; Comeau et al. 2011). Increased car-

bon supply from pelagic productivity and riverine discharge coupled with in-

creased bottom water temperature could result in higher bacterial activity and 

rates of bacterial cycling of carbon (Kritzberg et al. 2010; Vaquer-Sunyer et al. 

2010). The decreased quality and quantity of sinking particles (Wassmann & 

Reigstad 2011) and usable carbon (Renaud, Morata et al. 2008) being exported 

to the seafloor would decrease the efficiency of food webs. Picophytoplankton is 

believed to be relatively inaccessible as a prey for mesozooplankton (Li et al. 

2009); however some studies suggest that protozoans may constitute a larger 

percentage of copepod diets (Campbell et al. 2009), even up to 80-90%, during 

summertime, when abundances, biomass and production are dominated by pico- 

and nanophytoplankton (Piwosz et al. 2009; De Laender et al. 2010; Piwosz et al. 

2015) and when abundances of microzooplankton are high (Kubiszyn et al. 

2014). Thus, In herbivore-limited systems, copepod production is therefore close-

ly linked with protozoan production and constitutes a direct link between the mi-
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crobial loop and higher trophic levels (Campbell et al. 2009; Sherr et al. 2009; De 

Laender et al. 2010; Nelson et al. 2014). Still, it is likely that Arctic food webs will 

lengthen at their base with the increase in numbers of trophic transfers within the 

microbial food webs or the number of grazers in the water column, thus decreas-

ing the amount of carbon available for the higher trophic levels in the original food 

chain.  

Presently, there is limited knowledge of the possible impact of viruses and 

parasitic protists in terms of their capacity to terminate algal blooms in the Arctic 

is limited (Nelson et al. 2014). Viral infection has been shown to control blooms of 

the coccolithophore Emiliania huxleyi in the Northern Atlantic (Wilson et al. 2002), 

while parasitic protists in the order Syndiniales have been coupled with collapses 

of blooms of dinoflagellate species in the Mediterranean Sea (Chambouvet et al. 

2008). Increased impact of algal viruses and parasites would decrease the 

amount of food available for pelagic and benthic grazers. How these processes 

affect current blooms in the Arctic Ocean remains largely unknown, but both vi-

ruses and parasitic Syndiniales have been reported from sea ice (Wells & Dem-

ing 2006; Bachy et al. 2011; Collins & Deming 2011; Comeau et al. 2013; Piwosz 

et al. 2013) and the water column (Howard-Jones et al. 2002; Lovejoy et al. 2006; 

Bachy et al. 2011; Comeau et al. 2011; Payet & Suttle 2013). 

Pelagic–benthic coupling 

The initiation of sea-ice retreat is important for the timing, quality and amount of 

primary production (Springer et al. 1996; Hunt & Stabeno 2002), and changes in 

the timing of both ice algae and phytoplankton primary production may cause 

changes in the food webs by influencing the standing stock of zooplankton, which 

will in turn affect the direct, ungrazed deposition of phytoplankton (Cooper et al. 

2002) and subsequently benthic species (Overland & Stabeno 2004; Grebmeier, 

Cooper et al. 2006; Grebmeier, Overland et al. 2006; Nelson et al. 2009; 

Grebmeier 2012). In areas with reduced summer sea ice, pelagic grazing pres-

sure will be higher (Lalande et al. 2007), perhaps altering sedimentation of organ-

ic matter, resulting in more pelagic-oriented systems. With increased primary 

production (Arrigo et al. 2011; Arrigo et al. 2014; Palmer et al. 2014), pelagic food 
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webs could become more productive and intercept more organic matter before it 

reaches the seafloor (Renaud, Carroll et al. 2008); however, nutrient limitation 

may halt this process. Increased grazing would reduce the export flux of carbon 

to the seafloor, weakening pelagic–benthic coupling processes. Studies in the 

Bering Sea found that with sea-ice cover the spring blooms were characterized 

by a higher proportion of diatoms, less recycling and greater export and, there-

fore, stronger pelagic–benthic coupling (Moran et al. 2012). In the case of open-

water conditions, blooms were characterized by a higher proportion of 

dinoflagellates, greater carbon cycling in the water column and lower export to 

the seafloor, and consequently reduced pelagic–benthic coupling (Moran et al. 

2012).  

Upper trophic levels 

Changes in primary and secondary production affect upper trophic levels and are 

predicted to have increasing impact with climate warming (Wassmann 2006; 

Daufresne et al. 2009; Moore et al. 2014). Arctic marine top predators will have to 

face extreme changes in their habitat and forage base, including density and dis-

tributional shifts of their prey, as well as potential losses of some of their favoured 

lipid-rich prey species (Kovacs & Lydersen 2008; Kovacs et al. 2011). Upper 

trophic levels usually respond in a non-linear fashion to changes in ecosystem 

structure and usually the response depends on their exact position in the food 

web (Moore et al. 2014). Although the resilience of Arctic top predators is largely 

dependent on an individual’s adaptive capacity, in general their resilience capaci-

ty depends largely on the region, the intensity and range of ice cover change and 

species characteristics (e.g. ice-obligate species are more vulnerable than ice-

associated or seasonally migrant ones [Moore & Huntington 2008]). Sea-ice as-

sociated and sea-ice obligate species such as walruses and bearded seals that 

use sea-ice as a platform for breeding, resting and foraging activities will be most 

affected by changes in sea-ice cover (Laidre et al. 2008; Moore & Huntington 

2008; Table 1). Reductions in prey quality have been observed to have ecosys-

tem-wide effects, such as population crashes of Steller sea lions (Eumetopias 

jubatus) in the Gulf of Alaska (Rosen & Trites 2000) and breeding failures of sea-

birds in the North Sea (Wanless et al. 2005). A decline in spawning and foraging 
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areas will affect both predators and their prey. For instance, polar cod 

(Boreogadus saida) abundance might be significantly reduced, with tremendous 

consequences to the entire system as this species is believed to account for up 

to 75% of energy transfer between zooplankton and vertebrate predators (Darnis 

et al. 2012). In addition to changes in resource availability, top predators will likely 

face increased complexity within food webs that tend to dissipate energy flow 

(Węsławski et al. 2009). This will likely be followed by increased competition from 

temperate species that are expanding northward, e.g., Atlantic cod (Gadus 

morhua), haddock (Melanogrammus aeglefinus) (Renaud et al. 2012) and Atlan-

tic mackerel (Scomber scombrus) (Berge et al. 2015), and increased predation 

from species formerly unable to access them in areas of extensive sea-ice cover, 

such as killer whales (Orcinus orca) (Higdon & Ferguson 2009), gannets follow-

ing northward move of herring and mackerel (Symon et al. 2005), and fish-eating 

whales that are getting more abundant in the Pacific Arctic Region (Grebmeier 

2012; Moore et al. 2014). Also, an increase in temperate and sub-Arctic fish mi-

gration is predicted to lead to a decrease in prey quality, since they are less lipid-

rich than Arctic species (Symon et al. 2005; Hop & Gjøsæter 2013). Additionally, 

increased risks of disease and contaminants may also become issues (Kovacs & 

Lydersen 2008). 
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Table 1 Circumpolar Arctic top predators, their principal food sources and estimated population sizes. 

Species Habitat Principal food source Population size Reference 
Fulmar 
(Fulmarus glacialis) Pelagic, surface Cephalopods, epipelagic fish, pteropods, 

floating carrion 
15 000 000-30 000 
000 

BirdLife International 
2012 

Spectacled eider 
(Somateria fischeri) Coastal, pelagobenthic Benthos, crustaceans, molluscs 330 000-390 000 BirdLife International 

2012 
Little auk 
(Alle alle) Coastal, pelagic Pelagic crustaceans, copepods 16 000 000-36 000 

000 
BirdLife International 
2012 

Ringed seal 
(Phoca hispida) 

Coastal, 
pelagobenthic,  
0-100 m 

Polar cod, demersal fish, large crustaceans 2 500 000 Miyazaki 2002 

Bearded seal 
(Erignathus barbatus) 

Coastal, benthic, 0-
100 m Demersal fish, crabs, shrimps, urchins  Unknown Kovacs 2002 

Greenland seal 
(Phoca groenlandica) 

Pelagic,  
0-100 m Pelagic fish  8 000 000 Kovacs 2008 

Walrus 
(Odobenus rosmarus) Benthic, 0- 50 m Large bivalves, gastropods, shrimps Unknown Lowry et al. 2008 

Minke whale 
(Balaenoptera acutorostrata) 

Pelagic,  
0- 200 m 

Large pelagic crustaceans, pteropods, pelagic 
fish  182 000 Reilly et al. 2012 

Bowhead  
(Balaena mysticetus) Pelagic Pelagic crustaceans, copepods  > 10 000 Reilly et al. 2012 

Eastern North Pacific grey 
whale 
(Eschrichtius robustus) 

Pelagic Benthos, amphipods 15 000- 
22 000 Reilly et al. 2012 

Beluga whale 
(Delphinapterus leucas) 

Coastal, pelagic, estu-
ary 

Coastal and pelagic fish, crustaceans, cepha-
lopods >150 000 Jefferson et al. 2012 

 
 



Manuscript IV 

 

146 
 

Changes in species distribution ranges mediated by temperature 

Temperature has a direct impact on metabolic and physiological processes as 

well as on the behaviour of individual organisms (Duarte 2007; O'Connor et al. 

2007). It may influence growth, survival, reproduction, phenology and recruitment 

success of particular species (Lewis 1996; Walther et al. 2002; Lewis 2005; Her-

bert et al. 2007). Therefore, spatial distributions of organisms will likely change 

because of differential survival and recruitment of pelagic larval stages with vary-

ing water temperatures (Sirenko & Kolutin 1992; Blanchard et al. 2010; 

Grebmeier 2012). Changes in phenology can lead to a decoupling of the dynam-

ics between predator and prey that will further alter current trophic relations and 

communities. Some species time their reproductive efforts to match the spring 

algal bloom (Falk-Petersen et al. 2009), e.g., females of the copepod Calanus 

glacialis utilize the spring pulse of ice algae to initiate reproduction, allowing their 

young to feed on the phytoplankton bloom that occurs after the breakup (Søreide 

et al. 2010). Along with temperature rise and sea-ice reduction, an increase in 

small-sized phytoplankton cells is predicted (Li et al. 2009) as well as a decrease 

in individual body size coupled with an increase in proportion of juveniles 

(Daufresne et al. 2009). At the population level, a shift of species may be ob-

served, e.g., large, lipid-rich zooplankton species, such as C. glacialis and C. 

hyperboreus are being replaced by the smaller boreal and lipid-poorer species C. 

finmarchicus (Falk-Petersen et al. 2006). 

Seawater temperature rise and warmer Atlantic and Pacific waters advected 

northward also represent a threat to Arctic biodiversity and may further change 

trophic relationships and food-web structure. These changes will facilitate open-

water adapted species and boreal species to expand northward and ice-adapted 

species to retract in range (e.g. Sirenko & Gagaev 2007; Hollowed et al. 2013), 

which may lead to local extinctions, especially in the case of sea-ice dependent 

fauna (Clarke & Harris 2003). Changes have already been observed, including a 

northward distributional shift of fish and invertebrates in the Bering Sea (Mueter & 

Litzow 2008) and in the North Atlantic (Wienerroither et al. 2011) penetration of 

Pacific clams into the Chukchi Sea (Sirenko & Gagaev 2007), reoccurrence of 

Atlantic mussels in Svalbard (Berge et al. 2005), and Pacific zooplankton north-
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ward movement into the Beaufort Sea (Nelson et al. 2009). Also, an increase in 

year-round resident species may occur, e.g., grey whales that usually migrate 

south may stay in the Bering and Chukchi seas longer because of expanded 

open water feeding areas and warmer water temperature (Moore & Huntington 

2008).  

Sea-ice gradient: scenarios and trends 

Since sea-ice retreat is probably the most critical of expected consequences of 

climate warming for the Arctic marine ecosystems, in this review three regional 

ecosystem case studies are used to conceptualize possible changes in food-web 

structure and efficiency along a sea-ice gradient: the seasonally ice-free Barents 

Sea and Chukchi Sea, the loose ice pack Polar Front (PF) and Marginal Ice Zone 

(MIZ) and the permanently ice-covered High Arctic (Table 2, Fig. 2a, b – current 

status; Fig. 2B – predicted scenarios). In general, the described scenarios refer to 

current or possible future conditions on the shelves. The Barents and Chukchi 

seas were chosen as two Arctic shelf systems food web case studies as the food 

webs and associated trophic relations are relatively well-studied (e.g., Iken et al. 

2010; Feder et al. 2011; Renaud et al. 2011; Dunton et al. 2012; Grebmeier 

2012; Kędra et al. 2012; Nelson et al. 2014; Table 2, Fig. 2). PF and MIZ are 

highly productive zones, which are likely to change their locations, extents and 

features as the ice edge retreats from the coast and continental shelves (Fig. 2). 

Arctic deep-sea regions represent a large part of the Arctic Ocean susceptible to 

change due to fast sea-ice retreat, yet only few studies of deep benthic food 

webs are scarce (Bergmann et al. 2009; Iken et al. 2010; van Oevelen et al. 

2011; Table 2). In all three cases studies, the scale and the extent of response to 

climate change and sea-ice retreat remain largely unknown. 
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Table 2 Number of food-web studies undertaken in the Arctic by area. Data were collected using 
the search terms ‘‘Arctic’’ and ‘‘marine’’ and ‘‘food web’’ on the Web of Science. Studies that ex-

amined the relationship between two or more trophic levels were retained. Reviews and modelling 
with no in situ studies were excluded. 

Area Number of studies 

Barents Sea 18 

Bering Sea 17 

Beaufort Sea 44 

Canadian Arctic 69 

Central Arctic Ocean 7 

Chukchi Sea 16 

Greenland Sea 23 

Labrador Sea 61 

Laptev Sea 1 

Svalbard 45 

White Sea 1 

Yermak Plateau 2 

Total 327 
 

Arctic shelf: seasonally ice-free – Barents and Chukchi seas 

Many Arctic shelf systems are characterized by high benthic biomass and pro-

duction especially in areas of inflow of Atlantic or Pacific nutrient-rich water 

masses, and along the PF polar front (Carmack & Wassmann 2006; Grebmeier 

et al. 2006a; Renaud, Morata et al. 2008; Fig. 2a). On the south-eastern Chukchi 

Sea shelf, primary production can reach exceed 430 g C m-2 y-1 and more 

(Springer et al. 1996; Sakshaug 2004; Lee et al. 2007); the Barents Sea has an 

estimated overall average annual primary productivity of about 100 g C m−2 y−1 

and up to 300 g C m-2 y-1 in shallow banks (Sakshaug et al. 2009). Typically, 

about 44-67% of primary production in the Barents Sea reaches the seafloor 

(Wassmann, Reigstad et al. 2006; Wassmann, Slagstad et al. 2006) while in the 

Chukchi Sea it is up to 70% (Walsh et al. 1989). Unlike the Chukchi Sea, the 

Barents Sea supports immense fisheries and a high density of cetaceans. Pelag-

ic foraging piscivores and nesting seabirds are twice as abundant in the Barents 

Sea than in the Chukchi Sea (Hunt et al. 2013). In the Barents Sea, seasonally 

resident cetaceans are four to five times more abundant than in the Chukchi Sea. 
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On the other hand, the density of pinnipeds and benthic-foraging whale species 

in the Chukchi is twice that of the Barents Sea, indicative of the Chukchi Sea be-

ing more of a benthic-driven system than the Barents Sea (Hunt et al. 2013). In-

deed, Chukchi soft sediment infaunal and epifaunal communities are among the 

most productive in the world, reaching up to 50-100 g C m-2 or up to ca. 4 kg wet 

wt m-2 (Grebmeier et al. 1988; Grebmeier et al. 2006b; Feder et al. 2007), while in 

the most productive areas of shallow banks in the Barents Sea the benthic fauna 

reaches up to 30 g C m-2 or 1.5 kg wet wt m-2 (Kędra et al. 2013).  

 

 

Fig. 2 (a) Current and (b) predicted food-web scenarios for the Arctic shelf, Marginal Ice Zone 
(MIZ) and Polar Front (PF), and the High Arctic with permanent ice cover. The size of the picture 

frame for (b) reflects the predicted changes of relative contribution of each area. 

Currently, the ice-edge is retreating northwards and in the near future, ice-free 

summers and seasonal ice cover in winter may become typical for the shelf seas 

(Fig. 2b). Increases in primary production and phytoplankton biomass are pre-

dicted, as well as have been measured, as a consequence of sea-ice retreat and 

temperature rise (Gradinger 1995; Arrigo et al. 2008; Arrigo & van Dijken 2011; 
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Wassmann & Reigstad 2011). Moreover, increased advection of Atlantic and Pa-

cific waters into the Arctic Basin in the last decade (Walczowski & Piechura 2006; 

Woodgate et al. 2006; Piechura & Walczowski 2009; Woodgate et al. 2010; 

Walczowski et al. 2012) resulted in a 30% local increase of total primary produc-

tivity due to a greater proportion of smaller boreal planktonic species (Leu et al. 

2011). Apart from quantitative changes in primary production, the quality and 

seasonality of primary production are expected to change because of the earlier 

onset of ice melt. Various stages of the reproductive cycle or increased activity of 

some Arctic benthic animals are timed to coincide with peak periods of organic 

matter deposition (Blake 1993; Renaud et al. 2007), so any change in seasonali-

ty, quantity or quality of food input may create a mismatch with faunal reproduc-

tive cycles (Renaud, Carroll et al. 2008). A shift from a benthic-oriented ecosys-

tem with relatively low zooplankton stocks and strong pelagic–benthic coupling to 

a system dominated by pelagic food webs has already occurred in the northern 

Bering Sea in 1970s and 1980s (Overland & Stabeno 2004; Grebmeier et al. 

2006b) and benthic productivity has been decreasing over the past two decades 

in the northern Bering and southern Chukchi seas (Moore et al. 2003; Grebmeier 

et al. 2006b; Grebmeier 2012). 

Loose ice pack—MIZ and PF 

A significant feature of the recent (2007–2012) decrease in ice extent has been 

the retreat of the ice edge away from the coast and continental shelves. One of 

the more obvious impacts has been the northward expansion and widening of the 

MIZ, a dynamic and biologically active band of sea-ice cover adjacent to the open 

ocean (Strong & Rigor 2013). MIZ width is a fundamental feature for polar eco-

system functioning and climate dynamics (Wadhams 2000). It is an interfacial 

region that forms at the boundary of open and frozen ocean and protects the sta-

ble morphology of the inner ice from wave penetration (Squire 2007). In the MIZ, 

interactions between sea-ice and the open sea result in modification of the prop-

erties of the ice compared to areas deeper within the pack (Weeks 2010). Signifi-

cant forcing that impacts the sea-ice in the MIZ results in varying surface rough-

ness (Gupta et al. 2014), which affects prevalent physical and biological process-

es in the MIZ, such as wave dynamics (Wadhams et al. 1988; Squire et al. 1995), 
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heat (Perovich et al. 1989), salt fluxes (McPhee et al. 2008) and floe size distribu-

tion (Lu et al. 2008). It can also create potential habitat for organisms inhabiting 

the ocean–ice system (e.g., Arctic cod [Fortier et al. 2006]). Properties of the MIZ 

relative to neighbouring ice pack can markedly affect the carbon cycle and be-

haviour of microorganisms and top-level predators (Dunbar & Leventer 1987; 

Arrigo et al. 2012). The MIZ has been a long-standing feature in many Arctic shelf 

seas, like in the Bering, Chukchi and Barents seas, but is a relatively new phe-

nomenon in higher latitude regions such as the deep Beaufort Sea and Canada 

Basin (Shimada et al. 2006). The MIZ is advancing poleward into regions where 

sea-ice has become increasingly younger and thinner at the beginning of the an-

nual melt (Strong & Rigor 2013). At the time of minimum sea-ice extent in Sep-

tember, the sea-ice edge is located over the deep Arctic Ocean, exposing large 

areas of previously permanently ice-covered waters, and MIZ-type conditions are 

becoming more prevalent in the High Arctic with the advancement of climate 

change.  

Loss of sea ice will likely change the amount and characteristics of primary 

production in the MIZ (Bluhm & Gradinger 2008; Fig. 2b). Increased summer sea-

ice melt will increase the overall extent of the MIZ over the shelves and lead to 

increased primary productivity (Anderson & Kaltin 2001). However, export fluxes 

largely depend on the coupling processes in the water column, including grazing, 

and therefore may not increase with warmer temperatures, especially in deep 

areas (Forest et al. 2010). Even if primary production increases, the fate of export 

fluxes will be different on Arctic shelves and over the deep Arctic Ocean (Lalande 

et al. 2014). It is likely that POC particulate organic carbon export will remain low 

above the central basins unless additional nutrients are supplied to surface wa-

ters (Codispoti et al. 2013; Lalande et al. 2014). Decreased export of diatoms, 

and dominance of coccolithophores was observed in Fram Strait during the warm 

period of 2005-07 (Bauerfeind et al. 2009; Lalande et al. 2013). Warmer water 

temperature also resulted in lower export fluxes of smaller zooplankton fecal pel-

lets either due to a shift in zooplankton community composition towards small-

sized zooplankton species or due to a shift in phytoplankton composition that af-

fected grazing and fecal pellet production (Lalande et al. 2013). However, over 

the shelves, increased primary productivity will likely supply more food to pelagic 
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and benthic consumers, while the low-productivity zone of the multiyear sea ice 

would shrink (Bluhm & Gradinger 2008). Sea-ice retreat off the shelves may re-

sult in upwelling of nutrients or planktonic prey from the basins onto the shelves 

(Carmack et al. 2004). Based on the inorganic carbon availability, Anderson & 

Kaltin (2001) proposed a possible increase of up to 50 g C m-2 integrated over the 

upper 100 m of the water column across the Eurasian Basin, mainly as a result of 

ice loss. Nevertheless, it is the availability of nutrients, mainly nitrogen and phos-

phorous, that ultimately determines the total amount of primary productivity pos-

sible in any given ocean (Codispoti et al. 2013). 

With reduced ice cover, ice-edge algal blooms will be displaced progressively 

northwards. Although benthic communities will still receive high-quality food in the 

short term, if the sea-ice edge retreats past the shelf break, shelf communities 

will no longer benefit from this early season food source (Renaud, Carroll et al. 

2008) which would result in increased food input to slope and deep-sea commu-

nities (Carmack & Chapman 2003). Since it is likely that at least a part of deep-

sea fauna originates from shelf species and a large overlap in taxa with Arctic 

shelf and deep sea taxa largely overlap currently exists (Bluhm, Ambrose et al. 

2011), some shelf species would be able to dwell in the deep sea. If shelf species 

were unable to leave the slopes or survive in slope or deep-sea habitats, many 

Arctic shelf–benthos taxa could become locally extinct (Renaud, Carroll et al. 

2008). Changes in under-ice community structure were noticed in the Eurasian 

basin in geographically close sampling locations collected within short time inter-

vals. Habitat partitioning between sympagic and pelagic species can be abrupt, 

creating small-scale patterns in the surface layer community according to sea-ice 

habitat conditions. The difference in ice coverage was accurately mirrored by a 

conspicuous dominance of the ice-associated amphipod Apherusa glacialis in ice 

covered waters, versus a dominance of the pelagic amphipod Themisto libellula 

in the surface community of ice-free waters (Koszteyn et al. 1995; Hop & Pavlova 

2008; David et al. 2015). 

Fronts are regions characterized by narrow bands of horizontal gradients in 

temperature, salinity, density and biological properties that separate broader are-

as of different vertical structure (Mann & Lazier 1996; Belkin et al. 2003). In the 

Barents Sea, the Polar Front (PF) separates warmer, more saline Atlantic waters 

in the south from colder, less saline Arctic water in the north (Loeng 1991). Fronts 
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can play a role in setting surface-layer properties by restratifying the surface layer 

(Timmermans & Winsor 2013) and thereby enhancing primary production. Fronts 

are known to support elevated biomasses of phytoplankton (Iverson et al. 1979), 

planktonic organisms (Basedow et al. 2014) and hyper-benthic communities 

(Dewicke et al. 2002) as well as bird and mammal aggregations (Bluhm et al. 

2007). However, a recent study of the PF in the Barents Sea found no stimulatory 

effect on this front on primary production, and this result is attributed to this front 

being weak in terms of density (Erga et al. 2014). A related study found high sec-

ondary production at the PF, but also in surrounding waters (Basedow et al. 

2014). Along with sea temperature rise and increased advection of Atlantic or 

Pacific waters into the Arctic Ocean, characteristics and location of PF are likely 

to change, influencing energy transfer to higher trophic levels. Northward dis-

placement of the PF in the Barents Sea was predicted from coupled biophysical 

model for a B2 IPCC (Intergovernmental Panel on Climate Change) scenario 

(Huse & Ellingsen 2008). Simulations showed that PF displacement in the Bar-

ents Sea had impact on the distribution and spawning of capelin (Mallotus 

villosus). The model predicted increased production and large interannual varia-

bility in the Barents Sea, characteristic for the MIZ (Wassmann et al. 2010).  

Permanent ice cover—high Arctic 

We have only limited knowledge of the energy flow and trophic structure of Arctic 

deep-sea regions. Very little is known about the linkages of the seasonal produc-

tion pulse to the deep-sea communities in the High Arctic or even about the 

deep-sea communities themselves. Therefore, many of the assumptions made 

for shelf Arctic systems may not be valid for the central Arctic. The few available 

studies from the central Arctic report extremely low species richness and biomass 

(Kröncke 1994, 1998) for meiofaunal (Vanreusel et al. 2000) and macrofaunal 

taxa (Kröncke 1994; Clough et al. 1997; Kröncke 1998; Deubel 2000; Bluhm et 

al. 2005; Bluhm et al. 2011), as well as a decrease in diversity with increasing 

water depth (Kröncke et al. 1998). Primary productivity in the central Arctic is lim-

ited by light and nutrients. Constrained by light, sea-ice algal primary production 

occurs only from May to August and may be further restricted by ice thickness 

and snow cover (Rysgaard et al. 2001; Nicolaus et al. 2012). Nutrient supply on 
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the other hand is constrained by stratification (Bourgain & Gascard 2011) and 

may not be sufficient in the central Arctic (Tremblay et al. 2008). Estimated aver-

age primary production in the ice-covered central Arctic is low, on the order of 1 

to 25 g C m−2 year−1 (Wheeler et al. 1997; Wassmann et al. 2010), with ice algae 

production contributing from 0 to 80% (Gosselin et al. 1997; Wassmann et al. 

2008). Bauerfeind et al. (2009) suggested very efficient processing of carbon 

within the water column, with <10 % of primary production reaching the seafloor 

in the deep sea (Fram Strait). Low primary production and export flux result in low 

abundance of suspension feeders in the deep basins (Kröncke et al. 1998) and a 

dominance of deposit feeders (van Oevelen et al. 2011). However, suspension 

feeders in the deep sea are known to utilize re-suspended material and directly 

compete with deposit feeders on the scarce food available (Lampitt et al. 1993; 

Iken et al. 2001). Although most benthic species in the deep sea seem to be able 

to cope with refractory material (van Oevelen et al. 2011), fresh phytodetritus 

may also arrive to the seafloor and support suspension feeders and surface de-

posit feeders such as cumaceans (Iken et al. 2005). Also, Boetius et al. (2013) 

reported fast response to Melosira falls of opportunistic deep-sea megafauna 

species, such as the holothurians Kolga hyalina and Elpidia heckeri, and the 

ophiurid Ophiostriatus striatus. Increased sediment respiration rates showed that 

sediment bacteria also profited from this ice-algae deposition (Boetius et al. 

2013). However, infauna were probably unable to utilize ice algae as infaunal 

burrows and tubes were rarely seen in the under-water video footage, although 

they are common in other deep-sea basins with seasonally sedimenting phyto-

plankton blooms (Boetius et al. 2013). In the Arctic deep-sea plains, benthic 

communities are constrained by strong seasonality and limited food supply (Iken 

et al. 2005); ice algae production related to permanent sea-ice cover and export 

fluxes of organic matter to the sea floor are therefore important in these ecosys-

tems. Benthic trophic pathways in the deep Arctic Ocean are longer than on the 

shelf region or in the temperate deep sea owing to the continuous recycling and 

thus isotopic enrichment of food particles in the benthic system, while a more di-

rect link to fresh phytodetritus exists in the pelagic system (Iken et al. 2005; 

Bergmann et al. 2009).  
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In the past, the central Arctic Ocean has been covered with multiyear ice, but 

the marked decline in multiyear ice (Maslanik et al. 2011) suggests that the re-

gion could be ice-free by the summer of 2040 (Polyakov et al. 2010). Moreover, 

according to the latest publications, the central Arctic Ocean is no longer covered 

with multiyear ice pack (Polyakov et al. 2012) while the remnant multiyear sea ice 

occurs along the north-west flank of the Canadian Arctic Archipelago, where it 

can drift southwards, out over the Southern Beaufort Sea and northwards (Barber 

et al. 2009). If we assume that areas formerly covered with thick multiyear ice will 

have a thinner ice cover, permitting higher primary production, we can project a 

higher annual primary production level due to light availability, provided nutrients 

are available, which may not be the case in the basins (Codispodi et al. 2013; 

Matrai et al. 2013). A massive under-ice bloom was reported recently from con-

solidated ice pack in the northern Chukchi Sea, with phytoplankton biomass be-

neath the ice being about fourfold greater than in open water (Arrigo et al. 2012). 

Similar massive blooms might be widespread in the Arctic Ocean, in relation to 

the lower nutrient levels available. Yet, More work is needed to determine the 

extent to which such blooms are controlled by thinning sea ice and proliferating 

melt pond fractions and how they affect marine ecosystems.  

Although higher light penetration will promote ice algal growth, low level of nu-

trients available and progressing climate warming may also reduce the algal 

growing season through increased thermal or haline stratification, limiting mixing 

and upward nutrient transport resulting in smaller export flux to the seafloor 

(Carmack & Wassmann 2006; Slagstad et al. 2010). In addition, if zooplankton 

abundance increases as warmer Atlantic and Pacific waters are transported into 

the Arctic Ocean (Hirche & Kosobokova 2007), the grazing pressure will in-

crease, leading to increased retention of organic carbon in the water column. 

Some studies suggest that the flux of ice-algae and ice-related particulate organic 

matter will decrease along with sea-ice retreat and loss of multiyear ice (Forest et 

al. 2010). This may lead to decreased carbon deposition at the deep seafloor to 

already food-limited fauna, but these shifts are not expected to be rapid (van 

Oevelen et al. 2011). Yet, lack of reliable baseline information makes predictions 

difficult and identification of change nearly impossible (Wassmann et al. 2011). 
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Gaps and recommendations 

Despite numerous recent studies conducted recently (Table 2, Fig. 1.), major 

gaps remain in the knowledge of general processes governing biodiversity, food-

web structure, trophic transfer efficiency and functioning of Arctic ecosystems. 

Since different regions of the Arctic have received varying levels of scientific at-

tention (Table 2, Fig. 2), these recommendations may not apply to the whole Arc-

tic and should be treated as more general statements. Given that these proc-

esses are not yet clearly quantified, any attempt to project changes that may oc-

cur in Arctic food webs in the future, such as that suggested in this review, should 

be taken cautiously. Currently, Most of the predictions are qualitative and biased 

towards conditions on the shelves, while quantitative ones remain scarce (but 

see Slagstad et al. 2010, 2011; Zhang et al. 2010; Popova et al. 2012). Since a 

lot of changes in the Arctic food webs are expected to be driven by a shift from 

decreasing sea-ice algae and an increase in pelagic production, observational, 

experimental and modelling approaches of the present-day coupling of these two 

production pathways in food webs should first be implemented, and subsequently 

combining different scientific methods will allow for the establishment of projec-

tion methodologies for Arctic ecosystems. 

To date, Large-scale studies of food webs across Arctic regions highlighting 

inherent differences among regions are still lacking. Although deep-sea areas are 

still under-sampled because of the difficulty in accessing field sites, and a consis-

tent sampling design does not exist Arctic-wide, the lack of sampling is not the 

main issue. Throughout the years and thanks to scientific programmes and re-

searchers’ efforts, data on the response of different benthic communities to cli-

mate change and on food webs have increased from multiple projects. These 

include HAUSGARTEN, the Alfred Wegener Institute’s long-term monitoring pro-

gramme in Fram Strait (Soltwedel et al. 2005), with data for more than 10 years, 

and the Distributed Biological Observatory (DBO), an international initiative in the 

Pacific Arctic (Grebmeier et al. 2010), with data over 30 years, including  time 

series from Long-term Census of the Arctic (RUSALCA) programme. While ef-

forts to sample the Arctic Ocean must and will continue, a primary ambition 

should therefore be to gather, combine and analyse existing information. Such 
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efforts have been undertaken recently regarding Arctic biodiversity (e.g., Bluhm, 

Ambrose et al. 2011; Gill et al. 2011; Piepenburg et al. 2011), food sources and 

trophic interactions, e.g., the Pacific Marine Arctic Regional Synthesis project 

(PacMARS), although consistent data on food webs (sensu species interactions) 

are still missing. Similar-format databases should be established, centralized and 

made easily accessible to scientists at the international level, in order to explore 

the issues mentioned in this review, such as the PacMARS effort. Then, to pro-

mote further consistency of data collection, a standardized data sampling proto-

col should be implemented when possible to facilitate data gathering and data set 

use. Designated sampling stations should be sampled throughout months and 

years to monitor seasonal and long-term changes in biodiversity (Gill et al. 2011). 

Apart from species identity, functional lifestyle and life-cycle traits should be re-

corded, which would allow detecting and monitoring changes in ecosystem func-

tioning (Cadotte et al. 2011). 

To complement field sampling and database design, empirical manipulations 

to be performed in situ, in several places in the Arctic, should be encouraged. 

Such studies should address quantitative aspects of the impact of global warming 

on food-web length and components, including primary production rates, grazing 

rates and growth rates at higher trophic levels, in order to estimate changes in 

trophic transfer efficiency in Arctic food webs. Also, Studies of diets relative to 

availability of different foods are also critical to food-web analyses, especially to 

predicting response to changing conditions. In situ and laboratory experiments 

could be complemented by use of numerical modelling. Trophic network model-

ling methods that are widely used in other ecosystems could be implemented in 

the Arctic to understand food-web structure, the effects of external threats (e.g., 

increased fisheries pressure, invasive species) on food-web dynamics, and to 

quantify energy transfers between trophic levels, in conjunction with empirical 

work (e.g., van Oevelen et al. 2011). Results can be subsequently used to fuel 

models (e.g., provide nutrient–phytoplankton–zooplankton model parameters). 

Since data are still lacking, this could be achieved by using well-established pre-

designed software able to deal with missing parameters such as Ecopath (Pauly 

et al. 2000), especially for fishery scenarios, and the linear inverse model pack-

age LIM in the R statistical software package (van Oevelen et al. 2010). These 
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models have the advantage of including both pelagic and benthic compartments 

and are able to quantify the strength of pelagic–benthic coupling. Although such 

models have been implemented for some Arctic regions (e.g., Trites et al. 1999; 

Pedersen & Zeller 2001; Aydin et al. 2002; Dommasnes et al. 2002; Whitehouse 

et al. 2014), they need to be updated, integrated and compared, especially after 

the recent environmental changes that have occurred in the Arctic. Stability 

analysis methods can also be coupled with the mass-balance modelling frame-

work to provide insights into Arctic food-web structure and intrinsic properties 

(Neutel et al. 2002). Such methods may comprise analyses of stable-states of 

population or community dynamics, and analyses of food-web properties through 

determination of eigenvectors, resilience and persistence levels, and equilibrium 

shifts. At the theoretical level, population, metapopulation, community and meta-

community dynamic models can be implemented to understand how intra- and 

interspecific interactions and connectivity affect diversity at different spatial 

scales, such as between the different Arctic regions and the surrounding oceans 

(Carr et al. 2011; Hardy et al. 2011). Predicted ice melt and changing hydrody-

namics may alter connectivity between distant Arctic populations, in turn affecting 

community composition and food-web structure. Such advances could provide 

valuable contributions to predicting future trends of biodiversity and food-web 

structure in the Arctic. 

Statistical modelling, particularly quantification of species–environment rela-

tionships at large scales, should be assessed once data are pooled across Arctic 

regions. The statistical methods developed to date and applied to different bio-

logical organisms are an efficient means to disentangle the effects of environ-

mental gradients (both in space and time) on community structure (Dray et al. 

2012). Even though these methods are often based on species, they can be ap-

plied to functional groups to assess trait–environment relationships, hence rein-

forcing the need to monitor species traits during field sampling. Since environ-

mental changes in the Arctic may affect species traits, the whole ecosystem func-

tioning may be altered, and studying functional traits is a good way to assess 

ecosystem functioning and trophic transfer efficiency (McGill et al. 2006; Cadotte 

et al. 2011). 
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Conclusions: winners and losers 

Currently Arctic marine ecosystems are currently subjected to accelerating cli-

mate warming and fast progressing sea-ice retreat. Although our knowledge of 

ecosystem functioning and processes still has significant gaps, and the scale and 

magnitude of climate change remain largely unknown, some qualitative predic-

tions on the fate of Arctic marine food webs are possible. In very general terms, 

among the “winners” will likely be boreal species as their populations tend to fol-

low increasing sea temperature by shifting their ranges northward (and likely los-

ing ground in the south), and pelagic species, mainly zooplankton, whose abun-

dance and biomass may increase with increasing water column primary produc-

tion related to more and earlier open water over the Arctic shelves. Pelagic feed-

ing animals, like some fish, marine mammals and seabirds may consequently 

increase in abundance. Species classified as generalists are more likely to adapt 

to new conditions than specialists.  

Groups that will likely be among the “losers” include Arctic species, especially 

those that are ice-dependent, as they will be most strongly affected by rising 

temperatures and diminishing habitat. Benthic species may decrease in biomass 

with increased pelagic grazing and recycling in the water column, which may lead 

to reduced amount or quality of organic matter settling from the water column to 

the seafloor. This will affect benthic feeding marine mammals and seabirds, 

whose foraging areas will become less productive and prey less available. Food 

webs will likely lengthen at the low trophic levels, lowering trophic transfer effi-

ciency and thereby lowering the percentage of primary production that reaches 

top predators. Since many species at the base of the Arctic food webs are sea-

ice dependent, the stability of food webs will likely be negatively affected in areas 

where trophic redundancy is low. Collaborative multidisciplinary research is nec-

essary if we are to fully understand the processes and linkages between Arctic 

marine environments and their associated food webs in the face of a changing 

North.  
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4 Synthesis 

The benthos constitutes an important component in Arctic ecosystems, and alt-

hough its relevance in ecosystem functioning and energy flow is generally 

acknowledged, studies linking benthic production patterns to ecosystem process-

es on large spatial scales are scarce. However, in the light of the substantial 

changes Arctic ecosystems are currently undergoing, exactly such large-scale 

assessments are urgently needed to build reliable carbon and food web models 

and to predict future scenarios. The present thesis tackled this challenge by esti-

mating macro- and megabenthic secondary production and functioning on a 

shelf- and basin-wide scale (4.1) and identifying the environmental drivers behind 

the observed patterns (4.2). Based on these results, a thorough literature review, 

and the comparison of ecosystem functioning in the Eurasian Arctic basin be-

tween 1991 and 2012, we discuss potential future scenarios and the role of mac-

ro- and megabenthic communities as indicators of environmental change in the 

Arctic (4.3). The last sub-section (4.4) is dedicated to the overall conclusions of 

this thesis and recommendations for future studies. 

4.1 Spatial and temporal patterns  

Secondary production of megafauna was significantly higher in the north-eastern, 

seasonally ice-covered regions of the Barents Sea shelf than in the south-

western, permanently ice-free areas (Manuscript I). In the Arctic deep-sea adjoin-

ing the Barents Sea shelf, macrobenthic secondary production decreased with 

increasing water depth, following the global pattern summarized in Cusson & 

Bourget (2005). Additionally, we detected substantial differences among regions, 

with highest P on the Yermak Plateau, a shallow, marginal plateau located 

northwest of the Spitsbergen shelf. Stations in this area showed comparable or 

even higher benthic secondary production than reported from some shallower 

regions at lower latitudes (see MS II for details). Lowest P was found in the deep 

Amundsen Basin. Albeit far north and distanced from more productive regions, 



 4           Synthesis 

 

180 
 

the secondary production on Lomonosov Ridge is slightly higher, compared to 

the low values at Nansen and Amundsen Basin. 

 

Fig. 7 Patterns of megabenthic secondary production on the Barents Sea shelf (a) and of 
macrobenthic secondary production in the Arctic deep sea (b). 

Significant differences in functioning were detected between shelf, slope and ba-

sin systems (Ms III). The BTA identified three characteristic communities in terms 

of functioning: a “flow or turbulence community” composed of sessile, stalked 

suspension feeders on the slope, a “soft bottom community” mainly composed of 

tube dwelling infauna taxa, and a “opportunistic community” dominated by large, 

mobile deposit feeding or scavenging taxa. High functional diversity was found on 

the Barents Sea shelf and on the Lomonosov Ridge, significantly lowest function-

al diversity was found in the deep Amundsen Basin.  

In the Nansen Basin, secondary production seems to have been stable over 

the last decades, but the trait composition changed substantially between 1991 

and 2012, with fauna shifting from a community dominated by mobile deposit 

feeders towards a sessile suspension feeding community. Secondary production 

in Amundsen Basin on the other hand was significantly higher in 2012 than in 

1991, but the trait composition stayed the same.  
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4.2 Environmental drivers  

On the Barents Sea shelf, six environmental parameters were identified to signifi-

cantly explain the observed pattern of higher benthic secondary production: tem-

perature, salinity, standard deviation of sea ice concentration, new primary pro-

duction (NPP), trawling impact and bottom current speed. Four parameters 

thereof (i.e. standard deviation of sea ice concentration, temperature, salinity, 

and NPP) are directly related to the marginal ice zone (MIZ) (Manuscript I). We 

conclude that – although overall primary production is reported to be lower in the 

ice-covered regions (Wassmann et al. 2006) – the tight pelagic-benthic coupling 

along the MIZ facilitates high benthic production. The southern permanently ice-

free areas, on the other hand, rather favor a pelagic food web (Tamelander et al. 

2006; Carroll and Ambrose 2012). Water depth was found to be the main driver 

of benthic secondary production in the adjacent Arctic deep sea (Manuscript II). 

This difference compared to the Barents Sea shelf relates to the fact that depth 

gradients from 500-4500 m are implying gradients in food input to the benthic 

communities. This correlation is related to the higher retention and reworking of 

particulate organic carbon (POC) in the water column and to the fact that the 

deepest stations in this study are also the most distant ones from productive shelf 

regions, thus benefitting only little from lateral advection. Temperature on the 

other hand had no significant impact in the Arctic deep sea, as temperatures be-

low a water depth of 800 m are relatively stable (Langehaug et al. 2012). But like 

on the shelf we identified sea ice concentration to explain the observed patterns 

in benthic secondary production. Significantly higher benthic secondary produc-

tion was observed at stations affected by the MIZ, indicating that the influence of 

ice-edge related higher production and tight pelagic-benthic coupling is still visible 

in water depths >2000 m.  

At Yermak Plateau, a deep-sea region influenced by the MIZ, we estimated a 

macrobenthic carbon demand that would require a gross primary production of 

30–80 g C m-2 y-1 (see Manuscript II for details). Primary production in a compa-

rable range is reported from productive Arctic shelf areas and regionally along the 

MIZ, but not from the central ice-covered Arctic, were values of <25 g C m-2 y-1 

are expected (Klages et al. 2004, Wassmann et al. 2010). In the MIZ of the Bar-

ents Sea shelf we assume a benthic carbon demand of potentially much more 
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than 70 g C m-2 y-1 (see Manuscript I and Kedra et al. 2013), although the mean 

new primary production estimated in these regions is only around 50 g C m-2 y-1 

(Wassmann et al. 2006). These comparable estimates of benthic carbon demand 

that exceed the primary production in the MIZ of an Arctic shelf and the adjacent 

deep-sea basin imply that sea ice associated primary production might be con-

siderably higher than previously anticipated. However, also advection of organic 

material from areas of high production has to be considered; especially the deep-

sea regions bordering the productive Barents Sea shelf could benefit from such 

shelf-basin interactions (Piepenburg 2005; Grebmeier et al. 2006 ).  

Our results of benthic secondary production from the Barents Sea shelf and 

the Amerasian deep-sea Basin corroborate the results of previous studies that 

identified food input (and tight pelagic-benthic coupling) as the main driver of ben-

thic community structure (Piepenburg 2005). According to these results also the 

BTA detected changes in functioning along a spatial gradient of decreasing food 

supply (Manuscript III). The functional traits identified to explain most of the vari-

ances among regions were body form, morphology, bioturbation and living habit. 

All of these traits also relate to food input and feeding strategy of benthic taxa.  

4.3 Future challenges 

The global ocean will continue to warm during the 21st century. Year round reduc-

tion in Arctic sea ice is projected and a nearly ice-free Arctic Ocean in summer is 

likely before mid-century (Fig. 8) (IPCC 2015). Less ice-covered area will result in 

a longer productive period and in an increase in overall primary production 

(Arrigo et al. 2008), although due to enhanced stratification and reduced vertical 

mixing, surface production could become nutrient limited (Sarmiento et al. 2004; 

Behrenfeld et al. 2006). The associated fluxes to the benthos will be less episod-

ic, and ice algae might loose importance also in higher latitudes (Forest et al. 

2010).  
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Fig. 8 CMIP5 multi model simulated time series form 1950 to 2100 for (a) change in global annual 
mean surface temperature relative to 1986-2005 and (b) Northern Hemisphere September sea ice 
extent (5-year running mean). Time series of projections and a measure of uncertainty (shading) 
are shown for scenarios RCP2.6 (blue) and RCP8.5 (red). Black (grey shading) is the modelled 

historical evolution using historical reconstructed forcings. The mean and associated uncertainties 
averaged over 2081−2100 are given for all RCP scenarios as colored vertical bars. The numbers 
of CMIP5 models used to calculate the multi-model mean is indicated. For sea ice extent (b), the 
projected mean and uncertainty (minimum-maximum range) of the subset of models that most 
closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice is 
given (number of models given in brackets). For completeness, the CMIP5 multi-model mean is 
also indicated with dotted lines. The dashed line represents nearly ice-free conditions (i.e., when 

sea ice extent is less than 106 km2 for at least five consecutive years) (IPCC, 2013). 

Arctic shelves that had historically a food web structure more in favor of the ben-

thic communities may begin to favor the pelagic trophic system (Gulliksen et al 

2009; Carroll & Ambrose 2012) (Manuscript IV). Such a shift already occurred in 

the Bering Sea in the 1970ies, which changed from a benthic orientated system 

with tight pelagic-benthic coupling towards a system dominated by a pelagic food 
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web; and benthic productivity has reportedly decreased since then (Grebmeier et 

al. 2006b). The high secondary production in areas influenced by the MIZ on the 

Barents Sea shelf implies that the future benthic communities will be significantly 

impoverished in terms of secondary production. As the benthic compartment is of 

crucial importance in the energy flow of Arctic shelves, these changes will have 

cascading effects through the entire food web. Especially benthic feeding marine 

mammals and seabirds will be affected and are listed among the “losers” in the 

future scenario of ice-free Arctic shelves (Fig. 9b).  

 

Fig. 9 (a) Current and (b) predicted food-web scenarios for the Arctic shelf, Marginal Ice Zone 
(MIZ) and Polar Front (PF), and the High Arctic with permanent ice cover. The size of the picture 

frame for (b) reflects the predicted changes of relative contribution of each area (Kedra et al. 
2015; Manuscript IV). 

Benthic systems of the Arctic deep-sea on the other hand might benefit at least 

for some decades, as the MIZ – in previous decades not reaching the higher lati-

tudes – now passes and assumingly supplies them with more fresh organic input 

(Fig. 9b). Our results support this assumption as we detected higher benthic sec-

ondary production in the Amundsen Basin 2012 compared to 1991, indicating 
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already increased fluxes of POC to the benthos (Fig. 10). Also the functional di-

versity increased in Amundsen Basin 2012 – an indication for a higher functional 

redundancy than in 1991. The different functioning in Nansen Basin 2012 com-

pared to 1991 equally points in that direction. The community shifted towards a 

sessile suspension feeding community, indicating that enough food input might 

be available to support a sessile life style.  

 

Fig. 10 Sample stations from Nansen and Amundsen Basin in 1991 (yellow) and 2012 (green). 
The red line indicates the minimum sea ice extent of the year 1991. Sea ice concentration of the 

sea ice minimum in the year 2012 is given with dark red indicating high, and blue-green indicating 
very low sea ice concentration (Spreen et al. 2008) (Manuscript III). 
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4.4 Conclusions and outlook 

Benthic secondary production and ecological functioning were evaluated for the 

first time on an Arctic shelf and basin-wide scale, contributing to a better under-

standing of the Arctic energy flow and providing a valuable input in prospective 

Arctic carbon and food web models. We detected significant differences within 

and between the compared regions and identified food input to be the main driver 

of the observed patterns in Arctic benthic systems. Due to the associated tight 

pelagic-benthic coupling the MIZ was identified as a zone of crucial importance 

for benthic energy flow, for both shelf and deep-sea systems. In the light of ongo-

ing climate warming and sea ice decrease, Arctic shelf systems might face dras-

tic changes, with a shift from benthos dominated food webs towards food webs 

more in favor of pelagic production. Deep sea benthic communities on the hand 

could benefit form the new proximity to the MIZ and associated food fluxes. The 

comparison of macrobenthic functioning at stations sampled recently with sta-

tions sampled 20 years ago indicates that functional changes are already hap-

pening.  

Based on the results of this and other recent studies we can make qualitative 

predictions regarding the fate of Arctic benthic ecosystems, but we are still facing 

significant knowledge gaps. Integrated approaches are necessary to sufficiently 

explore energy flow through the Arctic benthic ecosystems and to predict reliable 

future scenarios. Such approaches include sampling of all benthic size compart-

ments at representative locations of Arctic shelves, slopes and basins, with spe-

cial emphasis on areas that are already experiencing changes in sea ice cover, 

e.g. the eastern Arctic Basins (see Fig. 10). A focus should be set on the use of 

traditional sampling gear and procedure, to ensure comparability to historic da-

tasets. Data mining should be continued and prosecuted on a collaborative base 

to enhance our knowledge about the “pre-change” system state (Wassmann et 

al. 2011a). Here focus should be set on regions which are currently blind spots in 

terms in benthic research, be it due to inaccessibility of these regions (e.g. the 

Canadian Archipelago), or due to international data policy (e.g. the Kara Sea, 

East Siberian Sea) (see Manuscript IV). In addition, the methods successfully 

applied in this thesis, i.e. the geostatistical analysis of benthic secondary produc-

tion and biological trait analysis (BTA), should be carried forward in Arctic benthic 
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research. Especially the BTA proved to be a promising tool to highlight early 

changes in benthic functioning. The combined effort of comprehensive data ac-

quisition and the methods employed here will improve our predictions of function-

ing and energetics of the future Arctic biosphere.  
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7 Appendix 

Appendix of Mansucript III: Fuzzy coded biological traits of Arctic macrofauna. Explanations of 

traits and modalities can be found in table 2, Manuscript III. 
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 S 
S 

LD BF2 Mor H LH Mob Mov FH AT BT 
 1 2 3 1 2 3 4 5 1 2 3 4 5 6 1 2 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3 4 5 1 2 1 2 3 4 

Acmaea 0 2 1 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 1 3 0 0 1 2 3 0 0 0 
Actiniaria 0 1 3 0 3 1 2 2 0 0 0 2 1 2 0 3 2 0 0 0 0 2 1 0 2 0 0 0 0 0 0 1 3 1 3 0 0 0 3 

Aglaophamus malmgreni 0 0 3 0 3 1 0 0 3 0 0 0 0 0 2 1 0 0 2 0 3 0 0 3 0 3 1 0 0 0 0 1 3 1 3 1 2 0 0 

Akanthophoreus gracilis 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Alcyonium 0 0 3 0 3 0 0 3 0 1 0 0 1 1 0 3 3 0 0 0 0 3 0 0 3 0 0 0 2 0 0 1 2 2 2 0 0 0 3 

Ambasia atlantica 0 3 0 3 0 1 2 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 3 1 2 2 3 0 0 0 

Ampelisca macrocephala 0 3 0 3 0 1 2 0 0 0 3 0 0 0 2 1 0 3 0 0 1 3 2 0 2 0 1 0 2 2 0 0 0 3 0 3 0 0 0 

Ampharete finmarchica 0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 0 3 0 0 0 3 0 0 0 3 0 

Ampharetidae 0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 0 3 0 0 0 3 0 0 0 3 0 

Amphilochus 3 0 0 3 0 1 2 0 0 0 3 0 0 0 1 3 0 0 0 0 3 0 0 3 0 0 3 0 1 2 0 1 0 3 0 3 0 0 0 

Amphipoda 1 2 2 3 0 1 2 0 0 0 3 0 0 0 2 2 0 2 2 0 2 2 2 2 2 2 2 0 2 2 0 2 2 2 2 2 1 1 0 

Ampithoe 1 2 0 3 0 1 2 0 0 0 3 0 0 0 2 1 0 3 0 1 0 2 1 0 1 0 3 0 0 0 3 0 0 1 0 1 0 0 0 

Anobothrus gracilis 0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 1 3 0 0 0 3 0 0 0 3 0 

Anobothrus laubieri 1 3 0 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 1 3 0 0 0 3 0 0 0 3 0 

Anthozoa 0 1 3 0 3 1 2 2 0 0 0 2 1 2 0 3 3 0 0 0 0 3 0 0 3 0 0 0 0 0 0 1 3 1 3 0 0 0 3 

Aphelochaeta 0 1 2 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 2 0 2 2 1 0 2 1 1 0 1 3 0 3 3 3 0 3 0 0 0 

Apistobranchus tullbergi 1 2 1 0 3 3 0 0 3 0 0 0 0 0 1 3 0 0 0 0 3 0 1 3 0 2 2 0 0 3 0 0 0 3 0 2 1 1 0 

Aponuphis bilineata 0 0 3 3 1 3 0 0 0 3 0 0 0 0 1 2 0 2 0 1 0 1 2 0 0 0 3 0 0 1 0 3 1 3 1 3 0 0 0 

Aricidea 1 3 0 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 0 1 2 0 3 0 0 0 3 0 0 0 3 0 0 1 2 0 

Aricidea suecica 1 3 0 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 0 1 2 0 3 0 0 0 3 0 0 0 3 0 0 1 2 0 

Astarte montagui 0 3 0 0 3 0 2 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 3 1 0 2 0 3 0 0 0 0 3 0 3 0 0 0 

Asychis biceps 0 1 3 3 0 3 0 0 0 3 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 0 0 0 3 0 0 0 3 0 0 0 3 0 

Axinopsida orbiculata 0 3 0 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 2 0 1 2 1 1 0 2 1 0 1 3 0 0 0 3 0 0 0 3 0 

Bathyarca 0 1 3 0 3 0 2 2 0 0 3 0 0 0 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Bathyarca glacialis 0 1 3 0 3 0 2 2 0 0 3 0 0 0 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Bivalvia 1 2 2 0 3 0 3 0 0 0 3 0 0 0 2 2 2 0 2 0 2 2 2 2 2 2 2 0 2 2 0 0 1 3 1 2 2 2 0 

Bowerbankia 1 2 2 0 3 0 1 2 2 0 0 0 0 1 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Brachydiastylis resima 2 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 2 1 1 0 1 2 1 1 3 0 0 0 3 0 3 0 0 0 

Brada villosa 0 0 3 3 0 1 0 0 3 0 0 0 0 0 1 2 0 0 1 0 3 1 1 2 0 1 3 0 0 3 0 0 0 3 0 3 0 0 0 

Byblis gaimardii 0 2 1 3 0 1 2 0 0 0 3 0 0 0 2 1 0 3 0 0 1 3 2 0 2 0 1 0 2 2 0 0 0 3 0 3 0 0 0 

Calathura norvegica 0 3 0 3 0 2 1 0 0 0 3 0 0 0 3 0 0 0 1 0 2 0 1 2 0 1 3 0 0 3 0 0 0 3 0 1 2 0 0 

Campylaspis rubicunda 2 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Campylaspis verrucosa 2 3 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 2 1 0 0 0 3 0 3 0 0 0 
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 S 
S 

LD BF2 Mor H LH Mob Mov FH AT BT 
 1 2 3 1 2 3 4 5 1 2 3 4 5 6 1 2 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3 4 5 1 2 1 2 3 4 

Capitella    0 1 2 1 2 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 1 2 0 0 3 0 0 0 3 0 0 0 3 0 0 1 3 0 

Capitellidae 0 1 2 1 2 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 1 2 0 0 3 0 0 0 3 0 0 0 3 0 0 1 3 0 

Caudofoveata 1 2 2 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 2 0 2 2 0 2 2 0 1 3 0 0 1 3 0 3 0 0 0 

Chaetoderma 1 2 2 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 2 0 2 2 0 2 2 0 1 3 0 0 1 3 0 3 0 0 0 

Chaetozone 0 1 2 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 2 0 1 2 1 0 2 1 1 0 1 3 0 0 0 3 0 3 0 0 0 

Chaetozone setosa 0 1 2 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 2 0 1 2 1 0 2 1 1 0 1 3 0 0 0 3 0 3 0 0 0 

Chelator 2 1 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 2 0 1 0 0 3 0 2 2 1 0 3 0 0 0 3 0 3 1 0 0 

Chone duneri 1 2 0 1 2 0 0 3 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 3 1 0 0 0 3 0 1 0 0 2 

Cirratulidae 0 1 2 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 2 0 1 2 1 0 2 1 1 0 1 3 0 0 0 3 0 3 0 0 0 

Cirratulus 0 1 2 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 2 0 1 2 1 0 2 1 1 0 1 3 0 0 0 3 0 3 0 0 0 

Cleonardo appendiculatus 1 2 0 3 0 1 2 0 0 0 3 0 0 0 2 1 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 3 0 0 0 

Cossura longocirrata 0 3 0 2 1 1 0 0 3 0 0 0 0 0 2 1 0 0 0 0 3 0 0 3 0 1 2 0 0 3 0 0 0 3 0 3 0 0 0 

Ctenodiscus crispatus 0 1 3 0 3 2 1 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 2 0 0 1 

Cuspidaria 0 3 0 0 3 0 3 0 0 0 3 0 0 0 3 1 0 0 3 0 0 3 1 0 0 3 0 0 0 0 0 0 3 0 3 0 0 3 0 

Cylichna 1 3 0 3 0 2 1 0 0 0 3 0 0 0 3 0 0 0 0 0 3 0 0 3 0 3 0 0 0 0 0 1 3 1 3 3 0 0 0 

Dacrydium vitreum 0 1 3 0 3 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 1 2 0 0 3 0 3 0 0 0 0 3 0 3 0 0 0 

Diastylis laevis 1 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Diastylis lucifera 1 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Diastylis scorpioides 1 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Diastylis tumida 1 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Diastyloides biplicatus 1 2 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Dipolydora caulleryi 1 2 1 0 3 3 0 0 3 0 0 0 0 0 2 1 0 0 2 0 2 0 2 2 0 2 2 0 2 2 0 0 0 3 0 2 0 0 0 

Dorvillea rubrovittata 0 3 0 0 3 3 0 0 3 0 0 0 0 0 1 3 0 0 0 0 3 0 0 3 0 0 3 0 0 1 0 1 3 1 2 2 0 0 1 

Edwardsia 0 1 2 0 3 0 2 2 0 0 0 0 0 3 0 3 2 0 1 0 0 2 1 0 2 1 0 0 0 0 0 1 3 1 3 1 0 0 2 

Elpidia glacialis glacialis 0 0 3 0 3 0 3 0 2 0 2 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 1 0 0 0 

Elpidia heckeri 0 0 3 0 3 0 3 0 2 0 2 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 1 0 0 0 

Ennucula tenuis 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

Eteone longa 0 0 3 0 3 3 0 0 3 0 0 0 0 0 2 1 0 0 0 0 3 0 0 3 0 1 3 0 0 0 0 1 3 1 3 3 0 0 0 

Euchone 0 1 2 1 2 0 0 3 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 3 1 0 0 0 3 0 1 0 0 2 

Euclymene 0 0 3 3 0 1 0 0 0 3 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 0 0 0 3 0 0 0 3 0 0 0 3 0 

Eudorella truncatula 2 1 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Eurycope 1 2 0 3 0 2 1 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 1 0 3 0 0 0 3 0 3 0 0 0 

Galathowenia fragilis 0 1 2 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 1 3 0 0 0 3 0 1 0 0 0 



7  Appendix 
 

200 
 

 S 
S 

LD BF2 Mor H LH Mob Mov FH AT BT 
 1 2 3 1 2 3 4 5 1 2 3 4 5 6 1 2 1 2 3 4 5 1 2 3 1 2 3 4 1 2 3 4 5 1 2 1 2 3 4 

Galathowenia oculata 0 1 2 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 1 3 0 0 0 3 0 1 0 0 0 

Gastropoda 1 2 2 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 2 2 2 2 2 2 3 0 0 0 

Gattyana cirrhosa 0 0 3 1 2 1 0 0 2 1 0 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 0 3 0 3 3 0 0 0 

Geodia phlegraei 0 1 3 0 3 0 0 3 0 3 0 0 0 3 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Glyphanostomum pallescens 0 1 2 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 2 2 0 0 0 3 0 0 0 3 0 

Gnathia 3 1 0 3 0 2 1 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 2 0 0 1 3 0 3 0 0 0 

Golfingia 0 1 3 0 3 3 0 0 1 2 0 0 0 0 3 0 0 0 0 0 3 2 1 0 1 1 2 0 0 3 0 0 0 3 0 2 1 0 0 

Golfingia (Golfingia) margaritacea 0 1 3 0 3 3 0 0 1 2 0 0 0 0 3 0 0 0 0 0 3 2 1 0 1 1 2 0 0 3 0 0 0 3 0 2 1 0 0 

Halice 0 3 0 3 0 1 2 0 0 0 3 0 0 0 3 0 0 0 1 0 2 1 1 2 0 2 1 0 0 3 0 0 0 3 0 1 2 0 0 

Halice abyssi 0 3 0 3 0 1 2 0 0 0 3 0 0 0 3 0 0 0 1 0 2 1 1 2 0 2 1 0 0 3 0 0 0 3 0 1 2 0 0 

Haploops 0 3 0 3 0 1 2 0 0 0 3 0 0 0 2 1 0 3 0 0 1 3 2 0 2 0 1 0 2 2 0 0 0 3 0 3 0 0 0 

Harpinia  1 2 0 3 0 1 2 0 0 0 3 0 0 0 2 1 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 3 0 0 0 

Henricia 0 0 3 0 3 2 1 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 2 1 0 0 1 3 0 3 0 0 0 

Hesionidae 0 1 2 1 2 1 0 0 2 1 0 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 0 0 1 0 1 2 1 3 2 0 0 1 

Heteromastus filiformis 0 0 3 1 2 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 1 2 0 0 3 0 0 0 3 0 0 0 3 0 0 1 3 0 

Hippomedon 0 3 0 3 0 1 2 0 0 0 3 0 0 0 2 1 0 0 2 0 2 0 0 3 0 2 2 0 0 2 0 2 0 3 0 3 0 0 0 

Hydrozoa 0 1 3 0 3 1 2 2 0 0 0 2 1 2 0 3 3 0 0 0 0 3 0 0 3 0 0 0 0 0 0 1 3 1 3 0 0 0 3 

Ischyrocerus anguipes 1 2 0 3 0 1 2 0 0 0 3 0 0 0 3 0 0 3 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 3 0 0 0 

Isopoda 2 1 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 0 0 2 0 0 2 0 1 3 1 0 3 0 0 0 3 0 3 0 0 0 

Lagis koreni 0 1 2 0 3 3 0 0 2 2 0 0 0 0 3 0 0 3 0 1 0 3 1 0 2 1 1 0 0 3 0 0 0 3 0 0 0 3 0 

Langerhansia cornuta 0 2 1 1 2 1 0 0 3 0 0 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 1 0 0 3 1 3 3 0 0 0 

Laonice 0 0 3 0 3 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 1 0 0 2 2 0 0 0 3 0 0 0 3 0 

Laonice sarsi 0 0 3 0 3 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 1 0 0 1 3 0 0 0 3 0 0 0 3 0 

Laonome kroyeri 0 1 2 1 2 0 0 3 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 3 1 0 0 0 3 0 1 0 0 2 

Leitoscoloplos 0 0 3 1 2 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 1 2 0 0 3 1 0 0 3 0 0 0 3 0 0 1 3 0 

Leptognathia breviremis 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Leptognathiidae   3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Leucon 3 0 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Leucon (Leucon) acutirostris 3 0 0 3 0 2 1 0 0 0 3 0 0 0 2 1 0 0 1 0 3 0 0 3 0 1 3 1 1 2 0 0 0 3 0 3 0 0 0 

Levinsenia gracilis 0 2 1 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 0 1 2 0 3 1 0 0 3 0 0 0 3 0 0 1 2 0 

Lumbriclymene 0 0 3 3 0 1 0 0 0 3 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 0 0 0 3 0 0 0 3 0 0 0 3 0 

Lumbrineris fragilis 0 0 3 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 0 0 3 0 1 2 0 2 1 0 0 0 0 1 3 1 3 1 1 0 0 

Lumbrineris magnidentata 0 0 3 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 0 0 3 0 1 2 0 2 1 0 0 0 0 1 3 1 3 1 1 0 0 
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Lumbrineris scopa 0 0 3 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 0 0 3 0 1 2 0 2 1 0 0 0 0 1 3 1 3 1 1 0 0 

Lunatia 1 2 3 3 0 0 2 0 0 0 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 3 2 0 0 0 0 0 3 0 3 3 0 0 0 

Lysianassidae 0 3 0 3 0 1 2 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 1 0 3 1 3 1 3 0 0 0 

Lysianassoidea 0 3 0 3 0 1 2 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 1 0 3 1 3 1 3 0 0 0 

Lysippe fragilis 1 3 0 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 1 3 0 0 0 3 0 0 0 3 0 

Macoma calcarea 0 0 3 0 3 2 1 0 0 0 0 0 0 0 3 0 0 0 2 0 2 1 2 1 0 2 1 0 2 2 0 0 0 3 0 3 0 0 0 

Magelona 0 0 3 0 3 3 0 0 3 0 0 0 0 0 1 2 0 0 0 0 3 0 0 3 0 1 3 0 1 3 0 0 0 3 0 3 0 0 0 

Maldane sarsi 0 0 3 3 0 1 0 0 0 3 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 0 0 0 3 0 0 0 3 0 0 0 3 0 

Melinnopsis somovi 0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 0 3 0 0 0 3 0 0 0 3 0 

Melphidippidae 2 1 0 3 0 1 2 0 0 0 3 0 0 0 1 3 0 0 0 0 3 3 1 0 3 0 1 0 3 0 0 0 0 3 0 3 0 0 0 

Minuspio (Prionospio) cirrifera 0 2 2 0 3 3 0 0 3 1 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 1 0 1 3 0 0 0 3 0 0 0 3 0 

Munna 3 0 0 3 0 2 1 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 0 0 3 0 3 0 0 0 

Munnopsidae 3 1 0 3 0 2 1 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 1 0 3 0 0 0 3 0 3 0 0 0 

Musculus niger 0 1 3 0 3 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 1 2 0 0 3 0 3 0 0 0 0 3 0 3 0 0 0 

Mya truncata 0 1 3 0 3 2 1 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 1 2 0 0 3 0 0 0 0 3 0 3 0 0 0 

Myriochele heeri 0 2 1 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 2 2 0 0 0 3 0 1 0 0 0 

Myriotrochus 0 0 3 0 3 0 3 0 1 0 2 0 0 0 3 0 0 0 0 0 3 0 0 3 0 1 3 0 0 3 0 0 0 3 0 1 3 1 0 

Myriotrochus rinkii 0 0 3 0 3 0 3 0 1 0 2 0 0 0 3 0 0 0 0 0 3 0 0 3 0 1 3 0 0 3 0 0 0 3 0 1 3 1 0 

Mysida  3 0 0 3 0 1 0 0 0 0 3 0 0 0 1 3 0 0 1 0 3 0 0 3 0 1 2 1 2 1 0 0 1 3 1 3 0 0 0 

Nannoniscus 3 1 0 3 0 2 1 0 0 0 3 0 0 0 3 0 0 2 2 0 0 2 1 0 0 2 1 0 0 3 0 0 0 3 0 1 2 1 0 

Nematoda 3 0 0 3 0 3 0 0 3 0 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 1 1 3 1 3 0 0 0 

Nemertea 0 0 3 0 3 3 0 0 3 0 0 0 0 0 2 1 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 2 3 2 3 3 0 0 0 

Nephtys ciliata 0 0 3 0 3 1 0 0 3 0 0 0 0 0 2 1 0 0 2 0 3 0 0 3 0 3 1 0 0 0 0 1 3 1 3 1 2 0 0 

Nephtys paradoxa 0 0 3 0 3 1 0 0 3 0 0 0 0 0 2 1 0 0 2 0 3 0 0 3 0 3 1 0 0 0 0 1 3 1 3 1 2 0 0 

Nicomache lumbricalis 0 0 3 3 0 1 0 0 0 3 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 0 0 0 3 0 0 0 3 0 0 0 3 0 

Nothria conchylega 0 0 3 3 1 3 0 0 0 3 0 0 0 0 1 2 0 2 0 1 0 1 2 0 0 0 3 0 0 1 0 3 1 3 1 3 0 0 0 

Notomastus latericeus 0 0 3 1 3 3 0 0 3 1 0 0 0 0 3 0 0 1 3 0 0 1 2 0 0 3 0 0 0 3 0 0 0 3 0 0 1 3 0 

Nuculana pernula 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

Oenopota 0 3 1 3 0 1 2 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 1 3 1 3 3 0 0 0 

Ophelina 0 2 1 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 1 0 0 3 0 2 1 0 0 3 0 0 0 3 0 3 0 0 0 

Ophelina abranchiata 0 2 1 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 1 0 0 3 0 2 1 0 0 3 0 0 0 3 0 3 0 0 0 

Ophelina cylindricaudata 0 2 1 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 1 0 0 3 0 2 1 0 0 3 0 0 0 3 0 3 0 0 0 

Ophiocten sericeum 0 1 3 0 3 2 1 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 2 0 2 0 3 0 2 0 0 1 
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Ophiura  0 1 3 0 3 2 1 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 2 0 2 0 3 0 2 0 0 1 

Ophiura robusta 0 1 3 0 3 2 1 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 2 0 2 0 3 0 2 0 0 1 

Owenia fusiformis 0 1 2 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 2 2 0 0 0 3 0 1 0 0 0 

Paraonis 0 2 1 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 3 0 0 0 1 2 0 3 1 0 0 3 0 0 0 3 0 0 1 2 0 

Phascolion (Phascolion) strombus 
strombus 

0 2 2 0 3 3 0 0 1 2 0 0 0 0 3 0 0 0 0 0 3 2 1 0 1 1 2 0 0 3 0 0 0 3 0 2 1 0 0 

Pherusa plumosa 0 0 3 3 0 1 0 0 3 0 0 0 0 0 1 2 0 0 1 0 3 1 1 2 0 1 3 0 0 3 0 0 0 3 0 3 0 0 0 

Philine 0 3 0 3 0 1 2 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 3 0 1 3 0 0 0 0 1 3 1 3 3 0 0 0 

Pholoe inornata 1 2 0 1 2 3 0 0 2 1 0 0 0 0 3 0 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 1 3 1 3 2 0 0 0 

Photis longicaudata 2 2 0 3 0 1 2 0 0 0 3 0 0 0 3 0 0 3 0 0 0 3 0 0 3 0 1 0 2 2 0 0 0 3 0 3 0 0 0 

Phyllodoce groenlandica 0 0 3 0 3 3 0 0 3 0 0 0 0 0 2 1 0 0 0 0 3 0 0 3 0 1 3 0 0 0 0 1 3 1 3 3 0 0 0 

Poecilochaetus 0 0 3 0 3 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 2 1 0 0 2 2 0 0 0 3 0 2 0 1 0 

Polycirrus 0 0 3 3 0 3 0 0 3 1 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 1 0 1 3 0 0 0 3 0 0 0 3 0 

Polyplacophora  0 3 2 0 3 1 2 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 1 3 0 0 1 3 0 0 0 3 

Porifera 0 1 3 0 3 0 0 3 0 3 0 0 0 3 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Pourtalesia jeffreysi 0 0 3 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 2 0 1 0 0 3 0 3 1 0 0 3 0 0 0 3 0 1 2 0 0 

Priapulus caudatus 0 0 3 0 3 3 0 0 2 0 1 0 0 0 3 0 0 0 2 0 1 0 2 1 0 2 1 0 0 0 0 2 3 3 1 3 0 0 0 

Prionospio steenstrupi 0 2 2 0 3 3 0 0 3 1 0 0 0 0 3 0 0 3 0 0 0 2 1 0 2 1 1 0 0 3 0 0 0 3 0 0 0 3 0 

Proclea malmgreni 0 2 1 3 0 3 0 0 3 1 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 1 0 1 3 0 0 0 3 0 0 0 3 0 

Protis arctica 0 2 1 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Protomystides 0 2 1 0 3 3 0 0 3 0 0 0 0 0 2 1 0 0 0 0 3 0 0 3 0 1 3 0 0 0 0 1 3 1 3 3 0 0 0 

Pseudosphyrapus anomalus 2 1 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Pseudotanaidae 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Pseudotanais 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Pycnogonida  0 2 1 3 0 1 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 1 3 0 3 0 0 0 3 

Radiella hemisphaerica 0 2 2 0 3 2 2 0 0 0 0 0 1 0 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Samytha sexcirrata 0 2 1 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 0 3 0 0 0 3 0 0 0 3 0 

Scalibregma inflatum 0 1 2 2 1 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 1 0 0 3 0 3 1 0 0 3 0 0 0 3 0 0 2 1 0 

Scolelepis 0 0 3 0 3 3 0 0 3 0 0 0 0 0 3 0 0 0 2 0 2 0 1 2 0 2 2 0 1 3 0 0 0 3 0 1 1 3 0 

Scopelocheirus 0 3 0 3 0 1 2 0 0 0 3 0 0 0 0 3 0 0 0 0 3 0 0 3 0 0 3 0 0 0 0 2 2 3 2 1 0 0 3 

Siboglinidae  0 0 3 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 0 0 2 2 0 0 0 3 0 0 0 0 3 

Siboglinum 0 0 3 0 3 2 0 1 2 1 0 0 0 0 1 2 0 3 0 0 0 2 1 0 3 0 1 0 2 2 0 0 0 3 0 0 0 0 3 

Sphaerodorum 0 0 3 2 1 1 0 0 3 0 0 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 3 0 0 0 

Sphaerodorum gracilis 0 0 3 2 1 1 0 0 3 0 0 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 0 0 3 0 0 0 3 0 3 0 0 0 
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Spiochaetopterus typicus 0 0 3 0 3 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 1 1 0 2 2 0 0 0 3 0 0 0 3 0 

Spiophanes kroyeri 0 1 3 0 3 3 0 0 3 1 0 0 0 0 3 0 0 3 0 0 1 2 1 0 0 2 1 0 0 3 0 0 0 3 0 0 0 3 0 

Stenothoidae 3 0 0 3 0 1 2 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 0 0 2 0 2 1 3 1 3 0 0 0 

Stephanoscyphus 0 1 3 0 3 0 0 3 0 0 3 0 0 2 0 3 3 0 0 0 0 3 0 0 3 0 0 0 1 0 0 1 2 2 2 0 0 0 3 

Tanaidacea 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 2 2 0 2 1 2 1 0 2 2 0 2 2 0 0 0 3 0 3 0 0 0 

Tentorium semisuberites 0 1 3 0 3 0 0 3 0 3 0 0 0 3 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Terebellidae 0 1 2 3 0 3 0 0 3 1 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 1 0 1 3 0 0 0 3 0 0 0 3 0 

Terebellides  0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 1 3 0 0 0 3 0 0 0 3 0 

Terebellides stroemii 0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 1 3 0 0 0 3 0 0 0 3 0 

Tharyx  0 1 2 3 0 3 0 0 3 0 0 0 0 0 3 1 0 0 2 0 1 2 1 0 2 1 1 0 1 3 0 0 0 3 0 3 0 0 0 

Thenea abyssorum 0 1 3 0 3 0 0 3 0 3 0 0 0 3 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Thyasira gouldi 0 3 0 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 2 0 1 2 1 1 0 2 1 0 1 3 0 0 0 3 0 0 0 3 0 

Tiron spiniferus 0 3 0 3 0 1 2 0 0 0 3 0 0 0 1 2 0 0 0 0 3 0 0 3 0 0 3 0 0 2 0 2 0 3 0 3 0 0 0 

Tubificoides 0 0 3 3 0 3 0 0 0 3 0 0 0 0 2 1 0 0 1 0 2 0 3 0 0 2 2 0 0 3 0 0 0 3 0 1 2 0 0 

Tunicata 0 1 2 0 3 0 1 2 0 3 0 0 0 0 0 3 3 0 0 0 0 3 0 0 3 0 0 0 3 0 0 0 0 3 0 0 0 0 3 

Typhlotanais finmarchicus 3 0 0 3 0 3 0 0 0 0 3 0 0 0 3 0 0 3 0 0 0 1 2 0 0 2 1 0 2 2 0 0 0 3 0 3 0 0 0 

Ymerana pteropoda 0 0 3 3 0 3 0 0 2 2 0 0 0 0 3 0 0 3 0 0 0 3 1 0 3 0 0 0 0 3 0 0 0 3 0 0 0 3 0 

Yoldiella 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

Yoldiella frigida 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

Yoldiella intermedia 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

Yoldiella lenticula 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

Yoldiella lucida 0 2 1 0 3 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 1 2 1 0 0 3 0 0 0 3 0 0 0 3 0 3 0 0 0 

 
 
 
 
 
 
 
 





 

 

VII 
 

Erklärung gemäß § 6 (5) PromO 

(vom 14. März 2007) 

 
Name: Renate Degen 

Anschrift: Goethestraße 31, 27576 Bremerhaven 
  

Datum & Ort:  
 

Ich erkläre hiermit eidesstattlich, dass ich 

1. die vorliegende Doktorarbeit mit dem Titel “The Future Arctic Biosphere – 

Environmental Drivers of Change in Arctic Benthic Biota” ohne unerlaubte 

fremde Hilfe angefertigt habe, 

2. keine anderen als die von mir angegebenen Quellen und Hilfsmittel be-

nutzt habe, 

3. die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen 

als solche kenntlich gemacht habe. 

 

 

 

 

 

_________________________________ 

Unterschrift 


