
Introduction to Program Verification

Krzysztof R. Apt and Ernst-Rudiger Olderog

Table of Contents

1 Introduction .

2 Preliminaries .

3 Types and Alphabets

4 Variables and Constants .

5 Expressions and Assertions . .

6 Notational Conventions

7 Substitution

8 Formal Proof Systems

9 Deterministic Programs .

10 Syntax

11 Proof Theory .

12 Proof Outlines

13 Derived Rules

14 Conclusions . .

15 N ondeterministic Programs . .
15.1 Syntax
15.2 Proof Theory
15.3 Development of Provably Correct Programs .

16 Disjoint Parallel Programs
16.1 Syntax:
16.2 Proof Theory
16.3 Verification: Find Positive Element .

365

366

367

367

368

369

370

371

372

372

373

379

384

385

385
386
387
389

394
394
395
398

364 Krzysztof R. Apt and Ernst-Rudiger Olderog

17 Parallel Programs with Shared Variables
17 .1 Syntax
17 .2 Proof Theory
17 .3 Verification: Find Positive Element Quicker

18 Parallel Programs with Synchronization
18.l Syntax
18.2 Proof Theory
18.3 Verification: The Producer Consumer Problem

19 Distributed Programs
19.1 Syntax
19.2 Transformation into Nondeterministic Programs
19 .3 Proof Theory
19.4 Verification: The Producer Consumer Problem
19.5 Conclusions .

References .

400
401
402
406

408
408
409
412

417
418
421
421
424
428

429

Introduction to Program Verification 365

Abstract. We provide a systematic introduction to program verification based
on the assertional method. We study here deterministic, nondeterministic, paral
lel and distributed programs and deal with such properties as partial correctness,
termination, absence of failures, interference freedom and deadlock freedom.

1 Introduction

During the last three decades we witnessed the development of new programming
languages and new styles of programming. Our understanding of the whole pro
gramming process increased significantly. It also became increasingly clear that
the only way to ensure program correctness is by providing a rigorous proof that
the program meets its specification.

Program verification is a systematic approach to proving the absence of pro
gram errors. The idea is to compare the program with a specification expressing
the desired program properties. A number of approaches to program verification
have been proposed and used in the literature.

The most common of them is based on an operational reasoning, i.e. on an
analysis in terms of the execution sequences of the given program. To this end,
an informal understanding of the program semantics is used. While this analysis
is often successful in the case of sequential programs, it is much less so in the
case of concurrent programs. The number of possible execution sequences is
then most often forbiddingly large and it is all too easy to overlook a possible
execution sequence.

A different approach is based on an axiomatic reasoning. According to this
approach, we first need a formalism which makes it possible to express the rele
vant program properties. In other words, using the terminology of logic, we :first
need an appropriate language defined by syntactic rules that allows us to con
struct well-formed formulas. Next, we need a proof system consisting of axioms
and rules which allows us to construct formal proofs of certain relevant formulas.
And this proof system should be such that only true properties can be proved
in it.

The origins of this approach to program correctness can be traced back to
Turing [Tur49], but the first constructive effort should be attributed to Floyd
[Flo67] where proving correctness of flowchart programs by means of assertions
was proposed. This method was subsequently presented in a syntax directed
manner in the seminal paper of Hoare [Hoa69] which opened the way to a proof
theoretic approach for other classes of programs. His approach has received a
great deal of attention and several Hoare-style proof systems dealing with various
programming constructs have been proposed since then.

In 1976 and 1977, this approach was extended to parallel programs by Owicki
and Gries [OwGr76] and Lamport [Lam77], and in 1980 and 1981 to distributed
programs by Apt, Francez and de Roever [AFR80] and Levin and Gries [LeGr81].

The aim of this article is to provide a systematic exposition of this method.
We study sequential, parallel and distributed programs and deal with several
program properties.

366 Krzysztof R. Apt and Ernst-Rudiger Olderog

Sequential programs are programs in which at each time instance at rnost one
instruction can be executed. A special case of sequential programs are determin
istic programs, those in which there is always at most one next instruction to
be executed. Their correctness is studied in Chapter 3. A more general class of
sequential programs consists of nondeterministic programs, those in which the
choice of the next instruction to be executed is not fully determined. Their cor
rectness is studied in Chapter 4. We also discuss there a systematic development
of programs together with their correctness proofs.

Concurrent programs are programs in which more than one component can
be active at a time. We study here two types of concurrent programs - parallel
programs and distributed programs. Parallel programs are programs in which the
components can communicate by means of shared variables. Their correctness is
studied in Chapters 5,6 and 7, in which successively more sophisticated classes
of programs are considered.

Distributed programs are programs in which the components, sometimes
called processes, do not share variables and can communicate instead by
messages. Correctness of distributed programs is studied in Chapter 8.

Depending on the type of program, correctness refers to different program
properties and hence requires different methods of reasoning. For sequential pro
grams we study

partial correctness,
termination, and
absence of failures.

For concurrent programs we additionally study

- interference freedom, and
- deadlock freedom

When dealing with concurrent programs, we heavily rely on the concepts and
techniques developed for sequential programs. Our presentation does not aim at
completeness and should serve merely as an introduction to the basic concepts
and techniques of program verification by means of the assertional method.

2 Preliminaries

In this chapter we explain the notation and syntax we shall use throughout this
article and explain some elementary notions from mathematical logic we shall
need in the sequel.

First we define an assertion language in which assertions about programs
will be written. This language extends first order logic in that it uses types and
array variables. The assertion language consists of the types, the alphabet, the
expressions and the formulas.

Introduction to Program Verification 367

3 Types and Alphabets

First, we define types. We assume at least two basic types:

- integer,
- Boolean

and for each n ~ 1 one higher type:
- T1 x ... x Tn -+ Tn+1,

where each Ti is a basic type. Here T1 , ... , Tn are called argument types
and Tn+l the value type. Some other basic types (like character) will be
occasionally used.

A type provides us with information about the intended set of values. The
type integer consists of all integers, the type Boolean consists of two values -
true and false, and a type T1 x ... x Tn -+ Tn+l consists of all functions from
the Cartesian product of [the sets described by] T1 , ... , Tn to [the set described
by) Tn+i·

Next, we introduce the alphabet of an assertion language. It consists of the
following classes of symbols:

variables,
constants,
quantifiers, which are: 3 (there exists) and V (for all),

- parentheses, which are: (,), [and],
- punctuation symbols, which are , and ..

4 Variables and Constants

We assume three sorts of variables:

- simple,
- subscripted,
- array.

Each variable has a type associated with it and can assume as values only
elements of this type. Simple and subscripted variables are of a basic type and
array variables are of a higher type.

Simple variables of a type integer are called integer variable and usually
denoted by i, j, k, x, y, z. Simple variables of a type Boolean are called Boolean
variables. In programs simple variables will be usually denoted by more sugges
tive names like turn or found.

Subcripted variables will be explained in the next section. Array variables
(or just arrays) are usually denoted by a, b, c. They range over functions of an
appropriate type. In particular, when all argument types are of a type integer,
there are no bounds associated with it. On the other hand, we occasionally use
finite sections of an arrays. When an array a has one argument type which is

368 Krzysztof R. Apt and Ernst-Rudiger Olderog

integer, then for any k,l with k '.5 l the section a[k: l] stands for the restriction
of a. to the interval { i I k '.5 i '.5 l}. The number of arguments of the higher type
associated with the array a is called its dimension.

Each constant has a type associated with it. Its value belongs to this type
and is fixed. We assume two sorts of constants:

- of basic type
- of higher type

Among constants of basic type we distinguish integer constants and Boolean
constants. We assume infinitely many integer constants: 0, -1, 1, -2, 2, ... and
two Boolean constants: true, false.

Among constants of a higher type T1 x ... x Tn - Tn+l we distinguish two
sorts. When the value type Tn+l is Boolean, the constant is called a relation
symbol and otherwise the constant is called a function symbol; n is called the
arity of the constant.

We do not wish to be overly specific but we assume existence of at least the
following function and relation symbols:

+, -, ·,mod of type integer x integer - integer,
< of type integer x integer - Boolean,
=int of type integer x integer - Boolean,
=Bool of type Boolean x Boolean - Boolean,

- --, of type Boolean - Boolean,
- V, /\, -, +-+ of type Boolean x Boolean - Boolean

The value of each of these constants is well known and therefore not further
explained. In the sequel we shall drop the subscript when using = as from the
context it will be always clear which interpretation is meant.

The 2-ary (or binary constants) are written in an infix form, i.e. between the
arguments. The relation symbols--,,/\, V, - and+-+ are usually called connectives.

The value of variables can be changed during the execution of a program,
whereas the value of constants remains fixed forever.

5 Expressions and Assertions

Out of variables and constants we build up expressions. Each expression has
a type associated with it. We consider here only expressions of a basic type.
Thus we distinguish integer expressions and Boolean expressions. Expressions
are defined by induction as follows:

- a simple variable of type T is an expression of type T,
- a constant of a basic type T is an expression of type T,
- if s1, •.. , Sn are expressions of type T1, .•. , Tn, respectively and c a constant

of type T1 x ... x Tn - T, then c(s1 , ••• , sn) is an expression of type T,
- if s1, ... , Sn are expressions of type Ti, ... , Tn, respectively, and a an array

variable of type T1 x ... x Tn - T, then a[s1, ... , sn] is an expression of type
T,

Introduction to Program Verification 369

- if B is an expression of type Boolean and s1 and s2 expressions of type T,
then if B then s 1 else s 2 fi is an expression of type T.

Expressions of the form a[s1, ... , sn] are called subscripted expressions. Ex
pressions are usually denoted by letters s, t and Boolean expressions by the letter
B. Simple and subscripted variables are usually denoted by letters u, v. They
can be assigned a value in the programs by means of an assignment statement,
which will be discussed in the next chapter. Assignments to a subscripted vari
able a[s1, ... , Sn] model a selected update of the array a at the argument tuple
[s1, ... ,sn]·

Assertions are formulas in the assertion language. They are defined by in
duction as follows:

a Boolean expression is an assertion,
if p, q are assertions, then ...,p, (p V q), (p /\ q), (p --r q) and (p +-+ q) are
assertions,

- if x is a simple variable and p an assertion, then 3xp and \:/xp are assertions.

By a subassertion we mean a substring of p which is again an assertion.
In this definition brackets are introduced around binary connectives to avoid

ambiguities. Note that in the last clauses only quantifiers with simple variables
are allowed. Also, note that assertions built up without the use of quantifiers are
just Boolean expressions.

6 Notational Conventions

The definition of expressions and assertions is rigorous at the expense of excessive
use of parentheses. We now introduce a number of conventions which allow us to
eliminate some of the brackets. This will enhance the readability of expressions
and assertions.

First we introduce a binding order. We assume that all relation symbols, in
particular < and =, bind stronger than ...,, 3 and V, which bind stronger than V

and/\ which in turn bind stronger than --r and +-+. Moreover, we assume that
both V and A associate to the right. Also we abbreviate

Pi V ... V Pn to Vf=1 Pi,
Pi A ... Apn to Ai::1 Pi,

(s < t V s = t) to s::; t,
(s<tAt::;w) to s < t ::; w,

and similarly with other combinations of < and =. Occasionally we write s > t
instead oft< s, and similarly with s 2: t. We assume that ::; and 2: bind stronger
than all connectives and quantifiers.

Next we abbreviate

3x(x 2 t A p) to 3x 2 t .p,

3x(s::; x < t /\ p) to 3x(s :'.S x < t).p,

370 Krzysztof R. Apt and Ernst-Rudiger Olderog

and similarly with other combinations of<,::;, ~' and >, and abbreviate

Vx(x ~ t--> p) to Yx 2: t.p,

Vx(s::; x < t--> p) to Yx(s :S x < t).p,

and similarly with other combinations of<, :s;, 2:, and >.
Finally, once an assertion of the form (p V q), (p /\ q), (p--> q) or (p.....,. q) has

been constructed, we omit the outer brackets.
The following example illustrates the use of these conventions. Consider the

assertion
(Vx((x = tV x < t)--> 3y((y < s) /\(pi\ q)))--> r).

Thanks to the binding order applied to < it can be simplified to

(Yx((x = t V x < t)--> 3y(y < s /\ (p /\ q))) --+ r),

which thanks to the convention of associating /\ to the right further simplifies to

(Vx((x = t V x < t)--> 3y(y < s /\ p /\ q)) --+ r).

Introducing :S we obtain

(Vx(x :St--+ 3y(y < s /\pi\ q))--+ r)

Finally, applying the last three abbreviation conventions we obtain the as
sertion

Vx :S t.3y < s.(p /\ q)--> r

which is much more readable than its original form.
Note that in the last step we also reintroduced brackets around p /\ q to avoid

ambiguities. This step can be formally defined when discussing the abbreviation
3x :S t.p.

7 Substitution

An important concept is that of a substitution of an expression t for the free
occurrences of the simple or subscripted variable u in an assertion p, written as
p[t/u]. Its definition presupposes that t and u are of the same type. To explain
it we first define the substitution of an expression t for a simple or subscripted
variable u in an expressions, written as s[t/u]. It is defined by induction on the
structure of the expression s.

We put for a simple variable x

[t/ l - { t if x = u
x u = x otherwise,

Introduction to Program Verification 371

and, following De Bakker [1980], for a subscripted variable a[s1, ... , sn]

and otherwise

a[s1, .. ., sn][t/ a[t1, ... , tn]] =if Af= 1 s~ = ti then t else a[s1, ... , s~] fi

where s~ = Si[t/a[t1, ... , tn]].
Other cases are straightforward and omitted. The last clause motivated the

introduction of conditional expressions in our syntax. Intuitively, it represents a
statement "the array a assigns t to the argument tuple [t1, ... , tn]·"

Now we define the substitution p[t/u] for an assertion p. The definition is
again by induction. The base case of a Boolean expression c(s1, ... , sn) is handled
using the definition of substitution for exressions:

c(s1, ... , sn)[t/u]:: c(si[t/u], ... , sn[t/u]).

The inductive clauses are straightforward with the exception of the case of as
sertions of the form 3xp and 'efxp.

We put
(3xp)[t/u] = 3yp[y/x][t/u],

where y does not appear in p, t or u and is of the same type as x, and similarly
for 'efxp.

Substitution will be used in the next chapter when dealing with the assign
ment statement.

By a bound occurrence of a simple variable in an assertion p we mean an
occurrence within a subassertion of p of the form 3xr or 'r/xr. An occurrence of
a simple variable in an assertion p is called free if it is not a bound one.

Given an assertion p by free(p) we denote the set of simple variables which
have a free occurrence (or occur free) in p augmented with the set of array
variables which occur in p.

8 Formal Proof Systems

Our main interest here is in proving program correctness. To this purpose we
shall investigate correctness formulas, i.e. statements of the form {p} S {q}
where p, q are assertions and S is a program under consideration. All program
properties we wish to verify will be expressed in the form of correctness formulas
and, occasionally, assertions. Therefore, we shall present various proof systems
allowing us to prove correctness formulas.

A proof system consists of a language in which formulas are defined and of
axioms and proof rules. Axioms are formulas assumed to be given. Proof rules
allow us to prove from the already established formulas some new formulas. They
have the form

'P1, ... , 'Pk

'Pk+l
where ... ,

372 Krzysztof R. Apt and Ernst-Rudiger Olderog

where ip 1 , ... , 1Pk+l are formulas and " ... " stands for a condition describing
when the rule can be applied. It should be read as "deduce 'Pk+1 from ip1 , ... , 'Pk
provided " ... " ". The formulas ip1, ... , 'Pk are called the premises of the rule and
the formula 'P!:+l is called the conclusion of the rule.

A proof in a given proof system is a sequence of formulas in which each
formula is either an axiom or follows from the previous ones by a rule of the
system. The last formula in a proof is called a theorem. Or, to put it the other
way around: a theorem is a formula which has a proof or can be proved in the
given proof system. The length of this sequence is called the length of the proof

Given a proof system P and a formula <f> we shall write I-p </; to denote that
<j; is a theorem of P. On the other hand, for proof systems allowing us to prove
correctness formulas we shall write f- p </> to denote that the correctness formula
<f> is a theorem of P augmented by the set of all true assertions. This means that
in the correctness proofs we shall use all true assertions as axioms.

We refer here to an informal definition of truth. The assertions claimed true
will always be very simple and their truth will rely on some elementary facts
about integers. Informally, an assertion is true if it holds for all possible values
of the variables which occur free in it. A formal definition of truth can be given
but is omitted here.

9 Deterministic Programs

In a deterministic program there is at most one next instruction to be executed
so that from a given initial state only one execution sequence is generated. In
classical programming languages like Pascal only deterministic programs could
be written. Here we consider a very small set of deterministic programs, usually
called while-programs.

10 Syntax

A while-program is a string of symbols including the keywords if, then, else,
fi, while, do and od which is generated by the following grammar:

S ::=skip I u := t I S1; S2 I if B then S1 else S2 fi I while B do 51 od.

Following the conventions of the previous chapter, the letter u stands for a simple
or subscripted variable and t for an expression. We require that in an assignment
u := t the variable u and the expression t are of the same type. Since types are
implied by the notational conventions of the previous chapter, we do not declare
variables in the programs. As an abbreviation we introduce

if B then S fi ::: if B then S else skip fi..

As usual, spaces and indentation will be used to make programs more read
able, but these additions are not part of the formal syntax. Here and elsewhere
programs will be denoted by letters R, S, T.

Introduction to Program Verification 373

Though we assume that the reader is familiar with while-programs, we would
like to recall how they are executed. The program skip changes nothing and just
terminates. An assignment u := t assigns the value of the expression t to the
(possibly subscripted) variable u and then terminates. A sequential composition
S1; S2 is executed by first executing the statement S1 followed upon its termi
nation by an execution of S2. Since this interpretation of sequential composition
is associative, we need not introduce brackets enclosing S1 ; S2 . Execution of a
conditional statement if B then S1 else S2 fi starts by evaluating the Boolean
expression B. If B is true, the statement S1 is executed, otherwise (i.e., if B is
false), S2 is executed. Execution of a loop while B do Sod starts with the evalu
ation of the Boolean expression B. If B is false, the loop terminates immediately,
otherwise S is executed. If S terminates, the whole procedure is repeated.

Given a while-program S we denote by var(S) the set of all simple and array
variables which appear in it and by change(S) the set of all simple and array
variables which appear in it on a left-hand side of an assignment; change(S) is
the set of variables which can be modified by S. Both notions will be used later
in the chapters on parallel programs.

By a subprogram S of a while-program R we mean a substring S of R which
again is a while-program. For example,

S:= x := x-1

is a subprogram of

R = if x = 0 then y := 1 else y := y - x; x := x - 1 fi.

11 Proof Theory

In this section we consider correctness formulas of the form {p} S {q} where S
is a while-program and p and q are assertions. The assertion p, usually called
a precondition, specifies the initial, or input, conditions to be satisfied by the
variables of S. The assertion q, usually called a postcondition, specifies the final,
or output, conditions satisfied by the variables of S. Thus the pair p, q can be
viewed as an input-output specification of the program S.

More precisely, we are interested in two interpretations of correctness formu
las. We say that {p} S { q} is true in the sense of partial correctness if every
terminating computation of S starting in a state satisfying p terminates in a
state satisfying q. And {p} S { q} is true in the sense of total correctness if every
computation of S starting in a state satisfying p terminates and its final state
satisfies q.

Partial Correctness

We now present a proof system, called PD, for deriving partial correctness
formulas about deterministic programs. It was introduced in [Hoa69). It consists
of the following axioms and proof rules.

374 Krzysztof R. Apt and Ernst-Rudiger Olderog

AXIOM 1: SKIP
{p} skip {p}

AXIOM 2: ASSIGNMENT

{p[t/u]} u := t {p}

RULE 3: COMPOSITION

{p} S1 {r},{r} S2 {q}
{p} S1; S2 { q}

RULE 4: CONDITIONAL

{pAB} S1 {q},{pA-.B} S2 {q}
{p} if B then S1 else S2 fi. {q}

RULE 5: LOOP

{pi\ B} S {p}
{p} while B do Sod {p /\ -.B}

RULE6:CONSEQUENCE

P - Pi. {p1} S {qi}, q1 - q
{p} s {q}

The skip axiom should be obvious. On the other hand, the first reaction to
the assignment axiom is usually astonishment. The axiom encourages reading
the assignment "backwards" and initially we have no intuition associated with
such a view. So before we proceed further let us first analyze a simple program
consisting only of assignments.

Example 1. Consider the following program S:

x := 1; a[l] := 2; a[x] := x.

We now prove that after the execution of S the value of a[l] is 1, that is, we
prove in PD the correctness formula

{true} S {a[I] = 1}.

To this purpose we repeatedly apply the assignment axiom while proceeding
"backwards" . We start with

{(a[l] = l)[x/a[x]]} a[x] := x {a[l] = 1},

that is, by the definition of substitution,

{if 1 = x then x else a[I] fi. = 1} a[x] := x {a[I] = 1},

Introduction to Program Verification 375

which after simplifications (formally justified by the consequence rule) gives

{x f- 1 - a[l] = l} a[x] := x {a[l] = l}.

By the same token

{x f- 1 - 2 = 1} a[l] := 2 {x f- 1 - a[l] = l},

that is, by the consequence rule,

{x = l} a[l] := 2 {x f. 1 - a[l] = l}.

Finally,

{true} x := 1 {x = l}.

Putting the last correctness formulas together using the composition rule twice
we get the desired result. 0

Another stumbling block in the understanding of the above proof system
might be the loop rule. This rule states that given the program while B do S
od, if p is preserved with each iteration of its loop, then p is true upon exit of
the program. Therefore p is called a loop invariant.

Let us see how this rule can be used. We choose here as an example the first
program (written in a textual form) which was formally verified. This historic
event was duly documented in [Hoa69].

Example 2. Let S be the following program computing the integer quotient and
remainder of two natural numbers x and y:

S = quo := O; rem:= x; So,

where So is

while rem 2: y do rem := rem - y; quo := quo + 1 od.

We wish to prove

{x 2: 0 /\ y 2: O} S {quo · y +rem= x /\ 0::; rem< y}, (1)

that is,

if, x, y are nonnegative integers and S terminates,
then quo is the integer quotient
of x divided by y and rem is the remainder.

(2)

376 Krzysztof R. Apt and Ernst-Rudiger Olderog

Note that the interpretation (2) of (1) is only true because S does not change
the variables x and y. Programs that may change x and y can trivially achieve
(1) without satisfying (2). An example is the program

S:: x := O; y := 1; q := O; r := 0.

To prove (1), we choose the assertion

p :: quo · y + rem = x /\ rem ~ 0

as the loop invariant of So. It is obtained from the postcondition of (1) by
dropping the formula rem < y.

We now prove the following three facts:

1°. {x~O/\y2:'.0}quo:=0; rem:=x {p},

i.e., the program quo := O; rem := x establishes p.

2°. {p A rem 2:'. y} rem:= rem - y; quo := quo + 1 {p},

i.e., p is indeed a loop invariant of So;

3°. pi\ -i(rem ~ y) - quo · y+ rem= x /\ 0 ~rem< y,

i.e., upon exit of the loop S0 , p implies the desired assertion.

Observe first that we can prove (1) from 1°, 2° and 3°. Indeed, 2° implies,
by the loop rule,

{p} So {p/\-i(rem ~ y)}.

This, together with 1°, implies, by the composition rule,

{x ~ 0 /\ y ~ O} S {p /\rem< y}.

Now, by 3°, (1) holds by an application of the consequence rule.
So let us prove now 1°, 2° and 3°.

ad 1°.

We have
{ quo · y + x = x /\ x ~ 0} rem := x {p}

by the assignment axiom. Once more by the assignment axiom

{O · y + x = x /\ x ~ O} quo := 0 {quo · y + x = x /\ x ~ O},

so by the composition rule

{O · y + x = x Ax~ O} quo := 0; rem:= x {p}.

On the other hand

x~O/\y~O-+O·y+x=x/\x~O

Introduction to Program Verification

so 1° holds by the consequence rule.

ad 2°.

We have

{(quo + 1) · y +rem= x /\rem 2: O} quo := quo + 1 {p}

by the assignment axiom. Once more by the assignment axiom

{(quo+ 1) · y +(rem - y) = x /\rem -y 2: O}
rem:= rem-y
{ (quo + 1) · y + rem = x /\ rem ~ 0},

so by the composition rule

377

{(quo+l)-y+(rem-y) = x/\rem-y 2: O} rem:= rem-y; quo := quo+l {p}.

On the other hand

p /\rem 2: y-+ (quo + 1) · y +(rem - y) = x /\rem - y 2: 0,

so 2° holds by the consequence rule.

ad 3°.

Clear.

This completes the proof of (1). D

The only step in the above proof which required some creativity was finding
the appropriate loop invariant. The remaining steps were straightforward appli
cations of the corresponding axioms and proof rules. The form of the assignment
axiom makes it easier to deduce a pre-assertion from a post-assertion than the
other way around, so we proceeded in the proofs of 1° and 2° "backwards". Fi
nally, we did not provide any formal proof of the implications used as premises
of the consequence rule. Formal proofs of such assertions in some proof system
which includes arithmetic will always be omitted; we shall simply rely on an
intuitive understanding of their truth.

Total Correctness

It is important to note that the proof system PD does not allow us to es
tablish the termination of programs, i.e., it is not appropriate for proofs of total
correctness. Even though we proved in 2 on 375 the correctness formula (1), we
cannot infer from this fact that the program S studied there terminates. In fact,
S diverges when started in a state in which the value of y is 0.

378 Krzysztof R. Apt and Ernst-Riidiger Olderog

Clearly the only proof rule of PD which introduces possibility of nonter
mination is the loop rule, so to deal with total correctness this rule has to be
strengthened.

We now introduce the following refinement of the loop rule.

RULE 7: LOOP II

{p /\ B} S {p},
{p /\ B /\ t = z} S {t < z },
p---+t2:0

{p} while B do Sod {p/\ • B}

where t is an integer expression and z is an integer variable which does not
appear in p, B, tor S.

The two additional premises of the rule guarantee termination of the loop. By
the second premise t is decreased with each iteration and by the third premise t is
non-negative if another iteration can be performed. Thus no infinite computation
is possible. The expression t is called a bound function of the program while B
do Sod. The purpose of z is to retain the initial value oft.

Let TD denote the proof system obtained from PD by replacing the loop
rule by the loop II rule. TD is an appropriate proof system for proving total
correctness of while-programs. To see an application of the loop II rule let us
reconsider the program S studied in 2.

Example 3. We now prove

{x 2: 0 /\y > O} S {quo· y+rem = x /\0:::; rem< y} (3)

in the sense of total correctness, that is that

if x is nonnegative and y is a positive integer, then
S terminates with quo being the integer quotient
of x divided by y and rem being the remainder.

(4)

Note that (3) differs from the correctness formula (1) from Example 2 on
page 375 by requiring that initially y > 0. For this purpose it is sufficient to
modify appropriately the proof of (1). Let

p'=::.p/\y>O

be a new loop invariant and let

t =::.rem

be the bound function. As in the proof given in Example 2, to prove (3) in the
sense of total correctness it is sufficient to establish the following facts:

Introduction to Program Verification 379

1°. {x 2 0 /\ y > O} quo := O; rem:= x {p'},

2°. {p' /\rem 2 y} rem:= rem - y; quo := quo + 1 {p'},

3°. {p' /\rem 2 y /\rem= z} rem:= rem - y; quo := quo + 1 {rem< z},

4°. p'--+ rem 2 0,

5°. p' /\-.(rem 2 y) --+ quo · y +rem= x /\ 0::; rem< y.

Indeed, 2° 3° and 4° imply by the loop II rule {p'} So {p' /\ -.(rem 2 y)}
and the rest of the argument is the same as in Example 2 on page 375. Proofs
of 1°, 2° and 5° are analogous to the proofs of 1°, 2° and 3° in Example 2.

To prove 3° observe that by the assignment axiom

{rem< z} quo := quo + 1 {rem< z}

and
{(rem -y) < z} rem:= rem - y {rem< z}.

But
p /\ y > 0 /\rem 2 y /\rem= z--+ (rem - y) < z,

so 3° holds by the consequence rule.
Finally, 4° clearly holds. This concludes the proof.

12 Proof Outlines

0

Formal proofs are tedious to follow. We are not accustomed to following a line of
reasoning presented in small, formal steps. A better solution consists of a logical
organization of the proof with the main steps isolated. The proof can then be
seen on a different level.

In the case of correctness proofs of while-programs a possible strategy lies in
using the fact that they are structured. The proof rules we introduced follow the
syntax of the programs, so the structure of the program can be used to structure
the correctness proof. We can simply present the proof by giving a program with
assertions interleaved at appropriate places.

Partial Correctness

Example 4. Let us reconsider the integer division program studied in Example 2
on page 375. We present facts 1°, 2° and 3° in the following form:

{x20/\y20}
quo := O; rem := x;
{inv: p}
while rem 2 y do

{pi\ rem 2 y}

380 Krzysztof R. Apt and Ernst-Riidiger Olderog

rem := rem - y; quo := quo + 1
od
{p/\ rem< y}
{ quo · y + rem = x /\ 0 :S rem < y},

where

p = quo · y + rem = x /\ rem 2: 0.

The keyword inv is used here to label the loop invariant. Two adjacent
assertions { q1 }{ q2} stand for the fact that the implication qi --+ q2 is true.

The proofs of the facts can also be presented in such a form. For example,
here is the proof of fact 1°:

{x2'.0!\y~O}
{O · y + x = x /\ x ~ O}
quo := 0
{quo · y + x = x /\ x 2:: O}
rem:= x
{p}.

0

Such a proof presentation is much simpler to study and analyze. It was intro
duced in [OwGr76] and is called a proof outline. It is formally defined as follows.

Definition! (Proof Outline: Partial Correctness). Let S* stand for the
program S interspersed, or as we shall say annotated, with assertions, some
of them labelled by the keyword inv. We define the notion of a proof outline
for partial correctness inductively by the following axioms and rules.

An axiom <.p should be read here as a statement: <p is a proof outline (for
partial correctness) and a rule

'Pl, · · ·, 1Pn

should be read as a statement: if <p1 , ... , <pn are proof outlines, then <.p is a proof
outline.

(i)

{p} skip {p}

(ii)

{p[t/u]} u := t {p}

Introduction to Program Verification 381

(iii)

(iv)

(v)

(vi)

(vii)

{p} Si { r}, { r} S~ { q}
{p} Si ; {r} S2{q}

{pAB} Si{q},{pJ\--iB} S2{q}
{p} if B then {pJ\B} Si {q} else {pJ\--iB} S2 {q} fi {q}

{p J\ B} S* {p}
{inv : p} while B do {p A B} S* {p} od {p A --iB}

P-+ P1, {pi} S* {qi}, q1-+ q

{p}{p1} S*{q1}{q}

{p} S*{q}
{p} S** {q}

where S** results from S* by omitting some of the intermediate assertions
not labelled by the keyword inv.

Thus in a proof outline some of the intermediate assertions used in the cor
rectness proof are retained; loop invariants are always kept. A proof outline
{p} S* { q} for partial correctness is called standard if every substatement T of
S is preceded by exactly one assertion in S*, called pre(T), and there are no
other assertions in S* . D

Thus every standard proof outline {p} S* { q} starts with exactly 2 assertions,
namely p and pre(S). If p:::: pre(S), then we drop p from this proof outline.

Note that a standard proof outline is not minimal in the sense that some
assertions used in it can be removed. For example, the assertion {p J\ B} in the
context {inv: p} while B do {pJ\ B} Sod {q} can be deduced. Standard proof
outlines will be needed in the chapters on parallel programs.

By studying proofs of partial correctness in the form of proof outlines we do
not lose any generality in the sense of the following lemma.

Lemma 2. Let {p} S* { q} be a proof outline for partial correctness. Then there
exists a proof of {p} S {q} in the proof system PD. D

382 Krzysztof R. Apt a.nd Ernst-Rudiger Olderog

Also, the proof outlines {p} S" { q} enjoy the following useful and intuitive
property: whenever the control of S in a given computation starting in a state
satisfying p reaches a point annotated by an assertion, this assertion is true.
Thus the assertions of a proof outline are true at the appropriate moments.

Total Correctness

So far we have only discussed proof outlines for partial correctness. To com
plete the picture we should take care of the termination of loops.

Consider a loop while B do S od. The loop II rule suggests a rule for
a proof outline for total correctness of loops whose premises are of the form
{p /\ B} S" {p}, {p /\ B /\ t = z} S"" { t < z}, p --+ t ~ 0 with the first two being
proof outlines for total correctness. However, there is no obvious way to record
both proof outlines in the conclusion of such a rule.

One solution is to start with a modification of the loop II rule whose first
two premises are replaced by

{p/\B/\t=z} S{p/\t<z}

and introduce the following rule for a proof outline for total correctness

{p t\ B t\ t = z} S* {p t\ t < z},
p--+t~O

{inv : p }{bd: t} while B do {p /\ B /\ t = z} S* {pt\ t < z} od {p /\ --.B}

where t is an integer expression and z is an integer variable not occuring in p, t, B
or S".

This rule, however, forces us to mix the proofs of the invariance of p and of
the decrease oft.

Another solution, which we adopt here, is to assume that the proof of decrease
of t is of a particularly simple form, namely that

(i) all assignments inside S decrease tor leave it unchanged,
(ii) on each syntactically possible path through S at least one assignment de

creases t.

By a path we mean here a possibly empty finite sequence of assignments.
Sequential composition 11"1; 11"2 of paths 11"1 and 11'2 is lifted to sets fl1 and fl2 of
paths by putting

ll1; ll2 = {7r1; 11'2 J 7r1 E ll1 and 11'2 E fl2}.

By c we denote the empty sequence. For any path 11' we have 11'; c: = c:; 11' = 11'.

Next we define the path set for a while-program.

Definition3. Let S be a while-program. We define path(S) by induction on
the structure of S:

Introduction to Program Verification 383

- path(skip) = {€},
- path(u := t) = {u := t},
- path(S1; S2) = path(S1); path(S2),
- path(if B then 81 else S2 fi) = path(S1) U path(S2),
- path(while B do 81 od) = {c:}.

0

Intuitively, path(S) is a set of all paths through S. Each path through S is
identified with the sequence of assignments lying on it. Note that in the last
clause we only take into account the case when the loop is exited immediately.
This is sufficient for establishing the condition (ii) above.

Definition4 (Proof Outline: Total Correctness). The notion of a (stan
dard) proof outline for total correctness is defined as for partial correctness,
except for rule (v) dealing with loops. It is to be replaced by:

(v')
{pt\B} S* {p},
{pre(T) /\ t = z} T {t $ z} for each

assignment T within S,
for each 7r E path(S) there exists an
assignment T in 7r such that
{pre(T) /\ t = z} T {t < z},
p--+t2:'.0

{inv : p }{bd : t} while B do {p /\ B} S* {p} od {p /\ -.B}

where t is an integer expression and z is an integer variable not occuring in p, t, B
and S*. Here {p} S* { q} is a standard proof outline for total correctness and
pre(T) stands for the assertion preceding T in this proof outline. D

The annotation {bd: t} represents the bound function of the loop while
B do S od. Note that clause (vii) in the definition of a proof outline for total
correctness does not allow us to delete the bound functions.

Example 5. The following is a proof outline for total correctness of the integer
division program studied in Example 3 on page 378:

{x:2:0Ay>0}
quo := O; rem := x;
{inv : p'}{bd : rem}
while rem :2: y do

{p' /\rem :2: y}
rem := rem - y; quo := quo + 1

384 Krzysztof R. Apt and Ernst-Riidiger Olderog

{p'}
od
{p' I\ rem< y}
{ quo . y + rem = x /\ 0 ~ rem < y},

where

p' := quo · y + rem = x I\ rem ~ 0 /\ y > 0.

Note that, due to the precondition p1 I\ rem ~ y, the assignment rem :=
rem-y decreases the bound function rem, whereas the assignment quo := quo+l
leaves rem unchanged. D

Note that when the empty path c is an element of path(S), we cannot verify
the pre-last condition of the above rule (v'). Thus it may happen that we can
prove total correctness of a while-program but we shall not be able to present
this proof in the form of a proof outline for total correctness. An example is the
program

b :=true;
while b do

if b then b := false
od

whose termination can be easily established. This shows some limitations of the
above approach to proof outlines for total correctness. However, all the programs
discussed in this article can be handled in this way.

13 Derived Rules

The presentation of correctness proofs can be simplified in another way - by
means of derived rules. They allow us to prove certain correctness formulas about
the same program separately and then combine them. This can lead to a different
organization of the correctness proof.

These rules for combining correctness formulas are not necessary, in the sense
that their use in the correctness proof can be eliminated by applying other rules.
That is why they are called derived rules. These rules are appropriate both
for partial correctn~ss and total correctness and can be used for all classes of
programs considered in this paper. We shall use them in Chapter 7 when studying
parallel programs.

RULE Dl: DISJUNCTION

{p} S {q}, {r} S {q}
{pVr}S{q}

Introduction to Program Verification

RULE D2: 3-INTRODUCTION

{p} s {q}
{3xp} S {q}

where x does not appear in Sor q.

14 Conclusions

385

In what sense are the proof systems PD and TD natural for the correctness proofs
of while-programs? Their important feature is that they are syntax directed,
that is, their proof rules follow the syntax of the programming constructs. This
allowed us to organize the proofs in a form that follows the program structure.
This, in turn, makes them easier to understand and allows us to be less formal
in their presentation.

None of this would be possible if the proofs were presented in a formalism
not referring to the programs. Consider, for example, a natural translation of
the correctness formulas into, say, Peano arithmetic. Even though one can, in
principle, consider proofs of the translated formulas in Peano arithmetic, it is
clear that they will not be easy to construct and understand. The reason is that
in Peano arithmetic, or in any other proof system studied in mathematical logic,
the formulas expressing program correctness do not naturally reflect the meaning
of the program and are consequently difficult to study.

However, once a program is already written, it is usually too late to prove
its correctness because all helpful intuitions present in its development process
have disappeared, and only the final product is available! A reconstruction of
these intuitions is a very tedious, if not impossible, process. Moreover, the proof
has nothing to do with the process of the development of the program - it only
documents the final result. We thus deal with two disjoint activities, namely
development and proving, addressing the same intuitions.

This problem was recognized and addressed in [Dij76] who proposed to de
velop the program together with its correctness proof with the intention of sim
plifying both tasks. This approach will be discussed in the next chapter.

15 Nondeterministic Programs

Activating a deterministic program in a certain state will generate exactly one
computation sequence. Often such a level of detail is unnecessary, for example
when two different computation sequences yield the same final state. The phe
nomenon that a program may generate more than one computation sequence
from a given state is called nondeterminism. In this chapter we will study a toy
programming language due to Dijkstra [Dij75][Dij76] which allows us to write
programs with such a behaviour.

In Chapter 8 this class of programs will allow us to study distributed pro
grams.

386 Krzysztof R. Apt and Ernst-Rudiger Olderog

15.1 Syntax

We expand the grammar for while-programs by adding:

- alternative commands

- repetitive commands

S ::=do B1--+ S1 D ... D Bn--+ Sn od.

These new commands will also be written as

if Df =1 B; --+ S; fi and do D?::,1 B; --+ S; od,

respectively. A command S; within S is said to be guarded by the Boolean
expression B;. The construct B; --+ S; is therefore called a guarded command.

The symbol D represents a nondeterministic choice between guarded com
mands B; --+ S;. More precisely, in the context of an alternative command

a guarded command B; --+ S; can be chosen only if its guard B; evaluates to
true; then S; remains to be executed. If more than one guard B; evaluates to
true any of the corresponding statements S; may be executed next. There is no
rule saying which statement should be selected. If all guards evaluate to false,
the alternative command will signal a failure, also called abortion.

The selection of guarded commands in the context of a repetitive command

is performed in a similar way. The difference is that after termination of a selected
statement S; the whole command is repeated starting with a new evaluation of
the guards B;. Moreover, contrary to the alternative command, the repetitive
command properly terminates when all guards evaluate to false.

Conventional conditionals and loops can be modelled by alternative and
repetitive commands because

if B then S1 else S2 fi

is equivalent to

and
while B do S od

is equivalent to
do B-+Sod.

The notion of a subprogram of a nondeterministic program is defined as in
Chapter 3. Let us discuss now the main features of guarded commands.

Introduction to Program Verification 387

Symmetry

Guarded commands allow us to present Boolean tests in a symmetric manner.
This often enhances the clarity of programs. For example, instead of writing

while x # y do
if x > y then x := x - y else y := y - x fi

od,

the well-known algorithm for finding the greatest common divisor (gcd) of two
natural numbers can now be expressed as

do x > y-+ x := x - y D x < y-+ y := y - x od.

Failures

Remember that an alternative command fails rather than terminates if none
of the guards evaluate to true. Thus, in general, if B -+ S fi and if B then S fi
differ because failures signal exceptional states of computation. For example,

if 0 ~ i < n -+ x := a[i] fi

raises a failure before the array a can be accessed outside the interval {O, ... , n-
1}. Such guarded assignments are useful to model access to bounded arrays.

N ondeterminism

Guarded commands allow us to express nondeterminism through the use of
non-exclusive guards. As an example, consider the following program computing
the largest powers of 2 and 3 that divide a given integer x in which the division
function / is used:

twop := O; threep := O;
do 2 divides x -+ x := x /2; twop := twop + 1
D 3 divides x-+ x := x/3; threep := threep + 1
od.

If 6 divides x, both guards can be chosen. In fact, it does not matter which
one will be chosen-the final values of the variables twop and threep will always
be the same.

15.2 Proof Theory

As in the previous chapter we are now interested in two notions of program
correctness-partial correctness and total correctness. Their definitions are the
same as before. However, when studying total correctness we should be aware
that a computation can now fail to terminate for two reasons: divergence or
abortion. This will be reflected in two differences between the proof systems for
partial and total correctness.

388 Krzysztof R. Apt and Ernst-Riidiger Olderog

To see the difference between partial correctness and total correctness result
ing from abortion, consider (once more) the program

S:: if 0 ~ i < n-+ x := a[i] fi.

Then {true} S {x = a[z1} holds in the sense of partial correctness but not
in the sense of total correctness because S fails when activated in a state not
satisfying 0 ~ i < n.

We first present a proof system P N for partial correctness of non deterministic
programs. P N includes Axioms 1 and 2 and Rules 3 and 6 introduced for PD,
the system for partial correctness of deterministic programs. But Rules 4 and 5
of PD are now replaced by:

RULE 8: ALTERNATIVE COMMAND

{p /\ Bi} Si { q}, i = 1, ... , n

{p} if Df=1 Bi-+ S; fi {q}

RULE 9: REPETITIVE COMMAND

{p /\ Bi} Si {p}, i = 1, ... , n

{p} do Df =l Bi -+ Si od {p /\ /\f=1 -.Bi.}

A system T N for total correctness results from P N by strengthening Rule 8
to the following rule:

RULE 10: ALTERNATIVE COMMAND II

p-+ Vr=1 B;,
{p /\ Bi} Si { q}, i = 1, ... , n

{p} if Df=1 Bi -+ S; fi {q}

and by replacing Rule 9 by:

RULE 11: REPETITIVE COMMAND II

{p/\Bi} S; {p}, i= 1, ... ,n
{p /\ Bi /\ t = z} S; { t < z}, i = 1, ... , n
p-+t~O, i=l, ... ,n

{p} do Df =1 B; -+ S; od {p /\ /\f=1 -.Bi}

where t is an integer expression and z is an integer variable not appearing in
p, t, B; or S;, i = 1, ... , n.

As in Chapter 3 we shall present correctness proofs in the form of proofs
outlines. We leave their definitions to the reader.

Introduction to Program Verification 389

Example 6. The following is a proof outline for total correctness of the symmetric
gcd program mentioned in the previous section.

{x =a/\ y = b /\a> 0 /\ b > O}
{inv: p}{bd: t}
do x > y -> {p /\ x > y}

x := x - y
D x < y -> {p /\ x < y}

x := y- x
od
{p /\ -,(x > y) /\,(x < y)}
{x = y /\ y = gcd(a, b)}

As an invariant we use here

p==. gcd(x,y) = gcd(a,b)/\x > 0/\y > 0

where the binary function symbol gcd is to be interpreted as "greatest common
divisor of' and where the fresh variables a and b represent the initial values of
x and y. As a bound function we use

t = x + y.

Note that due to their preconditions, each assignment decreases the bound func
tion. D

As before proof outlines {p} S* { q} for partial correctness enjoy the following
property: whenever the control of S in a given computation started in a state
satisfying p reaches a point annotated by an assertion, this assertion is true.

15.3 Development of Provably Correct Programs

We now discuss an approach of Dijkstra [Dij76] allowing us to develop programs
together with their correctness proofs. To this purpose, we shall make use of the
proof system TN to guide us in the construction of a program. All correctness
formulas are supposed to hold in the sense of total correctness.

The main issue in Dijkstra's approach is the development of loops. Suppose
we want to find a program R of the form

T; do B-> Sod

that satisfies, for a given preconditon r and postcondition q, the correctness
formula

{r} R {q}. (1)

To avoid trivial solutions for R (cf. the comment in Example 2 on page 375),
we usually postulate that some variables in r and q, say x1, ... , Xn, may not be
modified by R, i.e. we require

x1, ... , Xn t/: change(R).

390 Krzysztof R. Apt and Ernst-Rudiger Olderog

To prove (1), it is sufficient to find a loop invariant panda bound function
t satisfying the following five conditions:

1°. p is initially established, i.e., { r} T {p} holds;

2°. p is a loop invariant, i.e., {p /\ B} S {p} holds;

3°. upon loop termination q is true, i.e., p /\ -iB --+ q;

4°. pimpliest 2: 0, i.e., p--+ t 2: O;

5°. t is decreased with each iteration, i.e., {p /\ B /\ t = z} S { t < z} holds where
z is a fresh variable.

Of course, analogous conditions can be provided when the loop in R can
have more than one guard. Conditions 1°-5° can be conveniently presented by
the following proof outline for total correctness:

{r}
T;
{inv: p}{bd: t}
do B _,. {p /\ B}

s
{p}

od
{p /\ --iB}
{q}.

(Here we assume that condition 5° can be proved by establishing the appro
priate conditions listed in the premises of the rule for proof outlines for total
correctness of repetitive commands.)

Now, when only r and q are known, the first step in finding R consists of
finding a loop invariant. One useful strategy consists of generalizing the post
condition q by replacing a constant by a variable. The following toy example
illustrates the point.

A Simple Summation Problem

The problem is to find a program S which stores in an integer variable x the
sum of the elements of a given section a[O : n - l] of an integer array a. Here
n is a constant with n 2: 0. By definition, the sum is 0 if n = 0. Of course, we
require that a, n !f. change(S). Define now

and

q = x = L';'=-01 a[i].

The assertion q states that x stores the sum of the elements of the section
a[O:n-l].

Introduction to Program Verification 391

We replace the constant n by a fresh variable k. Putting appropriate bounds
on k we obtain

p = 0 ::; k ::; n /\ x = Ef ; 01 a[i]

as a. proposal for the invariant of the program to be developed.
We now attempt to satisfy the conditions 1-5 by choosing B, S and t appro

priately.

ad 1°. p is easily established by the command

T::: k := O; x := 0.

ad 3°. We clearly have p /\ k = n---> q, so we can take k =/= n as the guard of the
loop.

ad 4°. We have p---> n - k ~ 0, which suggests to choose

t:=n-k

as the bound function.

ad 5°. To reduce the bound function with each iteration, we choose the program
k := k + 1 as pa.rt of the loop body.

ad 2°. Thus far we have the following incomplete proof outline

{r}
k := O; x := O;
{inv: p}{bd: t}
do k =/= n ---> {p /\ k =/= n}

S1;

od
{p/\k=n}
{q}

{p[k + 1/k]}
k := k + 1

where S1 is still to be found.
To this end, we compare now the precondition and postcondition of S1. The

precondition p /\ k =/= n implies

0 ::; k + 1 ::; n /\ x = Ef;a1 a[i1

and the postcondition p[k + 1/ k] is equivalent to

0 ::; k + 1 ::; n /\ x = (Ef,;01 a[i]) + a[k].

We see that adding a[k] to x will "transform" one assertion into another.
Thus, we can choose

S1 = x := x+a[k]

~o ensure that p is a loop invariant.

392 Krzysztof R. Apt and Ernst-Riidiger Olderog

Summarizing, we have developed the following program together with its
correctness proof.

k := O; x := O;
do k # n - x := x + a[k];

k := k + 1
od

The next example will illustrate another strategy in the development of cor
rect programs.

The Welfare Crook Problem

We now study the following problem due to W. Feijen, where a nondetermin
istic program seems more appropriate as a solution. We follow here the exposition
of Gries [Gri82]. Given are three magnetic tapes, each containing a list of names
in alphabetical order. The first contains the names of people working at IBM
Yorktown Heights, the second the names of students at Columbia University, and
the third the names of people on welfare in New York City. Practically speaking,
all three lists are endless, so no upper bounds are given. It is known that at least
one person is on all three lists. The problem is to write a program to locate the
alphabetically first such person. ·

Slightly more abstract, we consider three ordered arrays a, b, c of type integer
- integer, i.e. such that i < j implies a[i] < a[j], and similarly for b and c. We
suppose that there exist values iv ~ 0, jv ~ 0, and kv ~ 0 such that

a[iv] = b[.iv] = c[kv]

holds, and moreover we suppose that the triple (iv, jv, kv) is the smallest one
in the lexicographic ordering among those ones satisfying this condition. The
values iv,jv and kv can be used in the assertions but not in the program. We
are supposed to develop a program which computes them.

Thus our precondition r is a list of the assumed facts - that a, b, c are
ordered together with the formal definition of iv, jv and kv. We omit the formal
definition. The postcondition is

q = i =iv/\. j = jv /\. k = kv.

Additionally we require a, b, c, iv,jv, kv f/:. change(S), where Sis the program to
be found. Assuming that the search starts from the beginning of the lists, we are
brought to the following invariant by placing appropriate bounds on i, j and k:

p = 0 ~ i ::; iv /\ 0 ::; j ~ jv /\. 0 ~ k ::; kv /\ r.

A natural choice for the bound function is:

t =(iv - i) + (jv - j) + (kv - k).

Introduction to Program Verification 393

The invariant is easily established by

. 0 . 0 k 0 i := ; 3 := ; := .

The simplest ways to decrease the bound functions are the assignments i .
i + 1, j := j + 1 and k := k + 1. In general, it will be necessary to increment all
three variables, so we arrive at the following incomplete proof outline:

{r}
i := O; j := O; k := O;
{inv: p}{bd: t}
do B1 --+ {p /\ Bi} i := i + 1
D B2 --+ {p /\ B2} j := k + 1
D Bs --+ {p /\ Bs} k := k + 1
od
{p /\ -iB1 /\ -iB2 /\ -iBs}
{q}

where Bi, B2 and Bs are still to be found. Of course the simplest choice for
B 1 , B2 and Bs are, respectively, i # iv, j # jv and k # kv but the values iv, jv
and kv cannot be used in the program. On the other hand, p/\i # iv is equivalent
top/\ i < iv which means by the definition of iv, jv and kv that a[i] is not the
crook. Now, assuming p, the last statement is guaranteed if a[i] < b[j]. Indeed,
a,b and care ordered, so p/\a[i] < b[j] implies a[i] < b[jv] = a[iv] which implies
i <iv.

We can thus choose a[i] < b[j] for the guard Bi. In a similar fashion we
can choose the other two guards which yield the following program and a proof
outline

{r}
i := O; j := O; le = O;
{inv: p}{bd: t}
do a[i] < b[j]--+ {p /\ a[i] < b[j]}

{p /\ i < iv}
i := i + 1

D b[j] < c[k] --+ {p /\ b[j] < c[k]}
{p/\j < jv}
j := j + 1

D c[k] < a[i] --+ {p /\ c[k] < a[i]}
{p /\ k < kv}
le:= k+ 1

od
{p /\ -i(a[i] < b[j]) /\ -i(b[j] < c[k]) /\ -i(c[k] < a[i])}
{q}

In developing this program, the crucial step consisted of the choice of the
guards B1 , B2 and Bs. Accidentally, the choice made turned out to be sufficient

394 Krzysztof R. Apt and Ernst-Rudiger Olderog

to ensure that upon loop termination the postcondition q holds. Observe that
the final program admits nondeterminism.

The programs we developed here were very simple. However, they exemplify
the approach. Its essence thus consists of relying on a number of useful heuris
tics together with the idea of using proof as a guideline in the design process.
This approach has been successfully applied to derive some larger and highly
nontrivial programs. The idea of developing the program together with its proof
turns out to be a powerful method which simplifies both tasks.

16 Disjoint Parallel Programs

In this chapter we begin to study concurrent programs. Whereas in a sequential
program only one statement is executed at each moment of time, in a concurrent
program several components can be active at the same time. Clearly, one reason
for the interest in such programs is the desire for higher execution speed: each
component of a concurrent program can be executed on an individual processor.
But there are also other reasons: concurrency allows us to express explicitly
when a program achieves its specification independently of the execution order
of its subprograms or independently of how many processors are assigned to
it. Moreover, concurrency is a most natural concept when modelling a system
consisting of several independent components.

Usually, the components of a concurrent program have to exchange some in
formation in order to achieve their common goal. This exchange is known as com
munication. Depending on the mode of communication, we distinguish between
two types of concurrent programs, viz. parallel programs and distributed pro
grams. The former may communicate only by means of shared variables whereas
the latter communicate instead by explicit message passing. However, to sim
plify matters, we first study concurrent program without any communication
between their components at all, viz. disjoint parallel programs, originally de
fined in Hoare [Hoa72]. Parallel programs and distributed programs are just two
different extensions of disjoint parallel programs.

16.1 Syntax

Two while-programs S1 and S2 are called disjoint if none of them can change
the variables accessed by the other one, i.e. if

change(Si) n var(S2) = var(S1) n change(S2) = 0.

For example, the programs

x := z and y := z

are disjoint because change(x := z) = {x}, var(y := z) = {y,z} and var(x :=
z) = {x,z},change(y := z) = {y}.

Introduction to Program Verification 395

Disjoint parallel programs are generated by the same clauses as those defining
while-programs in Chapter 3 together with the following clause for disjoint
parallel composition:

where for n ~ 1 the components S1 , ... , Sn are pairwise disjoint while-programs.
Thus we do not allow nested parallelism, but we allow parallelism to occur within
sequential composition, conditional statements and while-loops.

Intuitively, a disjoint parallel program of the form S = [Si II·. -llSn] termi
nates if and only if all of its components S1, ... , Sn terminate; the final state is
then the union of the final states of S1, ... , Sn.

16.2 Proof Theory

The following proof rule for disjoint parallel programs was proposed in Hoare
[Hoa72]. It links parallel composition of programs with logical conjunction of the
corresponding pre- and postconditions and it sets the basic pattern for the more
complicated proofrules needed to deal with shared variables and synchronization
in Chapters 6 and 7.

RULE 12: DISJOINT PARALLELISM

{Pi} S, {qi},i= 1, ... ,n

where S1, ... , Sn are pairwise disjoint while-programs and free(pi, qi) n
change(S;) = 0 for i =fa j.

The premises of this rule are to be proven with the proof systems PD or TD
for deterministic programs. Depending on whether we choose PD or TD, the
conclusion of the rule holds in the sense of partial or total correctness, respec
tively. Requiring disjointness of the pre- and postconditions and the component
programs is necessary. Without it we could for example derive from the true
formulas

{y = 1} x := 0 {y = 1} and {true} y := 0 {true}

the conclusion
{y = 1} [x := Oiiy := O] {y = 1},

which is of course wrong.
Rule 12 alone is not sufficient for proving the correctness of disjoint parallel

programs. The problem is that in correctness proofs we sometimes have to use
properties of the program execution that cannot be expressed in terms of the ex
isting program variables. The solution to this problem is to extend the program
by auxiliary variables. These variables should neither influence the control flow
nor the data flow of the program, but record only some additional information
about the program execution. Once we have proven the desired correctness for
mula about the extended program, we may delete the auxiliary variables again

396 Krzysztof R. Apt and Ernst-Rudiger Olderog

and thus obtain a correctness formula about the original program. The following
definition identifies sets of auxiliary variables in an extended program.

Definition 5. Let A be a set of simple variables in a program S. We call A a set
of auxiliary variables of S if the variables in A occur in S only in assignments of
the form z := t with z E A. D

Since auxiliary variables do not appear in Boolean expressions, they cannot
influence the control flow in S, and since they are not used in assignments to
variables outside of A, auxiliary variables cannot influence the data flow in S.
As an example, consider the program

S:: z := x; [x := x +lily:= y + 1].

Then
0,{y},{z},{x,z},{y,z},{x,y,z}

are all sets of auxiliary variables of S.
The following proof rule was first introduced in Owicki and Gries [OwGr76].

RULE 13: AUXILIARY VARIABLES

{p} s {q}
{p} So {q}

where for some set of auxiliary variables A of S with free(q) n A = 0, the
program So results from S by deleting all assignments to the variables in A.

Like Rule 12, this rule is appropriate for proofs of both partial and total
correctness. Let us denote by PP the proof system for partial correctness of
disjoint parallel programs consisting of the group of axioms and rules 1-6, 12
and 13, and by T P the proof system for total correctness consisting of the group
of axioms and rules 1-5, 7, 12 and 13.

Example 7. Let us apply the above proof rules to establish the following simple
correctness formula:

{x = y} [x := x + lllY := y + 1] {x = y}.

By using a fresh variable z which records the initial values of x or y, respectively,
we first derive the correctness formulas

{ x = z} x := x + 1 { x = z + 1}

and
{y = z} y := y + 1 {y = z + l}.

Introduction to Program Verification 397

Now Rule 12 yields

{x=z/\y=z} [x:=x+ljjy:=y+l] {x=z+l/\y=z+l}.

Since the postcondition implies x = y, the consequence rule yields

{x=z/\y=z} [x:=x+lJly:=y+l] {x=y}.

Note that the consequence rule does not allow us to replace the precondition by
x = y because the implication

x=y-+x=z/\y=z

is false. Instead we consider the following correctness formula

{x = y} z := x {x = z /\ y = z}

which can be easily established.
By the compostion rule, we obtain

{x = y} z := x; [x := x +lily:= y + l] {x = y}.

Since { z} is a set of auxiliary variables of the above program, Rule 13 finally
yields the desired result:

{ x = y} [x := x + l JI y := y + l J { x = y}.

Observe that the semicolon ";" after z := x is deleted, as well. 0

Proof outlines for partial and total correctness of parallel programs are gener
ated in a straightforward manner by the rules given for while-programs together
with the following rule:

{pi} s; {qi}' i = 1, ... ' n

For instance, the following proof outline summarizes the steps in Example 7 on
page 396:

{x = y}
z := x;
{x=z/\y=z}
[{x = z} x := x + 1 {x = z + 1}
11 {y = z} y := y + 1 {y = z + 1}]
{x = z + 1/\y=z+1}
{x = y}

The fact that z is used as an auxiliary variable is not visible from this proof
outline; it has to be stated separately.

398 Krzysztof R. Apt and Ernst-Rudiger Olderog

16.3 Verification: Find Positive Element

We study here a problem treated in Owicki and Gries [OwGr76), Consider an
integer array a and a constant N ~ 1. The task is to write a program S that
finds the smallest index k E {l, ... , N} with

a[k] > 0

if such an element of a exists, otherwise the dummy value k = N + 1 should be
returned.

Formally, the program S should satisfy the input-output specification

{true} S {k $; N + 1 /\ 'v'l(O < l < k--+ a[fj ~ 0) /\ (k ~ N--+ a[k] > O)} (1)

in the sense of total correctness. Clearly, we require a~ change(S).
To speed up the computation, S is split into two components which are

executed in parallel: the first component S1 searches for an odd index k and the
second component S2 for an even one. The component S1 uses a variable i for
the (odd) index currently being checked and a variable oddtop to mark the end
of the search:

S1 ::: i := 1; oddtop := N + 1;
while i < oddtop do

od.

if a[i] > 0 then oddtop := i
else i := i + 2 fi

The component S2 uses variables j and eventop for analogous purposes:

S2 = j := 2; eventop := N + 1;
while j < eventop do

od.

if a[i] > 0 then eventop := j
else j := j + 2 fi

The parallel program S is then given by

S::: [SillS2];
k := min(oddtop,eventop).

This is a version of the program Findpos studied in Owicki and Gries
[OwGr76] where the loop conditions have been simplified to achieve disjoint
parallelism. For the original program Findpos see Chapter 6.

To prove that S satisfies its input-output specification (1), we first deal with
its components. The first component 51 searching for an odd index stores its
result in the variable oddtop. Thus it should satisfy

{true} S1 {qi} (2)

Introduction to Program Verification 399

in the sense of total correctness where q1 is the following adaptation of the
postcondition of (1):

qi = oddtop :::; N + 1
/\ Vl(odd(l) /\ 0 < l < oddtop-. a[~:::; 0)
/\ (oddtop:::; N-. a[oddtop] > 0).

Symmetrically, the second component 52 should satisfy

where
q2 = eventop :::; N + 1

/\ Vl(even(l) /\ 0 <I< eventop-. a[l]:::; 0)
/\ (eventop:::; N-. a[eventop] > 0).

(3)

The notation odd(l) and even(l) expresses that l is odd or even, respectively.
We prove (2) and (3) using the system TD for total correctness of determin

istic programs (Chapter 3). We start with (2). As usual, the main task is to find
an appropriate invariant P1 and a bound function ti for the loop in S1 •

As a loop invariant p 1 we choose a slight generalization of the postcondition
q1 which takes into account the loop variable i of 51 :

P1 = oddtop :::; N + 1 /\ odd(i) /\ i :::; oddtop + 1
/\ Vl(odd(l) /\ 0 <I< i-. a[l]:::; 0)
/\ (oddtop:::; N-. a[oddtop] > 0).

As a bound function t 1 , we simply choose

t 1 = oddtop + 1 - i.

Note that the invariant p 1 ensures that t 1 :2'.: 0 holds.
We verify our choices by exhibiting a proof outline for the total correctness

of S1:

{true}
i := l;
{i = l}
oddtop := N + l;
{i = 1 /\ oddtop = N + l}
{inv : P1 }{bd : t1}
while i < oddtop do

{p1 /\ i < oddtop}
if a[i] > 0 then {p1 /\ i < oddtop /\ a[i] > O}

{ i :S N + 1 /\ odd(i) /\ i :S i + 1
/\VI(odd(I)/\ 0 < l < i-. a[l] :::; 0)
/\ (i :SN-. a[i] > O)}

oddtop := i
{pi}

else {p1 /\ i < oddtop /\ a[i] :S O}

400 Krzysztof R. Apt and Ernst-Rudiger Olderog

od
{p1 /\ oddtop $ i}
{q1}.

{ oddtop $ N + 1/\odd(i+2)
/\ i + 2 $ oddtop + 1
/\ 't/l(odd(l) /\ 0 < l $ i--+ a[fj $ 0)
/\ (oddtop $ N--+ a[oddtop] > 0)}

i := i + 2
{pi}

It is easy to see that in this outline all pairs of subsequent assertions form
valid implications as required by the consequence rule. Also, note that both
assignments within the loop decrease the bound function t1 on the account of
their respective preconditions.

For the second component S2 we choose of course a symmetric invariant P2
and bound function t2:

p2 = event op $ N + 1 /\ even(j) /\ j $ eventop + 1
/\ Vl(even(l) /\ 0 <I< j--+ a[~$ 0)
/\ (eventop $ N--+ a[eventop] > O),

t2 = eventop + 1 - j.

The verification of (3) with P2 and t2 is symmetric to (2) and is omitted.
We can now apply the rule of disjoint parallelism to (2) and (3) because the

corresponding disjointness conditions are satisfied. We obtain

(4)

To complete the correctness proof, we look at the following proof outline

{ql /\ q2} (5)
{ min(oddtop, eventop) :=:; N + 1

/\ 't/l(O < l < min(oddtop, eventop)--+ a[l] $ 0)
/\ (min(oddtop, eventop) $ N--+ a[min(oddtop, eventop)] > O)}

k := min(oddtop, eventop)
{k $ N + 1 /\ Vl(O < l < k--+ a[I] $ 0)

/\ (k $ N--+ a[k] > O)}.

Combining (4) and (5) by the composition rule yields the desired formula (1)
about S.

17 Parallel Programs with Shared Variables

Disjoint parallelism is a rather restricted form of concurrency. In applications,
concurrently operating components often share resources, e.g. a common data

Introduction to Program Verification 401

base, a line printer or a data bus. Sharing is necessary when resources are too
costly to have one copy for each component as in the case of a large data base.
Sharing is also useful to establish communication between different components
as in the case of a data bus. This form of concurrency can be modelled by means
of parallel programs with shared variables, i.e. variables that can be changed and
read by several components.

As we shall see, proving the correctness of such programs is much more de
manding than in the case of disjoint parallelism. The problem is while executing
them different components can interfere with each other by changing the shared
variables. To restrict the points of interference, we use s0-called atomic regions
whose execution cannot be interrupted by other components.

17.1 Syntax

Shared variables are introduced by dropping the disjointness requirement for
parallel composition. Atomic regions may appear inside a parallel composition.
Syntactically, these are statements enclosed in angle brackets (and).

Thus we first define component programs as programs generated by the same
clauses as those defining while-programs in Chapter 3 together with the follow
ing clause for atomic regions:

S ::=(So}

where So is loop free and does not contain further brackets (and}. Now, parallel
programs are generated by the same clauses as those defining while-programs
together with the following clause for parallel composition:

S ::= [Sill·. -llSn]

where S1 , ... , Sn are component programs (n ~ 1). Again, we do not allow nested
parallelism, but we allow parallelism within sequential composition, conditional
statements and while-loops.

Intuitively, an execution of [Sill·. -II Sn] is obtained by interleaving the
atomic, i.e. non-interruptible steps in the executions of the components
Si, ... , Sn. By definition,

- Boolean expressions,
- assignments and skip, and
- atomic regions

are all evaluated or executed as atomic steps. An atomic region (So) is executed
by executing the program S0 • Since So is required to be loop free, atomic steps
are certain to terminate. An interleaved execution of [Si II·. -llSn) terminates if
and only if the individual execution of each component terminates.

For convenience, we shall identify

(A}:: A

if A is an assignment or skip. By a normal subprogram of a program S we mean
a subprogram of Snot occurring within any atomic region of S. For example,

402 Krzysztof R. Apt and Ernst-Rudiger Olderog

the assignment x := 0, the atomic region (x := x + 2; z := 1) and the program
x := O; (x := x + 2; z := 1) are the only normal subprograms of x := O; (x :=
x+2; z:=l).

17.2 Proof Theory

It is very easy to give a proof rule for atomic regions because atomicity has no
influence on the input-output behaviour of individual component programs:

RULE 14: ATOMIC REGION

where S is loop free.

{p} s {q}
{p} (S) {q}

This rule is appropriate for both partial and total correctness.
Proof outlines for partial and total correctness of component programs are

generated by the rules given for while-programs plus the following one:

{p} S* {q}
{p} (S*) {q}

where as usual S* stands for an annotated version of S.
When defining proof outlines for total correctness of component programs,

we have to modify the rule for loops by taking into account the atomic regions.
To this end we include atomic regions in the definition of a path, that is we
additionally stipulate the following clause in Definition 3 on page 382:

- path((S)) = { (S)}.

Moreover, we now allow Tin rule (v') given in Definition 4 on page 383 to
vary over normal assignments and atomic regions.

For component programs S the definition of a standard proof outline
{p} S* {q} is as follows: within S* every normal subprogram T is preceded
by exactly one assertion, called pre(T), and there are no further assertions
within S*. In particular, there are no assertions within atomic regions.

Atomicity matters only in the context of a parallel composition with shared
variables. In fact, the correctness formulas of a parallel program [S1 II·.· II Sn]
cannot now be determined any more from the correctness formulas of its com
ponents S1 , ... , Sn, but only from a detailed analysis of the atomic steps in the
executions of S1 , ... , Sn.

Example 8. As an illustration of these difficulties let us look at the following
three programs:

S1=:x:=x+2,
S2 =: (x := x +I; x := x +I},
Ss =: x := x +I; x := x +I.

Introduction to Program Verification 403

Considered in isolation, their input-output behaviours are identical, i.e. for all
assertions p and q and all i, j E {1, 2, 3} the correctness formula

{p} Si {q}

is true in the sense of partial or total correctness iff

{p} S; {q}

is true in the same sense.
However, with our explanation of the interleaved execution of parallel pro

grams in mind, it is clear that

{true} [x := OllS1] {x = 0 V x = 2}

and
{true} [x := OllS2] {x = 0 V x = 2}

are true in the sense of both partial and total correctness whereas

{true} [x := OllS3) {x = 0 V x = 2}

is false in both senses because the final value of x might be l. This value is
generated if the assignment x := 0 "interferes" with the execution of S2, i.e. if
it is executed in between the two assignments of S2. D

To reason about the atomic steps taken in the components of a parallel pro
gram, we use standard proof outlines for the components instead of correctness
formulas. A standard proof outline provides just the right level of detail because
every possible atomic step of the component is preceded by exactly one assertion.
Based on the assertions and bound functions in standard proof outlines, we can
now introduce the important notion of interference freedom due to Owicki and
Gries [OwGr76].

Definition6. (1) Let S be a component program. Consider a standard proof
outline {p} S* { q} for total correctness and a statement R with the pre
condition pre(R). We say that R does not interfere with {p} S"' {q} if the
following two conditions hold:
(i) for all assertions r in {p} S* {q} the correctness formula

{r/\pre(R)} R {r}

holds in the sense of total correctness,
(ii) for all bound functions tin {p} S* {q} the correctness formula

{t = z /\pre(R)} R {t :=::; z}

holds in the sense of total correctness where z is some fresh variable not
occuring in R, t and pre(R).

404 Krzysztof R. Apt and Ernst-Riidiger Olderog

(2) Let [S1 II -. -llSn] be a parallel program. Standard proof outlines
{Pi} St {qi} , i = 1, ... , n, for total correctness are called interference free
if no normal assignment or atomic region of a component Si interferes with
the proof outline {pj} SJ { qj} of another component Si , i -=ft j.

D

Thus interference freedom means that the execution of atomic steps of one
component program neither falsifies the assertions (condition (i)) nor increases
the bound function (condition (ii)) in the proof outline of any other component
program.

Interference freedom of proof outlines for partial correctness is defined simi
larly, but with condition (ii) deleted.

With these preparations we can state the following conjunction rule for gen
eral parallel composition.

RULE 15: PARALLELISM WITH SHARED VARIABLES

The standard proof outlines {p;} St { q;},
i = 1, ... , n, are interference free

The correctness formula in the conclusion is true in the sense of partial or total
correctness depending on whether proof outlines for partial or total correctness
are used in the premises. Let us call PSV the proof system for partial correctness
of parallel programs with shared variables consisting of the group of axioms and
rules 1-6 and 13-15, and TSV the corresponding proof system for total correct
ness consisting of the group of axioms and rules 1-5, 7, 13-15. Proof outlines for
parallel programs are defined in a straightforward manner (cf. Chapter 5).

The test of interference freedom makes correctness proofs for parallel pro
grams more difficult than for sequential programs. For example, in the case
of two component programs of length Ii and /2 proving interference freedom
requires proving Ii x /2 additional correctness formulas. In practice, however,
most of these fomulas are trivially satisfied because they check an assignment or
atomic region R against an assertion or bound function which does not contain
the variables changed by R.

Example 9. We prove the correctness formula

{true} [x := Ollz := x + 2] {even(x)} (1)

in the system P SV. Since the program is loop free, this will be also a proof
in TSV. To this purpose it is sufficient to consider the following correctness
formulas which obviously hold:

{true} x := 0 {even(x)}

Introduction to Program Verification
405

and
{true} x := x + 2 {true}.

To prove interference freedom we need to prove 4 correctness formulas. Three
out of them trivially hold and the fourth, {even(x)} x := x+2 {even(x)} clearly
holds, as well. By Rule 15 we now get (1) as desired. o

Example 1 O. We now prove the correctness formula

{true} [a::= Ol!x :=a:+ 2] {a:= 0 V x = 2} (2)

in the system P SV. The proof makes use of an auxiliary Boolean variable "done"
indicating whether the assignment x := a: + 2 has been executed. This leads us
to consider the correctness formula

{true}
done:= false;
[a::= Oll(x := x + 2; done:= true}]
{x = OV x = 2}.

(3)

Since {done} is indeed a set of auxiliary variables of the extended program, the
rule of auxiliary variables (Rule 13) allows us to deduce (2) whenever (3) has
been proved.

To prove (3), we consider the following standard proof outlines for the com
ponents of the parallel composition:

{true} x := 0 {(x = 0 V x = 2) /\(-.done--+ x = O)} (4)

and
{-.done} {x := x + 2; done:= true} {true}. (5)

Note that Rule 14 is used in the proof of (5).
It is straightforward to check that (4) and (5) are interference free. To this

purpose 4 correctness formulas need to be verified. For example, the proof that
the atomic region in (5) does not interfere with the postcondition of (4) is as
follows:

{(x = 0 V x = 2) /\ (-.done --+ x = 0) /\ -.done}
{x = O}
(x := x + 2; done := true}
{x = 2 /\done}
{(x = 0 V x = 2) /\(-.done--+ x = O)}.

The remaining three cases are in fact trivial. Rule 15 applied to (4) and (5), and
the consequence rule now yield

{-.done}
[a::= Oll(x := x + 2; done :=true}]
{x=0Vx=2}.

(6)

406 Krzysztof R. Apt a.nd Ernst-Riidiger Olderog

On the other hand, the correctness formula

{true} done := false { -idone} (7)

obviously holds. Thus, applying the composition rule to (6) and (7) yields (3)
as desired. D

The last correctness proof is more complicated than expected. Suprisingly,
it cannot be simplified because it can be shown that any proof of (2) needs an
auxiliary variable. This poses the question: how do we find appropriate auxiliary
variables? Is there perhaps a systematic way of introducing them? The answer
if positive. Following the lines of Lamport [Lam77], one can show that it is suf
ficient to introduce a separate program counter for each component of a parallel
program. A program counter is an auxiliary variable which has a different value
in front of every substatement in a component. It thus mirrors exactly the con
trol flow in the component. In most applications, however, it suffices to have
only partial information about the control flow. This can be represented by a
few suitable auxiliary variables such as the variable "done" above.

17.3 Verification: Find Positive Element Quicker

In Section 5.3, we studied the problem of finding a positive element in an array
a. More precisely, the problem was to find a program S with a ~ change(S)
which satisfies the total correctness formula

{true} S {k ~ N + 1 /\ V'l(O < l < k-+ a[~~ 0) t\ (k ~ N-+ a[k] > O)}. (8)

Here we consider a more sophisticated program 8. As before it consists of
two components 8 1 and S2 activated in parallel, such that 81 searches for an
odd index k of a positive element and 82 searches for an even one.

However, now S1 should stop searching once 82 has found a positive element
and vice versa for 82. Thus some communication has to take place between 81

and 82. This is achieved by making oddtop and eventop shared variables of 8 1

and S2 by refining the loop conditions of S1 and S2 into

i < min{ oddtop, eventop} and j < min{ oddtop, eventop},

respectively. Additionally, the initialization of oddtop and eventop have to be
moved outside the parallel composition. Thus the program S is now of the form

S = oddtop := N + 1; eventop := N + 1;

[SillS2];
k := min(oddtop, eventop)

Introduction to Program Verification

where

and

S1 = i := 1;
while i < min(oddtop, eventop) do

if a[i) > 0 then oddtop := i
else i := i + 2 fi

od

S2:::: j := 2;
while j < min(oddtop, eventop) do

if a[j] > 0 then eventop := j
else j := j + 2 fi

od.

407

The program Findpos studied in Owicki and Gries [OwGr76] is like S, but
with the initializations of the variables i, j outside of the parallel composition.

To prove (8) in the system TSV, we first construct appropriate proof outlines
for S1 and S2. Let Pl, P2 and ti, t2 be the invariants and bound functions intro
duced in Section 5.3. Then we consider the following standard proof outlines for
total correctness. For Si

{oddtop = N + 1};
{inv : P1 }{bd : ti}
while i < min(oddtop, eventop) do

{Pi /\ i < oddtop}

od

if a[i) > 0 then {p1 /\ i < oddtop /\ a[i] > O}
oddtop := i

fi

else {p1 /\i < oddtop/\a[i1::; O}
i := i + 2

{P1 /\ i 2'.: min(oddtop, eventop)}

and there is a symmetric proof outline for S2 • Note that, except for the new
postconditions which are the consequence of the new loop conditions, all other
assertions are taken from the corresponding proof outlines in Section 5.3.

To apply Rule 15 for the parallel composition of 51 and 52 , we have to
show interference freedom of the two proof outlines. This amounts to check
ing 42 correctness formulas! Fortunately, 40 of them are trivially satisfied be
cause the variable changed by the assignment does not appear in the assertion
or bound function under consideration. The only non-trivial cases deal with
the interference-freedom of the postcondition of S1 with the assignment to the
variable eventop in 5 2 and, symmetrically, of the postcondition of S2 with the
assignment to the variable oddtop in Si.

We deal with the postcondition of Si, viz.

P1 /\ i ~ min(oddtop,eventop),

408 Krzysztof R. Apt and Ernst-Rudiger Olderog

and the assignment eventop := j. Since pre(eventop := j) implies j < eventop,
we have the following proof of interference freedom:

{pi /\ i 2 min(oddtop, eventop) /\pre(event op := N + 1)}
{p1 /\ i 2 min(oddtop, eventop) /\ j < eventop}
{p1 /\ i 2 min(oddtop, j)}
eventop := j
{p1 /\ i 2 min(oddtop, eventop)}.

An analogous argument takes care of the postcondition of S2. This finishes the
overall proof of interference freedom of the two proof outlines.

Now Rule 15 is applicable and yields

{oddtop = N + 1/\eventop=N+1}
[S1llS2]
{p1 /\ p2 /\ i 2 min(oddtop, eventop) /\ j 2 min(oddtop, eventop)}.

By the assignment axiom and the consequence rule,

{true}
oddtop := N + 1; eventop := N + 1;
[S1llS2]
{ min(oddtop, eventop) ~ N + 1

/\ 'v'l(O < l < min(oddtop, eventop)---> a[/] = 0)
/\ (min(oddtop, eventop) ~ N---> a[min(oddtop, eventop)] > O)}.

Hence the final assignment k := min(oddtop, eventop) in S establishes the de
sired postcondition of (8).

18 Parallel Programs with Synchronization

For many applications we need parallel programs whose components can syn
chronize with each other, i.e. they wait or get blocked until the execution of the
other components changes the shared variables into a more favourable state. We
therefore now extend the program syntax by a synchronization construct, the
await-statement introduced in Owicki and Gries [OwGr76]. This construct en
ables a very flexible way of programming, but at the same time opens the door
for subtle programming errors where the program execution ends in a deadlock.
This is a situation where all non-terminated components of a parallel program
have become blocked. Hence total correctness of parallel programs with synchro
nization will now also require a proof of deadlock freedom.

18.1 Syntax

Now await-statements may appear inside a parallel composition. Thus a compo
nent program is now a program generated by the same clauses as those defining
while-programs in Chapter 3 together with the following clause:

S ::= await B then So end

Introduction to Program Verification 409

where So is a loop free while-program. Parallel programs are then generated by
the same clauses as those defining while-programs together with the following
clause for parallel composition:

where S1, ... , Sn are component programs (n ~ 1). Thus as before, we do not
allow nested parallelism, but we do allow parallelism within sequential compo
sition, conditional statements and while-loops.

To explain the meaning of an await-statement, first note that they can occur
only within a parallel composition. Consider now an interleaved execution of a
parallel program where one component is about to execute a statement await
B then So end. If B evaluates to true, then S0 is executed as an atomic region
whose activation cannot be interrupted by the other components. If B evaluates
to false, the component gets blocked and the other components take over the
execution. If during their execution B becomes true, the blocked component can
resume its execution. Otherwise, it remains blocked forever.

Thus await-statements model conditional atomic regions. If B =: true, we
obtain the same effect as with an unconditionally atomic region of the previous
chapter. Hence we identify

await true then So end=: (So).

For the extended syntax of this chapter, a subprogram of a program S is
called normal if it does not occur within an await-statement of S.

18.2 Proof Theory

Partial Correctness

First we deal with partial correctness. For component programs, we use the
proof rules of the system PD for while-programs plus the following simple rule
given in Owicki and Gries [OwGr76]:

RULE 16: CONDITIONAL ATOMIC REGION

{p/\B}S{q}
{p} await B then Send {q}

where S is loop free.

Note that with B ::: true we get Rule 14 for atomic regions as a special case.
Proof outlines for partial correctness of component programs are generated

by the rules for while-programs together with the following one:

{p/\B} S* {q}
{p} await B then S* end { q}

where S* stands for an annotated version of the loop free statement S. T~e
definition of standard proof outlines is stated as in the previous chapter, but it

410 Krzysztof R. Apt and Ernst-Riidiger Olderog

refers now to the extended notion of a normal subprogram given in Section 7.1.
Thus there are no assertions within await-statements.

Interference freedom refers now to await-statements instead of atomic re
gions. Thus standard proof outlines {Pi} St {q;}, i = 1, ... , n, for partial cor
rectness are called interference free if no normal assignment or await-statement
of a component program S; interferes (in the sense of the previous chapter) with
the proof outline of another component program S;, i #- j.

For parallel composition we use Rule 15 of the previous chapter. However,
since await-statements may now appear in the component programs, this rule
refers now to the above notions of a standard proof outline and interference
freedom. Hence the proof system for partial correctness of parallel programs
with synchronization, abbreviated PSY, consists of the group of axioms and
rules 1-6, 13, 15 and 16.

Total Correctness

For total correctness things are more complicated. The reason is that in the
presence of await-statements program termination not only requires divergence
freedom (absence of infinite computations), but also deadlock freedom (absence
of infinite blocking). Deadlock freedom is a global property that can be proved
only by examining all components of a parallel program together. Thus none of
the components of a terminating program need to terminate when considered
in isolation; each of them may get blocked. Of course, each component must be
divergence free.

In order to deal with such subtleties, we introduce the notion of weak to
tal correctness which combines partial correctness with divergence freedom. In
other words, a correctness formula {p} S {q} holds in the sense of weak total
correctness if every execution of S starting in a state satisfying p is finite and
either terminates in a state satisfying q or gets blocked.

To prove total correctness of a parallel program, we first prove weak total
correctness of its components, then establish interference freedom and finally use
an extra test for deadlock freedom that refers to all components together.

Proving weak total correctness of component programs is simple. We use all
the proof rules of the system TD for while-programs and Rule 16 when dealing
with await-statements. Note that Rule 16 permits only weak total correctness
because the execution of await B then Send, when started in a state satisfying
p/\'-1B, does not terminate. Instead it gets blocked (see Example 11 on page 412).
This blocking can only be resolved with the help of other components executed
in parallel.

(Standard) proof outlines for weak total correctness of component programs
are generated by the rules given for total correctness of while-programs together
with the rule above which deals with await-statements. However, due to the
presence of await-statements we also have to ensure that they decrease or leave
unchanged the corresponding bound functions. This is resolved in an analogous
way as for atomic regions in Chapter 6.

Introduction to Program Verification 411

Standard proof outlines {p;} Si {q;}, i = 1, .. . ,n, for weak total correctness
are called interference free if no normal assignment or await-statement of a
component program S; interferes with the proof outline of another component
program S; , i # j.

We prove deadlock freedom of a parallel program by examining interfer
ence free standard proof outlines for weak total correctness of its component
programs. We follow the strategy of Owicki and Gries [OwGr76] and first enu
merate all potential deadlock situations and then use certain combinations of
the assertions from the proof outlines to show that these deadlock situations can
never actually occur.

Definition 7. Consider a parallel program S =[Sill- . . llSn]·

(1) A tuple < Ri, ... , Rn > of statements is called a potential deadlock of S if
the following holds:
(i) each R;, i = 1, ... , n, is either an await-statement in the component S;

or the symbol E which stands for the empty statement and represents
termination of S;,

(ii) at least one R;, i = 1, ... , n, is an await-statement in S;.
(2) Given interference free standard proof outlines {p;} s; {q;} for weak total

correctness, i = 1, ... , n, we associate with every potential deadlock of S a
corresponding tuple < r1, ... , rn > of assertions by putting for i = 1, ... , n:

(i) r; = pre(R;) /\ -iB if R; = await B then S end,
(ii) r; := q; if R; := E.

0

If we can show ., /\f=l Ti for every such tuple < r1, ... , rn > of assertions,
none of the potential deadlocks can actually arise. This is how deadlock free
dom is established in the second premise of the following proof rule for parallel
composition.

RULE 17: PARALLELISM WITH DEADLOCK FREEDOM

(1) The standard proof outlines {p;} Si {q;} for
weak total correctness are interference free, i = 1, ... , n.

(2) For every potential deadlock < Ri, ... , Rn > of
[S1 II · . -II Sn] the corresponding tuple of
assertions < r1, ... , rn > satisfies ..., /\f=1 r;.

By T SY we denote the proof system consisting of the group of axioms
and rules 1-5, 7, 13, 16 and 17. It stands for total correctness of parallel pro
grams with synchronization. Proof outlines for parallel programs are defined in
a straightforward manner (cf. Chapter 5).

412 Krzysztof R. Apt and Ernst-Rudiger Olderog

The following example illustrates the use of Rule 17 and demonstrates that
for the components of parallel programs we cannot prove in isolation more than
weak total correctness.

Example 11. We wish to prove the correctness formula

{x = O} [await x = 1 then skip endllx := l] {x = 1} (1)

in the system T SY. For the component programs we use the following interfer
ence free standard proof outlines for weak total correctness:

{ x = 0 V x = 1} await x = 1 then skip end { x = 1} (2)

and
{x = O} x := 1 {:r = l}.

Formula (2) is proved using Rule 16; it is true only in the sense of weak total
correctness because the execution of the await-statement gets blocked when
started in a state satisfying x = 0.

Deadlock freedom is proved as follows. The only potential deadlock is

< await x = 1 then skip end, E > . (3)

The corresponding pair of assertions is

< (x = 0 V x = 1) /\ x ::j:. 1, x = 1 >,

the conjunction of which is clearly false. Hence (3) cannot arise as an actual
deadlock. Now Rule 17 is applicable and yields (1) as desired. D

18.3 Verification: The Producer Consumer Problem

A reoccurring task in the area of parallel programming is the coordination of
producers and consumers. A producer generates a stream of M 2: 1 values for
a consumer. We assume that the producer and consumer work in parallel and
proceed at a variable but rougly equal pace.

The problem is to coordinate their work so that all values produced arrive
at the consumer and that they arrive in the order of production. Moreover, the
producer should not have to wait with the production of a new value if the
consumer is momentarily slow with its consumption. Conversely, the consumer
should not have to wait if the producer is momentarily slow with its production.

The general idea of solving this producer/consumer problem is to interpose
a buffer between producer and consumer. Then the producer adds values to
the buffer and the consumer removes values from the buffer. This way small
variations in the pace of producers are not noticeable for the consumer and vice
versa. However, since in reality the storage capacity of a buffer is limited, say
to N 2: 1 values, we have to synchronize producer and consumer in such a way

Introduction to Program Verification 413

that the producer never attempts to add a value into the full buffer and that the
consumer never attempts to remove a value from the empty buffer.

Following Owicki and Gries [OwGr76] we express the producer/consumer
problem as a parallel program with shared variables and await-statements. The
producer and consumer are modelled as two components PROD and CONS of
a parallel program. Production of a value is modelled as reading an integer value
from a finite section

a[O: M -1]

of an array a of type integer -+ integer and consumption of a value as writing
an integer value into a corresponding section

b[O: M -1]

of an array b of type integer -+ integer. The buffer is modelled as a section

buffer[O : N - l]

of a shared array buffer of type integer -+ integer. M and N are integer
constants M, N ~ 1. For a correct access of the buffer the components PROD
and CONS share an integer variable in counting the number of values added
to the buffer and an integer variable out counting the number of values removed
from the buffer. Thus at each moment the buffer contains in - out values; it is
full if in - out = N and it is empty if in - out = 0. Adding and removing values
to and from the buffer is performed in a cyclic order

buffer[O], .. . , buff er[N - l], buffer[O], .. . , buffer[N - 1], buffer[O], ...

Thus the expressions in mod N and out mod N determine the subscript of the
buffer element where the next value is to be added or removed. This explains
why we start numbering the buffer elements from 0 onwards.

With these preparations we can express the producer/consumer problem by
the following parallel program:

where

S::: in:= O; out := O; i := O; j := O; [P RODllCONS]

PROD::: while i < M do
x := a[zl;
ADD(x);
i := i + 1

od

414 Krzysztof R. Apt and Ernst-Riidiger Olderog

and

CONS:::: while j < M do
REM(y);
b[j] := y;
j := j + 1

od.

Here i,j,x,y are integer variables and ADD(x) and REM(y) abbreviate
the following synchronized statements for adding and removing values from the
shared buffer:

and

ADD(x) =wait in - out< N;
buffer[in mod N] := x;
in:= in+ l

REM(y) = wait in - out > O;
y := buffer[out mod N];
out:= out+ 1

Here for a Boolean expression B the statement wait B abbreviates
await B then skip end.

We claim that the following correctness formula holds in the sense of total
correctness:

{true} S {\fk(O ~ k < M-+ a[k] = b[k])}, (4)

i.e. the program Sis deadlock free and terminates with all values from a[O : M-1]
copied in that order into b[O : M - 1]. The verification of (4) follows closely the
presentation in Owicki and Gries [OwGr76].

First consider the component program PROD. As a loop invariant we take

P1 = 'r/k(out:::; k <in-+ a[k] = buffer[k mod N])
/\ 0 ~ in - out :::; N
/\ O~i:::;M

/\ i =in

and as a bound function

t1 ::= M - i.

(5)
(6)
(7)
(8)

Further on, we introduce the following abbreviation for the conjunction of
some the lines in P1:

I::= (5) /\ (6)

and

Ii= (5) /\ (6) /\ (7).

Introduction to Program Verification

As a standard proof outline we consider

{inv: pi}{bd : ti}
while i < M do

{Pi /\ i < M}
x:=a[i];
{pi /\ i < M /\ x = a[i]}
wait in - out< N;
{pi /\ i < M /\ x = a[i] /\ in - out < N}
buff er[in mod N] := x;

415

{pi /\ i < M /\ a[i] = buff er[in mod N] /\ in - out < N} (9)
in:=in+l;
{Ii /\ i + 1 =in/\ i < M} (10)
i := i + 1

od
{pi /\ i = M}.

It is straightforward to see that this is indeed a proof outline for weak total
correctness of PROD. In particular, note that (9) implies

'r:/k(out:::::; k <in+ 1- a[k] = buffer[k mod N])

which justifies the conjunct (5) of the postcondition (10) of the assignment in :=
in + 1. Note also that the bound function ii clearly satisfies the conditions
required by the definition of proof outline.

Now consider the component program CONS. As a loop invariant we take

P2 := I
/\ 'r:/k(O:::::; k < j - a[k] = b[k])
/\ O::=;j<::;.M
/\ j =out,

i.e. the I-part of Pi reappears here, and as a bound function we take

Let us abbreviate

12 = (11) /\ (12) /\ (13)

and consider the following standard proof outline:

{inv: p2}{bd: t2}
while j < M do

{p2 /\ j < M}
wait in - out > O;
{P2 /\ j < M /\in - out > O}
y := buffer[out mod N];

(11)
(12)
(13)
(14)

416 Krzysztof R. Apt and Ernst-Rudiger Olderog

od

{p2 /\ j < M /\ in - out > 0 /\ y = a(j]}
out :=out+ 1;
{ I2 /\ j + 1 = out /\ j < M /\ y = a[j]}
b[j] := y;
{I2 /\ j + 1 = out /\ j < M /\ a(j] = b[j]}
j := j + 1

{p2 /\ j = M}

(15)

It is easy to see that this is a correct proof outline for weak total correctness.
In particular, note that the conjunct y = a[j] in the assertion (15) is obtained
as follows:

y = buffer[out mod N]
= {(5) /\in-out> O}

a[out]

= {(14)}
a[j].

Also the bound function t 2 satisfies the conditions required by the definition of
proof outline.

Let us now turn to the test of interference freedom of the two proof out
lines. Naive calculations suggest that 80 correctness formulas have to be checked!
However, most of these checks can be dealt with by a single argument, viz. that
I-part of p1 and P2 is kept invariant in both proof outlines. In other words, all
assignments Tin the proof outlines for PROD and CONS satisfy

{I/\ pre(T)} T {I}.

It thus remains to check the assertions outside the I-part against possible
interference. Consider first the proof outline for PROD. Examine all conjuncts
occurring in the assertions used in this proof outline. Among them, apart of
I, only the conjunct in - out < N contains a variable which is changed in
the component CONS. But this change is done only by the assignment out :=
out + 1. Obviously, we have here interference freedom:

{in - out< N} out:= out+ 1 {in - out< N}.

Now consider the proof outline for CONS. Examine all conjuncts occurring
in the assertions used in this proof outline. Among them, apart of I, only the
conjunct in - out > 0, contains a variable which is changed in the component
PROD. But this change is done only be the assignment in :=in+ l. Obviously,
we have here again interference freedom:

{in -out> O} in:= in+ 1{in-out>0}.

Introduction to Program Verification

Next, we show deadlock freedom. The potential deadlocks are

< wait in - out < N, wait in - out > 0 >,
< wait in - out < N, E >,
< E, wait in - out > 0 >

417

and logical consequences of the corresponding pairs of assertions from the above
proof outlines are

< in - out 2: N, in - out ~ 0 >,
< in < M /I. in - out 2: N, out = M >,
< in = M, out < M /\ in - out ~ 0 >.

Since N 2: 1, the conjunction of the corresponding two assertions is in all three
cases false. This proves deadlock freedom.

We can now apply Rule 17 for the parallel composition of PRODS and
CONS and obtain:

{p1 /\ P2} [PRODllCONS] {P1 /\ P2 /\in= M /I. j = M}.

Since

{true} in:= O; out:= O; i := O; j := 0 {P1 /\ P2}

and

P1 /\ P2 /I. i =MA j = M-+ Vk(O ~ k < M---+ a[k] = b[k]),

we obtain the desired correctness formula (4) about S by straightforward appli
cation of the composition rule and the consequence rule.

19 Distributed Programs

Distributed programs are concurrent programs with disjoint components which
communicate by explicit message passing. Many real systems can be modeled
by distributed programs. As an example consider an airline reservation system
consisting of a large number of terminals in many different travel agencies and
a central data base for keeping the current status of all flights. The data base
and the terminals can be modeled as the components of a distributed program.
In this case communication will involve a two way connection between each
terminal and the database.

There are two ways of organizing message passing. We consider here syn
chronous communication where the sender of a message can deliver it only when
the receiver is ready to accept it at the same moment. An example is com
munication by telephone. Synchronous communication is also called handshake
communication or rendezvous. Another possibility is asynchronous communica
tion where the sender can always deliver its message. This stipulates an implicit
buffer where messages are kept until the receiver collects them. Communication

418 Krzysztof R. Apt and Ernst-Riidiger Olderog

by mail is an example. Asynchronous communication can be modeled by syn
chronous communication if the buffer is introduced as an explicit component of
the distributed program.

As a syntax for distributed programs we consider a simple subset of the
language CSP (standing for Communicating Sequential Processes) introduced
in Hoare [Hoa78]. CSP extends Dijkstra's guarded command language (studied
in Chapter 4) by the introduction of disjoint parallel composition and input
output commands for synchronous communication. We will explain this now in
detail.

19.1 Syntax

A (sequentiaQ process with name P or simply a process P is a component

P::S

where Pisa name and S, called a body of P, is a statement of the form

S =So; do DJ'=1 9j-+ Sj od

such that m;::: 0, So, ... , Sm are nondeterrninistic programs as defined in Chapter
4, and 91, ... , 9m are generalized guards. The statement

do Dj=1 U; --+ Sj od

is called the main loop of S. A generalized guard has the form

g := B; o:

where B is a Boolean expression and o: an input-output command or shorter an
i/o command.

A main loop is exited when the Boolean part of each generalized guard of
the loop evaluates to false.

There are two types of i/o commands: an input command, written as Pj?u,
and an output command, written as Pj !t. The first, when used within a process
Pi, expresses its request to process Pj to send a value which will be assigned to
the simple or subscripted variable u. An output command is the action which
makes it possible. When used in a process Pi it expresses its request to process P;
to receive the value of the expression t. Both requests are delayed until they can
be performed together. In particular, the output command cannot be executed
independently. The joint execution of two i/o commands, called a communica
tion, is possible when they match.

Definitions. We say that two i/o commands match when one is an input com
mand, say P;?u, and the other an output command, say Pi!t, such that P;?u
is contained in the process Pi and Pi !t is contained in the process P;, and the
types of u and t agree. D

Introduction to Program Verification 419

Two generalized guards match if their i/o commands match. They can be
passed jointly when they match and their Boolean parts evaluate to true. Then
the communication between the i/o commands takes place.

The effect of a communication between two matching i/o commands o:1 =:
Pj ?u and o:2 = P; !t is the assignment u := t. Formally, we define

For a process P :: S let change(S) denote the set of all simple or array variables
that appears in S on the left-hand side of an assignment or in an input command
and let var(S) denote the set of all simple or array variables appearing in S.
Processes P1 :: 51 and P2 :: S2 are called disjoint if the following condition holds:

change(Si) n var(S2) = var(S1) n change(S2) = 0.

Now, distributed programs are generated by the same clauses as those defin
ing nondeterministic programs in Chapter 4 together with the following clause
for parallel composition:

where P 1 :: S1 , ... , Pn : : Sn are disjoint processes with distinct names P1, ... , Pn.
We say that two processes P; :: Si and Pi :: Si are connected by a communication
channel if they contain a pair of matching generalized guards. When the bodies
of P;-s are clear from the context, we omit them and simply write (Pill·.· llPn].

A distributed program terminates when all of its processes terminate. This
means that distributed programs may fail to terminate because of divergence
of a process or an abortion arising in one of the processes. However, they may
also fail to terminate because of a deadlock. A deadlock arises here when not all
processes have terminated, none of them has aborted and yet none of them can
proceed. This will happen when all nonterminated processes will be in front of
their main loops but no pair of their generalized guard matches.

We say that a distributed program Sis deadlock free relative to an assertion
p if no deadlock can arise in executions of S starting in a state satisfying p.

Example 12. Here and in the next example we assume a new basic type charac
ter. Thus we may use constants and variables ranging over it. The constants of
type character which we shall use are the ASCII characters.

Here we wish to write a program

S =: [BUFFERllCONSOLE]

where the process BUFFER sends to the process CONSOLE a sequence of k (k;:::
1) characters. To this end, we use two array variables a, b of type integer-+
character and put

BUFFER:: i := l; do i =f. k + 1; CONSOLE!A[i]-+ i := i + 1 od

420 Krzysztof R. Apt and Ernst-Riidiger Olderog

and

CONSOLE:: j := 1; do j # k + 1; BUFFER? B[j]-+ j := j + 1 od.

Note that the above program is deterministic in the sense that only one com
putation is possible. It terminates after both BUFFER and CONSOLE execute
their loops k times. D

Example 13. In the following program

S::: [BUFFERllFILTERllCONSOLE]

the process BUFFER sends to the process CONSOLE through the process
FILTER a sequence of k (k 2: 1) characters ending with '*'· FILTER deletes
all blanks in the sequence. It is assumed that '*' appears in the sequence
only at its end. We have

BUFFER:: i := 1;
do i # k + 1; FILTER!A[i]-+ i := i + 1 od,

FILTER :: send:= l; rec := l; b :=' ';
do b # '*'; BUFFER?b -+

if b = ' '-+skip
Db # ' '-+ B[rec] := b;

rec := rec + 1
fi

Dsend # rec; CONSOLE!B[send] -+ send := send+ 1
od,

CONSOI.E :: n := 1; c :=' ';
doc#'*'; FILTER?c-+ C[n] := c; n := n + 1 od.

The process FILTER continues to receive characters from the process
BUFFER until '*' is sent. It can also send to the process CONSOLE the
non blank characters received so far. The presence of two generalized guards
in FILTER reflects its nondeterministic behavior and allows more than one
computation of the program S.

BUFFER terminates once it has sent all k characters to FILTER. FILTER
terminates when it has received the character '*' and has sent to CONSOLE all
characters it has received. Finally, CONSOI.E terminates once it has received
from FILTER the character '*'·

To better understand the nature of deadlock situations consider what would
happen if the Boolean guard of BUFFER were changed to i < k. Then BUFFER
would not send the last character of the sequence, that is '*'. Thus FILTER would
not falsify its first Boolean guard and so would never exit the loop. CONSOI.E
would never exit its loop either and a deadlock would result once CONSOLE has
received all nonblank characters from FILTER. 0

Introduction to Program Verification

19.2 Transformation into Nondeterministic Programs

Consider a parallel composition

s = [P1 :: Sill· .. llPn :: Sn]

of n disjoint processes where

for i = 1, ... , n. As abbreviations we introduce

I'= {(i,j, k,£) I o:;,; and ai:,1. match and i < k}

and
TERM:: /\f=1 fl.j.;, 1 -.B;,;.

Observe that TERM holds upon termination of S.
We transform S into the following nondeterministic program T(S):

T(S) :: 81,0; ... ; Sn,o;
do D(i,j,l:,t)er B;,; /\Bi:,1.-+ Eff(a;,;,ai:,1.); S;,;; Si:,t od;
if TERM -+ skip fi

421

where the use of elements of I' to "summate" all guards should be clear. Note
that upon exit of the main loop of T(S) the assertion

BliXJK :: /\(i,j,k,t.)er -.(B;,; /\ Bi:,t)

holds. This formula holds also whenever deadlock is reached in S. The behaviour
of the distributed program Sis equivalent to the behaviour of the nondetermin
istic program T(S) in the sense of partial correctness. We shall make use of this
obervation in the next section.

19.3 Proof Theory

The proof theory of distributed programs is surprisingly simple. We follow here
the approach of Apt [Apt86]. Adopt the notation of the previous section. Con
sider first partial correctness. We augment the proof system P N for partial
correctness of nondeterministic programs by the following rule:

RULE 18: DISTRIBUTED PROGRAMS

{p} So,1; ... ; So,n {I},
{I /\B;,; /l.Bi:,t} Eff(a;,;,o:k,1.); S;,;; Si:,t {I}

for all (i, j, k, £) E I'

{p} S {I/\ TERM}

and call the resulting proof system PDP, standing for partial correctness of
distributed programs.

422 Krzysztof R. Apt and Ernst-Riidiger Olderog

When the premises of the above rule are satisfied then we say that I is
a global invariant relative to p. Also, we shall refer to a statement of the form
Eff(O:i,j, O:k,e); S;,j; Sk,t as a transition. An execution of a transition corresponds
to a joint execution of a pair of branches of the main loops with matching
generalized guards.

Informally the above rule can be phrased as follows. If I is established upon
execution of all the 50 ,; sections and is preserved by each transition then I holds
upon termination. This formulation explains why we call I a global invariant.
The word "global" relates to the fact that we reason here about all processes
simultaneously and consequently adopt a "global" view.

This rule can be justified by relating S to its nondeterministic version T(S).
Similarly as in the previous chapter we now consider weak total correctness.

It now combines partial correctness with absence of failures and divergence free
dom. We augment the proof system T N for total correctness of nondeterministic
programs by the following strengthening of the previous rule

RULE 19: DISTRIBUTED PROGRAMS II

{p} Sa,1; · .. ; So,n {I},
{I/\ B;.i /\ Bk,e} EJJ(o:;,j, ak,t); S;,j; Sk,t {I}

for all (i,j,k,£) EI',
{I /\B;,i /\Bk,t /\t = z} Eff(o:;,j,0:1c,t); S;,i; Sk,t {t < z}

for all (i, j, k, £) EI',
I-+t?:_O

{p} S {I/\ TERM}

where t is an integer expression and z is an integer variable which does not
appear in t or P.

Again, this rule can be justified by relating S to T(S). We call the resulting
proof system W DP standing for weak total correctness of distributed programs.

Finally, consider total correctness. We have to take care of deadlock freedom.
We now augment the proof system T N for total correctness of nondeterministic
programs by a strengthened version of the last rule. It has the following form:

RULE 20: DISTRIBUTED PROGRAMS III

{p} So,1; ... ; So,n {I},
{I/\B;,i /\B1c,e} Eff(a;,j,ak,t); S;,i; Sk,t {I}

for all (i,j, k,f) EI',
{I/\ B;,j /\ B1c,t /\ t = z} Eff(a;,j,a1c,t); S;,i; Sk,L {t < z}

for all (i,j,k,£) EI',
I -+ t ?:. 0,
I/\ BIJXJK -+ TERM

{p} S {I/\ TERM}

The new premise allows us to deduce additionally that Sis deadlock free relative
top, and consequently to infer the conclusion in the sense of total correctness. We

Introduction to Program Verification 423

call the resulting proof system T DP standing for total correctness of distributed
programs.

Also, we shall use the following additional rules which allow us to present
the proofs in a more convenient way.

RULE 03:

11 and 12 are global invariant relative top

Ii /\ 12 is a global invariant relative top

RULE 04:

I is a global invariant relative to p,
{p} s {q}

{p} S {I/\ q}

This rule can be used in proofs of partial, weak total or total correctness.

RULE 21:

I is a global invariant relative to p,
l /\ BliXJK ~ TERM

S is deadlock free relative to p

Note that Rule 03 has several conclusions so it is actually a convenient
shorthand for a number of closely related rules. Rules 03 and D4 are actually
derived rules (hence their numbering), whereas Rule 21 allows us to reason about
deadlock freedom separately.

To illustrate the use of the proof systems we now prove correctness of the
program from Example 12 on page 419.

Example 14. We prove

{k ~ 1} S {A[l: k] = B[l: k]}

in the sense of total correctness. To this purpose we choose

l := A[l : i - 1] = B[l : j - 1] /\ i = j /\ 1 $ i $ k + 1

and
t = k + 1- i.

There is only one transition to consider. Clearly

{I/\ i -:f k + 1/\j#k+1} B[j] := A[i]; i := i + 1; j := j + 1 {I}

holds. Other premises of Rule 20 are equally simple to establish. By Rule 20 and
the consequence rule the desired conclusion follows. D

424 Krzysztof R. Apt and Ernst-Rudiger Olderog

19.4 Verification: The Producer Consumer Problem

The program S given in Example 13 on page 420 is a typical instance of the pr0-
ducer consumer problem originally studied in Section 7 .3. The process FILTER
acts as an intermediary process between the process BUFFER playing here a
role of a producer and the process CONSOLE playing here a role of a consumer.
We now prove correctness of this program.

We first formalize the property we wish to prove. Given an array variable A
of type integer-+ character, we call a section A[i: j] a string. For two strings
A[i : j] and B[k : l], we write A[i: j] = B[k : l] if they are equal (as sequences).
Given a string A[l : k] we define delete(A[l : k]) as the string B[l : n] which
results from A[l : k] by deleting all blanks. Thus delete(A[l : k]) = B[l : n] iff
the following three conditions hold:

(i) n = k- #{i: A[i] =' '},
(ii) Vi(l :Si::::; n).B[i] -f.'' (B[l: n] contains no blanks),

(iii) for some 1-1 order preserving function f : { 1, ... , n} -+ { 1, ... , k}
Vi(1 :S i ::::; n) .B[i] = A[f(i)]
(i.e. B[l : n] results from A[l : k] by deleting some characters).

Here, #A stands for the cardinality of the set A. Indeed, note that by (i) and
(iii) B[l : n] results from A[l : k] by deleting a number of characters equal to
the number of blanks in A[l : k]. Now by (ii) the deleted characters are exactly
all blank characters of A (1 : k].

Note 8.5 For all i = 1, ... , k - 1

(i) if A[i + 1] = ' ' then
delete(A[l : i + 1]) = delete(A[l : i]),

(ii) if A[i + 1] =f.' 'then
delete(A[l : i + 1]) = delete(A[l : i]) " A[i + 1]
where "11 " appends the character at the end of the string.

Correctness of the program S now means that for

p =. k?:. 1 A A[k] = '* '!\ Vi(l :Si< k).A[i] -f.'*'

the correctness formula

{p} S {C[l: n - 1] = delete(A[l : k])}

is true in the sense of total correctness.

D

(1)

Step 1 We first prove (1) in the sense of partial correctness. To this purpose
we first look for an appropriate global invariant I of S (relative to the initial
assertion p).

Introduction to Program Verification

We put

I= B[l : rec - 1] = delete(A[l : i - l])
/\ B[l : send - 1] = C[l : n - 1]
/\ send ::; rec.

We now check that I indeed satisfies the premises of Rule 18.

1°. We clearly have

{p}
i := l; send:= l; rec := l;
b := ' '; n := 1; c := ' '
{I}

as by convention for any array a the string a[l : OJ is empty.

2°. We have here two pairs of matching i/o commands:

(FILTER!A[i], BUFFER?b)

and

(CONSOLE!B[send], FILTER?c).

We consider them in turn.

(i) We prove the following correctness formula:

{I/\ i # k + 1 /\ b # '*'}
b := A[i]; i := i + l;
if b =' '_,.skip
Db # ' '-+ B[rec] := b;

rec := rec + 1
fi.
{I}.

To this purpose first observe that by Note 8.5

and

hold.

B[l: rec-1] = delete(A[l: i- 2]) /\A[i-1] = b/\b =' '}
skip
{B(l : rec - 1] = delete(A[l : i - 1])}

{B(l : rec - l] = delete(A[l : i - 2]) /\ A[i - 1] = b /\ b =/::' '}
B[rec] := b; rec := rec + 1
{B[l: rec- 1] = delete(A[l: i-1])}

425

426 Krzysztof R. Apt and Ernst-Rudiger Olderog

Now by the alternative command rule and the composition rule

{B[l: rec - 1] = delete(A[l: i - 1])}
b:=A[i]; i:=i+l;
if b = ' '--+skip
Db of. ' '-+ B[rec] := b;

rec := rec+ 1
fi
{B[l: rec - 1] = delete(A[l: i - 1])}

holds.
To obtain the desired correctness formula it suffices now to conjoin all asser

tions in the above proof with the assertion

B[l : send - 1] = C[l : n - 1] /\send:=:; rec

which remains invariant.

(ii) We prove the following correctness formula

{I/\ send of. rec /\ c of. '*'}
c := B[send]; send:= send+ l;
C[n] := c; n := n + 1
{I}.

First observe that

{B[l: send- 1] = C[l: n - 1] /\send< rec}
c := B[send]; send:= send+ l;
C[n] := c; n := n + 1
{B[l : send - 1] = C[l : n - 1] /\send~ rec}

from where the above correctness formula easily follows by conjoining the asser
tions with the assertion

B[l : rec - l] = delete(A[l : i - 1])

which remains invariant. Thus I is indeed a global invariant relative to p.
By Rule 18 we now obtain from 1° and 2° the correctness formula

{p} S {I/\ TERM}

in the sense of partial correctness. Here

TERN! = i = k + 1 /\ b = ' * '/\ send = rec /\ c = ' * '.
By the consequence rule (1) holds in the sense of partial correctness.

Step 2 We now prove (1) in the sense of weak total correctness. To this end we
exhibit an appropriate bound function by putting

t = 2 · (k - i + 1) + rec - send

which guarantees a decrease when both i and send are incremented by 1.

Introduction to Program Verification 427

However, to apply Rule 19 we need to use an invariant which guarantees that
t remains non-negative. We put

It is straightforward to prove that Ii and t satisfy the premises of Rule 20, where
T N is used as the underlying proof system.

By Rule 19 and Rule D4 we now get

{p} S {I/\ Ii/\ TERM}

in the sense of weak total correctness which implies (1) in the sense of weak total
correctness.

Step 3 Finally, we prove deadlock freedom. By Rule 21, it suffices to find a
global invariant I' (relative top) for which

I' /\ BIJX)K -+ TERM (2)

holds. Here

BlfXK = (i = k + 1 V b ='*')/\(send= rec V c =' * ').
We use Rule D3 and exhibit I' "in stages." First we wish to find a global

invariant 12 such that

12-+ (i = k + 1 +--> b = '* '). (3)

Next, we wish to find global invariants 13 and 14 for which

/3 /\ i = k + 1 /\ b = ' * ' /\ send = rec -+ c = ' * ' (4)

and
/4 /\ i = k + 1 /\ b = ' * ' /\ c = ' * ' -+ send = rec (5)

holds.
Then by Rule D3 and (3), (4) and (5)

I' := 12 /\ h /\ /4

is a global invariant. Note that each of the equalities used in (3), (4) and (5) is
a conjunct of TERM; (3), (4) and (5) express certain implications between these
conjuncts which guarantee that I' indeed satisfies (2).

First, we put

12 := p /\ (i > 1 V b = '*'-+ b = A[i - I]).

I2 relates variables of the processes BUFFER and FILTER. Note that (3) holds.
Next, we put

l3 :=I/\ p /\ (n > 1-+ c = C[n - I]).

The last conjunct of 13 states a simple property of the variables of the process
CONSOLE. We have the following sequence of implications

428 Krzysztof R. Apt and Ernst-Riidiger Olderog

J3 /\ i = k + 1 /\ b = '*' /\ send = rec -;.
Is /\ C[l : n - 1] = delete(A[l : k]) -;.
J3 /\ C[n - l] = '*' /\ n > 1-+
c = '*'·

Finally, we put

J4 ::: I /\ p /\ (c = ' * ' -;. C[n - 1] = ' * ').

Here as well, the last conjunct describes a simple property of the variables of the
process CONSOLE. We have the following sequence of implications

14 /\ i = k + 1 /\ b = '*'/\c = '*'-->
J4 /\ C[n - 1] = '*'-+
14 /\ B[send - 1] = A[k]-+
f (send - 1) = k /\ send - 1 ~ rec - 1 ~ k /\ f (rec - 1) ~ k

for some 1 - 1 order preserving function
f: {l, ... ,n-1}-+ {l, ... ,k}
(see clause (iii) of the definition of delete(A[I : k])) -+

send= rec.

Thus we showed (4) and (5). Moreover, it is straightforward to see that each
of h ! 3 and 14 is indeed a global invariant. We have thus proved (2).

This concludes the proof of the correctness formula (1) in the sense of total
correctness.

19.5 Conclusions

A key to the proper understanding of the proof systems PDP, W DP and T DP
studied in this chapter is observation made in Section 8.2 that every simple
distributed program S is equivalent to a nondeterministic program T(S). This
equivalence allows us to prove correctness of S by proving correctness of T(S)
instead and the Rules 18, 19 and 20 allow us to do just this-their premises refer
to the subprograms of T(S) and not S.

The same approach could be used when dealing with parallel programs. How
ever, there such a translation of a parallel program into a non deterministic one
would necessitate a use of auxiliary variables. This would add to the complexity
of the proofs and would make the approach clumsy and artificial. Here, thanks
to a special form of the programs, the translation turns out to be very simple.
We can summarize this discussion by conceding that the proof method presented
here exploits the particular form of the programs studied.

Introduction to Program Verification 429

References

[AFR80] K.R. Apt, N. Francez and W. P. de Roever [1981], A proof system for
communicating sequential processes, ACM TOPLAS 2, pp. 359-385, 1980.

[Apt86] K. R. Apt [1986], Correctness proofs of distributed termination algorithms,
ACM TOPLAS 8, pp. 388-405, 1986.

[Bak80] J. W. de Bakker (1980] Mathematical Theory of Program Correctness,
Prentice-Hall, Englewood Cliffs, N.J., 1980.

[Dij75] E. W. Dijkstra (1975], Guarded commands, nondeterminacy and formal
derivation of programs, Communications of the ACM 18, pp. 453-457, 1975.

[Dij76] E. W. Dijkstra [1976], A Discipline of Programming, Prentice-Hall, Engle
wood Cliffs, N.J., 1976.

[Flo67] R. Floyd [1967], Assigning meaning to programs, in: Proc. Symp. on Appl.
Math. 19 (Math. Aspects of Comp. Sci.), (J.T. Schwartz, ed.), pp. 19-32,
American Math. Society, New York, 1967.

[Gri82] D. Gries [1982], A note on a standard strategy for developing loop invariants
and loops, Science of Computer Programming 2, pp. 207-214, 1982.

[Hoa69] C. A. R. Hoare [1969], An axiomatic basis for computer programming, Com
munications of the ACM 12, pp. 576-580, 583, 1969.

[Hoa72] C. A. R. Hoare [1972], Towards a theory of parallel programming, in: Op
erating Systems Techniques (C.A.R. Hoare, R.H. Perrot, eds.), pp. 61-71,
Academic Press, 1972.

[Hoa78] C. A. R. Hoare [1978], Communicating Sequential Processes, Communica
tions of the ACM 21, pp. 666-677, 1978.

[Lam77] L. Lamport [1977], Proving the correctness of multiprocess programs, IEEE
Transactions on Software Engineering SE-3:2, pp.125-143, 1977.

[LeGr81] G. Levin and D. Gries [1981], A proof technique for Communicating Se
quential Processes, Acta lnformatica 15, pp. 281-302, 1981.

[OwGr76] S. Owicki and D. Gries [1976], An axiomatic proof technique for parallel
programs, Acta Informatica 6, pp. 319-340, 1976.

[Tur49] A. M. Turing [1949], On checking a large routine, in: Report of a Conference
on High Speed Automatic Calculating Machines, pp. 67-69, Univ. Math.
Laboratory, Cambridge, 1949; see also: F.L. Morris and C.B. Jones, An
early program proof by Alan Turing, Annals of the History of Computing
6, pp. 139-143, 1984.

D E. R. Olderog and K. R. Apt [1988], Fairness in parallel programs, the
transformational approach, ACM TOPLAS 10, pp.420-455, 1988.

