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Introduction to Program Verification 365 

Abstract. We provide a systematic introduction to program verification based 
on the assertional method. We study here deterministic, nondeterministic, paral
lel and distributed programs and deal with such properties as partial correctness, 
termination, absence of failures, interference freedom and deadlock freedom. 

1 Introduction 

During the last three decades we witnessed the development of new programming 
languages and new styles of programming. Our understanding of the whole pro
gramming process increased significantly. It also became increasingly clear that 
the only way to ensure program correctness is by providing a rigorous proof that 
the program meets its specification. 

Program verification is a systematic approach to proving the absence of pro
gram errors. The idea is to compare the program with a specification expressing 
the desired program properties. A number of approaches to program verification 
have been proposed and used in the literature. 

The most common of them is based on an operational reasoning, i.e. on an 
analysis in terms of the execution sequences of the given program. To this end, 
an informal understanding of the program semantics is used. While this analysis 
is often successful in the case of sequential programs, it is much less so in the 
case of concurrent programs. The number of possible execution sequences is 
then most often forbiddingly large and it is all too easy to overlook a possible 
execution sequence. 

A different approach is based on an axiomatic reasoning. According to this 
approach, we first need a formalism which makes it possible to express the rele
vant program properties. In other words, using the terminology of logic, we :first 
need an appropriate language defined by syntactic rules that allows us to con
struct well-formed formulas. Next, we need a proof system consisting of axioms 
and rules which allows us to construct formal proofs of certain relevant formulas. 
And this proof system should be such that only true properties can be proved 
in it. 

The origins of this approach to program correctness can be traced back to 
Turing [Tur49], but the first constructive effort should be attributed to Floyd 
[Flo67] where proving correctness of flowchart programs by means of assertions 
was proposed. This method was subsequently presented in a syntax directed 
manner in the seminal paper of Hoare [Hoa69] which opened the way to a proof
theoretic approach for other classes of programs. His approach has received a 
great deal of attention and several Hoare-style proof systems dealing with various 
programming constructs have been proposed since then. 

In 1976 and 1977, this approach was extended to parallel programs by Owicki 
and Gries [OwGr76] and Lamport [Lam77], and in 1980 and 1981 to distributed 
programs by Apt, Francez and de Roever [AFR80] and Levin and Gries [LeGr81]. 

The aim of this article is to provide a systematic exposition of this method. 
We study sequential, parallel and distributed programs and deal with several 
program properties. 
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Sequential programs are programs in which at each time instance at rnost one 
instruction can be executed. A special case of sequential programs are determin
istic programs, those in which there is always at most one next instruction to 
be executed. Their correctness is studied in Chapter 3. A more general class of 
sequential programs consists of nondeterministic programs, those in which the 
choice of the next instruction to be executed is not fully determined. Their cor
rectness is studied in Chapter 4. We also discuss there a systematic development 
of programs together with their correctness proofs. 

Concurrent programs are programs in which more than one component can 
be active at a time. We study here two types of concurrent programs - parallel 
programs and distributed programs. Parallel programs are programs in which the 
components can communicate by means of shared variables. Their correctness is 
studied in Chapters 5,6 and 7, in which successively more sophisticated classes 
of programs are considered. 

Distributed programs are programs in which the components, sometimes 
called processes, do not share variables and can communicate instead by 
messages. Correctness of distributed programs is studied in Chapter 8. 

Depending on the type of program, correctness refers to different program 
properties and hence requires different methods of reasoning. For sequential pro
grams we study 

partial correctness, 
termination, and 
absence of failures. 

For concurrent programs we additionally study 

- interference freedom, and 
- deadlock freedom 

When dealing with concurrent programs, we heavily rely on the concepts and 
techniques developed for sequential programs. Our presentation does not aim at 
completeness and should serve merely as an introduction to the basic concepts 
and techniques of program verification by means of the assertional method. 

2 Preliminaries 

In this chapter we explain the notation and syntax we shall use throughout this 
article and explain some elementary notions from mathematical logic we shall 
need in the sequel. 

First we define an assertion language in which assertions about programs 
will be written. This language extends first order logic in that it uses types and 
array variables. The assertion language consists of the types, the alphabet, the 
expressions and the formulas. 
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3 Types and Alphabets 

First, we define types. We assume at least two basic types: 

- integer, 
- Boolean 

and for each n ~ 1 one higher type: 
- T1 x ... x Tn -+ Tn+1, 

where each Ti is a basic type. Here T1 , ... , Tn are called argument types 
and Tn+l the value type. Some other basic types (like character) will be 
occasionally used. 

A type provides us with information about the intended set of values. The 
type integer consists of all integers, the type Boolean consists of two values -
true and false, and a type T1 x ... x Tn -+ Tn+l consists of all functions from 
the Cartesian product of [the sets described by] T1 , ... , Tn to [the set described 
by) Tn+i· 

Next, we introduce the alphabet of an assertion language. It consists of the 
following classes of symbols: 

variables, 
constants, 
quantifiers, which are: 3 (there exists) and V (for all), 

- parentheses, which are: (, ), [ and], 
- punctuation symbols, which are , and .. 

4 Variables and Constants 

We assume three sorts of variables: 

- simple, 
- subscripted, 
- array. 

Each variable has a type associated with it and can assume as values only 
elements of this type. Simple and subscripted variables are of a basic type and 
array variables are of a higher type. 

Simple variables of a type integer are called integer variable and usually 
denoted by i, j, k, x, y, z. Simple variables of a type Boolean are called Boolean 
variables. In programs simple variables will be usually denoted by more sugges
tive names like turn or found. 

Subcripted variables will be explained in the next section. Array variables 
(or just arrays) are usually denoted by a, b, c. They range over functions of an 
appropriate type. In particular, when all argument types are of a type integer, 
there are no bounds associated with it. On the other hand, we occasionally use 
finite sections of an arrays. When an array a has one argument type which is 
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integer, then for any k,l with k '.5 l the section a[k: l] stands for the restriction 
of a. to the interval { i I k '.5 i '.5 l}. The number of arguments of the higher type 
associated with the array a is called its dimension. 

Each constant has a type associated with it. Its value belongs to this type 
and is fixed. We assume two sorts of constants: 

- of basic type 
- of higher type 

Among constants of basic type we distinguish integer constants and Boolean 
constants. We assume infinitely many integer constants: 0, -1, 1, -2, 2, ... and 
two Boolean constants: true, false. 

Among constants of a higher type T1 x ... x Tn - Tn+l we distinguish two 
sorts. When the value type Tn+l is Boolean, the constant is called a relation 
symbol and otherwise the constant is called a function symbol; n is called the 
arity of the constant. 

We do not wish to be overly specific but we assume existence of at least the 
following function and relation symbols: 

+, -, ·,mod of type integer x integer - integer, 
< of type integer x integer - Boolean, 
=int of type integer x integer - Boolean, 
=Bool of type Boolean x Boolean - Boolean, 

- --, of type Boolean - Boolean, 
- V, /\, -, +-+ of type Boolean x Boolean - Boolean 

The value of each of these constants is well known and therefore not further 
explained. In the sequel we shall drop the subscript when using = as from the 
context it will be always clear which interpretation is meant. 

The 2-ary (or binary constants) are written in an infix form, i.e. between the 
arguments. The relation symbols--,,/\, V, - and+-+ are usually called connectives. 

The value of variables can be changed during the execution of a program, 
whereas the value of constants remains fixed forever. 

5 Expressions and Assertions 

Out of variables and constants we build up expressions. Each expression has 
a type associated with it. We consider here only expressions of a basic type. 
Thus we distinguish integer expressions and Boolean expressions. Expressions 
are defined by induction as follows: 

- a simple variable of type T is an expression of type T, 
- a constant of a basic type T is an expression of type T, 
- if s1, •.. , Sn are expressions of type T1, .•. , Tn, respectively and c a constant 

of type T1 x ... x Tn - T, then c(s1 , ••• , sn) is an expression of type T, 
- if s1, ... , Sn are expressions of type Ti, ... , Tn, respectively, and a an array 

variable of type T1 x ... x Tn - T, then a[ s1, ... , sn] is an expression of type 
T, 
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- if B is an expression of type Boolean and s1 and s2 expressions of type T, 
then if B then s 1 else s 2 fi is an expression of type T. 

Expressions of the form a[s1, ... , sn] are called subscripted expressions. Ex
pressions are usually denoted by letters s, t and Boolean expressions by the letter 
B. Simple and subscripted variables are usually denoted by letters u, v. They 
can be assigned a value in the programs by means of an assignment statement, 
which will be discussed in the next chapter. Assignments to a subscripted vari
able a[s1, ... , Sn] model a selected update of the array a at the argument tuple 
[s1, ... ,sn]· 

Assertions are formulas in the assertion language. They are defined by in
duction as follows: 

a Boolean expression is an assertion, 
if p, q are assertions, then ...,p, (p V q), (p /\ q), (p --r q) and (p +-+ q) are 
assertions, 

- if x is a simple variable and p an assertion, then 3xp and \:/xp are assertions. 

By a subassertion we mean a substring of p which is again an assertion. 
In this definition brackets are introduced around binary connectives to avoid 

ambiguities. Note that in the last clauses only quantifiers with simple variables 
are allowed. Also, note that assertions built up without the use of quantifiers are 
just Boolean expressions. 

6 Notational Conventions 

The definition of expressions and assertions is rigorous at the expense of excessive 
use of parentheses. We now introduce a number of conventions which allow us to 
eliminate some of the brackets. This will enhance the readability of expressions 
and assertions. 

First we introduce a binding order. We assume that all relation symbols, in 
particular < and =, bind stronger than ...,, 3 and V, which bind stronger than V 

and/\ which in turn bind stronger than --r and +-+. Moreover, we assume that 
both V and A associate to the right. Also we abbreviate 

Pi V ... V Pn to Vf=1 Pi, 
Pi A ... Apn to Ai::1 Pi, 

(s < t V s = t) to s::; t, 
(s<tAt::;w) to s < t ::; w, 

and similarly with other combinations of < and =. Occasionally we write s > t 
instead oft< s, and similarly with s 2: t. We assume that ::; and 2: bind stronger 
than all connectives and quantifiers. 

Next we abbreviate 

3x( x 2 t A p) to 3x 2 t .p, 

3x(s::; x < t /\ p) to 3x(s :'.S x < t).p, 
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and similarly with other combinations of<,::;, ~' and >, and abbreviate 

Vx(x ~ t--> p) to Yx 2: t.p, 

Vx(s::; x < t--> p) to Yx(s :S x < t).p, 

and similarly with other combinations of<, :s;, 2:, and >. 
Finally, once an assertion of the form (p V q), (p /\ q), (p--> q) or (p.....,. q) has 

been constructed, we omit the outer brackets. 
The following example illustrates the use of these conventions. Consider the 

assertion 
(Vx((x = tV x < t)--> 3y((y < s) /\(pi\ q)))--> r). 

Thanks to the binding order applied to < it can be simplified to 

(Yx((x = t V x < t)--> 3y(y < s /\ (p /\ q))) --+ r), 

which thanks to the convention of associating /\ to the right further simplifies to 

(Vx((x = t V x < t)--> 3y(y < s /\ p /\ q)) --+ r). 

Introducing :S we obtain 

(Vx(x :St--+ 3y(y < s /\pi\ q))--+ r) 

Finally, applying the last three abbreviation conventions we obtain the as
sertion 

Vx :S t.3y < s.(p /\ q)--> r 

which is much more readable than its original form. 
Note that in the last step we also reintroduced brackets around p /\ q to avoid 

ambiguities. This step can be formally defined when discussing the abbreviation 
3x :S t.p. 

7 Substitution 

An important concept is that of a substitution of an expression t for the free 
occurrences of the simple or subscripted variable u in an assertion p, written as 
p[t/u]. Its definition presupposes that t and u are of the same type. To explain 
it we first define the substitution of an expression t for a simple or subscripted 
variable u in an expressions, written as s[t/u]. It is defined by induction on the 
structure of the expression s. 

We put for a simple variable x 

[t/ l - { t if x = u 
x u = x otherwise, 
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and, following De Bakker [1980], for a subscripted variable a[s1, ... , sn] 

and otherwise 

a[s1, .. ., sn][t/ a[t1, ... , tn]] =if Af= 1 s~ = ti then t else a[s1, ... , s~] fi 

where s~ = Si[t/a[t1, ... , tn]]. 
Other cases are straightforward and omitted. The last clause motivated the 

introduction of conditional expressions in our syntax. Intuitively, it represents a 
statement "the array a assigns t to the argument tuple [t1, ... , tn]·" 

Now we define the substitution p[t/u] for an assertion p. The definition is 
again by induction. The base case of a Boolean expression c(s1, ... , sn) is handled 
using the definition of substitution for exressions: 

c(s1, ... , sn)[t/u]:: c(si[t/u], ... , sn[t/u]). 

The inductive clauses are straightforward with the exception of the case of as
sertions of the form 3xp and 'efxp. 

We put 
(3xp)[t/u] = 3yp[y/x][t/u], 

where y does not appear in p, t or u and is of the same type as x, and similarly 
for 'efxp. 

Substitution will be used in the next chapter when dealing with the assign
ment statement. 

By a bound occurrence of a simple variable in an assertion p we mean an 
occurrence within a subassertion of p of the form 3xr or 'r/xr. An occurrence of 
a simple variable in an assertion p is called free if it is not a bound one. 

Given an assertion p by free(p) we denote the set of simple variables which 
have a free occurrence (or occur free) in p augmented with the set of array 
variables which occur in p. 

8 Formal Proof Systems 

Our main interest here is in proving program correctness. To this purpose we 
shall investigate correctness formulas, i.e. statements of the form {p} S {q} 
where p, q are assertions and S is a program under consideration. All program 
properties we wish to verify will be expressed in the form of correctness formulas 
and, occasionally, assertions. Therefore, we shall present various proof systems 
allowing us to prove correctness formulas. 

A proof system consists of a language in which formulas are defined and of 
axioms and proof rules. Axioms are formulas assumed to be given. Proof rules 
allow us to prove from the already established formulas some new formulas. They 
have the form 

'P1, ... , 'Pk 

'Pk+l 
where ... , 
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where ip 1 , ... , 1Pk+l are formulas and " ... " stands for a condition describing 
when the rule can be applied. It should be read as "deduce 'Pk+1 from ip1 , ... , 'Pk 
provided " ... " ". The formulas ip1, ... , 'Pk are called the premises of the rule and 
the formula 'P!:+l is called the conclusion of the rule. 

A proof in a given proof system is a sequence of formulas in which each 
formula is either an axiom or follows from the previous ones by a rule of the 
system. The last formula in a proof is called a theorem. Or, to put it the other 
way around: a theorem is a formula which has a proof or can be proved in the 
given proof system. The length of this sequence is called the length of the proof 

Given a proof system P and a formula <f> we shall write I-p </; to denote that 
<j; is a theorem of P. On the other hand, for proof systems allowing us to prove 
correctness formulas we shall write f- p </> to denote that the correctness formula 
<f> is a theorem of P augmented by the set of all true assertions. This means that 
in the correctness proofs we shall use all true assertions as axioms. 

We refer here to an informal definition of truth. The assertions claimed true 
will always be very simple and their truth will rely on some elementary facts 
about integers. Informally, an assertion is true if it holds for all possible values 
of the variables which occur free in it. A formal definition of truth can be given 
but is omitted here. 

9 Deterministic Programs 

In a deterministic program there is at most one next instruction to be executed 
so that from a given initial state only one execution sequence is generated. In 
classical programming languages like Pascal only deterministic programs could 
be written. Here we consider a very small set of deterministic programs, usually 
called while-programs. 

10 Syntax 

A while-program is a string of symbols including the keywords if, then, else, 
fi, while, do and od which is generated by the following grammar: 

S ::=skip I u := t I S1; S2 I if B then S1 else S2 fi I while B do 51 od. 

Following the conventions of the previous chapter, the letter u stands for a simple 
or subscripted variable and t for an expression. We require that in an assignment 
u := t the variable u and the expression t are of the same type. Since types are 
implied by the notational conventions of the previous chapter, we do not declare 
variables in the programs. As an abbreviation we introduce 

if B then S fi ::: if B then S else skip fi.. 

As usual, spaces and indentation will be used to make programs more read
able, but these additions are not part of the formal syntax. Here and elsewhere 
programs will be denoted by letters R, S, T. 
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Though we assume that the reader is familiar with while-programs, we would 
like to recall how they are executed. The program skip changes nothing and just 
terminates. An assignment u := t assigns the value of the expression t to the 
(possibly subscripted) variable u and then terminates. A sequential composition 
S1; S2 is executed by first executing the statement S1 followed upon its termi
nation by an execution of S2. Since this interpretation of sequential composition 
is associative, we need not introduce brackets enclosing S1 ; S2 . Execution of a 
conditional statement if B then S1 else S2 fi starts by evaluating the Boolean 
expression B. If B is true, the statement S1 is executed, otherwise (i.e., if B is 
false), S2 is executed. Execution of a loop while B do Sod starts with the evalu
ation of the Boolean expression B. If B is false, the loop terminates immediately, 
otherwise S is executed. If S terminates, the whole procedure is repeated. 

Given a while-program S we denote by var(S) the set of all simple and array 
variables which appear in it and by change(S) the set of all simple and array 
variables which appear in it on a left-hand side of an assignment; change(S) is 
the set of variables which can be modified by S. Both notions will be used later 
in the chapters on parallel programs. 

By a subprogram S of a while-program R we mean a substring S of R which 
again is a while-program. For example, 

S:= x := x-1 

is a subprogram of 

R = if x = 0 then y := 1 else y := y - x; x := x - 1 fi. 

11 Proof Theory 

In this section we consider correctness formulas of the form {p} S {q} where S 
is a while-program and p and q are assertions. The assertion p, usually called 
a precondition, specifies the initial, or input, conditions to be satisfied by the 
variables of S. The assertion q, usually called a postcondition, specifies the final, 
or output, conditions satisfied by the variables of S. Thus the pair p, q can be 
viewed as an input-output specification of the program S. 

More precisely, we are interested in two interpretations of correctness formu
las. We say that {p} S { q} is true in the sense of partial correctness if every 
terminating computation of S starting in a state satisfying p terminates in a 
state satisfying q. And {p} S { q} is true in the sense of total correctness if every 
computation of S starting in a state satisfying p terminates and its final state 
satisfies q. 

Partial Correctness 

We now present a proof system, called PD, for deriving partial correctness 
formulas about deterministic programs. It was introduced in [Hoa69). It consists 
of the following axioms and proof rules. 
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AXIOM 1: SKIP 
{p} skip {p} 

AXIOM 2: ASSIGNMENT 

{p[t/u]} u := t {p} 

RULE 3: COMPOSITION 

{p} S1 {r},{r} S2 {q} 
{p} S1; S2 { q} 

RULE 4: CONDITIONAL 

{pAB} S1 {q},{pA-.B} S2 {q} 
{p} if B then S1 else S2 fi. {q} 

RULE 5: LOOP 

{pi\ B} S {p} 
{p} while B do Sod {p /\ -.B} 

RULE6:CONSEQUENCE 

P - Pi. {p1} S {qi}, q1 - q 
{p} s {q} 

The skip axiom should be obvious. On the other hand, the first reaction to 
the assignment axiom is usually astonishment. The axiom encourages reading 
the assignment "backwards" and initially we have no intuition associated with 
such a view. So before we proceed further let us first analyze a simple program 
consisting only of assignments. 

Example 1. Consider the following program S: 

x := 1; a[l] := 2; a[x] := x. 

We now prove that after the execution of S the value of a[l] is 1, that is, we 
prove in PD the correctness formula 

{true} S {a[I] = 1}. 

To this purpose we repeatedly apply the assignment axiom while proceeding 
"backwards" . We start with 

{(a[l] = l)[x/a[x]]} a[x] := x {a[l] = 1}, 

that is, by the definition of substitution, 

{if 1 = x then x else a[I] fi. = 1} a[x] := x {a[I] = 1}, 
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which after simplifications (formally justified by the consequence rule) gives 

{x f- 1 - a[l] = l} a[x] := x {a[l] = l}. 

By the same token 

{x f- 1 - 2 = 1} a[l] := 2 {x f- 1 - a[l] = l}, 

that is, by the consequence rule, 

{x = l} a[l] := 2 {x f. 1 - a[l] = l}. 

Finally, 

{true} x := 1 {x = l}. 

Putting the last correctness formulas together using the composition rule twice 
we get the desired result. 0 

Another stumbling block in the understanding of the above proof system 
might be the loop rule. This rule states that given the program while B do S 
od, if p is preserved with each iteration of its loop, then p is true upon exit of 
the program. Therefore p is called a loop invariant. 

Let us see how this rule can be used. We choose here as an example the first 
program (written in a textual form) which was formally verified. This historic 
event was duly documented in [Hoa69]. 

Example 2. Let S be the following program computing the integer quotient and 
remainder of two natural numbers x and y: 

S = quo := O; rem:= x; So, 

where So is 

while rem 2: y do rem := rem - y; quo := quo + 1 od. 

We wish to prove 

{x 2: 0 /\ y 2: O} S {quo · y +rem= x /\ 0::; rem< y}, (1) 

that is, 

if, x, y are nonnegative integers and S terminates, 
then quo is the integer quotient 
of x divided by y and rem is the remainder. 

(2) 
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Note that the interpretation (2) of (1) is only true because S does not change 
the variables x and y. Programs that may change x and y can trivially achieve 
(1) without satisfying (2). An example is the program 

S:: x := O; y := 1; q := O; r := 0. 

To prove (1), we choose the assertion 

p :: quo · y + rem = x /\ rem ~ 0 

as the loop invariant of So. It is obtained from the postcondition of (1) by 
dropping the formula rem < y. 

We now prove the following three facts: 

1°. {x~O/\y2:'.0}quo:=0; rem:=x {p}, 

i.e., the program quo := O; rem := x establishes p. 

2°. {p A rem 2:'. y} rem:= rem - y; quo := quo + 1 {p}, 

i.e., p is indeed a loop invariant of So; 

3°. pi\ -i(rem ~ y) - quo · y+ rem= x /\ 0 ~rem< y, 

i.e., upon exit of the loop S0 , p implies the desired assertion. 

Observe first that we can prove (1) from 1°, 2° and 3°. Indeed, 2° implies, 
by the loop rule, 

{p} So {p/\-i(rem ~ y)}. 

This, together with 1°, implies, by the composition rule, 

{x ~ 0 /\ y ~ O} S {p /\rem< y}. 

Now, by 3°, (1) holds by an application of the consequence rule. 
So let us prove now 1°, 2° and 3°. 

ad 1°. 

We have 
{ quo · y + x = x /\ x ~ 0} rem := x {p} 

by the assignment axiom. Once more by the assignment axiom 

{O · y + x = x /\ x ~ O} quo := 0 {quo · y + x = x /\ x ~ O}, 

so by the composition rule 

{O · y + x = x Ax~ O} quo := 0; rem:= x {p}. 

On the other hand 

x~O/\y~O-+O·y+x=x/\x~O 
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so 1° holds by the consequence rule. 

ad 2°. 

We have 

{(quo + 1) · y +rem= x /\rem 2: O} quo := quo + 1 {p} 

by the assignment axiom. Once more by the assignment axiom 

{(quo+ 1) · y +(rem - y) = x /\rem -y 2: O} 
rem:= rem-y 
{ ( quo + 1) · y + rem = x /\ rem ~ 0}, 

so by the composition rule 
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{(quo+l)-y+(rem-y) = x/\rem-y 2: O} rem:= rem-y; quo := quo+l {p}. 

On the other hand 

p /\rem 2: y-+ (quo + 1) · y +(rem - y) = x /\rem - y 2: 0, 

so 2° holds by the consequence rule. 

ad 3°. 

Clear. 

This completes the proof of (1). D 

The only step in the above proof which required some creativity was finding 
the appropriate loop invariant. The remaining steps were straightforward appli
cations of the corresponding axioms and proof rules. The form of the assignment 
axiom makes it easier to deduce a pre-assertion from a post-assertion than the 
other way around, so we proceeded in the proofs of 1° and 2° "backwards". Fi
nally, we did not provide any formal proof of the implications used as premises 
of the consequence rule. Formal proofs of such assertions in some proof system 
which includes arithmetic will always be omitted; we shall simply rely on an 
intuitive understanding of their truth. 

Total Correctness 

It is important to note that the proof system PD does not allow us to es
tablish the termination of programs, i.e., it is not appropriate for proofs of total 
correctness. Even though we proved in 2 on 375 the correctness formula (1), we 
cannot infer from this fact that the program S studied there terminates. In fact, 
S diverges when started in a state in which the value of y is 0. 
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Clearly the only proof rule of PD which introduces possibility of nonter
mination is the loop rule, so to deal with total correctness this rule has to be 
strengthened. 

We now introduce the following refinement of the loop rule. 

RULE 7: LOOP II 

{p /\ B} S {p}, 
{p /\ B /\ t = z} S {t < z }, 
p---+t2:0 

{p} while B do Sod {p/\ • B} 

where t is an integer expression and z is an integer variable which does not 
appear in p, B, tor S. 

The two additional premises of the rule guarantee termination of the loop. By 
the second premise t is decreased with each iteration and by the third premise t is 
non-negative if another iteration can be performed. Thus no infinite computation 
is possible. The expression t is called a bound function of the program while B 
do Sod. The purpose of z is to retain the initial value oft. 

Let TD denote the proof system obtained from PD by replacing the loop 
rule by the loop II rule. TD is an appropriate proof system for proving total 
correctness of while-programs. To see an application of the loop II rule let us 
reconsider the program S studied in 2. 

Example 3. We now prove 

{x 2: 0 /\y > O} S {quo· y+rem = x /\0:::; rem< y} (3) 

in the sense of total correctness, that is that 

if x is nonnegative and y is a positive integer, then 
S terminates with quo being the integer quotient 
of x divided by y and rem being the remainder. 

(4) 

Note that (3) differs from the correctness formula (1) from Example 2 on 
page 375 by requiring that initially y > 0. For this purpose it is sufficient to 
modify appropriately the proof of (1). Let 

p'=::.p/\y>O 

be a new loop invariant and let 

t =::.rem 

be the bound function. As in the proof given in Example 2, to prove (3) in the 
sense of total correctness it is sufficient to establish the following facts: 
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1°. {x 2 0 /\ y > O} quo := O; rem:= x {p'}, 

2°. {p' /\rem 2 y} rem:= rem - y; quo := quo + 1 {p'}, 

3°. {p' /\rem 2 y /\rem= z} rem:= rem - y; quo := quo + 1 {rem< z}, 

4°. p'--+ rem 2 0, 

5°. p' /\-.(rem 2 y) --+ quo · y +rem= x /\ 0::; rem< y. 

Indeed, 2° 3° and 4° imply by the loop II rule {p'} So {p' /\ -.(rem 2 y)} 
and the rest of the argument is the same as in Example 2 on page 375. Proofs 
of 1°, 2° and 5° are analogous to the proofs of 1°, 2° and 3° in Example 2. 

To prove 3° observe that by the assignment axiom 

{rem< z} quo := quo + 1 {rem< z} 

and 
{(rem -y) < z} rem:= rem - y {rem< z}. 

But 
p /\ y > 0 /\rem 2 y /\rem= z--+ (rem - y) < z, 

so 3° holds by the consequence rule. 
Finally, 4° clearly holds. This concludes the proof. 

12 Proof Outlines 

0 

Formal proofs are tedious to follow. We are not accustomed to following a line of 
reasoning presented in small, formal steps. A better solution consists of a logical 
organization of the proof with the main steps isolated. The proof can then be 
seen on a different level. 

In the case of correctness proofs of while-programs a possible strategy lies in 
using the fact that they are structured. The proof rules we introduced follow the 
syntax of the programs, so the structure of the program can be used to structure 
the correctness proof. We can simply present the proof by giving a program with 
assertions interleaved at appropriate places. 

Partial Correctness 

Example 4. Let us reconsider the integer division program studied in Example 2 
on page 375. We present facts 1°, 2° and 3° in the following form: 

{x20/\y20} 
quo := O; rem := x; 
{inv: p} 
while rem 2 y do 

{pi\ rem 2 y} 
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rem := rem - y; quo := quo + 1 
od 
{p/\ rem< y} 
{ quo · y + rem = x /\ 0 :S rem < y}, 

where 

p = quo · y + rem = x /\ rem 2: 0. 

The keyword inv is used here to label the loop invariant. Two adjacent 
assertions { q1 }{ q2} stand for the fact that the implication qi --+ q2 is true. 

The proofs of the facts can also be presented in such a form. For example, 
here is the proof of fact 1°: 

{x2'.0!\y~O} 
{O · y + x = x /\ x ~ O} 
quo := 0 
{quo · y + x = x /\ x 2:: O} 
rem:= x 
{p}. 

0 

Such a proof presentation is much simpler to study and analyze. It was intro
duced in [OwGr76] and is called a proof outline. It is formally defined as follows. 

Definition! (Proof Outline: Partial Correctness). Let S* stand for the 
program S interspersed, or as we shall say annotated, with assertions, some 
of them labelled by the keyword inv. We define the notion of a proof outline 
for partial correctness inductively by the following axioms and rules. 

An axiom <.p should be read here as a statement: <p is a proof outline (for 
partial correctness) and a rule 

'Pl, · · ·, 1Pn 

should be read as a statement: if <p1 , ... , <pn are proof outlines, then <.p is a proof 
outline. 

(i) 

{p} skip {p} 

(ii) 

{p[t/u]} u := t {p} 
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(iii) 

(iv) 

(v) 

(vi) 

(vii) 

{p} Si { r}, { r} S~ { q} 
{p} Si ; {r} S2{q} 

{pAB} Si{q},{pJ\--iB} S2{q} 
{p} if B then {pJ\B} Si {q} else {pJ\--iB} S2 {q} fi {q} 

{p J\ B} S* {p} 
{inv : p} while B do {p A B} S* {p} od {p A --iB} 

P-+ P1, {pi} S* {qi}, q1-+ q 

{p}{p1} S*{q1}{q} 

{p} S*{q} 
{p} S** {q} 

where S** results from S* by omitting some of the intermediate assertions 
not labelled by the keyword inv. 

Thus in a proof outline some of the intermediate assertions used in the cor
rectness proof are retained; loop invariants are always kept. A proof outline 
{p} S* { q} for partial correctness is called standard if every substatement T of 
S is preceded by exactly one assertion in S*, called pre(T), and there are no 
other assertions in S* . D 

Thus every standard proof outline {p} S* { q} starts with exactly 2 assertions, 
namely p and pre(S). If p:::: pre(S), then we drop p from this proof outline. 

Note that a standard proof outline is not minimal in the sense that some 
assertions used in it can be removed. For example, the assertion {p J\ B} in the 
context {inv: p} while B do {pJ\ B} Sod {q} can be deduced. Standard proof 
outlines will be needed in the chapters on parallel programs. 

By studying proofs of partial correctness in the form of proof outlines we do 
not lose any generality in the sense of the following lemma. 

Lemma 2. Let {p} S* { q} be a proof outline for partial correctness. Then there 
exists a proof of {p} S {q} in the proof system PD. D 
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Also, the proof outlines {p} S" { q} enjoy the following useful and intuitive 
property: whenever the control of S in a given computation starting in a state 
satisfying p reaches a point annotated by an assertion, this assertion is true. 
Thus the assertions of a proof outline are true at the appropriate moments. 

Total Correctness 

So far we have only discussed proof outlines for partial correctness. To com
plete the picture we should take care of the termination of loops. 

Consider a loop while B do S od. The loop II rule suggests a rule for 
a proof outline for total correctness of loops whose premises are of the form 
{p /\ B} S" {p}, {p /\ B /\ t = z} S"" { t < z}, p --+ t ~ 0 with the first two being 
proof outlines for total correctness. However, there is no obvious way to record 
both proof outlines in the conclusion of such a rule. 

One solution is to start with a modification of the loop II rule whose first 
two premises are replaced by 

{p/\B/\t=z} S{p/\t<z} 

and introduce the following rule for a proof outline for total correctness 

{p t\ B t\ t = z} S* {p t\ t < z}, 
p--+t~O 

{inv : p }{bd: t} while B do {p /\ B /\ t = z} S* {pt\ t < z} od {p /\ --.B} 

where t is an integer expression and z is an integer variable not occuring in p, t, B 
or S". 

This rule, however, forces us to mix the proofs of the invariance of p and of 
the decrease oft. 

Another solution, which we adopt here, is to assume that the proof of decrease 
of t is of a particularly simple form, namely that 

(i) all assignments inside S decrease tor leave it unchanged, 
(ii) on each syntactically possible path through S at least one assignment de

creases t. 

By a path we mean here a possibly empty finite sequence of assignments. 
Sequential composition 11"1; 11"2 of paths 11"1 and 11'2 is lifted to sets fl1 and fl2 of 
paths by putting 

ll1; ll2 = {7r1; 11'2 J 7r1 E ll1 and 11'2 E fl2}. 

By c we denote the empty sequence. For any path 11' we have 11'; c: = c:; 11' = 11'. 

Next we define the path set for a while-program. 

Definition3. Let S be a while-program. We define path(S) by induction on 
the structure of S: 
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- path(skip) = {€}, 
- path(u := t) = {u := t}, 
- path(S1; S2) = path(S1); path(S2), 
- path(if B then 81 else S2 fi) = path(S1) U path(S2), 
- path(while B do 81 od) = {c:}. 

0 

Intuitively, path(S) is a set of all paths through S. Each path through S is 
identified with the sequence of assignments lying on it. Note that in the last 
clause we only take into account the case when the loop is exited immediately. 
This is sufficient for establishing the condition (ii) above. 

Definition4 (Proof Outline: Total Correctness). The notion of a (stan
dard) proof outline for total correctness is defined as for partial correctness, 
except for rule (v) dealing with loops. It is to be replaced by: 

(v') 
{pt\B} S* {p}, 
{pre(T) /\ t = z} T {t $ z} for each 

assignment T within S, 
for each 7r E path(S) there exists an 
assignment T in 7r such that 
{pre(T) /\ t = z} T {t < z}, 
p--+t2:'.0 

{inv : p }{bd : t} while B do {p /\ B} S* {p} od {p /\ -.B} 

where t is an integer expression and z is an integer variable not occuring in p, t, B 
and S*. Here {p} S* { q} is a standard proof outline for total correctness and 
pre(T) stands for the assertion preceding T in this proof outline. D 

The annotation {bd: t} represents the bound function of the loop while 
B do S od. Note that clause (vii) in the definition of a proof outline for total 
correctness does not allow us to delete the bound functions. 

Example 5. The following is a proof outline for total correctness of the integer 
division program studied in Example 3 on page 378: 

{x:2:0Ay>0} 
quo := O; rem := x; 
{inv : p'}{bd : rem} 
while rem :2: y do 

{p' /\rem :2: y} 
rem := rem - y; quo := quo + 1 
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{p'} 
od 
{p' I\ rem< y} 
{ quo . y + rem = x /\ 0 ~ rem < y}, 

where 

p' := quo · y + rem = x I\ rem ~ 0 /\ y > 0. 

Note that, due to the precondition p1 I\ rem ~ y, the assignment rem := 
rem-y decreases the bound function rem, whereas the assignment quo := quo+l 
leaves rem unchanged. D 

Note that when the empty path c is an element of path(S), we cannot verify 
the pre-last condition of the above rule (v'). Thus it may happen that we can 
prove total correctness of a while-program but we shall not be able to present 
this proof in the form of a proof outline for total correctness. An example is the 
program 

b :=true; 
while b do 

if b then b := false 
od 

whose termination can be easily established. This shows some limitations of the 
above approach to proof outlines for total correctness. However, all the programs 
discussed in this article can be handled in this way. 

13 Derived Rules 

The presentation of correctness proofs can be simplified in another way - by 
means of derived rules. They allow us to prove certain correctness formulas about 
the same program separately and then combine them. This can lead to a different 
organization of the correctness proof. 

These rules for combining correctness formulas are not necessary, in the sense 
that their use in the correctness proof can be eliminated by applying other rules. 
That is why they are called derived rules. These rules are appropriate both 
for partial correctn~ss and total correctness and can be used for all classes of 
programs considered in this paper. We shall use them in Chapter 7 when studying 
parallel programs. 

RULE Dl: DISJUNCTION 

{p} S {q}, {r} S {q} 
{pVr}S{q} 
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RULE D2: 3-INTRODUCTION 

{p} s {q} 
{3xp} S {q} 

where x does not appear in Sor q. 

14 Conclusions 

385 

In what sense are the proof systems PD and TD natural for the correctness proofs 
of while-programs? Their important feature is that they are syntax directed, 
that is, their proof rules follow the syntax of the programming constructs. This 
allowed us to organize the proofs in a form that follows the program structure. 
This, in turn, makes them easier to understand and allows us to be less formal 
in their presentation. 

None of this would be possible if the proofs were presented in a formalism 
not referring to the programs. Consider, for example, a natural translation of 
the correctness formulas into, say, Peano arithmetic. Even though one can, in 
principle, consider proofs of the translated formulas in Peano arithmetic, it is 
clear that they will not be easy to construct and understand. The reason is that 
in Peano arithmetic, or in any other proof system studied in mathematical logic, 
the formulas expressing program correctness do not naturally reflect the meaning 
of the program and are consequently difficult to study. 

However, once a program is already written, it is usually too late to prove 
its correctness because all helpful intuitions present in its development process 
have disappeared, and only the final product is available! A reconstruction of 
these intuitions is a very tedious, if not impossible, process. Moreover, the proof 
has nothing to do with the process of the development of the program - it only 
documents the final result. We thus deal with two disjoint activities, namely 
development and proving, addressing the same intuitions. 

This problem was recognized and addressed in [Dij76] who proposed to de
velop the program together with its correctness proof with the intention of sim
plifying both tasks. This approach will be discussed in the next chapter. 

15 Nondeterministic Programs 

Activating a deterministic program in a certain state will generate exactly one 
computation sequence. Often such a level of detail is unnecessary, for example 
when two different computation sequences yield the same final state. The phe
nomenon that a program may generate more than one computation sequence 
from a given state is called nondeterminism. In this chapter we will study a toy 
programming language due to Dijkstra [Dij75][Dij76] which allows us to write 
programs with such a behaviour. 

In Chapter 8 this class of programs will allow us to study distributed pro
grams. 
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15.1 Syntax 

We expand the grammar for while-programs by adding: 

- alternative commands 

- repetitive commands 

S ::=do B1--+ S1 D ... D Bn--+ Sn od. 

These new commands will also be written as 

if Df =1 B; --+ S; fi and do D?::,1 B; --+ S; od, 

respectively. A command S; within S is said to be guarded by the Boolean 
expression B;. The construct B; --+ S; is therefore called a guarded command. 

The symbol D represents a nondeterministic choice between guarded com
mands B; --+ S;. More precisely, in the context of an alternative command 

a guarded command B; --+ S; can be chosen only if its guard B; evaluates to 
true; then S; remains to be executed. If more than one guard B; evaluates to 
true any of the corresponding statements S; may be executed next. There is no 
rule saying which statement should be selected. If all guards evaluate to false, 
the alternative command will signal a failure, also called abortion. 

The selection of guarded commands in the context of a repetitive command 

is performed in a similar way. The difference is that after termination of a selected 
statement S; the whole command is repeated starting with a new evaluation of 
the guards B;. Moreover, contrary to the alternative command, the repetitive 
command properly terminates when all guards evaluate to false. 

Conventional conditionals and loops can be modelled by alternative and 
repetitive commands because 

if B then S1 else S2 fi 

is equivalent to 

and 
while B do S od 

is equivalent to 
do B-+Sod. 

The notion of a subprogram of a nondeterministic program is defined as in 
Chapter 3. Let us discuss now the main features of guarded commands. 
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Symmetry 

Guarded commands allow us to present Boolean tests in a symmetric manner. 
This often enhances the clarity of programs. For example, instead of writing 

while x # y do 
if x > y then x := x - y else y := y - x fi 

od, 

the well-known algorithm for finding the greatest common divisor (gcd) of two 
natural numbers can now be expressed as 

do x > y-+ x := x - y D x < y-+ y := y - x od. 

Failures 

Remember that an alternative command fails rather than terminates if none 
of the guards evaluate to true. Thus, in general, if B -+ S fi and if B then S fi 
differ because failures signal exceptional states of computation. For example, 

if 0 ~ i < n -+ x := a[i] fi 

raises a failure before the array a can be accessed outside the interval {O, ... , n-
1}. Such guarded assignments are useful to model access to bounded arrays. 

N ondeterminism 

Guarded commands allow us to express nondeterminism through the use of 
non-exclusive guards. As an example, consider the following program computing 
the largest powers of 2 and 3 that divide a given integer x in which the division 
function / is used: 

twop := O; threep := O; 
do 2 divides x -+ x := x /2; twop := twop + 1 
D 3 divides x-+ x := x/3; threep := threep + 1 
od. 

If 6 divides x, both guards can be chosen. In fact, it does not matter which 
one will be chosen-the final values of the variables twop and threep will always 
be the same. 

15.2 Proof Theory 

As in the previous chapter we are now interested in two notions of program 
correctness-partial correctness and total correctness. Their definitions are the 
same as before. However, when studying total correctness we should be aware 
that a computation can now fail to terminate for two reasons: divergence or 
abortion. This will be reflected in two differences between the proof systems for 
partial and total correctness. 
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To see the difference between partial correctness and total correctness result
ing from abortion, consider (once more) the program 

S:: if 0 ~ i < n-+ x := a[i] fi. 

Then {true} S {x = a[z1} holds in the sense of partial correctness but not 
in the sense of total correctness because S fails when activated in a state not 
satisfying 0 ~ i < n. 

We first present a proof system P N for partial correctness of non deterministic 
programs. P N includes Axioms 1 and 2 and Rules 3 and 6 introduced for PD, 
the system for partial correctness of deterministic programs. But Rules 4 and 5 
of PD are now replaced by: 

RULE 8: ALTERNATIVE COMMAND 

{p /\ Bi} Si { q}, i = 1, ... , n 

{p} if Df=1 Bi-+ S; fi {q} 

RULE 9: REPETITIVE COMMAND 

{p /\ Bi} Si {p}, i = 1, ... , n 

{p} do Df =l Bi -+ Si od {p /\ /\f=1 -.Bi.} 

A system T N for total correctness results from P N by strengthening Rule 8 
to the following rule: 

RULE 10: ALTERNATIVE COMMAND II 

p-+ Vr=1 B;, 
{p /\ Bi} Si { q}, i = 1, ... , n 

{p} if Df=1 Bi -+ S; fi {q} 

and by replacing Rule 9 by: 

RULE 11: REPETITIVE COMMAND II 

{p/\Bi} S; {p}, i= 1, ... ,n 
{p /\ Bi /\ t = z} S; { t < z}, i = 1, ... , n 
p-+t~O, i=l, ... ,n 

{p} do Df =1 B; -+ S; od {p /\ /\f=1 -.Bi} 

where t is an integer expression and z is an integer variable not appearing in 
p, t, B; or S;, i = 1, ... , n. 

As in Chapter 3 we shall present correctness proofs in the form of proofs 
outlines. We leave their definitions to the reader. 
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Example 6. The following is a proof outline for total correctness of the symmetric 
gcd program mentioned in the previous section. 

{x =a/\ y = b /\a> 0 /\ b > O} 
{inv: p}{bd: t} 
do x > y -> {p /\ x > y} 

x := x - y 
D x < y -> {p /\ x < y} 

x := y- x 
od 
{p /\ -,(x > y) /\ ....,(x < y)} 
{x = y /\ y = gcd(a, b)} 

As an invariant we use here 

p==. gcd(x,y) = gcd(a,b)/\x > 0/\y > 0 

where the binary function symbol gcd is to be interpreted as "greatest common 
divisor of' and where the fresh variables a and b represent the initial values of 
x and y. As a bound function we use 

t = x + y. 

Note that due to their preconditions, each assignment decreases the bound func
tion. D 

As before proof outlines {p} S* { q} for partial correctness enjoy the following 
property: whenever the control of S in a given computation started in a state 
satisfying p reaches a point annotated by an assertion, this assertion is true. 

15.3 Development of Provably Correct Programs 

We now discuss an approach of Dijkstra [Dij76] allowing us to develop programs 
together with their correctness proofs. To this purpose, we shall make use of the 
proof system TN to guide us in the construction of a program. All correctness 
formulas are supposed to hold in the sense of total correctness. 

The main issue in Dijkstra's approach is the development of loops. Suppose 
we want to find a program R of the form 

T; do B-> Sod 

that satisfies, for a given preconditon r and postcondition q, the correctness 
formula 

{r} R {q}. (1) 

To avoid trivial solutions for R ( cf. the comment in Example 2 on page 375), 
we usually postulate that some variables in r and q, say x1, ... , Xn, may not be 
modified by R, i.e. we require 

x1, ... , Xn t/: change(R). 
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To prove (1), it is sufficient to find a loop invariant panda bound function 
t satisfying the following five conditions: 

1°. p is initially established, i.e., { r} T {p} holds; 

2°. p is a loop invariant, i.e., {p /\ B} S {p} holds; 

3°. upon loop termination q is true, i.e., p /\ -iB --+ q; 

4°. pimpliest 2: 0, i.e., p--+ t 2: O; 

5°. t is decreased with each iteration, i.e., {p /\ B /\ t = z} S { t < z} holds where 
z is a fresh variable. 

Of course, analogous conditions can be provided when the loop in R can 
have more than one guard. Conditions 1°-5° can be conveniently presented by 
the following proof outline for total correctness: 

{r} 
T; 
{inv: p}{bd: t} 
do B _,. {p /\ B} 

s 
{p} 

od 
{p /\ --iB} 
{q}. 

(Here we assume that condition 5° can be proved by establishing the appro
priate conditions listed in the premises of the rule for proof outlines for total 
correctness of repetitive commands.) 

Now, when only r and q are known, the first step in finding R consists of 
finding a loop invariant. One useful strategy consists of generalizing the post
condition q by replacing a constant by a variable. The following toy example 
illustrates the point. 

A Simple Summation Problem 

The problem is to find a program S which stores in an integer variable x the 
sum of the elements of a given section a[O : n - l] of an integer array a. Here 
n is a constant with n 2: 0. By definition, the sum is 0 if n = 0. Of course, we 
require that a, n !f. change(S). Define now 

and 

q = x = L';'=-01 a[i]. 

The assertion q states that x stores the sum of the elements of the section 
a[O:n-l]. 
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We replace the constant n by a fresh variable k. Putting appropriate bounds 
on k we obtain 

p = 0 ::; k ::; n /\ x = Ef ; 01 a[i] 

as a. proposal for the invariant of the program to be developed. 
We now attempt to satisfy the conditions 1-5 by choosing B, S and t appro

priately. 

ad 1°. p is easily established by the command 

T::: k := O; x := 0. 

ad 3°. We clearly have p /\ k = n---> q, so we can take k =/= n as the guard of the 
loop. 

ad 4°. We have p---> n - k ~ 0, which suggests to choose 

t:=n-k 

as the bound function. 

ad 5°. To reduce the bound function with each iteration, we choose the program 
k := k + 1 as pa.rt of the loop body. 

ad 2°. Thus far we have the following incomplete proof outline 

{r} 
k := O; x := O; 
{inv: p}{bd: t} 
do k =/= n ---> {p /\ k =/= n} 

S1; 

od 
{p/\k=n} 
{q} 

{p[k + 1/k]} 
k := k + 1 

where S1 is still to be found. 
To this end, we compare now the precondition and postcondition of S1. The 

precondition p /\ k =/= n implies 

0 ::; k + 1 ::; n /\ x = Ef;a1 a[i1 

and the postcondition p[k + 1/ k] is equivalent to 

0 ::; k + 1 ::; n /\ x = (Ef,;01 a[i]) + a[k]. 

We see that adding a[k] to x will "transform" one assertion into another. 
Thus, we can choose 

S1 = x := x+a[k] 

~o ensure that p is a loop invariant. 
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Summarizing, we have developed the following program together with its 
correctness proof. 

k := O; x := O; 
do k # n - x := x + a[k]; 

k := k + 1 
od 

The next example will illustrate another strategy in the development of cor
rect programs. 

The Welfare Crook Problem 

We now study the following problem due to W. Feijen, where a nondetermin
istic program seems more appropriate as a solution. We follow here the exposition 
of Gries [Gri82]. Given are three magnetic tapes, each containing a list of names 
in alphabetical order. The first contains the names of people working at IBM 
Yorktown Heights, the second the names of students at Columbia University, and 
the third the names of people on welfare in New York City. Practically speaking, 
all three lists are endless, so no upper bounds are given. It is known that at least 
one person is on all three lists. The problem is to write a program to locate the 
alphabetically first such person. · 

Slightly more abstract, we consider three ordered arrays a, b, c of type integer 
- integer, i.e. such that i < j implies a[i] < a[j], and similarly for b and c. We 
suppose that there exist values iv ~ 0, jv ~ 0, and kv ~ 0 such that 

a[iv] = b[.iv] = c[kv] 

holds, and moreover we suppose that the triple (iv, jv, kv) is the smallest one 
in the lexicographic ordering among those ones satisfying this condition. The 
values iv,jv and kv can be used in the assertions but not in the program. We 
are supposed to develop a program which computes them. 

Thus our precondition r is a list of the assumed facts - that a, b, c are 
ordered together with the formal definition of iv, jv and kv. We omit the formal 
definition. The postcondition is 

q = i =iv/\. j = jv /\. k = kv. 

Additionally we require a, b, c, iv,jv, kv f/:. change(S), where Sis the program to 
be found. Assuming that the search starts from the beginning of the lists, we are 
brought to the following invariant by placing appropriate bounds on i, j and k: 

p = 0 ~ i ::; iv /\ 0 ::; j ~ jv /\. 0 ~ k ::; kv /\ r. 

A natural choice for the bound function is: 

t =(iv - i) + (jv - j) + (kv - k). 
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The invariant is easily established by 

. 0 . 0 k 0 i := ; 3 := ; := . 

The simplest ways to decrease the bound functions are the assignments i .
i + 1, j := j + 1 and k := k + 1. In general, it will be necessary to increment all 
three variables, so we arrive at the following incomplete proof outline: 

{r} 
i := O; j := O; k := O; 
{inv: p}{bd: t} 
do B1 --+ {p /\ Bi} i := i + 1 
D B2 --+ {p /\ B2} j := k + 1 
D Bs --+ {p /\ Bs} k := k + 1 
od 
{p /\ -iB1 /\ -iB2 /\ -iBs} 
{q} 

where Bi, B2 and Bs are still to be found. Of course the simplest choice for 
B 1 , B2 and Bs are, respectively, i # iv, j # jv and k # kv but the values iv, jv 
and kv cannot be used in the program. On the other hand, p/\i # iv is equivalent 
top/\ i < iv which means by the definition of iv, jv and kv that a[i] is not the 
crook. Now, assuming p, the last statement is guaranteed if a[i] < b[j]. Indeed, 
a,b and care ordered, so p/\a[i] < b[j] implies a[i] < b[jv] = a[iv] which implies 
i <iv. 

We can thus choose a[i] < b[j] for the guard Bi. In a similar fashion we 
can choose the other two guards which yield the following program and a proof 
outline 

{r} 
i := O; j := O; le = O; 
{inv: p}{bd: t} 
do a[i] < b[j]--+ {p /\ a[i] < b[j]} 

{p /\ i < iv} 
i := i + 1 

D b[j] < c[k] --+ {p /\ b[j] < c[k]} 
{p/\j < jv} 
j := j + 1 

D c[k] < a[i] --+ {p /\ c[k] < a[i]} 
{p /\ k < kv} 
le:= k+ 1 

od 
{p /\ -i(a[i] < b[j]) /\ -i(b[j] < c[k]) /\ -i(c[k] < a[i])} 
{q} 

In developing this program, the crucial step consisted of the choice of the 
guards B1 , B2 and Bs. Accidentally, the choice made turned out to be sufficient 
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to ensure that upon loop termination the postcondition q holds. Observe that 
the final program admits nondeterminism. 

The programs we developed here were very simple. However, they exemplify 
the approach. Its essence thus consists of relying on a number of useful heuris
tics together with the idea of using proof as a guideline in the design process. 
This approach has been successfully applied to derive some larger and highly 
nontrivial programs. The idea of developing the program together with its proof 
turns out to be a powerful method which simplifies both tasks. 

16 Disjoint Parallel Programs 

In this chapter we begin to study concurrent programs. Whereas in a sequential 
program only one statement is executed at each moment of time, in a concurrent 
program several components can be active at the same time. Clearly, one reason 
for the interest in such programs is the desire for higher execution speed: each 
component of a concurrent program can be executed on an individual processor. 
But there are also other reasons: concurrency allows us to express explicitly 
when a program achieves its specification independently of the execution order 
of its subprograms or independently of how many processors are assigned to 
it. Moreover, concurrency is a most natural concept when modelling a system 
consisting of several independent components. 

Usually, the components of a concurrent program have to exchange some in
formation in order to achieve their common goal. This exchange is known as com
munication. Depending on the mode of communication, we distinguish between 
two types of concurrent programs, viz. parallel programs and distributed pro
grams. The former may communicate only by means of shared variables whereas 
the latter communicate instead by explicit message passing. However, to sim
plify matters, we first study concurrent program without any communication 
between their components at all, viz. disjoint parallel programs, originally de
fined in Hoare [Hoa72]. Parallel programs and distributed programs are just two 
different extensions of disjoint parallel programs. 

16.1 Syntax 

Two while-programs S1 and S2 are called disjoint if none of them can change 
the variables accessed by the other one, i.e. if 

change( Si) n var(S2) = var(S1) n change(S2) = 0. 

For example, the programs 

x := z and y := z 

are disjoint because change(x := z) = {x}, var(y := z) = {y,z} and var(x := 
z) = {x,z},change(y := z) = {y}. 
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Disjoint parallel programs are generated by the same clauses as those defining 
while-programs in Chapter 3 together with the following clause for disjoint 
parallel composition: 

where for n ~ 1 the components S1 , ... , Sn are pairwise disjoint while-programs. 
Thus we do not allow nested parallelism, but we allow parallelism to occur within 
sequential composition, conditional statements and while-loops. 

Intuitively, a disjoint parallel program of the form S = [Si II·. -llSn] termi
nates if and only if all of its components S1, ... , Sn terminate; the final state is 
then the union of the final states of S1, ... , Sn. 

16.2 Proof Theory 

The following proof rule for disjoint parallel programs was proposed in Hoare 
[Hoa72]. It links parallel composition of programs with logical conjunction of the 
corresponding pre- and postconditions and it sets the basic pattern for the more 
complicated proofrules needed to deal with shared variables and synchronization 
in Chapters 6 and 7. 

RULE 12: DISJOINT PARALLELISM 

{Pi} S, {qi},i= 1, ... ,n 

where S1, ... , Sn are pairwise disjoint while-programs and free(pi, qi) n 
change( S;) = 0 for i =fa j. 

The premises of this rule are to be proven with the proof systems PD or TD 
for deterministic programs. Depending on whether we choose PD or TD, the 
conclusion of the rule holds in the sense of partial or total correctness, respec
tively. Requiring disjointness of the pre- and postconditions and the component 
programs is necessary. Without it we could for example derive from the true 
formulas 

{y = 1} x := 0 {y = 1} and {true} y := 0 {true} 

the conclusion 
{y = 1} [x := Oiiy := O] {y = 1}, 

which is of course wrong. 
Rule 12 alone is not sufficient for proving the correctness of disjoint parallel 

programs. The problem is that in correctness proofs we sometimes have to use 
properties of the program execution that cannot be expressed in terms of the ex
isting program variables. The solution to this problem is to extend the program 
by auxiliary variables. These variables should neither influence the control flow 
nor the data flow of the program, but record only some additional information 
about the program execution. Once we have proven the desired correctness for
mula about the extended program, we may delete the auxiliary variables again 
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and thus obtain a correctness formula about the original program. The following 
definition identifies sets of auxiliary variables in an extended program. 

Definition 5. Let A be a set of simple variables in a program S. We call A a set 
of auxiliary variables of S if the variables in A occur in S only in assignments of 
the form z := t with z E A. D 

Since auxiliary variables do not appear in Boolean expressions, they cannot 
influence the control flow in S, and since they are not used in assignments to 
variables outside of A, auxiliary variables cannot influence the data flow in S. 
As an example, consider the program 

S:: z := x; [x := x +lily:= y + 1]. 

Then 
0,{y},{z},{x,z},{y,z},{x,y,z} 

are all sets of auxiliary variables of S. 
The following proof rule was first introduced in Owicki and Gries [OwGr76]. 

RULE 13: AUXILIARY VARIABLES 

{p} s {q} 
{p} So {q} 

where for some set of auxiliary variables A of S with free(q) n A = 0, the 
program So results from S by deleting all assignments to the variables in A. 

Like Rule 12, this rule is appropriate for proofs of both partial and total 
correctness. Let us denote by PP the proof system for partial correctness of 
disjoint parallel programs consisting of the group of axioms and rules 1-6, 12 
and 13, and by T P the proof system for total correctness consisting of the group 
of axioms and rules 1-5, 7, 12 and 13. 

Example 7. Let us apply the above proof rules to establish the following simple 
correctness formula: 

{x = y} [x := x + lllY := y + 1] {x = y}. 

By using a fresh variable z which records the initial values of x or y, respectively, 
we first derive the correctness formulas 

{ x = z} x := x + 1 { x = z + 1} 

and 
{y = z} y := y + 1 {y = z + l}. 
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Now Rule 12 yields 

{x=z/\y=z} [x:=x+ljjy:=y+l] {x=z+l/\y=z+l}. 

Since the postcondition implies x = y, the consequence rule yields 

{x=z/\y=z} [x:=x+lJly:=y+l] {x=y}. 

Note that the consequence rule does not allow us to replace the precondition by 
x = y because the implication 

x=y-+x=z/\y=z 

is false. Instead we consider the following correctness formula 

{x = y} z := x {x = z /\ y = z} 

which can be easily established. 
By the compostion rule, we obtain 

{x = y} z := x; [x := x +lily:= y + l] {x = y}. 

Since { z} is a set of auxiliary variables of the above program, Rule 13 finally 
yields the desired result: 

{ x = y} [ x := x + l JI y := y + l J { x = y}. 

Observe that the semicolon ";" after z := x is deleted, as well. 0 

Proof outlines for partial and total correctness of parallel programs are gener
ated in a straightforward manner by the rules given for while-programs together 
with the following rule: 

{pi} s; {qi}' i = 1, ... ' n 

For instance, the following proof outline summarizes the steps in Example 7 on 
page 396: 

{x = y} 
z := x; 
{x=z/\y=z} 
[ {x = z} x := x + 1 {x = z + 1} 
11 {y = z} y := y + 1 {y = z + 1}] 
{x = z + 1/\y=z+1} 
{x = y} 

The fact that z is used as an auxiliary variable is not visible from this proof 
outline; it has to be stated separately. 
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16.3 Verification: Find Positive Element 

We study here a problem treated in Owicki and Gries [OwGr76), Consider an 
integer array a and a constant N ~ 1. The task is to write a program S that 
finds the smallest index k E {l, ... , N} with 

a[k] > 0 

if such an element of a exists, otherwise the dummy value k = N + 1 should be 
returned. 

Formally, the program S should satisfy the input-output specification 

{true} S {k $; N + 1 /\ 'v'l(O < l < k--+ a[fj ~ 0) /\ (k ~ N--+ a[k] > O)} (1) 

in the sense of total correctness. Clearly, we require a~ change(S). 
To speed up the computation, S is split into two components which are 

executed in parallel: the first component S1 searches for an odd index k and the 
second component S2 for an even one. The component S1 uses a variable i for 
the (odd) index currently being checked and a variable oddtop to mark the end 
of the search: 

S1 ::: i := 1; oddtop := N + 1; 
while i < oddtop do 

od. 

if a[i] > 0 then oddtop := i 
else i := i + 2 fi 

The component S2 uses variables j and eventop for analogous purposes: 

S2 = j := 2; eventop := N + 1; 
while j < eventop do 

od. 

if a[i] > 0 then eventop := j 
else j := j + 2 fi 

The parallel program S is then given by 

S::: [SillS2]; 
k := min(oddtop,eventop). 

This is a version of the program Findpos studied in Owicki and Gries 
[OwGr76] where the loop conditions have been simplified to achieve disjoint 
parallelism. For the original program Findpos see Chapter 6. 

To prove that S satisfies its input-output specification (1), we first deal with 
its components. The first component 51 searching for an odd index stores its 
result in the variable oddtop. Thus it should satisfy 

{true} S1 {qi} (2) 



Introduction to Program Verification 399 

in the sense of total correctness where q1 is the following adaptation of the 
postcondition of (1): 

qi = oddtop :::; N + 1 
/\ Vl(odd(l) /\ 0 < l < oddtop-. a[~:::; 0) 
/\ (oddtop:::; N-. a[oddtop] > 0). 

Symmetrically, the second component 52 should satisfy 

where 
q2 = eventop :::; N + 1 

/\ Vl(even(l) /\ 0 <I< eventop-. a[l]:::; 0) 
/\ (eventop:::; N-. a[eventop] > 0). 

(3) 

The notation odd( l) and even( l) expresses that l is odd or even, respectively. 
We prove (2) and (3) using the system TD for total correctness of determin

istic programs (Chapter 3). We start with (2). As usual, the main task is to find 
an appropriate invariant P1 and a bound function ti for the loop in S1 • 

As a loop invariant p 1 we choose a slight generalization of the postcondition 
q1 which takes into account the loop variable i of 51 : 

P1 = oddtop :::; N + 1 /\ odd( i) /\ i :::; oddtop + 1 
/\ Vl(odd(l) /\ 0 <I< i-. a[l]:::; 0) 
/\ (oddtop:::; N-. a[oddtop] > 0). 

As a bound function t 1 , we simply choose 

t 1 = oddtop + 1 - i. 

Note that the invariant p 1 ensures that t 1 :2'.: 0 holds. 
We verify our choices by exhibiting a proof outline for the total correctness 

of S1: 

{true} 
i := l; 
{i = l} 
oddtop := N + l; 
{i = 1 /\ oddtop = N + l} 
{inv : P1 }{bd : t1} 
while i < oddtop do 

{p1 /\ i < oddtop} 
if a[i] > 0 then {p1 /\ i < oddtop /\ a[i] > O} 

{ i :S N + 1 /\ odd( i) /\ i :S i + 1 
/\VI( odd( I)/\ 0 < l < i-. a[l] :::; 0) 
/\ (i :SN-. a[i] > O)} 

oddtop := i 
{pi} 

else {p1 /\ i < oddtop /\ a[i] :S O} 
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od 
{p1 /\ oddtop $ i} 
{q1}. 

{ oddtop $ N + 1/\odd(i+2) 
/\ i + 2 $ oddtop + 1 
/\ 't/l(odd(l) /\ 0 < l $ i--+ a[fj $ 0) 
/\ (oddtop $ N--+ a[oddtop] > 0)} 

i := i + 2 
{pi} 

It is easy to see that in this outline all pairs of subsequent assertions form 
valid implications as required by the consequence rule. Also, note that both 
assignments within the loop decrease the bound function t1 on the account of 
their respective preconditions. 

For the second component S2 we choose of course a symmetric invariant P2 
and bound function t2: 

p2 = event op $ N + 1 /\ even(j) /\ j $ eventop + 1 
/\ Vl(even(l) /\ 0 <I< j--+ a[~$ 0) 
/\ (eventop $ N--+ a[eventop] > O), 

t2 = eventop + 1 - j. 

The verification of (3) with P2 and t2 is symmetric to (2) and is omitted. 
We can now apply the rule of disjoint parallelism to (2) and (3) because the 

corresponding disjointness conditions are satisfied. We obtain 

(4) 

To complete the correctness proof, we look at the following proof outline 

{ql /\ q2} (5) 
{ min(oddtop, eventop) :=:; N + 1 

/\ 't/l(O < l < min(oddtop, eventop)--+ a[l] $ 0) 
/\ (min(oddtop, eventop) $ N--+ a[min(oddtop, eventop)] > O)} 

k := min(oddtop, eventop) 
{k $ N + 1 /\ Vl(O < l < k--+ a[I] $ 0) 

/\ (k $ N--+ a[k] > O)}. 

Combining ( 4) and (5) by the composition rule yields the desired formula (1) 
about S. 

17 Parallel Programs with Shared Variables 

Disjoint parallelism is a rather restricted form of concurrency. In applications, 
concurrently operating components often share resources, e.g. a common data 
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base, a line printer or a data bus. Sharing is necessary when resources are too 
costly to have one copy for each component as in the case of a large data base. 
Sharing is also useful to establish communication between different components 
as in the case of a data bus. This form of concurrency can be modelled by means 
of parallel programs with shared variables, i.e. variables that can be changed and 
read by several components. 

As we shall see, proving the correctness of such programs is much more de
manding than in the case of disjoint parallelism. The problem is while executing 
them different components can interfere with each other by changing the shared 
variables. To restrict the points of interference, we use s0-called atomic regions 
whose execution cannot be interrupted by other components. 

17.1 Syntax 

Shared variables are introduced by dropping the disjointness requirement for 
parallel composition. Atomic regions may appear inside a parallel composition. 
Syntactically, these are statements enclosed in angle brackets ( and ). 

Thus we first define component programs as programs generated by the same 
clauses as those defining while-programs in Chapter 3 together with the follow
ing clause for atomic regions: 

S ::=(So} 

where So is loop free and does not contain further brackets (and}. Now, parallel 
programs are generated by the same clauses as those defining while-programs 
together with the following clause for parallel composition: 

S ::= [Sill·. -llSn] 

where S1 , ... , Sn are component programs ( n ~ 1 ). Again, we do not allow nested 
parallelism, but we allow parallelism within sequential composition, conditional 
statements and while-loops. 

Intuitively, an execution of [Sill·. -II Sn] is obtained by interleaving the 
atomic, i.e. non-interruptible steps in the executions of the components 
Si, ... , Sn. By definition, 

- Boolean expressions, 
- assignments and skip, and 
- atomic regions 

are all evaluated or executed as atomic steps. An atomic region (So) is executed 
by executing the program S0 • Since So is required to be loop free, atomic steps 
are certain to terminate. An interleaved execution of [Si II·. -llSn) terminates if 
and only if the individual execution of each component terminates. 

For convenience, we shall identify 

(A}:: A 

if A is an assignment or skip. By a normal subprogram of a program S we mean 
a subprogram of Snot occurring within any atomic region of S. For example, 



402 Krzysztof R. Apt and Ernst-Rudiger Olderog 

the assignment x := 0, the atomic region (x := x + 2; z := 1) and the program 
x := O; (x := x + 2; z := 1) are the only normal subprograms of x := O; (x := 
x+2; z:=l). 

17.2 Proof Theory 

It is very easy to give a proof rule for atomic regions because atomicity has no 
influence on the input-output behaviour of individual component programs: 

RULE 14: ATOMIC REGION 

where S is loop free. 

{p} s {q} 
{p} (S) {q} 

This rule is appropriate for both partial and total correctness. 
Proof outlines for partial and total correctness of component programs are 

generated by the rules given for while-programs plus the following one: 

{p} S* {q} 
{p} (S*) {q} 

where as usual S* stands for an annotated version of S. 
When defining proof outlines for total correctness of component programs, 

we have to modify the rule for loops by taking into account the atomic regions. 
To this end we include atomic regions in the definition of a path, that is we 
additionally stipulate the following clause in Definition 3 on page 382: 

- path( (S)) = { (S)}. 

Moreover, we now allow Tin rule (v') given in Definition 4 on page 383 to 
vary over normal assignments and atomic regions. 

For component programs S the definition of a standard proof outline 
{p} S* {q} is as follows: within S* every normal subprogram T is preceded 
by exactly one assertion, called pre(T), and there are no further assertions 
within S*. In particular, there are no assertions within atomic regions. 

Atomicity matters only in the context of a parallel composition with shared 
variables. In fact, the correctness formulas of a parallel program [S1 II·.· II Sn] 
cannot now be determined any more from the correctness formulas of its com
ponents S1 , ... , Sn, but only from a detailed analysis of the atomic steps in the 
executions of S1 , ... , Sn. 

Example 8. As an illustration of these difficulties let us look at the following 
three programs: 

S1=:x:=x+2, 
S2 =: (x := x +I; x := x +I}, 
Ss =: x := x +I; x := x +I. 
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Considered in isolation, their input-output behaviours are identical, i.e. for all 
assertions p and q and all i, j E {1, 2, 3} the correctness formula 

{p} Si {q} 

is true in the sense of partial or total correctness iff 

{p} S; {q} 

is true in the same sense. 
However, with our explanation of the interleaved execution of parallel pro

grams in mind, it is clear that 

{true} [x := OllS1] {x = 0 V x = 2} 

and 
{true} [x := OllS2] {x = 0 V x = 2} 

are true in the sense of both partial and total correctness whereas 

{true} [x := OllS3) {x = 0 V x = 2} 

is false in both senses because the final value of x might be l. This value is 
generated if the assignment x := 0 "interferes" with the execution of S2, i.e. if 
it is executed in between the two assignments of S2. D 

To reason about the atomic steps taken in the components of a parallel pro
gram, we use standard proof outlines for the components instead of correctness 
formulas. A standard proof outline provides just the right level of detail because 
every possible atomic step of the component is preceded by exactly one assertion. 
Based on the assertions and bound functions in standard proof outlines, we can 
now introduce the important notion of interference freedom due to Owicki and 
Gries [OwGr76]. 

Definition6. (1) Let S be a component program. Consider a standard proof 
outline {p} S* { q} for total correctness and a statement R with the pre
condition pre(R). We say that R does not interfere with {p} S"' {q} if the 
following two conditions hold: 
(i) for all assertions r in {p} S* {q} the correctness formula 

{r/\pre(R)} R {r} 

holds in the sense of total correctness, 
(ii) for all bound functions tin {p} S* {q} the correctness formula 

{t = z /\pre(R)} R {t :=::; z} 

holds in the sense of total correctness where z is some fresh variable not 
occuring in R, t and pre( R). 
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(2) Let [S1 II -. -llSn] be a parallel program. Standard proof outlines 
{Pi} St {qi} , i = 1, ... , n, for total correctness are called interference free 
if no normal assignment or atomic region of a component Si interferes with 
the proof outline {pj} SJ { qj} of another component Si , i -=ft j. 

D 

Thus interference freedom means that the execution of atomic steps of one 
component program neither falsifies the assertions (condition (i)) nor increases 
the bound function (condition (ii)) in the proof outline of any other component 
program. 

Interference freedom of proof outlines for partial correctness is defined simi
larly, but with condition (ii) deleted. 

With these preparations we can state the following conjunction rule for gen
eral parallel composition. 

RULE 15: PARALLELISM WITH SHARED VARIABLES 

The standard proof outlines {p;} St { q;}, 
i = 1, ... , n, are interference free 

The correctness formula in the conclusion is true in the sense of partial or total 
correctness depending on whether proof outlines for partial or total correctness 
are used in the premises. Let us call PSV the proof system for partial correctness 
of parallel programs with shared variables consisting of the group of axioms and 
rules 1-6 and 13-15, and TSV the corresponding proof system for total correct
ness consisting of the group of axioms and rules 1-5, 7, 13-15. Proof outlines for 
parallel programs are defined in a straightforward manner ( cf. Chapter 5). 

The test of interference freedom makes correctness proofs for parallel pro
grams more difficult than for sequential programs. For example, in the case 
of two component programs of length Ii and /2 proving interference freedom 
requires proving Ii x /2 additional correctness formulas. In practice, however, 
most of these fomulas are trivially satisfied because they check an assignment or 
atomic region R against an assertion or bound function which does not contain 
the variables changed by R. 

Example 9. We prove the correctness formula 

{true} [x := Ollz := x + 2] {even(x)} (1) 

in the system P SV. Since the program is loop free, this will be also a proof 
in TSV. To this purpose it is sufficient to consider the following correctness 
formulas which obviously hold: 

{true} x := 0 {even(x)} 
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and 
{true} x := x + 2 {true}. 

To prove interference freedom we need to prove 4 correctness formulas. Three 
out of them trivially hold and the fourth, {even(x)} x := x+2 {even(x)} clearly 
holds, as well. By Rule 15 we now get (1) as desired. o 

Example 1 O. We now prove the correctness formula 

{true} [a::= Ol!x :=a:+ 2] {a:= 0 V x = 2} (2) 

in the system P SV. The proof makes use of an auxiliary Boolean variable "done" 
indicating whether the assignment x := a: + 2 has been executed. This leads us 
to consider the correctness formula 

{true} 
done:= false; 
[a::= Oll(x := x + 2; done:= true}] 
{x = OV x = 2}. 

(3) 

Since {done} is indeed a set of auxiliary variables of the extended program, the 
rule of auxiliary variables (Rule 13) allows us to deduce (2) whenever (3) has 
been proved. 

To prove (3), we consider the following standard proof outlines for the com
ponents of the parallel composition: 

{true} x := 0 {(x = 0 V x = 2) /\(-.done--+ x = O)} (4) 

and 
{-.done} {x := x + 2; done:= true} {true}. (5) 

Note that Rule 14 is used in the proof of (5). 
It is straightforward to check that ( 4) and (5) are interference free. To this 

purpose 4 correctness formulas need to be verified. For example, the proof that 
the atomic region in (5) does not interfere with the postcondition of (4) is as 
follows: 

{( x = 0 V x = 2) /\ (-.done --+ x = 0) /\ -.done} 
{x = O} 
(x := x + 2; done := true} 
{x = 2 /\done} 
{(x = 0 V x = 2) /\(-.done--+ x = O)}. 

The remaining three cases are in fact trivial. Rule 15 applied to (4) and (5), and 
the consequence rule now yield 

{-.done} 
[a::= Oll(x := x + 2; done :=true}] 
{x=0Vx=2}. 

(6) 



406 Krzysztof R. Apt a.nd Ernst-Riidiger Olderog 

On the other hand, the correctness formula 

{true} done := false { -idone} (7) 

obviously holds. Thus, applying the composition rule to (6) and (7) yields (3) 
as desired. D 

The last correctness proof is more complicated than expected. Suprisingly, 
it cannot be simplified because it can be shown that any proof of (2) needs an 
auxiliary variable. This poses the question: how do we find appropriate auxiliary 
variables? Is there perhaps a systematic way of introducing them? The answer 
if positive. Following the lines of Lamport [Lam77], one can show that it is suf
ficient to introduce a separate program counter for each component of a parallel 
program. A program counter is an auxiliary variable which has a different value 
in front of every substatement in a component. It thus mirrors exactly the con
trol flow in the component. In most applications, however, it suffices to have 
only partial information about the control flow. This can be represented by a 
few suitable auxiliary variables such as the variable "done" above. 

17.3 Verification: Find Positive Element Quicker 

In Section 5.3, we studied the problem of finding a positive element in an array 
a. More precisely, the problem was to find a program S with a ~ change(S) 
which satisfies the total correctness formula 

{true} S {k ~ N + 1 /\ V'l(O < l < k-+ a[~~ 0) t\ (k ~ N-+ a[k] > O)}. (8) 

Here we consider a more sophisticated program 8. As before it consists of 
two components 8 1 and S2 activated in parallel, such that 81 searches for an 
odd index k of a positive element and 82 searches for an even one. 

However, now S1 should stop searching once 82 has found a positive element 
and vice versa for 82. Thus some communication has to take place between 81 

and 82. This is achieved by making oddtop and eventop shared variables of 8 1 

and S2 by refining the loop conditions of S1 and S2 into 

i < min{ oddtop, eventop} and j < min{ oddtop, eventop}, 

respectively. Additionally, the initialization of oddtop and eventop have to be 
moved outside the parallel composition. Thus the program S is now of the form 

S = oddtop := N + 1; eventop := N + 1; 

[SillS2]; 
k := min(oddtop, eventop) 
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where 

and 

S1 = i := 1; 
while i < min( oddtop, eventop) do 

if a[i) > 0 then oddtop := i 
else i := i + 2 fi 

od 

S2:::: j := 2; 
while j < min(oddtop, eventop) do 

if a[j] > 0 then eventop := j 
else j := j + 2 fi 

od. 
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The program Findpos studied in Owicki and Gries [OwGr76] is like S, but 
with the initializations of the variables i, j outside of the parallel composition. 

To prove (8) in the system TSV, we first construct appropriate proof outlines 
for S1 and S2. Let Pl, P2 and ti, t2 be the invariants and bound functions intro
duced in Section 5.3. Then we consider the following standard proof outlines for 
total correctness. For Si 

{oddtop = N + 1}; 
{inv : P1 }{bd : ti} 
while i < min( oddtop, eventop) do 

{Pi /\ i < oddtop} 

od 

if a[i) > 0 then {p1 /\ i < oddtop /\ a[i] > O} 
oddtop := i 

fi 

else {p1 /\i < oddtop/\a[i1::; O} 
i := i + 2 

{P1 /\ i 2'.: min(oddtop, eventop)} 

and there is a symmetric proof outline for S2 • Note that, except for the new 
postconditions which are the consequence of the new loop conditions, all other 
assertions are taken from the corresponding proof outlines in Section 5.3. 

To apply Rule 15 for the parallel composition of 51 and 52 , we have to 
show interference freedom of the two proof outlines. This amounts to check
ing 42 correctness formulas! Fortunately, 40 of them are trivially satisfied be
cause the variable changed by the assignment does not appear in the assertion 
or bound function under consideration. The only non-trivial cases deal with 
the interference-freedom of the postcondition of S1 with the assignment to the 
variable eventop in 5 2 and, symmetrically, of the postcondition of S2 with the 
assignment to the variable oddtop in Si. 

We deal with the postcondition of Si, viz. 

P1 /\ i ~ min(oddtop,eventop), 
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and the assignment eventop := j. Since pre( eventop := j) implies j < eventop, 
we have the following proof of interference freedom: 

{pi /\ i 2 min( oddtop, eventop) /\pre( event op := N + 1)} 
{p1 /\ i 2 min( oddtop, eventop) /\ j < eventop} 
{p1 /\ i 2 min( oddtop, j)} 
eventop := j 
{p1 /\ i 2 min( oddtop, eventop)}. 

An analogous argument takes care of the postcondition of S2. This finishes the 
overall proof of interference freedom of the two proof outlines. 

Now Rule 15 is applicable and yields 

{oddtop = N + 1/\eventop=N+1} 
[S1llS2] 
{p1 /\ p2 /\ i 2 min(oddtop, eventop) /\ j 2 min( oddtop, eventop)}. 

By the assignment axiom and the consequence rule, 

{true} 
oddtop := N + 1; eventop := N + 1; 
[S1llS2] 
{ min( oddtop, eventop) ~ N + 1 

/\ 'v'l(O < l < min(oddtop, eventop)---> a[/] = 0) 
/\ (min(oddtop, eventop) ~ N---> a[min(oddtop, eventop)] > O)}. 

Hence the final assignment k := min( oddtop, eventop) in S establishes the de
sired postcondition of (8). 

18 Parallel Programs with Synchronization 

For many applications we need parallel programs whose components can syn
chronize with each other, i.e. they wait or get blocked until the execution of the 
other components changes the shared variables into a more favourable state. We 
therefore now extend the program syntax by a synchronization construct, the 
await-statement introduced in Owicki and Gries [OwGr76]. This construct en
ables a very flexible way of programming, but at the same time opens the door 
for subtle programming errors where the program execution ends in a deadlock. 
This is a situation where all non-terminated components of a parallel program 
have become blocked. Hence total correctness of parallel programs with synchro
nization will now also require a proof of deadlock freedom. 

18.1 Syntax 

Now await-statements may appear inside a parallel composition. Thus a compo
nent program is now a program generated by the same clauses as those defining 
while-programs in Chapter 3 together with the following clause: 

S ::= await B then So end 
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where So is a loop free while-program. Parallel programs are then generated by 
the same clauses as those defining while-programs together with the following 
clause for parallel composition: 

where S1, ... , Sn are component programs (n ~ 1). Thus as before, we do not 
allow nested parallelism, but we do allow parallelism within sequential compo
sition, conditional statements and while-loops. 

To explain the meaning of an await-statement, first note that they can occur 
only within a parallel composition. Consider now an interleaved execution of a 
parallel program where one component is about to execute a statement await 
B then So end. If B evaluates to true, then S0 is executed as an atomic region 
whose activation cannot be interrupted by the other components. If B evaluates 
to false, the component gets blocked and the other components take over the 
execution. If during their execution B becomes true, the blocked component can 
resume its execution. Otherwise, it remains blocked forever. 

Thus await-statements model conditional atomic regions. If B =: true, we 
obtain the same effect as with an unconditionally atomic region of the previous 
chapter. Hence we identify 

await true then So end=: (So). 

For the extended syntax of this chapter, a subprogram of a program S is 
called normal if it does not occur within an await-statement of S. 

18.2 Proof Theory 

Partial Correctness 

First we deal with partial correctness. For component programs, we use the 
proof rules of the system PD for while-programs plus the following simple rule 
given in Owicki and Gries [OwGr76]: 

RULE 16: CONDITIONAL ATOMIC REGION 

{p/\B}S{q} 
{p} await B then Send {q} 

where S is loop free. 

Note that with B ::: true we get Rule 14 for atomic regions as a special case. 
Proof outlines for partial correctness of component programs are generated 

by the rules for while-programs together with the following one: 

{p/\B} S* {q} 
{p} await B then S* end { q} 

where S* stands for an annotated version of the loop free statement S. T~e 
definition of standard proof outlines is stated as in the previous chapter, but it 
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refers now to the extended notion of a normal subprogram given in Section 7.1. 
Thus there are no assertions within await-statements. 

Interference freedom refers now to await-statements instead of atomic re
gions. Thus standard proof outlines {Pi} St {q;}, i = 1, ... , n, for partial cor
rectness are called interference free if no normal assignment or await-statement 
of a component program S; interferes (in the sense of the previous chapter) with 
the proof outline of another component program S;, i #- j. 

For parallel composition we use Rule 15 of the previous chapter. However, 
since await-statements may now appear in the component programs, this rule 
refers now to the above notions of a standard proof outline and interference 
freedom. Hence the proof system for partial correctness of parallel programs 
with synchronization, abbreviated PSY, consists of the group of axioms and 
rules 1-6, 13, 15 and 16. 

Total Correctness 

For total correctness things are more complicated. The reason is that in the 
presence of await-statements program termination not only requires divergence 
freedom (absence of infinite computations), but also deadlock freedom (absence 
of infinite blocking). Deadlock freedom is a global property that can be proved 
only by examining all components of a parallel program together. Thus none of 
the components of a terminating program need to terminate when considered 
in isolation; each of them may get blocked. Of course, each component must be 
divergence free. 

In order to deal with such subtleties, we introduce the notion of weak to
tal correctness which combines partial correctness with divergence freedom. In 
other words, a correctness formula {p} S {q} holds in the sense of weak total 
correctness if every execution of S starting in a state satisfying p is finite and 
either terminates in a state satisfying q or gets blocked. 

To prove total correctness of a parallel program, we first prove weak total 
correctness of its components, then establish interference freedom and finally use 
an extra test for deadlock freedom that refers to all components together. 

Proving weak total correctness of component programs is simple. We use all 
the proof rules of the system TD for while-programs and Rule 16 when dealing 
with await-statements. Note that Rule 16 permits only weak total correctness 
because the execution of await B then Send, when started in a state satisfying 
p/\'-1B, does not terminate. Instead it gets blocked (see Example 11 on page 412). 
This blocking can only be resolved with the help of other components executed 
in parallel. 

(Standard) proof outlines for weak total correctness of component programs 
are generated by the rules given for total correctness of while-programs together 
with the rule above which deals with await-statements. However, due to the 
presence of await-statements we also have to ensure that they decrease or leave 
unchanged the corresponding bound functions. This is resolved in an analogous 
way as for atomic regions in Chapter 6. 
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Standard proof outlines {p;} Si {q;}, i = 1, .. . ,n, for weak total correctness 
are called interference free if no normal assignment or await-statement of a 
component program S; interferes with the proof outline of another component 
program S; , i # j. 

We prove deadlock freedom of a parallel program by examining interfer
ence free standard proof outlines for weak total correctness of its component 
programs. We follow the strategy of Owicki and Gries [OwGr76] and first enu
merate all potential deadlock situations and then use certain combinations of 
the assertions from the proof outlines to show that these deadlock situations can 
never actually occur. 

Definition 7. Consider a parallel program S =[Sill- . . llSn]· 

(1) A tuple < Ri, ... , Rn > of statements is called a potential deadlock of S if 
the following holds: 
(i) each R;, i = 1, ... , n, is either an await-statement in the component S; 

or the symbol E which stands for the empty statement and represents 
termination of S;, 

(ii) at least one R;, i = 1, ... , n, is an await-statement in S;. 
(2) Given interference free standard proof outlines {p;} s; {q;} for weak total 

correctness, i = 1, ... , n, we associate with every potential deadlock of S a 
corresponding tuple < r1, ... , rn > of assertions by putting for i = 1, ... , n: 

(i) r; = pre(R;) /\ -iB if R; = await B then S end, 
(ii) r; := q; if R; := E. 

0 

If we can show ., /\f=l Ti for every such tuple < r1, ... , rn > of assertions, 
none of the potential deadlocks can actually arise. This is how deadlock free
dom is established in the second premise of the following proof rule for parallel 
composition. 

RULE 17: PARALLELISM WITH DEADLOCK FREEDOM 

(1) The standard proof outlines {p;} Si {q;} for 
weak total correctness are interference free, i = 1, ... , n. 

(2) For every potential deadlock < Ri, ... , Rn > of 
[S1 II · . -II Sn] the corresponding tuple of 
assertions < r1, ... , rn > satisfies ..., /\f=1 r;. 

By T SY we denote the proof system consisting of the group of axioms 
and rules 1-5, 7, 13, 16 and 17. It stands for total correctness of parallel pro
grams with synchronization. Proof outlines for parallel programs are defined in 
a straightforward manner (cf. Chapter 5). 
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The following example illustrates the use of Rule 17 and demonstrates that 
for the components of parallel programs we cannot prove in isolation more than 
weak total correctness. 

Example 11. We wish to prove the correctness formula 

{x = O} [await x = 1 then skip endllx := l] {x = 1} (1) 

in the system T SY. For the component programs we use the following interfer
ence free standard proof outlines for weak total correctness: 

{ x = 0 V x = 1} await x = 1 then skip end { x = 1} (2) 

and 
{x = O} x := 1 {:r = l}. 

Formula (2) is proved using Rule 16; it is true only in the sense of weak total 
correctness because the execution of the await-statement gets blocked when 
started in a state satisfying x = 0. 

Deadlock freedom is proved as follows. The only potential deadlock is 

< await x = 1 then skip end, E > . (3) 

The corresponding pair of assertions is 

< (x = 0 V x = 1) /\ x ::j:. 1, x = 1 >, 

the conjunction of which is clearly false. Hence (3) cannot arise as an actual 
deadlock. Now Rule 17 is applicable and yields (1) as desired. D 

18.3 Verification: The Producer Consumer Problem 

A reoccurring task in the area of parallel programming is the coordination of 
producers and consumers. A producer generates a stream of M 2: 1 values for 
a consumer. We assume that the producer and consumer work in parallel and 
proceed at a variable but rougly equal pace. 

The problem is to coordinate their work so that all values produced arrive 
at the consumer and that they arrive in the order of production. Moreover, the 
producer should not have to wait with the production of a new value if the 
consumer is momentarily slow with its consumption. Conversely, the consumer 
should not have to wait if the producer is momentarily slow with its production. 

The general idea of solving this producer/consumer problem is to interpose 
a buffer between producer and consumer. Then the producer adds values to 
the buffer and the consumer removes values from the buffer. This way small 
variations in the pace of producers are not noticeable for the consumer and vice 
versa. However, since in reality the storage capacity of a buffer is limited, say 
to N 2: 1 values, we have to synchronize producer and consumer in such a way 
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that the producer never attempts to add a value into the full buffer and that the 
consumer never attempts to remove a value from the empty buffer. 

Following Owicki and Gries [OwGr76] we express the producer/consumer 
problem as a parallel program with shared variables and await-statements. The 
producer and consumer are modelled as two components PROD and CONS of 
a parallel program. Production of a value is modelled as reading an integer value 
from a finite section 

a[O: M -1] 

of an array a of type integer -+ integer and consumption of a value as writing 
an integer value into a corresponding section 

b[O: M -1] 

of an array b of type integer -+ integer. The buffer is modelled as a section 

buffer[O : N - l] 

of a shared array buffer of type integer -+ integer. M and N are integer 
constants M, N ~ 1. For a correct access of the buffer the components PROD 
and CONS share an integer variable in counting the number of values added 
to the buffer and an integer variable out counting the number of values removed 
from the buffer. Thus at each moment the buffer contains in - out values; it is 
full if in - out = N and it is empty if in - out = 0. Adding and removing values 
to and from the buffer is performed in a cyclic order 

buffer[O], .. . , buff er[N - l], buffer[O], .. . , buffer[N - 1], buffer[O], ... 

Thus the expressions in mod N and out mod N determine the subscript of the 
buffer element where the next value is to be added or removed. This explains 
why we start numbering the buffer elements from 0 onwards. 

With these preparations we can express the producer/consumer problem by 
the following parallel program: 

where 

S::: in:= O; out := O; i := O; j := O; [P RODllCONS] 

PROD::: while i < M do 
x := a[zl; 
ADD(x); 
i := i + 1 

od 
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and 

CONS:::: while j < M do 
REM(y); 
b[j] := y; 
j := j + 1 

od. 

Here i,j,x,y are integer variables and ADD(x) and REM(y) abbreviate 
the following synchronized statements for adding and removing values from the 
shared buffer: 

and 

ADD(x) =wait in - out< N; 
buffer[in mod N] := x; 
in:= in+ l 

REM(y) = wait in - out > O; 
y := buffer[out mod N]; 
out:= out+ 1 

Here for a Boolean expression B the statement wait B abbreviates 
await B then skip end. 

We claim that the following correctness formula holds in the sense of total 
correctness: 

{true} S {\fk(O ~ k < M-+ a[k] = b[k])}, (4) 

i.e. the program Sis deadlock free and terminates with all values from a[O : M-1] 
copied in that order into b[O : M - 1]. The verification of ( 4) follows closely the 
presentation in Owicki and Gries [OwGr76]. 

First consider the component program PROD. As a loop invariant we take 

P1 = 'r/k(out:::; k <in-+ a[k] = buffer[k mod N]) 
/\ 0 ~ in - out :::; N 
/\ O~i:::;M 

/\ i =in 

and as a bound function 

t1 ::= M - i. 

(5) 
(6) 
(7) 
(8) 

Further on, we introduce the following abbreviation for the conjunction of 
some the lines in P1: 

I::= (5) /\ (6) 

and 

Ii= (5) /\ (6) /\ (7). 
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As a standard proof outline we consider 

{inv: pi}{bd : ti} 
while i < M do 

{Pi /\ i < M} 
x:=a[i]; 
{pi /\ i < M /\ x = a[i]} 
wait in - out< N; 
{pi /\ i < M /\ x = a[i] /\ in - out < N} 
buff er[in mod N] := x; 
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{pi /\ i < M /\ a[i] = buff er[in mod N] /\ in - out < N} (9) 
in:=in+l; 
{Ii /\ i + 1 =in/\ i < M} (10) 
i := i + 1 

od 
{pi /\ i = M}. 

It is straightforward to see that this is indeed a proof outline for weak total 
correctness of PROD. In particular, note that (9) implies 

'r:/k(out:::::; k <in+ 1- a[k] = buffer[k mod N]) 

which justifies the conjunct (5) of the postcondition (10) of the assignment in := 
in + 1. Note also that the bound function ii clearly satisfies the conditions 
required by the definition of proof outline. 

Now consider the component program CONS. As a loop invariant we take 

P2 := I 
/\ 'r:/k(O:::::; k < j - a[k] = b[k]) 
/\ O::=;j<::;.M 
/\ j =out, 

i.e. the I-part of Pi reappears here, and as a bound function we take 

Let us abbreviate 

12 = (11) /\ (12) /\ (13) 

and consider the following standard proof outline: 

{inv: p2}{bd: t2} 
while j < M do 

{p2 /\ j < M} 
wait in - out > O; 
{P2 /\ j < M /\in - out > O} 
y := buffer[out mod N]; 

(11) 
(12) 
(13) 
(14) 
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od 

{p2 /\ j < M /\ in - out > 0 /\ y = a(j]} 
out :=out+ 1; 
{ I2 /\ j + 1 = out /\ j < M /\ y = a[j]} 
b[j] := y; 
{I2 /\ j + 1 = out /\ j < M /\ a(j] = b[j]} 
j := j + 1 

{p2 /\ j = M} 

(15) 

It is easy to see that this is a correct proof outline for weak total correctness. 
In particular, note that the conjunct y = a[j] in the assertion (15) is obtained 
as follows: 

y = buffer[out mod N] 
= {(5) /\in-out> O} 

a[out] 

= {(14)} 
a[j]. 

Also the bound function t 2 satisfies the conditions required by the definition of 
proof outline. 

Let us now turn to the test of interference freedom of the two proof out
lines. Naive calculations suggest that 80 correctness formulas have to be checked! 
However, most of these checks can be dealt with by a single argument, viz. that 
I-part of p1 and P2 is kept invariant in both proof outlines. In other words, all 
assignments Tin the proof outlines for PROD and CONS satisfy 

{I/\ pre(T)} T {I}. 

It thus remains to check the assertions outside the I-part against possible 
interference. Consider first the proof outline for PROD. Examine all conjuncts 
occurring in the assertions used in this proof outline. Among them, apart of 
I, only the conjunct in - out < N contains a variable which is changed in 
the component CONS. But this change is done only by the assignment out := 
out + 1. Obviously, we have here interference freedom: 

{in - out< N} out:= out+ 1 {in - out< N}. 

Now consider the proof outline for CONS. Examine all conjuncts occurring 
in the assertions used in this proof outline. Among them, apart of I, only the 
conjunct in - out > 0, contains a variable which is changed in the component 
PROD. But this change is done only be the assignment in :=in+ l. Obviously, 
we have here again interference freedom: 

{in -out> O} in:= in+ 1{in-out>0}. 
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Next, we show deadlock freedom. The potential deadlocks are 

< wait in - out < N, wait in - out > 0 >, 
< wait in - out < N, E >, 
< E, wait in - out > 0 > 
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and logical consequences of the corresponding pairs of assertions from the above 
proof outlines are 

< in - out 2: N, in - out ~ 0 >, 
< in < M /I. in - out 2: N, out = M >, 
< in = M, out < M /\ in - out ~ 0 >. 

Since N 2: 1, the conjunction of the corresponding two assertions is in all three 
cases false. This proves deadlock freedom. 

We can now apply Rule 17 for the parallel composition of PRODS and 
CONS and obtain: 

{p1 /\ P2} [PRODllCONS] {P1 /\ P2 /\in= M /I. j = M}. 

Since 

{true} in:= O; out:= O; i := O; j := 0 {P1 /\ P2} 

and 

P1 /\ P2 /I. i =MA j = M-+ Vk(O ~ k < M---+ a[k] = b[k]), 

we obtain the desired correctness formula ( 4) about S by straightforward appli
cation of the composition rule and the consequence rule. 

19 Distributed Programs 

Distributed programs are concurrent programs with disjoint components which 
communicate by explicit message passing. Many real systems can be modeled 
by distributed programs. As an example consider an airline reservation system 
consisting of a large number of terminals in many different travel agencies and 
a central data base for keeping the current status of all flights. The data base 
and the terminals can be modeled as the components of a distributed program. 
In this case communication will involve a two way connection between each 
terminal and the database. 

There are two ways of organizing message passing. We consider here syn
chronous communication where the sender of a message can deliver it only when 
the receiver is ready to accept it at the same moment. An example is com
munication by telephone. Synchronous communication is also called handshake 
communication or rendezvous. Another possibility is asynchronous communica
tion where the sender can always deliver its message. This stipulates an implicit 
buffer where messages are kept until the receiver collects them. Communication 
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by mail is an example. Asynchronous communication can be modeled by syn
chronous communication if the buffer is introduced as an explicit component of 
the distributed program. 

As a syntax for distributed programs we consider a simple subset of the 
language CSP (standing for Communicating Sequential Processes) introduced 
in Hoare [Hoa78]. CSP extends Dijkstra's guarded command language (studied 
in Chapter 4) by the introduction of disjoint parallel composition and input
output commands for synchronous communication. We will explain this now in 
detail. 

19.1 Syntax 

A ( sequentiaQ process with name P or simply a process P is a component 

P::S 

where Pisa name and S, called a body of P, is a statement of the form 

S =So; do DJ'=1 9j-+ Sj od 

such that m;::: 0, So, ... , Sm are nondeterrninistic programs as defined in Chapter 
4, and 91, ... , 9m are generalized guards. The statement 

do Dj=1 U; --+ Sj od 

is called the main loop of S. A generalized guard has the form 

g := B; o: 

where B is a Boolean expression and o: an input-output command or shorter an 
i/o command. 

A main loop is exited when the Boolean part of each generalized guard of 
the loop evaluates to false. 

There are two types of i/o commands: an input command, written as Pj?u, 
and an output command, written as Pj !t. The first, when used within a process 
Pi, expresses its request to process Pj to send a value which will be assigned to 
the simple or subscripted variable u. An output command is the action which 
makes it possible. When used in a process Pi it expresses its request to process P; 
to receive the value of the expression t. Both requests are delayed until they can 
be performed together. In particular, the output command cannot be executed 
independently. The joint execution of two i/o commands, called a communica
tion, is possible when they match. 

Definitions. We say that two i/o commands match when one is an input com
mand, say P;?u, and the other an output command, say Pi!t, such that P;?u 
is contained in the process Pi and Pi !t is contained in the process P;, and the 
types of u and t agree. D 
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Two generalized guards match if their i/o commands match. They can be 
passed jointly when they match and their Boolean parts evaluate to true. Then 
the communication between the i/o commands takes place. 

The effect of a communication between two matching i/o commands o:1 =: 
Pj ?u and o:2 = P; !t is the assignment u := t. Formally, we define 

For a process P :: S let change(S) denote the set of all simple or array variables 
that appears in S on the left-hand side of an assignment or in an input command 
and let var(S) denote the set of all simple or array variables appearing in S. 
Processes P1 :: 51 and P2 :: S2 are called disjoint if the following condition holds: 

change( Si) n var(S2) = var(S1) n change(S2) = 0. 

Now, distributed programs are generated by the same clauses as those defin
ing nondeterministic programs in Chapter 4 together with the following clause 
for parallel composition: 

where P 1 :: S1 , ... , Pn : : Sn are disjoint processes with distinct names P1, ... , Pn. 
We say that two processes P; :: Si and Pi :: Si are connected by a communication 
channel if they contain a pair of matching generalized guards. When the bodies 
of P;-s are clear from the context, we omit them and simply write (Pill·.· llPn]. 

A distributed program terminates when all of its processes terminate. This 
means that distributed programs may fail to terminate because of divergence 
of a process or an abortion arising in one of the processes. However, they may 
also fail to terminate because of a deadlock. A deadlock arises here when not all 
processes have terminated, none of them has aborted and yet none of them can 
proceed. This will happen when all nonterminated processes will be in front of 
their main loops but no pair of their generalized guard matches. 

We say that a distributed program Sis deadlock free relative to an assertion 
p if no deadlock can arise in executions of S starting in a state satisfying p. 

Example 12. Here and in the next example we assume a new basic type charac
ter. Thus we may use constants and variables ranging over it. The constants of 
type character which we shall use are the ASCII characters. 

Here we wish to write a program 

S =: [BUFFERllCONSOLE] 

where the process BUFFER sends to the process CONSOLE a sequence of k (k;::: 
1) characters. To this end, we use two array variables a, b of type integer-+ 
character and put 

BUFFER:: i := l; do i =f. k + 1; CONSOLE!A[i]-+ i := i + 1 od 
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and 

CONSOLE:: j := 1; do j # k + 1; BUFFER? B[j]-+ j := j + 1 od. 

Note that the above program is deterministic in the sense that only one com
putation is possible. It terminates after both BUFFER and CONSOLE execute 
their loops k times. D 

Example 13. In the following program 

S::: [BUFFERllFILTERllCONSOLE] 

the process BUFFER sends to the process CONSOLE through the process 
FILTER a sequence of k (k 2: 1) characters ending with '*'· FILTER deletes 
all blanks in the sequence. It is assumed that '*' appears in the sequence 
only at its end. We have 

BUFFER:: i := 1; 
do i # k + 1; FILTER!A[i]-+ i := i + 1 od, 

FILTER :: send:= l; rec := l; b :=' '; 
do b # '*'; BUFFER?b -+ 

if b = ' '-+skip 
Db # ' '-+ B[rec] := b; 

rec := rec + 1 
fi 

Dsend # rec; CONSOLE!B[send] -+ send := send+ 1 
od, 

CONSOI.E :: n := 1; c :=' '; 
doc#'*'; FILTER?c-+ C[n] := c; n := n + 1 od. 

The process FILTER continues to receive characters from the process 
BUFFER until '*' is sent. It can also send to the process CONSOLE the 
non blank characters received so far. The presence of two generalized guards 
in FILTER reflects its nondeterministic behavior and allows more than one 
computation of the program S. 

BUFFER terminates once it has sent all k characters to FILTER. FILTER 
terminates when it has received the character '*' and has sent to CONSOLE all 
characters it has received. Finally, CONSOI.E terminates once it has received 
from FILTER the character '*'· 

To better understand the nature of deadlock situations consider what would 
happen if the Boolean guard of BUFFER were changed to i < k. Then BUFFER 
would not send the last character of the sequence, that is '*'. Thus FILTER would 
not falsify its first Boolean guard and so would never exit the loop. CONSOI.E 
would never exit its loop either and a deadlock would result once CONSOLE has 
received all nonblank characters from FILTER. 0 
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19.2 Transformation into Nondeterministic Programs 

Consider a parallel composition 

s = [P1 :: Sill· .. llPn :: Sn] 

of n disjoint processes where 

for i = 1, ... , n. As abbreviations we introduce 

I'= {(i,j, k,£) I o:;,; and ai:,1. match and i < k} 

and 
TERM:: /\f=1 fl.j.;, 1 -.B;,;. 

Observe that TERM holds upon termination of S. 
We transform S into the following nondeterministic program T(S): 

T(S) :: 81,0; ... ; Sn,o; 
do D(i,j,l:,t)er B;,; /\Bi:,1.-+ Eff(a;,;,ai:,1.); S;,;; Si:,t od; 
if TERM -+ skip fi 
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where the use of elements of I' to "summate" all guards should be clear. Note 
that upon exit of the main loop of T(S) the assertion 

BliXJK :: /\(i,j,k,t.)er -.(B;,; /\ Bi:,t) 

holds. This formula holds also whenever deadlock is reached in S. The behaviour 
of the distributed program Sis equivalent to the behaviour of the nondetermin
istic program T( S) in the sense of partial correctness. We shall make use of this 
obervation in the next section. 

19.3 Proof Theory 

The proof theory of distributed programs is surprisingly simple. We follow here 
the approach of Apt [Apt86]. Adopt the notation of the previous section. Con
sider first partial correctness. We augment the proof system P N for partial 
correctness of nondeterministic programs by the following rule: 

RULE 18: DISTRIBUTED PROGRAMS 

{p} So,1; ... ; So,n {I}, 
{I /\B;,; /l.Bi:,t} Eff(a;,;,o:k,1.); S;,;; Si:,t {I} 

for all ( i, j, k, £) E I' 

{p} S {I/\ TERM} 

and call the resulting proof system PDP, standing for partial correctness of 
distributed programs. 
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When the premises of the above rule are satisfied then we say that I is 
a global invariant relative to p. Also, we shall refer to a statement of the form 
Eff( O:i,j, O:k,e); S;,j; Sk,t as a transition. An execution of a transition corresponds 
to a joint execution of a pair of branches of the main loops with matching 
generalized guards. 

Informally the above rule can be phrased as follows. If I is established upon 
execution of all the 50 ,; sections and is preserved by each transition then I holds 
upon termination. This formulation explains why we call I a global invariant. 
The word "global" relates to the fact that we reason here about all processes 
simultaneously and consequently adopt a "global" view. 

This rule can be justified by relating S to its nondeterministic version T(S). 
Similarly as in the previous chapter we now consider weak total correctness. 

It now combines partial correctness with absence of failures and divergence free
dom. We augment the proof system T N for total correctness of nondeterministic 
programs by the following strengthening of the previous rule 

RULE 19: DISTRIBUTED PROGRAMS II 

{p} Sa,1; · .. ; So,n {I}, 
{I/\ B;.i /\ Bk,e} EJJ(o:;,j, ak,t); S;,j; Sk,t {I} 

for all (i,j,k,£) EI', 
{I /\B;,i /\Bk,t /\t = z} Eff(o:;,j,0:1c,t); S;,i; Sk,t {t < z} 

for all (i, j, k, £) EI', 
I-+t?:_O 

{p} S {I/\ TERM} 

where t is an integer expression and z is an integer variable which does not 
appear in t or P. 

Again, this rule can be justified by relating S to T(S). We call the resulting 
proof system W DP standing for weak total correctness of distributed programs. 

Finally, consider total correctness. We have to take care of deadlock freedom. 
We now augment the proof system T N for total correctness of nondeterministic 
programs by a strengthened version of the last rule. It has the following form: 

RULE 20: DISTRIBUTED PROGRAMS III 

{p} So,1; ... ; So,n {I}, 
{I/\B;,i /\B1c,e} Eff(a;,j,ak,t); S;,i; Sk,t {I} 

for all (i,j, k,f) EI', 
{I/\ B;,j /\ B1c,t /\ t = z} Eff(a;,j,a1c,t); S;,i; Sk,L {t < z} 

for all (i,j,k,£) EI', 
I -+ t ?:. 0, 
I/\ BIJXJK -+ TERM 

{p} S {I/\ TERM} 

The new premise allows us to deduce additionally that Sis deadlock free relative 
top, and consequently to infer the conclusion in the sense of total correctness. We 
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call the resulting proof system T DP standing for total correctness of distributed 
programs. 

Also, we shall use the following additional rules which allow us to present 
the proofs in a more convenient way. 

RULE 03: 

11 and 12 are global invariant relative top 

Ii /\ 12 is a global invariant relative top 

RULE 04: 

I is a global invariant relative to p, 
{p} s {q} 

{p} S {I/\ q} 

This rule can be used in proofs of partial, weak total or total correctness. 

RULE 21: 

I is a global invariant relative to p, 
l /\ BliXJK ~ TERM 

S is deadlock free relative to p 

Note that Rule 03 has several conclusions so it is actually a convenient 
shorthand for a number of closely related rules. Rules 03 and D4 are actually 
derived rules (hence their numbering), whereas Rule 21 allows us to reason about 
deadlock freedom separately. 

To illustrate the use of the proof systems we now prove correctness of the 
program from Example 12 on page 419. 

Example 14. We prove 

{k ~ 1} S {A[l: k] = B[l: k]} 

in the sense of total correctness. To this purpose we choose 

l := A[l : i - 1] = B[l : j - 1] /\ i = j /\ 1 $ i $ k + 1 

and 
t = k + 1- i. 

There is only one transition to consider. Clearly 

{I/\ i -:f k + 1/\j#k+1} B[j] := A[i]; i := i + 1; j := j + 1 {I} 

holds. Other premises of Rule 20 are equally simple to establish. By Rule 20 and 
the consequence rule the desired conclusion follows. D 
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19.4 Verification: The Producer Consumer Problem 

The program S given in Example 13 on page 420 is a typical instance of the pr0-
ducer consumer problem originally studied in Section 7 .3. The process FILTER 
acts as an intermediary process between the process BUFFER playing here a 
role of a producer and the process CONSOLE playing here a role of a consumer. 
We now prove correctness of this program. 

We first formalize the property we wish to prove. Given an array variable A 
of type integer-+ character, we call a section A[i: j] a string. For two strings 
A[i : j] and B[k : l], we write A[i: j] = B[k : l] if they are equal (as sequences). 
Given a string A[l : k] we define delete(A[l : k]) as the string B[l : n] which 
results from A[l : k] by deleting all blanks. Thus delete(A[l : k]) = B[l : n] iff 
the following three conditions hold: 

(i) n = k- #{i: A[i] =' '}, 
(ii) Vi(l :Si::::; n).B[i] -f.'' (B[l: n] contains no blanks), 

(iii) for some 1-1 order preserving function f : { 1, ... , n} -+ { 1, ... , k} 
Vi( 1 :S i ::::; n) .B[i] = A[f( i)] 
(i.e. B[l : n] results from A[l : k] by deleting some characters). 

Here, #A stands for the cardinality of the set A. Indeed, note that by (i) and 
(iii) B[l : n] results from A[l : k] by deleting a number of characters equal to 
the number of blanks in A[l : k]. Now by (ii) the deleted characters are exactly 
all blank characters of A (1 : k]. 

Note 8.5 For all i = 1, ... , k - 1 

(i) if A[i + 1] = ' ' then 
delete(A[l : i + 1]) = delete(A[l : i]), 

(ii) if A[i + 1] =f.' 'then 
delete(A[l : i + 1]) = delete(A[l : i]) " A[i + 1] 
where "11 " appends the character at the end of the string. 

Correctness of the program S now means that for 

p =. k?:. 1 A A[k] = '* '!\ Vi(l :Si< k).A[i] -f.'*' 

the correctness formula 

{p} S {C[l: n - 1] = delete(A[l : k])} 

is true in the sense of total correctness. 

D 

(1) 

Step 1 We first prove (1) in the sense of partial correctness. To this purpose 
we first look for an appropriate global invariant I of S (relative to the initial 
assertion p). 
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We put 

I= B[l : rec - 1] = delete(A[l : i - l]) 
/\ B[l : send - 1] = C[l : n - 1] 
/\ send ::; rec. 

We now check that I indeed satisfies the premises of Rule 18. 

1°. We clearly have 

{p} 
i := l; send:= l; rec := l; 
b := ' '; n := 1; c := ' ' 
{I} 

as by convention for any array a the string a[l : OJ is empty. 

2°. We have here two pairs of matching i/o commands: 

(FILTER!A[i], BUFFER?b) 

and 

(CONSOLE!B[send], FILTER?c). 

We consider them in turn. 

(i) We prove the following correctness formula: 

{I/\ i # k + 1 /\ b # '*'} 
b := A[i]; i := i + l; 
if b =' '_,.skip 
Db # ' '-+ B[rec] := b; 

rec := rec + 1 
fi. 
{I}. 

To this purpose first observe that by Note 8.5 

and 

hold. 

B[l: rec-1] = delete(A[l: i- 2]) /\A[i-1] = b/\b =' '} 
skip 
{B(l : rec - 1] = delete(A[l : i - 1])} 

{B(l : rec - l] = delete(A[l : i - 2]) /\ A[i - 1] = b /\ b =/::' '} 
B[rec] := b; rec := rec + 1 
{B[l: rec- 1] = delete(A[l: i-1])} 

425 
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Now by the alternative command rule and the composition rule 

{B[l: rec - 1] = delete(A[l: i - 1])} 
b:=A[i]; i:=i+l; 
if b = ' '--+skip 
Db of. ' '-+ B[rec] := b; 

rec := rec+ 1 
fi 
{B[l: rec - 1] = delete(A[l: i - 1])} 

holds. 
To obtain the desired correctness formula it suffices now to conjoin all asser

tions in the above proof with the assertion 

B[l : send - 1] = C[l : n - 1] /\send:=:; rec 

which remains invariant. 

(ii) We prove the following correctness formula 

{I/\ send of. rec /\ c of. '*'} 
c := B[send]; send:= send+ l; 
C[n] := c; n := n + 1 
{I}. 

First observe that 

{B[l: send- 1] = C[l: n - 1] /\send< rec} 
c := B[send]; send:= send+ l; 
C[n] := c; n := n + 1 
{B[l : send - 1] = C[l : n - 1] /\send~ rec} 

from where the above correctness formula easily follows by conjoining the asser
tions with the assertion 

B[l : rec - l] = delete(A[l : i - 1]) 

which remains invariant. Thus I is indeed a global invariant relative to p. 
By Rule 18 we now obtain from 1° and 2° the correctness formula 

{p} S {I/\ TERM} 

in the sense of partial correctness. Here 

TERN! = i = k + 1 /\ b = ' * '/\ send = rec /\ c = ' * '. 
By the consequence rule ( 1) holds in the sense of partial correctness. 

Step 2 We now prove (1) in the sense of weak total correctness. To this end we 
exhibit an appropriate bound function by putting 

t = 2 · ( k - i + 1) + rec - send 

which guarantees a decrease when both i and send are incremented by 1. 
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However, to apply Rule 19 we need to use an invariant which guarantees that 
t remains non-negative. We put 

It is straightforward to prove that Ii and t satisfy the premises of Rule 20, where 
T N is used as the underlying proof system. 

By Rule 19 and Rule D4 we now get 

{p} S {I/\ Ii/\ TERM} 

in the sense of weak total correctness which implies (1) in the sense of weak total 
correctness. 

Step 3 Finally, we prove deadlock freedom. By Rule 21, it suffices to find a 
global invariant I' (relative top) for which 

I' /\ BIJX)K -+ TERM (2) 

holds. Here 

BlfXK = (i = k + 1 V b ='*')/\(send= rec V c =' * '). 
We use Rule D3 and exhibit I' "in stages." First we wish to find a global 

invariant 12 such that 

12-+ (i = k + 1 +--> b = '* '). (3) 

Next, we wish to find global invariants 13 and 14 for which 

/3 /\ i = k + 1 /\ b = ' * ' /\ send = rec -+ c = ' * ' (4) 

and 
/4 /\ i = k + 1 /\ b = ' * ' /\ c = ' * ' -+ send = rec (5) 

holds. 
Then by Rule D3 and (3), (4) and (5) 

I' := 12 /\ h /\ /4 

is a global invariant. Note that each of the equalities used in (3), (4) and (5) is 
a conjunct of TERM; (3), (4) and (5) express certain implications between these 
conjuncts which guarantee that I' indeed satisfies (2). 

First, we put 

12 := p /\ (i > 1 V b = '*'-+ b = A[i - I]). 

I2 relates variables of the processes BUFFER and FILTER. Note that (3) holds. 
Next, we put 

l3 :=I/\ p /\ (n > 1-+ c = C[n - I]). 

The last conjunct of 13 states a simple property of the variables of the process 
CONSOLE. We have the following sequence of implications 
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J3 /\ i = k + 1 /\ b = '*' /\ send = rec -;. 
Is /\ C[l : n - 1] = delete(A[l : k]) -;. 
J3 /\ C[n - l] = '*' /\ n > 1-+ 
c = '*'· 

Finally, we put 

J4 ::: I /\ p /\ ( c = ' * ' -;. C[ n - 1] = ' * '). 

Here as well, the last conjunct describes a simple property of the variables of the 
process CONSOLE. We have the following sequence of implications 

14 /\ i = k + 1 /\ b = '*'/\c = '*'--> 
J4 /\ C[n - 1] = '*'-+ 
14 /\ B[send - 1] = A[k]-+ 
f (send - 1) = k /\ send - 1 ~ rec - 1 ~ k /\ f ( rec - 1) ~ k 

for some 1 - 1 order preserving function 
f: {l, ... ,n-1}-+ {l, ... ,k} 
(see clause (iii) of the definition of delete(A[I : k])) -+ 

send= rec. 

Thus we showed ( 4) and (5). Moreover, it is straightforward to see that each 
of h ! 3 and 14 is indeed a global invariant. We have thus proved (2). 

This concludes the proof of the correctness formula ( 1) in the sense of total 
correctness. 

19.5 Conclusions 

A key to the proper understanding of the proof systems PDP, W DP and T DP 
studied in this chapter is observation made in Section 8.2 that every simple 
distributed program S is equivalent to a nondeterministic program T(S). This 
equivalence allows us to prove correctness of S by proving correctness of T(S) 
instead and the Rules 18, 19 and 20 allow us to do just this-their premises refer 
to the subprograms of T(S) and not S. 

The same approach could be used when dealing with parallel programs. How
ever, there such a translation of a parallel program into a non deterministic one 
would necessitate a use of auxiliary variables. This would add to the complexity 
of the proofs and would make the approach clumsy and artificial. Here, thanks 
to a special form of the programs, the translation turns out to be very simple. 
We can summarize this discussion by conceding that the proof method presented 
here exploits the particular form of the programs studied. 
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