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Abstract 
An exotic pegmatite classified as a rare-element gadolinite type amazonite pegmatite is 

situated in Paleozoic sedimentary rocks, and associated with the peralkaline ekerite granites in 

the Permian Oslo Region. The amazonite pegmatite is approximately 16 meters long and 

consists of a coarse-grained, subhedral, green microcline feldspar (amazonite), quartz and 

danalite. Fine grained fabric with abundant sulphides intersect the coarse grained amazonite 

several places, and indicates a second generation of mineralization. The danalite has a strong 

reddish color with an intermediate composition of zinc and iron, i.e. composition along the 

danalite – genthelvite solid-solution series. Abundant pristine subhedral to euhedral phenakite 

coexist with danalite, and a boron zone in the pegmatite interior contains abundant danburite, 

tourmaline, and minor nordenskiöldine. Additional löllingite, gadolinite-(Y), biotite, zircon, 

columbite-(Fe), pyrochlore group minerals, and fluorite occur throughout the pegmatite body. 

Other pegmatites in the area contain primarily amphibole, pyroxene, microcline, and quartz. 

Major element variation of the amazonite pegmatite and its neighbor pegmatites correlate; 

however, trace-element evolution trends diverge in respect to REE, Nb, Y, and Ta. The 

amazonite pegmatite is clearly enriched in HREE relative to LREE, while Y, Nb, and Ta 

contents are significantly higher in the amazonite pegmatite than other pegmatites in the area. 

This evidence, in conjunction with the high boron- and sulphur-content, indicates an 

enrichment of the original NYF magma by circulating hydrothermal fluids, and chemical 

exchange with the sedimentary wall-rocks. 
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Introduction 
Previous studies on alkaline plutonic rocks in the Oslo region suggest that elevated halogen 

(fluorine, chlorine) fugacity in magmas and associated fluids is important both for mineral 

stability (e.g. Andersen et al. 2010) and as a complexing agent promoting element mobility 

(e.g. Alderton et al. 1980; Salvi & William-Jones, 1996).  Similarly, fluid inclusion studies in 

e.g. the Eikeren-Skrim alkaline complex in the Oslo Rift (Hansteen and Burke, 1990) have 

indicated high contents of Na, K, S, and Cl in sub-magmatic fluids, and observations of low 

fluorine content were attributed to leaching by circulating, post-magmatic fluids. 

This work presents the results from a study of a rare-element class pegmatite of the NYF 

family (Černy & Ercit, 2005), and is associated with one of the major alkali granite intrusive 

complexes in the Oslo Rift, Norway. The aim is to investigate the mineralogy and petro-

genesis of the amazonite pegmatite located at Bakstevalåsen in the øvre-Eiker district of 

Buskerud county. The pegmatite was discovered approximately 15 years ago (Hurum et al., 

1998), but limited work has been done since its discovery. This study is based on mineralogy, 

geochemistry, and textural relations by the use of analytical instruments such as polarizing 

microscope, scanning electron microscope – energy dispersive (SEM-EDX), electron 

microprobe analysis (EMPA), and whole-rock chemistry analysis (XRF, ICP-MS).  

Geological setting 

The Oslo Region 

The Oslo Region is a descriptive term referring to the area with well-preserved Palaeozoic 

rocks situated in a graben system stretching approximately from the Skagerrak in the south to 

the Brummundal area past lake Mjøsa in the north (Fig. 1). This graben system is related to 

extensional tectonics which occurred during the late Carboniferous to early Permian in 

northern Europe, and associated with the Sorgenfrei-Tornquist Zone (Neuman et al., 2004). 

The graben system consists of three main units; the Vestfold-, Akershus-, and Rendal-Graben, 

and have opposite polarity along the N-S fault axis; however, the latter is only associated with 

Permian rift tectonics and not magmatism (Larsen et al. 2008). The Oslo Rift has been studied 

for almost two centuries (Barth, 1945; Dons, 1978), but the major features and evolution of 

the Paleorift can be summarized through a succession of events (Larsen et al., 2008; Ramberg 

& Larsen, 1978; Neumann et al., 2004): 
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Figure 1 - Simplified geological map of the Oslo Region (Larsen et al., 2008). 
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Pre-rift stage 

The pre-rift stage is marked by a thinning of the crust with subsequent basin formation in 

response to tensional stress. This led to sedimentation in a shallow lacustrine environment 

primarily in the SW region of Oslo, and led to sedimentation of the Asker group. The reader is 

referred to Henningsmoen (1978), Orlaussen et al., (1994), and Larsen et al., (2008) for 

review on the sedimentary units and basin formation. During stress build-up old Precambrian 

(Gothian) NE-SW striking fault-lines were probably rejuvenated, and to some degree, a 

controlling factor in the opening of the rift system (Ramberg & Larsen, 1978; Husbye & 

Ramberg, 1978). Early magmatic activity is marked by sill intrusions of primarily syenitic 

compositions (Larsen et al., 2008). 

Initial rifting 

The initial rifting introduced eruptions of basalt lavas with compositions ranging from silica 

under-saturation to quartz tholeiitic (Larsen et al., 2008). The early basalts are linked to 

fissure eruptions in pace with the opening of the Oslo rift, but they are limited to the southern 

area of the Vestfold Graben. The thickest basalt units are found in the Brunlanes- and Skien 

area (approximately 800 and 1500 m thickness respectively), while thin tholeiitic flows are 

found at Krokskogen (Ramberg & Larsen, 1978; Neumann et al. 2004; Larsen et al., 2008). 

The early basalt eruptions took place between 305 and 299 Ma with the oldest basalts in the 

south (Neumann et al., 2004). 

Main rifting 

The main rifting stage is marked by extensive fissure eruptions of primarily rhomb porphyry 

(RP) lavas and minor basalt. The basalt eruptions probably ceased in intensity and volume, 

but eruption continued towards the north (Neumann et al., 2004; Larsen et al., 2008). The 

pulses of RP lava flow form thick provinces and N-S striking dikes. These lava flows are 

characteristic of low viscosity flows and related to high temperature and fluorine fugacity 

(Larsen et al., 2008).  

Central volcanoes and rift climax 

Large central volcanoes formed along the main rift which had fully matured, and stretched 

from south to north in the Vestfold- and Akershus- Graben. Lava eruptions were primarily 

alkali-olivine basalts, and gradual depletion of the magma chambers led to caldera collapse 

which led to a decrease in eruption activity (Ramberg & Larsen, 1979; Neumann et al., 2004; 

Larsen et al., 2008). During this stage the biotite-granite of the Drammen batholith intruded 
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into the Vestfold Graben (Trønnes & Brandon, 1992; Larsen et al., 2008) and marks the entry 

of composite granitic intrusions. 

Batholith, composite plutonic complexes 

The large composite batholiths occur primarily within the Vestfold Graben and in the south-

west of the Akershus Graben. During this stage the majority of plutonic rocks intruded the 

thinned crust and formed several composite plutonic complexes. The largest complexes are 

mapped as the Siljan-Mykle-, Eikeren-Skrim-, Finnemarka-Drammen-, and the Hurdal-

Nordmarka batholiths (Fig. 2). Present day erosion level is approximately 3 km below the pre-

existing Permian surface, and the deep-seated plutonic rocks make up most of the rocks we 

see in the Oslo Region today. Before solidifying at shallow crustal levels, the batholiths were 

a likely source of magma for the large central volcanoes before collapse. The lifespan of the 

Oslo Region in terms of magmatic activity ceased with the intrusion of minor, but separate 

plutonic bodies between 250 and 245 Ma (Larsen et al., 2008), hence lasting approximately 

64 million years.  

The Permian batholith complexes in the Oslo Region are made up by successions of plutonic 

intrusions which range in composition from monzonite and syenite to alkaline granites (e.g. 

the Grefsen syenite and ekerite). The Larvik plutonic complex (LPC) in the south of the 

Vestfold Graben ranges in composition through a succession of intrusions. The outer segment 

is quartz normative, with an intermediate section ranging from quartz and nepheline free, and 

late silica under saturated inner segments. The central Drammen – Finnemarka batholith are 

mildly peraluminous and high-silica granites (Trønnes & Brandon, 1992), while the 

Nordmarka – Hurdal batholith with its related intrusions are alkali-felsdspar syenite quartz 

alkali-feldspar syenite (Lutro & Nordgulen, 2004). 

Basement rocks and intrusion interaction 

Basement rocks in and around the Oslo Region consist primarily of Precambrian gneisses 

with Gothian and Sveconorwegian ages (1.60 – 0.90 Ga) (Andersen et al. 2004). A thick 

sequence of early Paleozoic (Cambrian, Ordovician, and Silurian) sedimentary rocks are well 

preserved overlying the basement in the Vestfold- and Akershus-Graben. These sediments 

consist mainly of marine calcic massive beds and shales, and contain a high amount of fossils 

(Owen et al., 1990). The sedimentary beds are strongly folded with a NE-SW axial plane, and 

part of the Caledonian foreland fold- and thrust-basin. Mineral deposits are abundant in the 

Oslo Region due to intrusion into the Paleozoic sedimentary rocks (e.g. Ihlen & Vokes, 1978). 



 

5 
 

Several historical important skarn deposits are associated with the biotite granites of the 

Finnemarka-Drammen pluton, and along the intrusion interface of the Nordmarka pluton. 

Petrogenetic studies indicate crustal contamination during partial melting and fractional 

crystallization of the rising magma (e.g. Neumann, 1976; 1977; Rasmussen et al., 1988). 

Fractionated anorogenic granites are important sources for rare-element pegmatites (Jahns & 

Burnham, 1969; Černy et al., 1985; London, 1990; Linnen et al., 2012). 
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Figure 2 - Simplified geological map of some important plutonic rocks (larvikite, biotite granite, ekerite, and nordmarkite) 
within the Oslo Region (Trønnes & Brandon, 1991). 

 

Alkaline rocks and their pegmatites 

Alkaline granites are associated with the NYF-family (niobium, yttrium, and fluorine) 

classification of pegmatites (Černy & Ercit, 2005). They are typical poor in boron, tantalum, 

and phosphor, and the more evolved pegmatites belong to the gadolinite class (Černy 1997; 
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Černy & Novak, 2012). Fertilized A-type granites (e.g. by fenitization) introduce a host of 

incompatible elements with increasing alkalinity (e.g. London, 1990; Salvi & William-Jones, 

1996). Granitic pegmatites thereby host a vast array of pegmatite compositions which 

promote a division based on petrogenetic relationship; the NYF family and LCT family 

(Lithium, Cesium, and Tantalum). The principle behind this classification is to maintain a 

concise classification based on a distinct chemical signature despite diversity in accessory 

minerals. However, complex pegmatites may carry mixed NYF + LCT signatures due to 

contamination and assimilation of sedimentary sources (e.g. I-type granite) (Černy & Ercit, 

2005). However, Zagorsky and Shmakin have worked out analogous systematics, which are 

widely used in Russian literature (Zagorsky et al., 2003; Shmakin, 2008) and are based on the 

miarogenic evolution, which essentially is a set of classes and subclasses according to mineral 

assemblage (Zagorsky et al., 2003).  

The amazonite pegmatite at Bakstevalåsen contain abundant Be-, Nb-, Y-, and REE-minerals. 

Fluorite and topaz are typical F- minerals related to NYF suite pegmatites (Černy & Ercit, 

2005). However, the amazonite pegmatite also contains boron-, and a wide set of tantalum in 

primarily pyrochlore, which indicates LCT characteristics.  

In Norway, the nepheline syenite pegmatites of the Langesund area with its type localities for 

mineral species have been extensively studied since the 19th century (Brøgger, 1890; Larsen, 

2010 and references therein). However, pegmatites associated with the peralkaline granites 

have received much less attention. The alkali granite intrusion in the Eikeren district is the 

likely source of the numerous pegmatites that occur in the Cambro-Silurian limestones as 

dykes and sills. These pegmatites are mostly simple pegmatites with a mainly albite, quartz, 

amphibole, and zircon mineralogy. The amazonite pegmatite which is the target of this study 

was described briefly by Hurum et al. (1997) where a rare mineralogy is observed.   

Geology within the study area 

The Eikeren – Skrim complex are the youngest of several pluton complexes in the southern 

part of the paleorift where magmatic activity is believed to have culminated around a mean 

age of 270±1 Ma (Rasmussen et al., 1980). The intrusion consists of a relatively monotonous, 

medium- to coarse grained alkali feldspar granite with sodic amphibole and / or pyroxene as 

characteristic mafic silicate minerals. The rock is thus an alkali granite in modern terminology 

(LeMaitre et al., 2002), but was given the name ekerite by Brøgger in 1880 after lake Eikeren 

(“Ekeren” in pre 1930s spelling). The peralkalinity index classifies these rocks as peralkaline 
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granites carrying riebeckite and arfvedsonite amphiboles. Miarolitic cavities and minor aplite 

are abundant throughout the ekerite complex and indicate a high volatile content. The 

miarolitic cavities range in size from small interstices (0.05 – 1 cm) to larger veins and 

cavities up to ≤ 5 cm (Hansteen and Burke, 1990). Raade (1972; 1980) described the 

mineralogy and rare fluorides in miarolitic cavities of syenites and alkali granites (although 

the fluorides are from a separate ekerite intrusion further north). 

The study-area is approximately a 1 km2 between the amazonite pegmatite and ekerite (Fig. 3). 

The Ekerite massif intrudes into Cambrian - Silurian sedimentary country rocks in the west, 

and form a sharp and well-defined boarder. The sedimentary rocks in this area are composed 

of several successions of marine sediments, where the amazonite pegmatite at Bakstevalåsen 

has intruded into the upper Ordovician limestones as a sill.  The sedimentary rocks in the area 

are heavily contact metamorphosed, and classify as feldspar-cordierite hornfels (Goldschmidt, 

1911; Hurum et al., 1997). A large normal fault with a NNE-SSW fault plane offsets the 

sedimentary sequence adjacent to the ekerite and exposes augen-gneisses of the Proterozoic 

basement (Jahren & Hurum, 1997).  
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Figure 3 – Simplified geological map of the study area. The amazonite pegmatite at Bakstevalåsen is indicated by the red 
arrow and oval circle (size exaggerated). The sedimentary units are primarily upper Ordovician massive limestones and 
shales (Owen et al., 1990).  

 

Pegmatites in the area 

There are numerous pegmatite bodies in the bedrock adjacent to the ekerite intrusion, forming 

sill and dyke intrusions. These bodies vary in thickness from ~0.5 m and up to approximately 

3 m, and are composed of a simple mineral assemblage dominated by coarse subhedral to 

euhedral crystals of quartz, feldspar, and amphibole. The feldspar appears to be dominated by 

microcline with some minor albite. All the pegmatites appear to follow a general NE-SW 

strike, which also coincides with the major fault plane uplifting the local sedimentary units. 

The fault is likely related to the half graben fault system of the Vestfold Graben as an anti-

tectic faultplane in respect to the main fault. Texturally, the pegmatites display a thin zone 

with graphic granite where quartz and microcline intertwine, and grades into the pegmatite 

body where the amphiboles occur with a random orientation. However, in two pegmatites 

situated in close proximity to the studied amazonite-pegmatite, additional minerals to the 
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normal assemblage in the area can be observed. Astrophyllite was observed during fieldwork 

as fibrous and sheeted crystals up to 2 cm in length. Helvite occur in at least one other 

fragmented pegmatite as fine grained (mm) euhedral crystals (Hurum, pers. Comm.). 

Amazonite pegmatite field-observations 

The amazonite pegmatite that has been the target for this study occurs as a sill intruded into 

the upper Ordovician limestones of the Fossum formation, and partly in calcareous shales of 

the Elnes formation. The main body of the pegmatite extends approximately 16 meters with 

an alternating thickness along its NNE strike. The core of the body, where the most diverse 

mineralogy occur, is estimated to a lens roughly 30 – 40 cm thick by 2 meters long, while the 

peripheral part of the pegmatite ranges from 15 cm to 5 cm in thickness. However, the 

pegmatite is not exposed along the inferred 16 meter profile, but is partly covered by 

overburden. Smaller veins (2 - 5 cm thick) are observed to break off towards the east under 

the soil. The core of the pegmatite is exhausted by extensive sampling by mineral collectors, 

and only a trace of the amazonite can be observed along the wall rock. Because of cover, the 

total extent of the pegmatite cannot be determined precisely, and it is possible that additional 

linked veins exist under overburden. 

Texture and microstructure of the pegmatite 

The pegmatite consists of fine grained and coarse grained zones; however, the grain size of 

the coarsest grains is relatively small compared to what is commonly observed in pegmatites 

(London, 2008; 2009). The largest amazonite grains range between 2 – 5 cm and the largest 

danalite grains do not exceed 1 cm. The amazonite coloring appears as both a crisp green and 

pale blue to grey variety. Within the fine grained material white albite is consistently 

appearing in varying amounts, and in the northern part of the pegmatite cleavelandite, a 

bladed variety of albite, is present and replacing amazonite primarily along grain boundaries. 

The southern end of the pegmatite body has a well-developed layered structure, which contain 

different minerals. The bottom layer contains magnetite, astrophyllite, and microcline. Faint 

grey microcline and smoky quartz form the middle layer, while strong green amazonite 

dispersed as coarse grains, up to 1.5 cm is limited to the top layer. Magnetite is abundant and 

limited in the bottom layer, and makes a sharp transition into the middle layer which is free of 

magnetite. Individual large grains of astrophyllite are scattered in the bottom and middle layer 

of this section of the pegmatite and can easily be recognized without a hand lens. Minor 

crystals of helvite group minerals (2 - 5 mm) appear with amazonite. Northwards the layered 
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structure disappears, and the pegmatite vein becomes homogenous with amazonte as matrix 

mineral.  

The mineralogy in the amazonite pegmatite contains some exotic minerals which occur only a 

few other places in Norway. A short list and description is presented in Table 1 below. 

Columbite and gadolinite group minerals are relative common in evolved pegmatites, and 

löllingite is found a common accessory mineral in the plutonic rocks in the Oslo region. 

Table 1 - List of some rare minerals found in the amazonite pegmatite at Bakstevalåsen. 

Mineral System Chemical formula Occurrence in Norway 

Danalite Isometric (Fe,Zn,Mn)4Be3Si3O12S Høgtuva, Nordland 

Danburite Orthorombic CaBSiO8 Kragerø, Telemark 

Nordenskiöldine Trigonal CaSn[BO3]2 Arøya, Langesund, Telemark 

Phenakite Trigonal Be2SiO4 Høgtuva, Nordland 

Löllingite Orthorombic FeAs2 Common in the Oslo Region 

Columbite-(Fe) Orthorombic FeNb2O6 Stetind, Nordland 

Gadolinite-(Y) Monoclinic (Y,REE)2FeBe2Si2O10 Evje-Iveland, Aust-Agder 

Methods of study 

Analytical methods 

Electron microprobe analysis 

Analysis was carried out on a Cameca SX 100 microprobe fitted with 5 wavelength dispersive 

spectrometers. Each analyzed thin-section was coated with a thin carbon layer by a vacuum 

evaporator. Due to several unknown minerals and uncommon mineral compositions (in 

respect to solid solution series) among the samples, analysis could not be carried out by 

standard procedures for silicate mineral analysis. In order to set up analytical protocols 

suitable for minerals such as the helvite- and gadolinite-group, full wavelength dispersive 

spectrum (WDS) were acquired from each mineral to be investigated. Major- and minor-

elements were identified by their Kα1 peaks as well as their recurring lower energy peaks (i.e. 

Lα1, Lβ1 et cetera).  After all the major and minor elements were identified qualitatively in 

each mineral, background positions had to be found for all elements in each of the minerals. 

This was done by partial WDS to select the positions where to count background on both 

sides from the selected X-ray line for each element, and thus avoid interference with peaks of 
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other elements. Element peak to background ratio were quantified by calibrating the intensity 

of the selected x-ray line on both natural and synthetic standard samples (see list below).  

Calibration standards and the respective X-ray lines used were: wollastonite (Si Kα, Ca Kα, 

Kβ), synthetic Al2O3 (Al Kα), albite (Na Kα), pyrophanite (Mn Kα, Ti Kα), synthetic MgO 

(Mg Kα), galena (Pb Mα), gallium arsenide (As Lα), ZnS (Zn Lα, S Kα), Fe metal (Fe Kα), 

SnO2 (Sn Lα), glass with 15 wt% Th (Th Mα), Nb-metal (Nb Lα), Sb2O3 (Sb Lα), glass with 

15 wt% UO2 (U Mα), Ta (Mα), W (W Mβ), synthetic orthophosphates for REE and Y (Y Lα, 

La Lα, Pr Lβ, Nd Lβ, Tb Lα, Er Lβ, Dy Lα, Gd Lβ, Yb Lα) (Jarosewich and Boatner, 1991). 

Peak to background ratios were accepted if the average of 7 measurements was within 

reasonable 3σ values. A quantitative analytical procedure then followed with beam 

parameters as seen in table 2. 

Table 2 - Beam parameters and counting times during EMP analysis. 

Beam parameters Counting time (s) 
Acceleration 
voltage (kV) 

Current 
(nA) Size Element Background Mineral 

15 15 Focused 10 2x5 Danalite 
15 15 Focused 10 2x5 Sulphide 
20 15  20 2x5 Columbite-(Fe) 
20 15 Focused 10 2x5 Gadolinite-(Y) 

 
 
Helvite group minerals; Si, S, Fe, Zn, Mn, and Be 

Beryllium was not analyzed, but estimated based on stoichiometry. Background positions for 

major elements were selected on a partial spectrum: Si (+/- 800), S (+/- 700), Zn (+/- 750), Fe 

(+/- 900), Mn (+/- 800), and Zn (+/- 750).  

Sulphides; Fe, Pb, As, and S 

The main sulphides that were identified for analysis were galena, pyrite, arsenopyrite, and 

löllingite. Background position for major elements were selected on a partial spectrum: Fe 

(+/- 800), Pb (+/- 700), As (+1000/-600), and S (+1600/-800).  

Oxides; Sn, Ca, and B 

Boron was not analyzed, but estimated based on stoichiometry. Background positions were 

selected as: Sn (+/- 600) and Ca (+460/-550).  
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Rare-earth rich mineral 

One of the major occurring minerals had not been successfully identified, and a full spectrum 

analysis revealed several heavy rare earth elements in the composition. The identified REE 

were further tested and verified by running a partial spectrum for each element and 

identifying the peaks near the theoretical peak position. However, the REE X-ray lines are 

close to each other and multiple order lines were removed by using pulse height analysis. 

These elements were important to measure as accurately as possible due to a significant 

contribution to the total sum weight-%, and acceleration voltage was increased to 20 kV in 

order to activate better HREE X-ray lines. Background positions were set to; Nd (+400/-450), 

Gd (+/- 600), Tb (+/-400), Er (+450/-650), Pr (+500/-450), Dy (+1000/- 605), and Mn (+850/-

815). 

Scanning electron microscope (SEM) 

Additional qualitative analysis was carried out on a Hitachi S-3600N SEM-EDX with a low-

vacuum (15 Pa) setting at the Natural History Museum, UiO. These analyses were primarily 

used for qualitatively mineral identification and to efficiently study various mineral 

paragenesis and relationships. 

Fieldwork and samples acquired for the study 
Prior to the current study, approximately 15 years ago, the Natural History Museum 

University in Oslo acquired approximately 50 kg worth of samples shortly after the discovery 

of the pegmatite. These samples were mostly collected from the middle segment of the 

pegmatite; however they were not catalogued or mapped according to sampled-position 

within the pegmatite. Since the time of discovery, the middle segment of the pegmatite has 

been exhausted due to severe sampling by private collectors. In order to create a frame of 

reference on the existing material a sketch of the pegmatite was made, and additional samples 

collected and mapped according to origin. Additional samples were collected from the 

neighboring pegmatites and ekerite granite (Fig. 4). The majority of pegmatites in the area are 

situated in the country rock between the amazonite pegmatite and ekerite intrusion. 
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Figure 4 – Topographic map of additional samples gathered from neighboring pegmatites and ekerite. T-E = trace-element 
sample analysis, T-S = thin-section sample. Scale of amazonite pegmatite exaggerated for visibility on topographic 
placement. 

Thin section preparation 

Thin sections were prepared at the Department of Geosciences, UiO. A total of 20 samples 

from the amazonite pegmatite, and 5 samples from neighboring pegmatites were used as 

material. Samples and a short description are listed in Table 3 below. 

Table 3 – Overview of thin-sections used in the study. Sample code = [BX1-X2]; B = Bakstevalåsen, X1 = Sample number, 
X2 = sample sub-specie. A = amazonite pegmatite, N = neighbor pegmatite. Thin section images supplied in appendix 3. 

Sample Description 
B-0 A; cross section of coarse grained and fine grained domain in 

middle segment. 
B1-1 A; 3 cm wide vein with a reaction rim towards the wall-rock 
B1-2 A; same sample as the above 
B1-3 A; same sample as the above 
B2-1 A; pegmatite and wall-rock 
B3-1 A; Danalite rich zones 
B3-2 A; same as the above 
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B4-1 A; danalite crystals overgrowing phenakite 
B5-1 A; specimen near overlying wall-rock, fine grained and coarse 

grained zones. 
B5-2 A; specimen near overlying wall-rock, large zones of fluid 

textures 
B5-3 A; coarse grained zone with interstitial albite 
B9-1 A; pegmatite and wall-rock interaction, fine grained xenoliths 

and albite rich domains 
B10-1 A; bleached amazonite in vicinity of tourmaline 
B10-2 A; subhedral tourmaline with a reaction rim into the amazonite 

matrix 
B11-1 A; Sharp interface between coarse grained domain and fine 

grained domain containing danalite 
B12-1 A; Bleached amazonite with interstitial albite 
B13-1 A; fine grained bleached amazonite matrix with albite and 

danalite 
B14-1 A; sample from northern segment of the pegmatite, substantial 

albite both interstitial and along wall-rock interface. Little 
modal danalite and phenakite. 

B16-1 A; fine grained matrix 
B21-1 A; danalite with epitaxial tourmaline and minor 

nordenskiöldine. 
B22-1 N; Microcline with interstitial quartz, and cm large amphiboles. 
B23-1 N; zoned pegmatite with two zones, quartz with interstitial 

microcline, and hornblende with interstitial microcline. 
B24-1 N; pyroxene, amphibole, microcline, and quartz. 
B24-2 N; same as the above 
B25-1 N; fine grained microcline matrix with interstitial amphibole 

and pyroxene. 
B25-2 N; interface between coarse grained domain and fine grained 

domain. Coarse grained domain contains amphibole, pyroxene, 
and quartz. Fine grained domain contains primarily interstitial 
amphibole. 

 

Trace-element analysis 

A total of 15 samples (Table 4) were crushed at the Department of Geosciences to fine 

grained powder and sealed for shipment to Act Labs Ltd (Activation Laboratories, Canada) 

which performed trace-element analysis. These analyses were conducted according to a pre-

defined program “Lithogeochemistry for Exploration and Research”, which involves a lithium 

metaborate/tetraborate fusion ICPMS and XRF whole rock analysis. Contamination from the 
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crushing device is expected at trace amount of chromium, nickel, and iron, and the apparatus 

was cleaned out with ethanol between each sample. 

Table 4 - Overview of samples prepared for trace-element analyses. 

Sample Description Type of pegmatite 
1 Pegmatite core, boron influx Amazonite 
2 Fine grained and bleached amazonite matrix Amazonite 
3 1 cm reaction zone between pegmatite and wall-

rock 
Amazonite 

4 Wall-rock Amazonite 
5 Amazonite matrix with danalite and danburite Amazonite 
6 Fine grained danalite and löllingite veins Amazonite 
7 Amazonite, quartz, and danalite with overgrowth of 

tourmaline aggregates 
Amazonite 

8 Same material as in sample B-4 (Table 3) Amazonite 
9 Same material as in sample B-10 (Table 3) Amazonite 
10 Fine grained amazonite matrix with danalite, 

löllingite, and tourmaline 
Amazonite 

11 Quartz, microcline, and amphibole pegmatite Neighbor pegmatite 
12 Ekerite Host granitic intrusion 
13 Same material as in sample 22-1 (Table 3)  
14 Quartz, microcline, and amphibole Neighbor pegmatite 
15 Quartz, microcline, and amphibole Neighbor pegmatite 
 

 

Petrology 
In the following chapter a description of the mineral assemblage, textural- and petrogenetic- 

relationship is made based on mineral identification by microscopy and SEM-EDX, and 

chemical EMP analysis.  However, due to the wealth of primary and secondary minerals, the 

study is limited to a selection of mineral species. 

General features of the amazonite pegmatite 
The amazonite pegmatite at Bakstevalåsen is not homogenous in mineralogy or texture along 

its N-S profile. The pegmatite is zoned in respect to the geochemical composition and matrix 

mineral. As a frame of reference the pegmatite is subdivided into three segments based on 

different mineralogical compositions; the south segment, middle segment, and north segment 

(Fig. 5). One striking difference between the amazonite pegmatite and neighboring pegmatites 
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(besides the amazonite), is the lack of amphibole which is an important mineral in the other 

pegmatites in the area. 

 

Figure 5 - Simplified sketch of the amazonite-pegmatite at Bakstevalåsen. Dashed lines represent overgrown portions of the 
body and are not included in the scale. Point of view located above the pegmatite looking down. Coloring represents a 
difference in modal compositions. Green areas indicate amazonite as matrix mineral. The total length of the pegmatite body 
including overburden is approximately 16 m. 

 

The texture of the pegmatite is dominated by two features (Fig. 6 and 7);  

1) Coarse grained zones where the size of the amazonite matrix crystals is in the range of 

cm large grains (up to 2 cm). 

2) Fine grained zones where crystal sizes range in mm (up to 0.5 mm).  

Within large samples the textural relationship of coarse- and fine-grained zones are randomly 

ordered in the pegmatite body (Fig. 6c, 7a). The transition between coarse- and fine-grained 

zones is abrupt and sharp, as opposed to a chilled margin along the contact of an intrusion. 

Samples containing small veins (approximately 5 cm in thickness) have fine grained zones 

confined towards the bottom-side of the pegmatite margin (Fig. 6e, 7b). Minerals within the 

coarse grained zones are subhedral to euhedral, while anhedral to subhedral in the fine grained 

zones. The spatial distribution of coarse- and fine-grained zones appears random where 

several samples contain bodies of coarse grained microcline, which is outlined by 

crystallization of smoky quartz along the interface between coarse- and fine-grained zones. 

The fine grained zones are associated with masses of fine grained biotite (≥ 1 mm), albite, and 

sulphides. The coarse grained zones contain primarily microcline and quartz. 
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The amazonite pegmatite shows signs of interaction with the wall-rock, which is observed by 

two features in the pegmatite body; wall-rock dilution into the pegmatite body and an intense 

alteration zone of the wall-rock. The alteration zone is approximately 0.5 – 1 cm thick, and 

contains primarily quartz, biotite, and clay minerals. In small veins (3-5 cm thickness) the 

interface between pegmatite and wall-rock is sharp (Fig. 7b). These samples show the same 

feature as described above where approximately 1 cm of the inner wall-rock contains a 

reaction-rim (Fig. 6e, 7b). The opposing pegmatite margin of such alteration rims is in all 

observed samples covered by a broad zone of fine-grained material with interstitial sulphides 

(primarily pyrite, galena, löllingite, arsenopyrite, and minor chalcopyrite), and only observed 

in contact with such fine grained zones (Fig. 6e, 7b). The largest samples which have a 10 - 

20 cm cross-section contain slabs of wall-rock material diluted into the amazonite body. The 

diluted wall-rock material contain fine grained quartz and biotite (≥1 mm), but mineralization 

of danalite, tourmaline, and albite can be intense along the diluted wall-rock interface. 
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Figure 6 - Photographs of the amazonite pegmatite. A: Field picture of the middle segment with wall-rock xenoliths and 
dilution into the pegmatite body. B: Tourmaline masses and apparent bleaching of the amazonite. C: Hand-specimen with 
coarse grained microcline enclaved in fine grained fabric. D: Dilution of wall-rock into pegmatite body in hand-specimen. 
Note mineralization of danalite along the wall-rock material and dominantly quartz + albite composition in white zones. 
Minor fluorite (Fl) and pyrochlore group minerals (Pcl) can be seen in the amazonite. E: Alteration zone, approximately 0.5 
cm thick, towards the wall-rock. 
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Figure 7 – A: simplified sketch of alternating coarse- and fine-grained zones in large specimens. B: Off-branching secondary 
veins average in 3 cm thickness, with a local zone of fine-grained material along the bottom interface. These zones contain a 
1 cm thick reaction zone towards the wall-rock. 
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South segment 

The south segment is dominated by two key features; 1) a matrix dominated by perthitic 

microcline with minor albite, and 2) a layered structure which contains specific minerals in 

each layer (Fig. 8). The layered structure is continuous (along the strike of the pegmatite) in 

the south segment and consists primarily of three distinct layers with different mineral 

composition. The bottom layer is dominated by magnetite (0.5 cm), microcline (1 cm), quartz 

(0.5 cm), and scattered aggregates of astrophyllite (sheets up to 0.5 cm). The middle layer 

contains primarily grey to faint-green colored microcline, abundant smoky quartz, and minor 

astrophyllite. The top layer is dominated by albite with local grains of crisp-green colored 

amazonite and dark red helvite group minerals (have not been analyzed). The content of 

amazonite in the upper layer increases progressively towards the north where it becomes the 

dominant feldspar. The south segment transitions into the middle segment when the layered 

structure is homogenized such that amazonite is the dominant matrix mineral. Figure 6 shows 

an overgrown area between the south- and middle- segment, which cover most of the 

transition. 

 

 

 

Figure 8 - Simplified sketch of the layered texture in the south segment. Important modal minerals highlighted for each 
layer. Dashed lines indicate slight segregation between masses of quartz and microcline in the middle layer. 
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Middle segment 

This segment is characterized by amazonite with a crisp green color as the matrix mineral. 

The main difference from the south segment is that magnetite and perthitic microcline are no 

longer present and astrophyllite is accessory. Danalite, phenakite, danburite, tourmaline, 

gadolinite-(Y), pyrochlore group minerals, columbite-(Fe), and sulphides are abundant in the 

middle segment. The texture alternates between coarse- and fine-grained zones as seen in 

figure 7a. The coarse grained amazonite is several places intersected by veins of fine grained 

material, which creates a fabric with coarse microcline segments enclaved by fine grained 

zones. Amazonite occurs as average 2 cm large crystals in the coarse grained zones, but local 

crystals up to 5 cm have been observed. The fine grained material average approximately 0.5 

cm in size. There is a sharp transition between the fine grained and coarse grained zones, and 

the interface in between is defined by a sharp and abrupt change. Biotite, albite, and abundant 

sulphides (i.e. pyrite, galena and löllingite) are associated with the fine grained zones and 

appear to nucleate along grain-boundaries between amazonite and quartz. Phenakite occurs as 

subhedral to anhedral pristine grains, and is distinguished from quartz in hand-specimen with 

its high luster and distinctive crystal habit. A majority of the phenakite crystals are overgrown 

with danalite. 

The coloring of amazonite is not uniform throughout the middle segment. In the vicinity of 

boron minerals (tourmaline and danburite) the color grades from grey to faint blue. Danburite 

occurs primarily along the wall-rock interface and as interstitial aggregates in the matrix 

enclosing individual amazonite grains. Tourmaline accompanies danburite and is observed 

primarily as masses of small grains (0.1 – 0.2 mm) and larger crystals (up to 1 cm) inside 

cavities. 

The thickness of the pegmatite body alternates between 20 and 30 cm in the middle section 

and it contains visible wall-rock xenoliths up to 10 cm (Fig. 6a). There are also pieces of wall-

rock which spearheads and partly pierces the pegmatite body. As seen in figure 6 the middle 

segment dives under thick overgrowth; however, by digging holes into the overburden it 

appears that the middle segment continues at least another meter. Furthermore, it is unknown 

if there are additional veins which spread off in other directions under the overburden.  

 

 

 



 

23 
 

North Segment 

The north segment is characterized by the amazonite pegmatite narrowing into one thin vein, 

which alternates between 5 and 10 cm thickness and eventually wedges out. The composition 

is dominated by amazonite as matrix mineral, with albite along microcline grain boundaries, 

and cleavelandite intersecting and enclosing the amazonite several places. Danalite is present 

in minor amount as 1 mm large scattered grains. Albite forms a thin, outer zone between the 

pegmatite and wall-rock (approximately 5 mm). The north segment is not spatially aligned 

with the middle segment and due to overburden it is not possible to determine whether the 

displacement is induced by a fault or a natural kink in the pegmatite. 

Deformation features in the pegmatite 

The amazonite pegmatite occurs with a straight profile in the stratigraphy. However, the 

middle segment is displaced approximately 1 meter east relative to the south and north 

segment, but it is not clear if this displacement is induced by deformation or the emplacement 

itself. A NW-SE striking fault plane exposes the south segment (Fig. 5). Hand specimens of 

the amazonite pegmatite show lineations where mineralization of e.g. tourmaline and biotite 

are localized. These lineations are in cm scale and cut into the pegmatite body from the wall-

rock at various angles, and are interpreted as fractures which were mended by later mineral 

growth.  

Mineralogical description 
The mineralogy in the amazonite pegmatite at Bakstevalåsen contains a broad assemblage of 

different minerals. The minerals are abundant as both primary and secondary phases as well 

as microscopic crystals which can only be identified with SEM-EDX. Many of these minerals 

are not common rock-forming silicates, and not listed with standardized abbreviation 

(Whitney & Evans, 2010). Table 5 provides a list of additional abbreviations used in this 

study. 

Based on Figure 6 and the apparent change in modal composition of the pegmatite along a 

northward trend, a general crystallization sequence is shown in Figure 9. The majority of 

analyzed (EMPA) samples originate from the middle segment of the pegmatite. However, 

several additional samples from the periphery of the body have been studied with a low 

vacuum scanning electron microscope (SEM-EDX). This approach was adapted to ensure that 

major mineralization trends were not overlooked in respect to important modal compositions. 

The following mineral description is a summary of observations made with a polarizing 
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microscope, scanning electron microscope (SEM-EDX), and high powered optical 

microscope. 

Table 5 –List of mineral abbreviation of minerals not included in Whitney & Evans (2010). 
Mineral Abbreviation 
Danalite Dan 
Danburite Dab 
Phenakite Phe 
Columbite-(Fe) Col-(Fe) 
Nordenskiöldine Nörd 
Gadolinite-(Y) Gad-(Y) 
 

 

Figure 9 – Observed crystallization sequence based on mineral occurrence and abundance throughout the pegmatite body. 
Solid lines = observed mineral occurrence in abundance, dashed lines = minor occurrence and uncertainty. 
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Quartz, SiO2 

In hand-specimens quartz occurs as two generations of subhedral crystals up to 1 cm. The 

quartz crystals vary between a transparent and smoky variety, where the latter is abundant 

throughout the pegmatite body and the former as minor masses in fine grained zones. In thin-

section quartz occurs as subhedral to euhedral crystals with varying sizes (0.2 mm – 1 cm). 

Near the wall-rock quartz grows perpendicular to the contact into the pegmatite and comprises 

the coarse grained zones in the pegmatite with microcline. The large grains are mostly pure 

without mineral inclusions, but some grains contain a large amount of small (≤1 mm) mineral 

inclusions. These inclusions are oval in shape and have parallel extinction in XPL (crossed 

polarized light). Along the grain-boundary of such quartz grains, secondary muscovite is 

crystallizing. 

Feldspar: Microcline and variety amazonite, KAlSi3O8; albite, NaAlSi3O8 

The primary K-feldspar occurs as two different generations with an early microcline and a 

late amazonite variety. Microcline comprises the matrix in the south segment of the pegmatite 

(Fig. 5). The crystals range from 2 mm and up to 5 cm in size, while the early stages of the 

pegmatite (south segment, Fig. 6) contain the coarsest microcline crystals in the center of the 

pegmatite body. In the field, the margin along the wall-rock contains fine grained (mm) 

microcline similar to a chilled margin. Amazonite is the dominant variety in approximately 

2/3 (middle and north segment) of the pegmatite and occurs in association with albite. In the 

south segment where amazonite is scarce, microcline occurs exclusively in albite rich zones 

along the top layer of the pegmatite. The amazonite color is mostly crisp green, but appears 

changes to a grey and blue variety in the vicinity of albite and boron minerals. 

Additionally, the feldspar has two distinguishing features. Microcline is confined to coarse 

grained zones and exhibit diffusive perthite-lamella and Carlsbad twinning in XPL. In several 

places along the grain boundaries between individual microcline grains albite occurs as <1 

mm subhedral masses. However, feldspar within the fine grained zones is exclusively albite 

with polysynthetic twinning and in most cases euhedral crystals (0.1 -0.5 mm). In thin section 

albite also forms euhedral mineral inclusions within quartz grains that are larger than 2 mm. 

In hand-specimens albite and quartz form a cryptocrystalline zone between pegmatite margin 

and wall-rock. 
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Thorite, (Th,U)SiO4 

Thorite is common in all samples as subhedral grains associated with zircon and pyrochlore 

group minerals. Thorite is a common mineral within fine grained domains, and in some cases 

overgrown with aggregates of subhedral pyrochlore crystals. Energy dispersive spectrum 

(EDS) qualitative analysis indicates primarily thorium with little to no uranium in the crystals. 

Biotite, K(Mg,Fe)3(AlSi3O10)(OH)2 

Biotite occurs exclusively within fine grained zones as interstitial growth between quartz and 

microcline grains. The biotite crystals are anhedral and never exceed crystal sizes greater than 

1 – 2 mm. Biotite is observed in both hand-specimens and thin-section to accumulate along 

the interface between coarse grained zones and fine grained zones. This biotite “front” can be 

observed as both sharp and alternating interface between the two different textures. Biotite is 

abundant in the wall-rock with quartz and clay minerals. 

Muscovite, KAl2(AlSi3O10)(OH)2 

Muscovite is observed in thin-sections as subhedral grains up to 2 mm and associated with 

secondary mineralization in alteration zones. This alteration appears as serisitization along 

microcline and albite grain-boundaries. 

Astrophyllite, (K,Na)3(Fe,Mn)7Ti2Si8O24(O,OH)7 

Astrophyllite occurs in minor sheeted masses with a light brown color in the south segment of 

the pegmatite, as well as scattered grains up to 5 mm in the middle segment. However, in the 

transition-zone between the south- and middle segment (Fig. 5), astrophyllite is abundant as 

sheets confined along microcline grain-boundaries. These astrophyllite sheets are darker in 

color with a metallic lustre opposed to what is observed in the southern segment. Larger 

quartz crystals (approximately 0.5 – 1 cm) also contain several inclusions of mm sized 

astrophyllite needles. The astrophyllite in the transition zone between the south and middle 

segment is observed with growth of zircon, and the amazonite matrix appear with a dark to 

black color.  

 

Titanite, CaTi(SiO4)O 

Titanite is observed locally in minor amounts as anhedral grains between approximately 0.1 – 

0.4 mm large crystals. Titanite is observed in some thin-sections along the margin between 

coarse- and fine-grained zones. 
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Oxides and sulphides 

Magnetite, Fe3O4 

Magnetite appears as both aggregates and as scattered euhedral to subhedral grains, and 

ranges from mm and up to cm large clusters within parts of the pegmatite. Most notable is the 

strong presence of magnetite in the early southern part of the pegmatite, but into the transition 

where amazonite defines the groundmass magnetite is no longer present in noticeable 

amounts. 

Hematite, Fe2O3  

Hematite occur as minor grains scattered in a few samples and appear to be localized to grain-

boundaries between quarts and albite within fine grained domains, and in some cases 

individual grains may be found with secondary muscovite or sericitization. 

Galena, PbS 

Galena is observed as both subhedral crystal aggregates of ≤1 mm and individual euhedral 

crystals up to 1 cm. In hand-specimens galena is observed as large masses along the margin of 

the amazonite pegmatite body and up to 2 cm into the wall-rock. In thin-sections galena is 

abundant in fine grained zones and as interstitial growth between microcline and quartz. Most 

notably are clustering of microcrystalline anhedral grains (approximately 10 – 20 µm) in 

several fine grained zones (Fig. 10). These masses of microcrystalline galena appear in some 

samples to follow possible relict microcline grain boundaries, where the material has 

recrystallized to albite. 

Pyrite, PbS2 

Pyrite is observed in approximately equal abundance as galena, and found as subhedral to 

euhedral masses up to 1 cm in hand-specimens. Thin section studies reveal that pyrite is 

abundant within fine grained zones as scattered euhedral crystals and adjacent to galena. 

Cassiterite, SnO2 

Cassiterite occurs in thin-sections as anhedral grains up to 200 µm and has not been identified 

in hand-specimens. These crystals are primarily associated with masses of galena and 

löllingite. 
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Chalcopyrite, CuS2 

Chalcopyrite is observed in minor amount as masses up to 1 cm in hand-specimens with 

purple to metallic luster.   

Arsenopyrite, FeAsS 

Arsenopyrite is observed in thin-sections as minor interstitial phases (up to 50 µm) and related 

with pyrite löllingite, and galena.  

 

Molybdenite, MoS2 

Molybdenite is primarily observed in hand-specimens as scattered local subhedral grains up to 

5 mm. These grains have a bright grey color and metallic luster and can be scratched by a 

finger nail. 

 

Löllingite, FeAs2 

Löllingite is common in all samples and occur both as scattered and as clustered euhedral 

crystals. Fe and As is stable and does not change significantly in the analyzed specimens. 

 

Figure 10 - BSE image of löllingite (Lo), cassiterite (Cst), and arsenopyrite (Apy) with a later growth of galena (Gln). 
Interstitial and subhedral galena radiate outwards from the cluster. Such clustering of fine grained galena is found in all thin-
sections, and galena is also commonly found as laths inside fractures. Quartz and microcline are not seen in the matrix due to 
low brightness. 
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Fluorine-rich minerals 

Fluorite, CaF2 

Fluorite is observed in all thin-section and occurs as anhedral crystals up to approximately 0.2 

mm. The fluorite crystals are scattered with no apparent affinity to other minerals. In large 

hand-specimens fluorite is observed as cryptocrystalline masses up to 0.5 cm. 

Topaz (Al2SiO4)(F,OH)2 

Topaz is primarily found in thin-sections sampled from smaller veins (approximately 5 cm 

thick), and found as subhedral grains up to 5 mm within coarse grained zones. Topaz occurs 

both as individual grains and masses of several grains adjacent to fine-grained zones. 

 

Beryllium minerals 

Helvite group, (Zn,Fe,Mn)4Be3Si3O12S 

In the amazonite pegmatite at Bakstevalåsen the helvite group is abundant. Several analyses 

were carried out on helvite group minerals and found to be confined to the solution series 

between zinc and iron (end-member genthelvite and danalite respectively), with an average 

12 % of the manganese component. Large crystals of genthelvite – danalite appear 

heterogeneous in respect to zinc and iron ratios when measuring large grains. Particularly 

large grains have in some cases higher zinc concentrations near the core, while iron increases 

relative towards the rim. However, this relationship is not linear and varies locally throughout 

the grain interface. Such crystals also differ from sample to sample in respect to how well 

defined the crystal habit appears, i.e. some samples contain well defined and massive euhedral 

crystals with inclusions, whereas other samples contain crystals with only an external 

subhedral to euhedral crystal shape (Fig. 11). These subhedral crystals appear mainly in two 

physical configurations; 1 - a subhedral crystal shape where the rim is continuous while the 

core contains a substantial amount of the matrix minerals quartz and microcline. 2 - The core 

is continuous while the rim is poorly defined with inclusions of quartz and microcline. 

Inclusions are common within all analyzed crystals and appear mainly as both small inclusion 

material (>mm), and secondary mineralization and alteration (≤mm).  

This means that for all the analyzed large grains the composition is not uniform, but covers a 

range between genthelvite (Zn>Fe>Mn) and danalite (Fe>Zn>Mn). However, the average 

composition appears to be dominated by danalite (Fig. 12). Large crystal aggregates show a 
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general trend with higher iron ratios along the margin with even zinc and iron ratios within 

the core, but local variations occur with no systematic zonation. 179 measurements were 

conducted in total on danalite crystals, with an average of 6 measurements in a cross-section 

over large crystals (~500 µm). From these measurements danalite appear as the dominating 

composition with the exception of local variations in the Zn to Fe relation (Fig. 12 and 13). 
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Figure 11 - BSE and microscope images (plane polarized and cross polarized) of different danalite crystal textures. Note the 
fine grained matrix occurs with the less defined danalite (Dan) crystals, while the coarse grained feldspar (Fsp) and quartz 
(Qz) matrix is observed with massive danalite crystals. Note the XPL images of coarse- and fine-grained matrix; abundant 
albite and biotite occur in the latter, while the former contains primarily microcline and quartz. 
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Figure 12 – Helvite (Mn), danalite (Fe), and genthelvite (Zn) composition triangular diagram. Diagram includes all analysis 
and plots along the genthelvite – danalite solid solution series. Manganese is relatively consistent with an approximately 15% 
helvite component. Atoms per formula unit (apfu) calculated assuming 13 anions. All data listed in appendix 1. 

 

Sample-specific plots of danalite crystals 

Figure 12 show a considerable spread between Zn and Fe in the measured danalite crystals. 

Each sample viewed with BSE shows different danalite crystal texture as seen in Figure 11. 

These variations not only occur between the different samples, but also over a short distance 

in each thin section (i.e. over a distance of approximately 3.0 cm). Sample specific plots from 

different thin sections show a minor spread between Zn and Fe as seen in Figure 13. A 

considerable spread can be seen in sample B-0 and B3-2, and analysed grains are highlighted 

in Figure 14 and 15 respectively. 
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Figure 13 – Helvite-danalite-genthelvite composition diagram. Each diagram represents genthelvite – danalite plot from each 
analyzed sample (thin section). Sample B11-1 contains grains of ilmenite (FeTiO3) partly overgrowing the danalite crystals. 
Sample B3-2 contains dense genthelvite – danalite crystals and consequently a higher frequency of analysis. 
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Figure 14 - Thin-section scan of sample B-0 and BSE images of analyzed danalite grains (1 - 5). Each grain is approximately 
0.1 mm in diameter, and the sample consists of a coarse- and fine-grained zone as indicated by the dashed lines. A trend in 
crystal habit is observed across the thin-section. Massive crystals dominate in the coarse-grained zone, while masses of 
smaller crystals dominate in the fine-grained zone. Figure 13 shows 4 plots in the genthelvite field which originate from grain 
1 and 2 between crystal core and rim. BSE image 4 and 5 are the most iron-rich measurements. Note the grey zones in thin 
section scan (underneath box 4), which are clusters of anhedral galena similar to figure 10. 
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Figure 15 – Scan of thin section sample B3-2 and associated BSE image of analyzed danalite grains. Compositions are 
plotted in Figure 13 and several plots are in the helvite field. These plots originate from the margin of danalite grain 2, 3, 5, 
and 6. Majority of plots are concentrated within the danalite field and originate from the crystal core in grain 1 – 6. 



 

36 
 

Phenakite, Be2SiO4 

Phenakite occurs as subhedral to euhedral transparent grains up to 1 cm in the amazonite 

pegmatite. In hand-specimens phenakite is distinguished from quarts by its high refractive 

index and transparent luster. The most abundant occurrence of phenakite is in the middle 

segment of the pegmatite where magnetite leaves the system, and several phenakite grains are 

overgrown by danalite. Due to beryllium passing below the detection limit of SEM-EDX, 

phenakite is not as easily distinguished from quartz. Some hand-specimens contain fractured 

phenakite crystals (approximately 0.5 cm) were fractures are annealed by quartz growth. 

 

Figure 16 - BSE image of danalite (dan) and phenakite (phe) in sample B21-1. Minor alteration and chlorite (Chl) along the 
grain boundary between danalite and phenakite, and galena (gln) appears to fill cracks in quartz and danalite. Apatite (ap) in 
the top right corner, and is one of the larger observed grains. 

Boron minerals 

Tourmaline, Na(Fe3)Al6(Si6O18)(BO3)3(OH)3(OH); Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH) 

Tourmaline have not been extensively analyzed in this study, however Jahren et al (1998) 

identified the species as primarily schorl with minor dravite. The former appear as fine 

grained masses up to 5 cm primarily along the margin – wall-rock zone, and as larger crystals 
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(up to 1 cm crystals) in cavities. Amazonite crystals adjacent to tourmaline appear discolored 

with a grey to blue color. Figure 17c and d shows interstitial tourmaline associated with 

danburite. 

Danburite, CaB2Si2O8 

Danburite primarily appear in the middle section as anhedral to subhedral crystals up to 1 cm. 

The crystals are typical pale yellow with a slightly greasy luster, and are abundant along the 

margin of the pegmatite body and in some specimens in the wall-rock. Danburite occur both 

as masses up to 3 cm and as aggregates along amazonite grain-boundaries in the matrix. The 

amazonite crystals adjacent to danburite, as observed in relation with tourmaline, are always 

discolored with a grey to blue color. Inside cavities danburite grows interstitial with 

tourmaline as mm large crystals (up to 6 mm). 

Nordenskiöldine, CaSn[BO3]2 

Nordenskiöldine has been identified by chemistry with EMPA analysis as masses up to 100 

µm in thin-sections. Nordenskiöldine occur as epitaxial overgrowth on cassiterite and 

interstitial CaCO3 (Fig. 18). However, nordenskiöldine has not been found as grains visible in 

hand-specimens. 

 

Other minerals 

 

Zircon, (ZrSiO4) 

Zircon shows no particular affinity to any minerals and covers all samples persistently as 

subhedral to euhedral millimeter large grains. These grains are present in all thin-sections as 

masses of several grains and often accompanied by pyrochlore group minerals (nomenclature 

after Hogarth, 1977). However, qualitative SEM-EDX analysis indicates slight variation 

between zirconium and oxygen ratio, and when viewed with crossed nicols some zircon 

grains show minor differentiation in birefringence. In most hand-specimens zircon crystals are 

not visible, but samples from the transition zone of the pegmatite contain euhedral light 

colored zircon crystals up to 0.2 mm. 
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Figure 17 - Photograph of mineral appearance in hand-specimens. A: Observed relationship of magnetite and amphibole in 
some neighboring pegmatites, magnetite is interstitial to quartz and amphibole. B: euhedral magnetite in the south segment of 
the amazonite pegmatite. C: Masses of tourmaline, danburite, and phenakite in amazonite (Mc) and quartz (Qz) matrix. Note 
the phenakite (Phe) depression into the amazonite (bottom right). D: Hand-specimen showing a boron-saturated side and 
relative boron-free side. Left side of dashed line contains abundant interstitial tourmaline and danburite with local grains of 
phenakite, danalite, and sulphides. Right side of dashed line contains primarily amazonite, quartz, phenakite, danalite, and 
local grains of danburite. 
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Figure 18 - BSE image of sample B21-1; masses of danalite crystals with interstitial tourmaline and minor inclusions of 
zircon and gadolinite. Columbite-(Fe) is adjacent to cassiterite with minor nordenskiöldine. Upper right corner is saturated 
with masses of cassiterite, minor nordenskiöldine, and interstitial calcite. B: close-up view of nordenskiöldine and cassiterite, 
calcite is not seen due to low brightness. 

 

Apatite, Ca5(PO4)3(OH,F,Cl) 

Apatite is observed in thin-sections with BSE as scattered and limited subhedral grains up to 

approximately 50 µm, and associated with masses of pyrochlore, zircon, and thorite. However, 

these grains have not been analyzed and the exact composition is unknown. 

 
Calcite, CaCO3 

Calcite is observed in as minor interstitial grains primarily in relation with cassiterite and 

nordenskiöldine. 

 

Carbon, amorphous C 

In several thin-sections some opaque minerals are amorphous when analyzed with EDS, and 

are carbon material. Hand specimens contain abundant carbon nodules (approximately 1 mm) 

along the pegmatite margin, and the dark luster resembles fine grained subhedral tourmaline. 
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Gadolinite-(Y), (Y,REE)2FeBe2Si2O10 

The gadolinite group consists of the solution series gadolinite – datolite; however, there are 

additional species in the group depending on chemistry (i.e. minasgerasite, hingganite, and 

homilite species). The ideal formula for gadolinite can be expressed by A2XZ2Si2O10 where in 

gadolinite-(Y) A = yttrium and rare earth element, Z = beryllium; and in datolite A = calcium 

and Z = boron (Miyawaki et al., 1984; Demartin & Minaglia, 2001; Cámara et al., 2008).  In 

the amazonite pegmatite gadolinite has not been observed with confidence in hand-specimens, 

but occurs in several thin sections as subhedral to euhedral large crystals up to 2 mm. These 

crystals are to an individual extent metamict where a few crystals are near pristine while 

others are completely metamict. When viewed under polarized light the near pristine crystals 

show distinct zonation with alternating positive and negative interference. The metamict 

crystals are clearly fractured and covered with large metamict zones (Fig. 19). Several relict 

crystal shapes can be observed in thin section where all the material is metamict. These 

crystals are in most cases associated with aggregates of thorite and pyrochlore group minerals. 

13 grains were analyzed with 46 measurements to investigate the composition in the most 

apparent zonation. The chemistry (Table 6) shows high calcium content relative to iron, while 

some zones are dominated by calcium (Fig. 20). The analysis also indicates a variety of 

HREE where the calcium content is low. Most notably is the relationship between calcium, 

iron, and HREE in the zonation. Figure 21 shows REE chondrite normalized pattern 

indicating enrichment of HREE relative on LREE. On BSE images dark zones contain 

elevated calcium weight percent relative to iron and HREE, while bright zones contain higher 

iron and HREE weight percent relative to calcium (Fig. 22). A relationship between the 

thorium content (wt. %) and the extent of metamictization can be observed where near 

pristine crystal contain little thorium, and severe metamict crystals contain elevated thorium 

wt. % (Table 6). 
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Table 6 – Selected chemical analysis of gadolinite-(Y) in the amazonite pegmatite. Apfu (atoms per formula unit) 
recalculated assuming 10 oxygen atoms. Iron is treated as Fe2+, and low total weight percentage is related to metamict 
crystals. BSE images of analyzed grains displayed in Figure 19. Measurement B5-1 #1 contains low thorium values and the 
crystal is near pristine. Measurement B5-1 #2 contains elevated thorium values and is severely metamict. 

  B5-1 #1     B5-1 #2  
Wt. % core inter core Inter rim rim inter rim 
CaO 2.80 2.45 2.38 1.92 5.36 7.04 8.07 7.62 
SiO2 24.47 23.99 24.03 23.46 25.36 25.29 25.96 25.49 
FeO 9.96 10.32 10.35 10.74 10.11 9.75 9.17 9.69 

Y2O3 27.178 26.527 26.522 24.498 27.864 20.964 19.466 19.272 
La2O3 0.496 0.558 0.525 0.446 0.702 1.530 2.327 1.969 
Ce2O3 2.967 2.982 3.024 2.804 2.146 2.902 4.319 3.226 
Dy2O3 4.972 5.230 5.222 6.863 2.518 2.960 2.591 2.769 
Gd2O3 2.857 2.761 3.041 3.399 1.424 1.668 1.388 1.471 
Yb2O3 2.282 2.671 2.345 3.071 2.911 3.107 2.970 2.987 
ThO2 1.621 2.169 2.503 1.777 2.743 5.297 3.658 5.880 
Pr2O3 0.377 0.450 0.415 0.439 0.179 0.238 0.299 0.253 
Nd2O3 1.467 1.4 1.494 1.186 0.480 0.733 0.849 0.676 
Tb2O3 0.487 0.494 0.425 0.673 0.171 0.115 0.174 0.202 
Er2O3 3.191 3.117 3.089 3.970 2.439 2.761 2.449 2.463 
MnO 0.41 0.37 0.40 0.32 0.38 0.21 0.22 0.25 
BeO 10.2 10.0 10.0 9.7 10.5 10.5 10.8 10.7 
Total 95.75 95.52 95.80 95.29 95.32 95.09 94.75 94.95 

Formula proportions based on 10 oxygen atoms 
Ca 0.26 0.23 0.22 0.18 0.48 0.64 0.72 0.68 
Si 2.09 2.08 2.08 2.07 2.11 2.13 2.16 2.14 
Fe 0.71 0.75 0.75 0.79 0.70 0.69 0.64 0.68 
Y 1.24 1.22 1.22 1.15 1.23 0.94 0.86 0.86 
La 0.02 0.02 0.02 0.01 0.02 0.05 0.07 0.06 
Ce 0.09 0.09 0.10 0.09 0.07 0.09 0.13 0.10 
Dy 0.14 0.15 0.15 0.20 0.07 0.08 0.07 0.07 
Gd 0.08 0.08 0.09 0.10 0.04 0.05 0.04 0.04 
Yb 0.06 0.07 0.06 0.08 0.07 0.08 0.08 0.08 
Th 0.03 0.04 0.05 0.04 0.05 0.10 0.07 0.11 
Pr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Nd 0.04 0.04 0.05 0.04 0.01 0.02 0.03 0.02 
Tb 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.01 
Er 0.09 0.08 0.08 0.11 0.06 0.07 0.06 0.06 
Mn 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.02 
Be 2.09 2.08 2.08 2.06 2.10 2.12 2.15 2.15 
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Figure 19 – Selection of BSE images of gadolinite crystals with varying degree of zonation. Higher calcium content is 
associated with dark bands while REE is associated with the brighter bands. Due to varying thorium contents (wt. %) the 
gadolinite crystals are partly metamict, which is seen as extensive cracks and altered zones. 
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Figure 20 – Diagram showing the gadolinite – datolite compositional relationship. Diagram contains every analyzed 
gadolinite grains, and plots a linear relationship with datolite. Plot of stoichiometric calcium versus iron performed similar as 
Pezzotta (1998). 

 

 

Figure 21 – Chondrite normalized REE pattern in gadolinite-(Y) (McDonough & Sun, 1995). The figure includes every 
analysis and a general pattern with relative enrichment of HREE versus LREE is observed. The observed spread within plot 
is possibly related to calcium versus REE dominated zones as seen in Figure 22. 
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Figure 22 –BSE image of a gadolinite crystal with pristine zones showing alternating bright and dark zonation. Fractures are 
associated with metamictization induced by radioactive decay of thorium. EMPA analysis performed within selected zones 
indicated with numbers. Lower left: Calcium apfu plotted versus iron apfu. Bright zones contain elevated stoichiometric iron 
relative to calcium. Lower right: Similar plot with calcium apfu plotted versus REE apfu. Bright zones contain elevated 
stoichiometric REE relative to calcium. 

 

 
Niobium and tantalum oxides 
 

Columbite-(Fe), FeNb2O6 

Complex oxides are observed in the samples and are primarily represented by columbite-(Fe) 

and pyrochlore group minerals. Columbite-(Fe) has previously been identified by X-ray 

powder diffraction (Jahren et al., 1998) however, based on EMP analysis the stoichiometry of 

the mineral is difficult to differentiate between ixiolite and columbite. This is due to a range 

of metals present in the analysis (i.e. Sb, W, Mn, Pb, Ti), and depending on calculated oxygen 

atoms. Recalculation based on 6 anions (columbite formula) yields a columbite-(Fe) formula. 

However, as seen in measurements along the rim (Table 7), EMP analysis yield low total 
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wt. %. All of the analyzed columbite-(Fe) grains contain a rim with different composition, 

which contains elevated lead- and lowered niobium- weight percent. These rims are possibly 

secondary alteration, and it is difficult to make an accurate measurement as the material is 

prone to beam penetration. The columbite-(Fe) is not observed with any mineral affinity, and 

appears both as local grains in the matrix and by clusters of danalite. 

 

Table 7 - Selected chemical analysis of columbite-(Fe) from the amazonite pegmatite. Apfu calculated assuming 6 oxygen 
atoms. The high total wt. % value is produced by beam penetration, and low total values along the rim produced by elements 
not measured. 

Wt. % core Core core core rim rim 
FeO 16.66 16.46 16.75 16.39 0.37 0.10 
Y2O3 0.36 0.413 0.39 0.44 0.12 22.15 
ThO2 0 0 0 0.09 1.22 4.17 
Nb2O5 71.27 72.54 75.55 73.68 31.57 44.39 
SnO 0.32 0.39 0.29 0.41 1.19 0.02 

Sb2O3 0 0 0 0 4.17 0 
Ta2O5 2.80 1.29 0.95 1.29 6.53 3.05 
WO3 2.66 1.13 1.62 1.28 4.97 0.54 
PbO 0.38 0.48 0.30 0.32 37.25 0.44 
UO2 0.0129 0 0 0 1.75 0.57 
MnO 3.95 2.77 2.99 2.89 0.25 0.05 
CaO 0.06 0.27 0.07 0.22 1.68 0.89 
TiO2 2.36 2.83 2.74 3.09 6.96 0.57 
Total 100.88 98.62 101.68 100.16 98.05 76.99 

Formula proportions based on 6 oxygen atoms 
Fe 0.78 0,78 0.77 0.76 0.01 0 
Y 0.01 0,01 0.01 0.01 0 0.32 
Th 0.00 0,00 0 0 0.01 0.03 
Nb 1.81 1,85 1.87 1.85 0.39 0.54 
Sn 0.01 0,01 0.01 0.01 0.01 0 
Sb 0.00 0,00 0 0 0.05 0 
Ta 0.04 0,02 0.01 0.02 0.05 0.02 
W 0.04 0,02 0.02 0.02 0.03 0 
Pb 0.01 0,01 0 0 0.27 0 
U 0.00 0,00 0 0 0.01 0 

Mn 0.19 0,13 0.14 0.14 0.01 0 
Ca 0 0.02 0 0.01 0.05 0.03 

Ti 0.13 0.15 0.14 0.16 0.18 0.01 

Total 3.01 3.00 2.98 2.99 1.06 0.95 
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Pyrochlore group 

The pyrochlore group minerals have not been successfully analyzed on the EMP due to time 

constraints; however, when qualitatively analyzed with a scanning electron microscope (SEM) 

it appears to be a primary variation between niobium- and tantalum- dominated species (i.e. 

pyrochlore - microlite solution series; Hogarth, 1977). The pyrochlore is observed in thin-

sections as masses of party overgrown grains (Fig. 23) with crystal faces at approximately 

1200. These pyrochlore grains are approximately 0.1 – 0.2 mm and subhedral to euhedral. The 

pyrochlore masses are associated with thorite and zircon, which are abundant across all 

observed thin-section samples and appear as a late stage.  

 

 

Figure 23 - BSE image of aggregate with pyrochlore (Pcl) group minerals and interstitial thorite (Thr). Dashed lines outline 
crystal grain boarders meeting at approximately 120 degree angle. 

 

 



 

47 
 

Other minerals not covered in this study 

Initial studies of the amazonite pegmatite by Jahren et al (1998) performed XRD and 

microprobe analysis of several dark and visible indistinguishable minerals. Table 8 lists 

minerals from that study, which have not been investigated further. Hand-specimens contain 

powder-like material in several cavities and related to secondary alteration. Data from the 

EMPA has not been available (Jahren et al., 1998). 

 

Table 8 - Additional minerals identified by Jahren et al (1998), but not analyzed in the current study. N.A = not available. 

Mineral Chemical formula Description Identification 
Andradite Ca3Fe2Si3O12 N.A. EMPA 
Allanite-(Ce) (Y,Ce,Ca)2(Al,Fe)3(SiO4)3(OH) N.A. Not specified 
Fergusonite-(Y) YNbO4 N.A. Not specified 
Sepiolite Mg2Si3O8 ∙ 2 H2O Secondary XRD 
Halloysite Al2Si2O5(OH)4 ∙ 2 H2O Secondary XRD 
Tennantite (Cu,Fe)12As4S13 Secondary, 

inside cavity 
XRD 

Goethite FeO(OH) Secondary, 
inside cavity 

XRD 

Scheelite CaWO4 Microscopic 
grains 

EMPA 

Graphite C Amorphous 
carbon in 
transition to 
graphite 

Reflective 
light 
microscopy 

Halite NaCl Inclusion Fluid 
inclusion 

Sylvite KCl Inclusion Fluid 
inclusion 

Hematite Fe2O3 Inclusion Fluid 
inclusion 

Hydrohalite NaCl ∙ 2 H2O Inclusion Fluid 
inclusion 
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Element variation 
The data pool for both major- and trace-element variations is represented by 15 samples as 

previously described in Table 4, and includes samples from the amazonite pegmatite, 

neighbor pegmatites, ekerite, and wall-rock. The limited dataset may not represent accurate 

variations, but it is possible to derive important differences primarily between the amazonite 

pegmatite and other pegmatites in the area, as they originate from a common source. 

 

Major elements 

Major elements plotted versus silica weight percent are presented in Fig. 24. Data on both 

major- and trace-element is presented in appendix 2. As seen in Figure 24 the amazonite 

pegmatite and neighbor pegmatites plot relatively close for all major elements.  Al2O3, Na2O, 

and TiO2 appear stable in all samples while MnO shows a spread in the data. P2O5, K2O, and 

CaO plot slightly higher for the amazonite pegmatite, but Fe2O3 is marginally higher in 

neighboring pegmatites.  
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Figure 24 – Harker variation diagram of major element weight percent. Blue solid diamond: amazonite pegmatite, red 
square: ekerite, purple cross: other pegmatites in the region, green triangle: wall-rock of the amazonite pegmatite. Minor 
trend lines between the amazonite pegmatite and other pegmatites can be seen primarily in titanium, iron, and calcium. 
Titanium and iron increases while calcium decreases in the amazonite pegmatite, relative to other microcline pegmatites in 
the area. Plot of MgO in the wall-rock has been removed for visual purposes due to significant higher MgO. 
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Trace elements 

The amazonite pegmatite at Bakstevalåsen show high contents of REE where the HREE are 

clearly enriched relative to LREE as seen in figure 25. This is very uncommon when 

compared to intrusive rocks in the Oslo Rift, which are in general LREE enriched (e.g. 

Neumann, 1976; Rasmussen, 1988). Most notably is the difference between the amazonite 

pegmatite and neighboring pegmatites in respect to trace elements as they cluster in two 

different groups (Fig. 26). 

Rubidium and strontium are common trace-elements in feldspars (e.g. Iiyama, 1979); 

however, a discrepancy between the amazonite pegmatite and other microcline pegmatites in 

the area is observed (Fig. 26). Niobium exceeds the detection range with >1000 ppm in two 

samples which originate from the middle segment of the pegmatite, where boron 

mineralization is abundant (Fig. 9). Y versus REE shows a near linear correlation, and Nb - 

Ta ratios indicates different clustering between the amazonite- and neighbor-pegmatites. An 

interesting observation is the discrepancy between wall-rock material and the wall-rock 

reaction zone in respect to Nb and Ta content. The reaction zone contains relatively higher Nb 

than the wall-rock.  
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Figure 25 – REE chondrite normalized (McDonough & Sun, 1995) bulk-rock analysis from the amazonite pegmatite, 
neighbor pegmatite, and ekerite granitic intrusion. A: The samples 1,2,5,6,7,8,9 and 10 are from the amazonite pegmatite. 
Sample 3 and 4 are from the reaction zone and wall-rock respectively. B: Sample 12 is the ekerite granitic intrusion. Sample 
11, 13, 14, and 15 are from other pegmatites in the area. The trend in elevated HREE relative to LREE in samples from the 
amazonite pegmatite is similar as seen in figure 8. 
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Figure 26 – Plot of trace element. Rb and Sr content with the same legend entry as in figure 8. Rubidium values for the 
amazonite pegmatite (blue diamond) exceed the equipment detection range (>1000 ppm) and therefore plot on a straight line. 
A noticeable difference between the microcline of the amazonite pegmatite and neighboring pegmatites can be observed. 
Niobium content (ppm) measures high in the amazonite pegmatite and two samples exceeds the detection limit of 1000 ppm 
and plot on a straight line.  Nb – Ta ratios, and REE to Y relations are near linear, suggesting minor substitutions. LREE vs. 
HREE (La vs. Dy) show to trends from the ekerite source; both neighbor- and amazonite- pegmatite plot at low LREE 
values; however, the amazonite pegmatite has progressively increase in HREE. 
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Other pegmatites in the area 

As seen in figure 5 (sample overview) several samples were collected from other pegmatites 

in the area between the ekerite granitic intrusion and the amazonite pegmatite at 

Bakstevalåsen. These pegmatites contain primarily microcline, quartz, amphibole, and 

accessory thorite and rutile minerals. The texture of these pegmatites is coarse grained where 

the amphibole crystals range between 2 and 5 cm. These pegmatites do not appear in the field 

with similar coarse- and fine-grained zones as the amazonite pegmatite. However, graphic 

granite intergrowth of microcline and quartz is clearly seen along the pegmatite margin. In 

polarized light the amphibole appear to be dominated by arfvedsonite, and the crystals are 

dominantly subhedral with secondary alteration. Figure 27 shows the observed pyroxene and 

amphibole which occur in the neighboring pegmatites in the area. Amphibole is the major 

mafic mineral with minor pyroxene, and almost all of the observed amphiboles contain 

secondary alteration. 

 

Figure 27 - Samples from amphibole pegmatite in the region viewed with crossed nicols (XPL) with 10x magnification 
(approximately FoW: 2x2 mm). Top: Subhedral to euhedral pryoxene in fine grained albite matrix. Bottom: Subhedral 
amphibole with an apparent secondary alteration). 
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Discussion 

Pegmatite texture 

The amazonite pegmatite contains a random zoning of coarse- and fine-grained texture (Fig. 

6a, 7a, b). Factors which govern crystal growth and size in pegmatites depend on both 

undercooling of the rock-forming melt and fluxing of volatiles (H2O, P, B, F) (Jahns & 

Burnham, 1969; Černy, 1992; London, 1990; 1996; 2008; 2009; London & Morgan, 2012; 

Linnen et al., 2012). The amazonite pegmatite is located approximately 700 meters away from 

the granitic host intrusion, but within the metamorphic aureole of the country rock. In addition 

the main pegmatite body has an alternating thickness between 10 – 30 cm, which could have 

implications on cooling rates and associated textures (i.e. zonation of a progressive growth 

front). A thorough fluid inclusion study might reveal accurate temperature ranges and the 

fluid medium which govern nucleation rates (halogen species). However, the classical model 

proposed by Jahns (1969) and refined by London (1984; 1990) for explaining pegmatite 

crystal growth, in terms of constitutional zone refinement, will not explain the coarse- and 

fine-grained texture (London & Morgan, 2012). The coarse grained texture is better explained 

by a first generation texture, which has been dissected in a later and secondary metasomatic 

stage. The striking diverging mineralogy within the two types of fabric strongly indicates a 

reducing fluid in respect to sulphides, with subsequent K auto metasomatism. 

Amazonite coloring 

Experimental work shows that the green amazonite color can be removed by heating up to 

500 oC and re-introduced by irradiation (Hofmeister & Rossman, 1985a). Heating above 500 
oC and subsequent radiation does not recover the amazonite color, but produce a smoky grey 

color due to disordered H centers (Hofmeister & Rossman, 1985a; 1985b). The intensity of 

green amazonite is related to the lead content (Foord & Martin, 1979) and the valence state 

(Pb+1, Pb+2) (Hofmeister & Rossman, 1985a). Recent studies indicate that a combined effect 

by lead and structural water govern the color intensity of amazonite (Hofmeister & Rossman, 

1985a; Rein et al., 2004). The main mechanism behind amazonite coloring may be explained 

by three principal factors; irradiation invoked by 40K which reduce Pb2+ to Pb1+, and liberate 

hydroxyl radicals. These radicals may in turn oxidize Pb2+ to Pb3+ (Rein et al., 2004).  

The amazonite color is not homogenous as described in the south- and middle-segment of the 

amazonite pegmatite at Bakstevalåsen. The amazonite in the south segment is observed with a 

uniform and crisp green color, but limited to the top layer adjacent to the sedimentary wall-
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rock. However, in the middle segment the amazonite is only crisp green in the crystal core, 

and grades into a blue to faint grey variety towards the grain margin. This may imply that late 

circulating fluids altered the amazonite coloring by lead exchange, and not necessarily 

irradiation by radioactive decay. 

Mineralogical associations 

Danalite - genthelvite mineralization and element control 

The helvite group is a beryllium silicate with minor sulphur, and composed of three end-

members defined by manganese, iron, and zinc. There is complete miscibility between Mn – 

Fe and Zn – Fe (Hassan & Grundy, 1985). Pure end-member species are not found in nature, 

but average compositions contain varying amounts of zinc, iron, and manganese (Dunn, 1976). 

Danalite has not been reported from many Norwegian localities, however Høgtuva in the 

Nordland district contain a beryllium zone with accessory danalite crystals (Grauch et al, 

1994). 

 

Danalite is the rarest end-member of the helvite group, and the only end-member which was 

not successfully synthesized in the laboratory by Mel’nikov et al (1968), which is possibly 

explained by its narrow stability field in fO2-fS2 space (Burt, 1980), and the chalcophile-

lithophile nature of manganese, zinc, and iron (Hassan & Grundy, 1985). In all the neighbor 

pegmatites observed in the study-area, iron appears to be controlled primarily by two mineral 

phases; amphibole (riebeckite and arfvedsonite) and accessory oxides (hematite, magnetite, 

and ilmenite). In the amazonite pegmatite iron is primarily controlled by magnetite and 

danalite in a succession where magnetite is abundant in the south segment, while danalite 

controls iron in the middle segment. 

The magnetite in the south segment is accumulated along the bottom layer of the pegmatite 

body, which contains a narrow mineral assemblage (Fig. 9). At the middle segment of the 

amazonite pegmatite danalite is abundant in addition to a broad mineral assemblage. Figure 

28 shows the hypothetical stability field of danalite, magnetite, pyrite, pyrrotite, and hematite 

in a fS2 – fO2 system (Burt, 1980). In addition to the narrow stability, Burt (1980) suggested 

danalite to be susceptible to supergene oxidation as it is not observed in coexistence with 

hematite (e.g. Glass et al., 1940; Oftedal & Sæbø, 1963; Kwak & Jackson, 1986). However, 

the fS2 could possibly be buffered by graphite as indicated in Fig. 28, and provide a possible 

application on the observed danalite distribution in the studied amazonite pegmatite. 

Assuming the south segment represents an early consolidation phase of the pegmatite, the 
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middle- and north-segment might indicate a response from the pegmatite system to imposed 

geochemical changes.  

 

Figure 28 - Hypothetical fO2 and fS2 stability (Burt, 1980) in the system pyrite = Py, pyrrotite = Po, magnetite = Mt, and 
hematite = Hm. Danalite is susceptible to supergene oxidation and is not stable with hematite. Graphite may buffer sulphur 
fugacity. 

 

In conjunction with the paragenetic sequence seen in Fig. 9 and the observed amazonite 

coloration, it is possible that late hydrothermal fluids were saturated with boron, sulphur, 

and/or calcium. Wall-rock derived carbon would thus provide graphite to buffer and possibly 

impair sulphur fugacity, promoting danalite stability in favor of magnetite. Burt (1980) 

suggested several breakdown reactions of danalite; however, these reactions could assumingly 

be equally danalite-forming under the right conditions. Based on the observed mineralogy of 

the amazonite pegmatite, the best suited reaction proposed by Burt (1980) is: 

Reaction 1: 6 dan + 7 O2 = 8 Mt + 9 Phe + 9 Qz + 2 S2  

Reaction 1 produces danalite and oxygen at the expense of magnetite, phenakite, quartz, and 

sulphur. Magnetite leaves the pegmatite system in the middle segment where danalite is most 
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abundant, and the supply of sulphur from the wall-rocks fit the reaction. Theoretically, 

oxygen provided by the reaction would be absorbed and/or transported away by circulating 

fluids, thus driving the reaction towards the left. However, phenakite occurs with a primary 

subhedral to euhedral crystal habit, and does not fit the reaction due to its abundance and near 

pristine crystals. Phenakite does not appear to be the Be source if danalite were to mineralize 

at a late stage. However, the abundance of danalite in the middle segment and the focused 

mineralization near wall-rock dilution into the pegmatite suggest some important aspects: 

1) Indication of a secondary mineralization event due to increased circulation by fluxing 

fluids and the addition of chemical components. 

2) Elevated sulphur fugacity buffered by graphite and promoting danalite stability. 

3) Local phenakite crystals overgrown by danalite may represent a change in conditions 

which favor beryllium control by danalite. 

4) Local grains of danalite – genthelvite in the south segment is restricted to the top layer, 

which is in contact with the wall-rock, and thus meets the assumptions of danalite 

stability induced by wall-rock derived fluids. 

The most iron-rich danalite composition analyzed contains approximately Dan85, but local 

variations do occur with a zinc dominated core and iron rich rim (Fig. 12 and 13). Similar 

variations are described by Kwak (1986), which were attributed simultaneous crystallization 

of iron-oxides, pyrite and sphalerite. If danalite crystallized simultaneously with other iron 

bearing minerals, the observed danalite compositions would not be expected due to the 

abundance of pyrite and biotite. Based on the observed relations in this study some possible 

mechanisms are proposed. The different crystal textures of danalite (Fig. 11) within coarse- 

and fine-grained zones may possibly reflect different growth rates governed by local volatile 

content and pegmatite thickness. The massive danalite grains observed within coarse grained 

zones could imply a steady-state growth rate, promoting rearrangement and partly resorbing 

nucleons along the growth-front interface, and thereby relatively enrich iron or zinc. The 

undefined and inconsistent danalite crystals which are associated with fine grained zones 

could reflect unsteady growth due to fluxing of fluids. Accordingly, the crystal textures which 

contain a homogeneous core or rim (Fig. 11 and 12) may reflect a change such growth 

condition. If the danalite crystals are a result from intergrowth of smaller grains, the local 

variations in iron-zinc ratios could simply reflect relict crystal cores and grain boundaries.  
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Helvite group minerals at other localities within the Oslo Region 

The helvite and genthelvite members of the helvite group have been known in the Oslo region 

for a long time. Early observations were made in the syenite pegmatites in the Langesund area 

(Brøgger, 1890) and skarn deposits (Goldschmidt, 1911). Neumann (1950) and Oftedal & 

Sæbø (1963, 1965) reported findings of helvite in miarolitic cavities in the Grefsen and 

Nordmarka syenites. Oftedal (1963) gave a short review over the various localities where 

helvite were found and the accessory minerals in which it occurs. Based on his findings, 

Oftedal suggested the variations between the zinc (genthelvite) and manganese (helvite) end-

members were attributed to temperature control and the availability of Zn. He proposed a 

general trend where genthelvite primarily occurs in equilibrium with sphalerite in skarn 

deposits, while helvite preferentially occur in syenite pegmatites where manganese saturation 

is more likely. The analytical data presented by Oftedal (1963) indicated helvite compositions 

with elevated zinc components. However, he did not fully recognize that there is no solid 

solution between zinc and manganese in the helvite group (Dunn, 1976; Hassan, 1985). 

Larsen (1988) published new chemical analyses from several of the helvite minerals in the 

syenite pegmatites of the Langesund area, and found the manganese components more in line 

with true helvites than the results of Oftedal (1963). 

However, the majority of helvite localities in the Oslo region have a common mineral 

paragenesis: Quartz, biotite, muscovite, albite, zircon, sphene, pyroxene, allanite, amphibole, 

magnetite, calcite, molybdenite, galena, fluorite, astrophyllite, and monazite are reported as 

major phases occurring with helvite (Oftedal & Sæbø, 1963). The highest iron-% in 

genthelvite reported by Oftedal & Sæbø (1963) was from a skarn deposit near Grua with a 50% 

Mn and 45% Fe distribution. This genthelvite occurred in a matrix of pyroxene, magnetite, 

calcite, and minor fluorite. 

 

Boron minerals 

Boron is not associated with NYF type pegmatites (Černy & Ercit, 2005; Černy et al. 2012), 

but in the amazonite pegmatite boron is a major element occurring in schorl, danburite, 

nordenskiöldine, and possibly minor substitution with beryllium in the gadolinite-datolite 

solid solution series. Tourmaline and danburite is observed to mineralize along the wall-rock 

interface and into the pegmatite body, which further indicate a boron influx from the marine 

sediment wall-rock. Danburite and nordenskiöldine both contain calcium, with the former 

being abundant in the middle segment of the pegmatite (Fig. 9). Auto-metasomatism of 
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microcline and internal fractionation could enrich the residual fluid in respect to K and/or Ca, 

which would be highly reactive with boron. However, calcium could equally be derived from 

the calcareous wall-rock and explain mineralization of danburite and tourmaline along wall-

rock material diluted into the pegmatite, and along microcline grain boundaries. London 

(1990) describes a similar process, however in the reverse order, where boron volatiles 

derived from the pegmatite body react with the wall-rock and deposit tourmaline outwards. 

The limited observation of boron minerals in the north segment is possibly related to a smaller 

sample pool due to limited exposure. 

 

Gadolinite-(Y) and the calcium content 

The measured gadolinite minerals contain substantial calcium relative to iron, while some 

individual crystal zonation are dominated by calcium (table 6); however, the name calcio-

gadolinite was discredited by the IMA in 2006 (Burke, 2006). Figure 19 plots iron and 

calcium content according to the gadolinite – datolite solid solution series, where gadolinite-

(Y) is the iron member. It is interesting to note that dysprosium is the dominant lanthanide 

element which is possibly related to a near ionic radius compared with Y, and thus promote a 

“camouflaged” substitution (Miyawaki et al., 1984). The observed enrichment in HREE 

relative to the LREE chondrite normalized pattern (Fig. 20) is commonly associated with rare 

element, gadolinite type pegmatite, and may be linked to partition of the REE into the late 

consolidation stage by F-complexing (Černy, 1997). Calcium-rich and iron-poor gadolinites 

are also found in miarolitic cavities at Cuasso al Monte, Italy (Pezzotta et al., 1999; Demartin 

& Minaglia, 2001). 

Niobium and tantalum oxides 

The primary carriers of Nb and Ta in granites and granitic pegmatites are columbite group 

minerals (Wise et al. 2012). This is also observed in the amazonite pegmatite with columbite-

(Fe) and pyrochlore group minerals. In addition, fergusonite-(Y) was identified by Jahren et al. 

(1998). Trace-element analysis of the amazonite pegmatite measured Nb values above 1000 

ppm (Fig. 26) with tantalum values below 100 ppm. The complex oxides are interpreted as a 

late phase; however, the geochemical control is not conclusive due to limited representative 

observations. The pyrochlore and columbite group minerals are possibly a late stage product, 

which mineralized by either metasomatic replacement or partition favoring the solid phase 

due to low temperature and consequent chemical quenching (e.g. London, 2008; Linnen et al, 

2012). 
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Element distribution 

Major elements 

Figure 24 shows the major element variation versus silica weight percent; however, the 

number of samples is limited and may not reflect compositional variations precisely. The 

major elements do not show large discrepancies between the amazonite pegmatite and 

neighbor pegmatites. A slight decrease of calcium, phosphor, and potassium with increasing 

silica content can be seen. Calcium and potassium are associated with auto-metasomatism and 

the late mineralization of K-feldspar and albite, as seen in the north segment where 

cleavelandite partly replaces microcline. A slight increase in manganese may be linked to 

danalite being stable in favor of helvite, while iron appears to slightly decrease as expected 

during late mineralization of low temperature sulphides. Sodium, titanium, and alumina 

appear consistent, and are not observed in relation with any major mineralization trends. 

Trace elements 

Most REE deposits are situated in anorogenic extensional tectonics much similar to the 

tectonic setting of the Oslo Region (Chakhmouradian & Zaitsev, 2012). The REE chondrite 

normalized pattern from whole-rock analysis of the amazonite pegmatite (Fig. 25) shows a 

clear enrichment of HREE relative to LREE, which is unusual to rare element distribution in 

the Oslo Region (Neumann et al., 1974). The prominent europium anomaly is associated with 

the removal of plagioclase during fractional crystallization, where Eu2+ substitutes with Ca2+ 

(Winter, 2001). Despite this REE pattern being unusual for plutonic rocks in the Oslo Rift, it 

is normal for NYF family pegmatites to contain complex oxides which carry the heavy rare 

earths (Černy et al., 2012). On the contrary, elevated Rb and Sr (Rb exceeds detection limit), 

boron, and tantalum is not expected in a NYF suite pegmatite (Černy & Ercit, 2005; Černy et 

al., 2012). Figure 26 shows several interesting features; the amazonite pegmatite samples 

notably diverge from the plotted neighboring pegmatites in respect to Sr, Rb, and Nb with 

increasing silica. Rb+ and Sr+ are known to substitute with K+ in K-feldspar, but assuming a 

common genetic source for the pegmatites in the study area such discrepancies would not be 

expected. Lanthanum versus dysprosium shows notably divergence between the neighboring 

pegmatites and the amazonite pegmatite; however, the amazonite pegmatite shows an increase 

in dysprosium and is possibly related to accumulation of HREE into the residual volatile 

phase during internal fractionation. Nb-Ta and REE – Y variation appear semi-linear and 

could indicate substitution effects or late metasomatic remobilization. This is possibly 

indicated in the plot of Nb+Ta/Nb+Ti+Ta versus Nb+Ta where the wall-rock reaction zone 
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show a notably increase in Nb, and thus a potential Ta – Nb chemical exchange with 

pegmatite volatiles during metasomatic remobilization. 

HFSE mobility 

The post magmatic fluid which emplaced the amazonite pegmatite was likely saturated with 

fluorine, which is observed by fluorite and topaz mineralization, and was suggested by 

Hansteen & Burke (1990). In addition, Raade (1980) described several rare fluorides from 

miarolitic cavities within a separate ekerite intrusion further north. Fluorine increases the 

mobility of otherwise immobile elements (i.e. high field strength elements) by fluorine 

complexing (Salvi & William-Jones, 1996). 

Implications to classification of the amazonite pegmatite 

The amazonite pegmatite at Bakstevalåsen contain abundant Be-, Nb-, Y-, fluorine (in fluorite 

and topaz), and REE-minerals, which are characteristic for evolved NYF type pegmatites 

(Černy & Ercit, 2005). However, the amazonite pegmatite also contains abundant boron 

minerals, and pyrochlore which appear to be dominated by microlite (Hogarth, 1977). These 

elements are more characteristic for LCT- type pegmatites (Černy & Ercit, 2005; Černy et al., 

2012) and may indicate an additional volatile influx or mixing of hydrothermal fluids during 

the late pegmatite consolidation stage. The amazonite pegmatite may potentially carry a weak 

LCT overprint on the original NYF signature, and thus indicate a mixed NYF + LCT 

pegmatite. 
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Conclusion 

The amazonite pegmatite at Bakstevalåsen is classified as a rare-element class, gadolinite type 

pegmatite of the NYF family. The mineralogy of the pegmatite shows an internal zonation, 

which is related to one or several late- to post-magmatic hydrothermal alteration. The 

hydrothermal fluid must have interacted with the sedimentary wall-rocks by chemical 

exchange. This is best observed in the mineralogical difference between the south- and 

middle-segment, where early amazonite is localized near the wall-rock margin. Abundant 

boron and sulphide mineralization is observed in the middle segment, which also contain a 

thicker zone of the pegmatite body. The slightly thicker body in the middle segment may have 

facilitated longer cooling rates and volatile fluxing, resulting in a difference in texture fabric. 

The late hydrothermal stage imprinted the amazonite pegmatite with a weak LCT signature by 

the influx of primarily boron and possibly remobilization of niobium and tantalum. This 

influx also facilitated the narrow fO2 – fS2 stability field of danalite, which is observed to 

increase in abundance in the vicinity of diluted wall-rock. The lead and/or water content in the 

hydrothermal fluids also altered the amazonite coloring primarily along grain boundaries in 

the middle segment, where amazonite color appear bleached from crystal core and towards 

the rim. 

The main element distribution of the amazonite pegmatite and neighboring pegmatite does not 

differ significantly; however, large discrepancies are observed in the trace-element 

distribution. Fractures and brittle defects in the initial pegmatite melt may have promoted 

permeability of fluids and accelerated chemical exchange. 
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Future work 
This study merely scratches the surface on some of the petrogenetic processes of the 

amazonite pegmatite. At best, the results of this study manage to describe some of the many 

peculiar traits observed in the amazonite pegmatite. Additional substance to the initial 

observations would be provided by a few complementary studies: 

1) Stable isotope analysis on primarily S and O, and investigate the scope of sedimentary 

influx and possible mixing with meteoric water. 

2) A systematic bulk-rock analysis with a larger sample pool from the entire pegmatite 

and wall-rock profile, and perform trace-element analysis of the three main segments 

of the pegmatite to constrain and verify the ideas put forth in this study. 

3) Chemical analysis and identify the composition of the abundant pyrochlore group 

minerals.  

4) Investigate possible the zircon population and their Lu – Hf ages, and how these 

signatures correlate with “normal” Oslo Rift patterns. 

5) Investigate the biotite group minerals and their iron component. 
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Appendix 1: EMP data 
 

- Danalite 
- Gadolinite-(Y) 
- Cassiterite and nordenskiöldine 
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Danalite B-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
wt. % SiO2 31.65 31.66 32.15 31.71 31.85 31.85 32.28 31.99 32.18 32.11 31.95 31.37 31.94 31.94 32.04 

 
S 5.70 5.62 5.65 5.78 5.70 5.59 5.77 5.83 5.73 5.79 5.69 5.56 5.77 5.67 5.66 

 
MnO 7.29 11.38 7.81 6.06 7.90 11.37 6.89 6.34 6.78 5.91 6.55 11.13 7.04 6.34 6.22 

 
FeO 25.44 19.60 30.47 29.09 23.42 18.49 31.11 27.51 29.68 30.04 29.27 17.54 21.43 27.36 30.27 

 
ZnO 19.41 22.16 14.08 17.30 21.57 22.96 14.18 18.75 16.26 16.01 16.16 23.68 24.23 18.31 15.85 

 
BeO 13.10 12.30 12.60 12.90 12.40 12.50 12.60 12.40 12.20 13.00 13.20 13.40 13.20 13.20 12.70 

  Total 99.75 99.91 99.93 99.96 99.99 99.97 99.94 99.92 99.97 99.97 99.97 99.90 100.73 99.99 99.91 
apfu Si 3.01 3.04 3.05 3.02 3.05 3.05 3.06 3.06 3.07 3.04 3.02 2.99 3.02 3.02 3.04 

 
S 1.02 1.01 1.00 1.03 1.02 1.00 1.02 1.04 1.03 1.03 1.01 0.99 1.02 1.01 1.01 

 
Mn 0.59 0.93 0.63 0.49 0.64 0.92 0.55 0.51 0.55 0.47 0.52 0.90 0.56 0.51 0.50 

 
Fe 2.03 1.58 2.42 2.31 1.88 1.48 2.47 2.20 2.37 2.38 2.31 1.40 1.70 2.17 2.40 

 
Zn 1.36 1.57 0.99 1.22 1.53 1.62 0.99 1.32 1.15 1.12 1.13 1.66 1.69 1.28 1.11 

 
Be 3.00 2.84 2.87 2.95 2.85 2.88 2.87 2.85 2.80 2.95 3.00 3.07 3.00 3.00 2.90 

                     16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
wt. % SiO2 30.42 30.48 30.96 30.74 30.73 30.90 30.76 30.75 30.75 30.96 30.83 30.63 30.91 31.15 31.45 

 
S 5.68 5.87 5.84 5.76 5.88 5.74 5.91 5.85 5.74 5.70 5.76 5.74 5.84 5.82 5.71 

 
MnO 5.98 6.17 6.09 6.09 6.44 6.33 6.17 5.97 6.11 6.19 5.98 6.81 6.85 6.07 6.06 

 
FeO 24.61 28.51 30.14 30.73 30.83 31.20 30.81 30.71 29.90 30.20 30.16 22.51 23.16 30.35 30.69 

 
ZnO 21.52 18.43 16.06 16.09 15.73 15.74 15.50 16.10 16.32 16.57 16.39 23.64 23.61 16.11 16.08 

 
BeO 13.60 13.40 13.80 13.40 13.30 12.90 13.70 13.50 14.00 13.20 13.70 13.50 12.50 13.40 12.80 

  Total 98.96 99.93 99.98 99.94 99.98 99.95 99.90 99.96 99.95 99.98 99.95 99.96 99.96 99.99 99.95 
apfu Si 2.93 2.92 2.93 2.93 2.93 2.96 2.92 2.93 2.91 2.95 2.93 2.93 2.99 2.96 3.00 

 
S 1.02 1.05 1.04 1.03 1.05 1.03 1.05 1.04 1.02 1.02 1.02 1.03 1.06 1.04 1.02 

 
Mn 0.49 0.50 0.49 0.49 0.52 0.51 0.50 0.48 0.49 0.50 0.48 0.55 0.56 0.49 0.49 

 
Fe 1.98 2.28 2.39 2.45 2.46 2.50 2.45 2.44 2.37 2.41 2.39 1.80 1.87 2.41 2.45 

 
Zn 1.53 1.30 1.12 1.13 1.11 1.11 1.09 1.13 1.14 1.17 1.15 1.67 1.69 1.13 1.13 

 
Be 3.15 3.08 3.14 3.07 3.05 2.97 3.13 3.09 3.18 3.02 3.12 3.11 2.90 3.06 2.93 
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                  B-0 continued 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
wt. % SiO2 31.30 29.49 29.29 29.75 29.30 29.69 29.50 29.53 29.85 29.83 30.10 29.85 29.87 29.89 31.96 

 
S 5.72 5.89 5.82 5.75 5.86 5.90 5.82 5.85 5.78 5.69 5.63 5.67 5.84 5.73 5.65 

 
MnO 6.35 6.51 6.39 6.48 6.54 6.46 6.44 6.35 6.13 6.53 6.26 6.30 6.39 6.32 6.37 

 
FeO 29.64 27.92 27.66 27.79 27.76 27.64 28.17 27.85 26.98 23.62 27.48 26.01 26.91 27.14 27.22 

 
ZnO 17.01 18.42 18.56 18.87 18.22 18.72 18.10 18.74 18.85 23.17 19.43 20.40 18.91 18.63 18.82 

 
BeO 12.80 14.60 15.10 14.20 15.20 14.50 14.80 14.50 15.20 14.00 13.90 14.50 14.90 15.10 12.80 

  Total 99.96 99.90 99.91 99.96 99.96 99.97 99.93 99.90 99.91 100.00 100.00 99.90 99.91 99.96 99.99 
apfu Si 2.99 2.81 2.78 2.84 2.77 2.82 2.80 2.81 2.81 2.86 2.87 2.84 2.83 2.82 3.04 

 
S 1.02 1.05 1.04 1.03 1.04 1.05 1.03 1.04 1.02 1.02 1.01 1.01 1.04 1.01 1.01 

 
Mn 0.51 0.53 0.51 0.52 0.52 0.52 0.52 0.51 0.49 0.53 0.51 0.51 0.51 0.50 0.51 

 
Fe 2.37 2.22 2.19 2.22 2.20 2.20 2.24 2.22 2.13 1.89 2.19 2.07 2.13 2.14 2.16 

 
Zn 1.20 1.29 1.30 1.33 1.27 1.31 1.27 1.32 1.31 1.64 1.37 1.43 1.32 1.30 1.32 

 
Be 2.94 3.34 3.44 3.25 3.46 3.31 3.38 3.32 3.44 3.22 3.19 3.31 3.39 3.42 2.92 

                     46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
wt. % SiO2 32.13 32.07 32.04 31.91 32.03 32.02 32.31 32.03 32.21 31.95 31.49 31.80 32.19 31.64 31.85 

 
S 5.75 5.64 5.69 5.65 5.69 5.61 5.55 5.70 5.68 5.59 5.63 5.53 5.62 5.50 5.62 

 
MnO 5.81 6.32 6.38 6.87 6.53 6.51 6.03 6.12 6.28 5.61 5.29 5.45 5.84 5.40 5.62 

 
FeO 26.55 26.79 27.49 26.53 25.65 27.80 27.33 26.39 26.55 24.52 23.67 24.42 26.20 23.48 24.23 

 
ZnO 19.89 19.10 18.22 19.55 20.52 18.32 18.98 20.12 19.83 22.41 23.28 22.58 20.65 22.92 22.07 

 
BeO 12.70 12.80 13.00 12.30 12.40 12.50 12.50 12.40 12.20 12.70 13.40 12.90 12.30 13.80 13.40 

  Total 99.96 99.91 99.98 99.99 99.98 99.97 99.94 99.92 99.92 99.98 99.95 99.92 99.99 100.00 99.98 
apfu Si 3.06 3.05 3.04 3.05 3.06 3.05 3.07 3.06 3.08 3.05 3.00 3.03 3.08 2.99 3.02 

 
S 1.03 1.00 1.01 1.01 1.02 1.00 0.99 1.02 1.02 1.00 1.00 0.99 1.01 0.97 1.00 

 
Mn 0.47 0.51 0.51 0.56 0.53 0.53 0.49 0.50 0.51 0.45 0.43 0.44 0.47 0.43 0.45 

 
Fe 2.11 2.13 2.18 2.12 2.05 2.22 2.17 2.11 2.12 1.96 1.88 1.95 2.09 1.86 1.92 

 
Zn 1.40 1.34 1.27 1.38 1.45 1.29 1.33 1.42 1.40 1.58 1.63 1.59 1.46 1.60 1.54 

 
Be 2.90 2.92 2.96 2.83 2.85 2.86 2.86 2.85 2.80 2.91 3.06 2.96 2.82 3.13 3.05 
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 B-0 continued 61 62 63 64 65 66 67 68 69 70 
     wt. % SiO2 31.73 31.68 31.79 32.05 32.12 31.75 32.09 32.07 32.22 32.09 
     

 
S 5.69 5.58 5.67 5.70 5.72 5.73 5.62 5.59 5.96 5.89 

     
 

MnO 5.42 5.52 5.79 6.68 5.53 5.27 6.44 6.72 6.50 5.36 
     

 
FeO 25.20 24.49 26.02 27.32 24.77 23.86 26.05 28.16 27.32 31.08 

     
 

ZnO 22.14 22.43 21.24 18.83 22.20 24.24 19.89 17.42 18.05 15.12 
     

 
BeO 12.60 13.00 12.30 12.20 12.50 12.00 12.70 12.80 12.90 13.30 

       Total 99.94 99.92 99.97 99.93 99.98 100.00 100.00 99.96 99.98 99.91 
     apfu Si 3.04 3.02 3.05 3.07 3.07 3.07 3.05 3.04 3.06 3.03 
     

 
S 1.02 1.00 1.02 1.02 1.02 1.04 1.00 0.99 1.06 1.04 

     
 

Mn 0.44 0.45 0.47 0.54 0.45 0.43 0.52 0.54 0.52 0.43 
     

 
Fe 2.02 1.95 2.09 2.19 1.98 1.93 2.07 2.24 2.17 2.45 

     
 

Zn 1.56 1.58 1.50 1.33 1.57 1.73 1.40 1.22 1.26 1.05 
     

 
Be 2.90 2.98 2.84 2.81 2.87 2.78 2.90 2.92 2.94 3.01 

     
                   B3-1 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 
wt. % SiO2 31.82 31.36 31.49 31.74 31.63 31.62 31.66 31.46 31.74 31.94 31.90 32.10 32.23 32.05 31.25 

 
S 5.64 5.64 5.66 5.62 5.51 5.66 5.71 5.66 5.66 5.60 5.81 5.59 5.63 5.62 5.79 

 
MnO 5.67 4.65 5.22 5.40 4.72 6.03 5.71 5.65 5.54 5.98 6.20 5.94 5.30 5.87 6.51 

 
FeO 24.00 17.58 22.60 22.36 20.70 24.34 23.82 23.65 25.82 25.52 25.52 25.74 25.61 25.26 24.03 

 
ZnO 23.20 31.22 24.51 24.66 27.91 22.92 23.53 23.29 21.63 21.19 21.25 20.90 21.36 21.77 22.41 

 
BeO 12.40 12.30 13.30 13.00 12.20 12.20 12.40 13.10 12.40 12.50 12.20 12.50 12.60 12.20 12.80 

  Total 99.91 99.94 99.97 99.97 99.93 99.94 99.99 99.98 99.95 99.94 99.97 99.98 99.91 99.97 99.91 
apfu Si 3.05 3.04 3.00 3.03 3.06 3.05 3.04 3.00 3.04 3.05 3.06 3.06 3.07 3.07 3.00 

 
S 1.01 1.03 1.01 1.00 1.00 1.02 1.03 1.01 1.02 1.00 1.04 1.00 1.00 1.01 1.04 

 
Mn 0.46 0.38 0.42 0.44 0.39 0.49 0.46 0.46 0.45 0.48 0.50 0.48 0.43 0.48 0.53 

 
Fe 1.93 1.43 1.80 1.79 1.67 1.96 1.91 1.89 2.07 2.04 2.05 2.05 2.04 2.03 1.93 

 
Zn 1.64 2.24 1.72 1.74 1.99 1.63 1.67 1.64 1.53 1.50 1.51 1.47 1.50 1.54 1.59 

 
Be 2.86 2.87 3.05 2.98 2.83 2.82 2.86 3.01 2.86 2.87 2.81 2.87 2.89 2.81 2.95 
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 B3-1 continued 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 
wt. % SiO2 31.75 31.58 31.20 31.28 31.56 31.07 31.62 32.14 31.51 31.70 31.93 32.24 31.32 31.03 31.28 

 
S 5.58 5.61 5.57 5.49 5.48 5.60 5.59 5.60 5.68 5.60 5.61 5.67 5.61 5.65 5.66 

 
MnO 5.84 7.10 3.93 3.96 5.41 4.55 5.50 5.31 6.14 6.85 4.89 5.48 5.44 5.31 5.50 

 
FeO 23.82 22.19 10.59 18.87 22.99 15.45 23.10 22.64 13.59 20.42 20.87 22.69 21.45 11.69 21.73 

 
ZnO 23.29 23.82 39.02 30.60 23.94 33.74 24.74 25.03 33.25 25.25 26.88 24.43 25.57 36.75 25.20 

 
BeO 12.50 12.50 12.40 12.50 13.30 12.30 12.20 12.00 12.60 12.90 12.60 12.30 13.40 12.30 13.40 

  Total 99.99 100.00 99.93 99.96 99.94 99.92 99.96 99.93 99.94 99.93 99.98 99.98 99.99 99.91 99.95 
apfu Si 3.04 3.03 3.05 3.03 3.00 3.03 3.05 3.09 3.05 3.03 3.06 3.09 2.99 3.03 2.99 

 
S 1.00 1.01 1.02 1.00 0.98 1.02 1.01 1.01 1.03 1.00 1.01 1.02 1.00 1.04 1.01 

 
Mn 0.47 0.58 0.32 0.32 0.44 0.38 0.45 0.43 0.50 0.56 0.40 0.44 0.44 0.44 0.44 

 
Fe 1.91 1.78 0.86 1.53 1.83 1.26 1.86 1.82 1.10 1.63 1.67 1.82 1.71 0.96 1.73 

 
Zn 1.65 1.69 2.81 2.19 1.68 2.43 1.76 1.78 2.37 1.78 1.90 1.73 1.80 2.65 1.78 

 
Be 2.88 2.88 2.91 2.91 3.04 2.88 2.83 2.78 2.93 2.96 2.90 2.83 3.07 2.89 3.07 

                     101 102 103 104 105 106 107 
        Wt. % SiO2 31.57 31.68 31.66 31.90 31.04 31.93 31.71 
        

 
S 5.73 5.70 5.58 5.73 5.71 5.80 5.71 

        
 

MnO 5.14 5.35 7.78 5.45 5.70 5.49 5.14 
        

 
FeO 21.64 21.55 16.77 22.41 11.93 22.65 13.26 

        
 

ZnO 26.03 25.25 28.90 24.83 36.11 25.04 35.71 
        

 
BeO 12.70 13.30 12.00 12.50 12.30 11.90 11.30 

        
 

Total 99.95 99.99 99.91 99.95 99.94 99.91 99.97 
        apfu Si 3.03 3.02 3.07 3.06 3.03 3.09 3.11 
        

 
S 1.03 1.02 1.01 1.03 1.05 1.05 1.05 

        
 

Mn 0.42 0.43 0.64 0.44 0.47 0.45 0.43 
        

 
Fe 1.74 1.72 1.36 1.80 0.97 1.83 1.09 

        
 

Zn 1.85 1.78 2.07 1.76 2.60 1.79 2.59 
        

 
Be 2.93 3.04 2.79 2.88 2.89 2.76 2.67 

        



 

77 
 

                   B5-1 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 
wt. % SiO2 32.42 32.51 32.19 32.22 32.33 32.22 32.28 32.38 32.51 32.37 32.53 32.39 32.56 32.30 32.43 

 
S 5.88 5.76 5.73 5.84 5.80 5.77 5.86 5.75 5.78 5.86 5.75 5.82 5.79 5.77 5.77 

 
MnO 5.67 5.36 5.22 5.38 5.51 5.73 5.67 5.49 5.52 5.36 5.53 5.47 5.62 5.58 5.53 

 
FeO 34.89 34.63 33.98 33.70 35.02 34.91 35.64 34.30 33.61 33.96 35.61 34.77 35.31 34.82 34.38 

 
ZnO 11.47 11.74 13.16 13.07 11.53 11.78 10.33 11.62 13.25 13.06 10.97 11.07 10.51 11.34 12.29 

 
BeO 12.60 12.80 12.50 12.70 12.70 12.40 13.10 13.30 12.20 12.30 12.40 13.30 13.00 13.00 12.40 

  Total 100.00 99.93 99.92 100.00 99.99 99.93 99.95 99.97 99.99 99.98 99.92 99.91 99.90 99.93 99.92 
apfu Si 3.06 3.06 3.06 3.05 3.05 3.06 3.04 3.04 3.09 3.07 3.08 3.04 3.06 3.04 3.07 

 
S 1.04 1.02 1.02 1.04 1.03 1.03 1.03 1.01 1.03 1.04 1.02 1.02 1.02 1.02 1.02 

 
Mn 0.45 0.43 0.42 0.43 0.44 0.46 0.45 0.44 0.44 0.43 0.44 0.43 0.45 0.44 0.44 

 
Fe 2.76 2.73 2.70 2.67 2.77 2.77 2.80 2.69 2.67 2.70 2.82 2.73 2.77 2.74 2.72 

 
Zn 0.80 0.82 0.92 0.91 0.80 0.83 0.72 0.80 0.93 0.92 0.77 0.77 0.73 0.79 0.86 

 
Be 2.86 2.90 2.85 2.89 2.88 2.83 2.96 3.00 2.78 2.81 2.82 3.00 2.93 2.94 2.82 

    123 124 125 126 127 128 129 130 131 132 133 134 135 
  wt. % SiO2 31.86 31.74 31.87 32.21 32.17 31.93 32.36 32.03 32.13 32.26 32.55 32.35 32.35 
  

 
S 5.81 5.71 5.61 5.74 5.79 5.82 5.76 5.76 5.78 5.77 5.74 5.79 5.74 

  
 

MnO 5.85 5.83 5.81 5.83 5.80 6.10 5.83 5.87 6.17 5.82 5.72 5.91 5.60 
  

 
FeO 35.48 33.69 35.53 35.34 33.67 27.30 30.75 35.61 33.72 36.58 36.21 36.89 36.95 

  
 

ZnO 10.86 12.66 10.66 11.39 12.36 19.17 15.39 10.06 12.56 9.59 9.85 8.97 9.24 
  

 
BeO 13.00 13.20 13.30 12.30 13.00 12.50 12.70 13.50 12.50 12.80 12.70 12.90 12.90 

    Total 99.96 99.98 99.97 99.94 99.91 99.92 99.93 99.95 99.97 99.94 99.91 99.91 99.92 
  apfu Si 3.01 3.00 3.00 3.06 3.04 3.05 3.07 3.00 3.05 3.04 3.07 3.04 3.04 
  

 
S 1.03 1.01 0.99 1.02 1.02 1.04 1.02 1.01 1.03 1.02 1.01 1.02 1.01 

  
 

Mn 0.47 0.47 0.46 0.47 0.46 0.49 0.47 0.47 0.50 0.46 0.46 0.47 0.45 
  

 
Fe 2.80 2.66 2.80 2.81 2.66 2.18 2.44 2.79 2.68 2.88 2.85 2.90 2.91 

  
 

Zn 0.76 0.88 0.74 0.80 0.86 1.35 1.08 0.70 0.88 0.67 0.68 0.62 0.64 
  

 
Be 2.95 2.99 3.01 2.81 2.95 2.87 2.89 3.04 2.85 2.90 2.87 2.92 2.92 
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  B5-2 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 
wt. % SiO2 31.90 31.76 31.81 32.35 32.40 32.20 32.48 31.89 32.10 32.33 32.31 31.48 31.92 32.25 31.93 

 
S 5.87 5.95 5.88 5.78 5.92 5.85 5.85 5.87 5.85 5.86 5.77 5.69 5.82 5.92 5.92 

 
MnO 6.57 6.84 6.07 7.12 6.64 8.15 5.64 5.97 5.72 5.56 8.17 5.59 5.66 5.56 5.45 

 
FeO 28.23 30.40 31.24 25.53 27.29 22.18 30.03 29.74 30.15 29.93 21.49 30.45 28.60 30.88 30.77 

 
ZnO 18.51 15.28 15.61 20.61 18.67 22.36 16.66 17.18 16.25 16.72 23.66 15.61 18.66 16.36 16.12 

 
BeO 11.80 12.70 12.30 11.40 12.00 12.10 12.20 12.20 12.80 12.50 11.40 14.00 12.20 11.90 12.70 

  Total 99.94 99.97 99.96 99.91 99.97 99.93 99.94 99.92 99.95 99.97 99.93 99.98 99.95 99.91 99.93 
apfu Si 3.07 3.02 3.04 3.12 3.10 3.09 3.09 3.05 3.05 3.07 3.13 2.96 3.06 3.09 3.04 

 
S 1.06 1.06 1.05 1.05 1.06 1.05 1.04 1.05 1.04 1.04 1.05 1.00 1.04 1.06 1.05 

 
Mn 0.54 0.55 0.49 0.58 0.54 0.66 0.46 0.48 0.46 0.45 0.67 0.45 0.46 0.45 0.44 

 
Fe 2.27 2.42 2.50 2.06 2.18 1.78 2.39 2.38 2.39 2.38 1.74 2.39 2.29 2.47 2.45 

 
Zn 1.32 1.07 1.10 1.47 1.32 1.58 1.17 1.21 1.14 1.17 1.69 1.08 1.32 1.16 1.13 

 
Be 2.73 2.91 2.83 2.64 2.76 2.79 2.79 2.81 2.92 2.85 2.65 3.16 2.81 2.74 2.90 

    151 152 153 154 155 156 157 158 159 160 
     wt. % SiO2 31.93 31.96 32.02 31.97 32.31 32.59 31.32 31.57 31.49 32.06 
     

 
S 5.87 5.74 5.86 5.79 5.77 5.87 5.85 5.81 5.76 5.77 

     
 

MnO 5.67 6.50 5.71 7.55 8.14 6.87 6.27 5.82 7.38 6.31 
     

 
FeO 30.51 26.11 30.56 19.82 22.69 28.51 27.04 28.22 21.19 27.02 

     
 

ZnO 17.01 19.70 16.13 25.93 22.26 17.37 19.97 18.35 24.74 19.07 
     

 
BeO 11.90 12.80 12.60 11.80 11.70 11.70 12.40 13.10 12.30 12.60 

       Total 99.96 99.95 99.96 99.98 99.99 99.98 99.93 99.97 99.98 99.95 
     apfu Si 3.07 3.04 3.05 3.09 3.11 3.12 3.01 3.00 3.04 3.06 
     

 
S 1.06 1.02 1.05 1.05 1.04 1.05 1.05 1.04 1.04 1.03 

     
 

Mn 0.46 0.52 0.46 0.62 0.66 0.56 0.51 0.47 0.60 0.51 
     

 
Fe 2.45 2.08 2.43 1.60 1.83 2.28 2.18 2.24 1.71 2.15 

     
 

Zn 1.21 1.38 1.13 1.85 1.58 1.23 1.42 1.29 1.76 1.34 
     

 
Be 2.75 2.93 2.88 2.74 2.71 2.69 2.87 2.99 2.85 2.88 
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  B11-1 161 162 163 164 165 166 B12-1 167 168 169 170 171 172 173 
 wt. % SiO2 31.75 31.83 32.01 32.51 31.71 31.46 SiO2 32.15 32.11 31.90 32.37 32.40 32.46 32.55 
 

 
S 5.66 5.75 5.77 5.59 5.62 5.54 S 5.61 5.59 5.58 5.75 5.73 5.63 5.73 

 
 

MnO 6.79 6.84 6.03 6.34 6.51 5.28 MnO 12.19 4.16 3.92 6.94 6.89 7.27 6.98 
 

 
FeO 20.69 22.10 26.32 27.71 21.23 12.12 FeO 20.08 30.06 29.42 34.27 35.68 34.98 34.70 

 
 

ZnO 25.65 24.38 19.35 18.51 25.31 36.26 ZnO 20.61 18.51 19.38 10.47 8.92 9.71 10.00 
 

 
BeO 12.20 11.90 13.40 12.10 12.40 12.10 BeO 12.10 12.30 12.50 13.00 13.20 12.70 12.90 

   Total 99.91 99.94 100.00 99.97 99.98 99.98 Total 99.93 99.94 99.91 99.93 99.97 99.94 100.00 
 apfu Si 3.06 3.08 3.02 3.10 3.05 3.07 Si 3.08 3.07 3.05 3.04 3.04 3.06 3.06 
 

 
S 1.02 1.04 1.02 1.00 1.01 1.01 S 1.01 1.00 1.00 1.01 1.01 0.99 1.01 

 
 

Mn 0.55 0.56 0.48 0.51 0.53 0.44 Mn 0.99 0.34 0.32 0.55 0.55 0.58 0.56 
 

 
Fe 1.67 1.79 2.08 2.21 1.71 0.99 Fe 1.61 2.40 2.35 2.70 2.80 2.76 2.73 

 
 

Zn 1.83 1.74 1.35 1.30 1.80 2.61 Zn 1.46 1.30 1.37 0.73 0.62 0.68 0.69 
 

 
Be 2.83 2.76 3.04 2.77 2.86 2.83 Be 2.78 2.82 2.87 2.94 2.97 2.87 2.91 

                  
  B14-1 174 175 176 177 178 179 

         Wt. % SiO2 32.20 32.04 32.35 32.59 31.89 32.21 
         

 
S 5.90 5.98 5.92 5.77 5.84 6.02 

         
 

MnO 6.59 6.59 6.70 6.77 7.77 6.59 
         

 
FeO 39.09 33.88 36.15 37.90 30.20 38.02 

         
 

ZnO 6.26 11.70 8.60 7.09 14.65 7.56 
         

 
BeO 12.90 12.70 13.20 12.70 12.50 12.60 

           Total 99.99 99.90 99.97 99.93 99.94 100.00 
         apfu Si 3.03 3.04 3.03 3.06 3.04 3.04 
         

 
S 1.04 1.06 1.04 1.02 1.04 1.07 

         
 

Mn 0.52 0.53 0.53 0.54 0.63 0.53 
         

 
Fe 3.07 2.69 2.83 2.98 2.41 3.00 

         
 

Zn 0.43 0.82 0.59 0.49 1.03 0.53 
         

 
Be 2.91 2.89 2.97 2.87 2.86 2.86 
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Gadolinite-(Y) 
 

  B-0  B3-2 
  

 
1 2 3 4 

 
5 6 

wt. % CaO 5.56 6.29 5.26 6.50 
 

3.78 5.13 

 
SiO2 24.70 25.27 24.48 25.06 

 
24.83 25.00 

 
FeO 9.93 9.48 10.00 9.57 

 
10.65 11.17 

 
MnO 0.19 0.23 0.17 0.19 

 
0.34 0.27 

 
BeO 10.30 10.50 10.10 10.40 

 
10.30 10.40 

 
Y2O3 19.91 19.72 17.72 18.31 

 
30.03 25.56 

 
La2O3 1.71 2.01 2.52 2.20 

 
0.65 1.42 

 
Ce2O3 6.71 7.11 8.13 7.28 

 
2.39 3.23 

 
Dy2O3 2.26 2.27 2.09 2.24 

 
2.90 2.63 

 
Gd2O3 1.23 1.37 1.20 1.16 

 
1.50 1.35 

 
Yb2O3 3.27 3.20 3.79 3.65 

 
2.21 2.58 

 
ThO2 4.91 3.95 5.52 3.64 

 
2.90 4.30 

 
Pr2O3 0.60 0.66 0.58 0.65 

 
0.29 0.31 

 
Nd2O3 1.45 1.35 1.45 1.32 

 
0.94 0.42 

 
Tb2O3 0.08 0.05 0.06 0.08 

 
0.18 0.13 

 
Er2O3 2.33 2.31 2.61 2.58 

 
2.15 2.54 

  Total 95.13 95.78 95.69 94.82   96.03 96.47 

apfu Ca 0.51 0.57 0.49 0.59 
 

0.34 0.46 

 
Si 2.12 2.13 2.12 2.14 

 
2.08 2.09 

 
Fe 0.71 0.67 0.72 0.68 

 
0.74 0.78 

 
Mn 0.01 0.02 0.01 0.01 

 
0.02 0.02 

 
Be 2.12 2.13 2.10 2.13 

 
2.07 2.09 

 
Y 0.91 0.88 0.82 0.83 

 
1.34 1.14 

 
La 0.05 0.06 0.08 0.07 

 
0.02 0.04 

 
Ce 0.21 0.22 0.26 0.23 

 
0.07 0.10 

 
Dy 0.06 0.06 0.06 0.06 

 
0.08 0.07 

 
Gd 0.03 0.04 0.03 0.03 

 
0.04 0.04 

 
Yb 0.09 0.08 0.10 0.09 

 
0.06 0.07 

 
Th 0.10 0.08 0.11 0.07 

 
0.06 0.08 

 
Pr 0.02 0.02 0.02 0.02 

 
0.01 0.01 

 
Nd 0.04 0.04 0.04 0.04 

 
0.03 0.01 

 
Tb 0.00 0.00 0.00 0.00 

 
0.00 0.00 

 
Er 0.06 0.06 0.07 0.07 

 
0.06 0.07 
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B5-1 

 
  1 2 3 4 5 6 7 8 

wt. % CaO 2.80 2.46 2.39 1.93 5.37 7.04 8.08 7.62 

 
SiO2 24.47 24.00 24.04 23.47 25.36 25.29 25.97 25.50 

 
FeO 9.96 10.32 10.36 10.74 10.12 9.76 9.18 9.69 

 
MnO 0.42 0.38 0.40 0.32 0.39 0.21 0.23 0.26 

 
BeO 10.20 10.00 10.00 9.70 10.50 10.50 10.80 10.70 

 
Y2O3 27.17 26.53 26.52 24.50 27.86 20.96 19.47 19.28 

 
La2O3 0.50 0.56 0.53 0.45 0.70 1.53 2.33 1.97 

 
Ce2O3 2.97 2.98 3.02 2.80 2.15 2.90 4.32 3.23 

 
Dy2O3 4.97 5.23 5.22 6.86 2.52 2.96 2.59 2.77 

 
Gd2O3 2.86 2.76 3.04 3.40 1.42 1.67 1.39 1.47 

 
Yb2O3 2.28 2.67 2.35 3.07 2.91 3.11 2.97 2.99 

 
ThO2 1.62 2.17 2.50 1.78 2.74 5.30 3.66 5.88 

 
Pr2O3 0.38 0.45 0.42 0.44 0.18 0.24 0.30 0.25 

 
Nd2O3 1.47 1.40 1.49 1.19 0.48 0.73 0.85 0.68 

 
Tb2O3 0.49 0.49 0.43 0.67 0.17 0.12 0.17 0.20 

 
Er2O3 3.19 3.12 3.09 3.97 2.44 2.76 2.45 2.46 

  Total 95.75 95.52 95.80 95.29 95.32 95.09 94.75 94.95 

apfu Ca 0.26 0.23 0.22 0.18 0.48 0.64 0.72 0.68 

 
Si 2.09 2.08 2.08 2.07 2.11 2.13 2.16 2.14 

 
Fe 0.71 0.75 0.75 0.79 0.70 0.69 0.64 0.68 

 
Mn 0.03 0.03 0.03 0.02 0.03 0.02 0.02 0.02 

 
Be 2.09 2.08 2.08 2.06 2.10 2.12 2.15 2.15 

 
Y 1.24 1.22 1.22 1.15 1.23 0.94 0.86 0.86 

 
La 0.02 0.02 0.02 0.01 0.02 0.05 0.07 0.06 

 
Ce 0.09 0.09 0.10 0.09 0.07 0.09 0.13 0.10 

 
Dy 0.14 0.15 0.15 0.20 0.07 0.08 0.07 0.07 

 
Gd 0.08 0.08 0.09 0.10 0.04 0.05 0.04 0.04 

 
Yb 0.06 0.07 0.06 0.08 0.07 0.08 0.08 0.08 

 
Th 0.03 0.04 0.05 0.04 0.05 0.10 0.07 0.11 

 
Pr 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 
Nd 0.04 0.04 0.05 0.04 0.01 0.02 0.03 0.02 

 
Tb 0.01 0.01 0.01 0.02 0.00 0.00 0.00 0.01 

 
Er 0.09 0.08 0.08 0.11 0.06 0.07 0.06 0.06 
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 B11-1 

  
9 10 11 12 13 

wt. % CaO 9.96 9.16 9.45 9.25 10.51 

 
SiO2 26.67 26.22 26.35 25.97 26.68 

 
FeO 9.49 9.56 9.42 9.61 9.20 

 
MnO 0.27 0.24 0.26 0.23 0.26 

 
BeO 11.10 10.90 10.90 10.80 11.10 

 
Y2O3 20.16 20.97 20.01 20.08 19.67 

 
La2O3 0.62 0.59 0.64 0.43 0.58 

 
Ce2O3 1.11 1.13 1.24 0.93 1.14 

 
Dy2O3 3.03 3.06 3.09 3.15 2.86 

 
Gd2O3 1.60 1.66 1.58 1.72 1.57 

 
Yb2O3 3.08 3.10 2.78 2.91 2.76 

 
ThO2 3.86 3.99 4.97 5.66 3.96 

 
Pr2O3 0.15 0.08 0.08 0.14 0.18 

 
Nd2O3 0.46 0.50 0.47 0.40 0.40 

 
Tb2O3 0.26 0.24 0.27 0.22 0.23 

 
Er2O3 2.61 2.69 2.67 2.57 2.57 

  Total 94.43 94.07 94.17 94.05 93.66 

apfu Ca 0.87 0.81 0.83 0.82 0.92 

 
Si 2.17 2.16 2.17 2.15 2.17 

 
Fe 0.64 0.66 0.65 0.67 0.63 

 
Mn 0.02 0.02 0.02 0.02 0.02 

 
Be 2.17 2.15 2.15 2.15 2.17 

 
Y 0.87 0.92 0.88 0.89 0.85 

 
La 0.02 0.02 0.02 0.01 0.02 

 
Ce 0.03 0.03 0.04 0.03 0.03 

 
Dy 0.08 0.08 0.08 0.08 0.08 

 
Gd 0.04 0.05 0.04 0.05 0.04 

 
Yb 0.08 0.08 0.07 0.07 0.07 

 
Th 0.07 0.07 0.09 0.11 0.07 

 
Pr 0.00 0.00 0.00 0.00 0.01 

 
Nd 0.01 0.01 0.01 0.01 0.01 

 
Tb 0.01 0.01 0.01 0.01 0.01 

 
Er 0.07 0.07 0.07 0.07 0.07 
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 B11-1 continued 

  
14 15 16 17 18 

wt. % CaO 9.16 8.91 7.71 7.97 7.09 

 
SiO2 25.81 26.23 25.66 25.93 25.05 

 
FeO 9.70 9.48 9.45 9.69 9.67 

 
MnO 0.25 0.27 0.24 0.22 0.22 

 
BeO 10.70 10.90 10.50 10.80 10.40 

 
Y2O3 20.42 20.11 20.88 20.38 18.22 

 
La2O3 0.49 0.88 1.79 1.39 3.17 

 
Ce2O3 0.98 1.65 3.30 2.31 5.30 

 
Dy2O3 3.15 3.19 2.80 2.91 2.44 

 
Gd2O3 1.57 1.65 1.52 1.47 1.32 

 
Yb2O3 2.99 2.81 2.93 2.99 2.69 

 
ThO2 5.52 4.99 4.07 5.28 6.01 

 
Pr2O3 0.10 0.20 0.28 0.26 0.27 

 
Nd2O3 0.37 0.59 0.61 0.48 0.75 

 
Tb2O3 0.18 0.30 0.25 0.20 0.08 

 
Er2O3 2.62 2.60 2.54 2.53 2.32 

  Total 94.01 94.76 94.52 94.81 95.00 

apfu Ca 0.82 0.79 0.69 0.71 0.65 

 
Si 2.15 2.16 2.15 2.15 2.13 

 
Fe 0.67 0.65 0.66 0.67 0.69 

 
Mn 0.02 0.02 0.02 0.02 0.02 

 
Be 2.14 2.15 2.11 2.15 2.12 

 
Y 0.90 0.88 0.93 0.90 0.82 

 
La 0.02 0.03 0.06 0.04 0.10 

 
Ce 0.03 0.05 0.10 0.07 0.16 

 
Dy 0.08 0.08 0.08 0.08 0.07 

 
Gd 0.04 0.05 0.04 0.04 0.04 

 
Yb 0.08 0.07 0.07 0.08 0.07 

 
Th 0.10 0.09 0.08 0.10 0.12 

 
Pr 0.00 0.01 0.01 0.01 0.01 

 
Nd 0.01 0.02 0.02 0.01 0.02 

 
Tb 0.01 0.01 0.01 0.01 0.00 

 
Er 0.07 0.07 0.07 0.07 0.06 
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B16-1 

 
  19 20 21 22 23 24 25 

wt. % CaO 1.23 2.40 1.36 1.83 3.30 2.34 1.74 

 
SiO2 22.70 24.03 22.99 23.51 24.93 23.62 23.25 

 
FeO 9.95 11.24 11.05 11.22 10.17 10.45 10.50 

 
MnO 0.33 0.25 0.31 0.30 0.46 0.35 0.35 

 
BeO 9.40 10.00 9.60 9.80 10.30 9.80 9.60 

 
Y2O3 21.08 28.45 24.83 27.63 30.17 24.94 24.87 

 
La2O3 0.67 0.84 0.69 0.77 0.80 0.64 0.56 

 
Ce2O3 3.90 3.82 3.74 3.37 2.52 2.78 3.18 

 
Dy2O3 8.68 4.09 5.29 3.97 2.94 5.54 6.11 

 
Gd2O3 4.43 2.03 2.74 2.25 1.63 2.71 3.24 

 
Yb2O3 2.37 1.66 3.48 3.25 2.99 3.55 3.53 

 
ThO2 2.06 3.38 3.45 3.09 1.73 2.46 1.84 

 
Pr2O3 0.62 0.44 0.45 0.29 0.21 0.25 0.39 

 
Nd2O3 1.89 1.29 1.27 0.92 0.40 0.79 1.19 

 
Tb2O3 0.96 0.32 0.42 0.28 0.16 0.49 0.64 

 
Er2O3 4.06 2.37 3.91 3.29 2.72 4.18 4.27 

  Total 94.33 96.62 95.59 95.77 95.42 94.90 95.25 

apfu Ca 0.12 0.22 0.13 0.17 0.30 0.22 0.17 

 
Si 2.07 2.05 2.05 2.05 2.09 2.08 2.06 

 
Fe 0.76 0.80 0.82 0.82 0.71 0.77 0.78 

 
Mn 0.03 0.02 0.02 0.02 0.03 0.03 0.03 

 
Be 2.06 2.05 2.05 2.05 2.08 2.07 2.05 

 
Y 1.03 1.29 1.18 1.28 1.35 1.17 1.18 

 
La 0.02 0.03 0.02 0.02 0.02 0.02 0.02 

 
Ce 0.13 0.12 0.12 0.11 0.08 0.09 0.10 

 
Dy 0.26 0.11 0.15 0.11 0.08 0.16 0.17 

 
Gd 0.13 0.06 0.08 0.07 0.05 0.08 0.10 

 
Yb 0.07 0.04 0.09 0.09 0.08 0.10 0.10 

 
Th 0.04 0.07 0.07 0.06 0.03 0.05 0.04 

 
Pr 0.02 0.01 0.01 0.01 0.01 0.01 0.01 

 
Nd 0.06 0.04 0.04 0.03 0.01 0.02 0.04 

 
Tb 0.03 0.01 0.01 0.01 0.00 0.01 0.02 

 
Er 0.12 0.06 0.11 0.09 0.07 0.12 0.12 
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  B16-1 continued 
    26 27 28 29 30 31 

wt. % CaO 1.35 0.90 2.42 1.39 2.18 3.16 

 
SiO2 22.96 22.45 24.12 23.07 23.51 24.28 

 
FeO 10.31 10.85 11.32 10.24 11.02 10.24 

 
MnO 0.40 0.32 0.23 0.41 0.35 0.41 

 
BeO 9.50 9.30 10.00 9.60 9.80 10.10 

 
Y2O3 23.69 21.51 27.67 23.97 25.87 26.70 

 
La2O3 0.44 0.49 0.78 0.47 0.54 0.57 

 
Ce2O3 2.99 3.05 3.72 3.04 2.29 2.10 

 
Dy2O3 6.83 8.37 3.98 6.58 5.13 4.84 

 
Gd2O3 3.54 4.29 2.11 3.70 2.62 2.36 

 
Yb2O3 3.30 2.77 1.60 3.17 3.74 3.76 

 
ThO2 1.60 2.89 3.44 1.71 3.08 1.76 

 
Pr2O3 0.46 0.49 0.48 0.50 0.28 0.17 

 
Nd2O3 1.53 1.57 1.23 1.68 0.69 0.62 

 
Tb2O3 0.63 0.85 0.36 0.69 0.42 0.41 

 
Er2O3 4.56 4.57 2.45 4.64 4.19 3.91 

  Total 94.09 94.67 95.93 94.86 95.70 95.38 

apfu Ca 0.13 0.09 0.22 0.13 0.20 0.29 

 
Si 2.07 2.06 2.07 2.07 2.06 2.09 

 
Fe 0.78 0.83 0.81 0.77 0.81 0.74 

 
Mn 0.03 0.02 0.02 0.03 0.03 0.03 

 
Be 2.06 2.05 2.06 2.07 2.06 2.08 

 
Y 1.14 1.05 1.26 1.14 1.21 1.22 

 
La 0.01 0.02 0.02 0.02 0.02 0.02 

 
Ce 0.10 0.10 0.12 0.10 0.07 0.07 

 
Dy 0.20 0.25 0.11 0.19 0.14 0.13 

 
Gd 0.11 0.13 0.06 0.11 0.08 0.07 

 
Yb 0.09 0.08 0.04 0.09 0.10 0.10 

 
Th 0.03 0.06 0.07 0.03 0.06 0.03 

 
Pr 0.02 0.02 0.02 0.02 0.01 0.01 

 
Nd 0.05 0.05 0.04 0.05 0.02 0.02 

 
Tb 0.02 0.03 0.01 0.02 0.01 0.01 

 
Er 0.13 0.13 0.07 0.13 0.12 0.11 
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  B3-1 

  
32 33 34 35 36 37 38 39 40 

wt. % CaO 2.61 1.51 0.68 3.11 1.93 3.94 3.26 1.79 2.88 

 
SiO2 24.26 23.08 22.48 24.64 23.70 24.76 24.85 23.37 24.47 

 
FeO 11.01 10.05 11.13 10.99 10.85 10.44 10.95 10.39 10.61 

 
MnO 0.32 0.36 0.32 0.34 0.35 0.36 0.36 0.36 0.37 

 
BeO 10.10 9.60 9.30 10.20 9.90 10.30 10.30 9.70 10.20 

 
Y2O3 30.12 23.13 22.37 30.29 27.94 27.65 30.74 24.34 30.62 

 
La2O3 0.86 0.75 0.50 0.89 0.66 0.67 0.86 0.55 0.68 

 
Ce2O3 3.17 4.34 3.49 2.75 3.42 2.28 2.98 3.26 2.79 

 
Dy2O3 2.88 7.32 9.16 2.62 4.45 4.03 2.75 6.50 3.27 

 
Gd2O3 1.49 3.31 4.31 1.37 2.22 1.94 1.38 3.22 1.65 

 
Yb2O3 2.38 2.39 2.31 2.35 2.53 3.16 2.38 2.91 2.57 

 
ThO2 3.14 1.84 1.51 3.28 2.96 1.89 1.89 3.00 1.66 

 
Pr2O3 0.24 0.45 0.54 0.34 0.43 0.26 0.35 0.50 0.34 

 
Nd2O3 0.65 1.82 1.96 0.54 1.16 0.70 0.66 1.48 0.66 

 
Tb2O3 0.24 0.79 1.07 0.19 0.35 0.31 0.25 0.69 0.24 

 
Er2O3 2.34 3.96 4.24 2.27 2.87 3.06 2.35 3.64 2.61 

  Total 95.80 94.70 95.38 96.16 95.73 95.76 96.32 95.70 95.60 

apfu Ca 0.24 0.15 0.07 0.28 0.18 0.36 0.29 0.17 0.26 

 
Si 2.06 2.07 2.05 2.07 2.06 2.09 2.07 2.07 2.07 

 
Fe 0.78 0.75 0.85 0.77 0.79 0.74 0.76 0.77 0.75 

 
Mn 0.02 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03 

 
Be 2.06 2.07 2.03 2.06 2.06 2.09 2.07 2.06 2.07 

 
Y 1.36 1.10 1.08 1.36 1.29 1.24 1.37 1.15 1.38 

 
La 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 

 
Ce 0.10 0.14 0.12 0.08 0.11 0.07 0.09 0.11 0.09 

 
Dy 0.08 0.21 0.27 0.07 0.12 0.11 0.07 0.19 0.09 

 
Gd 0.04 0.10 0.13 0.04 0.06 0.05 0.04 0.09 0.05 

 
Yb 0.06 0.07 0.06 0.06 0.07 0.08 0.06 0.08 0.07 

 
Th 0.06 0.04 0.03 0.06 0.06 0.04 0.04 0.06 0.03 

 
Pr 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 

 
Nd 0.02 0.06 0.06 0.02 0.04 0.02 0.02 0.05 0.02 

 
Tb 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.02 0.01 

 
Er 0.06 0.11 0.12 0.06 0.08 0.08 0.06 0.10 0.07 
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Cassiterite and Nordenskiöldine 
 

  Cassiterite 
    1 2 3 4 5 
wt. % CaO 0.27 0.20 0.45 0.23 0.23 

 
SnO2 97.22 97.12 97.34 95.40 97.77 

 
Total 97.49 97.32 97.78 95.63 98.00 

              

apfu CaO 0.01 0.01 0.01 0.01 0.01 

 
SnO2 1.00 1.00 0.99 1.00 1.00 

 
sum 1.00 1.00 1.01 1.00 1.00 

 

 

  Nordenskiöldine 

  
1 2 3 4 5 6 7 8 9 10 

wt. % CaO 19.68 19.33 19.53 20.05 19.98 19.67 20.00 19.85 20.27 20.59 

 
SnO2 53.49 54.73 54.09 53.89 53.44 53.58 54.78 54.88 54.80 53.67 

 
B2O3 26.80 25.90 26.30 26.00 26.50 26.70 25.20 25.20 24.90 25.70 

 
Total 99.97 99.96 99.92 99.94 99.92 99.95 99.98 99.93 99.97 99.97 

apfu CaO 0.95 0.95 0.95 0.98 0.97 0.95 0.99 0.98 1.00 1.01 

 
SnO2 0.96 1.00 0.98 0.98 0.96 0.96 1.01 1.01 1.01 0.98 

 
B2O3 2.08 2.04 2.06 2.04 2.07 2.08 2.00 2.00 1.99 2.03 

 
Total 4.00 3.98 3.99 4.00 4.00 4.00 3.99 3.99 4.00 4.01 
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Appendix 2: Major- and trace-elements 
 

Major elements 
Wt. % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
SiO2 73.2 71.56 57.42 59.84 72.26 72.36 74.7 72.31 73.77 70.3 74.23 64.14 73.79 76.95 74.24 
Al2O3 11.47 14.2 18.07 17.65 13.15 12.45 12.1 12.5 13.77 14.18 9.96 16.04 13.3 12.57 11.43 
Fe2O3(T) 2.1 0.94 7.96 9.8 1.29 1.36 0.74 1.32 0.89 0.85 4.27 2.42 2.5 1.14 3.46 
MnO 0.24 0.076 0.101 0.081 0.158 0.143 0.097 0.111 0.094 0.072 0.216 0.158 0.115 0.017 0.221 
MgO 0.02 0.04 3.96 4.81 0.03 0.05 0.02 0.03 0.02 0.03 0.07 0.14 0.08 < 0.01 0.07 
CaO 0.39 0.71 1.37 0.55 0.48 0.55 0.18 0.28 0.37 0.53 0.1 2.2 0.08 0.02 0.11 
Na2O 2.22 3 5.25 1.85 2.56 2.67 2.31 2.31 2.77 2.73 4.41 7.14 4.84 3.99 4.44 
K2O 6.87 8.22 1.41 2.95 7.5 6.96 7.12 7.56 7.73 8.22 4.36 4.01 5.45 5.52 4.44 
TiO2 0.119 0.056 0.946 0.995 0.08 0.102 0.109 0.07 0.118 0.067 0.148 0.568 0.086 0.015 0.159 
P2O5 0.03 0.02 0.07 0.05 0.02 0.03 0.01 0.03 0.01 0.03 < 0.01 0.06 < 0.01 < 0.01 < 0.01 
LOI 0.02 0.27 3.27 1.5 0.17 0.13 0.14 0.01 0.21 0.2 0.14 2.18 0.22 0.16 0.15 
Total 96.68 99.09 99.83 100.1 97.7 96.8 97.53 96.53 99.77 97.2 97.91 99.06 100.4 100.4 98.73 
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Trace elements 
ppm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Sc 2 1 27 30 1 1 2 1 1 < 1 4 3 2 < 1 1 
Be 7507 2036 10 5 6025 4126 1194 3510 1495 1143 17 10 10 14 12 
V 6 6 184 196 6 6 6 6 6 < 5 7 16 7 5 6 
Ba 352 453 165 510 448 343 328 361 372 467 18 172 13 14 11 
Sr 75 90 131 119 89 76 63 74 85 93 2 50 3 3 4 
Y 606 377 16 22 634 634 310 490 447 253 36 95 27 37 20 
Zr 1953 3456 151 154 3496 5984 3144 2998 2564 3381 587 1371 537 244 549 
Cr 230 230 210 280 190 170 220 200 220 180 170 40 230 260 220 
Co 1 < 1 19 31 2 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 1 < 1 
Ni < 20 < 20 90 110 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 
Cu < 10 < 10 20 40 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 
Zn 3470 1930 50 100 3360 2880 1980 1570 1700 1940 380 150 110 60 260 
Ga 49 58 22 21 51 59 56 57 61 59 39 33 39 36 39 
Ge 13 11 3 3 12 11 9 12 12 13 5 2 3 2 4 
As 486 520 28 < 5 305 632 10 495 435 227 < 5 < 5 < 5 < 5 < 5 
Rb > 1000 > 1000 162 418 > 1000 > 1000 > 1000 > 1000 > 1000 > 1000 370 108 276 378 415 
Nb > 1000 761 9 18 > 1000 756 638 998 772 551 127 202 90 142 378 
Mo > 100 24 < 2 < 2 > 100 > 100 12 > 100 90 20 < 2 < 2 2 3 3 
Ag 13.4 24.5 0.6 1.1 23.9 23.4 13.7 22.4 18 12.6 4.9 9.3 4.1 1 4 
In < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2 
Sn 189 118 26 15 123 71 61 177 86 106 19 8 < 1 2 4 
Sb 16.8 16.1 0.6 1.6 15.7 11.2 16.7 11.2 13.4 13.1 1 < 0.5 < 0.5 < 0.5 < 0.5 
Cs 92.1 83.7 8.4 32.9 78.2 98.8 112 84.5 113 91 2 0.7 1.9 2.3 1.8 
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Trace elements continued 
ppm 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
La 24.7 19.3 14.9 34 34.2 28.7 11.6 17.6 17 15.6 10.8 113 10 11.6 20.8 
Ce 54.1 40.9 30.8 68.2 68.2 75 29.6 46.7 46.5 33.2 33.4 260 22.6 34.1 59.9 
Pr 5.07 3.63 3.15 7.51 6.13 7.21 3.09 4.83 4.8 2.74 3.22 33.4 3.1 3.2 6.81 
Nd 11.4 8 11.7 26.6 13.7 17.9 9.4 11.1 10.8 6.5 11.4 119 10.7 10.7 21.5 
Sm 7.5 4.8 1.9 4.4 8.6 10.7 5.5 7.8 7.6 3.9 3.1 23.4 3.1 2.6 4.3 
Eu 0.58 0.48 0.67 0.93 0.72 0.88 0.57 0.68 0.71 0.4 0.42 3.38 0.38 0.39 0.52 
Gd 12.3 7.3 1.9 3.7 13.5 15.6 8.2 12.3 10.6 5.7 3.2 18.2 2.8 2.9 3.3 
Tb 7.9 5.4 0.3 0.7 8.8 9.3 4.8 7.8 7.1 4.1 0.8 3.1 0.6 0.7 0.6 
Dy 74 51.6 2.3 4 79.4 86.9 46.5 73.2 64.4 41.2 6.2 17.4 4.5 5.1 3.9 
Ho 18.8 14.4 0.5 0.9 20.8 22.5 13 18.3 16.6 12.1 1.5 3.5 1.1 1.2 0.9 
Er 64.6 56.5 1.7 2.7 74 84.2 50.6 62.9 60.3 50.3 5.7 10.5 3.4 3.9 2.8 
Tm 12.5 11.5 0.3 0.45 14.9 17.2 9.42 12.1 11.3 9.93 1.2 1.69 0.62 0.66 0.57 
Yb 88.6 80 2.2 3.1 104 120 66.2 86.1 76.4 71.1 10.6 12.3 5 4.5 5.2 
Lu 12.6 12 0.36 0.48 14.4 16.4 9.51 12.4 11 10.2 2.14 2.22 0.93 0.75 1.21 
Hf 269 318 3.8 4.3 509 575 216 424 259 289 22.8 30.3 17.9 7.9 21.1 
Ta 79.7 62.1 1.5 0.4 123 92 63.9 70.3 93.1 67 7.6 11.2 4.1 10.6 23.1 
Tl 8.9 11.8 0.3 1.5 10.8 10.8 10.5 11.6 11.8 12.7 0.7 0.6 0.7 1.1 0.8 
Pb 3760 1350 129 24 1160 1260 1190 4430 1410 1530 48 19 11 28 14 
Bi 2.2 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 2.4 0.9 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 < 0.4 
Th 530 459 8.2 9.9 599 488 253 447 320 494 28.1 25.3 11.2 17.7 5.3 
U 8.5 9.3 2 2.7 10.5 16.2 11.5 10.4 9.6 12.5 6.2 9 3.8 12.4 35.3 
W 43 32 2 1 60 35 23 37 35 26 2 1 1 2 2 
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Appendix 3: Thin section images 
Scans and polarized scans to supplement mineral descriptions 
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