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INTRODUCTION 

 
Historical perspectives 

The salmon louse, Lepeophtheirus salmonis (L. salmonis), was first mentioned in the 

literature by the Norwegian bishop Pontoppidan in 1753 (Pontoppidan 1753). However, 

without reference to several earlier accounts the female louse was first figured, and described 

by Krøyer in 1837 (Krøyer 1837). Salmon lice are natural parasites on salmonids, and have 

usually occured in low numbers on wild fishes (Wootten et al. 1982, Berland 1993). Still, 

White did report heavy infestations of wild salmon already in 1940, but this was considered to 

be an extreme case (White 1940). The first serious outbreaks of L. salmonis infections 

occurred on Norwegian Atlantic salmon farms during the 1960s, soon after cage culture began 

(Pike & Wadsworth 1999). Since then the increase in salmon production has been dramatic in 

the North Atlantic (Pike & Wadsworth 1999), and L. salmonis has become a major fish 

pathogen causing severe skin damage by feeding on mucus, epidermis and blood (Figure1) 

(White 1940, Brandal et al. 1976, Wootten et al. 1977, Kabata 1979, Wootten et al. 1982). A 

further consequence of L. salmonis infections can be osmoregulatory breakdown, secondary 

virus or bacterial infections followed by death (Wootten et al. 1982, Nylund et al. 1993). It 

has been estimated that L. salmonis annually causes economical losses for the farming 

industry in Norway by 500 million NOK (Pike & Wadsworth 1999, Boxaspen & Næss 2000). 

However, L. salmonis is also a major problem in several other countries with salmon farming 

industry as Scotland, Ireland, Shetland, Faeroe Islands and Canada (Wootten et al. 1982, Todd 

et al. 1997, Pike & Wadsworth 1999, Boxaspen & Næss 2000, Mustafa et al. 2001).  

Since the introduction of salmon farming, a decline in wild salmon and sea trout 

stocks have become noticeably, and a link between the fish farming activity and the high L. 

salmonis prevalences on wild salmonids have been suggested (Tully & Whelan 1993a, Pike & 

Wadsworth 1999, Tully et al. 1999, Finstad et al. 2000, Bjørn et al. 2001, Heuch & Mo 2001, 
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Bjørn & Finstad 2002, Butler 2002, Skilbrei 2004). These assumptions are based on infections 

of wild salmonids coinciding with L. salmonis epidemics on farmed fish following the 

industry development (Tully et al. 1999, Finstad et al. 2000, Bjørn et al. 2001, Bjørn & 

Finstad 2002, Butler 2002). Especially sea trouts, which have residence in coastal water, are 

believed to be under an extremely high L. salmonis infection pressure (Tully & Whelan 

1993a, Tully et al. 1993b, Birkeland 1996, Skilbrei 2004). Heavily infested sea trout post-

smolts have been observed to return to rivers within few weeks after their smolt migration, a 

phenomenon called premature return (Tully et al. 1993b, Birkeland 1996, Bjørn et al. 2001). 

This behavior is probably a consequence of the delousing effect achieved in freshwater, and a 

maintenance of their osmotic balance (Birkeland 1996). Since wild salmon do not have 

residence in coastal areas, but migrate to the feeding ground in the North Norwegian Sea, it 

was believed that these smolts perhaps were less exposed to infestations by L. salmonis 

(Skilbrei 2004). However, studies have indicated that migrating salmon smolts become 

infected by L. salmonis in coastal waters, before they reach the open sea, and that subsequent 

re-infestations also occur in the open ocean (Finstad et al. 1994, Jacobsen & Gaard 1997, 

Finstad et al. 2000, Todd et al. 2000, Skilbrei 2004). In Norway it is assumed that louse 

epizootics can cause mortality of 30-50% of all emigrating sea trout smolts, and 48-86% of all 

wild salmon smolts (Bjørn et al. 2001, Butler 2002).  
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Copepod systematics  

Lepeophtheirus salmonis is an arthropod belonging to the phylum Crustacea, subclass 

Copepoda (Siphonostomatoida, Caligidae). In addition to the crustaceans the arthropods also 

include the hexapods, chelicerates and myriapods (NCBI taxonomic database, 

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/). Within Arthopoda it has long 

been claimed that the hexapods constitute a monophyletic group, and that their closest 

relatives are found within the myriapods (Nardi et al. 2003). More recently, molecular studies 

have rejected this relationship in favor of a closer affinity between Hexapoda and Crustacea 

(e.g. Friedrich & Tautz 1995, Boore et al. 1998a, Garcia-Machado et al. 1999, Giribet et al. 

2001, Regier & Shultz 2001, Nardi et al. 2003, Mallatt et al. 2004, Giribet et al. 2005, Regier 

et al. 2005), also called Pancrustacea (Zrzavy & Stys 1997). Some morphological evidence 

also support this relationship (Friedrich & Tautz 1995, Giribet et al. 2001). The monophyletic 

status of the Hexapoda has also been questioned. This is due to the position of the Collembola 

Figure 1: An Atlantic salmon infected with Lepeophtheirus salmonis feeding on mucus, 

epidermis and blood. 
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(the wingless hexapods) outside the Pancrustacean clade, in some cases, resulting in a 

paraphyletic Hexapoda (e.g. Nardi et al. 2003, Bitsch & Bitsch 2004, Bitsch et al. 2004, 

Lavrov et al. 2004). 

An extensive fossil record suggests that the crustaceans arose and diversified during 

Cambrium (ca. 570 mya), and have subsequently undergone a long period of independent 

evolution (Spears & Abele 1997). Hence, the Crustacea has evolved into a group with 

extreme morphological diversity (Martin & Davis 2001, Regier et al. 2005). Most crustaceans 

are aquatic, and today the phylum is classified into the six classes Branchiopoda, Remipedia, 

Cephalocarida, Maxillopoda, Ostracoda and Malacostraca (Martin & Davis 2001). Copepoda 

is placed within the Maxillopoda and comprises approximately 11500 species placed in about 

200 families and 1650 genera (Humes 1994). The aquatic copepods are found in various 

habitats from freshwater to marine or hypersaline inland waters, and from polar waters to hot 

springs (Huys & Boxshall 1991). It is considered to be the largest and most diverse group 

within Crustacea with life histories ranging from free-living to benthic and parasitic (Kabata 

1970, Huys & Boxshall 1991). The copepods are usually small in size, with most species 

having body lengths of 0.5 to 5mm (Huys & Boxshall 1991). In terms of their size, diversity 

and abundance they can be regarded as the insects of the seas.  

Copepod taxonomy is primarily based on morphological characters relating to 

modifications of the cephalic feeding structure (mandibles), and body segmentation (Kabata 

1979, Huys & Boxshall 1991). It was Kabata (1979) who formally reassessed the 

phylogenetic relationships of the families of copepods parasitic on fishes, which later resulted 

in a revised classification for the entire subclass Copepoda (Huys & Boxshall 1991). Kabata 

(1979) suggested a monophyletic Copepoda with the ancestral “archiecopepod” forms living 

on or near the sea bottom, which in time split into two copepod groups (Figure 2). One group 
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Figure 2: Copepod relationships proposed by Kabata (1979). 
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Gelyelloida Cyclopoida Misophrioida Monstrilloida Siphonostomatoida Poecilostomatoida Harpacticoida Mormonilloida Calanoida Platycopioida 

Figure 3: Copepod relationships proposed by Huys and Boxshall (1991). 
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consisting of the planktonic order Calanoida, while the main group consisted of active 

swimming copepods with the most primitive branches represented by the orders 

Monstrilloida, Harpacticoida and Misophrioida (Kabata 1979). Within the main group 

Siphonostomatoida was believed to be of a more ancient origin than the Poecilostomatoida 

and Cyclopoida, an assumption that was based on the development of the siphon-like 

mandibles (Kabata 1979). The Poecilostomatoida was believed to branch off from the 

Cyclopoida not very far back in the evolutionary past, while the Cyclopoida was considered 

the most recently derived order (Kabata 1979). In 1991 Huys and Boxshall erected several 

new orders and proposed a new copepod phylogeny suggesting the Mormonilloida, 

Harpacticoida, Poecilostomatoida, Siphonostomatoida and Monstrilloida as monophyletic 

(Figure 3), with the Siphonostomatoids as a sister-group to the Monstrilloida (Huys & 

Boxshall 1991). The cyclopoids belonged to a clade constituting a sister-group to the 

Siphonostomatoida-Poecilostomatoida clade. Moreover, the Calanoida formed a separate 

group also in this analysis.  

Today, the ten copepod orders suggested by Huys and Boxshall (1991) are still 

recognized (Martin & Davis 2001). Copepods parasitic on fishes are mostly found within the 

orders Cyclopoida, Poecilostomatoida and Siphonostomatoida (Kabata 1992). The cyclopoids 

are the most abundant group of copepods in freshwater. They are primarily planktonic, but 

some parasitic freshwater cyclopoids are also found as well as free-living marine species 

(Huys & Boxshall 1991). In contrast, virtually all poecilostomatoids are parasites, and the 

majority are marine. It is a morphologicaly diverse group of copepods, containing a great 

number of families with large body sizes and peculiar morphology (Kabata 1979, Huys & 

Boxshall 1991). The third order, Siphonostomatoida, contains exclusively parasitic species, 

and about 75% of the parasitic copepods found on fishes belong to this order. These copepods 

are mostly marine in distribution, but a small number of species are also found in freshwater. 
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Many highly transformed types of copepods are found within the Siphonostomatoida, i. e. 

members of the family Nicothoidae that have lost all their appendages (Huys & Boxshall 

1991).  

Lepeophtheirus salmonis is placed within the Siphonostomatoida, family Caligidae 

(Kabata 1979). All Caligidae have similar morphology, characterized by five tagmata 

(cephalothorax, the fourth leg-bearing segment, genital complex, the abdomen and the tail). 

However, the caligids have also acquired several morphological traits as an adaptation to their 

life as parasites. They have a flattened body and prehensile appendages allowing them to 

attach to the host surface, as well as making them capable of free movement. Of the 31 

Caligidae genera Caligus is acknowledged as the largest, whereas Lepeophtheirus is the 

second largest genus. These two genera are morphologically very similar, but one feature 

distinguish Lepeophtheirus spp from Caligus spp and that is the lack of lunules on the anterior 

margin of the adult parasites (Kabata 1979).  

 

The biology and life cycle of L. salmonis 

Lepeophtheirus salmonis has a circumpolar distribution in the northern hemisphere, occurring 

on most species in the genera Salmo, Oncorhynchus and Salvelinus (e.g. Kabata 1979, 

Wootten et al. 1982, Johnson & Albright 1991a). The life cycle of L. salmonis consists of 10 

stages, each separated by a moulting phase (Figure 4) (Kabata 1979, Johnson & Albright 

1991b, Schram 1993). The first three stages are free-living, including two planktonic naupliar 

stages (nauplius I and II) and one infective copepodid stage. The copepodid attaches to the 

host by the second antennae, and once attached it uses the maxillipeds to move on the host 

surface to find a suitable place to settle (Schram 1993). Most copepodids prefer to settle on 

the skin and fins, although gills have also been reported as
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Figure 4: Life cycle of Lepeophtheirus salmonis (Schram 1993). Scale bars: nauplius-chalimus = 0.1 mm, preadult-adult = 1 mm. 
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settlement sites (Wootten et al. 1982, Johnson & Albright 1991b, Pike & Wadsworth 1999, 

Tucker et al. 2000, Treasurer & Wadsworth 2004). After moulting the copepodid transforms 

into chalimus I. All four chalimus stages (chalimus I-IV) are fixed to the body surface of the 

host by a frontal filament, and a new filament is produced between each moulting. After 

molting to the pre-adult stage the parasite is, however, able to move freely on the host surface. 

It is then attached to the host by the second antennae and the cephalothorax, which now may 

function as a cupping glass (Schram 1993). 

Development, growth and survival of L. salmonis are greatly influenced by water 

temperature. Laboratory experiments have shown that development from the first nauplius to 

the infectious copepodid takes around 9.3 days at 5°C, 3.6 days at 10°C and only 1.9 days at 

15°C (Johnson & Albright 1991a). The duration of the copepodid stage can, however, last as 

long as 10 days at 10°C (Johnson & Albright 1991a). Moreover, Boxaspen (2005) 

demonstrated that the last successful settlement of copepodids on salmon at 8°C occured 23 

days after the copepodids had been introduced into the tank, and after 30 days at 6°C 

respectively (Boxaspen 2005). Development from egg to adult male takes around 40 days (5-6 

weeks), while the time from egg to adult female takes 52 days (7.4 weeks) at 10°C (Wootten 

et al. 1982, Johnson & Albright 1991a). Normal development of embryos and larvae may take 

place at temperatures as low as 4°C (Boxaspen & Næss 2000).  

 

The combat against L. salmonis  

Today, two different approaches are used in the combat against L. salmonis (Evensen et al. 

2004). These include the use of bath treatment with synthetic pyrethroids (Cypermethrin and 

deltamethrin), as well as oral treatment where in-feed chemicals are being used (Pike & 

Wadsworth 1999, Roth 2000, Stone et al. 2002, Grave et al. 2004, Westcott et al. 2004). Until 

recently organophosphates (trichlorfon (Neguvon), dichlorvos (Nuvan) and azamethiphos 
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(Salmosan)) were the most used pesticides against L. salmonis (Ramstad et al. 2002). 

However, the last three years the use of bath-administered neurotoxins in general 

(organophosphates and synthetic pyrethroids) have been in decline, while the use of the oral 

preparation emamectin benzoate (SLICE) has increased considerably (Evensen et al. 2004). 

The reason for this is that SLICE has a suitable toxic effect on all life stages of L. salmonis, 

while the synthetic pyrethroids have less effect on the chalimus stages (Pike & Wadsworth 

1999, Ramstad et al. 2002, Stone et al. 2002, Westcott et al. 2004). Still, synthetic pyrethroids 

are the predominant treatment for larger fishes (>1 kg), due to the higher costs and the 

required quarantine period when using SLICE on large fish (Evensen et al. 2004, Grave et al. 

2004). Wrasse, or cleaner-fish, is also used as treatment, but in a smaller scale (Frost & Nilsen 

2004). 

A major concern when using chemicals in the combat against L. salmonis is the 

development of resistance. Most chemicals used against L. salmonis are insecticides, and 

resistant insect populations do exist for these drugs (Waldstein & W.H. 2000, Ahmad et al. 

2003, Burgess 2004, Ffrench-Constant et al. 2004). Similar effects have also been observed 

for L. salmonis, particular regarding organophosphates, where reduced treatment efficiency 

has been reported several times (Jones et al. 1992, Devine et al. 2000, Tully & McFadden 

2000, Denholm et al. 2002, Ramstad et al. 2002). In time it is also expected that reduced 

treatment efficiency will emerge from the use of synthetic pyrethroids (Sevatdal & Horsberg 

2003). 

 

Epizootic studies of L. salmonis   

Several attempts have been made to obtain polymorphic genetic markers for studying the 

population genetic structure of L. salmonis (Isdal et al. 1997, Todd et al. 1997, Nolan et al. 

2000, Tully & Nolan 2002, Dixon et al. 2004, Todd et al. 2004). In Norway, allele frequency 
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data from four allozymes indicated that differences might exist between northern and southern 

L. salmonis samples (Isdal et al. 1997). However, allozymes did not differentiate between L. 

salmonis collected in different locations throughout Scotland, while random amplification of 

polymorphic DNA (RAPD) did (Todd et al. 1997). Farm specific markers were also found in 

this study (Todd et al. 1997). Based on these results an expanded RAPD study was performed 

on farmed, and wild salmon from Scotland (Dixon et al. 2004). This study did not confirm the 

genetic differentiation previously found between L. salmonis samples in Scotland, although 

some degree of genetic differentiation was observed (Dixon et al. 2004). Another study, using 

microsatellites, showed differences between L. salmonis collected in Ireland, Scotland and 

Norway (Nolan et al. 2000). On the other hand, a recent study also using microsatellite 

markers did not demonstrate genetic differentiation between samples of L. salmonis collected 

on wild and farmed salmonids in Scotland, or between L. salmonis collected on salmonids 

from Scotland, Norway and Canada (Todd et al. 2004). However, significant genetic 

differentiation between L. salmonis from the North Atlantic versus the North Pacific Ocean 

was observed (Todd et al. 2004).  

The rRNA genes coding for 18S rRNA and 5.8S rRNA of L. salmonis, in addition to 

the intergenic spacers (ITS-1 and ITS-2), have also been characterized for use in a population 

genetic study (Hodneland et al., unpublished). However, no genetic difference was found 

within any of these sequences when L. salmonis from Norway and Japan were compared.  

 

Candidate genes for studies of epizootiology and phylogeny 

Mitochondrial genes and the ribosomal DNA unit have been used extensively in phylogeny, 

and population genetic studies (e.g. Hale & Singh 1987, Hillis & Dixon 1991, Garcia-

Machado et al. 1999, Saito et al. 2000, Schwenk et al. 2000, Umetsu et al. 2002, Yamauchi et 

al. 2002, Gantenbein & Largiader 2003, Papetti et al. 2005). While conserved regions of the 
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rDNA unit can be used in studies of more ancient stages of evolution, other faster evolving 

regions are used to infer closer genetic relationships (Grechko 2002). The mitochondrial 

genes are found to evolve at different rates, and thus have been classified according to their 

properties in resolving phylogenetic relationships among distantly related taxa (Zardoya & 

Meyer 1996). However, the mitochondrial genes are believed to be most suited for population 

genetic studies since they accumulate substitutions up to 10 times faster than nuclear genes 

(Shearer et al. 2002, Ballard & Whitlock 2004). Moreover, due to maternal inheritance the 

mitochondrial genome is haploid (Moritz et al. 1987), resulting in a population size equal to 

1/2 of that for nuclear genes. Mitochondrial DNA (mtDNA) is therefore more subjected to 

genetic drift and fixation than nuclear DNA (Altukhov & Salmenkova 2002, Ballard & 

Whitlock 2004). Altogether, analyses of the mtDNA often prove useful in assessing genetic 

structure, gene flow or phylogenetic relationships among populations, or closely related 

species, when nuclear markers fail (Shoemaker et al. 2003). 

 

Mitochondrial genes 

The mitochondrial genome is a circular DNA molecule. It codes for proteins that, together 

with nuclear encoded products, form enzyme complexes involved in the production of ATP in 

oxidative phosphorylation, as well as other biochemical functions (Cummins 2001, Saccone 

et al. 2002). To date 102 mitochondrial genomes of arthropods have been characterized 

(http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/mztax_short.html), and of these 30 

are within the phylum Crustacea (see Appendix, Table 1). The length of the mtDNAs, within 

the metazoan, have been reported in the range of 14-42 kb (Crease 1999). Despite this large 

size variation all metazoan mtDNAs, with few exceptions, contain the same 37 genes; 13 

protein-coding genes, two rRNAs and 22 tRNAs in addition to a non-coding control region 

(table 1) (Boore 1999).  
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Table 1: The genes found in metazoan mitochondrial genomes; 13 protein-coding genes, two 

ribosomal RNAs and 22 tRNA genes in addition to a control region.  

Genes and regions Designation  
Cytochrome oxidase subunit I, II, III COI, COII, COIII 
Cytochrome b Cyt B or Cyt b 
NADH dehydrogenase subunits 1-6, 4L ND1-6, ND4L 
ATP synthase subunits 6, 8 A6, A8 or ATP6, ATP8 
Large ribosomal RNA subunit 16S rRNA or lrRNA 

Small ribosomal RNA subunit 12S rRNA or srRNA 

18 transfer RNAs each specifying a single 
amino acid 

Corresponding one-letter amino acid or amino 
acid abbreviation (e.g. tRNA-A or tRNA-Ala) 

Two transfer RNAs specifying leucine tRNA-L (CUN), tRNA-L (UUR) or tRNA-
Leu (CUN), tRNA-Leu (UUR) 

Two transfer RNAs specifying serine tRNA-S (AGN), tRNA-S (UCN) or tRNA-Ser 
(AGN), tRNA-Ser (UCN) 

Non-coding control region D-loop 

 

In some species all genes are coded from one mtDNA strand, whereas in others the 

genes are distributed between the two strands (Boore 1999). As opposed to genomic DNA the 

mitochondrial genes do not contain introns, the genes often overlap, but if not, the intergenic 

regions are very short (Wolstenholme 1992b). Although most protein-coding genes are 

relatively conserved, both rRNA genes and the tRNA genes are variable both in size and 

structure (Wolstenholme 1992a). Gene order may vary between metazoan lineages, but a 

conservation of gene order is expected among closely related species and genera (Boore 1999, 

Saccone et al. 2002). A gene organization representative of the Arthropoda is shown in figure 

5. 
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The four mitochondrial genes COI, 16S rRNA, A6 and Cyt B are the most often used 

in population genetic studies, also within Crustacea (e.g. Bucklin et al. 1997, Lee 2000, 

Gopurenko & Hughes 2002, Jarman et al. 2002, Hurwood et al. 2003, Baratti et al. 2005). 

Another region considered to be informative for studies of population structure is the control 

region (D-loop). In a number of metazoan species tandemly arranged repeated sequences are 

found within the D-loop, and the number of repeated copies have been found to vary between 

individuals of a species (Wolstenholme 1992b, Saccone et al. 2002). However, it has quite 

recently been reported that the variability in this region is extremely high, even when 

Figure 5: Mitochondrial gene organization representative of the Arthropoda, here presented 

by the genome of Drosophila yakuba. Genes coded on the complementary strand are shown 

by counter-clockwise arrows. 
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considering members of the same species, making alignment of the D-loop difficult to 

perform (Altukhov & Salmenkova 2002, Saccone et al. 2002).   

 
 
rRNA genes 

Ribosomal RNA (rRNA) constitutes 80-90% of the total cellular RNA in both eukaryotes and 

prokaryotes. It is represented in the genome by multiple genes where the number varies from 

100-200 copies in lower eukaryotes up to several hundred in higher eukaryotes (Lewin 1997). 

The rRNA genes are arranged as tandem repeats of a nuclear ribosomal gene cluster (rDNA) 

encoding 18S rRNA, 5.8S rRNA and 28S rRNA, which are separated by the transcribed 

spacers ITS-1 and ITS-2 (Figure 6) (Hillis & Dixon 1991). An external transcribed spacer 

(ETS) is located upstream of the 18S rRNA gene (Figure 6). The transcribed spacers (ITS-1, 

ITS-2 and ETS) contain the processing signals for the rRNA transcripts, as the genes are 

transcribed as parts of a larger precursor molecule that is subsequently processed in several 

steps to yield the mature rRNAs (Hillis & Dixon 1991). A nontranscribed spacer (NTS), also 

called the intergenic spacer (IGS), is located at the 5` end of the rDNA unit separating the 

18S-28S tandem repeats (Figure 6).  

 

 

 

 
 
 
 
 
 

 

 

 

Figure 6: Organization of an eukaryotic rDNA tandem repeat. The rRNA genes 18S, 5.8S and 28S 

are transcribed as a large precursor molecule, also including two internal transcribed spacers (ITS-1 

and 2) and the external transcribed spacer (ETS). The nontranscribed spacer (NTS), or the 

intergenic spacer (IGS), separates the repeated units. 

   NTS/IGS     ETS            ITS-1         ITS-2  
    

18S rRNA    5.8S rRNA   28S rRNA 
5` 3` 
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Ribosomal RNA genes consist of both core regions, as well as expansion regions 

(Clark et al. 1984). Core segments have very conserved nucleotide sequences, which fold into 

secondary structures that are common to all eukaryotes (Linares et al. 1991). In contrast, the 

expansion segments can vary considerably in length and sequence between different 

eukaryotic organisms (Linares et al. 1991). This may be due to the presence of repetitive 

motifs, insertions or an accumulation of single nucleotide polymorphisms (Hassouna et al. 

1984, Hancock & Dover 1988, Tautz et al. 1988, Hillis & Dixon 1991). Of the rRNA genes 

18S rRNA is most used in phylogeny, due to its relatively slow evolving sequence (Hillis & 

Dixon 1991). The 28S rRNA gene, on the other hand, is larger and the expansion regions are 

much more variable, both in length and sequence than those of 18S rRNA (Hancock et al. 

1988). Hence, 28S rRNA has been used in population genetic studies, as well as within 

molecular systematics (e.g. Crandall et al. 2000, Jarman et al. 2000, Remigio & Hebert 2000, 

Babbitt & Patel 2002, Stevens et al. 2002, Taylor et al. 2002, Sawabe et al. 2003, Schnabel & 

Hebert 2003, Duan et al. 2004, Mallatt et al. 2004).  

In addition to the rRNA genes, the spacer regions can also be used to infer 

phylogenetic and population genetic relations (Hillis & Dixon 1991). Among the spacers, the 

NTS evolves most rapidly, while the transcribed spacers (ITS-1, ITS-2 and ETS) are 

somewhat more conserved (Hillis & Dixon 1991). A tandemly repeated sequence comprises 

also part of the NTS region. This sequence generally varies in length of 100-200 bp, resulting 

in a variable overall length of the NTS region (Jorgensen & Cluster 1988). The number of 

sub-repeating elements differ among individuals, but it has also been found differences in the 

NTS repeat within individuals (Jorgensen & Cluster 1988). Despite this, several population 

genetic studies have been performed using the NTS region (e.g. Cunningham et al. 2003, De 

Arruda et al. 2003, Printzen et al. 2003, Gupta et al. 2004, Huguet et al. 2004). 
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AIMS OF THE STUDY  

 

The main goal of this project was to characterize both mitochondrial and nuclear genes, and 

use them to study the population genetic structure of L. salmonis along the Norwegian coast 

and throughout the North Atlantic. The ability to provide such data should prove useful in 

analysing; a) the dispersal potential of L. salmonis larvae, b) gene flow between L. salmonis 

populations, c) recurrent infestation on salmon farms, d) the impact of these infestations on 

wild salmonids and e) development of resistance in L. salmonis populations to 

chemoterapeutants. Since the mitochondrial genes A6, COI, Cyt B and 16S rRNA have been 

reported to be highly informative for population genetic studies in other crustaceans, and 

arthropods, these genes were chosen for the present study. The nuclear 28S rRNA gene also 

contains variable regions, and the nontranscribed spacer (NTS) includes tandemly repeated 

sequences that could be informative for population genetic studies. Furthermore, both 

mitochondrial and rDNA genes have proved useful for inferring phylogenetic relationships. 

 

Specific aims were to: 

1. Characterize the mitochondrial genome of L. salmonis. 

2. Characterize 28S rRNA, and the nontranscribed spacer (NTS), of L. salmonis. 

3. Use the mitochondrial genes A6, COI, Cyt B and 16S rRNA, in addition to 28S rRNA 

and the NTS region, to study the population genetic structure of L. salmonis along the 

Norwegian coast and in the North Atlantic.  

4. Use sequence information from mitochondrial and rDNA genes to find the 

phylogenetic position of L. salmonis. 



 24 

SUMMARY OF RESULTS 

 

Paper I 

Genetic characterization of the mitochondrial DNA from Lepeophtheirus salmonis 

(Crustacea; Copepoda). A new gene organization revealed. 

The mtDNA from L. salmonis is 15 445 bp. It contains 13 protein-coding genes, two 

ribosomal RNA genes and 22 tRNA genes in addition to a non-coding control region (D-

loop). Whereas tRNA-Cys was not identified in the L. salmonis mtDNA, two copies of tRNA-

Lys were characterized. This has not previously been reported in any crustacean species.  

 The mitochondrial gene order in L. salmonis differs significantly from the gene 

order found in the three copepods (Tigriopus japonicus, Eucalanus bungii, Neocalanus 

cristatus), and the other crustaceans previously characterized. Among the exceptions are the 

organization of ND4/ND4L and A8/A6, which are usually transcribed as one bicistronic 

mRNA, but are separated by several genes in the L. salmonis mtDNA. Furthermore, the two 

rRNA genes are encoded on opposite strands in L. salmonis, and this has not previously been 

found in any other arthropods. Despite these differences a phylogenetic analysis, based on the 

mitochondrial protein sequences, did group L. salmonis together with T. japonicus. 

 

Paper II 

A study of single nucleotide polymorphisms (SNPs) in four mitochondrial genes of the 

salmon louse, Lepeophtheirus salmonis.  

The four mitochondrial genes A6, COI, Cyt B and 16S rRNA were used to examine the 

genetic variation in L. salmonis collected from seven locations; Norway (Finmark, Sogn og 

Fjordane and Øst-Agder), Scotland, Canada, Russia and Japan. All genes showed an 

extremely high level of polymorphisms, leading to an intraspecific variation of 17.5% in A6, 
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15.9% in COI, 14.4% in Cyt B and 10.6% in 16S rRNA. The majority of the polymorphisms 

were only observed within single individuals, resulting in a high number of private haplotypes 

within each gene.   

Sequence variation found in the four mitochondrial genes did not reveal genetic 

differentiation among the three Norwegian samples from Finmark, Sogn og Fjordane and Øst-

Agder. Furthermore, no genetic differentiation was observed between L. salmonis sampled in 

Norway, Scotland and Russia. However, pairwise sequence comparisons indicated that a 

weak degree of differentiation might exist between L. salmonis sampled in the northeast 

Atlantic, and L. salmonis from the east coast of Canada. All samples collected in the Atlantic 

were clearly different from the Pacific sample, as expected. Extensive gene flow due to 

passive transport of L. salmonis larvae along the Norwegian coast, and the migratory pattern 

of the salmonid host is suggested to explain the lack of distinct populations in the North 

Atlantic. 

 

Paper III 

The phylogenetic position of Lepeophtheirus salmonis (Copepoda, Siphonostomatoida) in 

relation to other crustaceans based on the 28S ribosomal RNA sequence. 

Two separate phylogenetic analyses, based on the sequence of 28S rRNA, were performed in 

order to find the position of Lepeophtheirus salmonis (Copepoda, Siphonostomatoida, 

Caligidae) in relation to a selection of other copepod, crustacean and arthropod species. The 

arthropod phylogeny shows monophyly of several accepted groups like Copepoda, Hexapoda 

(Insecta and Collembola) and Branchiopoda, giving support to the phylogenetic analyses 

performed. Furthermore, the Hexapoda is placed as sister-group to the Copepoda. The three 

orders within the Copepoda (Siphonostomatoida, Poecilostomatoida and Cyclopoida) are each 

monophyletic, with the Poecilostomatoida being the closest relative to Siphonostomatoida. 
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Within the Siphonostomatoida, L. salmonis group together with Lepeophtheirus pollachius 

with 100% support. The examined Caligus species constitute the sister-group to 

Lepeophtheirus spp., thus making the Caligidae monophyletic. However, members of the 

family Lernaeopodidae do not constitute a monophyletic group in our analysis. 
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DISCUSSION 

 
Characterization of the L. salmonis mitochondrial genome  

Very little is known about the population structure of L. salmonis (Tully & Nolan 2002), 

despite the economical losses this pathogen causes for the Atlantic salmon farming industry 

(Pike & Wadsworth 1999, Mustafa et al. 2001). Several population genetic studies have been 

performed, but these studies have resulted in contradictory conclusions based on the use of 

different genetic markers (Isdal et al. 1997, Todd et al. 1997, Nolan et al. 2000, Tully & 

Nolan 2002, Dixon et al. 2004, Todd et al. 2004). This contributes to a great confusion about 

the existence of distinct L. salmonis populations, and new genetic approaches are therefore 

needed. Since mitochondrial genes are used extensively in population genetic studies, the 

mitochondrial genome of L. salmonis was characterized (AY625897) (Paper I). The mtDNA 

contains the usual 37 genes found in metazoan mitochondrial genomes, including 22 encoding 

tRNAs, but a completely new gene organization was revealed (Figure 7). tRNA-Cys was not 

identified, neither by the tRNAscan-SE program nor manually anticodon/motifs searches, and 

this was probably due to large deviations in the secondary structure. However, two copies of 

tRNA-Lys are present in the mitochondrial genome of L. salmonis. Moreover, 12S and 16S 

rRNA has opposite transcriptional polarity in the L. salmonis mtDNA (Paper I). 

To date, a total of 30 crustacean mitochondrial genomes have been characterized (see 

Appendix, Table 1). Within the copepods the mtDNA from L. salmonis (Paper I) and T. 

japonicus (Machida et al. 2002) have been completely characterized, while Eucalanus bungii 

and Neocalanus cristatus are only partly characterized (Machida et al. 2004). Even if the 

differences in locations of tRNA genes are ignored, since tRNA genes are frequently involved 

in gene rearrangements (Wolstenholme 1992b), very limited similarities in gene order are 

demonstrated between the four copepods (Paper I). In comparison, 21 of the other 28 

characterised crustacean mtDNAs have similar gene organization as the mitochondrial 
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genome of D. yakuba (see figure 2 in Paper I; Lavrov et al. 2004, Yamauchi et al. 2004, 

Miller et al. 2005, Segawa & Aotsuka 2005, Miller et al. Unpublished, Swinstrom et al. 

Unpublished). These include all the four branchiopods characterized (Daphnia pulex, Artemia 

franciscana, Triops cancriformis and Triops longicaudatus), eight of eleven decapods 

(Penaeus monodon, Panulirus japonicus, Portunus trituberculatus, Callinectes sapidus, 

Marsupenaeus japonicus, Pseudocarcinus gigas, Macrobrachium rosenbergii and 

Geothelphusa dehaani), five stomatopod (Squilla mantis, Harpiosquilla harpax, Squilla 

empusa, Lysiosquillina maculata and Gonodactylus chiragra), two of three cirripeds 

(Tetraclita japonica and Pollicipes polymerus), one cephalocarid (Hutchinsoniella 

macracantha) and one pentastomid (Armillifer armillatus). Hence, it is quite conspicuous that 

the mtDNAs from the four copepods all have different gene organizations (see figure 2 in 

Paper I). One feature that is shared between L. salmonis, T. japonicus and N. cristatus, but not 

E. bungii, is the separation of ND4 and ND4L by several genes (see figure 2 in Paper I). In 

vertebrates, ND4 and ND4L are localized together due to transcription of one bicistronic 

mRNA (Wolstenholme 1992b). This is probably also the general rule for the crustaceans, with 

exception of the three copepods and one cirriped, Megabalanus volcano (Paper I; Begum et 

al. 2004, Lavrov et al. 2004, Yamauchi et al. 2004, Miller et al. 2005, Segawa & Aotsuka 

2005, Sun et al. 2005, Miller et al. Unpublished, Swinstrom et al. Unpublished). Furthermore, 

A6 and A8 are also transcribed as one bicistronic mRNA among higher invertebrates, as A6 

has an internal start codon within A8 (Wolstenholme 1992b, Hickerson & Cunningham 2000). 

Overlap of A6 and A8 are found in all crustacean mtDNAs characterized, with L. salmonis 

being the only exception (Paper I; Begum et al. 2004, Lavrov et al. 2004, Yamauchi et al. 

2004, Miller et al. 2005, Segawa & Aotsuka 2005, Sun et al. 2005, Miller et al. Unpublished, 

Swinstrom et al. Unpublished). 
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At present, it is not clear which mechanisms are responsible for the deviating gene 

organization seen in L. salmonis compared to the other crustaceans (see figure 2 in Paper I; 

Begum et al. 2004, Lavrov et al. 2004, Yamauchi et al. 2004, Miller et al. 2005, Segawa & 

Aotsuka 2005, Sun et al. 2005, Miller et al. Unpublished, Swinstrom et al. Unpublished). 

Three mechanisms have, however, been proposed for mitochondrial gene rearrangements 1) 

the duplication-random loss mechanism (e.g. Moritz et al. 1987, Boore & Brown 1998b, 

Boore 1999, Lavrov et al. 2002) 2) transposition of genes (e.g. Moritz et al. 1987, Boore & 
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Figure 7: The mitochondrial genome of Lepeophtheirus salmonis contains 13 protein-coding 

genes, two rRNA genes and 22 tRNA genes in addition to a control region (AY625897). Two 

copies of tRNA-Lys are present, while tRNA-Cys was not identified. Both DNA strands contain 

coding regions, but very few genes overlap. 
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Brown 1994, Macey et al. 1997, Boore & Brown 1998b, Groth et al. 2000, Saccone et al. 

2002, Tomita et al. 2002) and 3) intramitochondrial recombination (e.g. Dowton & Campbell 

2001, Machida et al. 2002, Miller et al. 2004). The duplication-random loss mechanism is the 

most accepted model to explain mitochondrial gene rearrangements (Moritz et al. 1987, Boore 

& Brown 1998b, Boore 1999, Lavrov et al. 2002). In this model, the gene duplication is either 

a result of errors in the replication or strand slippage and misparing, followed by a deletion of 

one gene copy from the genome. The deleted gene copy has then often been inactivated (e.g. 

Moritz et al. 1987, Stanton et al. 1994, Arndt & Smith 1998, Kumazawa et al. 1998, Boore & 

Brown 1998b, Lavrov et al. 2002). The second mechanism proposed for mitochondrial gene 

rearrangements involves transposition of genes that are flanked by two tRNAs (Saccone et al. 

2002). The genes are then considered to be similar to a transposable element, with the two 

tRNAs corresponding to the long terminal repeats (LTRs) (Saccone et al. 1990). Three genes 

(Cyt B, A6 and ND4L) are flanked by tRNAs in the L. salmonis mtDNA, and thus might be 

similar to transposable elements (see Saccone et al. 2002). Intramitochondrial recombination, 

as well as transposition, may lead to inversion of genes (see Machida et al. 2002, Miller et al. 

2004). In L. salmonis mtDNA the two rRNA genes have inverted orientation, compared to 

each other (Figure 7). This phenomenon has not earlier been reported in any crustaceans, but 

has been found in five starfishes (Smith et al. 1989, Asakawa et al. 1995, Matsubara et al. 

2005). Inversion of a fragment containing 16S rRNA has been suggested to result in the 

different transcriptional directions, of the two rRNA genes, seen in these cases. In conclusion, 

the ancestral caligid mtDNA organization is at the present time unknown, and it is therefore 

impossible to say which mechanisms that have resulted in the mitochondrial gene order 

observed in L. salmonis.  
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Two tRNA-Lys genes present in the L. salmonis mtDNA  

Two copies of tRNA-Lys, possessing the same anticodon (UUU), are present in the mtDNA 

of L. salmonis (Paper I). A sequence comparison revealed that only 45% of the nucleotides 

were identical between the two L. salmonis tRNA-Lys sequences. Moreover, both sequences 

gave high tRNA scores, by the tRNAscan-SE program, and distinct secondary cloverleaf 

structures were proposed (Paper I). Considering this and the fact that the algorithm in the 

tRNAscan-SE program is far too strict to account for the structural diversity observed in 

mitochondrial tRNA genes, it reduces the possibility of one tRNA-Lys being a false positive 

(Paper I).  

Generally, two tRNA-Leu (CUN or UUR) and two tRNA-Ser (AGN or UCN) genes 

are present in animal mitochondrial genomes (Boore 1999). However, within arthropods 

duplication of other tRNA genes have also been found (e.g. Hoffmann et al. 1992, Gissi & 

Pesole 2003). Dissimilar anticodons were observed in these cases, and it was therefore 

concluded that the use of different genetic codes were the reason for these tRNA duplications 

(Hoffmann et al. 1992, Gissi & Pesole 2003). In the demosponge Axinella corrugata (A. 

corrugata) two copies of tRNA-Ala have been described (Lavrov & Lang 2005). Both tRNAs 

possess the same anticodon (UGC), distinct secondary structures were predicted and the 

nucleotide sequences had only an identity of 52% (Lavrov & Lang 2005). This is analogous to 

the tRNA-Lys situation found in the L. salmonis mtDNA. In the study published by Lavrov 

and Lang (2005) a hypothesis called tRNA gene recruitment was introduced. This hypothesis 

was based on the result from a tRNA phylogeny indicating that one tRNA-Ala, in A. 

corrugata, originated from tRNA-Thr rather than from tRNA-Ala (Lavrov & Lang 2005). An 

explanaition involving duplication of tRNA-Thr followed by a mutation in the anticodon was 

implied (see also Higgs et al. 2003, Rawlings et al. 2003). Since mtDNAs from closely related 

caligid species have not been characterized, it is at present not possible to perform a tRNA 
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phylogeny to find the origin of the two tRNA-Lys genes in L. salmonis. A sequence 

comparison of all the tRNA genes in the L. salmonis mtDNA did, on the other hand, 

demonstrate that the tRNA- Lys 1 gene is most similar to tRNA-Tyr (50% identity), whereas 

tRNA-Lys 2 has highest similarity to tRNA-Met (62% identity). Still, the similarity is not 

particularly high, and no conclusion regarding tRNA gene recruitment can therefore be made 

from these results.  

  The duplication of tRNA-Lys in L. salmonis might also be explanied by a 

duplication-random loss mechanism (e.g. Moritz et al. 1987, Boore & Brown 1998b, Boore 

1999, Lavrov et al. 2002). This implies that tRNA-Lys has been duplicated, but one gene 

copy has not yet been deleted from the genome. Moreover, three genes separate the tRNA-

Lys copies in the L. salmonis mtDNA (Figure 7). It is therefore likely that a transposition of 

one tRNA-Lys gene must have followed the duplication event, if this is the expected scenario 

(Moritz et al. 1987, Boore & Brown 1994, Macey et al. 1997, Boore & Brown 1998b, Groth 

et al. 2000, Tomita et al. 2002). This speculation is based on the suggestion that tRNA genes 

could be considered as mobile elements, due to the frequently observed tRNA rearrangements 

seen in mitochondrial genomes (Moritz et al. 1987, Saccone et al. 2002). The fact that the two 

sequences are very divergent does, however, not support a tRNA-Lys duplication hypothesis. 

On the other hand, the duplication event could be ancient, and the initial sequence 

resemblance could therefore have been eroded by substitutions. 

 In marsupial the mitochondrial tRNA-Lys is not funtional, and a nuclear-encoded 

version is therefore imported into the mitochondria (Dörner et al. 2001). Several unusual 

features did, however, indicate that the mitochondrial tRNA-Lys gene found in marsupials 

was a pseudogene. An alignment of the mitochondrial tRNA-Lys gene sequences revealed 

that several marsupials do not possess the anticodon (UUU) for lysine-tRNA (Dörner et al. 

2001). Furthermore, loss of several conserved nucleotides in the inferred tRNA secondary 



 33 

structure was also observed. Although this situation is in marked contrast to that found in L. 

salmonis we cannot at present exclude the possibility that one tRNA-Lys gene might not be 

functional in L. salmonis. 

 

Population structure of L. salmonis 

Our study on the population genetic structure of L. salmonis revealed an extremely high level 

of intraspecific variation in the four mitochondrial genes A6, COI, Cyt B and 16S rRNA 

(Paper II). Despite this, no genetic differentiation was observed between L. salmonis sampled 

along the Norwegian coast, or between L. salmonis from Norway, Scotland and Russia (Paper 

II). Passive transport of L. salmonis larvae by ocean currents and the migratory pattern of the 

salmonid hosts are the two factors assumed to contribute to the high gene flow observed in the 

North Atlantic. A weak indication that L. salmonis sampled in Canada might be different from 

L. salmonis in the northeast Atlantic was, however, observed when the sequences were 

pairwise compared (Paper II). Furthermore, L. salmonis from the Pacific Ocean (Japan) was 

clearly distinct from the six Atlantic samples (Paper II). 

Data from previous studies have indicated that L. salmonis displays population genetic 

differentiation in both Norway (Isdal et al. 1997) and Scotland (Todd et al. 1997, Dixon et al. 

2004). Lepeophtheirus salmonis sampled from Norway, Scotland and Ireland have also been 

demonstrated to be genetically different (Nolan et al. 2000). Phenotypic plasticity where 

enzymes are differently expressed during different life-stages, or as a consequence of 

environmental factors may perhaps explain the results obtained by Isdal et al. (1997). 

Moreover, the possibility for contamination from the epidermal host mucus, host blood, 

bacterias or from epibionts on L. salmonis must be regarded as high in the RAPD studies 

which differentiated Scottish samples (Todd et al. 1997, Dixon et al. 2004). Contamination of 

L. salmonis samples with foreign DNA certainly would influence on the resulting analysis, 
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and this could also explain why the RAPD results published by Todd et al. (1997) have not 

been possible to reproduce (Dixon et al. 2004). One of the two informative microsatellites 

published by Nolan et al. (2000) has also been used in a more extensive population genetic 

study, including six microsatellite markers (Todd et al. 2004). The results from this study 

contradict the existence of distinct L. salmonis populations in the North Atlantic (Todd et al. 

2004), results that are also supported by our findings using mitochondrial genes (Paper II). 

Data from the present study suggests that a high level of genetic exchange exist 

between L. salmonis samples along the Norwegian coast (Paper II). This supports the 

deduction commonly made for marine invertebrates in that the inclusion of a planktonic larva 

in the life cycle confers dispersal potential, and extensive gene flow between samples 

resulting in genetic homogeneity (e.g. Johnson & Black 1982, Hunt & Ayre 1989, Liu et al. 

1991, Hunt 1993, Williams & Benzie 1993, Silberman et al. 1994, Ayre 1995). 

Lepeophtheirus salmonis has three free-living stages in its life cycle (Schram 1993), and the 

copepodids can survive up to 23 days at 8°C and 30 days at 6°C (Boxaspen 2005). 

Furthermore, both the nauplia and copepodids are presumed to be centered in the upper 

meters of the water column (Heuch et al. 1995, Costelloe et al. 1996), and the L. salmonis 

larvae are therefore expected to be dispersed over considerable distances due to passive 

transport by ocean currents (see Costelloe et al. 1996, Costelloe et al. 1998, Asplin et al. 1999, 

Bucklin et al. 2000, Pedersen et al. 2001, Tully & Nolan 2002). Two streams are dominating 

along the Norwegian coast, the Norwegian Atlantic Current and the Norwegian Coastal 

Current (Figure 8). The Norwegian Atlantic Current has one branch that deflects and enters 

through the Faroe-Shetland channel encountering the Norwegian Coastal Current, while 

another branch deflects west of Møre going southwards (Figure 8) (Poulain et al. 1996, Fosså 

2001, Pedersen et al. 2001). The Norwegian Coastal Current, on the other hand, originates  
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from the Baltic Sea transporting water from Skagerrak northward along the Norwegian coast 

(Figure 8) (Pedersen et al. 2001, Asplin et al. 2002). It is characterized as a stream being very 

variable in direction, resulting in a high exchange of water in the fjords (Asplin et al. 2002). 

Consequently, L. salmonis larvae from different fjords are likely to be mixed, and an 

accumulation of larvae may be achieved by the many gyres resulting from this stream (see 

Kaartvedt 1993). The Norwegian Coastal Current is also characterized as a very strong 

current. However, the speed varies extensively, depending on the weather conditions, but can 

range from 20 cm/s to 1 m/s (Pers. com. Lars Asplin, Institute of Marine Research, Bergen, 

Norway). In conclusion, the three free-living stages of the L. salmonis can last 3-4 weeks 

making it reasonable to assume that passive transport of nauplius and copepodid larva by the 

Figure 8: The mean current system of the Norwegian Sea, Greenland Sea and Barents 

Sea (Fosså 2001). 
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Norwegian Coastal Current, and the Norwegian Atlantic Current, contributes greatly to the 

high gene flow observed between L. salmonis samples along the Norwegian coast. 

Another aspect of L. salmonis dispersion to be considered is the contribution from 

wild salmonids, including escaped farm salmon. Wild salmon are assumed to contribute 

extensively to the spreading of L. salmonis throughout the North Atlantic (Todd et al. 2004). 

In Norway, L. salmonis infestations of wild salmon occur when the post-smolts migrate 

through the fjords and coastal areas on their way to the feeding grounds (Finstad et al. 2000, 

Todd et al. 2000). In contrast to this, the migratory pattern of escaped farm salmon is poorly 

known. Studies indicate that many return to their release location, but a large number (20-

40%) also migrate to the oceanic feeding grounds (Hansen et al. 1987, Hansen et al. 1993, 

Jacobsen & Gaard 1997, Butler 2002). However, prior to seaward migration escaped farm 

salmon may spend a considerable amount of time in coastal waters, which can result in heavy 

infestations with L. salmonis (Jacobsen & Gaard 1997, Heuch & Mo 2001, Butler 2002). This 

further leads to the assumption that escaped farm salmon transfer increasing numbers of L. 

salmonis to wild salmon in the open seas (see Jacobsen & Gaard 1997), since high burdens of 

lice have been found on salmon in this area (Holst et al. 1993, Jacobsen & Gaard 1997). 

Salmon from most countries bordering the North Atlantic utilize the area north of the Faroe 

Islands during their oceanic feeding phase (Jacobsen & Gaard 1997). A study examining the 

distribution, migratory pattern and origin of wild salmon caught outside the Faroes reported 

that 40% of the recaptured salmon were of Norwegian origin, while 20% originated from both 

Scotland and Russia (Hansen & Jacobsen 2003). Salmon from Canada were also caught in 

this same feeding area (Hansen & Jacobsen 2003). This suggests an explanatory mechanism 

for the overall genetic similarity found, in our study, between L. salmonis sampled from 

Norway, Scotland, Russia and Canada (Paper II). The presence of both chalimus and pre-adult 

stages of L. salmonis on wild salmon throughout the winter months, and the increasing 
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abundance and density of L. salmonis with the sea age of the wild salmon indicate that 

infestation occurs at the feeding ground (Jacobsen & Gaard 1997). Furthermore, salmon 

returning from the sea in summer and autumn re-infect the coastline, and in this way 

contribute to the high gene flow observed between L. salmonis samples throughout the North 

Atlantic (Paper II). 

Sea trout spend from 1 to 5 years in freshwater before migrating to coastal waters to 

feed. Once in sea, the trout are largely coastal in their habitat, but some fish have the ability to 

migrate over variable distances (Pemberton 1976, Butler 2002). For instance, in Scotland 

tagged sea trout have been recaptured 126 km from their starting point (Butler 2002). Hence, 

the possibility that infected sea trout migrating at large distances can contribute to the high 

gene flow observed between L. salmonis samples in the North Atlantic cannot be excluded. 

Although the overall result show that there is no differentiation between L. salmonis 

samples throughout the North Atlantic a pairwise sequence comparison indicated that a weak, 

but significant, differentiation might exist between the European samples and L. salmonis 

sampled from the east-coast of Canada (Paper II). These results contrast with the results 

published by Todd et al. (2004) based on data from six microsatellite markers. It is, however, 

expected when applying markers with a high mutation rate, like the mtDNA, that some 

individual low frequency alleles might appear (see Neigel 1997), and this may explain why a 

weak difference was observed between L. salmonis collected from Canada and several 

locations in Europe (Paper II). This explanation is supported by the insignificant values 

displayed when the analysis was performed on haplotypes based only upon the most frequent 

polymorphisms (Paper II). 

Despite the genetic similarity, it is clear that the mitochondrial genes used in this study 

can detect barriers to gene flow where they exist (Paper II). Lepeophtheirus salmonis sampled 

from wild chum salmon (Oncorhynchus keta) in the Pacific Ocean (Ishikari, Japan) was 
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clearly distinct from the Norwegian, Scottish, Russian and Canadian samples, when all four 

mitochondrial genes were aligned (Paper II). This suggests geographic isolation or strongly 

reduced gene flow between L. salmonis in the Pacific Ocean and the North Atlantic, as 

expected, but a possible adaptation to the host Oncorhynchus could also partly explain this 

(Paper II). Wild salmonids found in the North Atlantic are in the genera Salmo and Salvelinus, 

while the species present in the Pacific Ocean is mostly within the genera Oncorhynchus (e.g. 

Nagasawa & Takami 1993, Nagasawa 2004) 

 

High intraspecific variation in L. salmonis mitochondrial genes 

The four mitochondrial genes A6, COI, Cyt B and 16S rRNA of L. salmonis contained 

extremely high levels of genetic variation (Paper II). Highest intraspecific variation was found 

within A6 where 17.5% of the nucleotides were polymorphic followed by 15.9% in COI, 

14.4% in Cyt B and 10.6% in 16S rRNA. This high variation is most likely a consequence of a 

large L. salmonis population size caused by the higher accessibility of hosts, introduced by the 

salmon farming industry (Paper II). A large population size will result in a higher amount of 

low frequency haplotypes being present within the sample, and thereby lead to a higher 

genetic variation. When we compare the intraspecific variation within each of the six 

locations in the North Atlantic, large differences are observed among them. In A6 the 

variation ranged from 5.6-7.1%, in COI from 5.2-6.8%, in Cyt B from 3.6-5.8% and in 16S 

rRNA from 2.9-4.6%. However, a comparison of the North Atlantic samples with L. salmonis 

from wild chum salmon (Oncorhynchus keta) caught in the Pacific Ocean revealed an 

intraspecific variation that seems to be noticeably lower (2.5% in A6, 1.4% in COI, 4.9% in 

Cyt B and 0.9% in 16S rRNA). This support the assumption that the high intraspecific 

variation found in the North Atlantic is due to a large L. salmonis population size. Although 

L. salmonis occurs on farmed coho salmon (Oncorhynchus kisutch) and rainbow trout 
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(Oncorhynchus mykiss) in Japan, it is not a serious problem for the farming industry 

(Nagasawa 2004). This is partly explained by the fact that these salmonids seem less 

susceptible to L. salmonis infestations (Nagasawa 2001, 2004). Still, L. salmonis is a common 

parasite of wild chum and pink salmon, and it is believed that these are the most important 

hosts for L. salmonis in the Pacific Ocean (Nagasawa 2001, 2004). The abundance of the wild 

salmonids varies, however, greatly from year to year resulting in a large influence on the L. 

salmonis population in this region (Nagasawa 2001).    

On the other hand, it cannot be excluded that the high level of intraspecific variation 

observed within the four mitochondrial genes of L. salmonis could also be a consequence of 

negative selection (Paper II). That is, the high level of low frequency haplotypes present 

within the L. salmonis samples could be a result of an accumulation of slightly deleterious 

polymorphisms (Fry 1999, Blier et al. 2001, Fay et al. 2001). The use of delousing pesticides, 

in the combat against L. salmonis, may result in an artificial selection where negative, rather 

than positive traits, could be selected for. 

 

Phylogenetic studies of L. salmonis 

The expansion regions within 28S rRNA are highly variable, and sequence variations could 

therefore be present within this gene from L. salmonis. This was, however, not the case. 

Amplification of 3692 bp of 28S rRNA from L. salmonis sampled in Norway and Japan did 

not reveal any sequence variation, the same as found using 18S rRNA (Hodneland et al. 

unpublished). Furthermore, characterization of the NTS region, by screening a L. salmonis 

genomic library, was unsuccesful.  

The 28S rRNA was used in a phylogenetic study to find the position of L. salmonis in 

relation to other crustacean, and arthropod, species (Paper III). Since 18S rRNA is often used 

to analyse arthropod relationships (Martin & Davis 2001) two phylogenies based on this gene  
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Figure 9: Arthropod phylogeny based on 18S rRNA, with Chelicerata as outgroup. The maximum-

likelihood tree was constructed in Tree-Puzzle 5.2 using HKY with gamma distribution, and 2500 puzzling 

steps (values presented above branches). The Copepoda form a highly supported monophyletic group, but 

their relationship to other arthropods included is not resolved. Other supported groups are the Cirripedia, 

Malacostraca, Collembola, Insecta and Myriapoda. 
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were performed to compliment the 28S rRNA phylogeny. Moreover, COI has been classified 

as a reliable marker in resolving distant phylogenetic relationships among vertebrates 

(Zardoya & Meyer 1996), and a COI phylogeny was  thus also performed. The 18S rRNA 

phylogeny included 64 species representative of the four arthropod groups (see Appendix, 

Table 2), but the phylogeny is not well resolved (Figure 9). Despite this poor resolution it is 

clearly demonstrated that the copepods included constitute a highly supported monophyletic 

group with a quartet puzzle (QP) bootstrap value of 96. In addition to this, several other 

groups are also supported (QP>70%). These include Cirripedia (QP bootstrap=75), 

Malacostraca (QP bootstrap=90), Collembola (QP bootstrap=74), Insecta (QP bootstrap=98) 

and Myriapoda (QP bootstrap=82). The position of the copepods in relation to the other 

arthropods included is, however, not resolved. 

To better resolve the relationships within the Copepoda a new 18S rRNA phylogeny 

was performed (Figure 10) where only members from the Copepoda are included. This 

phylogeny place all the caligids in one highly supported group (QP bootstrap=84). 

Lepeophtheirus salmonis group together with C. elongatus (QP bootstrap=90), with G. 

watsoni as a sister-group to them. However, the relationships within the Siphonostomatoida 

are not resolved, as is also the case for Cyclopoida, Harpacticoida and Poecilostomatoida. On 

the other hand, the Calanoida form a group with high support (QP bootstrap=85).  
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Figure 10: Copepod relationships inferred from 18S rRNA, with Branchiura and two branchiopods as 

outgroups. The maximum-likelihood tree was constructed in Tree-Puzzle 5.2 using the HKY model with 

gamma distribution, and 10 000 puzzling steps (values presented above branches). The tree is not well 

resolved, but the three caligids are placed in one distinct group. Moreover, the Calanoida constitute a 

highly supported group. 
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Low resolution have also been the result of previous phylogenetic studies using 18S 

rRNA (e.g. Turbeville et al. 1991, Abele et al. 1992, Spears & Abele 1997, Mallatt et al. 

2004). Within Crustacea a phylogenetic analysis of 18S rRNA from selected maxillopodan 

suggested that the copepods are more closely related to the cirripeds than previously thought 

(Abele et al. 1992). However, the data set were analyzed in different ways, and only one of 

the four trees supported this relationship (Abele et al. 1992). Another phylogenetic study 

using 18S rRNA made it impossible to speculate in maxillopodan, crustacean or arthropod 

relationships due to low resolution (Spears & Abele 1997). Still, species from the same 

crustacean taxa grouped together with high support, as was also the case in this study (see 

figure 9). Consequently, the phylogenetic performance of the rRNA genes has been 

questioned (e.g. Spears & Abele 1997, Giribet & Ribera 2000). On the other hand, it has often 

been concluded within arthropod phylogeny, based on rDNA sequences, that inclusion of 

more taxa or more data per taxon might result in improved resolution (Spears & Abele 1997). 

This was, however, not the case in our analysis where inclusion of a substantial number of 

arthropod species in the 18S rRNA phylogeny did not improve the resolution (Figure 9). In 

comparison the copepod and arthropod phylogenies based on 28S rRNA were much better 

resolved (Paper III). Both 28S rRNA phylogenies place L. pollachius as the closest relative to 

L. salmonis. Caligus elongatus and C. curtus constitute a sister-group to the two 

Lepeophtheirus species, forming a monophyly of the Caligidae. Siphonostomatoida is also 

supported using 28S rRNA, with the Poecilostomatoida being the closest relative of the taxa 

represented followed by Cyclopoida. The Copepoda form a monophyletic group, with the 

Hexapoda as their closest relative. This phylogeny also supports the morphological copepod 

phylogeny proposed by Huys and Boxshall (1991) (Figure 3) in placing the Cyclopoida as a 

sister-group to Siphonostomatoida and Poecilostomatoida. In contrast, the copepod phylogeny 

proposed by Kabata (1979) is not supported. They placed the Siphonostomatoida as the most 
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acient group, which constituted a sister-group to the Poecilostomatoida-Cyclopoida clade 

(Figure 2).   

COI did not give any phylogenetic resolution for the arthropods included in this study 

(see Appendix, Table 3). This applied to phylogenies based on both nucleotide and amino 

acid sequences (data not presented), although the latter did group the copepods as 

monophyletic with a support of 82%.  

COI also resulted in relatively low-resolution phylogeny when only the copepods were 

included in the analysis (Figure 11). However, the caligids are placed in one group with high 

support (QP bootstrap=97), where L. salmonis group together with L. pectoralis (QP 

bootstrap=92). Furthermore, the three Caligus species (C. curtus, C. centrodonti and C. 

elongatus) constitute a sister-group to Lepeophtheirus spp. The closest relative to the 

Caligidae is the Harpacticoid species, Cletocamptus helobius, but the support for this 

relationship low (QP bootstrap=65). Two other harpacticoids is placed as outgroup to the 

Calanoida, also with low support (QP bootstrap=57), resulting in a polyphyletic 

Harpacticoida. Still, Calanoida forms a group with high support (QP bootstrap=91). Due to 

low support for many of the branches, it is not possible to compare this analysis with the 

copepod relationships proposed by Kabata (1979) (Figure 2), or Huys and Boxshall (1991) 

(Figure 3). The caligid phylogeny proposed by Øines et al (2005), based on COI, is not well 

supported, and many of the species were not identified. Hence, a comparison with this study 

is of little value. 
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Figure 11: The relationships within Copepoda inferred from the amino acid sequences of COI with two 

branchiopods as outgroup. The maximum-likelihood tree was constructed in Tree-Puzzle 5.2 using the 

HKY model with gamma distribution, and 1000 puzzling steps (values presented above branches). The 

phylogeny groups L. salmonis together with L. pectoralis, being close relatives to Caligus spp. 
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For more than a century, phylogenetic analyses of crustaceans have shown a high 

degree of diversity. It has therefore been implied that crustacean phylogeny can only be 

sensibly discussed in the framework of arthropod relationships (Giribet et al. 2005). However, 

only a few of the molecular phylogenies that deal with arthropods use a broad sample of 

crustacean taxa (Giribet et al. 2001, Regier & Shultz 2001, Nardi et al. 2003, Bitsch et al. 

2004, Lavrov et al. 2004, Mallatt et al. 2004, Regier et al. 2004, Giribet et al. 2005, Regier et 

al. 2005). Within Copepoda very few molecular systematic studies have been published 

(Bucklin et al. 1992, Bucklin et al. 1995, Braga et al. 1999, Bucklin et al. 1999, Hill et al. 

2001, Bucklin et al. 2003, Øines & Heuch 2005), and the position of copepods in relation to 

other crustaceans have only been inferred in a few cases (Abele et al. 1992, Spears & Abele 

1997). Furthermore, the molecular phylogenies based on 18S rRNA (Figure 9 and 10) and 

COI (Figure 11) presented in this thesis, in addition to 28S rRNA (Paper III), showed quite 

different results. Although COI is considered to be a very conserved protein, and has been 

classified as a good phylogenetic marker for resolving distant vertebrate relationships 

(Zardoya & Meyer 1996), a high intraspecific variation resulting in several amino acid 

substitutions was found within this gene in L. salmonis (Paper II). It was therefore not 

unexpected that the phylogenies based on COI resulted in low resolution, since this gene 

seems to be too polymorphic to resolve deeper copepod relationships (Figure 11). While the 

analysis performed on 18S rRNA was not able to resolve the relationships within Copepoda 

or copepods relationship to other crustaceans (Figure 9 and 10), the analysis of 28S rRNA 

resulted in a better resolution (Paper III). This is in agreement with a previous phylogenetic 

study where the performance of 18S and 28S rRNA was compared, and higher resolution was 

achieved using 28S rRNA due to the contribution of more phylogenetic signal (Mallat et al 

2004). The copepod phylogeny based on 28S rRNA (Paper III) also supported the 

morphological phylogeny proposed by Huys and Boxshall (1991). However, the support for 
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Cyclopoida is low, and more taxa must be included to better infer the relationships within the 

Copepoda.  
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CONCLUSION 

 

The main goal of this project was to characterize both mitochondrial and nuclear genes, and 

use them to study the population genetic structure of L. salmonis throughout the North 

Atlantic. Whereas the nuclear 28S rRNA gene was not suited for detecting any differentiation 

between L. salmonis samples, the four mitochondrial genes A6, COI, Cyt B and 16S rRNA 

clearly differentiated between L. salmonis sampled in the North Atlantic and the Pacific 

Ocean, as expected. No genetic differentiation was, however, demonstrated between L. 

salmonis sampled throughout the North Atlantic (Norway, Scotland, Russia and Canada). The 

migratory pattern of the salmonid hosts and passive transport of L. salmonis larvae by ocean 

currents are believed to contribute to this high gene flow. These results have implications for 

the salmon farming industry in different ways. In order to use pesticides in the combat against 

L. salmonis, delousing must be synchronised over a broader geographic area than what is 

currently done. The most important implication is, however, that the potential for spreading of 

genes associated with possible resistance is extensive, considering that L. salmonis can be 

dispersed over large geographic distances. 
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FUTURE PERSPECTIVES 

 
Based on the results presented in this thesis, several aspects warrant further investigation: 

• Characterization of the L. salmonis mitochondrial genome revealed a completely new 

gene organization within Crustacea (Paper I). It is currently difficult to specify which 

mechanisms are responsible for this novel gene order, but characterization of more 

mitochondrial genomes from closely related caligid species may provide some answers. 

• Two tRNA-Lys genes are present within the mitochondrial genome of L. salmonis (Paper 

I). One way of investigating whether the tRNA-Lys duplication is caused by duplication 

of tRNA-Lys itself, or if it is a result of tRNA gene recruitment, would be to perform a 

phylogentic comparison of mitochondrial tRNAs from several closely related caligid 

species. Knowledge about the origin of the two tRNA-Lys genes found in L. salmonis 

may give insight into the mechanisms resulting in the frequently observed mitochondrial 

tRNA rearrangements. Furthermore, it will also give support to previously proposed 

mechanisms involved in tRNA evolution.  

• In this study, weak genetic differentiation was observed between the European and the 

Canadian L. salmonis samples (Paper II). This indication contrast with the recent data 

published by Todd et al. (2004) using microsatellites. It would therefore be interesting to 

use their microsatellite markers on our L. salmonis samples, for an evaluation of these 

results. Markers associated with genes that are targets for development of resistance could 

perhaps reveal differentiation between L. salmonis samples. There are already some 

indications that a sodium channel gene, which is the target gene for pyrethroids, might 

differentiate between North Atlantic L. salmonis samples (Pers. com Anders Fallang, 

Norwegian School of Veterinary Science, Oslo, Norway), and this approach should be 

tested. 
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• The 28S rRNA gene seems very promising for resolving copepod relationships (Paper 

III). Nevertheless, this needs to be verified by including more copepods representative of 

several orders, families and genera. Moreover, the mitochondrial gene order has been 

found to vary across the Metazoa, generating interest in using this for phylogenetic 

inference (see Boore et al. 1998a, Boore & Brown 1998b, Wilson et al. 2000, Lavrov et al. 

2004). So far, different mitochondrial gene orders have been found within the four 

copepods characterized, or partially characterized. A phylogeny based on mitochondrial 

gene orders from different copepods could therefore be interesting to perform, for 

inferring copepod relationships, when more genomes have been sequenced. 
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APPENDIX 

 

Table 1: Mitochondrial genomes characterized within the phylum Crustacea. 

Species Accession number 
Argulus americanus NC_005935 
Armillifer armillatus  NC_005934 
Artemia franciscana NC_001620 
Callinectes sapidus NC_006281 
Cherax destructor NC_011243 
Daphnia pulex NC_000844 
Eriocheir sinensis NC_006992 
Geothelphusa dehaani NC_007379 
Gonodactylus chiragra NC_007442 
Harpiosquilla harpax NC_006916 
Hutchinsoniella macracantha  NC_005937 
Lepeophtheirus salmonis NC_007215 
Lysiosquillina maculata NC_007443 
Macrobrachium rosenbergii NC_006880 
Marsupenaeus japonicus NC_007010 
Megabalanus volcano NC_006293 
Pagurus longicarpus NC_003058 
Panulirus japonicus NC_004251 
Penaeus monodon NC_002184 
Pollicipes polymerus NC_005936 
Portunus trituberculatus NC_005037 
Pseudocarcinus gigas  NC_006891 
Speleonectes tulumensis NC_005938 
Squilla empusa NC_007444 
Squilla mantis  NC_006081 
Tetraclita japonica NC_008974 
Tigriopus japonicus NC_003979 
Triops cancriformis NC_004465 
Triops longicaudatus NC_006079 
Vargula hilgendorfii NC_005306 
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Table 2: Sequences included in the phylogenies based on 18S rRNA, in alphabetical order. 

Species Accession 
numbers 

Species Accession 
numbers 

Anaspides tasmaniae L81948    Lepidurus packardi  L34048 
Argulus nobilis proviral M27187 Lernaeocera branchialis AY627030 
Artemia franciscana  AJ238061 Lernentoma asellina  AY627003 
Asterocheridae sp.  AY627018  Monographis sp. AY596371  
Bairdia sp. L81943 Nanaspis tonsa AY627029 
Bradya sp. AY627016 Neanura latior AY037172 
Branchinecta packardi  L26512 Orecturus sp. AY627017  
Bryocamptus pygmaeus AY627015 Onychiurus yodai AY037171 
Calanus pacificus  L81939 Ornithodoros moubata L76355 
Caligus elongatus AY627020 Pachos sp. AY627014 
Cancerillidae sp. AY627021 Panulirus argus AY743955   
Cancrincola plumipes  L81938 Parabrachiella bispinosa AY627027 
Ceratitis capitata AH006961S1 Pectenophilus ornatus AY627032 
Chondracanthus lophii L34046  Podura aquatica AF005452 
Clavella adunca AY627028 Poecilasma inaequilaterale  AY520654   
Daphnia pulex AF014011 Pontoeciella abyssicola  AY627031 
Diaphanosoma sp. AF144210 Porocephalus crotali M29931 
Drosophila simulans  AY037174  Pseudanthessius sp. AY627007 
Ecbathyrion prolixicauda  AY627024 Pseudocyclops sp. AY626994 
Entomobrya dorsosignata AY596360 Rhogobius contractus  AY627023  
Entomolepidae sp. AY627025  Sabelliphilus elongatus AY627010 
Eucyclops serrulatus  L81940 Sacculina carcini  AY520656  
Exumella mediterranea AY629259 Scolopendra cingulata  U29493 
Gloiopotes watsoni  AY627019 Simocephalus serrulatus AF144216 
Gonodactylus sp. L81947 Sminthurides aquaticus AY596364 
Hatschekia pagrosomi AY627026 Sphaeridia pumilis AY145140 
Homarus americanus  AY743945   Squilla empusa L81946 
Hypogastrura sp. AY596362 Stenopontius sp. AY627022  
Ibla quadrivalvis  AY520655 Thamnocephalus platyurus AF144218 
Isotoma viridis AY596361 Tortanus sp. AY626995 
Ixodes persulcatus AY274888 Trypetesa lampas L26520 
Lepeophtheirus salmonis AF208263 Vargula tsujii DQ096577   
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Table 3: Protein sequences included in the phylogeny of COI, in alphabetical order. 

Species Accession 
numbers 

Species Accession 
numbers 

Artemia parthenogenetica AAX54683 Gonodactylaceus caldwelli AAG29090 
Calanus helgolandicus AAT99460 Heterosaccus lunatus AAY59885 
Caligus centrodonti  AAW81049 Ixodes persulcatus BAC22597 
Caligus curtus AAW81045 Lepeophtheirus hippoglossi  AAW81041 
Caligus elongatus AAW81050 Lepeophtheirus pollachius AAW81042 
Candacia longimana AAN16096 Lepeophtheirus salmonis YP_271852  
Ceratitis capitata AAY34455 Lirceolus bisetus AAW32901 
Cherax destructor AAR37034 Lithobius forficatus CAC69937 
Cletocamptus helobius  AAK63000 Mesocalanus tenuicornis AAL68664 
Cletopsyllidae sp. AAQ97371 Metridia pacifica AAL84604 
Coullana sp. AAK63001 Nannocalanus minor I AAG53450 
Cyamus erraticus AAZ05871 Neocalanus flemingeri AAG53442 
Dahlella caldariensis AAC47571 Neoverruca brachylepadoformis BAD98495 
Daphnia magna AAV67773 Ornithodoros moubata BAC22581 
Daphnia pulex  AAQ90458 Panulirus japonicus NP694520 
Daphniopsis pusilla AAM47518 Penaeus monodon  NP038289 
Drosophila yakuba CAC14066 Pseudocalanus acuspes AAL68665 
Gammarus oceanicus AAX22163 Pseudocalanus moultoni AAG53453 
Gomphiocephalus hodgsoni  AAO43659    
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