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Abstract 

 

Worldwide, estuaries are under increasing pressure from numerous contaminants. 

There is a need to develop reliable bioassay methodologies to assess the effects of 

these stressors on estuary health. This thesis aimed to develop and validate toxicity 

tests in a New Zealand marine harpacticoid copepod species for use in monitoring 

and evaluating the effects of estuarine pollution. A survey and toxicological 

assessment of a range of native copepod species resulted in the selection of 

Quinquelaophonte sp. as the ideal bioassay species. This selection was based on a 

broad regional distribution, ease of culture and high reproductive rate in the 

laboratory, sexual dimorphism, and sensitivity to contaminants.  To validate the 

bioassay, spiked sediments were used to expose Quinquelaophonte sp. to three 

reference compounds representing important categories of estuarine chemical 

stressors: zinc (a metal), atrazine (a pesticide), and phenanthrene (a polyaromatic 

hydrocarbon). A method for spiking sediments that Quinquelaophonte sp. inhabit 

was developed to ensure even contaminant distribution in sediments. Two sediment 

bioassays using lethal and sublethal endpoints were validated, one acute (96 h) and 

one chronic (14 d). These assays incorporated both lethal and sublethal endpoints, 

which included reproductive output and mobility. Acute-to-chronic ratios were 

calculated for use in environmental risk assessment and to provide insight into the 

mode of action of the reference contaminants. The chronic sediment bioassay was 

used to assess sediment quality in three estuaries across New Zealand: Napier, 

Christchurch and Invercargill. This validated the bioassay for use with naturally-

contaminated field sediments with varying mixtures of pollutants and sediment 

types (coarse sandy to fine silty organic rich sediments). Quinquelaophonte sp. was 

also tested to assess whether it can be used to characterise multi–generation 

impacts. After four generations of exposure to zinc, there were changes in acute 

sensitivity, indicating this species possesses mechanisms for acclimating or 

adapting to toxic stressors. Sediment bioassays in Quinquelaophonte sp. were 

successfully developed and validated, offering significant promise as a tool for 

monitoring effects of pollution in New Zealand estuaries. 
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1.1 Introduction  

 

Every ecosystem on our planet has been impacted in some way by 

anthropogenic processes such as global warming, chemical pollution, 

deforestation, and urbanisation. There will be an increasing number and 

magnitude of threats to the environment as the world’s population grows, and 

with it, increased urbanisation and industrialisation occurs. However, 

accompanying this growth in potential impact is an enhanced awareness of our 

effects on the environment. This is reflected by the actions of governments all 

over the world imposing regulations to help protect the environment. This 

includes the creation of national parks, the protection of endangered species, 

emissions restrictions, and prohibition of harmful chemicals. It is becoming 

increasingly important to understand the impacts that humans have on the 

environment and to develop tools that enable us to monitor these impacts in 

ecological risk management strategies.  

 

The marine environment is a valuable resource for humans, emphasised 

by the fact that over half of human settlements are located near coastal regions 

and estuaries (Kennish 1992, Kennish 2002). Historically, coastal regions have 

provided important food resources and a means of transportation, as well as 

convenient waste disposal sites (Kennish 2002). These provisions continue to the 

present day. Because of this, coastal regions and particularly estuaries have seen 

many centuries of human exploitation, habitat modification and pollution. This 

has left many of these regions degraded to an extreme level (Lotze et al. 2006). 

Human impacts have caused significant loss of wetlands, salt marshes, sea 

grasses and submerged aquatic vegetation. In fact, over 90% of recorded estuary 

species were depleted by the end of the 20th century (Lotze et al. 2006). Human-

induced changes in the coastal environment have already led to fishery collapses 

in tropical and sub-tropical areas of the world and there is potential for further 

ecosystem collapses (Jackson et al. 2001). The degradation of estuarine 
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environments has significant impacts on biodiversity, the economies that depend 

on marine species as food sources and as a basis of income, as well as the 

ecosystem services that estuaries provide (Costanza et al. 1997). The increasing 

development and urbanisation of coastal areas will result in more land 

conversion, roadways, and other impermeable surfaces. This will increase non-

point source pollution and runoff as well as reducing the natural filtering 

capacity of the land, thus increasing pollution in estuaries (Fulton et al. 1993, 

Kennish 2002). Consequently, while monitoring anthropogenic impacts on our 

environment is of critical importance in the present day, it will become more 

crucial in the near future. If policies and actions are established early enough, 

when contamination is at levels that have not severely impacted populations, it 

may be possible to salvage or avoid significant adverse ecological effects. 

Preventing significant ecological impacts is vital to preserving these ecosystems, 

and will mitigate further economic losses through collapsing fisheries as well as 

the large costs associated with clean up and rehabilitation of ecosystems after 

they have already degraded.  

 

1.2 Estuaries 

 

An estuary is a semi-enclosed body of water, where freshwater from 

rivers and streams meets the saltwater of oceans and seas. These regions are 

predominantly characterised by the mixing of salt and freshwater, and are 

subjected to the force of the tides (Prichard 1967, Fairbridge 1980). Estuaries are 

also regions where sediment and nutrients washed from the land are deposited in 

aquatic sediments on the ocean floor resulting in rich, productive ecosystems. In 

addition, estuaries are highly dynamic, with seasonal variation, tides, as well as 

fluctuating freshwater input. The severities of these dynamic forces within the 

estuary are affected by the type and shape of the estuary (Chapman and Wang 

2001). 
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There are three general types of estuaries. The first is a salt wedge 

estuary, in which the river flow is dominant and the saltwater moves up the 

estuary in a wedge shape. The second general estuary type includes shallow, 

partly-mixed estuaries and fjords. These are similar to wedge estuaries with 

distinct layers of saltwater at depth and freshwater on the surface. However in 

these estuaries river flow is modified by tidal currents and there can be some 

vertical mixing of saltwater and freshwater. The third estuary is a vertically 

homogeneous estuary, which is characterised by low variation in vertical salinity 

(less than 1g/L), and is predominated by tidal currents, which cause mixing. In 

these estuaries there is still a horizontal salinity gradient (Chapman and Wang 

2001). In general estuaries are influenced by seasonal variation such as river 

flow (e.g. snow melt periods), which can change the mixing of saltwater and 

freshwater leading to either increases or decreases in sedimentation.  

 

Sediment in estuaries originates from the rivers that feed into the estuary 

as well as from the ocean. The relative contribution of these sources depends on 

the water circulation patterns in the estuary and the particulate load of the river. 

Estuaries with rivers that carry high particulate loads are often characterised by 

high fluvial silt content and significant sediment deposition. Sediments in 

estuaries fed by rivers with low particulate loads generally exhibit properties 

more similar to marine sediments (Guilcher 1967, Chapman and Wang 2001). 

The sedimentation characteristics of the estuary can change seasonally. The most 

common type of estuary sediment is fine grained, silty or muddy, especially in 

estuaries with little wave action. However, sediments can also be sandy and are 

often stratified throughout the estuary. Estuarine sediments are subject to 

complex and dynamic forces, which cause deposition and erosion (McManus 

1998, Douglas et al. 2009). The transition from freshwater to saltwater and the 

rise and fall of water levels with the tides can increase particle settling in the 

estuary (Chapman and Wang 2001). 
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Estuaries have salinity variations ranging from 1 to 30‰ (where full 

strength SW is ~35 ‰). Within estuaries, regional differences in salinity can be 

quite extreme, depending on the type of estuary and the extent of mixing. This 

variation in salinity can make life extremely challenging for estuarine species 

due to pressure on osmoregulation from rapid changes in ambient osmotic 

pressure. It has been documented that distribution of benthic fauna changes 

seasonally due to variation in salinity in some estuaries (Chapman and 

Brinkhurst 1981, Chatzigeorgiou et al. 2011). There are also other gradients 

found in estuaries including temperature, pH, dissolved oxygen, redox potential, 

nutrients and composition of particulates (Chapman and Wang 2001), which can 

be influenced by regular fluctuations in salinity, tides, and wave action. All of 

these gradients can occur both vertically and horizontally and are controlled by 

the many complex physical characteristics of estuaries, such as shape, depth, 

river input, and currents. However, salinity is the most important factor in 

estuaries and is largely responsible for faunal distributions as well as 

contaminant bioavailability and partitioning (Chapman and Wang 2001). 

 

The input of terrestrial nutrients from rivers into the estuary provides a 

high productivity habitat for many different species. Nutrients such as nitrogen 

and phosphorus are the limiting factors for primary production of algae 

(Howarth 1988, Rudek et al. 1991), and their introduction into estuaries permits 

high primary production that subsequently supports large and diverse food webs. 

Some of the many organisms that inhabit estuaries include species of shellfish, 

which live in sediments and on rocky substrates. A large variety of fish species 

are found in estuaries at some point during their life history, using it as spawning 

and nursery grounds, for migration, and feeding (Gillanders et al. 2003). 

Estuaries are also important habitat and feeding grounds for many species of 

birds, as well as being habitat for many species of mammals, insects, reptiles, 

and crustaceans (Chapman and Wang 2001, Lotze et al. 2006). This results in a 
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unique and diverse mix of marine, freshwater, and terrestrial species, and 

highlights the value of estuaries from a biodiversity perspective.   

 

1.3 Pollution and Estuaries 

 

Contaminants are substances that contaminate air, water, or soil. 

Contaminants can be artificial substances, such as pesticides and polychlorinated 

biphenyls (PCBs), or naturally occurring substances such as metals and oil. 

Contaminants have a variety of chemical properties, structures, and toxicities, 

which can impact estuarine and costal environments. Pollutants are mixtures of 

contaminants that can originate from one or from multiple sources and may 

include both chemical and physical stressors. 

 

Influent rivers are major sources of contaminants that impact estuaries. 

Contaminants are washed off land from point and non-point sources or dumped 

into rivers and streams, which then transport the contaminants downstream, 

eventually depositing them in estuaries and estuarine sediments. Point sources, 

such as effluent discharges, have a discrete origin easily identified. Non-point 

source pollutants have no single point of origin and are deposited on the land 

from a wide range of anthropogenic activities. Agricultural runoff, storm water, 

industry waste, forestry, mining, land conversion, road runoff, sewage, and 

harbour activities all contribute to pollution in estuaries and coastal areas 

(Carpenter et al. 1998). Contaminants are often washed into rivers and streams 

during rain events. Depending on the amount of rain and the time between rain 

events, high concentrations of contaminants may wash into rivers during a single 

downpour (Carpenter et al. 1998, Mallin 2000).  
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1.3.1 Fate and distribution of contaminants in estuaries 

 

Contaminants, once washed into rivers, bind to floating particulate and 

dissolved organic matter, which are then deposited in estuarine sediments 

(Droppo et al. 2001). These accumulate in the sediment matrix where they can 

remain for long periods. Concentrations of contaminants, especially metals, in 

sediments are usually three to five orders of magnitude greater than in the 

overlying water (Bryan and Langston 1992). These contaminants can potentially 

lead to significant adverse effects on biota that live within, or in contact with, the 

sediments.  

 

Contaminants in the sediment matrix can additionally become re-

suspended in the water column due to erosion, wave action, the tides and 

dredging (Droppo et al. 2001, Clement et al. 2004). Suspended metal 

concentrations have been found to be highest during the flood tide rather than the 

ebb tide in Manukau Harbour, New Zealand. This suggests that contaminants are 

likely to remain in some estuaries and not washed out to sea with the tides 

(Williamson et al. 1996). The importance of re-suspended contaminants and the 

deposition of new contaminants depend on the physical characteristics of the 

estuary and the complex forces that govern fate, distribution and the eventual 

bioavailability of these chemicals.    

 

The fate and distribution of contaminants in estuaries is predominantly 

controlled by the salinity, be it via direct or indirect effects. The high ionic 

strengths of very saline waters can “salt out” organic matter and hydrophobic 

organic chemicals from the water column into the sediment. This would result in 

the removal of hydrophobic chemicals that sorb to organic particulates (Brunk et 

al. 1997, Chapman and Wang 2001). Water oxygen levels can also have an 

influence on toxicant distribution. Anoxic conditions, for example, can stimulate 

the mobilisation of some metals (e.g. iron and manganese) from sediments into 
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the water column (Kristiansen et al. 2002). Other metals (e.g. cadmium, copper, 

chromium and zinc) are removed from the water column by reduction or 

sulphate precipitation (Brugmann et al. 1992, Chapman and Wang 2001).  

 

There are a number of other factors related to sediment type and 

composition that can also have important impacts on pollutant distribution, 

accumulation and eventually bioavailability within sediments. Grain size, for 

example, is particularly important, with smaller grain size sediments having 

higher concentrations of metals (Strom et al. 2011). For hydrophobic organic 

chemicals, the proportion of organic carbon within sediments seems to be a 

critical controlling factor (Di Toro et al. 1991, Chapman and Wang 2001). 

Organic carbon has also been shown to play a role in metal and polycyclic 

aromatic hydrocarbon (PAH) sequestration (Rockne et al. 2002). These 

contaminants bind to the organic carbon fraction within the sediment, which has 

implications for both their partitioning and bioavailability (see 1.3.2) (Luoma 

and Davis 1983, Rockne et al. 2002). Another factor influencing chemical fate 

and thus bioavailability is bioturbation, which is caused by meiobenthic fauna as 

they burrow, build tubes, irrigate their dwellings or scavenge for nutrients. 

Bioturbation affects the solute concentrations of contaminants and organic 

carbon in sediment pore-water (the water between sediment particles). 

Bioturbation is less prevalent in highly toxic sediments, potentially reducing 

contaminant concentrations in pore-waters (Aller and Aller 1992, Green and 

Chandler 1994, Hagopian-Schlekat et al. 2001). However, it is the bioavailable 

concentrations of contaminants, rather than their total concentrations, which are 

most relevant to sediment-dwelling organisms.   

 

1.3.2  Bioavailability of contaminants 

 

The forces that govern the fate and distribution of contaminants from the 

overlying water column into estuary sediments also modulate the bioavailability 
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of those contaminants (Chapman and Wang 2001). The bioavailable pollutant 

fraction is that which is available for absorption by the organism, and as such is a 

better representation of the potential toxic impact of a given contaminant 

compared to measures of total concentration (Di Toro et al. 2005). The amount 

of the contaminant that is bioavailable depends on a variety of factors that affect 

distinct contaminants differently, but is a measure that is almost always 

significantly less than the total sediment concentration. As a result different 

sediments potentially have markedly different bioavailable contaminant fractions 

even though they may have similar contaminant loads (Rockne et al. 2002, 

Strom et al. 2011).  

 

Metal bioavailability is predominantly controlled by five factors: 1) 

speciation (e.g. Zn2+ is usually the most bioavailable form of zinc) and 

mobilisation into the interstitial water; 2) transformation into organo-species 

(e.g. methylmercury, alkyllead, and tributyltin); 3) control from major sediment 

metal-binding constituents (e.g. iron and manganese oxides and organic matter); 

4) competition between sediment metals (e.g. copper and silver; zinc and 

cadmium) for uptake sites into organisms as well as binding to sediment 

components; and 5) environmental factors such as pH, redox potential, 

bioturbation and salinity (Bryan and Langston 1992, Simpson and Batley 2003, 

Di Toro et al. 2005, Atkinson et al. 2007, Hutchins et al. 2009, Simpson et al. 

2011, Strom et al. 2011). The bioavailability of each metal is affected differently 

by these factors. For example, arsenic, mercury, lead, and tin have organo-

species which are the most toxic and bioavailable form, while organic content 

and iron oxides have strong effects reducing lead, arsenic, copper, and zinc 

bioavailability (Bryan and Langston 1992). In pore-water concentrations of 

metals have been found to be affected by the presence of other metals, due to the 

different binding strengths of the metals to the sediment matrix, and competition 

for binding sites leading to displacement (Aller and Aller 1992, Hagopian-

Schlekat et al. 2001).   
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PAH bioavailability is predominantly controlled by organic carbon 

content and solid organic matter. PAHs, particularly the higher molecular weight 

forms, sorb to the low-density components of the sediment more than they do to 

the high-density components (Rockne et al. 2002). Once PAHs are sorbed to the 

sediment, desorption and thus bioavailability is significantly affected by the 

molecular structure of the PAH. The preferential partitioning of PAH in the 

different sediment fractions is the main factor controlling bioavailability and 

exposure of organisms to PAHs (Rockne et al. 2002, Haftka et al. 2010). 

Bioavailability of other types of contaminants, such as pesticides, varies greatly 

depending on their chemical properties. However, organic carbon seems to be an 

important controlling factor in many contaminants, both inorganic and organic 

(Chapman and Wang 2001, Simpson et al. 2005). 

 

Bioavailability of contaminants to sediment-dwelling organisms greatly 

depends on their life history and the predominant way that they come into 

contact with these chemicals. The routes of exposure and uptake are primarily 

sediment contact, sediment ingestion, or contact with interstitial pore-waters 

(Green et al. 1993, Simpson and King 2005). Uptake of the contaminant can also 

vary depending on the nature and concentration of the contaminant, the presence 

of other contaminants, as well as the potential mechanisms an organism may 

have to limit bioavailability. For example, the process of digestion can often 

enhance bioavailability by desorbing contaminants from ingested food/sediment, 

while body mucus secretion can prevent contaminants coming into contact with 

permeable body surfaces (Cajaraville et al. 1990, Triebskorn et al. 1998, Khan et 

al. 2008).  

 

Even though bioavailability of contaminants is a critical aspect of 

toxicity, it is difficult to measure in sediments largely due to their heterogeneity 

(Chapman and Wang 2001, Simpson and Batley 2003). Luoma et al. (1995) 
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suggested that the use of a bioassay along with sediment chemistry could be an 

easy way to incorporate the bioavailability of contaminants into environmental 

risk assessments of toxicants to estuarine organisms.  

 

1.3.3  Effects of pollution on estuarine fauna 

 

Contaminants found in estuaries are of greatest concern to benthic 

species that live in, or are associated with, estuary sediments. These species are 

those more likely to be exposed to contaminants chronically, through contact 

and/or ingestion of the sediments. Another concern is with species that forage on 

sediment-associated organisms. These species may be subjected to elevated 

contaminant levels owing to biomagnification through the food chain, i.e. the 

increase of contaminant concentration in tissues with trophic level (Lester and 

McIntosh 1994, DiPinto and Coull 1997). Waterborne contaminants are often 

not as great of a concern as sediment-bound contaminants primarily due to the 

high fluctuations in concentration and distribution due to tidal mixing. In 

addition, the mixing of freshwater and saltwater can enhance the partitioning of 

contaminants into estuary sediments (see 1.3.2) where the contaminants can 

remain for extended periods. 

 

Polluted sediments can have a variety of effects on estuarine fauna, 

including serious impairment and death. At low contamination levels sublethal 

effects are more prevalent over long exposure periods. These may include 

reproductive impairment, decreased growth rate, inhibited development, 

alteration of sex ratios, and intersex (Coull and Chandler 1992, LeBlanc 2007). 

These effects can be subtle and difficult to detect but have serious implications 

for the affected species and the ecosystem integrity.  

 

The effects of contaminants on organisms can be characterised by 

laboratory tests, over short (acute) and long (chronic) time frames. The 
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sensitivity of the organism to a specific contaminant is measured by calculating a 

median lethal concentration (LC50; concentration required to cause mortality in 

50% of the exposed individuals) and/or a median effective concentration (EC50; 

concentration required to effect a 50% change in a non-lethal endpoint). Another 

common toxicological measure is LOEC (lowest observed effect concentration) 

and NOEC (no observed effect concentration). However, the LOEC and NOEC 

have come under scrutiny owing to statistical concerns (Kooijman 1996) and 

their use is limited. These measures do, however, provide baseline data allowing 

for toxicity comparisons between species and contaminants. They also enable 

researchers to relate laboratory responses to effects found in the field.  

 

The effects of contaminants such as metals, PAHs, and pesticides on 

estuarine systems are not well understood. This has obvious negative 

implications for effectively monitoring their impacts. Often contaminants can 

have greater toxicity when mixed, with additive or even synergistic (where 

toxicity is greater than that expected by adding the effects of toxicants) effects 

possible (Forget et al. 1999). This poor knowledge of the basic sensitivity of 

estuarine organisms to contaminants, coupled with a lack of general 

understanding of how chemical mixtures may affect toxicity, makes risk 

assessment of estuarine sediment toxicity difficult. 

 

1.4 Estuarine Monitoring 

 

Traditionally, estuarine monitoring has been performed by testing water 

and sediment for key contaminants. This involves chemical analysis of overlying 

water and/or sediments, using solid-phase or solvent extractions and then 

comparing those values to water or sediment quality values (SQVs) (Chapman 

and Wang 2001). SQVs are derived by integrating sediment chemistry, 

toxicology and biology to develop a threshold value for a particular contaminant. 

Concentrations that are above the SQV can potentially have negative biological 
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impacts (Abrahim et al. 2007). However, SQVs are only a numerical value for 

the level of contamination. It is difficult to translate those values into a 

meaningful evaluation of toxicity and environmental risk, especially considering 

the complex mechanisms controlling bioavailability of contamination, and the 

complicating effects of contaminant mixtures. SQVs are further compromised in 

that they are often based on limited toxicity data obtained from a small number 

of organisms (which may exclude highly sensitive species) and developed from 

international data (ANZECC 2000). This is particularly problematic in a setting 

such as New Zealand that has a unique indigenous estuarine fauna with poorly 

described sensitivity to environmental contaminants. These factors can reduce 

the efficacy of SQVs as tools for estuarine monitoring, and actual toxicity of 

sediments can potentially be greater than that predicted by the SQVs. In addition, 

it can be difficult to understand effects on the component species, communities 

and populations when simply monitoring for the presence and quantity of the 

pollutant itself. Better understanding of the responses of key species greatly 

heightens the value of monitoring and can allow a more timely and targeted 

response to issues otherwise missed by conventional monitoring systems.  

 

There are increasing research efforts focussed on using estuarine species 

as indicators of estuarine pollution, and incorporating such species into 

bioassays. Bioindicator species are those that, due to their specific life histories, 

are advantageous for assessing toxicity. Ideally, they respond to contaminants in 

a predictable, observable, and quantifiable manner (Adams and Greeley 2000, 

Carignan and Villard 2002). The development of bioindicator species has 

allowed for improved methods of assessing sediment toxicity (Chandler and 

Green 2001). Species inhabiting the meiobenthos are particularly good 

candidates for assessing the health of estuarine sediments. These are generally 

small invertebrates (less than 1mm in length and therefore include the majority 

of estuarine copepods), and spend the majority of their life-cycle in sediments 

(Hicks and Coull 1983). Aside from meiobenthic copepods (see section 1.4.1), 
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amphipods, polychaetes, clams, oysters, and mussels are all being used as 

bioindicator species in a variety of bioassays to assess sediment toxicity 

(Greenstein et al. 2008).  

 

 Most bioindicator species are used in bioassays, which are controlled 

laboratory exposures where the bioindicator species are exposed to water or 

sediments to assess toxicity. Bioassays using whole sediment exposures allow 

for environmentally-realistic exposure conditions, similar to those that the 

organisms would be exposed to in an estuary, to be simulated in the lab 

(Chandler and Green 1996, Bejarano et al. 2004). In addition, these bioassays 

assess the toxicity of the complex assortment of contaminants in the sediment. 

SQVs can only assess the individual contaminant concentrations and do not 

account for the toxicity of pollutant mixtures (Chapman and Wang 2001).  

 

1.4.1  Copepods and their use as bioindicators of pollution 

 

Copepods (Subclass: Copepoda) are an important group of species that 

are increasingly being used to monitor estuarine sediment toxicity. They are a 

very diverse group of crustaceans, and can be found in both fresh and marine 

waters. They are the major component of zooplankton and are a vital link in the 

transfer of nutrients to higher trophic levels. Copepods are small (usually less 

than 10 mm length), dioecious, and reproduce sexually. Most are filter feeders 

and feed on phytoplankton and detritus (Hicks and Coull 1983). Copepods have 

a life cycle consisting of six naupliar stages, five copepodite stages, and an adult 

stage, which is sexually dimorphic. Females usually produce five to eight 

clutches in their lifetime, extruding egg sacs with between five and nine embryos 

per clutch (Hicks and Coull 1983, Huys et al. 1996). Of the three main orders of 

copepods, the Harpacticoida are predominantly benthic dwelling unlike the two 

other orders, Calanoida and Cyclopoida, which are largely pelagic. Harpacticoid 

copepods are important components of meiobenthic communities, being one the 
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most abundant taxa in sandy and muddy marine sediments (Hicks and Coull 

1983). 

 

 Harpacticoid copepods are being increasingly used in bioassays to assess 

sediment toxicity. They are advantageous for this purpose in that they have short 

life spans (~28 days), high reproductive rates, and are easy to culture in the lab. 

These properties are ideal for assessing sub-lethal effects such as impaired 

reproduction, growth, and development (Kovatch et al. 1999, Chandler and 

Green 2001, Bejarano et al. 2004, Greenstein et al. 2008). They have close 

association with contaminated sediments, which makes them very susceptible to 

chronic exposure to contaminants (Coull and Chandler 1992, DiPinto and Coull 

1997). Harpacticoid copepods and other meiobenthic species can be exposed to 

contaminants through pore-water or sediments. Pore-water is often characterised 

as having higher levels of contaminants than the overlying water column. 

Therefore pore-water exposure combined with exposure via the sediment means 

that harpacticoid copepod species are likely to be subjected to the full toxic 

impact of a contaminated sediment.  

 

There are several species of harpacticoid copepods that are currently 

being used in sediment bioassays, including: Amphiascus tenuiremis, 

Microarthridon littorale, Tigriopus brevicornis, Tisbe battagliai (Forget et al. 

1998, Kovatch et al. 1999, Hagopian-Schlekat et al. 2001, Bejarano and 

Chandler 2003). However, a bioassay using a New Zealand species of marine 

copepod has not been fully developed. Having a bioassay that uses a native 

species of copepod for monitoring estuarine contamination is important as this 

will give a better understanding of how pollution is affecting fauna in New 

Zealand’s estuaries. This will complement the existing methods for estuarine 

monitoring currently used in New Zealand: SQVs and shellfish (e.g. cockles and 

mussels) monitoring. Having several different bioassay methodologies with 



 

16 
 

different species allows for a more accurate, sensitive, and robust assessment of 

estuarine contamination (Greenstein et al. 2008).  

 

1.4.2  Bioindicators of pollution in New Zealand  

 

There have been only limited efforts in establishing bioassays for aquatic 

sediments in New Zealand. There have been two studies that have used native 

amphipod species for monitoring estuary contamination. King et al. (2006) 

looked at the sensitivities of eight species of estuarine amphipods from Australia 

(6 species) and New Zealand (2 species), to zinc- and copper-spiked sediments. 

The authors suggested that the New Zealand amphipod Melita awa be used as a 

test species and that a whole sediment bioassay with this species should be 

developed.  Another study using a native New Zealand species of amphipod, 

Paracorophium excavatum, as a bioassay species was that of Marsden and Wong 

(2001), who used copper-spiked sediments to develop the bioassay. Again, 

however, this study was only preliminary in nature and further testing is required 

to better evaluate the suitability of this species as a bioindicator. Dupree and 

Ahrens (2007) successfully used the amphipod Melita sp. to test PAH toxicity 

from contaminated Auckland estuary sediments. The results of this study 

indicate Melita is a potentially useful bioassay organism for New Zealand 

sediments. While these studies offer some promise as to the use of amphipods as 

bioassay organisms, there is still a lack of bioassays being conducted on field 

sediments in monitoring schemes. Additionally, in studies where responses of 

amphipods and harpacticoid copepod species have been tested under identical 

conditions, the copepods have been shown to be more sensitive than amphipods 

(Greenstein et al. 2008). Consequently copepods provided a more sensitive 

assessment of contamination (Greenstein et al. 2008).  

 

 Currently there is not a validated sediment bioassay using harpacticoid 

copepods to assess contamination of New Zealand estuaries. There has been 
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some preliminary work done by Hack et al. (2008a, 2008b) that identified a 

suitable New Zealand species of harpacticoid copepod, Robertsonia propinqua, 

and performed some initial experiments towards development of a bioassay for 

assessing toxicity of estuarine sediments. However, there has not been any 

research investigating the suitability of other New Zealand native harpacticoid 

species for estuarine settings, or the relative sensitivity of the array of native 

species to sediment contamination (an important consideration for bioassays). 

Willis (1999) examined the acute and chronic toxicity of pentachlorophenol with 

three native freshwater New Zealand copepod species, and later supplemented 

this study with a freshwater plankton mesocosm study (including copepods, 

rotifers, and phytoplankton) on the effects of pentachlorophenol (Willis et al. 

2004). These studies provided very important information for the possible 

development of assessment tools for freshwater environments. However, the 

species used in this study are not found in estuaries and live in the water column, 

so they are not suitable test species for estuarine sediment contamination. 

Despite important advances in recent years, more work needs to be undertaken to 

provide substantial knowledge of the effects of pollution on native fauna, instead 

of relying on toxicity data from species not relevant to local settings to make 

management decisions (ANZECC 2000, King et al. 2006). 

 

1.5  Pollution in New Zealand estuaries 

 

New Zealand estuaries have been under increasing pressure from 

anthropogenic forces, especially from rapid urban growth in the major centres 

and primary industry processes in rural areas. In urban areas, the major sources 

of contamination are storm water and sewage effluent. Increased urban growth 

has, and will continue to, put more pressure on infrastructure (e.g. sewage 

treatment works and storm water drainage) which will result in increased 

contamination in estuaries and surrounding ecosystems (MFE 1997, Hack et al. 

2008a). Rural areas are also of concern, due to runoff from agriculture, 
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commercial animal production, and forestry (ARC 2003, ECAN 2007, Hack et 

al. 2008a, 2008b). The rapid recent nationwide conversion of large areas of dry 

land farming to irrigated dairy production is a prime example of a future run-off 

contaminant increase. The contaminants that cause the greatest concern are 

metals and PAHs from storm water and industrial runoff, pesticides from 

agriculture and forestry, and endocrine disrupting compounds from sewage 

effluent (ARC 2003, ECAN 2007). 

 

Although estuaries are established as at-risk ecosystems, there is 

relatively little information on the specific levels of contaminants and the degree 

of risk these pose in a New Zealand setting. However, New Zealand has adopted 

water quality guidelines (WQG) and sediment quality guidelines (SQG) for 

estuaries, developed by the Australia and New Zealand Environmental and 

Conservation Council (ANZECC 2000). Two interim sediment quality guideline 

(ISQG) values for each contaminant are linked to threshold concentrations for 

high (ISQG-H) and low (ISQG-L) biological impacts. Concentrations of 

contaminants below the ISQG-L value are considered acceptable (Abrahim et al. 

2007). Table 1.1 lists reported concentrations of contaminants in estuaries 

around New Zealand. Most studies have focused on metal contaminants and 

have concentrated on the Auckland and Wellington regions. Even though these 

two regions have not been used as study sites for research in this thesis, a brief 

description of the extent of contamination in both of these regions follows as it 

provides information on the likely extent of contamination in other field 

locations as well as helping to identify priority pollutants. 
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In Auckland, the largest urban area in New Zealand, the development and 

expansion of the city has placed increased pressure on the three main 

waterways/estuaries: Manukau and Waitemata Harbours and the Tamaki Estuary 

(Williamson et al. 1996, Abrahim and Parker 2002). The two main metals of 

concern in the Auckland region are lead and zinc, with concentrations of lead as 

high as 247 µg/g being reported in Manukau Harbour sediment, which is above 

ISQG-H value of 220 µg/g (Aggett and Simpson 1986, ANZECC 2000). Zinc 

Table 1.1 Concentrations of contaminants found in New Zealand estuaries. 

Location  Contaminant  
Max. Sediment 
Conc. µg/g 

Source  

Manukau Harbour  Cu 70  Aggett & Simpson 1986 
 Cr 107   
 Pb 247   
 Cd 0.19  Williamson et al. 1996 
 Cu 35   
 Mn 1220   
 Pb 57   
 Zn 166   
 Total PAH 1.52  Wilcock & Northcott 1995 
Tamaki Estuary  Cd 1.49  Abrahim & Parker 2002 
 Cu 60   
 Pb 200   
 Zn 366   

 Cd 0.24  Abrahim et al. 2007 
 Cu 45  
 Pb 77   
 Zn 252   
Porirua Harbour Cu 93  Glasby et al. 1990 
 Co 20   
 Cr 101  
 Ni 27  
 Pb 170   
 Zn 435   
Wellington Harbour*                As 14  Pilotto et al. 1998 
 Cr 65   
 Cu 30   
 Ni 26   
 Pb 79   
 Zn 178    
Avon-Heathcote Estuary Cu 23 ECAN 2007 
 Cr 39   
 Pb 35   
 Ni 17  

 Zn 157   

* Values obtained from sediment traps sampling floating sediment particles in the water column, not benthic 
sediments. 
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and lead have both been found in concentrations above the ISQG-L values in the 

Tamaki Estuary (Wilcock and Northcott 1995). 

 

 In Wellington, contamination of copper, zinc, and lead has been found at 

high levels around storm water inputs (Pilotto et al. 1998). The lower reaches of 

Waiwhetu Stream, which flows into Wellington Harbour, have been shown to be  

highly contaminated with zinc and lead, metals enriched in storm water run-off 

(Deely et al. 1992), while  Porirua Harbour, 20km north of Wellington, has been 

found to be moderately to strongly contaminated with lead and zinc (Glasby et 

al. 1990).While these two estuaries have not been assessed in this thesis the 

levels of contamination provide some background to the major contaminants of 

concern in New Zealand.   

 

1.5.1  Christchurch estuary contamination 

 

Since September 4th 2010 Christchurch has experienced an earthquake 

sequence unlike any other in recorded human history, with violent ground 

acceleration, vertical and horizontal displacements and widespread liquefaction. 

The earthquakes have considerably altered the city, with widespread destruction, 

abandonment of land, and closure of the central city. The city’s sewage treatment 

works were shut down, and along with leaks in the sewer network, this resulted 

in raw sewage being be pumped directly into both the Avon and Heathcote 

Rivers and the Avon-Heathcote estuary. The rate of sewage input into these 

waters was determined to be as high as 50,000 m3 per day (Zeldis et al. 2011).  

 

The estuary itself saw major changes in topography and was largely 

covered with liquefaction, which added large amounts of archaic sediment to 

existing surface sediments. The earthquakes have impacted invertebrate 

community structure in the estuary, with reduced diversity of crabs and snails 

(Zeldis et al. 2011). In the Avon and Heathcote Rivers there have been 
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alterations noted in crustacean and caddis fly populations (James and McMurtrie 

2011).  The lasting effects of the earthquake on the estuary are unknown. 

 

1.6 Types of Estuary Contaminants  

  

Estuaries contain a complex mixture of contaminants, many of which can 

pose significant threats. The major types of contaminants can be classified into 

several categories: metals, pesticides, PAHs, polychlorinated biphenyls (PCBs), 

and endocrine disrupting compounds (EDCs). Each of these contaminant types 

can have significant and diverse adverse effects on exposed biota.  However, as 

there are so many different contaminants that affect estuaries, reference 

contaminants are often used to assess the suitability of a bioassay species. 

Reference chemicals from a subset of these major groups of contaminants have 

been chosen for this thesis, each with a distinct mode of action and chemical 

structure. Furthermore, each of the reference contaminants chosen is a chemical 

of concern for estuaries worldwide (Bryan and Langston 1992, Kennish 1992, 

Ackerman 2007). The three reference contaminants are: zinc (a metal), atrazine 

(a pesticide) and phenanthrene (a PAH). Toxicological profiles of the 

contaminant categories, and of the selected reference contaminants, are detailed 

below. 

 

1.6.1  Metal contamination 

 

It is becoming increasingly common for estuaries to have high 

concentrations of metals, generally resulting from human activities. These high 

metal concentrations are a cause for concern. The most common 

anthropogenically-introduced metals in estuarine sediments are copper, 

cadmium, nickel, lead, and zinc (De Groot 1995). In addition, metals such as 

arsenic, chromium and mercury can also be of great concern to estuaries. Metals 
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eventually find their way into estuaries from processes associated with 

urbanisation, weathering, road and storm water runoff, anti-fouling paints and 

industry.  

 

The toxicity of individual metals can vary significantly. Some metals are 

required by all organisms to survive. Known as micro-nutrients, metals such as 

iron, zinc, and copper, are necessary at low levels; however, when they are 

present in high concentrations they can have negative effects. There are also 

metals that have no positive actions at any concentration, these are sometimes 

termed the ‘heavy metals’ and include cadmium and mercury. The toxicity of 

different metals has been suggested to correspond to sulphur affinity, with metals 

that have a higher affinity for sulphides having a higher toxicity (Hook and 

Fisher 2002). These inherent differences in toxicity complicate monitoring 

approaches where the main information collected is regarding environmental 

metal burdens.  

 

 The bioavailability of metals is complex but plays an important part in 

metal toxicity, as discussed previously (see 1.3.2). In general, bioavailability 

dictates bioaccumulation, which, for most metals, is directly related to toxic 

impact (Hare 1992, Simpson 2005, Strom et al. 2011). The exposure of copepods 

to metals can occur via direct contact with sediments and water and also through 

food intake. Each of these exposure pathways will impact metal bioavailability 

and toxicity in a distinct manner. Studies in calanoid copepods have shown that 

assimilation of metals is greatest when ingested in algal food (Hook and Fisher 

2001b, 2002), indicating a higher bioavailability of metals through the dietary 

pathway. The influence of direct contact and ingestion of contaminated sediment 

particles on metal bioavailability and toxicity in meiobenthic organisms, such as 

harpacticoid copepods, is complex (Hare 1992, Chandler et al. 1994, Di Toro et 
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al. 2005, Simpson 2005). The role and importance of sediment metal in terms of 

toxicity is likely to vary between species due to differences in lifestyles within 

sediments and the different composition of the sediments that they inhabit 

(Simpson 2005, Simpson and King 2005).  

 

1.6.1.1 Zinc toxicity 

 

Zinc is one of the major problematic metals in New Zealand’s estuaries 

and estuaries around the world (MFE 1997, Chapman and Wang 2001, Lotze et 

al. 2006, MFE 2007). Zinc enters the environment through storm water, urban 

runoff and wastewater, and has been found in concentrations above the ISQG-L 

values in the Tamaki Estuary in Auckland (Abrahim and Parker 2002). Other 

areas that have been found to be severely contaminated include Waiwhetu 

Stream Estuary in Wellington Harbour (Deely et al. 1992) and Porirua Harbour 

(Glasby et al. 1990). 

 

Zinc (as Zn2+) can be very toxic to plants, fish and invertebrates. Zinc is 

thought to share absorptive pathways, and thus compete for absorption, with 

other nutrient ions, such as calcium, copper, and iron, potentially causing 

deficiency and imbalance of these elements (Santore et al. 2002). In crustaceans 

zinc can effect exoskeleton integrity (Ahearn et al. 1994, Poynton et al. 2007) 

and disrupt vitellogenesis (Hook and Fisher 2002). Zinc is problematic as it is 

used in many applications. In urban settings the most common source of 

environmental zinc is galvanised steel, which leaches zinc into rain runoff as it 

weathers.  
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1.6.2  Pesticide contamination 

 

Pesticides pose significant risks to estuaries around the world, owing to 

important impacts on non-target organisms, including aquatic organisms exposed 

via agricultural runoff. In fact pesticides are often more toxic to aquatic 

organisms than to their target species (Naqvi and Vaishnavi 1993). Impacts in 

aquatic systems can extend to disruption of the food chain, leading to an altered 

food web and in serious cases can cause imbalance in entire ecosystems 

(Kennish 2002). In estuaries, micro-crustaceans and plankton can be the most 

affected organisms (Forget et al. 1998).  

 

Pesticide contamination is often difficult to control due to the wide 

application and use of these chemicals in commercial agriculture and on private 

residential lands. Millions of kilograms of active pesticides, including multiple 

forms of insecticides, herbicides, and fungicides, are applied in coastal 

watersheds worldwide (Donaldson et al. 1999). Pesticides often do not remain 

where applied and instead run off with rain and irrigation into waterways, before 

being eventually transported into estuaries (DeLorenzo et al. 1999). Even though 

pesticides pose significant environmental risk, their use is unlikely to decrease. 

Pest-induced economic losses are in the billions of dollars worldwide and 

pesticides also perform roles in human health, eliminating vectors responsible for 

diseases such as malaria and West Nile virus (Karpati et al. 2004, Aggarwal et al. 

2006, Ackerman 2007). This reliance on pesticides and the continuing 

development of new pesticides poses a ‘catch-22’ for environmental protection. 

 

New Zealand, as an agricultural nation, uses pesticides extensively on 

pastoral land. However pesticides are also used in non-commercial environments 

for the control of pest species such as the Australian brush-tail possum, wasps, 

and the invasive weeds old man’s beard and gorse (Henderson et al. 1999, MFE 

2007). The majority of pesticides used in New Zealand are herbicides (68%) 
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followed by fungicides (24%) and insecticides (8%) (MFE 2007). These 

pesticides may be leached into surface water and ground waters, posing risks to 

both the environment and human health (Sarmah et al. 2004).  

 

Pesticides can vary in their mode of action. For example DDT 

(dichlorodiphenyltrichloroethane) and synthetic pyrethroids are neurotoxins 

(Costa et al. 2008). Organophosphorus and carbamate pesticides also impact the 

nervous system through a specific inhibitory effect on acetylcholinesterase 

(Fukuto 1990). Many rodenticides (such as warfarin) are anti-coagulants 

(Thijssen 1995), while herbicides often inhibit photosynthesis (Ensminger and 

Hess 1985). Mode of action can also vary between the target and non-target 

organisms. For example, DDT, while primarily a neurotoxin, can also be 

mutagenic and cause feminisation in birds (Fry and Toone 1981). Consequently 

pesticides may induce a wide variety of effects in exposed organisms.  

 

Other factors will also impact toxicity of pesticides, and are of special 

relevance to the exposure of organisms in non-target environments such as 

estuaries. For example, different pesticides have distinct environmental half-

lifes, different solubilities in water, and variable leaching potential to 

groundwater and rivers (Sarmah et al. 2004). Each of these factors will influence 

their bioavailability and toxicity to estuarine species. Modern pesticides tend to 

have shorter half-lives and are not as persistent as long-established pesticides 

such as DDT, but if used intensively can still pose a threat to estuarine organisms 

(Ongley 1996, Plimmer 2001). In addition, even though many pesticides are no 

longer in extensive use (often owing to environmental concerns), they can still 

leave a legacy. These pesticides, and particularly their metabolites and 

breakdown products, can remain in sediments long after they have been replaced 

by modern pest-control chemicals, and can therefore continue to have negative 

impacts on estuarine fauna (Plimmer 2001).  
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1.6.2.1  Atrazine 

 

Atrazine (2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine) is one of 

the most widely and heavily used herbicides in the world. It is applied in over 80 

countries worldwide, and in the US alone, over 35 million kg is applied to 

agricultural land each year (Bejarano and Chandler 2003). In New Zealand, over 

245,000 kg of triazine herbicides are used each year and this level of use has 

caused concerns regarding groundwater contamination (Close and Rosen 2001). 

For example, 76% of pesticides found in groundwater are triazine herbicides, 

and levels of atrazine up to 37 µg/l have been measured (Close 1993, Close and 

Rosen 2001). Atrazine is most commonly used for broad leaf and grassy weed 

control and is heavily used in agriculture, and turf and lawn care. It has been a 

cause for concern as it has high solubility in water (up to 28 mg/l), a half-life of 

36-37 days in water, and has been found at concentrations up to 62.5 µg/l in 

estuaries in the US (Bejarano and Chandler 2003, Bejarano et al. 2005). Atrazine 

has been found to disrupt steroidogenesis in the frog Xenopus laevis causing 

demasculinisation at concentrations as low as 1 µg/l (Hayes et al. 2002). In 

rainbow trout (Oncorhynchus mykiss) concentrations of atrazine as low as 5 µg/l 

have been shown to cause inflammatory damage to gills and kidney (Davies et 

al. 1994). 

 

As atrazine is a herbicide it is not unexpected that it has significant 

effects on estuarine plants, especially algal phytoplankton. A study by 

DeLorenzo et al. (1999) found that atrazine, and its metabolite deethylatrazine, 

reduced chlorophyll a and phototropic carbon assimilation in estuarine 

phytoplankton after 72 hours at concentrations as low as 50 µg/l. This 

subsequently impacted phototropic biovolume, and dissolved oxygen. In 

addition, six genera of algal phytoplankton were lost from the atrazine 

treatments. This reduction in primary production in estuarine food webs has 

implications for food and nutrient availability for higher trophic levels.  
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1.7  Polycyclic aromatic hydrocarbon (PAH) contamination 

 

PAHs are some of the most common contaminants in aquatic systems. 

They are also among the most toxic, displaying potent mutagenic and 

carcinogenic effects (Kennish 1992). PAHs are a very diverse group of 

compounds structurally characterised by several joined aromatic rings, although 

the majority of PAHs that are found in sediments contain 2-5 aromatic rings. Of 

all contaminants that pose a threat to aquatic ecosystems it is often PAHs that are 

the most toxic (Kennish 1992, Pane et al. 2005). The three most common PAHs 

that are responsible for this toxicity are pyrene followed by flouranthene, and 

phenanthrene (Bellas and Thor 2007).  

 

PAHs occur naturally from inefficient burning as well as being found in 

coal, tar, and crude oil deposits. However, PAHs pose a threat to the 

environment predominantly from human activities, especially those associated 

with crude oil, refined petroleum and diesel fuels (Latimer and Zheng 2003, 

Geffard et al. 2005), which reach waterways largely through road runoff and 

atmospheric deposition of incomplete combustion products (Kennish 1992, 

Carman and Todaro 1996, Lotufo 1998a, Lima et al. 2005). The hydrophobicity 

of PAHs determine their ultimate fate in the aquatic environment. As 

hydrophobic chemicals PAHs are sequestered by organic particles and 

eventually accumulate in sediments, and because they are fat soluble they also 

have the potential to bioaccumulate in exposed organisms (Lotufo 1998a). In 

industrial and urban areas PAH concentrations of 2 mg/kg have been found in 

estuarine sediments (Budzinski et al. 1997). PAH contamination can be lethal to 

benthic invertebrates, while sublethal effects include decreased growth, slowed 

development time, reduced reproduction, and decreased feeding rate (Lima et al. 

2005, Bellas and Thor 2007, Fleeger et al. 2007, Silva et al. 2009). 
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PAH contamination of estuaries can have implications for the estuarine 

community structure. Studies using sublethal concentrations of PAH in a 

meiobenthic mesocosm have shown that PAHs affect meiobenthic communities 

by altering sex ratios in copepod species (Carman and Todaro 1996). Increased 

proportions of females, due to increased male mortality, have been noted. 

Stunted development of the nauplii has also been attributed to PAH exposure. 

PAH exposure also caused increased abundance of nematodes and reduced 

copepod abundance (Carman et al. 1995, Carman and Todaro 1996). Even these 

relatively subtle alterations in community structure can have important 

implications for estuarine benthic food webs. For example, reduced abundance 

of copepods could affect the juvenile fish that feed largely on these animals 

(DiPinto and Coull 1997).   

 

In New Zealand PAH contamination has been noted adjacent to major 

urban areas. For example, Auckland’s Waitemata and Manukau Harbours and 

Tamaki Estuary (Dupree and Ahrens 2007), and estuaries associated with 

Christchurch (Ermens 2007), Napier, and Invercargill (Dr. James Ataria, 

personal communication) have all reported elevated PAH levels in sediments. 

Concentrations as high as 3.7 µg/g total PAH have been measured (Holland et 

al. 1993). 

 

1.8 Thesis Objectives  

 

The overall goal of the thesis is to develop and validate toxicity testing 

methodologies to assess the impacts of pollution in estuarine sediments using a 

native New Zealand harpacticoid copepod species as a bioindicator. This 

copepod bioassay will help to assess estuarine and marine health in New Zealand 

and identify areas that are toxic and having adverse impacts on local fauna.  
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 The central objectives and key research questions are: 

 

1. Selection of a suitable native New Zealand harpacticoid copepod 

bioassay species:  

 

Which species of native harpacticoid copepod are the most sensitive to 

toxicants? 

 

Are these species able to be cultured in the laboratory? 

 

Do they have a life history that allows them to be a good bioassay 

species? 

 

2. Validation of sediment bioassays: 

 

Does the bioassay species respond to exposed reference toxicants in a 

dose-dependent manner? 

 

How does the sensitivity compare to other bioassay species? 

 

Which endpoints are the most sensitive and how do they relate to each 

other (i.e. lethal v. sublethal endpoints)?  

 

How do the toxic responses vary between reference contaminants?  

  

3. Laboratory testing of field-collected sediments:  

 

Is the bioassay able to be used on a variety of sediments?  

 

Is the bioassay able to identify toxic sediments?  
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4. Population level responses to low level contamination habitats: 

 

How do low levels of contamination affect population size and structure? 

 

Does the sensitivity to the exposed pollutant change? 

 

Does the sensitivity to an unexposed pollutant change? 

 

1.9 Thesis Structure 

 

This thesis is presented as six separate research chapters with a general 

discussion following in the 8th chapter. Because of the nature of each chapter 

there is some repetition in the methodologies.  

 

Chapter 2 investigates the ecology of New Zealand harpacticoid copepod 

species and defines ranges of physical sediment matrix characteristics 

inhabitable by candidate bioassay species. Physiochemical parameters and 

species abundance were sampled along three transects in Portobello Bay, Otago 

Harbour. Generalised linear mixed models were used to correlate abundance to 

physiochemical parameters. This chapter has been accepted for publication to the 

New Zealand Journal of Marine and Freshwater Research. 

 

Chapter 3 details the selection of a native harpacticoid bioassay species 

by a detailed comparison of life history and sensitivities to contaminants. This 

chapter also describes the methods for collection and culturing of harpacticoid 

copepods in the laboratory. Based on the multiple characteristics examined 

Quinquelaophonte sp. was selected as the best bioassay species. This chapter has 

been accepted for publication to Ecotoxicology and Environmental Safety  
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Chapter 4 describes the methods for spiking estuarine sediments for use 

in bioassays. The methods used to measure sediment and pore-water 

concentrations are also investigated. Zinc and phenanthrene are used as model 

spiking compounds as they required two different methods for spiking.  

 

Chapter 5 details the methods and validation of the acute and chronic 

bioassays using three reference contaminants. Each bioassay uses two endpoints, 

mortality and a sublethal measurement of impact. Acute/chronic ratios are also 

examined. Quinquelaophonte sp. proved to be a very sensitive bioassay species, 

with chronic inhibition of reproduction being the most sensitive endpoint. 

 

Chapter 6 shows the implementation of the bioassays to a variety of 

different estuaries around New Zealand. These estuaries consist of a range of 

sediment types from very fine silty sediments to low silt medium sand (300 µm) 

sediments. Whole sediment toxicity testing was successful in identifying toxic 

sediments, as well as proving the versatility of the bioassay species to different 

sediment types.  

 

Chapter 7 explores the impacts of multiple generation exposures to zinc. 

Changes in population abundance and acute sensitivity to zinc and phenanthrene 

are examined. It was found that population numbers were significantly decreased 

at 134 µg/g zinc and changes in sensitivity were observed at concentrations of 82 

µg/g zinc and above.  

 

Chapter 8 is a general discussion of the findings of this thesis. It 

discusses how the bioassays described in this thesis can be incorporated into 

regulatory frameworks and environmental risk assessment. Suggestions for 

further research are also provided. 
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The Appendix includes an example of the application of the 

Quinquelaophonte sp. aquatic bioassay for the environmental risk assessment of 

oseltamivir (Tamiflu®) and its photodegradation products. The assessment of the 

ecotoxicity was conducted in conjunction with Alfred Tong of the University of 

Otago who examined the ultraviolet degradation of oseltamivir. This work has 

been published in Environmental Chemistry (2011, 8: 182-189).
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2.  

The effects of  environmental 

gradients on the distribution of  

harpacticoid copepods in an intertidal 

flat, Portobello Bay, Otago Harbour, 

New Zealand 

 

Adapted from: 

 

Stringer TJ, Korsman JC, Peralta G, Keesing V, Tremblay LA, Glover CN. 

Effects of environmental gradients on the distribution of harpacticoid copepods 

in an intertidal flat, Portobello Bay, Otago Harbour, New Zealand. New Zealand 

Journal of Marine and Freshwater Research, in press. 

 

Co-author contributions: 

 

• J. Korsman played a significant role in the sampling and enumeration of 

the copepods as well as with sediment characterisation.  

• G. Peralta assisted with the multivariate data analysis and interpretation. 

• C. Glover, V. Keesing and L. Tremblay supervised the research and 

provided feedback on the manuscript 

 



 

34 
 

2.1 Introduction  

 

Harpacticoid copepods are small (<1 mm in length), predominantly 

benthic-dwelling invertebrates and are among the most abundant of all taxa 

within estuarine and marine sediments (Hicks and Coull 1983, Coull 1999, 

Rombouts et al. 2009). They are globally distributed and ecologically important 

as a food source for fish (Coull 1990, Sarvala 1998, Rombouts et al. 2009). They 

exhibit a short life cycle (c. 21 - 28 days), show rapid reproductive rates and a 

high sensitivity to environmental contaminants (Huys et al. 1996, LeBlanc 

2007). By virtue of these characteristics, harpacticoid copepods are being 

increasingly used as indicator species to monitor estuarine health (Chandler and 

Green 2001, Greenstein et al. 2008). This provides an impetus for understanding 

more about their general biology and, in particular, their ecology. A first step in 

this process is assessing the physical factors responsible for harpacticoid 

copepod distribution. Such knowledge will assist bioassay development and 

application by identifying optimum physicochemical sediment properties for 

cultured animals.  

 

Factors responsible for harpacticoid distribution have been well 

documented (for a review see Hicks and Coull 1983). On a global scale, 

temperature is the key parameter that affects copepod diversity (Rombouts et al. 

2009). However, at an estuary scale (m2–ha), copepod distribution primarily 

depends on physical factors such as salinity, tidal exposure, sediment size and 

oxygen concentration (Findlay 1981, Brito et al. 2009). On a habitat scale (cm2–

m2) biological variables increase in importance (Findlay 1981, Sandulli and 

Pinckney 1999, Azovsky et al. 2004), although these biological factors are often 

themselves shaped by physical factors (Hogue and Miller 1981, Hicks and Coull 

1983, De Troch et al. 2006, Cacabelos et al. 2009). The factor which has been 

suggested to have the most influence on species distribution is sediment size 

(Findlay 1981, Hicks and Coull 1983, Azovsky et al. 2004); in particular the 
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proportion of silty, <63 µm, sediment fractions (Hicks and Coull 1983, Udalov et 

al. 2005, Cacabelos et al. 2009). 

 

Harpacticoid copepods have affinities to certain substrate types due to 

life history traits (Chertoprud et al. 2007). There are species of copepods that are 

epibenthic and live on the surface of sediments, species that live in the interstitial 

space between sediment particles, and those that burrow through sediments 

(Hicks and Coull 1983, Walker–Smith 2004). Different sediment types will be 

preferred by some species over others and this is often reflected in their 

morphology and biotype (Chertoprud et al. 2007). For example epibenthic 

species are often larger with well–defined limbs and are usually bristly, whereas 

burrowing species are often smaller with more streamlined bodies, shorter limbs, 

and bristles (Chertoprud et al. 2007). There are also generalist intertidal species 

that are a mix of the burrowing, interstitial and epibenthic forms (Hicks and 

Coull 1983, Chertoprud et al. 2007). Most copepods are found in the first 

centimetre of surface sediment and this is especially true for finer sediments, 

where oxygen levels may limit copepod abundance and depth (Veiga et al. 

2010).  

 

Copepods are known to have a patchy distribution especially in muddy 

sediments where patch size can be smaller than in more sandy sediments 

(Sandulli and Pinckney 1999). Several studies have shown this patchy 

distribution to be related to benthic microalgae assemblages (Blanchard 1990, 

Santos et al. 1995, Sandulli and Pinckney 1999). However, this is only true for 

some copepods, due to variation in the ability of species to move between 

patches (Decho and Fleeger 1988, Sandulli and Pinckney 1999).  

 

There is currently little known about most of the species of harpacticoid 

copepods in New Zealand. If the New Zealand species follow the trends 

exhibited by other species worldwide, then sediment size will be a dominant 
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factor affecting harpacticoid distribution. However, other factors, such as 

salinity, organic content, location in tidal reach, and pH also affect copepod 

distribution (Hicks and Coull 1983).  

 

Gaining knowledge regarding the physical factors responsible for 

harpacticoid copepod distribution will assist bioassay development and 

application. This allows the optimum physicochemical sediment properties 

which support high densities of the copepod species of interest to be replicated in 

the laboratory for the culturing of copepods. This will also provide physical 

limits for bioassay application and allow targeting and sampling of field 

populations on the basis of sediment properties. This is a critical requirement for 

the development of a harpacticoid copepod bioassay as a sediment toxicity 

methodology. In addition, when utilising field contaminated sediments in 

laboratory bioassays, the test species is often not found at the location. This 

could be due to the fact that the sediment is contaminated or that the physical 

properties of the sediment are not favourable for the bioassay species. 

Understanding physical limits of bioassay species is vital to the outcome of the 

bioassay. If the sediment properties are not suitable for a species, and these limits 

are not understood, it could create false positives whereby toxicity is attributed to 

patterns shaped by simple physical sediment characteristics. 

 

The main objectives of this chapter were to (1) describe the 

environmental gradients and the spatial distribution of harpacticoid copepods in 

a non–discharging, low energy New Zealand intertidal zone consisting of a 

relatively uncontaminated sand flat, and (2) determine factors potentially 

responsible for the copepod distribution. In addition the results from this study 

will help to develop sediment guidelines for copepod sediment bioassays, as two 

of the species found at the study location are candidate bioassay species.  
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2.2 Methods  

2.2.1 Site description and sampling programme 

 

The study area was in Portobello Bay, a gently sloping, non–discharging, 

low energy intertidal sand flat in Otago Harbour, New Zealand (45°50’S, 

170°39’E; Figure 2.1), free from any known point sources of pollutants. The 

samples were collected at low tide in early spring 2009. The sampling strategy 

was to collect samples across the small bay to try to maximise the gradients 

present. A total of 23 samples were taken in three transects (eight samples per 

transect except in transect 3 where only seven were taken) with 100 m between 

each transect. Copepod and sediment samples were taken every 10 m along each 

transect from just below the high tide mark along the tidal reach to the low tide 

mark (70 m). Triplicate copepod samples were collected, with a single sediment 

sample taken for determining sediment characteristics (Li et al. 1997). A single 

pH and salinity measurement was recorded for each sample point.  

 

2.2.2 Sampling procedures 

 

The top 2 cm of the sediment layer was sampled for use in sediment 

analysis and for assessment of copepod densities. For the copepod densities the 

Figure 2.1 Portobello Bay. A. Position of transects. B. Sampling strategy of the 3 transects in 
the study including the distances between samples and how sediment samples were taken for 
the copepod abundance (R1-3) and sediment properties. 
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sediment was sampled using a small–bore plastic tube (a modified syringe; inner 

diameter 2 cm). A PVC sampling tube (inner diameter 8.7 cm) was used for 

collecting sediment for determination of sediment properties. Samples were 

immediately placed on ice, and then stored at 4°C until they were processed 

(within 3 weeks of collection). Copepods were extracted from the sediment by 

diluting the samples with tap water and subsequently pouring off excess water 

through a 55 µm mesh screen to trap copepods. This process was repeated 4 

times to ensure that all copepods were collected. This method has been found to 

remove all copepods from sediments (Joint et al. 1982). Adult harpacticoid 

copepods were counted by hand at a magnification of 15x under a dissecting 

microscope (Leica MZ 12.5). Identification was based on species descriptions 

reported by Wells et al. (1982) and Hammond (1973). Copepods were identified 

to species level where possible, otherwise to genus. Two species of 

Quinquelaophonte genus were present. However, as one of the species has not 

been fully described and the two species are morphologically similar, these were 

pooled at the genus level. The identification of copepods to the genus (as 

opposed to the species level) is common practice, due to the majority of species 

within a genus being similar in terms of body form, life history, and response to 

environmental variables (Chertoprud et al. 2007). Copepod densities were 

standardised from individuals per sample to individuals per 10 cm2 to enable 

comparison with other studies. Copepod abundance was averaged at each sample 

location for linear regression and summed for use in the models (see below). 

 

2.2.3 Sediment analysis 

 

Pore–water content in sediments was calculated by weighing sediment 

subsamples before and after drying for 72 h at 60°C (Ford and Honeywill 2002). 

Subsequently, the organic matter was measured as ash–free dry weight after 4.5 

h at 450°C (Parker 1983). The rest of the sediment sample was used for 

determining grain size by sediment–sieving, using analytical sieves to evaluate 
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the proportion (% dry weight) of >1000, 1000–500, 500–250, 250–125, 125–63 

and <63 µm size fractions. Sediments were classified into sediment type 

according to the Wentworth scale (Buchanan 1984). Salinity and pH of pore–

water was directly measured during collection with a multi meter (WTW Multi 

350i).  

 

2.2.4 Statistical analysis 

 

Linear regression models were used to determine distribution patterns of 

the environmental gradients along the tidal reach. The regression results were 

expressed in trend lines with their corresponding slope and intercept values. 

Additionally, the correlation coefficient (r2) and standard deviation were derived. 

A 95% confidence limit (a P–value less than 0.05) was adopted for the results. 

 

Generalised linear mixed models (GLMMs) with a Poisson error were 

used to estimate the effects of fine, medium and coarse sand, location in tidal 

reach, pH, salinity, mud, pore–water and abundance of other copepod species on 

the abundance of Amphiascoides sp., Quinquelaophonte and Parastenhelia 

megarostrum copepod species. For Enhydrosoma sp. and Robertsonia 

propinqua, the same variables were tested but using a negative binomial 

distribution, as the equidispersion assumption of the Poisson model was not 

achieved (Zuur et al. 2009). All the variables were incorporated into the models 

as fixed effects, whereas transect was incorporated as a random effect. The 

models were checked for overdispersion using the dispersion scale factor. 

 

A maximal model containing all the variables was initiated, and this was 

then simplified by removing non–significant terms until no further reduction in 

residual deviance (measured using the Akaike Information Criterion, AIC) was 

observed (Bolker et al. 2009). Parameter estimates for fixed effects were tested 

for significance using a Z or t test (depending on the underlying error 
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distribution), as these provide a more robust test than the alternative likelihood 

ratio test when sample sizes are small (Bolker et al. 2009). Mixed models were 

conducted using the lme4 (Bates et al. 2011) and glmmADMB (Skaug et al. 

2011) packages in the R 2.12.0 environment (R Development Core Team 2010), 

with glmmADMB being used in instances where a negative binomial 

distribution was needed.   

 

2.3 Results 

 

A total of five species groups were found in the study area. These were 

identified as: Amphiascoides sp., Parastenhelia megarostrum, Enhydrosoma sp., 

Robertsonia propinqua and Quinquelaophonte. 

 

2.3.1 Description of sediment characteristics  

 

Very fine sand (63–125 µm) was the dominant sediment size in the study 

area, followed by fine sand (125–250 µm) and muddy sediment (<63 µm) (Table 

2.1). Linear regression models showed significant trends in environmental 

gradients for pH and several sediment size gradients. The pH slowly increased 

along the tidal reach (i.e. increased from high tidal zone to low tidal zone) in all 

transects (Figure 2.2A, Table 2.1). Significant gradients in mud proportion were 

found in transects 1 and 2 (Figure 2.2B, Table 2.1). Very fine sand proportions 

decreased along the tidal reach from 52% to 19% in transect 2 (Figure 2.2C; 

Table 2.1), whereas it increased in transects 1 and 3, albeit not significantly. 

Large gradients were found in percent of fine sand in all the transects, with the 

largest gradient found in transect 2 where this parameter increased along the tidal 

reach from 8% to 50% (Figure 2.2D, Table 2.1). A small gradient in medium 

sand was found in transect 2; this parameter decreased slightly along the tidal 

reach from 10% to 6% (Figure 2.2E, Table 2.1). No significant results were 
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Table 2.1 Physical sediment characteristics at habitat- and estuary-scale including r2 values and P values of significant environmental gradients along the tidal reach. 

Transect 1 Transect 2 Transect 3  

 

Parameter 

Mean 

± SD 
r2 Slope Level of sig. 

Mean 

± SD 
r2 Slope Level of sig. 

Mean 

± SD 
r2 Slope Level of sig. 

pH 8.58 ± 0.4 0.68 0.015 P = 0.011* 8.57 ± 0.2 0.55 0.006 P = 0.035* 8.40 ± 0.3 0.74 0.01 P = 0.014* 

mud 18.0 ± 6.6 0.59 -0.21 P = 0.026* 18.3 ± 7.8 0.94 -0.31 P < 0.001*** 26.5± 8.3 0.31 0.02 P = 0.197 

VFS 38.2 ± 10.3 0.09 0.12 P = 0.475 35.3 ± 12.6 0.86 -0.48 P = 0.001** 29.9± 5.7 0.54 0.19 P = 0.061 

FS 17.8 ± 8.1 0.63 0.26 P = 0.019* 27.9  ± 16.3 0.82 0.60 P = 0.002** 25.7± 5.7 0.96 0.26 P < 0.001*** 

MS 11.1 ± 4.7 0.00 0.008 P = 0.919 9.31 ± 3.5 0.94 0.14 P < 0.001*** 7.90± 2.9 0.25 -0.06 P = 0.258 

CS 8.48 ± 7.7 0.25 -0.16 P = 0.200 4.58 ± 1.0 0.06 0.01 P = 0.565 4.62 ± 2.3 0.25 -0.05 P = 0.249 

OC 1.56 ± 0.3 0.18 -0.005 P = 0.299 1.53 ± 0.3 0.16 -0.005 P = 0.314 1.49 ± 0.4 0.55 -0.013 P = 0.056 

Cond. 54.3 ± 0.6 0.41 -0.06 P = 0.083 54.4 ± 0.6 0.30 -0.01 P = 0.159 49.0 ± 7.0 0.05 0.07 P = 0.639 

Sediment parameters of mud, very fine sand (VFS), fine sand (FS), medium sand (MS), coarse sand (CS) and organic content (OC) expressed in percentage (dry weight) and 
conductivity (Cond.) in dS/m. * P < 0.05**P < 0.01, ***P < 0.001, 
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found for salinity, pore–water content, organic matter content, coarse sand (500–

1000 µm) and very coarse sand (>1000 µm). 

 

2.3.2 Copepod distribution 

 

A number of copepod species had significant positive or negative 

abundance effects on other species (Table 2.2).  Amphiascoides sp. abundances 

were positively affected by Quinquelaophonte, P. megarostrum and 

Enhydrosoma sp. abundances, whereas Enhydrosoma sp. abundance had a 

significant adverse effect on Quinquelaophonte abundance.  Enhydrosoma sp. 

abundance was unaffected by the presence of other copepods.  R. propinqua 

abundance was significantly negatively affected by Enhydrosoma sp. and 

Quinquelaophonte abundances.  

 

Salinity significantly affected Amphiascoides sp. abundances in a 

positive way (i.e. an increase in salinity led to an increase in Amphiascoides) and 

this was the only copepod significantly affected by salinity (Figure 2.3A, Table 

2.2).  The proportion of mud significantly affected abundances of three copepod 

species (P. megarostrum negatively, and Amphiascoides sp. and 

Quinquelaophonte positively) (Figure 2.3B, Table 2.2). Fine sand was negatively 

related with P. megarostrum abundance (Figure 2.3C, Table 2.2); while medium 

sands were positively related with Quinquelaophonte and R. propinqua 

abundance (Figure 2.3D, Table 2.2). As the proportion of coarse sand increased, 

Amphiascoides sp. and R. propinqua abundances significantly decreased (Figure 

2.3–E, Table 2). As location in tidal reach increased, i.e. towards the low tide 

mark, Amphiascoides sp. and Quinquelaophonte abundances significantly 

decreased (Figure 2.3F, Table 2.2). Habitat pH positively affected 

Quinquelaophonte   abundance  (Figure  2.3G,  Table  2.2).   Lastly,   as   organic 
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 Figure 2.2 Changes in sediment properties along the three transects for A. pH. B. Proportion mud.   
C. Proportion very fine sediment (VFS). D. Proportion fine sediment (FS). E. Proportion medium 
sediment (MS). F. Proportion coarse sediment (CS). G. Salinity (dS/m). H. Organic content (%) 
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 content increased, R. propinqua abundance increased (Figure 2.3H, Table 2.2). 

These results show that various sediment variables affect the abundance of 

different species differently, but that sediment grain size was a common factor 

affecting all species.  

Table 2.2 Results of generalised linear mixed effects model for copepod species abundances:  
Amphiascoides sp., P. megarostrum and Quinquelaophonte with Poisson error (Z test), R. 
propinqua and Enhydrosoma sp. with negative binomial error (t test). 
 

 
Response variable Fixed effects Estimate ± SEM Z/t-value P 

Random 
effects 

(variance) 
A Intercept -7.58 ± 2.80 -2.71 0.007 ** 
 

Amphiascoides sp. 
abundance Quinquelaophonte abundance 0.053 ± 0.011 4.73 <0.0001*** 

  P. megarostrum abundance 0.152 ± 0.068 2.22 0.026* 
  Enhydrosoma abundance 0.386 ± 0.062 6.22 <0.0001*** 
  Salinity 0.157 ± 0.027 5.72 <0.0001*** 
  Mud 0.059 ± 0.030 1.97 0.049* 
  Fine sand 0.037 ± 0.021 1.80 0.073 
  Coarse sand -0.074 ± 0.032 -2.31 0.021* 
  Tidal reach -0.033 ±  0.010 -3.33 0.001** 

0.275 

B Intercept 12.69 ± 6.31 2.01 0.044* 
 Amphiascoides abundance 0.055 ± 0.025 2.19 0.029* 
 Mud -0.432 ±  0.201 -2.15 0.032* 
 

Parastenhelia 
megarostrum 
abundance 

Fine sand -0.181 ± 0.074 -2.45 0.014* 
  Coarse sand -0.408 ± 0.313 -1.30 0.193 

1.316 

C Intercept -21.09 ± 6.10 -3.46 0.0005** 
 Robertsonia abundance -0.006 ±  0.003 -1.88 0.060 
 Enhydrosoma abundance -0.226 ± 0.088 -2.57 0.010* 
 Organic content 0.679 ± 0.417 1.63 0.104 
 pH 2.500 ± 0.611 4.09 <0.0001*** 
 Mud 0.085 ± 0.029 2.98 0.003** 
 Medium sand 0.122 ± 0.046 2.65 0.008** 
 

Quinquelaophonte 
abundance 

Tidal reach -0.050 ± 0.009 -5.78 <0.0001*** 

0.466 

D Intercept 43.83 ±  32.82 1.34 0.207 
 

Enhydrosoma sp. 
abundance Amphiascoides abundance 0.283 ±  0.184 1.54 0.149 

  Quinquelaophonte abundance -1.081 ±  0.741 -1.46 0.171 
  Parastenhelia abundance -3.325 ±  2.104 -1.58 0.140 
  Robertsonia abundance -0.082 ±  0.052 -1.58 0.141 
  Salinity  -1.339 ± 0.952 -1.41 0.185 
  Organic content 12.54 ± 8.05 1.56 0.145 
  Medium sand 1.72 ± 1.104 1.56 0.144 
  Coarse sand -0.613 ±  0.323 -1.90 0.082 

0.003 

E Intercept 1.398 ± 0.764 1.83 0.089 
 Amphiascoides abundance 0.014 ± 0.007 2.02 0.063 
 Quinquelaophonte abundance -0.032 ± 0.015 -2.12 0.052 
 Enhydrosoma abundance -0.374 ± 0.140 -2.67 0.018* 
 Organic content 1.514 ±  0.441 3.43 0.004** 
 Medium sand 0.131 ± 0.055 2.39 0.031* 

 

Robertsonia 
propinqua 
abundance 

Coarse sand -0.121 ±  0.039 -3.07 0.008** 

0.001 

 
*** P < 0.001, **P < 0.01, *P < 0.05 
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Figure 2.3 Scatter plots of densities of the three most abundant copepod species in relation 
to sediment properties. A. Salinity. B. Mud. C. Fine sediment (FS). D. Medium sand (MS) 
E. Coarse sand (CS). F. Tidal reach (location). G. pH. H. Organic content. 
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2.4 Discussion 

 

The primary focus of this study was to describe the factors that govern 

copepod species distribution in a low energy tidal mud–sand flat. Data on how 

these physical factors affect copepod abundance and distribution can be used to 

inform sediment guidelines for a New Zealand native copepod bioassay.  

 

Copepod densities up to 353 individuals per 10 cm2
 (total copepods) were 

recorded in Portobello Bay. Similar densities for harpacticoid copepods in 

undisturbed intertidal habitats in New Zealand were previously reported by 

Wells et al. (1982). In contrast, harpacticoid copepod densities of up to 3,387 

individuals per 10 cm2 were found in medium fine sand in South Africa 

(McLachlan 1977). These differences in copepod densities are most likely 

explained by global differences in temperatures (Palmer and Brandt 1981, 

Rombouts et al. 2009).  

 

Sediment size was the predominant physical factor affecting the 

distribution of the five species groups found in Portobello Bay. The abundance 

of most species was positively affected by (i.e. correlated with) finer sediment 

fractions (mud, fine sand, and medium sand) and negatively affected by coarse 

sand, except for P. megarostrum where coarse sand had the opposite effect. 

Another factor that affected copepod distribution was location in tidal reach with 

Quinquelaophonte and Amphiascoides sp. abundance decreasing with increasing 

distance out to sea. Tidal reach has been shown to affect some species and not 

others and this can vary greatly between sites (Hicks and Coull 1983). This 

suggests that other factors (e.g. grain size, vegetation, salinity) are actually 

promoting the effect and that tidal reach is a covariate. Interestingly organic 

content, which has often been considered a driving force in copepod distribution 

(Hicks and Coull 1983), was found to only affect one species abundance in this 

study (that of R. propinqua). The study location had relatively low organic 
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content, which is common for sandy sediment types. However it also suggests 

that there may have been insufficient variation in organic content to affect 

distribution. The positive effect that pH had exclusively on Quinquelaophonte 

abundance suggests an avoidance of lower pH sediments by this species. This 

may be an aversion to anoxic sediments, which due to anaerobic sulphate–

reducing bacteria, have lower pH (Ben-Yaakov 1973).  

 

These results are similar to those of previous research, and indicate that 

of all the factors sediment size is the one that plays the most significant role in 

copepod abundance (Chertoprud et al. 2007). This is likely a consequence of the 

biotype of each species (Hicks and Coull 1983, Chertoprud et al. 2007). For 

example, Robertsonia propinqua has been found in coastal marshes (Coull et al. 

1979), coastal muddy sediments (Soyer 1970), and salt water lakes in south east 

Australia (Hammond 1973), and is often found associated with sea grasses 

(Hicks 1977). In addition, R. propinqua has been seen to have a wide range of 

salinity tolerances (24–62‰ in some populations; Bayly 1970). These 

observations, combined with the findings of the current study, suggest that R. 

propinqua prefers muddy to sandy detritic sediments and has a tolerance to a 

range of tidal exposures and salinities. Quinquelaophonte have often been found 

in sandy sediments and in detritus-rich habitats, with some species associated 

with sea grass. The majority are within–sediment and sediment-surface-dwelling 

organisms (Hicks and Coull 1983, Walker–Smith 2004), which is consistent with 

the findings in this study. Enhydrosoma species have been observed to dominate 

in detritic muddy sediments (Soyer 1970). The absence of such sediments in this 

study likely explains the low abundance of Enhydrosoma. Parastenhelia 

megarostrum is an epibenthic copepod often dominating troughs in sediment 

ripples in sandy sediments around New Zealand (Hicks 1992). Though the 

sediments in this study are sandy, P. megarostrum was not found in high 

abundances in this study. Amphiascoides is an interstitial species showing a wide 

salinity tolerance of 11-45‰ (Ingole 1994), and is frequently found in medium 
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to coarse silty sands (Chertoprud et al. 2006, Chertoprud et al. 2009). In this 

study, salinity had a significant positive effect on Amphiascoides sp. abundance, 

with this species showing preference for the higher salinities. In addition, the 

current study also showed that when the amount of mud increased, the 

abundance of Amphiascoides sp. also increased. This suggests that there may be 

some variation in salinity and sediment preferences in this genus and further 

research investigating these differences could illuminate that preference.       

 

Biotic factors can also influence copepod distribution. Aggregation of 

copepods is known to be caused by small–scale changes in topography (i.e. 

sediment ripple crests, grass shoots, feeding pit), food localisation, mating 

behaviour and interspecific competition (Findlay 1981). Species interactions 

were present in this study, especially in regards to Amphiascoides sp. whose 

abundance was positively affected by most of the other species. Parastenhelia 

megarostrum, Enhydrosoma sp. and Quinquelaophonte abundances predicted 

Amphiascoides sp. abundance and vice versa. This suggests that Amphiascoides 

sp. either has a preference to be around other species or, most likely, that there is 

a preference to a physical factor, which is shared by other species, and which 

was not elucidated by the model. The other main species–species interaction was 

a negative relationship between R. propinqua and Quinquelaophonte to 

Enhydrosoma sp., indicating there is sufficient interaction (possibly competition) 

to cause abundance differences. Further research investigating species–species 

interactions is needed to characterise the mechanisms affecting distribution. 

 

When the biotic factors are combined with the abiotic information it 

seems that the three most abundant species follow a general pattern in this tidal 

flat. Quinquelaophonte dominate the upper tidal reaches with Amphiascoides sp. 

and R. propinqua being dispersed throughout the tidal reach. All three species 

are associated with finer sediment fractions (mud to medium sands, <500 µm). 
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Of the copepods present in Portobello Bay, two are of particular interest 

from a bioassay perspective.  Robertsonia propinqua and Quinquelaophonte sp. 

have been identified as candidate species for estuarine sediment toxicity testing 

due their ability to be easily cultured in the laboratory and their sensitivity to 

contaminants (see Chapter 3). These two species have measurable correlations 

between abundance and the physical factors within estuaries. This allows 

sediment guidelines to be developed to determine if the sediment at a sample 

location is appropriate for use with these bioassay species. Both of these species 

were found to be positively affected by finer sediments that were smaller than 

500 µm. Robertsonia propinqua was also impacted by organic content. 

Quinquelaophonte showed strong trends for tidal location preferring to be higher 

in the estuary and avoiding lower pHs. When all factors are considered for these 

two species the best–suited sediments are fine sandy to muddy sediments high in 

the tidal reach, which are generally of high salinity. Sediments that should be 

avoided are coarse sands >500 µm with low pH and those that are low in the 

tidal reach. However, the presence of both species throughout the tidal reach 

suggests that this is marginal factor. 

 

2.5 Conclusions 

 

Every tidal flat, estuary, or lagoon has a diverse range of habitat 

characteristics at a variety of scales. Except for sediment size there is no 

evidence of factors that entirely predict copepod distribution and abundance 

(Coull & Wells 1981). This study set out to examine physical sediment factors 

that may affect copepod distribution, in order to better understand the physical 

habitat requirements of copepods proposed for bioassays, and which will thus 

inform bioassay protocol requirements and limitations. The results of this study 

can be used to guide sediment sampling for assessment of sediment 

contamination with copepod bioassay test species. Further research is required to 

determine if New Zealand copepods are typically found in low densities (5–10% 
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of other reported regions), and to ascertain their exact role in the estuarine food 

chain (i.e. what species feed on them and at what rate or biomass). Such 

information will enable the results of laboratory sediment toxicity bioassays with 

harpacticoid copepods to predict contamination effects on the estuarine 

ecosystem as a whole.  
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3. 

Development of  an endemic 

harpacticoid copepod bioassay: 

selection of  species and relative 

sensitivity to zinc, atrazine and 

phenanthrene 

 

Adapted from: 

 

Stringer TJ, Glover CN, Keesing V, Northcott GL, Tremblay LA. Development 

of an endemic harpacticoid copepod bioassay: selection of species and relative 

sensitivity to zinc, atrazine and phenanthrene. Accepted for publication in 

Ecotoxicology and Environmental Safety 

 

Co-author contributions: 

• C. Glover, V. Keesing and L. Tremblay supervised the research and 

provided feedback on the manuscript. 

• G. Northcott assisted with the chemical analysis of atrazine and 

phenanthrene. 
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3.1 Introduction  

 

Estuaries are productive ecosystems often impacted by human activity 

(Lotze et al. 2006), and the resulting degradation of these environments has 

significant impacts on biodiversity and the ecosystem services they provide 

(Costanza et al. 1997). Estuaries are unique in the fact that they are affected by 

marine, freshwater, and terrestrial pollution sources including agricultural runoff, 

storm water, forestry, mining, land conversion, road runoff, sewage, and harbour 

activities (Carpenter et al. 1998). Consequently, estuaries are a major sink where 

toxicants may accumulate. Pollutants are often trapped within estuaries due to 

the settling of particulates, partitioning from the water column into sediments, 

and binding to floating particulate and organic matter. The high ionic strengths 

of saline estuarine waters can promote the “salting out” of hydrophobic organic 

chemicals from the water into sediment (Brunk et al. 1997, Chapman and Wang 

2001, Droppo et al. 2001). 

 

Monitoring the impacts of anthropogenic activities on estuaries is crucial 

to prevent environmental and economic losses resulting from the collapse or 

contamination of the ecosystem (Chapman and Wang 2001, Lotze et al. 2006). 

Laboratory-based bioassays are powerful tools for assessing and monitoring 

ecosystem health, especially those that use key species naturally inhabiting 

estuarine sediments and which expose these animals to environmentally-realistic 

conditions (Chapman and Wang 2001). In general, marine and estuarine 

harpacticoid copepods are advantageous for this purpose owing to their short life 

cycles (~28 days), high reproductive rates, and their ease of culture in the lab. 

These properties are ideal for assessing sub-lethal effects such as impaired 

reproduction, growth, and development (Kovatch et al. 1999, Chandler and 

Green 2001, Bejarano et al. 2004, Greenstein et al. 2008, Perez-Landa and 

Simpson 2011). Harpacticoids have close association with contaminated 

sediments, which makes them very susceptible to chronic exposure to pollutants 
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(Coull and Chandler 1992, DiPinto and Coull 1997). Several species of 

harpacticoid copepods are currently being used in sediment bioassays around the 

world, including Amphiascus tenuiremis, Microarthridon littorale, Nitocra 

spinipes, Tigriopus brevicornis, Tisbe battagliai  (Forget et al. 1998, Kovatch et 

al. 1999, Hagopian-Schlekat et al. 2001, Bejarano and Chandler 2003, Perez-

Landa and Simpson 2011). While previous work identified Robertsonia 

propinqua as a suitable bioassay species (Hack et al. 2008a, b) there is no 

information on the sensitivity or utility of other native New Zealand 

harpacticoids as bioassay organisms, and a bioassay using a New Zealand 

species of marine copepod has not been developed and fully validated.  

 

Multiple factors need to be considered in choosing a bioassay species. 

These factors include ease of culture, reproductive rate in laboratory culture, ease 

of distinguishing males and females (for assessment of gender-based toxic 

impacts), and sensitivity to contaminants. In most estuaries multiple sediment-

dwelling copepod species will exist; however, there is no guarantee that any will 

meet all the essential criteria for a bioassay organism.  

 

The aim of this study was to initially characterise and identify a suitable 

species of endemic harpacticoid copepod for use in estuarine bioassays. This was 

accomplished by: (1) characterising the suitability of five commonly occurring 

New Zealand harpacticoid copepods on the basis of factors such as ease of 

culture and reproduction rate, (2) using acute aquatic 96 h LC50s to determine the 

relative sensitivity of the best-qualified species to key reference contaminants, 

and (3) use this information to identify the species with the greatest utility as a 

bioassay organism for assessing estuarine sediment health in New Zealand.  

 



 

54 
 

3.2 Materials and methods 

3.2.1 Test species 

 

Six commonly-occurring native New Zealand harpacticoid copepods 

were identified as potential bioassay species: Amphiascoides sp., Stenhelia sp., 

Parastenhelia megarostrum, Quinquelaophonte candelabrum, 

Quinquelaophonte sp. and Robertsonia propinqua (Figure 3.1). These species 

were selected as they have wide geographic distributions across New Zealand 

and are easily distinguishable from each other based on differences in overall 

body shape and defining characteristics of the species based on species 

descriptions in Wells et al. (1982) and Hammond (1973). The Quinquelaophonte  

 

 

 Figure 3.1 Copepods identified as potential bioassay spcies (A) Amphiascoides sp. (B) Stenhelia 
(C) Robertsonia propinqua (D) Parastenhelia megarostrum (E) Quinquelaophonte candelabrum 
(F) Quinquelaophonte sp. (Leica M125 microscope). 
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genus is characterised by serrated body segments and Q. candelabrum is 

distinguishable from the as yet unnamed Quinquelaophonte sp. by caudal rami 

morphology (pipette-shaped in Q. candelabrum) (John Wells, personal 

communication, Quinquelaophonte sp. currently being described). P. 

megarostrum has the defining characteristic of a large protruding rostrum (Wells 

et al. 1982), R. propinqua has a stout body shape with the prosome being the 

widest point, and abundant spinules on the abdomen (Hammond 1973) and 

finally Amphiascoides sp. has similar body shape to R. propinqua but is smaller, 

thinner, and does not display ornamentation on the abdomen. All species were 

identified by Prof. John Wells at the Victoria University Wellington.  

 

Amphiascoides sp., Quinquelaophonte sp. and Robertsonia propinqua 

were sourced from Portobello Bay, Otago, New Zealand (45°50’S 170°39’E). 

Parastenhelia megarostrum and Quinquelaophonte candelabrum were sourced 

from Okains Bay, Canterbury, New Zealand (45°43’S 173°03’E). Copepods 

were isolated from collected surface sediments by gentle sieving and retaining 

copepods on a 125 µm sieve before being drawn out of detritus and large 

sediments by attraction to a light source. Copepods were then collected by means 

of a glass Pasteur pipette and transferred to Petri dishes where they were 

identified to species level, when sufficient taxonomic information was available, 

under a dissecting microscope (Leica M125). Sandy, silty sediments were also 

collected at both locations for use as the culture substrates. Sediments were 

cleaned and sterilised based on methods of Chandler and Green (1996). The 

sediments were washed with fresh water, passed through a 125 µm sieve, and 

autoclaved at 121°C for 15 min. Each copepod species was monocultured in a 

laboratory culture system modified from the recirculating seawater system 

designed by Chandler (1986). The system included a flow-through plastic 

aquarium (12 cm × 18 cm) containing approximately 1 cm of the <125 µm 

sieved and sterilised sediment overlaid with 5 cm of artificial seawater (ASW; 

Red Sea® sea salts, 30‰) under a dripping flow of 5 ml/min. Culture 
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inoculation consisted of >100 adult individuals. Cultures were monitored every 3 

days for survival and reproduction (presence of females bearing egg sacs, 

hereafter referred to as “gravid” females) for approximately 4 weeks until it was 

determined that the species was taking to culture or not. 

 

The culture system was maintained at 20°C and at 30‰ ASW, with a 

photoperiod of 12 h light: 12 h dark. Ammonia, nitrite, and nitrate were always 

below detection limit (determined by commercial aquarium test kits) and pH was 

maintained at 8.2. Water quality was monitored twice a week. The copepods 

were fed 40 ml of a concentrated mixed suspended algal diet of Chaetoceros 

muelleri, Dunaliella tertiolecta and Isochrysis galbana (1:1:1) twice a week 

(Chandler and Green 1996). Algal stocks were cultured in F2 medium, which 

was sub-cultured every 7–10 days (Jeffrey and LeRoi 1997).  

  

For the species that were able to be cultured, the culture density was 

estimated by counting adults in each of four replicate core samples (0.78 cm2) 

taken from random locations within the individual culture aquaria. Only adults 

were counted, as this life stage is used in toxicity tests. Total adults, the 

proportion of gravid females, and reproductive rate (number of eggs per female 

× proportion of gravid females) were then calculated.  

 

3.2.2  96 h acute toxicity tests 

  

Three reference contaminants possessing a diverse range of structures 

and modes of action were chosen and included a heavy metal (zinc), a 

polyaromatic hydrocarbon (PAH; phenanthrene) and a pesticide (atrazine). 

These contaminants also provide the advantage of being commonly used as 

reference chemicals in a range of ecotoxicity test procedures, thereby providing 

opportunity to compare the performance of the copepod assay against other 
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organisms/species used in standardised toxicity assays. Aquatic 96 h LC50 tests 

(median lethal concentration after 96 h exposure to waterborne toxicant) was 

used as a rapid and technically more simplistic proxy to sediment toxicity 

testing. In addition, sediment toxicity can be heavily influenced by pore-water 

exposure, meaning that aquatic toxicity tests have some relevance to sediment-

dwelling organisms (Simpson 2005, Simpson and King 2005, Hutchins et al. 

2009).  

 

Acute toxicity tests were performed with two candidate species, 

R. propinqua and Quinquelaophonte sp., as these two species performed the best 

in laboratory cultures. All of the LC50 tests used laboratory-cultured copepods, 

described above, and followed the methods outlined by Green et al. (1993) with 

modifications as noted below.  

 

For each test, there were five geometrically-increasing concentrations 

(1.5 or 2 x concentration increases) of the chemical with four replicates for each 

treatment and control. Three of the replicates were used for biological 

enumeration at the termination of the test; the fourth was used for water quality 

and chemical analysis. Carrier controls were performed when a carrier was 

necessary for spiking atrazine and phenanthrene in the treatment groups (see 

below). Each LC50 test was repeated 3 times. Test vessels were acid-washed  

(min 24 h 10% nitric acid soak) and triple acetone-rinsed 50 ml borosilicate glass 

Erlenmeyer flasks (LabServ), containing 30 ml of aerated 30‰ ASW. Thirty 

adult copepods (15 males, 15 non-gravid females) were loaded at test initiation 

via pipette. The test vessels were loosely covered to prevent evaporation. The 

tests were static (no water exchange) and run for a period of 96 h. The test 

vessels were incubated in an environmental chamber at 20 ± 1°C, and under a 12 

h light: 12 h dark cycle. Dissolved oxygen (DO), salinity, and pH were measured 

with a multi meter (WTW Multi 350i) at initiation and termination of the test.  
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3.2.3  Toxicant concentrations 

 

Target toxicant concentrations were achieved by spiking ASW with 

aliquots of stock solutions. For zinc, a stock solution of ZnSO4·7H2O (BDH cat # 

10299 AnalaR) was prepared in deionised water (Millipore, 0.22 µm filtered), 

while dimethyl sulfoxide (DMSO, BDH cat # 103234L AnalaR) and acetone 

(Mallinkrodt Nanograde) were used as organic solvent carriers for technical 

grade atrazine (A certified standard of atrazine (>98% purity) obtained from Dr. 

Ehrenstorfer GmbH) and phenanthrene (Sigma cat # 77470, 97%), respectively. 

The proportion of carrier solution in each test vessel was kept as low as possible 

to minimise the introduction of artefacts into the experiments. The final 

proportions of carrier solvent in the phenanthrene and atrazine test vessels were 

0.1/1000 (v/v) and 0.5/1000 (v/v) respectively (ISO 14669:1999). Carrier-

solvent-only controls were included in each schedule of testing to assess any 

toxic effect arising from exposure to the carrier solvents. There were solubility 

limits for the phenanthrene and atrazine of 1.1 mg/l and 33 mg/l, respectively, 

and the upper concentrations were deliberately kept below solubility limits in 

these tests to prevent precipitation.  

  

 Water samples (10 ml) were collected at the initiation and termination 

of each test to confirm the concentration of reference compound. The 

concentration of zinc in water test samples was determined by diluting samples 

20 times with 10% nitric acid and analysing the prepared solutions by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS Agilent 7500 cx). 

QA/QC procedures incorporated into the schedule of analysis included the 

analysis of replicate samples and one spiked sample within each set of 20 

samples. Recovery of the zinc spikes were 108 ± 12.1% (n=4) and the relative 

standard deviations (RSDs) for the mean concentration of duplicate treatment 

samples ranged from 0.95 to 1.03%. 
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  Each atrazine and phenanthrene test solution was spiked with 

simazine and anthracene-d10 (CDN Isotopes) as surrogate spike compounds 

before extraction. The concentration of simazine added to the aqueous atrazine 

solutions varied for the different treatment concentrations: 0.05 mg/l for 

control treatments, 1 mg/l for 2 mg/l treatments, 2 mg/l for 4 mg/l treatments, 4 

mg/l for 8 mg/l treatments, 8 mg/l for 16 mg/l treatments, and 16 mg/l for 33 

mg/l treatments.  Anthracene-d10, prepared as an acetone solution, was added 

to the aqueous phenanthrene solutions to provide a final concentration of 50 

µg/l. Aqueous water samples of phenanthrene and atrazine were stabilised by 

the addition of 2 ml and 5 ml of dichloromethane, respectively, and stored 

under refrigeration prior to extraction and analysis. Phenanthrene and atrazine 

and their respective surrogates were extracted from the aqueous test solutions 

by liquid-liquid extraction using dichloromethane, and analysed by high 

resolution gas chromatography with mass spectrometric detection for 

phenanthrene and electron capture (ECD) and nitrogen-phosphorous detection 

(NPD) for atrazine. The 95% confidence intervals for the recovery of 

anthracene-d10 and simazine were 101 ± 3 (n=82) and 109 ± 4 (n=84) 

respectively. The reproducibility of analyses was excellent with RSDs for the 

mean concentration of triplicate treatment solutions ranging from 0.7 to 5.1% 

for phenanthrene and from 4 to 22% for atrazine, across the range of treatment 

concentrations. The excellent surrogate spike recovery and reproducibility data 

demonstrate the robustness of the sample analysis methods and the 

concentrations of atrazine and phenanthrene determined in the aqueous test 

solutions.  

 

3.2.4  Toxicological and statistical analysis  

 

At test completion the numbers of surviving individuals were enumerated 

(survival was assessed as any movement of the copepods in the 5 s following a 
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gentle prod with a needle) and the actual concentrations of the contaminants 

were used to generate dose response curves and estimate LC10, LC20, and LC50 

values. The proportion of surviving individuals was regressed against log 

contaminant concentration using binomial regression. LC10, LC20, and LC50 

values along with 95% confidence intervals were calculated using the FIELLER 

procedure (a generalised linear model with a binomial distribution and a logit 

link function) in the GenStat Statistical Package (12th edition) for each species 

(males and females combined as well as gender-specific) (GenStat Committee 

2009). Differences in species responses to contaminants were tested using a 

parallel slope model of the log proportion dead v. log concentration and 

examining the intercepts and the slopes. Slope and intercept estimates were 

divided by the standard error of the differences and interrogated by t-test. 

Significant difference was established at the value of P < 0.05 (GenStat, 12th 

edition). Significant (P < 0.05) differences in culture density, egg number, and 

reproductive rate were determined using two-tailed t-tests (GraphPad Prism 5).  

 

 

3.3  Results 

3.3.1 Performance of all species in culture 

 

Of the six species identified as potential bioassay species only R. 

propinqua and Quinquelaophonte sp. were able to reach densities in the lab 

cultures sufficient to support toxicity testing. The other four species, 

Amphiascoides sp., Parastenhelia megarostrum, Stenhelia sp., and 

Quinquelaophonte candelabrum, did not survive well in culture and populations 

died out after 3–4 weeks. Quinquelaophonte sp. produced the highest average 

density of 88.5 ± 43.1 (standard deviation) adults/cm2, and R. propinqua had an 

average density of 17.2 ± 7.6 adults/cm2. The average egg number for each 

gravid female was similar at 15.6 ± 2.5 eggs/female for R. propinqua and 16.6 ± 



 

61 
 

2.4 eggs/female for Quinquelaophonte sp. The percentage of gravid females in 

cultures of R. propinqua was 11.6% and for Quinquelaophonte sp. was 26.9%. 

Based on egg number per female and the percentage of gravid females in the 

population the calculated reproduction rates were 1.81 and 4.47 eggs/adult for R. 

propinqua and Quinquelaophonte sp., respectively. As with all members of the 

order Harpacticoida, both R. propinqua and Quinquelaophonte sp. are sexually 

dimorphic, and males are easily distinguished from females by the enlargement 

of the fourth segment of the antennules. Males are also distinguishable as being 

smaller in size, especially for R. propinqua (see Figure 3.2). These 

morphological differences between sexes is crucial for ease in distinguishing 

males and females, and is important for ensuring specific sex ratios in bioassays 

and for calculating sex-specific survival.  

 

 

 

 

 

 

 

 

Figure 3.2 Dimorphism observed in male and female (A) Robertsonia propinqua and (B) 
Quinquelaophonte sp. harpacticoid copepods (Leica M125 microscope).  
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3.3.2  Toxicity results  

In all tests water quality parameters were maintained within optimal 

ranges (salinity 30‰, >7 mg/l DO, pH 8.0-8.5), and nitrate, nitrite, and ammonia 

concentrations were always below the method detection limits of 2.5, 0.05, and 

0.25 mg/l respectively (RedSea® Marine Lab). Dissolved contaminant 

concentrations decreased during the tests, presumably due to combined processes 

of degradation, volatilisation (organic reference compounds), uptake by exposed 

copepods, and absorption to the surface of the glass test vessels. The latter is 

particularly important in the case of zinc (Batley and Gardner 1977). To account 

for the decrease in concentrations, the averages of the initial and final 

concentrations were used as the exposure concentrations. Reference toxicant 

concentrations were reduced by an average of 13.1, 11.9 and 9.2% for zinc, 

phenanthrene and atrazine, respectively. In all tests the mortality of test animals 

in control treatments was less than 10%, in accordance with ASTM (2008) 

recommendations.  

  

Toxicity data (pooled data for both sexes) for both species are shown in 

Table 3.1 and dose-response curves are shown in Figure 3.3. LC50 values for R. 

propinqua were 2.0 (1.56-2.25) mg/l for zinc, 0.89 (0.85-0.95) mg/l for 

phenanthrene, and 7.58 (6.12-9.39) mg/l for atrazine. The corresponding LC50 

values for Quinquelaophonte sp. were 0.64 (0.51–0.82), 0.75 (0.59–1.37), and 

Table 3.1 Acute lethal concentrations (LCx) values (mg/l) for the two harpacticoid copepods 
Robertsonia propinqua and Quinquelaophonte sp. 

 LC10 (95% CI) LC20 (95% CI) LC50 (95% CI) 
R. propinqua    
Zinc 0.86 (0.37 – 1.27) 1.16 (0.62 – 1.62) 2.0 (1.56 – 2.25) 
Phenanthrene 0.43 (0.38 – 0.47) 0.53 (0.49 – 0.57) 0.89 (0.85 – 0.95) 
Atrazine 1.4 (1.18 – 1.68) 2.65 (2.30 – 2.98) 7.58 (6.21- 9.39) 
Quinquelaophonte sp.    
Zinc 0.24 (0.15 – 0.32) 0.34 (0.24 – 0.44) 0.64 (0.51-0.82) 
Phenanthrene 0.28 (0.17 – 0.36) 0.41 (0.31 – 0.49)  0.75 (0.59-1.37) 
Atrazine 7.11 (6.29 – 7.88)  10.6 (9.70 – 11.4) 20.8 (17.9-25.2) 
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20.8 (17.9–25.2) mg/l for zinc, phenanthrene, and atrazine, respectively. Despite 

the fact that 100% mortality was not achieved in all tests, sufficient data were 

available for the calculation of LC50 values. 

 

3.3.3  Comparative toxicity  

 

Some significant differences in sensitivities to the reference compounds 

were exhibited by R. propinqua and Quinquelaophonte sp. While both copepods 

exhibited no statistically significant difference in sensitivity to the PAH 

phenanthrene (Figure 3.3A) this was not the case for the heavy metal zinc and 

triazine herbicide atrazine. R. propinqua and Quinquelaophonte sp. exhibited 

distinct mortality responses to zinc with significant differences in intercept 

recorded (diff intercept = 3.865, SEdiff = 0.468, z = 8.26, P < 0.001). This was 

reflected in toxicity values, with R. propinqua having an LC50 3.1 times higher 

than that of Quinquelaophonte sp. (Figure 3.3B). R. propinqua and 

Quinquelaophonte sp. also exhibited distinct mortality responses following 

atrazine exposure as demonstrated by values for both intercept (diff intercept = 

3.513, SEdiff = 0.718, z = 4.50, P< 0.001) and slope (diff slope = 4.94, SEdiff = 

0.199, z = 2.48, P = 0.02). Quinquelaophonte sp. had an LC50 2.7 times higher 

than that of R. propinqua for atrazine (Figure 3.3C). 

 

3.3.4 Gender-specific toxicity 

 

Robertsonia propinqua exhibited no gender-specific differences in 

sensitivity to any of the reference compounds. However, there were significant 

differences between male and female responses of Quinquelaophonte sp. to zinc 

and atrazine. For zinc, males were significantly more sensitive than females as 
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Figure 3.3 Dose-response curves for Quinquelaophonte sp. and R. propinqua to the 
three reference contaminants A. Phenanthrene, B. Zinc, and C. Atrazine. LC50 values 
and 95% confidence intervals are also given.  Phenanthrene and atrazine both have 
solubility limits and are denoted by a dashed line. 
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demonstrated by differences in slope (diff. intercept = 3.126, SEdiff = 0.570, z = 

5.49, P < 0.001) and with resulting LC50 values of 0.38 (0.32–0.46) mg/l for 

males and 1.1 (0.81–1.47) mg/l for females. Males of Quinquelaophonte sp. also 

exhibited increased sensitivity to atrazine compared to females as demonstrated 

by differences in slope (diff slope = 1.126, SEdiff = 0.441, z = 0.255, P = 0.02) 

and calculated LC50 values of 13.8 (10.8–16.2) mg/l for males and 44.0 (29.2–

126) mg/l for females (Figure 3.4B). The sensitivity of Quinquelaophonte sp. to 

phenanthrene was independent of sex (males: 0.64 (0.51–1.21) mg/l, females 

0.79 (0.63–1.65) mg/l).  

 

3.4  Discussion 

 

There is currently no copepod bioassay validated for the assessment of 

marine sediment toxicity in New Zealand. Preliminary studies have previously 

identified R. propinqua as a potentially useful bioassay species (Hack et al. 

2008a, b). However, the suitability of other harpacticoid copepods has not been 

assessed. The ideal bioassay species is one that is easy to culture, has a high 

reproductive rate in laboratory culture, has easily distinguishable sexes, is 

sensitive to contaminants and is representative of species found in the wild. 

 

3.4.1  Survivorship in laboratory cultures  

 

Six species were assessed as potential bioassay organisms: Parastenhelia 

megarostrum, Stenhelia sp., Amphiascoides sp., Robertsonia propinqua, 

Quinquelaophonte candelabrum and Quinquelaophonte sp. Of these only R. 

propinqua and Quinquelaophonte sp. could successfully be cultured in the 

laboratory. In Chapter 2 it was shown that these two species have a preference 

for fine sandy sediments. The Quinquelaophonte genus is also known to often be 

found  in  detritus-rich  sediments  (Hicks and Coull 1983, Walker–Smith 2004), 
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Figure 3.4 Sex-specific dose-response curves for Quinquelaophonte sp. to A. Zinc and B. 
Atrazine. Dashed line denotes solubility limit for atrazine.  
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and R. propinqua is also found in muddy coastal marsh sediments (Soyer 1970, 

Coull et al. 1979), sugesting that these species have a wide tolerance for 

sediment types.  Failure of a given species to establish itself in culture may be 

related to changes in sediment characteristics owing to their processing and 

sterilisation. Alternatively, copepods may have been unable to withstand the 

stress of collection and transportation. Laboratory culture, rather than reliance on 

field-collected organisms, is essential for toxicity testing as it allows for 

assessment on naive individuals and ensures a more homogeneous genetic 

composition, which minimises variability and provides consistency within and 

between tests. The differences in sensitivity of field-collected and laboratory-

reared animals have not been well studied. Some research shows that seasonal 

and dietary influences can cause variability in sensitivity (Sosnowski et al. 1979, 

Hedtke et al. 1986), promoting the concept that controlled laboratory conditions 

are required for consistency in toxicity assessments. Based on the findings of 

culture survivorship, R. propinqua and Quinquelaophonte sp. were assessed for 

their suitability as sediment toxicity organisms based on the remaining criteria: 

sensitivity to contaminants, reproduction rate, culture density, distribution and 

ecology.  

 

3.4.2  Zinc toxicity 

  

Zinc proved to be the most toxic of the contaminants to 

Quinquelaophonte sp. and the second most toxic to R. propinqua, with LC50 

values of 0.64 and 2.00 mg/l respectively. These values are well above the 

current marine water quality guideline for Australia and New Zealand of 0.015 

mg/l (95% species protection, ANZECC 2000). A comparison of the sensitivities 

of the two tested copepods to other estuarine and marine species is given in 

Table 3.2. Quinquelaophonte sp. is more sensitive to zinc relative to other 

evaluated copepod species. Other estuarine species have 96 h LC50 values 
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ranging from 0.032 mg/l for the estuarine crab Scylla serrata (Narayanan et al. 

1997) to as high as 12.3 mg/l for shrimp Palaemon elegans (Bat et al. 1999) and 

14.0 for the crab Paragrapsus quadridentatus (Taylor 1981). Tolerance of R. 

propinqua to zinc was significantly higher than that of Quinquelaophonte sp., 

and is similar to the estimated 96 h LC50 of 2.7 mg/l for adults and 1.7 mg/l for 

nauplii previously reported for this species (Hack et al. 2008b). 

 

Zinc is known to have a range of impacts that contribute to acute toxicity. 

It has been shown to inhibit digestion and feeding in Daphnia magna and to 

interfere with exoskeleton maintenance and molting in crustaceans (Poynton et 

al. 2007). This latter effect is likely due to the potential for zinc to share and 

inhibit calcium uptake pathways in crustacean epithelia (Ahearn et al. 1994). 

Copepods have defence mechanisms that help them regulate internal metal 

concentrations and bioreactivity. One of these is metallothionein, a protein that 

binds and detoxifies metals. In copepods, as in other animals, the production of 

metallothioneins is induced in response to metal exposure (Barka et al. 2001, 

Poynton et al. 2007). The efficacy of metallothionein to detoxify toxic metals is 

hypothesised to vary between species (Hook and Fisher 2002). Differential 

binding capacity of metallothioneins may be an explanation for the large 

variation in sensitivities of estuarine species. This cellular mechanism may also 

explain the literature data showing that copepods can have increased tolerance to 

metals when exposed over long time-frames (Moraitou-Apostolopoulou 1978, 

Gardestrom et al. 2008), as metallothionein induction is likely to promote 

survivorship. Critically, the impacts of cellular defence mechanisms such as 

metallothionein show how life history affects sensitivity, and supports the use of 

lab-reared rather than field-collected individuals.  
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Table 3.2  Acute toxicity (96 h LC50) data for estuarine species to zinc. 
 
Group Species Life 

stage 
96 h LC50  
    mg/l 

Reference 

Copepod 
(Calanoid) 

Acartia clause Adult 0.96 Taylor 1981 

 Acartia tonsa Adult 0.4 Taylor 1981 

 Eurytemora affinis Adult 6.0 Taylor 1981 

     

Copepod 
(Harpacticoid) 

Amphiascus tenuiremis Adult 0.37 (pore-water) Hagopian-Schlekat  
et al. 2001 

 Robertsonia propinqua Adult 2.0 (1.56-2.25) Present Study 

  Adult 2.7* Hack et al. 2008a 

  Nauplii 1.7* Hack et al. 2008a 

 Tigriopus brevicornis Adult 0.715 Barka et al. 2001 

 Tigriopus japonicus Adult 3.2 Taylor 1981 

 Quinquelaophonte sp. Adult 0.64 (0.51-0.82) Present Study 

     

Amphipod Chaetocorophium cf.lucasi Juvenile 1.13 King et al. 2006 

 Echinogammarus olivii Adult 1.30 Bat et al. 1999 

 Melita awa Juvenile 0.71 King et al. 2006 

 Melita matilda Juvenile 0.65 King et al. 2006 

 Melita plumulosa Juvenile 0.64 King et al. 2006 

     

Shrimp Palaemon elegans Adult 12.3 Bat et al. 1999 

     

Crab Pagurus longicarpus Larvae 0.6 Taylor 1981 

 Paragrapsus 
quadridentatus 

Adult 14.0 Taylor 1981 

  Larvae 1.3  

 Scylla serrata Adult 0.032 Narayanan et al.1997 

     

Bivalve Dreissena polymorpha Adult 0.054 ANZECC 2000 

 Mysella anomala Adult 4.40 King et al. 2004 

 Soletellina alba Adult 2.90 King et al. 2004 

 Velesunio ambigua Adult 11.2 ANZECC 2000 

     

* Range-finder data, not definitive LC50 
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Another factor affecting sensitivity of copepods to zinc is the thickness of 

the exoskeleton. Juvenile copepods are more sensitive to metals than adults as a 

result of having a thinner body casing, which facilitates metal absorption 

(Hagopian-Schlekat et al. 2001). Although only adults were used in this study, 

thickness of exoskeleton may vary between species, potentially affecting 

sensitivity. Zinc is also known to reduce chitinase activity and thus influence 

exoskeleton structural integrity (Poynton et al. 2007). These two mechanisms 

suggest there may be a strong link between zinc toxicity and exoskeleton 

integrity. Distinct physiological mechanisms associated with exoskeleton 

maintenance and development could be a contributing factor explaining the 

differences in sensitivity to zinc between R. propinqua and Quinquelaophonte 

sp. 

 

3.4.3  Phenanthrene toxicity 

 

On exposure to waterborne phenanthrene, R. propinqua and 

Quinquelaophonte sp. exhibited 96 h LC50 values of 0.89 and 0.75 mg/l, 

respectively. These values were not statistically significantly different. These 

two species of harpacticoid copepods are slightly less sensitive to phenanthrene 

than other copepod and estuarine species previously studied, with sensitivities 

varying from 0.360 mg/l for the shrimp Palaemonetes pugio (60 h exposure, 

Unger et al. 2007) to 0.522 mg/l for the cyclopoid copepod Oithona davisae (48 

h exposure, Barata et al. 2005) (Table 3.3).   

 

Non-polar narcosis is often considered the major overt toxic effect of 

PAH compounds (Ren 2002). Non-polar narcosis can be defined as non-specific 

disruption of the proper functioning of the cell membrane, which leads to 

behaviours such as inhibited locomotor activity and severely or totally inhibited 
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capacity to respond to external stimuli (Ren 2002). Bioaccumulation of PAHs 

can be very rapid, reaching steady state in body tissues in less than 12 h in 

harpacticoid copepods (Lotufo 1998a). Body lipid content is the best predictor of 

PAH accumulation, which in turn is the best indicator of toxicity (Lotufo 1998b). 

The lipid contents of R. propinqua and Quinquelaophonte sp. are unknown, 

although the similarity of the species’ LC50 values suggests they may be similar, 

or that they have similar uptake rates.  

 

3.4.4  Atrazine toxicity 

 

Atrazine (2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine) is one of 

the most widely and intensively used herbicides in the world. It is applied in over 

80 countries worldwide, and in the US alone, over 35 million kilograms is added 

to agricultural land each year (Bejarano and Chandler 2003).  

 

Both R. propinqua and Quinquelaophonte sp. were significantly more 

tolerant to atrazine than other previously tested copepods and estuarine species 

(Table 3.4), providing 96 h LC50 of 7.58 mg/l and 20.8 mg/l respectively. The 

sensitivity of other estuarine invertebrate species to atrazine range from as little 

 
Table 3.3 Acute toxicity data for estuarine species to phenanthrene 
 
Genus Species Life 

stage 
LC50 mg/l Reference 

Copepod (Calanoid) Acartia tonsa Adult 0.422a Bellas and Thor 2007 

     

Copepod (Cyclopoid) Oithona davisae Adult 0.522a Barata et al. 2005 

     

Copepod 
(Harpacticoid) 

Robertsonia propinqua Adult 0.89 (0.85-0.95)b Present Study 

 Quinquelaophonte sp. Adult 0.75 (0.59-1.37)b Present Study 

     

Shrimp Palaemonetes pugio Adult 0.360c Unger et al. 2007 

     
a 48h LC50, b 96 h LC50, c 60h LC50, 
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as 0.094 mg/l for the calanoid copepod Acartia tonsa (Ward and Ballantine 

1985), to 9.0 mg/l for the shrimp Palaemonetes pugio (Ward and Ballantine 

1985). In estuaries and coastal areas in the south-eastern US, environmental 

water concentrations of atrazine have been found to range from 90 ng/l to 62.5 

µg/l (Bejarano and Chandler 2003). Atrazine concentrations in New Zealand 

estuaries are not well characterised, but they are unlikely to exceed the 

concentrations measured in south-eastern US waters. Consequently, acute effects 

of atrazine are unlikely to be observed for these two species in the New Zealand 

environment.  

 

In vertebrates, atrazine is an endocrine disrupting compound, with 

several modes of action suggested. It has been shown to increase aromatase 

activity in humans (Sanderson et al. 2002); to disrupt the neuroendocrine control 

of ovarian function in female rats (Cooper et al. 2007); to increase plasma 

testosterone in male Atlantic salmon (Moore and Waring 1998); and to induce 

hermaphroditism in male American leopard frogs at concentrations as low as 0.1 

µg/l (Hayes et al. 2003). As there is little known about invertebrate endocrine 

Table 3.4 Acute toxicity (96 h LC50) data for estuarine species to atrazine. 

Group Species Life 
stage 

96 h LC50  
   mg/l 

Reference 

Copepod 
(Calanoid) 

Acartia tonsa Adult 0.094 Ward and Ballantine 1985 

     

Copepod 
(Harpacticoid) 

Robertsonia propinqua Adult 7.58 (6.12-9.39) Present Study 

  Adult 31.8* Hack et al. 2008a 

  Nauplius 7.5*  

 Tigriopus brevicornis Adult 0.124 Forget et al. 1998 

 Quinquelaophonte sp. Adult 20.8 (17.9-25.2) Present Study 

     

Shrimp Palaemonetes pugio Adult 9.0 Ward and Ballantine 1985 

 Penaeus duorarum Adult 6.9 Ward and Ballantine 1985 

     

     

Crab Uca pugilator Adult >28 Eisler 1989 

Fish Leiostomus xanthurus Adult 8.5 Ward and Ballantine 1985 

* Range finder data, not definitive LC50 
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systems it is unknown if atrazine affects similar pathways in copepods (Bejarano 

and Chandler 2003). Further research to elucidate atrazines mode of action and 

how it affects acute and chronic toxicity is required. Such knowledge would 

allow interpretation of the differential sensitivity to the two copepod species 

evaluated in the present investigation.  

 

3.4.5  Differences in species sensitivity 

 

There were significant differences in the sensitivity of response to the 

reference toxicants between the copepod species tested in this study, and further 

differences in the sensitivity of response reported for these copepods versus 

those observed in other studies. Some of these differences in sensitivity may be 

attributed to the physical size of the tested species. Smaller species such as 

Amphiascus tenuiremis (0.25–0.44 mm) (Chandler and Green 1996), generally 

exhibit higher sensitivity to toxicants than larger copepods such as R. propinqua 

(0.7–0.9 mm) and Quinquelaophonte sp. (0.6–0.8 mm). The larger surface area 

to volume ratio of smaller animals means they are more susceptible to exchanges 

with the environment, including the uptake of toxicants. Furthermore, smaller 

animals have a reduced “buffering capacity” to offset the impacts of 

bioaccumulated chemicals. It is noteworthy that the sizes of the two New 

Zealand species tested in the present study were very similar, and is thus unlikely 

to explain the differences between these two copepods in sensitivity to the 

reference toxicants.  

 

In addition to size, there are other factors that can account for differences 

in the sensitivity of test species to toxicants. The physiology of different species 

may allow for one to be more tolerant to toxicants than the other. This may occur 

via processes causing an organism to metabolise a contaminant more efficiently 

or influence uptake and elimination of the contaminant, affecting 
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bioaccumulation, and thus toxic effect. These differences will be contaminant-

specific and will depend on the specific mode of action of a contaminant (Escher 

and Hermens 2002, McClellan-Green et al. 2007). In this study 

Quinquelaophonte sp. was more sensitive to zinc than R. propinqua; however, 

the opposite was observed for atrazine. This exemplifies how dissimilar 

contaminants can affect species in different ways. In addition, there was a 

significant difference in the gender-associated toxicity of Quinquelaophonte sp. 

to zinc and atrazine, which may be due to body size, uptake and elimination, or 

physiological differences between males and females (McClellan-Green et al. 

2007). Interestingly, the same pattern of sex-specific sensitivity was not seen in 

R. propinqua despite the size difference between genders in this species, 

suggesting that factors other than size difference are affecting gender-associated 

sensitivity. There is little information on the mechanisms that may be producing 

these marked differences in sensitivity. Consequently, caution should be 

exhibited when choosing a bioassay species based solely on its sensitivity to a 

single toxicant.  

  

3.4.6  Bioassay species selection  

 

 Based on the results of acute waterborne toxicity tests there was no 

strong toxicological argument favouring the selection of either R. propinqua or 

Quinquelaophonte sp. as the bioassay organism-of-choice. Consequently, other 

considerations regarding life history and ecology were considered to select the 

species best suited for use in a bioassay for New Zealand.  

 

Both species reproduced well in culture, with Quinquelaophonte sp. 

having a 2.5 times greater reproductive rate than R. propinqua (4.47 eggs/adult 

for Quinquelaophonte sp. and 1.81 eggs/adult for R. propinqua). In addition, 

Quinquelaophonte sp. reached higher densities during laboratory culture, 
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producing an average density of 88.5 adults/cm2 compared with 17.2 adults/cm2 

for R. propinqua, providing an increased number of individuals for use in 

bioassays. Both species are sexually dimorphic, making it easy to distinguish 

males and females. Unfortunately, there is limited ecological and distribution 

information about these species, particularly for Quinquelaophonte sp. as it has 

only been recently discovered and is currently being described (John Wells, 

personal communication). R. propinqua is usually found in tropical to temperate 

silty sands. Both of these species were found to be of high abundance in Chapter 

2 and associated with fine low organic content sands. However, for R. 

propinqua, there is evidence of an association with algae in shallow lagoons and 

it has often been found in plankton tows in the water column (Wells et al. 1982). 

The presence of R. propinqua in the water column is a potential issue when 

considering the use of this species for a sediment bioassay. It suggests this 

species could avoid contaminated sediments and produce misleading information 

regarding the toxicity of sediment-borne toxicants. In contrast, observations of 

Quinquelaophonte sp. suggest it is rarely seen swimming in the water column 

and is predominantly a benthic species (Stringer, personal observations). This 

suggests Quinquelaophonte sp. could be better suited for use in sediment 

bioassays.  

 

When considering the attributes required of an organism for use in 

sediment bioassays it is clear that Quinquelaophonte sp. is the superior 

harpacticoid copepod species of those assessed in this study (see Table 3.5). This 

is based on the observations that it is sensitive to contaminants; it reproduces 

well in culture and reaches high densities; has a short life cycle; and its toxic 

responses are likely to truly reflect sediment toxicity. 
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Table 3.5 Comparison of bioassay traits between R. propinqua and Quinquelaophonte sp. [(–) denotes no difference, (1) denotes the better suited species 
and (0) denotes the lesser suited species]. 
 
 

Geo. 
Dist. 

Life 
History 

Ease of 
culture 

Life- 
cycle 

Repro. 
Rate 

Sexually 
dimorphic 

 
 

Zinc 

Sensitivity 
 

Phenanthrene 

 
 

Atrazine Total 

R. propinqua - 0 - 0 0 - 0 - 1 1 

Quinquelaophonte sp. - 1 - 1 1 - 1 - 0 4 

Geo. Dist. – Geographical distribution  
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3.5 Conclusions  

  

A bioassay species needs to be representative of the environment under 

investigation, it should be among the most sensitive of all organisms in that 

environment to concentrations of toxicants that cause biological harm, and it 

needs to be amenable to laboratory culture. This study showed that the 

harpacticoid copepod Quinquelaophonte sp. is the best suited copepod for use in 

a bioassay to study the effects of toxicants in New Zealand estuaries. 

Quinquelaophonte sp. was chosen based on a detailed investigation of critical 

bioassay characteristics, including the organisms sensitivity to three 

representative reference toxicants. This chapter identified a potential bioassay 

species and also showed that there can be significant differences in toxicological 

sensitivity between related animals, inhabiting similar habitats, and of similar 

size. This shows the importance of conducting robust assessments of potential 

bioassay organisms prior to selection. Critically, this chapter has provided 

toxicant sensitivity data for a New Zealand estuarine invertebrate species that has 

potential to be applied to the development of sediment and water quality 

guidelines.  
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4.  

 

Development of  a sediment spiking 

method for metal and organic 

contaminants in a harpacticoid 

copepod toxicity bioassay 
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4.1 Introduction

 

Harpacticoid copepod bioassays have been developed using a variety of 

different species and sediment types (Chandler and Green 1996, Simpson and 

Spadaro 2011). Copepods are a useful group for environmental risk assessment 

and monitoring because they reproduce and develop rapidly allowing for full life 

cycle testing of contaminated sediments. Furthermore, copepods are exposed to 

contaminants through pore-waters and via direct contact with, and/or ingestion 

of, sediment particles (Green et al. 1993, Simpson 2005). As such they are 

exposed to the full toxic extent of sediment-borne pollution, and therefore are 

subjected to a worst-case scenario of exposure.  

 

The relevance of laboratory bioassays to natural environments relies on 

robust methods for spiking sediments, to provide homogeneous, reproducible, 

and accurate concentrations of tested contaminants. Methods for spiking 

sediments are varied, and include mixing sediments with a stir bar (Chandler and 

Green 1996, Hagopian-Schlekat et al. 2001), a rolling mill (Murdoch et al. 1997, 

Northcott and Jones 2000), hand mixing (US EPA 2001), and mechanical 

shaking (Stemmer et al. 1990). It is critical that reliable sediment spiking 

methods are used or the bioavailability of the contaminants may not reflect that 

of the environment and thus may impact the validity of the toxicity data 

(Simpson et al. 2004, Atkinson et al. 2007). The major consideration when 

spiking sediments is the composition of the sediment, particularly the factors that 

govern sequestration and equilibrium of spiked contaminants (Lee et al. 2004, 

Simpson et al. 2004). For example, physicochemical properties such as organic 

content, pH, and sediment size will all determine the success of the spiking 

method employed.  

 

The type of contaminant to be spiked also influences the success of the 

spiking protocol. For example, metals in sediments are affected by particulate 
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organic content, acid volatile sulphides (AVS), and changes in pH and redox 

potential. The changes in pH and redox potential are due to the displacement of 

sediment-bound ferrous iron into the pore-water. When this is oxidised it 

catalyses hydrolysis reactions that result in a decreased pore-water pH, and 

increased redox potential (Simpson and Batley 2003, Simpson et al. 2005). 

Redox potential and pH govern metal-binding to sediments, and will therefore 

also influence the resulting pore-water concentrations of the spiked toxicant (Di 

Toro et al. 2005, Simpson and King 2005, Simpson et al. 2011, Strom et al. 

2011). Chemicals that are hydrophobic pose greater challenges, particularly for 

aquatic sediments. As hydrophobic contaminants are not miscible in water, it is 

difficult to achieve an even distribution of the contaminant throughout the 

sediment without it precipitating out or binding in one localised area. This can 

lead to the uneven distribution of the contaminant in the sediment, resulting in 

variable toxicity. Similarly to metals, a key factor controlling binding of many 

hydrophobic organic chemicals is organic carbon (Di Toro et al. 1991). The 

extent that non-ionic organic compounds will bind to sediments is based on the 

partitioning coefficient of the compound to organic carbon (Koc) and its water 

solubility (Kow) (Di Toro et al. 1991, USEPA 1993b).  

 

There are several methodologies used to overcome the challenge of 

spiking organic chemicals into aquatic sediments. The first approach is shell 

coating the contaminant on the inside of the spiking vessel prior to the addition 

of sediments, then allowing the contaminant to be distributed by the mixing of 

the sediment (USEPA 1993b, Murdoch et al. 1997, USEPA 2001). A second 

strategy involves spiking dry sediments using a solvent carrier, then allowing the 

solvent to evaporate leaving the contaminant behind (USEPA 2001). The 

sediments are then mixed and re-hydrated. A third technique entails spiking 

contaminants directly into sediments using a carrier solvent, and leaving traces 

of the solvent in the sediment (USEPA 2001).  These methods all have different 

effects on contaminant dispersal through the sediment. Additionally, each of 
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these methods will have distinct effects on the properties of the sediments and 

could alter their “natural” chemistry (USEPA 2001, Simpson et al. 2005). It is 

important a sediment-spiking method is used that ensures a homogenous 

distribution of the contaminant in each sediment type.  

  

The development of robust sediment-spiking techniques is an integral 

part of validating a copepod bioassay for marine sediments.  The main objective 

of this chapter was to determine the best method for spiking fine silty-sandy 

sediments using two different contaminants: zinc, a metal highly soluble in 

water; and phenanthrene, a PAH, which is only minimally soluble in water. As 

these contaminants interact differently with sediment and water two methods 

have been developed to ensure homogeneous distribution. This was assessed by 

chemical analysis of the sediment- bound fraction of the pollutant and the 

aqueous fraction in the pore-water. 

 

4.2 Materials and methods 

4.2.1 Collection of sediments 

 

Sediments were collected from Barry’s Bay in Akaroa Harbour 

(43°45'28.78"S, 172°55'3.17"E).  About 15 kg of surface (0-2 cm) oxic 

sediments were collected by hand in a clean high-density polyethylene (HDPE) 

bucket. This location was chosen because of the presence of the harpacticoid 

copepod (Quinquelaophonte sp.) selected (Chapter 3) for subsequent bioassays 

(e.g. Chapter 5). Once collected, sediments were immediately transported back 

to the laboratory where they were processed.  
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4.2.2  Processing and preparation of sediments 

 

Before the sediments were used for spiking and bioassays they were 

processed using a modification of the method by Chandler and colleagues 

(Chandler et al. 1986, Chandler and Green 1996). Sediments were homogenised 

with fresh water to remove any salts and therefore prevent abnormal salt 

concentrations after autoclaving (see below). The resulting slurry was wet 

filtered through a 125 µm stainless steel mesh sieve and collected in a HDPE 

bucket. The sediment and other materials larger than 125 µm retained by the 

sieve were discarded. Discarded material included any large indigenous fauna, 

pieces of shells, and large particulate organic matter. 

  

The sieved sediment was re-suspended in freshwater and homogenised 

by hand mixing and left to settle overnight at 4°C in the dark. The following 

morning the overlaying water was decanted and the sediments were washed 

again re-suspending and re-homogenising with fresh water. The slurry was left to 

settle overnight and the supernatant decanted. This process was repeated 3 times 

in total. After the final wash the settled sediment slurry was homogenised by 

hand before being divided into clean acid-washed (10% nitric acid soak for a 

minimum of 12 h) and triple acetone-rinsed 1.5 l glass jars. Each jar containing 

approximately 1 kg of sediments was covered with aluminium foil and 

autoclaved for 15 min at 125°C and 130 psi. The glass jars of sterilised sediment 

were stored in the dark at 4°C until they were used in experiments (up to 6 

months). 

 

Before initiating an experiment the sediment stored in glass jars was 

reconstituted with artificial sea water (ASW; Red Sea® sea salts made up in 

deionised water). Approximately 400 ml of the “dry” sterilised sediments was 

added to an electric blender with 1 l of 0.22 µm filtered 30‰ ASW and 

homogenised for 30 s. The sediments were allowed to settle for an hour before 
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the supernatant was aspirated off. This process was repeated twice. The final 

reconstituted sediments maintained a constant 3:2 sediment:water ratio. 

 

4.2.3  Determining sediment dry weights and volumes of spike 

  

Two concentrations of each pollutant were chosen to assess the efficacy 

of the spiking methods: one very high concentration (1000 µg/g dry sed.) and 

one moderate concentration (100 µg/g dry sed.). The sediment spiking 

procedure was based on a dry sediment weight basis (Thomas Chandler, 

personal communication). The reconstituted sediment was poured into a 2 l 

beaker on an orbital shaker (Ratek orbital mixer incubator) at 200 rpm. Four 1 

ml replicate sub-samples of the mixed reconstituted sediment were removed to 

determine the final density wet/dry weight ratio. The reconstituted sediment 

samples were weighed before being centrifuged (5,000 x g for 10 min). The 

resulting supernatant was then aspirated away and the sediment dried in an 

oven at 50°C for 24 h. The dry sediment samples were weighed. The following 

equations were then used to calculate the amount of the spike: 

 

1. Density = average wet weight (g) of 1 ml sediment  

 

2. Dry/wet ratio= average sediment dry weight (g) / average sediment wet weight (g) 

 

                                    (conc. desired (µg/g)) x (wt. sediment to be spiked (g)/density of sediment) x (dry/wet ratio) 

3. Vol. of spike (µl) =                                      (conc. of stock solution of contaminant) 

 

4.2.4 Sediment spiking 

 

Prior to spiking with the reference toxicants, approximately 100 g of the 

reconstituted sediment was transferred into a clean acid and acetone washed 

mixing jar (250 ml Schott Bottles, borosilicate glass).  The volume of spike 
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solution to add to the sediment was determined using equation 3.  A different 

spiking procedure was employed for the introduction of the two reference 

toxicants into sediment. To spike the sediment with zinc, a stock solution of 

ZnSO4·7H2O (100 mg zinc/ml; BDH cat # 10299 AnalaR) was prepared in 

deionized water (Millipore, 0.22 µm filtered), while two solutions of 

phenanthrene (100 mg/ml and 10 mg/ml; Sigma cat # 77470, 97%) were 

prepared in acetone (Mallinkrodt Nanograde) as an organic solvent carrier.  

 

4.2.4.1  Zinc spiking 

 

The glass jars of sediment were placed on an orbital mixer at a speed of 

200 rpm to form a vortex in the centre of the mixing sediment. An aliquot (375 

µl and 37 µl for the 1000 and 100 µg/g treatments respectively) of stock solution 

was added to the vortexing sediment slurry at a slow drip. A spiking control was 

prepared using the same methods with the addition of deionised water (375 µl) 

rather than zinc. 

 

4.2.4.2 Phenanthrene spiking  

 

Two methods were assessed for phenanthrene sediment spiking. In the 

first procedure the inside surface of the spiking jars was shell coated with the 

phenanthrene based on the methods of Northcott and Jones (2000). The glass jars 

were shell coated by adding the desired predetermined mass of phenanthrene in 

acetone solution to the mixing jar and evaporating the acetone while rolling the 

jars.  This produced a thin coating of phenanthrene distributed on the inner walls 

of the glass jar. Next, sediment was added to the jars and mixed on an orbital 

shaker (Murdoch et al. 1997, Northcott and Jones 2000). 

  

The second procedure, as with the zinc spiking protocol, involved adding 

an aliquot of the phenanthrene stock solution (in acetone) to the mixing sediment 
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(200 rpm) at slow dripping rate. This allowed the phenanthrene to be slowly 

mixed into the sediment, thus preventing phenanthrene from exceeding its 

solubility limit (1 mg/l) and precipitating out of solution. The volume of spike 

solution added to sediment was kept to a minimum to prevent acetone forming a 

co-solvent solution with sediment pore-water that could affect the partitioning 

and distribution of phenenthrene. In order to normalise any potential effects of 

acetone the same volume (3.7 µl/g sed.) was added to all phenanthrene 

treatments. A sediment acetone control (no added phenanthrene) was prepared 

by adding 370 µl of acetone to 100 g sediment. 

 

4.2.5 Mixing and ageing  

 

After spiking the sediments the head space in the jars was purged and 

filled with nitrogen gas to prevent oxidisation of the sediment and inhibit 

bacterial growth, which can alter sediment physicochemistry and the 

bioavailability of the contaminant. Each jar was vigorously shaken by hand for 

30 s and mixed in the dark on the orbital shaker (Ratek orbital mixer incubator) 

at 20°C for 24 h at 200 rpm. After mixing for 24 h, the spiked sediments were 

rested for a further 24 h before being shaken by hand again for 30 seconds and 

mixed on the orbital shaker for a further 24 h. The sediment was aged in the 

dark at 20°C for 11 days, providing a total sediment ageing period of 14 days. 

 

After the conclusion of the 14 d ageing period the spiked sediments 

were once again vigorously shaken by hand for 30 s before being split into 7 

replicate 10 g sediment samples, which were frozen until chemical analysis. 

The remaining sediment was used for pH and redox measurements.  
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4.2.6  Physicochemical sediment properties 

 

Sediments were analysed for grain size, total organic content (TOC), 

redox potential and pH. Sediment grain size was determined by separating 

sediments with analytical sieves to evaluate the proportion (% dry weight) of 

>125, 124–106, 105–90, 89–75, 74–63, 62 – 32 and <32 µm size fractions after 

being shaken for 15 min.  TOC was measured as loss-on-ignition after 3 h at 

500°C. Redox potential and pH were measured with a platinum tipped redox 

probe (Jenway 924 003), and gel-filled PEI pH combination electrode (Hanna 

Instruments HI-1230). 

 

4.2.7  Analysis of sediment contaminant concentrations 

4.2.7.1  Zinc analysis 

 

The pore-water and sediment-bound zinc concentrations were analysed to 

provide complete information on the distribution of contaminants within each 

treatment and the potential effects they have on toxicity. The sediments were 

centrifuged at 4,500 x g for 15 min to separate pore-water and sediment particles. 

Pore-waters were decanted and filtered through a 0.22 µm filter to remove 

particulate and colloidal organic matter, acidified by the addition of 25 µl of 

concentrated nitric acid, and diluted with 2% nitric acid (20 – 205 x) to be within 

the optimal concentration range for analytical detection. The centrifuged 

sediments were dried at 50°C for 7 d to evaporate any remaining pore-water. 

After drying, the sediments were homogenised by hand mixing with an acid 

washed plastic spoon and a 1 g subsample was removed to determine the 

concentration of zinc. Residual zinc in the sediment samples was extracted using 

a modification of the USEPA 200.8 protocol.  Four ml nitric acid (69% ultra 

pure) and 10 ml hydrochloric acid (10%) were added to 1 g sediment in an acid 

washed polycarbonate tube and digested by heating at 90°C for 20 min. The 
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acidic digest was diluted to a final volume of 20 ml with deionised water. In 

order to be within the optimal calibration concentration range the acid digests 

were further diluted with 2% nitric acid (10 – 50 x). The diluted acidic digest 

solutions were analysed for zinc using Inductively Coupled Plasma- Mass 

Spectrometry (ICP-MS Agilent 7500 cx). QA/QC procedures included the 

analysis of two duplicate samples and one spiked sample within each set of 20 

samples, as well as the use of a certified reference material (National Institute of 

Standards and Technology #2702, inorganics in marine sediments).  Final 

sediment concentration was calculated by subtracting the mass of zinc 

contributed from the pore-water during drying. 

 

4.2.7.2  Extraction and analysis of phenanthrene residues  

 

Similar to zinc the concentration of phenanthrene was determined 

separately in the sediment and pore-water phases of each treatment. The 

sediment in each treatment tube was separated from pore-water by centrifuging 

in borosilicate glass tubes (2,500 x g for 15 min; Hettich Rotanta 460R). After 

centrifugation the pore-waters were decanted off the sediment into separate 

borosilicate glass screw cap test tubes.  

 

Quality assurance procedures for the phenanthrene analysis included the 

addition of a surrogate recovery compound, anthracene-d10, to pore-water and 

sediment samples prior to extraction. A separate assessment of the extraction 

efficiency of phenanthrene from control sediment treatments was also completed 

by spiking separately with phenanthrene. The mass of the recovery compound 

anthracene-d10 spiked into the pore-water and sediment samples varied with the 

concentration of phenanthrene within each treatment. The theoretical 

concentration of phenanthrene in sediment and pore-waters was calculated using 

the organic carbon normalised partition coefficient (Koc) for phenanthrene, the 

average percent organic carbon for the test sediment, and the target concentration 
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of phenanthrene in each treatment. Anthracene-d10 was added at a 

corresponding rate equivalent to the theoretically calculated concentration of 

phenanthrene. This ensured the concentration of anatracene-d10 added as 

surrogate recovery compound was comparable to the concentration of 

phenanthrene in each sample treatment. Additionally, five of the control 

treatments were spiked with phenanthrene at a concentration of 0.009 µg/g sed. 

dry wt. 

 

Following the addition of surrogate standard to each batch of pore-water 

samples 2 ml of pentane was added to the pore-water in the glass test tubes 

which were sealed with Teflon lined screw caps. The sealed test tubes were 

vigorously shaken for 2 min on a flat bed shaker (300 rpm; IKA KS50) to extract 

phenanthrene and anthracene-d10 into the pentane. The test tubes were left 

upright to assist the separation of the organic and aqueous phases. The upper 

layer of pentane was removed by glass pipette and transferred to 23 ml 

borosilicate glass vials. The residual aqueous solution was extracted a further 

two times with fresh 2 ml aliquots of pentane that were combined with the first 

solvent extract. The combined solvent extract was concentrated to dryness under 

a gentle stream of nitrogen gas. The dried sample extracts were reconstituted in a 

predetermined volume of toluene, the internal standard phenenthrene-d10 added, 

and the final extracts analysed by high resolution gas chromatography with mass 

spectrometric detection (GCMS).  

 

Phenanthrene associated with the sediment phase was extracted using a 

modified method based on the US Environmental Protection Agency (USEPA) 

and the US National Oceanic and Atmospheric Administration (NOAA) 

protocols (Holland et al. 1993). Prior to extraction the centrifuged sediment solid 

samples were spiked with a predetermined mass of the surrogate spike recovery 

compound anthracene-d10. A subset of the control treatments were also spiked 

with phenanthrene to provide an equivalent sediment concentration of 0.009 mg 
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phenanthrene/kg sediment (dry weight basis).  Fifteen ml of 1:1 (v/v) 

pentane:acetone extraction solvent was added to sediment in each sample tube 

and the contents extracted in a sonication bath (Sonorex Digital 10P) for 10 min 

at 25oC at 100% power. The tubes and contents were shaken for 10 min at 300 

rpm on a flat bed shaker (IKA KS501). After shaking, the tubes were centrifuged 

at 2,500 RCF for 12 min at 15oC (Hettich Rotanta 460R) to separate the 

sediment and solvent extract. The upper solvent extract was decanted into a 100 

ml glass Schott bottle. 

 

Another 15 ml aliquot of 1:1 (v/v) pentane:acetone extraction solvent 

was added to each sediment sample tube, the extraction repeated, and the solvent 

extract decanted and combined with the previous extract. Approximately 70 ml 

of Milli-Q water was added to the solvent extract to partition the PAHs into the 

pentane. An aliquot (5-10 ml) of the upper pentane layer was pipetted into a 

glass vial and concentrated to dryness under a gentle stream of nitrogen gas.  

 

The sediment extracts required further purification before analysis by gel 

permeation chromatography (GPC). The dried sediment extracts were 

reconstituted in 0.5 ml of dichloromethane (DCM). GPC was carried out on a 

Shimadzu LC10AT liquid chromatography system fitted with a SIL 10AF 

autoinjector, SPD-10A UV-Vis detector and FRC-10A fraction collector. The 

DCM sample extract (0.5 ml) was injected onto two in-house prepared Biobead 

SX8 GPC columns (420 x 10 mm, glass column) connected in series and eluted 

with DCM at a flow rate of 1.5 ml/min. The fraction containing anthracene-d10 

and phenanthrene was collected for analysis and concentrated to dryness under a 

gentle stream of nitrogen gas. The purified sediment extracts were reconstituted 

in a predetermined volume of toluene, the internal standard phenenthrene-d10 

added, and the final extracts analysed by GCMS.  
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GCMS analysis of the extracts was carried out using an Agilent 6890 

Network gas chromatograph coupled to an Agilent 5975 mass spectrometer 

detector (MSD) and ATAS GL Focus autosampler. Samples and calibration 

standards in toluene (1 µl) were injected into an Agilent split-splitless injector 

operated in purged splitless mode with a splitless time of 1.10 minutes, purge 

flow of 50 ml/min and temperature of 280oC. The injected samples were 

chromatographed on an Agilent HP5MS glass capillary column (30 m x 0.25 

mm ID x 0.25 µm). Helium was used as carrier gas and electronic pressure 

control used to deliver a pressure pulse of 30 psi (held for 1 min) followed by a 

constant flow of 1 ml/min. Separation of target analytes was achieved by 

implementing the following temperature programme. The temperature of the GC 

column was held constant at 90oC for 1.5 min, increased to 130oC (0 hold) at 

20oC/min, then to 280oC at 6oC/min (0 hold), followed by 40oC/min to 320oC 

where it was held for 5 minutes. The temperature of the MSD transfer line was 

held at 280oC and the quadrupole and ion source temperatures were 150oC and 

230oC, respectively. Compound-specific single ion monitoring (SIM) data was 

obtained for phenanthrene-d10, phenanthrene and anthracene-d10. Response 

factors for phenanthrene and anthracene-d10 were determined by running a range 

of calibration standards and the response compared against that of phenanthrene-

d10 to construct calibration curves for internal standard quantitation.  

 

Phenanthrene-d10, phenanthrene and anthracene-d10 in the calibration 

standards and sample extracts were identified by a match of retention time and 

relative abundance of two compound specific mass ions. The identification of 

compounds was verified by comparison between the mass ion abundance ratios 

in the sample to that in the calibration solution using a quality acceptance 

criterion of 20%. 
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4.3  Results 

4.3.1 Physicochemical sediment properties 

 

A summary of the physicochemical characteristics of the sediment is 

presented in Table 4.1.  Table 4.2 displays the background concentrations of 

selected metals in the sediment used in the spiking assessment. After spiking, the 

redox potential and pH remained stable in all spiked treatments except for the 

1000 µg/g zinc treatment where the pH reduced by 1.24 units to 6.08 and redox 

potential rose by 50 mV to 210 mV (Table 4.3). 

 

Table 4.1 Physicochemical sediment characteristics of the pre-spiked sediments. SEM: 
standard error of the mean.  
 

Physicochemical 
property 

Average SEM 

pH 7.32 ± 0.11a 

Redox potential 161 mv ± 3.68 mva 

TOC 1.03% ± 0.10%b 

Sediment size Average (%) SEM (%)b 

>125 0.6 ± 0.05 

124-90 4.5 ± 0.15 

89-75 22.8 ± 0.72 

74-63 43.8 ± 0.60 

62-32 25.1 ±  1.04 

<32 3.2 ± 0.24 

         an=4 bn=6 

 

Table 4.2 Background metal concentrations for the sediments used in sediment spiking sourced 
from Akaroa Harbour. Averages and standard deviations (stdev) given in µg/g sed. dry wt. 
(n=25)  

 Cd Cr Cu Fe Mn Ni Pb Zn* 

Average 0.02 9.80 2.53 5920 103 2.46 3.87 18.5 

± stdev ± 0.003 ± 0.63 ± 0.123 ± 120 ± 6.72 ± 0.005 ± 0.14 ± 0.30 

*n=10 
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4.3.2  Zinc-spiked sediment 

 

Sediments spiked with zinc demonstrated a homogeneous distribution of 

the metal through the sediments with little variation between samples as  

represented by the low relative standard deviation (RSD) (Table 4.4). The 

efficacy of the sample extraction was calculated based on percent recoveries of 

the certified reference material and spiked samples.  The recovery of zinc from 

the certified reference material was an averaged 79.4% with an RSD of 3.2% 

(n=4) for zinc. Spiked recoveries in the QA/QC sample were an average 85% 

with an RSD of 3.8% (n=3), and the relative percent difference of the duplicate 

samples was an average of 1.5 ± 1.3% (n=6).  

Table 4.3 Redox potential and pH after sediment spiking and ageing (+ 14 days). 
Pollutant   Redox (mv) pH 
Control  153 7.30 

Acetone control 154 7.34 

100 µg/g Zn 172 7.18 

1000 µg/g Zn 210 6.08 

100 µg/g phenanthrene 169 7.31 

1000 µg/g phenanthrene 164 7.33 
 
 

Table 4.4 Measured concentrations (average n=7) and relative standard deviation (RSD) of zinc 
and phenanthrene spiked sediments  

Pollutant  Nominal 
Average 

concentration 
(µg/g sed.) 

RSD 
Pore-water 

mg/l 
RSD 

Zinc 
Control 
(background) 

18.6 1.6% 0.005 11.1% 

 100 71.0 2.8% 0.28 2.2% 

 1000 490 2.2% 224 3.4% 

Phenanthrene Acetone control <0.000 - <0.000 - 

 100 46.3 6.2% 0.80 53% 

 1000 116.4 9.8% 9.58 71% 
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  The processed sediments obtained from Akaroa Harbour had a 

background zinc concentration of 18.5 µg/g. The measured average 

concentration of zinc spiked into the sediments were 71.0 and 490 µg/g (n=7). 

The corresponding pore-water concentrations were 0.28 mg/l and 224.2 mg/l for 

the moderate and high zinc concentrations, respectively. The variation between 

the seven subsamples was low (an RSD of 2.8% and 2.2% for the sediment 

spikes) indicating good mixing and even zinc distribution throughout the 

sediments.  

 

4.3.3  Phenanthrene spiked sediments  

 

The shell coating spiking method proved to be inadequate for spiking as 

there were large flakes of phenanthrene left on the sides of the jar and in the 

sediment matrix. Due to the inadequate distribution of phenanthrene, the 

sediments were not further analysed.   

 

For the direct spiked sediments, the 95% confidence interval for the 

mean recovery of the surrogate compound anthracene-d10 spiked into pore-

water samples was 97.0 ± 0.05%. Similarly, the 95% confidence interval for the 

mean recovery of anthracene-d10 spiked into sediments was 89 ± 4%. The 95% 

confidence interval for the mean recovery of phenanthrene spiked onto the 

control treatments was 91 ± 6%.  

 

The sediments spiked with phenanthrene provided an average sediment 

concentration of 46.3 and 116.4 µg/g sed. dry wt. (n=7). Variability between the 

samples showed an RSD of 6.2 and 9.8% for the 100 and the 1000 µg/g nominal 

treatments, respectively. The resulting sediment-bound concentrations of 

phenanthrene were significantly lower than target nominal concentrations. The 
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low rates of binding resulted in high corresponding pore-water concentrations of 

phenanthrene of 0.8 and 9.58 mg/l.  

 

4.4 Discussion 

4.4.1 Zinc 

 

In the 100 µg/g zinc nominal concentration treatments the resulting 

sediment-bound concentration was calculated to be 71% of the nominal target 

concentration (71.0 µg/g zinc). This can in part be explained by partitioning of 

zinc into the pore-waters (average pore-water concentrations 0.28 mg/l) and loss 

by absorption to the borosilicate glass (Batley and Gardner 1977). The measured 

sediment concentration of zinc in the nominal 1000 µg/g zinc sediment was 490 

µg/g zinc. This low binding can be explained by the saturation of the binding 

sites with zinc. This was confirmed from the extremely high pore-water 

concentrations of 224 mg/l.  

 

There is a large variation (0.5-8%) in the organic content in spiked 

sediment studies and this can cause large variations in sediment toxicity (Strom 

et al. 2011). In the current study the organic content was low (1%) which is 

typical of sandy sediments. These types of sediment often have higher pore-

water concentrations and higher toxicity, as demonstrated in this study, 

particularly in comparison to studies that have finer, more organic-rich, 

sediments (Chandler and Green 1996, Chandler and Green 2001). Organic 

carbon is the primary sediment constituent that binds contaminants (Chapman 

and Wang 2001, Rockne et al. 2002), and thus is an important factor in relating 

toxic effect levels across locations and sediment types.  

 

Sediment size also plays a significant role in controlling bioavailability 

and toxicity. The majority of contaminants (especially metals) preferentially bind 
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to the smaller <63 µm sediment fraction over larger sediment particles, due to 

higher density and surface area of binding sites (Simpson et al. 2011, Strom et al. 

2011). This leads to the potential for sandier sediments to sequester less 

contaminant than finer organic-rich sediments. This often can result in greater 

flux of contaminants into pore- and overlying waters from sediments (Simpson 

and King 2005, Strom et al. 2011). In this chapter, fine sandy sediments were 

used (44% of sediment in the 32-63 µm fraction), with a 1% organic 

composition. Although a large proportion of the sediments are <63 µm, the low 

organic content results in a low number of binding sites for metals, and because 

of this there was higher pore-water concentrations of contaminants relative to the 

sediment load.  Prior to testing, the sediments were sieved through a 125 µm 

mesh to remove large debris that makes finding copepods in the sediment 

difficult. This should not affect the environmental relevance of the sediment 

type.    

 

In sediments that have high pore-water concentrations, the main exposure 

route of the organism can be shifted from sediment contact or ingestion, to pore-

water exposure (Simpson 2005, Simpson and King 2005). This can change the 

interpretation of toxic effect levels and highlights the importance of reporting not 

only the concentration of spiked metals in the sediment but also the pore-water 

concentrations of spiked metals (Simpson et al. 2005).  

 

The changes in pH and redox potential observed in the high zinc spike 

concentration are most likely explained by the displacement of sediment-bound 

ferrous iron into the pore-water. When the ferrous iron is oxidised it catalyses 

hydrolysis reactions that result in the observed decreased pore-water pH, and 

increased redox potential (Simpson et al. 2005, Hutchins et al. 2007). The 

changes in pH and redox observed in the high zinc spike (1000 µg/g nominal) 

treatment were not abnormally high and remained within the ranges of 

acceptable pH (6-9) for toxicity testing. However, pH can be normalised by the 
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addition of NaOH (Hutchins et al. 2007). Normalisation of pH is recommended 

as changes in pH influence the partitioning of metals between sediments and 

pore-water, and hence the bioavailability of metals. Normalising pH in sediment 

toxicity assays to a specific value is desirable as it provides a better 

representation of the pH conditions experienced by organisms that are exposed 

in situ (Atkinson et al. 2007, Hutchins et al. 2007) 

 

Overall the method for spiking sediments with zinc was successful. 

There was very low variability in the concentration of zinc between the seven 

replicate treatments, demonstrating that a homogeneous distribution of zinc was 

achieved in the spiked sediment. Changes in the measured physicochemical 

parameters were minimal in the high zinc spike treatment. However, the 

potential for high pore-water concentrations needs to be taken into account when 

using spiked sediment exposures and the potential effects that it can exert on the 

exposure pathways and resultant toxicity (Lee et al. 2004, Simpson and King 

2005). 

 

4.4.2 Phenanthrene spiked sediment 

 

Two procedures were evaluated to spike sediment with phenanthrene. In 

the first procedure the inside surface of the spiking jars was shell coated with the 

phenanthrene. Shell coating is a common method used to spike sediments with 

organic chemicals as it eliminates the introduction of carrier solvent into spiked 

sediments (Northcott and Jones 2000). This method proved to be problematic as 

large flakes of residual crystallised phenanthrene were observed on the inside 

glass surfaces of the jar and in the sediment matrix. As a result this procedure 

was abandoned in preference to a direct spike method employing the use of a 

carrier solvent to deliver the phenanthrene. The carrier solution spike was 

accomplished by using a low volume of phenanthrene in acetone stock solution 
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added directly to mixing sediment. This method proved to be more successful 

with no obvious precipitation/crystallisation issues during spiking.   

 

The concentration of phenanthrene measured in the spiked sediments was 

significantly lower than the target nominal concentrations. Analysis of the spiked 

sediments provided calculated recoveries of 46.3% from sediment spiked at a 

concentration of 100 µg/g and 11.6% from sediment spiked at 1000 µg/g sed. 

dry wt. The homogeneity of phenanthrene residues in the spiked sediments were 

acceptable as demonstrated by the relative standard deviation between replicates 

of 9.7% for the 1000 µg/g sed. dry wt. nominal concentration and 6.2% for the 

100 µg/g sed. dry wt. nominal concentration. The higher variability between 

replicates obtained for phenanthrene spiked into the sediments compared to that 

obtained for zinc could result from the presence of localised crystalline residues 

of phenanthrene in the sediment. This has been reported in previous studies with 

hydrophobic organic compounds at high concentrations (Murdoch et al. 1997).  

The challenge of achieving a homogeneous distribution of hydrophobic organic 

chemicals spiked into soil and sediments is widely recognised (Northcott and 

Jones 2000). This is a result of the limited solubility of these chemicals in 

aqueous solution. In comparison the metal salts used to spike soil and sediment 

are readily soluble in water and are rapidly and evenly distributed throughout the 

solid phase. The results of this assessment suggest sediments should not be 

spiked with phenanthrene at concentrations exceeding 100 µg/g sed. dry wt. as 

this has potential to saturate binding sites and impact on equilibrium partitioning 

between the sediment and its pore-water in low organic content sandy sediments. 

 

Phenanthrene sorption to sediments is controlled by organic carbon (Di 

Toro et al. 1991, Xia et al. 2011). The sediments used in this study had a 

relatively low organic carbon content (1%) which will have limited their sorptive 

capacity for phenanthrene. Phenanthrene is a highly hydrophobic chemical and 

may partially bind to glass and other substrates during sediment spiking. 
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Northcott and Jones (2000) reported that when phenanthrene was spiked into 

field wet soils it could crystallise onto glass surfaces, producing a less 

homogeneous distribution of spiked chemical and also a reduced concentration 

of toxicant in the spiked media. The sediments used in the current experiment 

had a high water content which will have promoted the crystallisation of 

phenanthrene in the sediment, and sorption to the walls of the glass spiking 

bottle. These combined processes could explain the low rate of phenanthrene 

recovery from the spiked sediments. 

 

The concentrations of phenanthrene measured in the pore-water samples 

were higher than expected and exceeded the water solubility of phenanthrene in 

the 1000 µg/g sed. dry wt. nominal treatments. This solubility enhancement is 

most likely explained by the presence of dissolved organic matter and/or 

colloidal organic matter in the pore-water. The ability of these aqueous organic 

components to significantly increase dissolved phase concentrations of 

hydrophobic organic chemicals is widely acknowledged (Lassen and Carlsen 

1997). In the 100 µg/g sed. dry wt. phenanthrene treatments the average pore-

water concentration of phenanthrene was 0.8 mg/l which is just below the 

aqueous solubility limit of phenanthrene of 1 mg/l, suggesting the pore-water 

was close to saturation with phenanthrene. The ionic strength and temperature of 

aqueous solutions are other important factors affecting the solubility of 

phenanthrene in pore-water. Higher ionic strength solutions (e.g. seawater) act to 

decrease the aqueous solubility of phenanthrene (Lee et al. 2003). Temperature 

affects the sorption of organic chemicals to low organic carbon content 

sediments with increasing sorption as temperature decreases (Piatt et al. 1996). 

This is important when considering equilibrium conditions. It is common 

practise to equilibrate spiked sediments used in toxicity testing at 4°C prior to 

testing, which may result in increased partitioning to sediment during 

equilibration and a corresponding pulse or flush into pore-water when the 

temperature is increased to standard test conditions. These different factors 
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affecting sediment and pore-water concentrations of spiked contaminants need to 

be considered, and in some cases evaluated, prior to initiating bioassay testing. If 

artificially high pore-water concentrations are obtained in test procedures 

employing spiked sediments, the sediment pore-water mixtures can be 

centrifuged, the pore-water discarded, and the sediment and spiked contaminant 

re-equilibrated with fresh aqueous solutions of fresh or seawater (Simpson et al. 

2005).   

 

The results obtained from spiking phenanthrene highlighted the challenge 

of spiking hydrophobic organic compounds into marine sediments without 

introducing artefacts. The use of carrier solvents resulted in greater 

crystallisation/precipitation due to rapid dissipation of the water miscible solvent 

into the sediment and its pore-waters (personal observations). However, the 

concentrations used in this spiking assessment were one to two orders of 

magnitude greater (10-100 x) than those used in subsequent organism exposure 

experiments. The significantly reduced concentrations of phenanthrene used in 

subsequent organism exposure experiments minimised the potential of obtaining 

artificially high pore-water concentrations and low nominal recoveries of 

phenanthrene observed in these high spike concentration treatments. 

 

4.5 Conclusions 

  

The objectives of this study were to investigate and validate the spiking 

methods using zinc, a water soluble compound, and phenanthrene a hydrophobic 

compound. The spiking methods employed fine sandy sediments with low 

organic content and were found to be successful as demonstrated by the resultant 

homogeneous distribution of both contaminants. The limits of sediment 

saturation for zinc and phenanthrene were 490 and 116 µg/g, respectively. Pore-

water concentrations were high, exceeding the aqueous solubility of 
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phenanthrene when phenanthrene saturated the sediment binding sites. The 

potential to produce this artefact needs to be considered in the design of 

toxicological assessments employing spiked test media, and in particular, low 

organic carbon content sediments with reduced sorption capacity for 

hydrophobic organic chemicals.  



 

101 
 

 

 

 

 

5. 

 

Development of  acute and chronic 

sediment bioassays with the New 

Zealand harpacticoid copepod 

Quinquelaophonte sp. 
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5.1 Introduction 

 

Sediment bioassays are being increasingly used to monitor and test 

sediments to determine toxicity. These tests utilise a wide range of species from 

polychaete worms, amphipods, bivalves, chironomid larvae to harpacticoid 

copepods (Moore and Dillon 1993, Roper and Hickey 1994, Clement et al. 2004, 

King et al. 2006, Greenstein et al. 2008). The major strength of the bioassay is that 

it assesses the toxicity on the basis of biological effects, rather than by chemical 

characterisation and trigger values (as per ANZECC (2000) recommendations). 

Although trigger values are often based on testing in bioassays, the species used to 

establish the values are often not those of greatest relevance to the site of interest, 

and may therefore be inappropriate in predicting toxicity of a given ecosystem. 

Additionally, when sediment quality guidelines are applied, only abiotic parameters 

are considered and these may be poor predictors of toxicity. In part this is due to the 

inability of such approaches to account for any additive or synergistic interactions 

of contaminants, which can alter the toxicological impact of the sediment.  A 

further weakness of these approaches is that they only test for the presence of a 

selected number of contaminants (Davoren et al. 2005).  However sediments are 

very complex, with a large variation in chemical composition and substrate type, 

even within the same estuary. As these two factors contribute significantly to 

toxicity, this makes it even harder to predict potential adverse effects on the 

ecosystem (Simpson et al. 2011).   

 

There has been a recent realisation that the use of acute lethal endpoints to 

assess toxicological risk is inadequate, and that sublethal endpoints and chronic 

tests allow for better assessments of toxicity (Brown et al. 2005, Greenstein et al. 

2008, Kennedy et al. 2009, Simpson and Spadaro 2011). There have been a variety 

of sublethal endpoints used in sediment bioassays. These include developmental 

(Dahl et al. 2006), behavioural (Lotufo 1997, Silva et al. 2009), and reproductive 

(Ingersoll et al. 1998, Bejarano and Chandler 2003, Fleeger et al. 2007, Simpson 

and Spadaro 2011) endpoints. Of these, reproductive endpoints are most commonly 

employed in meiobenthic bioassays, primarily due to the difficulty in observing 

development and behaviour in a sediment-dwelling organism.  Reproduction is an 
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important endpoint as it is sensitive and may have significant consequences at the 

population level. Inhibition of reproduction can be affected by toxicants via both 

direct and indirect effects. Direct effects are those where the toxicant acts on the 

reproductive system by either mimicking a hormone (endocrine disruption) or 

causing cellular damage to reproductive tissues (Hutchinson 2002). Indirect effects 

occur when the physiological balance of the organism is altered, or processes such 

as steroid and enzyme synthesis are disrupted (Mattison and Thomford 1989).  

 

Although observations of behaviours in situ can be difficult for sediment-

dwelling organisms, if behavioural assessments of sublethal toxicity can be tailored 

to the specific bioassay species, they can provide important insights into effects of 

contaminants. Examples of behavioural endpoints include respiration, locomotion, 

habitat selection, feeding, and predator avoidance. These parameters reflect a 

variety of genetic, neurobiological, physiological, and environmental effects 

(ASTM 2007). As behavioural effects are likely to reflect subtle changes in the 

biology of an organism, these endpoints provide more sensitive estimates of toxic 

effects that may occur in natural populations in situ (Ingersoll et al. 1998). 

 

Before sediment bioassays are able to be used on field-contaminated 

sediments it is important to characterise the responses of the bioassay species to 

different toxicants. This provides insight into how the different bioassay endpoints 

vary with distinct modes of action and bioavailability within the sediments. This is 

accomplished by using single toxicant exposures. In addition to characterising 

bioassay species responses this information can be used in environmental risk 

management for the studied chemicals.  

 

In environmental risk assessment there are two key factors involved in 

identifying risk. The first of these is the characterisation of the toxicant(s) and the 

nature of the exposure. This will include identifying the contaminant source, 

determining persistence in the environment, and the potential of the contaminant to 

bioaccumulate. The second factor involves identification of the contaminants 

potential ecological impacts. This involves assessment of level of toxicity, the 

mode of action, and any population effects. Ultimately, risk is determined by 

integrating these two elements (USEPA 1992). For example, if a pollutant is highly 
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toxic to an ecosystem or an organism, but degrades quickly, then the environmental 

risk may be relatively low. Conversely, a chemical which is less acutely toxic but 

persists in the environment for prolonged periods of time may be a greater 

environmental risk. In environmental risk assessment it is important to use local 

species wherever possible to best represent the ecosystems that are being evaluated. 

In Australia and New Zealand there is a lack of information using local species 

(ANZECC 2000). Increased use of native species will help to create better 

protection for the species that actually inhabit the areas of concern. 

 

The previous chapters of this thesis have identified a harpacticoid copepod 

bioassay species, Quinquelaophonte sp. (Chapter 3), and have developed a method 

for spiking the sediments (Chapter 4) that were shown to be preferential for 

habitation by the Quinquelaophonte genus (Chapter 2). The objectives of this 

chapter are to create two sediment bioassay protocols, one acute and one chronic, 

using a New Zealand native harpacticoid species, Quinquelaophonte sp. The acute 

sediment assay examines a sublethal endpoint, which has been included to increase 

the sensitivity of the assay, and which may enhance the understanding of toxic 

effects aside from mortality. The chronic partial life cycle test has been developed 

to assess chronic effects of contaminants using mortality and reproductive 

responses (fecundity and total juvenile production). Consistent with the rest of the 

thesis, three reference contaminants (zinc, atrazine, and phenanthrene) will be 

examined. These contaminants are of environmental concern and have been used in 

other studies, allowing for the results attained in this chapter to be compared to 

literature findings.  

 

5.2 Methods   

5.2.1  Test species 

 

Quinquelaophonte sp. were cultured in a laboratory culture system based on 

the recirculating seawater system designed by Chandler (1986) and modified for 

use with Quinquelaophonte sp. (Chapter 3).  Copepods were mono-cultured in a 

flow-through plastic aquarium with approximately 2 cm of cleaned sterilised 



 

105 
 

sediments (size <125 µm), with 5 cm of overlying artificial seawater (ASW; 

RedSea® sea salts) under a dripping flow of 5 ml/min. The culture system was 

maintained at 20°C and at 30‰ ASW, with a 12 h:12 h light:dark photoperiod. The 

copepods were fed 40 ml of a concentrated mixed suspended algal diet of 

Dunaliella tertiolecta, Isochrysis galbana, and Chaetoceros muelleri (1:1:1) twice a 

week (Chandler and Green 1996).   

 

5.2.2 Sediment preparation and spiking   

 

Sediments were collected from Akaroa Harbour (43°45’29”S 172°55’5”E) 

at low tide by scraping the top 0-2 cm of sediments, and were processed according 

to the methods detailed in Chapter 4. Toxicant concentrations were achieved by 

spiking sediment with stock solutions of zinc, atrazine, and phenanthrene (see 

methods for zinc and phenanthrene in Chapter 4). Atrazine and phenanthrene were 

spiked using acetone as a carrier in the 14 d chronic bioassays, and in the 96 h acute 

test DMSO was used for atrazine. The solubility of atrazine in acetone was 

inadequate to generate the higher sediment concentrations required for the acute 

tests, hence the use of DMSO as a replacement carrier in these trials. Acetone is the 

preferable carrier as it is more likely to volatalise, thus reducing solvent 

concentrations in the sediment (Northcott and Jones 2000). Carrier controls were 

used in all tests where a carrier was used. The carrier/sediment concentration was 

consistent in all treatments and was below 3 µl/g sed. 

 

5.2.3  Acute 96 h toxicity tests 

  

Acute toxicity tests were performed with three reference contaminants 

(zinc, atrazine, and phenanthrene). All of the tests used laboratory-cultured 

copepods, described in Section 5.2.1 above, and followed the methods outlined by 

Green et al. (1993) with some modifications.  

 

For each contaminant, there were five geometrically–increasing 

concentrations, with four replicates for each treatment and control. Three of the 



 

106 
 

replicates were used for biological enumeration at the termination of the test; the 

fourth was used for water quality and chemical analysis. Each test vessel consisted 

of a 50 ml Erlenmeyer flask with 10 ml clean or spiked control sediments, 20 ml of 

aerated 30‰ ASW, and 30 adult copepods (15 male, 15 non-gravid female) that 

were loaded at test initiation via Pasteur pipette. The test vessels were loosely 

covered with aluminium foil to prevent evaporation. The tests were static (no water 

exchange) and run over 96 h in an environmental chamber at 20 ± 1°C and a 12:12 

light:dark cycle. Dissolved oxygen, salinity, and pH were measured at test initiation 

and at test termination (96 h).   

 

5.2.4  Chronic 14 d toxicity tests 

 

The chronic partial life-cycle 14 d test was based on a method originally 

described by Chandler and Green (1996), but modified for Quinquelaophonte sp.  

In brief, each test included five geometrically-increasing concentrations of the three 

reference contaminants based on the results from the acute 96 h exposures 

described above. An overlap in concentrations was used to compare the differences 

in acute and chronic toxicity. Unspiked sediment was used as a control and carrier 

controls were implemented if a carrier was used to spike sediments. For each 

concentration there were four replicates. Test chambers consisted of a 50 ml 

Erlenmeyer flask with two opposing 1 cm diameter holes at the base of the neck of 

the flask which were covered with 55 µm nylon mesh. These apertures acted to 

maintain a constant level of overlying ASW (25 ml). Prior to water addition, 10 ml 

of sediment were added to each test chamber via syringe. After the sediments were 

added, the test chambers were inoculated with 30 copepods (15 male and 15 non-

gravid females) via Pasteur pipette from the laboratory cultures. Test chambers 

were placed in a purpose built flow-through ASW system, under a dripping flow of 

approximately 1 ml/min. The tests were conducted for 14 d at 20 ± 2°C under a 

12:12 dark:light photoperiod.  Copepods were fed 1 ml (~2·106 cells) of a 

concentrated 1:1:1 mixture of Dunaliella tertiolecta, Isochrysis galbana, and 

Chaetoceros muelleri algae twice a week. Water quality parameters such as 

salinity, dissolved oxygen, nitrate, nitrite, pH and ammonia, were monitored at the 

initiation of the test, after one week, and at test termination. Water quality was 
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maintained at salinity 30‰, pH 8.2, dissolved oxygen >6 mg/l, with nitrate, nitrite, 

and ammonia kept below detection limits (2.5, 0.05 0.25 ppm respectively, 

RedSea® Marine Lab).  

 

5.2.5  Physicochemical sediment characteristics 

 

The sediment was analysed for grain size, total organic content (TOC), 

redox potential, and pH using the same methods as described in Chapter 4. Redox 

potential of the sediment was determined by using a platinum-tipped redox probe 

(Jenway 924 003), and pH was measured using a gel-filled PEI pH combination 

electrode (Hanna Instruments HI-1230). 

 

5.2.6  Toxicant concentrations 

 

Sediment contamination concentrations were measured in pore-water and 

sediment-bound fractions at test initiation and termination. A subsample (c. 10 ml) 

of sediment taken at the beginning of the test, and sediment from one of the four 

replicates at test termination, was frozen at -20°C until analysis. The analytical 

methods for pore-water and sediment concentrations for zinc and phenanthrene are 

described in Chapter 4. Analyses were conducted concurrently with the samples in 

Chapter 4.    

 

Similar to the phenanthrene analysis described in Chapter 4, atrazine 

concentrations in the sediment and pore-water were determined by first centrifuging 

sediments at 2,500 x g to separate pore-water and sediments. Pore-water was 

decanted into a borosilicate glass screw cap test tube, and both sediment and pore-

water was spiked with the structurally-similar triazine herbicide simazine as a 

surrogate recovery compound. The mass of simazine spiked into the pore-water and 

sediment samples varied with the concentration of atrazine within each treatment. 

The theoretically expected concentration of atrazine in the sediment and pore-water 

of each treatment was calculated using the organic carbon-normalised partition 

coefficient (Koc) for atrazine, the average percent organic carbon for the test 
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sediment, and the target concentration of atrazine in each treatment. Simazine was 

added at a corresponding rate equivalent to the theoretically calculated 

concentration of atrazine. This ensured the concentration of simazine added as a 

surrogate recovery compound was comparable to the concentration of atrazine in 

each sample treatment. The concentration of simazine used spanned 5 orders of 

magnitude in concentration. Five of the control treatments were spiked with 

desethyl-atrazine, desisopropyl-atrazine, simazine and atrazine at a concentration of 

0.250 µg sed. dry wt. for spiked sediment (atrazine), surrogate recovery (simazine) 

and atrazine metabolite (desethyl-atrazine, desisopropyl-atrazine) analysis.  

 

Following the addition of surrogate standard to each batch of pore-water 

samples, 2 ml of dichloromethane was added to each test tube. The test tubes were 

sealed with a teflon-lined screw caps and the contents shaken for 10 minutes at 300 

rpm on a flat bed shaker (IKA KS501). After shaking, the tubes were left to stand 

upright to assist the separation of the organic and aqueous phases. The lower 

dichloromethane layer was removed by glass pipette and transferred into a glass 

vial. The residual aqueous solution was extracted a further two times with another 2 

ml of dichloromethane. The combined solvent solutions were concentrated to 

dryness under a gentle stream of nitrogen gas. The dried sample extracts were then 

reconstituted in a predetermined volume of ethyl acetate and a predetermined 

quantity of the internal standard tetrachlorvinphos was added to the reconstituted 

atrazine sample extracts.   

 

Sediment-bound atrazine was solvent-extracted after the addition of the 

simazine surrogate recovery spike using 15 ml of methanol. The sediment solvent 

mix was sonicated for 5 min at 25oC at 100% power in a Sonorex Digital 10P 

ultrasonicating bath. The tubes and contents were shaken for 10 min at 300 rpm on 

a flat bed shaker (IKA KS501). After shaking, the tubes were centrifuged at 2,500 x 

g for 12 min at 15oC (Hettich Rotanta 460R) to separate the sediment and solvent 

extract. The upper solvent extract was decanted into a 60 ml glass vial. Each 

sediment sample was extracted two more times using 10 ml of methanol and the 

three extracts combined. The methanol sample extracts were concentrated to 

dryness under a gentle stream of nitrogen gas using a Turbo Vap LP Concentration 

Work Station (Caliper Life Sciences). The dried extracts were reconstituted into a 
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predetermined volume of ethyl acetate. Extracts of the higher concentration atrazine 

treatments were diluted prior to analysis, and by doing so the effects of co-extracted 

matrix components were negated. Extracts obtained from the lower concentration 

treatments that could not be diluted for analysis required additional purification by 

GPC. The concentrated sample extract were reconstituted in 1 ml of ethyl 

acetate/cyclohexane (1:1, v/v), filtered through a 0.45 µm micro-filter, and 

transferred to an auto-sampler vial. GPC cleanup was achieved using a Shimadzu 

liquid chromatograph (LC-10) with SPD-10A UV detector and FRC-10A fraction 

collector, coupled to a Biobeads SX-3 column (45 cm x 1 cm diameter) using 

ethylacetate/cyclohexane (1:1 v/v) as mobile phase. One ml of the concentrated 

sample extract was injected onto the GPC column and the fraction containing the 

pesticide analytes collected in a glass vial. The cleaned-up sample extracts were 

concentrated, the internal standard tetrachlorvinphos added, and this extract 

transferred to an auto sample vial for analysis. 

 

Residues of atrazine, its primary metabolites desethyl-atrazine and 

desisopropyl-atrazine, the surrogate recovery chemical simazine and internal 

standard tetrachlorvinphos were analysed by high resolution gas chromatography 

with electron capture (µ-ECD) and nitrogen-phosphorus detection (NPD) using an 

Agilent 6890 N gas chromatograph, 7683B series autoinjector and Programmable 

Temperature Vaporisation (PTV) injection. Five µl of sample extracts and 

calibration standards were injected by pressure-pulsed splitless mode onto a 

Hewlett Packard Ultra-2 capillary GC column (30 m x 0.25 mm i.d. x 0.33 µm) 

connected to a column effluent splitter (SGE VSOS) to split and transfer the 

column effluent to the two detectors. The PTV injector temperature was held at 

70oC for 0.1 min then increased at 200oC/min to a final temperature of 250oC for 

the duration of the run. The injected samples were chromatographed using an 

Agilent HP5 glass capillary column (25 m x 0.20 mm ID x 0.33 µm). Helium was 

used as carrier gas and electronic pressure control delivered a pressure pulse of 35 

psi (held for 1 min) followed by a purge flow of 80 ml/min and constant column 

flow rate of 37 cm/s. After 2 min the injector purge flow was reduced to 20 ml/min. 

Separation of target analytes was achieved by implementing the following 

temperature programme. The temperature of the GC column was held constant at 

70oC for 2 min, increased to 130oC (1 min hold) at 25oC/min, then to 160oC at 
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5oC/min (0 hold), followed by 30oC/min to 300oC (5 min hold). The temperature of 

the ECD and NPD was 300oC and 325oC respectively and nitrogen was used as the 

detector make-up gas. 

 

Analyte peaks were identified and quantified by relative retention time 

against the internal standard and absolute responses to external calibration 

standards for both detectors. Calibration curves for the analysed compounds were 

prepared by injecting six calibration standards within the range of 0.02 to 2.0 

µg/ml. Data analysis was carried out using the Agilent Environmental Chemstation 

chromatography package. 

 

Test concentrations of contaminants in sediment and pore-water were 

calculated by averaging the initial and final concentrations to give an average 

exposed concentration over the test period. Percent losses were also calculated by 

dividing the difference of the initial and final concentrations by the initial 

concentration, to examine amount of contaminant losses to pore- and overlaying-

water.  

 

5.2.7 Toxicological analysis  

5.2.7.1  Acute 96 h tests  

 

At test termination, survival was determined by sieving replicates on a 55 

µm mesh sieve. All individuals (alive or dead) were then gently washed into a Petri 

dish where survival was assessed and enumerated, and individuals were sexed.  

Copepods were considered dead if there was no response or movement in a 10 s 

period following being gently prodded with a needle. A sublethal endpoint, lethargy 

or lack of mobility (i.e. an inhibition of swimming) was also measured. Lethargy 

was defined as an inhibition of movement away from a stimulus (a gentle prod with 

a needle), after 10 s. Lethargic copepods were therefore distinct from dead 

copepods in that they did respond to the stimulus, however were unable to actively 

move from the stimulus. Copepods that moved away from stimulus were 

considered unimpacted by exposure.   
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5.2.7.2  Chronic 14 d tests 

 

Copepods were enumerated, sexed, and a determination of mortality was 

conducted as described above for the acute test.  Gravid females were isolated and 

preserved in 5% formalin for later fecundity assessment. After adult individuals 

were isolated the remaining sediment and juvenile copepods were preserved in 5% 

formalin and then stained with Rose Bengal to facilitate counting of nauplii and 

copepodites. Numbers of nauplii and eggs per female were then used to calculate 

the reproductive endpoints, defined below: 

 

1. Total offspring = nauplii + copepodites 

 

2. Potential offspring per female = (eggs + nauplii + copepodites) / surviving 

females  

 

3. Realised offspring per female= (nauplii + copepodites) / surviving females  

 

5.2.7.3 Statistical analysis 

   

Measured concentrations of the contaminants in both sediment and pore-

water were used to generate dose-response curves and estimate LCx and ECx values 

for acute and chronic endpoints. The proportion of individuals surviving 

(“unimpacted”; i.e. not lethargic), or total juveniles produced (as percent of control) 

were regressed against the log value of contaminant concentration using binomial 

regression. LCx and ECx (x = 50, 20, 10) values along with 95% confidence 

intervals were calculated using the FIELLER procedure in the GenStat Statistical 

Package (12th edition). Means and standard deviations were calculated for the 

reproductive endpoints using GraphPad Prism (Version 5) and statistical 

significance was tested using one-way ANOVA with a Dunnett’s post-hoc analysis 

to assess differences from controls. From the results of these analyses two values 

can be derived. The no observed effect concentration (NOEC) is the highest test 

concentration that was not statistically significantly different from the control value. 

The lowest observed effect concentration (LOEC) is the lowest concentration that 

showed a statistically significant difference to the controls. The maximum 
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acceptable toxicant concentration (MATC) was then calculated as the geometric 

mean of the LOEC and NOEC (Mebane et al. 2008). The LOEC, NOEC, and 

MATC were used in this study for calculation of acute to chronic ratios, and for 

comparison to previous research.  

 

5.2.8 Acute to chronic ratios  

 

Acute to chronic ratios (ACRs) were calculated using a variety of methods. 

In Europe, Australia and New Zealand it is common to calculate ACRs based on 

the acute LC50 divided by the chronic NOEC (Lange et al. 1998). In the United 

States ACRs are commonly calculated as the LC50/MATC, however recently there 

has been a shift to acute LC50/chronic EC20 (USEPA 2007, Mebane et al. 2008). In 

other parts of the world, acute LC50/chronic EC10 is increasingly used as the NOEC 

and LOEC are becoming largely obsolete measures (Harrass 1996). All of these 

endpoints were calculated in the current study, along with the acute EC50/chronic 

EC10 ratio, as a further ACR metric.   

 

5.3 Results 

5.3.1 Physicochemical sediment characteristics 

 

Sediment characteristics are presented in Table 5.1, the sediments used in 

this chapter are identical to the sediments used in Chapter 4 (i.e. same collection 

and processing batch), and thus had the same organic content and particle size 

distribution. Sediments were found to have a total organic content of around 1%, 

consistent with fine sandy sediment types. The majority of the sediment was in the 

32-62 µm sediment fraction (43.8%), with the 63-74 µm sediment fraction being 

the second largest. The pH and redox potential did not change after spiking and 

ranged from 7.7–8.3. 
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5.3.2  Chemical analysis 

 

Measured concentrations in sediment and pore-water for all three 

contaminants are listed in Table 5.2.  The measured concentrations are an average 

of test initiation and termination concentrations, providing the average exposed 

concentration for each treatment (King et al. 2004). As the zinc and phenanthrene 

samples were analysed concurrently with those conducted in Chapter 4, they share 

the same QA/QC data. The recovery of zinc from the certified reference material 

was an average of 79.4 ± 3.2%, spiked sample recovery was an average of 85 ± 

3.8%, and the relative percent difference of the duplicate samples was 1.5 ± 1.3%.  

 

For phenanthrene the mean recovery of the surrogate anthracene-d10 spiked 

into pore-water samples was 97.0 ± 0.05%. The recovery of anthracene-d10 spiked 

into sediments was 89 ± 4%. The recovery of phenanthrene spiked into the control 

treatments was 91 ± 6%.   

 

The mean recovery of simazine spiked into pore-water samples was 88 ± 

6%. The recovery of simazine spiked into sediments was 88 ± 11%. The five 

control treatments that were spiked with desethyl-atrazine and desisopropyl-

Table 5.1 Sediment pH, redox potential (mV), total organic carbon (TOC, %), and sediment 
particle distribution (%) in µm. 
 

Physiochemical 
property  

Average  ±SEM 

pH 8.07 ± 0.24 

Redox potential (mV) 140 ± 5.3  

TOC (%) 1.03 ± 0.10 

Sediment size (µm) Average (%) SEM (%) 

>125 0.6 ± 0.05 

124-90 4.5 ± 0.15 

89-75 22.8 ± 0.72 

74-63 43.8 ± 0.60 

62-32 25.1 ±  1.04 

<32 3.2 ± 0.24 

 
 



 

114 
 

Table 5.2 Measured sediment and pore-water concentrations for acute and chronic tests. Values are 
an average of the test initiation and termination concentrations. Sediment values are given in µg/g 
dry wt., and pore-water in mg/l. Percent losses over the test are also reported for the sediment 
concentrations of contaminants. Limits of detection were 0.01 mg/l for zinc and 0.001 for atrazine 
and phenanthrene 
 

Pollutant Test type 
Average 

concentration 
µg/g sed.  

Pore-water 
concentration 

mg/l 
% lost 

Zinc Acute 89 0.30 6.7 

  122 0.62 3.4 

  172. 1.5 2.6 

  255 4.9 3.3 

  384 19 9.8 

 Chronic 27 0.04 0.72 

  37 0.05 1.9 

  55 0.11 0.45 

  95 0.27 0.92 

  162 1.2 9.1 

Atrazine Acute 0.12 0.4 63 

  0.35 1.3 60 

  3.1 2. 69 

  21 11 55 

  176 18. 42 

 Chronic 0.00005 0.002 >90 

  0.0005 0.01 >90 

  0.003 0.04 80 

  0.05 0.11 85 

  0.49 0.40 75 

Phenanthrene Acute 0.28 0.008 14 

  2.1 0.04 11 

  12 0.19 4.8 

  25 0.3 8.0 

  71 0.14 29 

 Chronic 0.003 <LOD 33 

  0.01 <LOD 29 

  0.04 0.001 65 

  0.3 0.009 57 

  1.85 0.04 58 

LOD – Limit of detection  
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atrazine, simazine and atrazine had a mean recovery of 85 ± 5%, 85 ± 6%, 91 ± 5%, 

and 100 ± 7%, respectively. The two primary metabolites of atrazine, desethyl-

atrazine and desisopropyl-atrazine, were not detected (<0.001 mg/l) in the analysed 

pore-water or sediment samples.  

 

Sediment concentrations were within expected ranges based on the spiking 

recovery results from Chapter 4. Pore-water concentrations of all three reference 

contaminants rose as spiked contaminant concentrations increased.  Atrazine 

showed the highest pore-water concentrations relative to sediment burden, followed 

by zinc and phenanthrene (Table 5.2). The losses from the sediment over the test 

were low (less than 10%) in the zinc-spiked sediments and very high (up to 90% in 

chronic tests) in the atrazine-spiked sediments. Phenanthrene showed moderate 

losses over the test period of 4.8–65%.  

 

5.3.3 Acute 96 h tests 

 

Acute sediment toxicity of the three reference contaminants is shown in 

Figures 5.1 to 5.3 and the calculated LCx and ECx values, and corresponding 95% 

confidence limits, are given in Table 5.3. The average of the initial and final 

measured sediment concentration was used to generate the contamination 

concentrations incorporated into the calculation of the ECx and LCx values. 

Copepods in acute tests were assessed for inhibition of mobility (the sublethal 

endpoint, described by the ECx data). Individuals displaying inhibited mobility 

were often incapacitated by the pollutant and would spasm and convulse after the 

stimulus. This effect was most prominent in the phenanthrene-exposed individuals. 

For zinc the sediment LC50 (95% confidence interval) value was 196 (184 – 209) 

µg/g sed. dry wt., with an EC50 for inhibited mobility of 137 (131 -142) µg/g sed. 

dry wt. (Figure 5.1, Table 5.3). Atrazine had an LC50 of 12.7 (15.1 – 47.0) µg/g sed. 

dry wt., and an EC50 for inhibited mobility of 5.35 (4.24 – 6.72) µg/g sed. dry wt. 

(Figure 5.2, Table 5.3). Sediment spiked with phenanthrene had a plateau in 

mortality at about 40% for concentrations greater than 12.3 µg/g sed. dry wt. 

(Figure 5.3, Table 5.3). This corresponded with a saturation in the pore-water 

concentration (see Table 5.2). This combination of mortality plateau and solubility 
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limit of phenanthrene (see Chapter 3) meant that even if higher concentrations of 

phenanthrene were used it is unlikely that 100% mortality would have been 

achieved. Consequently no phenanthrene treatment generated a sufficiently high 

enough mortality rate to facilitate the calculation of LCx values (ASTM 2007).  The 

EC50 for inhibited mobility was still able to be calculated, yielding a value of 2.56 

(2.15 – 3.18) µg/g sed. dry wt. The inhibited mobility showed a typical dose 

response with effects seen at low concentrations (2.12 µg/g) and then complete 

population immobility at 12.3 µg/g and above.  

 

Pore-water LC50 and EC50 values were calculated (Table 5.4) to provide 

insight into exposure pathways by comparison to the aquatic LCx values calculated 

in Chapter 3. For zinc the pore-water LC50 was 2.05 (1.66 -2.47) mg/l, with an EC50 

for lethargy of 0.85 (0.77-0.94) mg/l. For atrazine the calculated LC50 was 9.11 

(8.44 – 9.84) mg/l and the EC50 was 4.10 (3.6 – 4.61) mg/l for pore-water exposure. 

Phenanthrene had a LC50 of 0.42 (0.29 – 0.81) mg/l and an EC50 of 0.046 (0.036 – 

0.064) mg/l for pore-water exposure.  
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Figure 5.1 Dose-response curves (modelled response ± 95% confidence interval) for 96 h sediment 
exposures to zinc A. Lethargy EC50  B. LC50. All values are given in µg/g dry wt. Average responses 
(n=3) for each concentration are also given.  
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Table 5.3 Comparison of test endpoints calculated for the acute and chronic sediment bioassays. Bracketed 
values represent 95% confidence intervals, or P values (for LOEC analyses). All values are given in µg/g 
dry wt. A (-) signifies an incalculable endpoint. 

Test endpoint Zinc 
µg/g 

Atrazine 
µg/g 

Phenanthrene 
µg/g 

Acute bioassay    

LC10 140 (116 – 157) 0.29 (0.057 – 0.54) - 

LC20 159 (138 – 175) 1.27 (0.51 – 2.45) - 

LC50 196 (184 – 209) 25.7 (15.1 – 47.0) - 

Inhibited mobility EC10  106 (100 – 111) 0.0074 (0.0039 – 0.013) 1.20 (0.74 – 1.52) 

Inhibited mobility EC20 117 (112 – 121) 0.084 (0.054 – 0.13) 1.59 (1.15 – 1.91) 

Inhibited mobility EC50 137 (131 – 142) 5.35 (4.24 – 6.72) 2.56 (2.15 – 3.18) 

Chronic bioassay    

Total offspring LOEC 36.8 (P<0.0001) 0.003 (P<0.0001) 0.037 (P<0.0001) 

Total offspring EC10 29.3 (21.9 – 35.2) 0.00022 (9.3E-5 – 0.00046) 0.0035 (0.0006 – 0.0088) 

Total offspring EC20 36.9 (29.6 – 42.7) 0.0020 (0.0011 – 0.0033) 0.010 (0.003 – 0.022) 

Total offspring EC50 54.5 (47.7 – 61.5) 0.083 (0.061 – 0.11) 0.067 (0.034 – 0.13) 

Potential offspring* LOEC 55.2 (P=0.0033) - 0.26 (P=0.0015) 

Potential offspring* EC10 28.8 (15.1 – 39.6) 0.0049 (0.0021 – 0.009) 0.0048 (0.001 – 0.012) 

Potential offspring* EC20 38.1 (23.3 – 46.4) 0.018 (0.010 – 0.029) 0.016 (0.005 – 0.033) 

Potential offspring* EC50 61.7 (47.1 – 74.8) 0.17 (0.14 – 0.21) 0.13 (0.073 – 0.24) 

Realised offspring*LOEC 55.2 (P<0.0001) 0.003 (P<0.0105) 0.037 (P<0.0001) 

Realised offspring* EC10 22.4 (14.9 – 28.5) 0.00096 (0.00038 – 0.0020) 0.0056 (0.0012 – 0.013) 

Realised offspring* EC20 30.8 ( 22.9 – 37.2) 0.0055 (0.0028 – 0.0092) 0.014 (0.0046 – 0.027) 

Realised offspring* EC50 53.0 (45.1 – 62.1) 0.11 (0.080 – 0.14) 0.066 (0.035 – 0.12) 

LC10 97.7 (95.0 – 100) - - 

LC20 108 (105 – 110) - 
- 

LC50 128 (126 – 130) - - 

*per female 
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Figure 5.2 Dose-response curves (modelled response ± 95% confidence interval) for 96 h sediment 
exposures to atrazine A. Lethargy EC50 B. LC50. All values are given in µg/g dry wt. Average 
responses (n=3) for each concentration are also given. 
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Figure 5.3 Dose-response curves (modelled response ± 95% confidence interval) for 96 h sediment 
exposures to phenanthrene A. Lethargy EC50 B. LC50 (data showed to illustrate plateau of mortality 
above 12.3 µg/g).  All values are given in µg/g dry wt. Average responses (n=3) for each 
concentration are also given. 
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5.3.4 Chronic14 d tests 

 

Survival of copepods exposed to zinc, atrazine and phenanthrene over the 

14 d chronic test is illustrated in Figure 5.4. Chronic toxicity to the measured 

sublethal endpoints of total offspring, potential offspring per female and realised 

offspring per female for the three reference contaminants are shown in Figures 5.5-

5.7). The calculated ECx and LCx values derived from the chronic assays are 

reported in Table 5.3. Mortality was minimal over the tests, only occurring at the 

highest tested concentrations of 162, 0.77, and 1.85 µg/g sed. dry wt. for zinc, 

atrazine, and phenanthrene respectively (Figure 5.4).  Zinc significantly reduced the 

total number of offspring at concentrations of 36 µg/g sed. dry wt. and higher 

(P<0.0001) and reduced potential and realised offspring per female at 

concentrations over 55 µg/g sed. dry wt. (P=0.0033, P<0.0001 respectively; Figure 

5.5).  Atrazine caused a significant reduction in total offspring at sediment levels of 

0.003 µg/g sed. dry wt. and above (P<0.0001, Figure 5.6). There was also a 

significant reduction in realised offspring per female at concentrations of 0.003 

Table 5.4 Comparison of pore-water test endpoints calculated for the acute and chronic bioassays. 
Bracketed values represent 95% confidence intervals, or P values (for LOEC analyses). All values are 
given in mg/l. A (-) signifies an incalculable endpoint. 
 

Test endpoint Zinc 
mg/l 

Atrazine 
mg/l 

Phenanthrene 
mg/l 

Acute bioassay    

LC10 0.89 (0.59 – 1.17) 0.87 (0.73 – 1.02) 0.019 (0.007 – 0.032) 

LC20 1.26 (0.93 – 1.59) 2.08 (1.84 – 2.31) 0.059 (0.035 – 0.083) 

LC50 2.05 (1.66 – 2.74)  9.11 (8.44 – 9.84) 0.42 (0.29 – 0.81) 

Inhibited mobility EC10  0.45 (0.43 – 0.47) 0.14 (0.099 – 0.19) 0.02 (0.010 – 0.034) 

Inhibited mobility EC20 0.57 (0.55 – 0.59) 0.48 (0.38 – 0.60) 0.032 (0.018 – 0.040) 

Inhibited mobility EC50 0.85 (0.77 – 0.94)  4.10 (3.6 – 4.61) 0.046 (0.036 – 0.064) 

Chronic bioassay    

Total offspring LOEC 0.05 (P<0.0001) 0.041 (P<0.0001) - 

Total offspring EC10 0.037 (0.026 – 0.047) 0.0038 (0.0023 – 0.0056) - 

Total offspring EC20 0.054 (0.042 – 0.066) 0.013 (0.0091 – 0.017) - 

Total offspring EC50 0.11 (0.091 – 0.13) 0.10 (0.092 – 0.12) - 

LC10 0.30 (0.24 – 0.36) - - 

LC20 0.39 (0.33 – 0.45) - - 

LC50 0.62 (0.54 – 0.69) - - 
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 Figure 5.4 Survival of adult Quinquelaophonte sp. following 14 d chronic exposures to sediment spiked with A. zinc (µg/g sed.), B. atrazine (µg/g sed.) and C. 
phenanthrene (µg/g sed.). One-way ANOVA with a Dunnett’s post hoc test was used to determine significant differences from controls (n=3). All toxicant values 
are given in µg/g dry wt.* P>0.05, ** P> 0.01, ***P> 0.001. ‘Acetone’ refers to the carrier controls.  
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µg/g sed. dry wt. and above (P=0.0150), and although there was a trend towards 

reduced potential offspring per female, this effect was not statistically significant 

due to high inter-replicate variability. Phenanthrene caused a significant reduction 

in total offspring at sediment levels of 0.037 µg/g sed. dry wt. and above 

(P<0.0001, Figure 5.7), with significant reduction in potential and realised 

offspring at 0.26 µg/g sed. dry wt. (P=0.0015, P<0.0001 respectively). 

 

The calculated EC20 values for total offspring were 36.9 (29.6 – 42.7), 

0.0020 (0.0011 – 0.0033), and 0.010 (0.003 – 0.022) µg/g sed. dry wt. for zinc, 

atrazine, and phenanthrene (Table 5.5, 5.6, 5.7). The LC50 values for the chronic 

sediment exposures were only able to be calculated in the zinc-spiked sediment, 

due to the low mortality in the atrazine and phenanthrene exposures. Zinc had a 

chronic LC50 of 128 (126 – 130) µg/g sed. dry wt.  

 

Pore-water chronic endpoints for the three reference contaminants are given 

in Table 5.4. Zinc had an EC50 for total offspring of 0.11 mg/l and a LC50 of 0.62 

mg/l. Atrazine had an EC50 for total offspring of 0.1 mg/l. LC50 values were unable 

to be calculated for atrazine due to insufficient mortality, and phenanthrene was not 

able have chronic pore-water endpoints analysed due to levels being below 

detection limits.    

 

Of the five endpoints calculated for the three reference contaminants total 

offspring was the most sensitive, followed by realised offspring per female, 

potential offspring per female, EC50 of lethargy, and finally the LC50 value. 

Potential and realised offspring were the most variable endpoints. 

 

5.3.5 Acute to chronic ratio  

 

The different ACR metrics are listed in Table 5.5 and produced values that 

ranged from 1.53 to 7.37 for zinc and 1,660 to 117,000 for atrazine. Due to the 

inability to calculate an acute LC50 for phenanthrene, only the EC50/EC10 ACR 

(731) was able to be determined for phenanthrene.  
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Zinc 

 
Figure 5.5 Reproductive endpoints of 14 d chronic exposures to zinc. A. Total offspring, B. 
Potential offspring per female, and C. Realised offspring are calculated as percent of control 
offspring. One-way ANOVA with a Dunnett’s post hoc test was used to determine significant 
differences from controls (n=3). All values are given in µg/g dry wt. * P>0.05, ** P>0.01, 
***P >0.001. ‘Acetone’ refers to the carrier controls. 

** 
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Atrazine 

 
Figure 5.6 Reproductive endpoints of 14 d chronic exposures to atrazine. A. Total offspring, B. 
Potential offspring per female, and C. Realised offspring are calculated as percent of control 
offspring. One-way ANOVA with a Dunnett’s post hoc test was used to determine significant 
differences from controls (n=3). All values are given in µg/g dry wt. * P>0.05, ** P>0.01, 
***P >0.001. ‘Acetone’ refers to the carrier controls. 
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Phenanthrene 

 
Figure 5.7 Reproductive endpoints of 14 d chronic exposures to phenanthrene A. Total offspring, B. 
Potential offspring per female, and C. Realised offspring are calculated as percent of control 
offspring. One-way ANOVA with a Dunnett’s post hoc test was used to determine significant 
differences from controls (n=3). All values are given in µg/g dry wt. * P>0.05, ** P>0.01, 
***P >0.001. ‘Acetone’ refers to the carrier controls. 
 

* 
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5.4 Discussion 

 

The aim of this chapter was to validate bioassays for New Zealand's sandy 

estuarine sediments. These tests account for the bioavailability of environmental 

contaminants, and permit assessment of contaminant mixture toxicity. This 

provides more accurate information regarding environmental contamination 

pressures than traditional monitoring approaches using trigger values. 

Consequently, the ability to test the toxicity of field-collected sediments is vital to 

the protection of estuarine species. Furthermore, the combination of acute and 

chronic bioassays provides insight into how the different reference contaminants 

(and their varying modes of action) affect the toxic response thresholds of 

Quinquelaophonte sp. Information regarding how the mode of action interacts with 

bioassay response, in combination with chemical analysis through toxic 

identification evaluations (TIE), facilitates identification of the causes of toxicity. 

 

5.4.1  Zinc toxicity 

 

Zinc is a common toxicant in estuarine settings, owing largely to its high 

concentration in storm water runoff (Lotze et al. 2006). In this study zinc was found 

to have an acute LC50 of 196 µg/g and an EC50 for inhibited mobility of 137 µg/g. 

This characterises Quinquelaophonte sp. as more acutely sensitive to sediment Zn 

than several other common bioassay species. For example, the harpacticoid 

copepod Amphiascus tenuiremis exhibits an LC50 of 671 µg/g zinc (Hagopian-

Schlekat et al. 2001), and the amphipods Melita plumulosa (King et al. 2006) and 

Hyalella azteca (Borgmann and Norwood 1997) display LC50 values of 1790 and 

Table 5.5 Acute to chronic ratios (ACRs) resulting from the most sensitive chronic endpoint, 
total juveniles produced. ACRs were calculated by dividing the 96 h LC50 or EC50 by a variety of 
calculated parameters from the chronic tests.  
 
 LC50/NOEC LC50/MATC LC 50/EC10  EC50/EC10 LC50/EC20 LC50/LC50 

Zinc 7.37 6.20 6.69 4.68 5.31 1.53 

Atrazine 25700 1660 117000 23400 12800 - 

Phenanthrene* - - - 731 - - 

* Due to the inability to calculate  LC50 values for phenanthrene, only the EC50 was able to be used. 
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3530 µg/g zinc respectively (Table 5.6). Only one species has exhibited higher 

sensitivity to zinc than Quinquelaophonte and that was the amphipod Corophium 

volutator with an LC50 of 32 µg/g (Bat and Raffaelli 1998). Differences in 

metabolism, uptake, elimination (Lotufo et al. 2000, McClellan-Green et al. 2007), 

and exposure pathway (i.e. dietary, pore-water, or sediment contact; Simpson and 

King 2005) of the different species may impact sensitivity. 

 

When the acute sediment pore-water and aquatic LC50 (from Chapter 3) 

values are compared for zinc, the pore-water LC50 is higher (2.1 mg/l) compared to 

the aquatic exposure value (0.9 mg/l). In sandy sediments it is believed that pore-

water is the predominant exposure route for copepods (Strom et al. 2011), and 

therefore the sediment-exposure LC50 based on pore-water concentrations would be 

similar to that of the aquatic only exposures. One explanation for the difference in 

the toxicity is dissolved organic matter. Metals can bind to dissolved organic 

matter, which can reduce their bioavailability (Santore et al. 2002, Kramer et al. 

2004, Di Toro et al. 2005). Sediment pore-waters have higher levels of dissolved 

organic matter compared to the overlying waters (Weston et al. 2006), thus making 

the bioavailable fraction of zinc much lower, raising the effect levels. In addition, 

as the aquatic tests were sediment-free and these copepods are sediment-dwelling 

organisms, the lack of sediment may have caused additional stress to the 

individuals, increasing sensitivity to exposed contaminants.   

 

Another explanation for the differences in toxic effects level is the 

behaviour of the copepods. It is likely that copepods in sediments minimise their 

exposure to pore-water by staying near the sediment/water interface, where dilution 

of pore-water by the overlying water would occur, and/or by moving out of the 

sediment altogether (McMurtry 1984, Lotufo 1997). 

 

The mode of action and acute toxicity for zinc has been discussed 

previously in Chapter 3. The main effects of zinc toxicity include ion imbalance 

(Santore et al. 2002), and interference with exoskeleton maintenance and moulting 

in crustaceans (Poynton et al. 2007). The inhibition of reproductive output in the 

chronic bioassays was found at very low concentrations, and may have resulted 

through several distinct mechanisms. There is some evidence that zinc can 
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accumulate in reproductive tissues (De Schamphelaere et al. 2004), and disrupt 

vitellogenesis (Hook and Fisher 2002) which would result in direct effects on 

reproduction.  Additionally, reproductive effects can be generated by more indirect 

causes including inhibition of feeding and digestion (De Coen and Janssen 1998), 

or interference with moulting through chitinase inhibition. Moult inhibition has 

been correlated with reduced reproduction in Daphnia (Poynton et al. 2007). A 

further possibility is that the effect on reproduction represents the high mortality of 

early life stages, as it is known that these are more sensitive than adult copepods 

(Brown et al. 2005). 

 

In sediments the meiofauna can be exposed to metals through a number of 

different routes including diet, pore-water, or sediment (contact and/or ingestion) 

Table 5.6 Comparison of acute and chronic bioassay responses of Quinquelaophonte sp. to zinc, 
phenanthrene, and atrazine with selected other estuarine species. LC50 and EC50 values presented 
from present chapter to allow for the easiest comparison between studies. All values are based on 
sediment contaminant concentrations given in µg/g dry wt. 
 

Group Species Test type Zinc 
µg/g 

Atrazine 
µg/g 

Phenanthrene 
µg/g 

Reference 

Copepod 
(Harpaticoid) 

Schizopera knabeni 96 h LC50   440 Fleeger 2007 

  10 d Reduced 
reproduction 
 

  22 Lotofu and Fleeger 
1997 

  48 h 
decreased feeding 
rate 
 

  109 Silva et al. 2009 

 Amphiascus tenuiremis 96 h LC50 671   Hagopian-Schlekat 
et al. 2001 

 Quinquelaophonte sp. 96 h LC50 196 25.7 - Present study 

  96 h EC50 –
lethargy 
 

137 5.35 2.56 Present study 

  14 d EC50 - total 
offspring 
 

54.5 0.083 0.067 Present study 

  14 d LC50 128 - -  Present study 

Amphipod Melita plumulosa 10 d LC50 1790   King et al. 2006 

 Corophium volutator 48 h LC50  >250  Hellou et al. 2008 

  10 d LC50 32   Bat and Raffaelli 
1998 

 Hyalella azteca 10 d LC25 3530   Borgmann and 
Norwood 1997 

Midge Chironomus tentans 10 d LC50  > 9  Douglas et al. 1993 

Bivalve Mercenaria mercenaria 10d LC50  >20  Lawton et al. 2006 
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(Green et al. 1993, Hook and Fisher 2001a, Wiklund and Sundelin 2002, Strom et 

al. 2011). In sediments it is most likely that there is a combination of all three 

exposure pathways for each organism (King et al. 2005). The relative importance of 

these pathways will vary with the different sediment partitioning coefficients 

(sediment properties) of metals between water and sediments, and the foraging 

behaviour of the exposed individuals (Simpson and King 2005). In this chapter it is 

hypothesised that in the chronic tests dietary exposure may play more of a role in 

toxicity as individuals are fed during the tests, whereas in the acute tests dietary 

exposure is not expected as individuals were not fed. Dietary exposure can occur 

through the biosorption of zinc by microalgae (Klimmek et al. 2001), which are 

then ingested by the copepods and cause a toxic effect (De Schamphelaere et al. 

2008). Dietary exposure of metals causes reduced reproduction in copepods and 

in Daphnia (Hook and Fisher 2001a, De Schamphelaere et al. 2004, De 

Schamphelaere et al. 2008). When considering organisms in situ the heterogeneity 

of sediments will create variation between exposure pathways even over very small 

scales (Forbes 1999, Simpson and Batley 2003).  

 

The concentrations at which toxic effects of zinc were noted are of concern 

as they are within the levels of contamination found in New Zealand estuaries. For 

example, zinc has been found at concentrations up to 435 µg/g in Porirua Harbour 

(Glasby et al. 1990), a level that is ten times higher than the EC10 for reduced 

offspring in the chronic bioassay and over twice that of the acute LC50 of 196 µg/g. 

Furthermore these toxic levels of zinc are below the ANZECC (2000) ISQV-Low 

of 210 µg/g. This is of concern as there is potential for many metropolitan areas in 

New Zealand to have adverse effects due to metal pollution (see zinc levels in 

Table 1.1).  At contamination levels like these there is a potential for diminished 

copepod populations, which in turn could alter the structure of estuarine 

communities including effects on juvenile fish that rely on copepods as a food 

source (Hicks and Coull 1983, LeBlanc 2007).  

 

It needs to be noted that sediment type determines pollutant bioavailability 

(Simpson et al. 2011, Strom et al. 2011). As the sediment organic carbon proportion 

increases, the sediment will bind higher levels of metals (Mahony et al. 1996, 
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Chapman et al. 1998, Machado et al. 2008). This means that the pore-water 

concentration of metals will be lower in sediments with higher organic content than 

those of a sediment with lower organic content (Simpson et al. 2004, Di Toro et al. 

2005). This study used very fine sandy sediments with a low organic content of 1%, 

which can result in higher pore-water concentrations of zinc.  

 

 Hagopian-Schlekat et al. (2001) reported a zinc sediment 96 h LC50 of 671 

µg/g with a corresponding pore-water LC50 of 0.37 mg/l in a bioassay with the 

copepod A. tenuiremis in sediments with 2.8% organic content. This compares to 

sediment and pore-water LC50 values of 196 µg/g and 2.0 mg/l, respectively, in this 

chapter for Quinquelaophonte sp. The higher sediment LC50 and low pore-water 

LC50 are good examples of the effect of organic carbon on toxicity results. If the 

LC50 value of 671 µg/g reported by Hagopian-Schlekat et al. (2001) is normalised 

to 1% organic carbon as suggested by Simpson and colleagues (2011), the resulting 

LC50 is 239 µg/g, which is similar to the 196 µg/g LC50 found in this study.  This 

shows the necessity to account for organic carbon when interpreting these results, 

as the shift of metals from sediment to pore-water changes the predominant 

exposure route (Simpson 2005, Simpson and King 2005).  

 

In this chapter the sediments were allowed to equilibrate for 14 d at 20°C to 

prevent abnormally high pore-water concentrations (Lee et al. 2004, Simpson et al. 

2004, Simpson et al. 2005). However, due to the nature of the sediment, this did not 

preclude high pore-water concentrations of zinc. Thus pore-water may contribute 

more to toxic effects than sediment concentrations.  

 

5.4.2 Atrazine toxicity 

 

The toxic effects of atrazine have been controversial, mainly due to its 

connection to the global decline in frogs (Hayes et al. 2002, Hayes et al. 2003). 

Atrazine has been banned in the European Union due to its persistence in drinking 

water. It is, however, still heavily used in the US in corn and sugarcane agriculture 

and to a significant, but lesser, extent in Australia and New Zealand (Ackerman 

2007). Atrazine is not very acutely toxic; however, it does have significant chronic 
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effects and is considered to be an endocrine disrupting compound in vertebrates. 

The mechanism of endocrine disruption is thought to occur via a mechanism that 

involves reduction in testosterone levels and an increase in oestrogen production, 

by promoting the conversion of testosterone into oestrogen (Hayes et al. 2002).  

 

Quinquelaophonte sp. showed a large effect range in response to atrazine 

exposure, with an acute LC50 of 25.7 µg/g, inhibited mobility EC50 of 5.35 µg/g and 

an EC50 for total offspring of 0.083 µg/g. Similarly, in another copepod species, 

Amphiascus tenuiremis, inhibition of reproduction was observed at concentrations 

where there was no effect on development or survival (Bejarano and Chandler 

2003). However, it is unknown through what mechanism atrazine is affecting 

reproductive function in invertebrates. It is possible that the effect is indirect, acting 

via impairment of behaviour and feeding. This has been seen in mussels, where 

atrazine was shown to cause starvation (Tuffnail et al. 2009). Effects similar to this 

could be causing the reduced reproduction in Quinquelaophonte sp. observed in this 

chapter. Further research into the effects of atrazine on invertebrate physiology is 

needed. 

 

Atrazine showed high pore-water concentrations due to significant 

desorption from sediments. This strong dissociation from sediments into pore- and 

overlying water has been noted previously. Other studies have shown that up to 

40% of sediment-bound atrazine can diffuse into the water column (Mersie et al. 

1998, Mersie et al. 2000), resulting in high pore-water concentrations. In the 

chronic exposures between 75 and 90% of atrazine was displaced from sediments 

and resulted in pore-water concentrations as high as 0.4 mg/l. As with other organic 

contaminants, organic carbon also plays a major role in governing atrazine 

bioavailability and pore-water concentrations (Smalling and Aelion 2004, 2006). 

The high pore-water concentrations suggest that this is the main exposure route for 

atrazine in sediment exposures.  

 

Inhibition of reproduction can have serious consequences for populations, 

especially at low, environmentally-realistic concentrations. A study by Bejarano et 

al. (2005) showed that at water concentrations at the USEPA seawater criterion for 

atrazine (26 µg/l), significant effects on mesocosm assemblages could be seen. 
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These could eventually translate to changes in overall community structure. 

Atrazine had effects at very low concentrations in the current chapter (0.003 µg/g 

sediment and 0.04 mg/l for pore-water concentrations), which creates concern that 

the adverse impacts of atrazine may be seen in wild populations. Atrazine has been 

found at concentrations as high as 49 µg/g in soils in the US (Douglas et al. 1993). 

In New Zealand there is little information on levels of atrazine in rivers or estuaries 

however it has been found in groundwater around the country (Close and Rosen 

2001), with levels as high as 37 µg/l recorded (Close 1993). Adverse effects are 

unlikely to occur in New Zealand (owing to limited use of the pesticide in this 

country compared to other countries), or the EU (where atrazine is banned), but if 

similar sensitivities are exhibited by species where atrazine is extensively used (e.g. 

the US) then significant effects may be observed. Certainly this seems to be the 

case for some North American species (Bejarano et al. 2005).  

 

There is limited data on sediment exposures of atrazine to marine 

invertebrates. This is a large knowledge gap, particularly in countries that still use 

atrazine extensively, and in nations where atrazine and its metabolites are persistent 

in the environment (Rice et al. 2004). There is also a lack of knowledge regarding 

the potential effects of sediment-bound atrazine (Douglas et al. 1993, Lawton et al. 

2006). However, given the results of this study, sediment-bound atrazine desorbs 

very quickly, which means that levels of sediment-bound atrazine are likely to be 

low in estuaries. In contrast to the relatively low probability of toxic impact 

associated with sediment-bound atrazine, the reproductive effects seen at low pore-

water concentrations (EC10 total offspring 0.0038 mg/l) are likely to be of greater 

concern.    

 

5.4.3 Phenanthrene toxicity 

 

Similar to the pattern observed for atrazine, phenanthrene showed a large 

difference between levels at which effects on reproduction and acute toxicity were 

noted. The predominant mode of action of phenanthrene is through non-polar 

narcosis (Ren 2002). This was evident in the present study by the inhibited 

mobility. Non-polar narcosis is a general mode of action shared by phenanthrene 
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and many other organic compounds including chlorobenzenes, alcohols, esters, 

ethers, and chlorinated alkanes (Roex et al. 2000). The lethargic effect was very 

pronounced in the acute test with an EC50 of 2.56 µg/g recorded. While these 

individuals are not dead, their incapacitation and failure to respond to stimuli results 

in them being ‘environmentally dead’. In other words, due to their inability to move 

they are likely to be preyed upon, and if they avoid this fate, they are unlikely to 

recover (Brooks et al. 2009, Trekels et al. 2011). An acute LC50 was unable to be 

calculated due to the plateau in mortality at concentrations above 12.3 µg/g. This 

can be explained by saturation of the pore water at around 0.15 – 0.3 mg/l. Further 

increases in sediment phenanthrene led to no further increases in pore-water levels, 

corresponding with no increase in toxicity. This suggests that pore-water 

contaminants are the predominant exposure route for Quinquelaophonte sp., a 

finding that is consistent with literature on hydrophobic compounds (Di Toro et al. 

1991, USEPA 1993b).  

 

The EC10 of total offspring at 0.0035 µg/g is three orders of magnitude 

lower than the acute EC50. This suggests that phenanthrene may have a second 

mode of action, other than non-polar narcosis, acting specifically on reproductive 

tissues. Non-polar narcotic compounds often have low ACRs (see section 5.4.4 for 

more on ACRs) due to their non-specific action, whereas chemicals with more 

defined modes of action (i.e. pesticides and metals) have higher ACRs (Roex et al. 

2000, Paumen et al. 2008, Marinkovic et al. 2011). This suggests that phenanthrene 

may have a direct effect of reproductive function, i.e. a mode of action other than 

general narcosis inhibiting reproduction. Lotufo (1998a, b) suggested that sediment 

exposure to fluoranthene (a low molecular weight PAH, similar to phenanthrene) 

caused reduced reproduction in the copepods Schizopera knabeni and Coullana sp. 

by a mode of action other than general narcosis. Lotufo attributed this to the 

accumulation of the PAH in the lipid-rich tissues, especially eggs, which in turn 

inhibited hatching success and development of juveniles. Partitioning into the lipid-

rich tissues occurs due to the hydrophobicity of the PAH (Van Wezel and 

Opperhuizen 1995). The passage of contaminant to the egg potentially assists with 

the detoxification of phenanthrene in females by reducing their body burdens 

(Lotufo 1998b). However, it could affect population growth as it results in reduced 
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offspring. Based on the large ACR, and the results from Lotufo (1998a, b), it is 

highly likely that phenanthrene inhibits reproduction through a direct effect.  

 

The levels at which phenanthrene causes impairment of reproductive 

endpoints (EC50 of total offspring 0.067 µg/g) are lower than several SQVs, 

including the Effects Range-Median concentration (ERM) of 1.5 µg/g by Long et 

al. (1998), the Probable Effects Level (PEL) of 0.5 µg/g by MacDonald et al. 

(1996), and the ANZECC (2000) ISQG-low of 0.24 µg/g for sediment normalised 

to 1% organic carbon. This further emphasises that a trigger value is not a suitable 

replacement for a bioassay, as previously discussed (sections 1.4 and 5.1). This is 

especially relevant with PAHs as they are always found in mixtures (Latimer and 

Zheng 2003), and can have additive toxicity which is not predicted by trigger 

values (Landrum et al. 2003).  Bioassays are able to assess the negative effects of 

the bioavailable fraction and the potential effects of mixtures.   

 

Environmental concentrations of total PAH have been recorded over 10,000 

µg/g (Huntley et al. 1995) and up to 3.7 µg/g in New Zealand (Holland et al. 1993), 

and are cause for concern worldwide (Kennish 1992). While this local level of 

phenanthrene is around that found to cause mortality (around 2 µg/g in the acute 

and chronic exposures); PAHs are most commonly found at levels where the 

potential for chronic reproductive effects is significantly more likely than acute 

toxicity (Maher and Aislabie 1992, Soclo et al. 2000, Mai et al. 2002, Readman et 

al. 2002). Potentially offsetting toxicological effects is the possibility of behavioural 

responses that might modify the exposure of organisms to contaminants. Studies 

have shown that copepods exhibit avoidance behaviour in response to PAH-

contaminated sediments, and actively leave these sediments in search of less 

contaminated ones (Carman and Todaro 1996, Lotufo 1997). While this may be 

beneficial in terms of limiting the exposure to the toxicant, it can have additional 

negative implications for copepod populations. For example, copepods in the water 

column face the risk of increased predation by fish (Lotufo 1997, Brooks et al. 

2009).  
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5.4.4 Acute to chronic ratios (ACRs) 

 

Acute to chronic ratios (ACRs) were introduced in environmental risk 

assessment as a mechanism for predicting chronic toxicity from acute data. The 

impetus for this was due to the relatively large database of acute effects compared 

to the paucity of data on chronic exposures (Marinkovic et al. 2011). This is mainly 

owing to the difficulty in testing organisms over a chronic time-frame, especially in 

vertebrates that have long life cycles (Niederlehner et al. 1998, Raimondo et al. 

2007). ACRs have been calculated for a multitude of species and toxicants, and 

have been used to develop the US ambient water-quality criteria and to predict 

NOEC’s (Mount et al. 2003). The ACR can be calculated a number of different 

ways (Table 5.5), and this has resulted in an ACR that can vary significantly, even 

for the same toxicant. In the current study, for example, the ACR for zinc ranged 

from 1.53 to 7.37 depending on the metric used. Due to statistical issues with using 

LOEC/NOEC (and therefore MATC) it is strongly recommended that the 

LC50/EC10 be used when calculating ACRs, primarily because the EC10 is a more 

accurate statistical method and is less likely to be affected by experimental design 

than LOEC/NOEC data (Harrass 1996). The LC50/EC10 ACR is the metric from the 

current study used in the rest of this chapter.  

 

There have been several studies that have linked ACRs to mode of action. 

Lange et al. (1998) showed that chemicals with specific modes of action have very 

large ACRs (Roex et al. 2000); whereas non-specific narcotic compounds have 

been shown to have low ACRs (Kenaga 1982). Non-specific narcotic compounds 

also show the lowest variation between species (Roex et al. 2000). Interestingly, 

phenanthrene, a non-specific narcotic compound which showed a prominent 

narcotic effect in the acute exposures, had a high ACR of 731. This ACR is in 

contrast to previous studies that examined phenanthrene and similar non-specific 

narcotic compounds. For example, Marinkovic et al. (2011) found an ACR of 1.5 

for phenanthrene in the midge Chironomus riparius, while Roex et al. (2000) 

showed that ACRs in the non-polar narcotic class ranged from 1.2 – 6.7 in aquatic 

organisms. Other studies have looked at non-polar narcotic compounds as a group 

across different aquatic species and have found average ACRs of: 1.8 (Niederlehner 
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et al. 1998), 1.9 (Calamari et al. 1983), 2.6 (Roex et al. 2000), and 2.4 (Cowgill and 

Milazzo 1991). There have been a few studies that have measured higher ACRs 

with non-polar narcotic compounds, with Kuhn et al. (1989) reporting an average 

ACR of 41 in D. magna.  The ACR found in this chapter is more similar to 

compounds that have a specific mode of action, suggest that phenanthrene may 

have a mode of action other than non-specific narcosis in copepods. As discussed 

previously (section 5.4.3), there is a precedence for this from previous studies 

(Lotufo 1997). Raimondo et al. (2007) showed a high variability in the ACR's of 

non-polar narcotic compounds, and suggested that the higher ACR are an indication 

of different modes of action in acute and chronic tests. Thus the findings of both 

these studies help to support the potential for two distinct modes of action for 

phenanthrene toxicity to Quinquelaophonte sp. in the acute and chronic tests. 

 

Atrazine showed the highest ACR in this study of 117,000. Atrazine has 

been shown to be an endocrine disrupting compound (Hays 2002, 2003) with a 

specific mode of action. Studies have seen high ACRs in compounds with specific 

modes of action (Roex et al. 2000), and this is consistent with findings of this 

chapter. In studies examining acute and chronic toxicity of atrazine in amphipods, 

an ACR of 1.2 for Hyalella azteca and >12.5 for Diporeia sp., (96 h LC50 unable to 

be calculated) were discerned when comparing 96 h LC50 to 21 d LC50 (Ralston-

Hooper et al. 2009). In the current study the acute LC50/chronic LC50 was not able 

to be calculated due to insufficient mortality in the chronic tests; however, the other 

ACR metrics that were able to be calculated for atrazine are over 1,000 times 

greater than those for the amphipods Hyalella azteca and Diporeia sp. The reason 

for the large differences in ACR are unknown, however, body size and species-

specific metabolism may be a factor as previously discussed (section 3.4.5).   

 

In this study zinc had the lowest ACR relative to the other two reference 

contaminants. ACRs reported for zinc are quite variable, ranging from 1 for the 

trout, Oncorhynchus mykiss (Mebane et al. 2008), 2.9 for the cladoceran Moina 

macrocopa (Wong 1992, 1993) to 19.5 for a mysid shrimp (Gentile et al. 1982). 

ACRs for copper include 3.5 and 3.6 in midge C. riparius (Roman et al. 2007, 

Marinkovic et al. 2011), and 1.3 in the copepod Eurytemora affinis (Hall et al. 

1997). In studies that have compared multiple metals and species, average ACRs of 
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15 (for aquatic invertebrates; Roex et al. 2000), and 9 (for a study with both aquatic 

invertebrates and vertebrates; Raimondo et al. 2007), have been reported. The 

results for Quinquelaophonte sp. are similar to these other studies with an ACR of 

6.69. 

 

In several studies examining a variety of different contaminants and species 

the average ACR appears to be around 5-10 (Roex et al. 2000, Ahlers et al. 2006, 

Raimondo et al. 2007). However, there is large variability in ACRs, with ACRs 

reported from 1 to 18,550 (Mebane et al. 2008; Raimondo et al. 2007). Differences 

in ACR between contaminants and tested animals have been attributed to variation 

in the toxicokinetics (the uptake and elimination of a contaminant of an organism) 

and the mode of action (Bonnomet et al. 2002, Duboudin et al. 2004). In addition, 

there are differences between studies in terms of the specific ACR metric used (e.g. 

NOEC, MATC, or EC10,) and the endpoints of chronic toxicity (reproduction, 

development, or emergence).  This study only examined three reference 

contaminants, but also showed a wide variability of ACRs in Quinquelaophonte 

sp., with values ranging from 6.69 to 117,000.  

 

ACRs provide useful information for environmental risk assessment, as 

well as characterising Quinquelaophonte sp. responses as a bioassay species, by 

helping to understand the relationships between acute and chronic toxicity. The 

relationships between contaminant mode of action and ACR will help to estimate 

chronic thresholds for SQG and in toxicity identification evaluation (TIE). 

However, as recommended by others, caution should be used when generalising 

ACRs and using them in environmental risk assessment as it is easy to under- or 

over-estimate potential chronic toxicity (Roex et al. 2000, Raimondo et al. 2007, 

Mebane et al. 2008). 

 

5.4.5  Validation of bioassays 

 

This study validated acute and chronic sediment bioassays by examining 

contaminant effects including mobility, reduced reproduction, and mortality. The 

acute 96 h sediment test was found to be more sensitive than many other bioassays 
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for the three reference contaminants, including 10 d amphipod survival tests (Table 

5.6).  The sublethal endpoint of inhibited mobility proved to be a very sensitive and 

effective means of measuring toxicity, and may have utility as an alternative to 

mortality. This endpoint is of ecological importance as individuals that are stunned 

or hindered by contaminants will be unable to escape predation and are essentially 

‘environmentally dead’ (Brooks et al. 2009, Trekels et al. 2011). The inclusion of a 

sublethal EC50 in this acute bioassay not only increased the sensitivity of the test 

but also provided information on the mode of action and the physical effects of the 

contaminants. Phenanthrene acted through non-polar narcosis, and the lethargy 

endpoint was able to effectively elucidate this mode of action. Kenaga (1982) found 

that the majority of industrial organic compounds act through non-polar narcosis 

suggesting that lethargy can be used to detect a range of organic compounds. While 

this endpoint will not be able to provide definitive information on the contaminant 

mode of action it can help in TIE evaluations in field samples (Grote et al. 2005, 

Nendza and van Wezel 2006). Acute tests are not always suitable to characterise 

toxicity, however the more environmentally relevant endpoints that are used in 

acute tests the better they are at identifying toxic effects (Greenstein et al. 2008).   

 

The chronic 14 d partial lifecycle test was a very sensitive test, especially 

with respect to the organic compounds tested. The total number of offspring 

produced was the most sensitive of the endpoints with the number of potential 

offspring per female the most variable. This could be due to variability in the 

production of a second clutch by females; however this is just from personal 

observations and has not been tested. However, in Daphnia, differences in time 

between extruding of clutches has been noted as an effect of exposure to toxicants 

(USEPA 2002). This can potentially cause the second clutch not to be produced in 

the test timeframe, introducing variability and a decrease in statistical sensitivity.  

The chronic test is a partial lifecycle assessment, only resulting in the production of 

naupliar stage juveniles and not copepodite life stages. This limitation has been 

shown not to affect the sensitivity of the bioassay in a study by Kovatch et al. 

(1999) which compared two harpacticoid bioassay species, Amphiascus tenuiremis 

and Microarthridion littorale, and two bioassay lengths, 14 and 21 days. Similar 

findings have been reported in other copepod species (Lotufo 1998a, b) supporting 

the utilisation of a partial life cycle test.  
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This chronic bioassay starts with adults not juveniles. This may reduce the 

mortality during the test, as juveniles are more sensitive than adult copepods 

(Brown et al. 2005). As the chronic assay requires individuals to mate during the 

test, the number of mating individuals will have an effect on the total juvenile 

production. Mating behaviour cannot be specifically measured in this bioassay, but 

it is possible, by analogy to other chronic bioassays systems (Blockwell et al. 

1998), that toxicants could influence reproductive endpoints by an effect on this 

parameter. Consequently, this may enhance the sensitive of the assay by reflecting 

both behavioural and reproductive responses of toxicants on reproduction. The 

extent that any behavioural toxic effects will affect mating success will depend on 

the mode of action of the pollutant (Blockwell et al. 1998, Gray et al. 1999).   

 

Another advantage of this chronic test is that it is a flow-through test. Such 

tests better mimic in situ exposures as overlying waters are continuously 

exchanged, preventing abnormally high pore-water concentrations in the sediment. 

However, this does result in decreasing sediment and pore-water concentrations 

through the test. In the current study up to 58% of phenanthrene was lost during the 

assay, although some of the loss may have been due to degradation.  

 

Chemical analysis and trigger values can over- or under-predict toxic effects 

as they do not take into account bioavailability of contaminants in the sediments 

(Strom et al. 2011). Bioassays allow for biological effects to be assessed as a 

function of the total bioavailable contaminant fraction, which can vary greatly 

between sediment types (Simpson et al. 2011). The development of these two 

bioassays allows for flexibility in the application of a monitoring scheme. The acute 

test can be utilised as a rapid high-throughput assessment of potentially heavy 

levels of pollution. The chronic bioassay is much more sensitive and therefore 

would be better utilised in situations where the maximum environmental protection 

is required (i.e. near marine reserves or particularly sensitive environments). It 

requires a larger time and resource commitment, thus further suggesting that it has 

the greatest utility for particularly sensitive coastal regions. Simpson and Spadaro 

(2011) estimated that the costs of running their chronic tests with the copepod N. 

spinipes and the amphipod M. plumulosa were 1.5 times greater than an acute test. 
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For the current bioassays it is estimated that the cost was around two times greater 

for a chronic test with Quinquelaophonte sp. relative to the acute assay. This 

difference is due to the larger number of individuals and sediment volume used, 

adding additional time in enumerating juveniles.  

 

 

5.5 Conclusions 

  

This chapter has validated two sediment bioassays with multiple lethal and 

sublethal endpoints that can be applied in a wide range of sediment monitoring and 

risk assessment frameworks. Under the ANZECC (2000) guidelines local species 

are to be used wherever possible, and this is an element that has been lacking in 

New Zealand assessment frameworks. The harpacticoid copepod 

Quinquelaophonte sp. is a valuable local bioassay species and the incorporation of 

bioassays based on this species into environmental monitoring may provide the best 

local protection, and would subsequently reduce the reliance on trigger values 

derived from overseas species. This study showed that sublethal endpoints were 

valuable in detecting toxic effects at environmentally-relevant levels of 

contaminants. Analysis of acute and chronic toxicity helped elucidate the mode of 

action of phenanthrene through the use of ACRs, and the effects different modes of 

action had on the bioassay endpoints. Future research should focus on further 

developing complementary local bioassay species to be able to create a suite of 

bioassays to best assess contamination across taxa (Greenstein et al. 2008). This 

allows for multiple lines of evidence to assess pollution and permits causes of 

toxicity to be identified through patterns in the bioassay responses (USEPA 1993a, 

Burton et al. 2002a, Chapman and Anderson 2005). 



 

140 
 

 

 

 

 

 

6. 

 

Toxicity assessment of  sediment from 

Christchurch, Napier and Invercargill 

(New Zealand) estuaries using a 

harpacticoid copepod chronic  

bioassay 
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6.1 Introduction 

 

Sediments vary in their capacity to bind and sequester contaminants (see 

Chapters 4 and 5). The binding properties of sediment control the bioavailability of 

contaminants, and consequently also mediate their toxicity. A whole sediment 

bioassay is advantageous over other mechanisms of toxicity assessment in that it 

provides an indication of the overall toxicity of a sediment, and can account for the 

presence of multiple stressors.  

 

In the previous chapter the responses of single toxicant exposures were 

examined in the estuarine copepod bioassay. In the “real world" contaminants are 

rarely present as single toxicants, and instead occur in complex mixtures of 

multiple toxicants, which may vary in concentration and bioavailability. There can 

be large spatial variation in these mixtures depending on the surrounding land use. 

Sediments sourced from areas that are intensively used for industry, shipping, and 

urban land uses are likely to have different contaminant loads. In harbours typical 

contaminants include tributyltin (TBT), heavy metals, ammonia, phenols and oils 

(Young 1980), whereas typical farming (agricultural) contaminants include: 

fertiliser residues, insecticides, herbicides, animal manure, and farmyard wastes. 

Urban environments can have a large variety of contaminants that include 

polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), 

PAHs, and heavy metals (Kennish 2002).  

 

Pollutant mixtures can have effects that are distinct from those of single 

contaminant exposures. One such effect of pollutant mixtures is additive toxicity. 

This is where the individual toxicities of specific contaminants add to each other 

generating greater toxicity than a single toxicant alone. This can result in mixtures 

of individual contaminants at concentrations that are each below their effect 

threshold (NOEC) causing toxic effects (Walter et al. 2002). This can occur through 

joint action (contaminants acting on the same pathway) or independent action 

(contaminants acting on different pathways) (SCHER 2011).  Mixtures can also be 

more toxic than the predicted additive toxicity of the individual contaminants, a 

response known as synergistic toxicity (Forget et al. 1999).  
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Traditional monitoring using sediment quality guidelines and trigger values 

does not take mixtures of contaminants into account. Current regulations are based 

on single contaminant concentrations using threshold values created by 

mathematical models to predict effect levels of potential adverse contaminants on 

organisms. These values, such as the ISQG values in the Australian and New 

Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000), are 

limited in assessing potential risks to biota. These limitations are well recognised, 

even by the guidelines themselves (e.g. section 8.3.5.18 in ANZECC 2000).  A key 

limitation is scenarios where additive or synergistic toxicity occurs, via 

contaminants that are present in the monitored environments below their trigger 

values (Kelly 2007). In addition to this problem in assessing additive and 

synergistic toxicity, SQVs do not take the bioavailability of contaminants into 

account. Bioavailability is a factor that can vary greatly between sediment types 

(Bryan and Langston 1992, Strom et al. 2011). For example, sediments with high 

organic matter bind significantly more metals than those with low organic contents, 

resulting in different bioavailability and thus different potentials for toxicity (Strom 

et al. 2011).   

 

Trigger values and chemical monitoring do not account for the mode of 

organism interaction with a potential toxicant (and its surrounding medium). This is 

a factor that clearly affects its susceptibility to contaminants.  Pathways of exposure 

such as ingestion, inhalation (gills, lungs) and surface absorption (through skin) 

regulate which toxicants the organism is exposed to, and the levels at which 

exposure occurs.    

 

Relative to modelling approaches, bioassays are a more powerful tool for 

identifying and monitoring pollution effects (Davoren et al. 2005). Bioassays 

determine toxicity via direct experimentation, rather than by predicting an outcome, 

as for modelling approaches. Because sediment-bioassay species are in contact with 

the sediment and pore-water they are exposed to the bioavailable fraction of the 

contaminants in a situation not too unrealistic from a “natural” one (Chandler and 

Green 2001, Bejarano et al. 2004). The results from bioassays allow for sediments 

to be classified based on toxic effect, not contaminant load (Chapman et al. 1998, 
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Chandler and Green 2001, Davoren et al. 2005). A toxic result from a bioassay will 

highlight areas that require further investigation and potential regulatory action, 

while a non-toxic outcome suggests that no actions are likely to be required to 

identify a source of contamination or to remediate the sediment (Chapman et al. 

1998). It is important to note that the bioassay being presented in this thesis is not a 

“one stop shop” for sediment quality assessment. For a more robust assessment, a 

suite of bioassay species should be used which have different life histories and 

exposure pathways (Greenstein et al. 2008, Simpson and Spadaro 2011). Once a 

potentially polluted area has been identified as a toxic risk then regulatory action 

can be taken to remediate the situation.  

 

This chapter utilises the chronic 14 d reproductive bioassay developed with 

Quinquelaophonte sp. in the previous chapter (Chapter 5) on field-collected 

sediments. Sediments were sourced from three estuaries in different geographic 

regions in New Zealand: Napier on the east coast of the North Island, Christchurch 

on the east coast of the South Island, and finally Invercargill in the far south of the 

South Island.  The focus of this chapter is to determine whether the bioassay can 

assess the toxicity of real sediment samples from a variety of sediment types. The 

levels of contamination were measured in sediments to be facilitate comparison to 

observed toxic effects. This is a mechanism of validating whether the bioassay 

provides an accurate portrayal of contamination.  

 

6.2  Methods 

6.2.1  Location of field sites   

6.2.1.1  Avon-Heathcote (Christchurch) 

 

Five sediment samples from three general areas were collected throughout 

the estuary on the 22nd October 2011 (Figure 6.1) (see 6.2.2 for method). Two 

samples were taken at Penguin Street, one at 1 m (PS 1m) from a waste water 

discharge point, and another sample taken 50 m (PS 50m) from this discharge. One 

sample was taken at Ferrymead (F) near the high tide mark. The final area was the 

causeway between Ferrymead and Redcliffs (near McCormack’s Bay Reserve), and 
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consisted of two samples taken either side of the causeway (north (estuary) side 

(CW N/S) and south side (CW S/S)).  

 

6.2.1.2  Invercargill 

 

Sediment samples were collected from six different locations around the 

Invercargill Estuary in June 2011 (Figure 6.2) (see 6.2.2 for method). The sites 

included Omaui (OM), Oue (OU), Waipaka Stream (W), Kingswell (KW), 

Invercargill Dump (ID), and Steed Street Bridge (SB). Four sites (OM, OU, W, SB) 

had very sandy sediments with little silt. The remaining two sample locations (ID 

and KW) had very fine silty muds. As there were two very distinct sediment types, 

 

 
 
Figure 6.1 Sample locations for the 5 Avon/Heathcote Estuary sediment samples are given and 
include: Penguin Street 1 m (PS 1m) and 50 m (PS 50m), Causeway north side (CW N/S) and 
south side (CW S/S). Locations with corresponding sediment chemistry are also given.  
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two control sediments were used: a <63 µm sediment high in silt and a <125 µm 

fine sand sediment (see 6.2.2 below).    

 

6.2.1.3 Napier 

 

The Napier samples were focussed on two main storm water inputs draining 

into the Napier Estuary (see 6.2.2 for method). Samples were collected on 

November 8th, 2011. Two samples were collected around the Plantation, County 

and George Drive Drain (GPC), one upstream (GPC U/S) and one downstream 

(GPC D/S). At the Tyne St Drain site samples were also taken upstream (TYN U/S) 

and downstream (TYN D/S). Another two samples (AHU and HUM) were taken 

 
 
Figure 6.2 Sample locations for the 6 Invercargill Estuary sediment samples are given and 
include: Omaui (OM), Oue (OU), Waipaka Stream (W), Kingswell (KW), Invercargill Dump 
(ID), and Steed Street Bridge (SB). Locations with corresponding sediment chemistry are also 
given.  
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from the tidally-exposed sand bars between the two drains (Figure 6.3).  Sediments 

were generally a fine sand with high organic component. 

 

6.2.2 Sediment sampling and processing 

 

The methods for the bioassays have been already described in detail in 

Chapter 5. Briefly, samples were collected from the field by hand. This was done 

by scraping off the top 1-2 cm of oxidised sediments at each sample location. 

Approximately 500 g of sediment was collected at each sample site. Samples were 

then kept on ice and transported to the lab. Sediments were kept at 4°C for at least 

24 h and up to two weeks prior to testing. Refrigerating sediments has been 

previously shown to kill all resident meiofauna (Kovatch et al. 1999). Sediments 

were homogenised and press-sieved through 125 µm or 300 µm sieves depending 

on sediment size, prior to being added to each test chamber. The coarser sediments: 

 
 
Figure 6.3 Sample locations for the 6 Napier Estuary sediment samples are given and include: 
County and George Drive Drain upstream (GPC U/S) and downstream (GPC D/S), Tyne Street 
drain upstream (TYN U/S) and downstream (TYN D/S) as well as the estuarine locations HUM 
and AHU. Locations with corresponding sediment chemistry are also given.  
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OM, W, SB, OU, CW N/S, PS 1m, and PS 50m were sieved through a 300 µm 

mesh, whereas KW, ID, CW S/S, GPC U/S, GPC D/S, TYN U/S, TYN D/S, AHU, 

HUM were sieved through a 125 µm mesh. For each sediment sample three 

replicates, sub-sampled from collected and sieved sediment, were included in each 

test. Control sediments were sourced from Akaroa Harbour (described in Chapter 

4) and Blueskin Bay (45.74S, 170.58E, processed according to methods in Chapter 

4). This latter sediment was a high silt (<63 µm) sediment and was used in the 

Invercargill sediment bioassay to matrix match two of the sample sites (KW and 

ID) that were very silty. A minimum of 80% survival in control sediments was set 

as the requirement for a valid test (ASTM 1992). 

 

6.2.3  Chemical analysis of sediments  

 

The trace metals for the Christchurch samples were analysed according to 

the modified USEPA 200.8 protocol described in Chapter 4. Samples were 

analysed for arsenic, cadmium, copper, lead and zinc via ICPMS (Agilent 7500 cx).  

QA/QC procedures included the analysis of a certified reference material (NIST 

#2702, inorganics in marine sediments), with recoveries ranging from 80.2 – 

93.6%.  

 

Invercargill and Napier sediments were analysed for total recoverable 

cadmium, copper, mercury, lead, and zinc at RJ Hill Laboratories (Hamilton), using 

the USEPA 200.8 protocol and ICP-MS (similar to the method used in Chapter 4). 

The limit of detection (µg/g) for trace levels of each metal were: cadmium, 0.02; 

copper, 0.2; mercury, 0.01; lead, 0.04; and zinc, 0.4. PAHs, nitro musks and 

polycyclic musks in sediments were analysed by first taking a subsample of field 

wet unsieved sediment (equivalent to 5 g dry weight) which  was weighed, mixed 

with Celite, and packed into 22 ml stainless steel Accelerated Solvent Extraction 

(ASE) cells. The sediments were extracted twice for 5 min using acetone/hexane 

(1:1, v/v) at a temperature of 100oC and pressure of 1500 psi. Acid-activated copper 

granules were added to the extract to remove coextracted residues of sulphur and 

the extract concentrated to approximately 1 ml under a stream of nitrogen gas 

(Turbo Vap LP Concentration Work Station Caliper life Sciences). The 
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concentrated solvent extracts were cleaned-up using florosil adsorption 

chromatography and gel permeation chromatography (GPC). A range of deuterated 

PAHs and musk compounds were added to the purified extracts for use as internal 

standards and the extracts transferred to vials for analysis. Purified extracts were 

analysed by GCMS using an Agilent 6890N gas chromatograph (GC) coupled to an 

Agilent 5975A inert XL mass spectrometer (MS) and CTC autosampler. PAHs and 

musk fragrances were detected using single ion monitoring of target compound 

specific mass ions and quantified by internal standardisation using Chemstation 

data analysis software. 

 

6.2.4  Statistical analysis 

 

Survival and total number of offspring were calculated using the methods 

described in Chapter 5 and normalised to percent of controls. Means and standard 

deviations were then calculated for each endpoint using GraphPad Prism (Version 

5) and statistical significance (P < 0.05) was tested using one-way ANOVA with a 

Dunnett’s post-hoc analysis to test for significant differences from controls. Control 

sediment was that which best matched the test sediment type. For example, the fine 

high silt sediments of ID and KW were normalised to the <63 µm sediment control.  

 

6.3 Results  

6.3.1 Avon-Heathcote 

 

The Ferrymead sample location was unable to be tested as the sediment 

turned anoxic after 4 d at 4°C. Three of the remaining four sample locations were 

found to be toxic, reducing survival or reproduction (Figure 6.4). The south side of 

the causeway (CW S/S) was the only location that demonstrated no significant 

impacts on survival or reproduction. The north side (CW N/S) of the causeway 

showed an approximate 20% reduction in survival and total number of juveniles, 

however only the effect on survival was statistically significant. The Penguin Street 

sampling locations were significantly toxic (i.e. negatively affected survival and 

fecundity). The PS 1 m sample location reduced survivorship and reproduction by 
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approximately 70% and the PS 50 m sample caused complete mortality. Both of 

these samples started to shows signs of anoxia by the end of the test even though 

the sediment was very sandy with little silt. Control survivorship was greater than 

90%.  

 

Metal sediment concentrations are given in Table 6.1 for the F and PS 1 m 

locations, as well as the results from the similar sample locations from Zeldis et al. 

(2011). All metal levels were below the ANZECC (2000) ISQV low trigger values. 

The two studies showed similar levels of metals in the overlapping sample areas. 

The F site and the Humphrey Drive location had the highest levels of metals while 

the sites on the East side of the estuary, Penguin Street, Herron Street and Plover 

Street, had relatively low values in both studies.    

Figure 6.4 Results of 14 d chronic reproductive test with Quinquelaophonte sp. after exposure 
to Avon-Heathcote sediments A. survival and B. total juveniles produced during the test, given 
as percent of controls. Causeway South side (CW S/S), Causeway North side (CW N/S), 
Penguin Street 1m (PS 1m) and Penguin Street 50m (PS 50m). One-way ANOVA with a 
Dunnett’s post-hoc analysis was used to test for significant differences from controls (n=3).  
* P>0.05, ***P>0.001 
 

Table 6.1 Heavy metal levels in the Avon-Heathcote estuary for two of the sites sampled. Metal 
residues from similar sites from Zeldis et al. (2011) are also given as a reference. All concentrations 
are given in µg/g.  
  Zeldis et al. (2011) 

 Ferrymead (F) Penguin St. 
(PS 1m) 

Humphrey 
Dr.# 

Heron St.* Plover St.^ 

Arsenic  4.24 1.73 6.4 2.2 3.3 
Cadmium 0.098 <0.04 0.14 0.024 0.044 
Copper 11.8 3.46 13.0 3.0 4.4 
Lead 17.6 7.62 20.5 6.5 9.3 
Zinc 85.8 33.9 94.3 31.0 40.0 
# Similar location to Ferrymead (reference only) 
* North of Penguin St. (reference only) 
^South of Penguin St. (reference only)  
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6.3.2 Invercargill 

  

The sediments in Invercargill were not found to be toxic except at the 

Invercargill dump (ID) site (Figure 6.5). This site had extreme growth of a red 

slime algae or bacteria which appeared to have suffocated the sediments causing 

complete mortality of the copepods. In both the <125 µm and <63 µm control 

sediments survival was greater than 80%. Sediment contaminant burdens are given 

for the KW location and Otepuni Stream, a location close to the SB sample site 

(Table 6.2).  The KW location demonstrated low levels of contamination with total 

PAHs 84.3 µg/g, and all metals below ANZECC (2000) ISQV low values. The 

Otepuni Stream site which is upstream of the SB site showed zinc at the ANZECC 

(2000) trigger value of 200 µg/g.  

 

6.3.3 Napier 

 

The Quinquelaphonte sp. chronic bioassays with Napier sediments were run 

in an identical manner to those for the Invercargill and the Avon-Heathcote 

samples. Unfortunately, however, the reproductive endpoint was unable to be 

quantified.  This was due to inadequate refrigeration during the storage of samples 

resulting in the resident copepod meiofauna persisting in the sample. As this was a 

reproductively viable population, and distinguishing resident nauplii from assay-

species nauplii was not possible, total juvenile production was not able to be 

assessed.   

 

There was no reduction in survival in any assays of Napier sediment 

samples relative to control sediments (Figure 6.6). All sediments tested and controls 

had greater than 90% survival. Sediment chemistry is shown in Table 6.2 for the 

GPC U/S, GPC D/S, TYN D/S, HUM, and AHU sample locations. 
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Table 6.2 Sediment chemical residues of PAHs, musk compounds and heavy metals from the Napier and Invercargill Estuary sites.  
 

NAPIER      INVERCARGILL     
Sample location GPC  

U/S 
GPC 
D/S 

TYN 
U/S 

TYN 
D/S HUM AHU OM W SB* OU ID KW 

             
Chemistry data for tested 
sediments 

Yes Yes No Yes Yes Yes No No Otepuni 
data 

No No Yes 

PAH  concentration ug/kg 
(DW)             
Naphthalene 23.5 2.43  14.1 168 7.98   8.68   1.17 
2-methylnaphthalene 42.0 1.93  2.94 19.0 2.87   4.86   1.09 
1-methylnaphthalene 36.2 1.21  2.81 14.2 1.81   4.57   0.54 
Biphenyl 17.9 1.91  3.04 8.39 2.13   3.14   2.22 
2,6-dimethylnaphthalene 62.9 2.54  4.03 19.6 2.47   5.24   1.05 
1,6-dimethylnaphthalene 36.4 1.51  3.39 16.4 2.26   5.68   0.82 
2,3-dimethylnaphthalene 7.50 0.61  1.40 5.67 0.71   1.85   0.3 
1,5-dimethylnaphthalene 5.85 N.D.  N.D. 6.67 N.D.   1.86   0.61 
Acenaphthylene 19.3 1.59  3.28 20.3 N.D.   8.88   0.53 
1,2-dimethylnaphthalene 4.99 0.73  1.44 5.76 N.D.   2.1   0.33 
Acenaphthene 3.00 1.28  7.23 14.7 N.D.   4.14   0.48 
4-methylbiphenyl 7.00 3.03  3.90 5.13 2.76   4.01   3.45 
2,3,6-trimethylnaphthalene 6.27 0.96  2.24 8.73 1.15   3.16   N.D. 
Fluorene 11.4 4.20  8.22 17.6 3.87   8.17   3.31 
1-methylfluorene 9.97 2.10  3.67 9.97 1.83   6.76   N.D. 
Dibenzothiophene 10.7 3.09  7.92 24.9 2.11   10.3   0.38 
Phenanthrene 82.1 21.3  111 262 21.0   93.6   2.01 
Anthracene 13.4 2.91  20.9 43.3 2.12   16.3   0.38 
3-methylphenanthrene 18.9 4.78  18.8 52.1 4.16   15.2   0.41 
2-methylphenanthrene 21.5 5.76  21.9 61.0 6.17   18.5   0.45 
2-methylanthracene 6.92 1.29  11.3 24.5 1.15   7.45   N.D. 
4H-cyclopenta[def]phenanthrene 19.7 3.19  23.8 57.6 3.59   18.20   0.81 
9-methylphenanthrene 19.1 4.50  18.7 42.1 4.88   13.5   N.D. 
1-methylphenanthrene 15.5 3.51  15.5 40.0 3.61   13.9   0.36 
9-methylanthracene N.D. N.D.  0.27 N.D. N.D.   N.D.   N.D. 
2-phenylnaphthalene 14.9 3.35  14.1 41.1 3.52   12.50   0.42 
1,7-dimethylphenanthrene 13.4 2.20  10.1 26.2 2.27   11.4   0.27 
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Table 6.2 Continued 
 

NAPIER      INVERCARGILL     
Sample location GPC  

U/S 
GPC 
D/S 

TYN 
U/S 

TYN 
D/S HUM AHU OM W SB* OU ID KW 

             
PAH  concentration ug/kg 
(DW) Continued...            
Fluoranthene 200 39.4  277 623 44.3   244   5.89 
Pyrene 244 40.8  246 704 49.0   242   6.3 
1&3-methylfluoranthene 40.9 6.96  51.1 130 7.83   43.4   0.91 
Retene 27.2 7.41  18.5 34.0 4.23   27.1   2.27 
4-methylpyrene 37.4 4.89  21.0 82.4 5.17   19.7   0.71 
1-methylpyrene 23.3 3.87  16.5 54.7 3.68   16.8   0.56 
Benzo[ghi]fluoranthene 22.1 3.19  18.3 53.5 3.46   16.8   0.53 
Benzo[c]phenanthrene 17.1 2.70  20.3 53.5 3.41   16.7   0.59 
9-phenylanthracene 1.35 N.D.  0.28 2.6 N.D.   0.29   N.D. 
Cyclopenta[c,d]pyrene 6.32 1.66  6.80 11.4 1.64   10.1   0.37 
Benzo(a)anthracene 80.8 15.1  104 220 16.9   83.3   2.12 
Chrysene & Triphenlyene 85.2 13.3  136 251 15.1   106   2.32 
3-methylchrysene 47.7 8.16  37.8 95.2 5.89   32.2   0.62 
6-methylchrysene 10.1 1.61  5.97 18.0 1.33   5.53   N.D. 
Benzo(b)fluoranthene 116 18.3  120 254 22.1   88.1   3.06 
Benzo(j&k)fluoranthene 102 17.3  111 257 22.1   102.00   3.02 
Benzo(a)fluoranthene 35.1 4.88  31.2 74.0 5.30   28.4   0.78 
Benzo(e)pyrene 117 15.6  86.5 252 18.8   74.5   2.62 
Benzo(a)pyrene 133 17.3  125 366 21.4   118   2.79 
Perylene 43.6 10.4  38.5 87.8 9.84   53   10.8 
9,10-diphenylanthracene N.D. N.D.  N.D. N.D. N.D.   N.D.   N.D. 
Dibenz(a,j)anthracene 41.5 6.28  26.7 83.7 6.51   26.5   1.1 
Indeno(1,2,3-c,d)pyrene 201 25.0  141 328 27.3   134   4.78 
Dibenz(a,h & a,c)anthracene 32.0 4.69  22.7 74.0 4.44   22   0.81 
Benzo[b]chrysene 35.3 6.18  30.1 79.2 7.22   31   1.51 
Picene 57.2 8.67  38.2 109 9.77   70.4   2.75 
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Table 6.2 Continued 
 

NAPIER      INVERCARGILL     
Sample location GPC  

U/S 
GPC 
D/S 

TYN 
U/S 

TYN 
D/S HUM AHU OM W SB* OU ID KW 

             
Benzo(ghi)perylene 131 17.4  71.9 177 18.4   71.5   3.04 
Anthanthrene 27.0 5.42  17.9 61.9 4.13   19.5   0.66 
Dibenzo[b,k]fluoranthene 55.1 10.9  39.5 70.4 10.5   41.8   1.63 
Coronene 24.5 5.3  14.1 41.9 4.96   15.8   0.88 
Dibenzo[a,e]pyrene 15.8 3.19  11.8 31.7 3.30   11.4   0.53 
Dibenzo[a,h]pyrene 12.7 N.D.  6.36 28.9 N.D.   6.68   N.D. 
Total  PAHs  2554 408  2228 5725 442   2082   85.3 
Sum of 16 EPA PAHs  1475 241  1512 3765 276   1347   41.5 
Benzo[a]pyrene  Equivalents 218 30.1  199 555 35.3   184   4.98 
Total recoverable metals  
µg/g (DW)             
Cadmium 0.35 0.127  0.6 0.53 0.161   0.23   0.041 
Chromium 35 14.5  51 123 35   33   13.6 
Copper 61 14.9  16.2 43 16.5   29   8.1 
Lead 68 18.6  40 77 24   38   4.7 
Mercury 0.158 0.053  0.063 0.13 0.092   0.082   0.023 
Zinc 590 280  240 370 166   200   42 
N.D. = not detected,  
16 EPA PAHs – naphthalene, acenaphthylene, acenaphthene, fluorene,  phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene,  
benzo[k]flouranthene, benzo[a]pyrene, dibenz(ah)anthracene, benzo[ghi]perylene, and indeno(1,2,3-cd)pyrene 
Highlighted cells represent values that exceed the ANZECC (2000) ISQG Low trigger values.  
* Chemistry data from an upstream location has been shown to illustrate the contamination profile in the stream.  
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There were elevated PAH concentrations in the GPC U/S, TYN D/S, and 

HUM sample locations with the highest being 5725 µg/kg (HUM). Metal 

concentrations were also high, with sediment concentrations higher than the 

ANZECC (2000) ISQG low values in 4 of the locations. Sediment 

concentrations exceeding ISQG low values in several locations. At GPC U/S 

lead, mercury, and zinc (68, 0.158, and 590 µg/g respectively), at GPC D/S and 

TYN D/S zinc (280 and 240 µg/g respectively); and at HUM copper, lead, and 

zinc (43, 77, 370 µg/g respectively) were all measured at levels over trigger 

values.  

  

6.4 Discussion 

 

A total of 16 estuarine sediment samples from three distinct geographical 

locations were tested. The bioassay was successfully able to test a variety of 

Figure 6.5 Results of 14 d chronic reproductive test with Quinquelaophonte sp. after exposure to 
Invercargill sediments A. survival and B. total reproduction (total juv.) given as percent of 
controls. Omaui (OM), Waipaka (W), Steed Street Bridge (SB), and Oue (OU) are percent of the 
<125 µm sediment control. Invercargill Dump (ID). Kings Well (KW) are percent of the <63 µm 
sediment control. One-way ANOVA with a Dunnett’s post-hoc analysis used to test for 
significant differences from controls (n=3). ***P>0.001  
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different sediment types and sizes, from medium sandy sediments low in organic 

content (particle size ~300 µm) to very silty, high organic content sediments 

(particle <63 µm). Of the 16 sediment samples analysed, four were found to be 

toxic. Three of these sediments were found in the Avon-Heathcote Estuary and 

one from Invercargill.  

 

Some of the Napier locations displayed metal values above the ANZECC 

(2000) ISQG low values, although these values were insufficient to produce 

toxic effects in the bioassay. While the Napier sediments had high levels of 

contaminants, based on the bioassay these contaminants were not toxic. This 

may be related to the bioavailability of the metals in these sediments; for 

example, the binding of metals to organic carbon (Di Toro et al. 1991, Mahony 

et al. 1996, Simpson 2005, Strom et al. 2011). See sections 1.3.2 and 4.4 of this 

thesis for discussion of bioavailability of contaminants and organic carbon.   

 

 

 
Figure 6.6 Survival of Quinquelaophonte sp. after 14 d chronic exposure to Napier sediments. 
One-way ANOVA with a Dunnett’s post-hoc analysis used to test for significant differences 
from controls (n=3).  
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6.4.1  Avon – Heathcote Estuary  

 

Historically the Avon-Heathcote Estuary, located adjacent to the city of 

Christchurch, has been associated with a variety of potentially toxic inputs 

including moderate to light industry effluents, sewage, and residential and urban 

runoff (ECAN 2007). This contamination profile was drastically changed by the 

2011 earthquake events. The February 22nd earthquake caused major changes in 

the estuary structure with the north end of the estuary subsiding by 0.5m, while 

the south side rose by 0.5m. The earthquakes also caused a massive failure of 

sewage treatment throughout the city as well as broken pipes in the reticulated 

sewer network (Zeldis et al. 2011). This resulted in the release of raw sewage 

directly into the Avon-Heathcote Estuary, as well as its tributaries. In addition to 

sewage contamination, the liquefaction, which covered 20-40% of the estuary 

(Measures et al. 2011), caused buried contaminants to resurface, adding to the 

contaminant load in the estuary. This effect has been seen previously in Izmit 

Bay after the 1999 Turkish earthquake (Tolun et al. 2006, Tolun et al. 2008).  

 

Two locations, Penguin Street and Ferrymead, were chosen as sampling 

sites as these locations are being used in another study on emerging 

contaminants and metal loads in sediments and waters (Dr. Sally Gaw, personal 

communication; See Fig 6.1). The other sampling site was the causeway between 

Ferrymead and Redcliffs and consisted of samples taken either side of the 

causeway. Owing to its close proximity to a main road, runoff is likely to have 

contributed to sediment contaminant profile with elevated metals and PAHs 

(Boxall and Maltby 1995). There is also the possibility of industrial waste inputs 

from the Heathcote Valley being an issue at this site (ECAN 2007). This location 

is of particular importance as there are concerns regarding contaminant transfer 

into the local biota (especially cockles) that are being collected and consumed by 

locals (ECAN 2007). On the south side of the causeway the estuary is bound by 
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two drainage pipes and retains water over the tidal cycle. This potentially 

prevents contaminants from being flushed out to sea. 

 

Three of the four Avon-Heathcote sediments tested were found to be 

toxic to the bioassay species Quinquelaophonte sp. This may reflect the impacts 

of seismic activity on the estuary. For example, sewage pipes around the city 

were broken, and sewage treatment plants were shut down. This resulted in 

50,000 m3 of raw sewage to be dumped into the estuary per day (Zeldis et al. 

2011).  

 

Sewage contamination is probably the main contaminant source in the 

Avon-Heathcote and may be the cause of the anoxic conditions seen at the 

Penguin Street sample location. The combination of bacterial contamination and 

organic enrichment associated with the raw sewage input could have resulted in 

very high levels of eutrophication throughout the estuary, leading to the anoxic 

conditions. Zeldis et al. (2011) found that the organic content in the estuary had 

risen from 0.5 to 2.0% (depending on location) pre-earthquake to 1.7 to 3.0% 

following the February 22nd earthquake. They attributed this rise to new organic 

content from sewage, and sedimentation from slips on the river banks. They also 

found there was enrichment of pore-water nutrients, which adds to the 

eutrophication threat. This may be the cause of the anoxia and potentially the 

toxicity (reduced survival and reproduction) seen in the bioassays. The anoxia 

seen in the tests could result from the addition of sewage-derived organic matter 

to sediments which is then oxidised to CO2 by microbes, resulting in a decreased 

dissolved oxygen and causing anoxia (Cloern and Oremland 1983). Additionally, 

the anoxia could be caused by rapid algal growth, due to the increased nutrients, 

which depletes dissolved oxygen resulting in anoxia (Valiela et al. 1997).  A 

study by Tinson and Laybourn-Parry (1985) with cyclopoid copepods showed 

that exposure to anoxic conditions caused mortality in as little as 6 h. 

Behavioural changes and mortality were also seen in a variety of benthic 
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crustaceans exposed to anoxic sediments in situ (Haselmair et al. 2010). These 

effects are consistent with those observed in this bioassay.  

 

In the Zeldis et al. (2011) report the eutrophication effects were highest 

in the Humphreys Drive location which is a site similar to Ferrymead in the 

present study. This sediment was unable to be tested due to it becoming anoxic 

during storage at 4°C prior to testing. This perhaps provides some anecdotal 

evidence, especially combined with the anoxic conditions seen in the bioassay in 

the PS 1 m and PS 50 m samples, that eutrophication is a serious threat to the 

estuary. Another study modelled the effects of the sewage contamination on the 

post-earthquake Avon and Heathcote rivers and estuary. The results of this study 

suggested that low dissolved oxygen and increased ammonia concentrations 

were expected throughout the rivers and estuary due to the bacterial breakdown 

of biodegradable organic material, and highlighted this as a potential cause of 

toxicity (Rutherford and Hudson 2011). This lends further support for anoxia as 

a major environmental stressor in the post-earthquake Avon-Heathcote Estuary.   

 

Heavy metals were found to be at concentrations below the ANZECC 

(2000) ISQG low values at the Avon-Heathcote sites sampled (Dr. Sally Gaw, 

personal communication, Table 6.1). The toxicity at the PS 1 m and 50 m sites 

was unlikely to be caused by the metal levels as they are below the LOEC for 

zinc contamination in Chapter 5, while all of the other metals are well below the 

ANZECC (2000) ISQG low values. The levels of metals in these sites are similar 

to those that Zeldis et al. (2011) measured at similar locations in the estuary. 

Interestingly, they found that the metal concentrations in the liquefaction 

sediment mounds in the estuary had lower heavy metals than in the surrounding 

mud flats. They attributed this to the unearthing of archaic sediments with lower 

levels of metal contamination than more recent sediments. The sediments in this 

chapter were not collected from liquefaction mounds, however due to the large 
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impact of liquefaction it is highly likely that some of the sediments could have 

been derived from liquefaction.  

 

Zeldis and colleagues (2011) found levels of 94.3 µg/g for zinc at the 

Humphreys Drive location, near the Ferrymead (F) location in this study, which 

had similar levels for zinc (85.8 µg/g). In Chapter 5 reproductive effects were 

seen at similar concentrations, in very similar sediment type to that of the Avon-

Heathcote Estuary. However due to the anoxia in this sample prior to testing, it is 

unknown what effect the mixture of metals in this sample would have had on 

toxicity.  Clearly, however, the levels of metals measured in the Avon-Heathcote 

Estuary have the potential to cause toxic effects.  

 

Zeldis et al. (2011) did not assess organic contaminants such as PAHs or 

PCBs, which were found to be elevated in Izmit Bay after the Turkish 

earthquake of 1999 (Tolun et al. 2006, Tolun et al. 2008). Consequently it is, as 

yet, unknown if organic contaminants were elevated after the earthquake and 

whether the levels reached could cause toxicity.  

 

It is difficult to quantify the effects of the sewage contamination seen in 

these samples because of the complication of many different types of 

contaminants and the additional pressures of anoxic conditions.  Anoxia could 

have interacted with the contaminants present in a sediment to cause additive or 

synergistic toxicity. For example, copepods and other benthic meiofauna have 

been shown to alter their behaviour in anoxic conditions (Powers et al. 2001). 

This could cause physical exhaustion in the tests as they try to avoid anoxic 

sediments by swimming in the water column. If this effect is combined with 

stress from pollutant exposure it could lead to greater sensitivity and reduced 

survival or reproduction.      
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The results from the Avon-Heathcote suggest that the estuary currently 

suffers from very serious contamination, whether through sewage contamination 

and/or other unknown pollution sources.  Further monitoring and recovery 

should be instigated, both from the perspective of estuary health, but also as a 

learning opportunity regarding the recovery of ecosystems impacted by 

earthquakes and their direct and indirect impacts.  The estuary had been used 

extensively for recreational fishing and shell-fishing, sporting activities such as 

windsurfing, sailing, and kayaking, and in addition, two major 

swimming/recreational beaches of Sumner and New Brighton flank the estuary 

mouth (ECAN 2007). Monitoring of the estuary will allow for accurate 

assessment of potential adverse effects to estuarine ecology, will serve as a proxy 

for potential human health effects, and will allow for targeted rehabilitation and 

closures to preserve and/or promote ecological and human health.   

 

6.4.2  Invercargill Estuary 

 

The Invercargill and Napier locations were selected as a collaborative 

project with Dr. James Ataria (Lincoln University) examining the potential 

effects of contamination to areas of significance to Maori communities. The sites 

selected (Figure 6.2) have a wide range of potential contaminant issues from 

multiple point and non-point sources. In Invercargill, the Stead Street Bridge was 

selected as a sampling site owing to its location downstream of the Waihopai 

River and Otepuni Stream. The Waihopai River drains an area dominated by 

agricultural land use as well as having several point source discharges into the 

river from residential and light-medium industry. The Otepuni Stream receives 

storm water from residential, city and light-medium industry. The Invercargill 

City Dump site is about 800 m downstream of the decommissioned city refuse 

station that has been capped with soil. The Kingswell site is where the Kingswell 

Stream, which drains the south Invercargill residential area, discharges into the 
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estuary. The Waipaka Stream has a short catchment but runs past a meat 

processing plant (the site of a recent effluent spill) and a milk solids drying plant. 

The Waipaka sample site is near the input of the stream. The Oue site is on the 

western shores of the Oreti River discharge into the estuary and drains 

predominately agricultural land. The Omaui site is located at the opening of the 

Invercargill Estuary to Foveaux Strait and could potentially be subjected to 

cumulative inputs from activities upstream (Dr. James Ataria, personal 

communication).   

 

The only Invercargill Estuary location that showed toxicity in the 

bioassay was the Invercargill dump (ID). This result is not surprising due to the 

potential runoff and leaching of waste from the Invercargill dump. Landfill 

leachate is known to contain potentially high levels of heavy metals, aromatic 

hydrocarbons, phenols, chlorinated aliphatics, pesticides, and plasticisers, in 

addition to organic matter and bacteria (Kjeldsen et al. 2002). Unfortunately 

there is no chemistry data for this site so conclusions are unable to be drawn 

regarding the causes for the toxicity. This sediment was, however, notable for the 

appearance of a red algal or bacterial slime. Further research will be needed to 

determine if this directly caused the toxicity or if other contaminants are 

responsible.  This area should be reinvestigated and the source of toxicity 

identified to guide potential remediation of the site, and to mitigate any 

environmental harm. 

 

Only one of the sediments tested, KW has available sediment chemistry 

data and the lack of toxicity in this sediment is consistent with chemistry results. 

This site had low PAH and metal concentrations (Table 6.2) which are all below 

ANZECC (2000) guidelines. This predicts that there is very low chance of 

adverse effects being seen in the exposed populations, a prediction confirmed by 

the results of the bioassay.  
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The SB sediment, which exhibited no toxicity, does not have chemistry 

data available. However, there is data for an upstream location, Otepuni (Table 

6.2). Zinc at Otepuni was 200 µg/g, a value that is at the ANZECC (2000) ISQG 

low value, and which caused acute mortality in Chapter 5. It would appear that 

the contamination levels further downstream at the sample site (SB) are either at 

a lower level or that they are not sufficiently bioavailable to cause toxicity.  

Future monitoring should be used in this case to ensure that there are no toxic 

effects.   

 

The OM site showed around 40% greater reproductive output than the 

control sediments. Even though there is no chemistry for this site, the location (at 

the mouth of the estuary) suggests that it would have the lowest contamination 

due to the most exposure to “clean” seawater (Figure 6.2). Standardised 

sediment was used for the control sediments and the OM sediment may be 

providing conditions that are more favourable to the growth of the copepod, 

potentially thorough the presence of micronutrients (Anderson and Pond 2000). 

 

The sites, OU and W, had slightly greater reproduction than controls and 

are also located in the middle of the estuary and so are further away from the 

potential pollution sources. The results from the bioassay suggest that these areas 

of the estuary are unlikely to have pollutant levels that would be adverse to local 

biota.   

 

6.4.3  Napier Estuary 

 

In Napier two inputs that drain directly into the estuary were the focus of 

attempts to assess potential impacts of contaminants on the estuary fauna. The 

Plantation, County and George Drive Drain receives water runoff from the city 

of Napier and surrounding residential areas including some parts of the Hastings 
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district municipality. The Tyne St. Drain collects runoff from a light-medium 

industrial park (Pandora industrial area) that contains a galvanising plant, 

automobile wreckers, painter’s yards, fertiliser storage facility, and a cement 

plant. Historically this area also housed a timber treatment yard and sheep pelt 

tanneries. This drain is also known to have unconsented storm water discharges 

(Dr. James Ataria, personal communication). 

 

None of the Napier Estuary sites tested showed any toxic effect on 

mortality over 14 d. As mentioned above (section 6.3.3), and discussed below 

(section 6.4.4), these sediment samples were unable to be analysed for 

reproductive effects due to presence of resident harpacticoid copepods. This is an 

unfortunate outcome as these sites showed elevated contamination (although no 

mortality). The site with the highest contamination levels was the HUM site 

which showed a total PAH level of 5.7 µg/g (not normalised to 1% sediment 

organic carbon), and exceeded the ANZECC (2000) ISQG low values for 

chromium, at 123 µg/g, and zinc, at 370 µg/g. PAH- and heavy metal- 

contaminated sediments have been shown to show synergistic toxicity in 

experiments with harpacticoid copepods (Fleeger et al. 2007). While there was 

no effect on survival in this chapter, there is concern for potential reproductive 

effects.   

 

The lack of overt toxicity (i.e. mortality) at these concentrations can be 

potentially attributed to the high organic content of these samples. The three sites 

with the highest PAH contamination had high organic contents, the main 

controlling factor of PAH bioavailability (Di Toro et al. 1991). For example, the 

GPC U/S site had an organic carbon proportion of 4.6% (Dr. James Ataria 

personal communication). This highlights the importance of accounting for 

organic carbon when examining chemistry data. The ANZECC (2000) ISQG 

values for organic compounds are based on normalisation to 1% total organic 

carbon as this is the predominant factor governing their bioavailability 
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(especially for PAHs). If the levels of total PAH contamination for the GPC U/S 

site are normalised to 1% organic carbon the resulting value would be 555 µg/kg 

sed., which is below the ANZECC (2000) ISQG low value for total PAH.  

 

The organic content of the sediments also explains the lack of toxicity 

from the level of metal contamination in the GPC U/S, GPC D/S, TYN D/S and 

HUM locations, all of which were over the ANZECC (2000) ISQG low 

(Simpson 2005, Strom et al. 2011). The high organic content of these sediments 

will bind metals much more strongly than the more sandy sediments found in 

some of the Invercargill and Christchurch sample locations, which is consistent 

with the lack of toxic effects seen. Retesting these sediments with the full 

bioassay (i.e. including reproductive endpoints) is required before these 

contamination levels, and the potential for synergistic effects between the metals 

and the PAHs, can be fully appreciated.   

 

The presence of a resident harpacticoid population in the Napier 

sediments does not suggest that these sediments were non-toxic. The resident 

populations may be adapted or acclimated to the pollution levels, or may be a 

more tolerant species. The bioassay species Quinquelaophonte sp. is not 

acclimated to contaminant exposure as they have not been exposed to 

contaminants in culture. While the reproduction of native copepods provides 

some anecdotal evidence that there is little likelihood of adverse effects in the 

sediments, more investigation is needed to determine if this is the case. 

 

6.4.4  Performance of bioassay 

 

In the present chapter the copepod chronic sediment bioassay developed 

in Chapter 5, was successfully applied to a variety of real-world sediments. 

Sediments with low levels (i.e. below ANZECC (2000) trigger values) of 
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contamination had similar reproductive outputs to control sediments which were 

consistent across tests and sediment types. Two control sediments were used to 

matrix-match several sediment locations that were fine silty sediments. The 125 

µm control (Akaroa) sediments were the same as that used in sediment spiking 

(Chapter 5), as well as in the maintenance cultures (Chapter 3). Copepods in the 

<63 µm sediment, sourced from Blueskin Bay, showed similar survivability and 

reproductive output as the 125 µm control sediments (Figure 6.5; P>0.05).  In 

the field sediments, there was a wide range of particle sizes and organic contents 

(personal observations). For example, sediments such as OM was a very sandy 

sediment, low in organic carbon, whereas KW and GPC U/S sites were organic 

carbon-rich. Sediments were from very different geographic regions further 

showing the ability of the bioassay to test sediments New Zealand-wide. This 

indicates that the copepod assay has the ability and scope to address a variety of 

sediment types, increasing its utility as a monitoring tool.   

 

With the sediments tested in the present chapter, the most prominent 

source of toxicity appeared to be anoxia. Whether anoxia interacted with 

chemical contaminants to alter toxic impact is unknown, but both of these 

stressors are environmental concerns (Desprez et al. 1992, Elliott and de Jonge 

2002, Lotze et al. 2006), and may co-occur in many settings (e.g. Kristiansen et 

al. 2002). Alone, anoxia has been known to alter benthic community structures 

(Moodley et al. 1997), and to cause fish kills, which have been an increasing 

threat to ecosystems worldwide (Paerl et al. 1998, Camargo and Alonso 2006). 

However, anoxic conditions can “hide” more subtle chemical effects (i.e. 

reduced reproduction relative to overt mortality; (Gorokhova et al. 2010). This 

can make management and remediation decisions difficult. The results from this 

chapter, although limited in terms of sample size, suggest that eutrophication 

may be a more important environmental concern than metals or PAH 

contamination. This is especially relevant in Christchurch due to the sewage 

contamination of the estuary and other waterways. Additional field testing with 
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contaminated sediments will help to further elucidate the responses to 

anoxia/chemical combinations.  

 

Interestingly, three of the four toxic sediments, were found to be toxic by 

the mortality endpoint, not reproductive endpoints. This is not an uncommon 

occurrence in sediment bioassays. For example, in the American amphipod 

Leptocheirus plumulosus, survival is a more sensitive endpoint than reproduction 

(McGee et al. 2004, Kennedy et al. 2009).  In the present study, mortality was 

statistically different from controls, but reproduction, while reduced, was not 

statistically different from control reproduction. This may be an interesting 

anomaly. Alternatively there may be a methodological explanation; when testing 

field sediments there is potential for larger variation in reproductive endpoints 

between replicates, than in spiked sediment studies. In field collected sediments 

the number of replicates can be increased to four or five replicates per 

concentration.  This has been shown to help in detection of toxicity in other 

studies as it gives more statistical power when testing for significant differences 

from control, therefore increasing the sensitivity of the bioassay (Simpson and 

Spadaro 2011).  

 

In all of the sediment spiking studies in Chapter 5, reproduction was a 

more sensitive endpoint than mortality. Additionally, the majority of bioassays 

use reproductive endpoints as they are a more sensitive endpoint both logically, 

and as seen in practice (Kovatch et al. 1999, Chandler and Green 2001, Bejarano 

and Chandler 2003, Perez-Landa and Simpson 2011). This bioassay (in general) 

has shown that using the reproductive endpoints is more sensitive than using 

mortality alone.  

 

The use of just the survival endpoint in the Napier sediments due to the 

contamination by resident copepods highlights several factors critical for 

sediment bioassays. These sediments were tested less than 48 h after field 



 

167 
 

collection, and despite transport on ice via air freight, refrigeration overnight 

once received at the lab, and sieving through a 125 µm mesh prior to testing, the 

resident copepods survived. Refrigeration and sieving of sediments has been 

shown to kill the majority of sediment meiobenthos in previous studies (Kovatch 

et al. 1999). This method was successful in testing of the Christchurch and 

Invercargill sediments; however, it is believed that the short time between 

collection and testing, while good for reducing the changes in sediment 

chemistry was inadequate to remove resident meiofauna. Based on these findings 

it is recommended that sediments are kept at 4°C for longer than 48 h prior to 

testing.  

 

The modification of the bioassay to focus on survival as the sole endpoint 

brings significant reduction in sample analysis time, at the cost of a possible 

reduction in sensitivity. This is an important aspect to consider when 

implementing pollution monitoring schemes. The time invested in counting 

juvenile copepods incurs greater costs, and a balance needs to be struck between 

the number of sites that can be tested and the sensitivity of the endpoint used. In 

this chapter survival was the most sensitive endpoint but this is not expected to 

be a common occurrence, and the reproductive endpoint is generally likely to be 

the more sensitive parameter. However, the inability of the survival endpoint to 

classify the Napier sediments as toxic, despite contamination above ANZECC 

(2000) trigger values, suggests caution should be applied if using mortality 

alone.   

 

6.5 Conclusion 

 

This chapter has shown the versatility of the Quinquelaophonte sp. 

bioassay that has been validated in the previous chapters (see the Appendix for 

another example of the application of the bioassay). A variety of natural 
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sediments were tested with the 14 d chronic bioassay and it proved successful in 

its ability to test a range of sediment types. Several sediments were identified as 

toxic in Christchurch and in Invercargill. Interestingly, with regard to the 

Christchurch toxic samples, the bioassay appeared able to detect effects from 

sewage contamination that resulted in anoxic conditions. Anoxia is a stressor that 

is very different from the ones that are included in traditional monitoring of 

estuaries (PAH and metals predominantly). The bioassay was able to 

successfully test a range of sediment sizes and organic contents, showing 

versatility in testing different substrate types. This is important as a bioassay 

limited to a very specific sediment type lacks utility. The results from this 

chapter and that of the previous chapters solidify the use of Quinquelaophonte 

sp. bioassay as a successful monitoring tool for New Zealand estuaries. 
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7. 

 

Multiple generation exposures of  a 

harpacticoid copepod to zinc: Changes 

in sensitivity and population  

structure 
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7.1 Introduction 

 

In earlier chapters of the thesis it has been established that many 

contaminants represent a serious concern for the health of estuarine sediment 

biota. In particular, a variety of contaminants have the potential to cause acute 

and chronic toxicity to copepods themselves, and ultimately may cause effects 

on the wider food chain. In Chapter 5 the three reference contaminants reduced 

the number of total offspring produced at concentrations much lower than 

those required for acute mortality. These levels were also lower that the 

ANZECC  (2000) sediment quality guidelines (ISQG-Low). The observed 

mortality, reduced reproduction, and inhibited mobility could potentially have 

population-level effects. Relatively subtle population effects include altered 

sex ratios, reduced number of juveniles, and changes in the genetic makeup of 

the population.  Multiplied over several generations these subtle changes can 

have severe consequences, and could lead to populations losing the ability to 

adapt to novel pressures such as diseases and habitat changes (Bickham et al. 

2000, Medina et al. 2007).   

 

Recently, there has been increased research into sublethal effects and 

chronic exposures in order to better assess toxicity (see Chapter 5). These effects 

are more focused on individuals. However, the most important, profound and 

persistent effects of environmental contamination are at the population and 

community levels of biological organisation (Bickham and Smolen 1993, 

Belfiore and Anderson 1998, Bickham et al. 2000, Belfiore and Anderson 2001, 

Medina et al. 2007).  Studying the transgenerational effects of contaminants at 

the population level are challenging and have not been well researched. It has 

been suggested that pollution and other anthropogenic stressors are the strongest 

of current evolutionary forces (Palumbi 2001, Salice et al. 2010), and 

understanding the effects that pollution can have on the long term viability of 
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populations is vital. These effects, while potentially more prevalent in situ, are 

harder to measure than acute effects, and thus to best understand how these 

effects can change a population, a model system has to be used.   

 

Recent findings show that changes in populations can accrue in only 

several generations of exposure to contaminants (Gardestrom et al. 2006, Medina 

et al. 2007, Gardestrom et al. 2008). A laboratory study by Vogt et al. (2007) 

exposed midges (Chironomus riparius) to sublethal concentrations of tributyltin 

(TBT) over eleven generations.  They found that development and reproduction 

were affected, as well as significant changes in the acute tolerance (24 h LC50), 

with a four-fold increase after nine generations, and an eight-fold increase after 

ten generations. Another study with midges (Vedamanikam and Shazilli 2008) 

found that tolerance (96 h LC50) to nine metals, including zinc, increased when 

populations were chronically exposed for six generations. They also found that 

the tolerance to zinc remained higher than initial sensitivity after three 

generations in clean conditions. These findings suggest that there can be lasting 

genetic effects in populations, and that there can be relatively rapid changes in 

populations, when exposed to pollution pressures.  

 

These effects have caused changes to exposed populations and while 

initially this may seem beneficial, it is not always the case. For example, in a 

study by Gardestrom et al. (2008) the harpacticoid copepod Attheyella crassa 

was exposed to copper-spiked sediment for 60 and 120 days, after which the 

authors found a significant reduction in genetic diversity. They attributed this as 

a direct selection for copper-tolerant genotypes. This suggests that latent costs 

may be involved in adapting to a toxicant. This is when one adaptation results in 

reduced fitness for another trait (Salice et al. 2010).  Such changes can 

potentially have serious consequences for the ability of a population to cope with 

the occurrence of new stressors, be they chemical, biological or physical. As an 

example of latent costs, snails exposed to cadmium for three generations increase 
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their cadmium tolerance, but developed a decreased tolerance to high 

temperatures (Salice et al. 2010). Another study on Daphnia, showed that 

increased tolerance to cadmium led to increased tolerance to lead, but a reduced 

tolerance to phenol (Ward and Robinson 2005). Other examples of latent costs of 

adaptation to metals include reduced temperature tolerance in killifish with 

increased cadmium tolerance (Xie and Klerks 2003) and an inhibited ability of 

metal-tolerant plants to compete with normal plants (Hickey and McNeilly 

1975). 

 

Changes to population size or genetics due to exposure to pollutants, can 

be subtle and are not detected by bioassays. Chapters 5 and 6 of this thesis have 

described in detail the 14 d chronic sediment bioassay which is based on 

mortality and reproductive performance. These endpoints are widely used in 

bioassays; however, they are limited in their ability to predict more subtle and 

long-term effects.  

 

The major issue with studying transgenerational effects of populations is 

that there are limited methodologies available that can be used in a timely 

manner. This is especially true for those species that have long life spans (e.g. 

vertebrates). To characterise these effects a model organism must have the 

following characteristics: 1) a short life cycle, 2) high reproductive rate, and 3) 

be easily cultured in the laboratory. Harpacticoid copepods meet all those 

requirements and could provide effective for testing transgenerational effects of 

pollution.  

 

The ability of Quinquelaophonte sp. to act as a model for determining 

multiple generation effects of pollutants was assessed by: (1) exposing the 

copepod to zinc-contaminated sediments for 90 days; (2) examining the structure 

of exposed populations (sex-ratio and abundance); and (3) determining the 

changes in sensitivity in the exposed populations to zinc and phenanthrene, a 
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non-exposed contaminant, using aquatic 96 h LC50 tests.  Zinc was chosen as a 

model contaminant because, as a metal, it does not degrade over time like some 

organic contaminants. It is also a contaminant of concern worldwide, particularly 

in estuaries (Chapman and Wang 2001).  

 

7.2  Methods  

7.2.1  Test species 

 

The harpacticoid copepod Quinquelaophonte sp. was cultured in a 

laboratory culture system as described previously in Chapter 3.  

 

7.2.2  Sediment preparation and spiking   

 

Sediments were collected from Portobello Bay (45°50’S, 170°39’E) at 

low tide by scraping the top 0-2 cm of sediments and were then processed 

according to Chapter 4. Sediments were then stored at 4°C until use, 

approximately 4 months prior to spiking.   

 

Toxicant concentrations were achieved by spiking sediment with zinc 

stock solution (ZnSO4·7H2O in deionised water) following the methods outlined 

in Chapter 4. Sediments were then aged for 40 d at room temperature in the dark. 

Prior to testing, sediments were mixed for 1 h and then distributed into test 

vessels (see 7.2.3 for description). Sediment samples were taken at test initiation 

and termination for chemical analysis of zinc pore-water and sediment 

concentrations.  
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7.2.3 Experimental design   

  

Spiked sediments with nominal concentrations of 0, 20, 60, and 120 µg 

Zn/g sed. dry wt. were distributed between four replicate test aquaria. Test 

concentrations were based on the results of Chapter 4 which showed 

considerable reductions in reproduction starting at concentrations as low as 36 

µg/g, while at 120 µg/g there was an approximately 80% reduction in offspring. 

 

 Test aquaria consisted of a 9 cm diameter plastic container with two 2 

cm opposing windows cut into the side covered with 55 µm mesh. A total of 60 

ml of sediment, approximately 1 cm deep in the aquaria, was added to each 

replicate. At test initiation 100 copepods (50 males and 50 non-gravid females) 

were added to each replicate from laboratory cultures. The replicates were then 

placed into the flow-through ASW culture system under a dripping flow of ~1 

ml/min. Each replicate was fed 10 ml of a concentrated mix algae diet (~1·106) 

of Dunaliella tertiolecta, Isochrysis galbana, and Chaetoceros muelleri (1:1:1) 

twice a week. Three of the replicates were used for biological endpoints and the 

fourth was used for water quality and sediment chemistry. Water quality was 

monitored twice a week in the overlying water and care was taken not to disturb 

sediments. Water quality parameters remained stable throughout the test with 

only salinity varying due to evaporation and small changes in drip rate due to salt 

build-up on drippers. The test was conducted in a temperature-controlled room at 

20°C with a 12 h:12 h light:dark photoperiod. 

 

After 90 days of exposure (approximately 3-4 generations) each replicate 

was carefully sieved through a 175 µm mesh to collect adults. The remaining 

sediments and juvenile copepods were collected on a 55 µm mesh sieve and 

preserved in a 5% formalin and 0.5% Rose Bengal solution. The adult copepods 

were then sorted into male and female for use in toxicity testing. Only adult 

copepods were used in population structure analysis as juveniles were too 



 

175 
 

numerous to count individually and sub-sampling proved to be inconsistent and 

unreliable for population estimates (personal observations).  

 

7.2.4 Adaptive changes in sensitivity 

 

Adaptive changes in sensitivity were tested by aquatic LC50 tests using 

the two reference contaminants, zinc and phenanthrene. Phenanthrene was 

chosen as a non-exposed stressor due to its different mode of action to zinc. As 

such the responses to phenanthrene will provide insight into the potential for 

latent costs of increased tolerance to zinc. Individuals from each treatment were 

pooled to achieve sufficient numbers (390 adult copepods per treatment) for 

toxicity testing. The aquatic LC50 tests followed the method in Chapter 3, with 

the addition of the behavioural sublethal endpoint described in Chapter 5. The 

only difference was that only 20 adult copepods (10 male, 10 female) were used 

per replicate.  

  

7.2.5  Chemical analysis 

 

Zinc concentrations in sediment, pore-water and in the aqueous phase 

from aquatic LC50 exposures were measured by ICP-MS.  Methods describing 

the analytical procedure for the sediment chemistry are outlined in Chapter 4. 

Waterborne levels were analysed according to the methods in Chapter 3. 

Aqueous phenanthrene concentrations were analysed by high resolution gas 

chromatography with mass spectrometric detection (Chapter 3). 
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7.2.6 Toxicological analysis  

 

Mean population abundance in the three zinc treatments was compared to 

the zinc-free control using a one-way ANOVA and significance analysed using a 

Dunnett’s post-hoc test at P < 0.05 (GraphPad Prism, Version 5). LC50 and EC50
 

values were generated using the measured concentrations of zinc and 

phenanthrene and calculated following the methods described in Chapter 3 using 

the GenStat Statistical Package (12th edition). 

 

7.3 Results 

7.3.1  Chemical analysis of sediments  

 

Concentrations of sediment-bound zinc are given in Table 7.1. The 

average of the initial and final sediment concentrations were 47, 82, and 134 µg 

/g sed. dry wt. The background zinc concentration in control sediments was 36 

µg/g sed. dry wt. zinc. The rate of loss of zinc over the 90 day test period was 

very low (<10% in treatment groups).   

 

 

Table 7.1 Initial and final sediment bound and pore-water zinc concentrations. All values are given 
in µg/g dry wt.  
 
Sediment  
Nominal  (µg/g) 

 
Initial (µg/g) 

 
Final (µg/g) 

 
Average (µg/g) 

Control  39.0 33.3 36.2 
20  48.5 46.1 47.3 
60 85.5 79.1 82.3 
120 133.8 134.2 134 
Pore-water 
Nominal  (µg/g) 

 
Initial (mg/l) 

 
Final (mg/l) 

 
Average (mg/l) 

Control  0.014 0.029 0.022 
20  0.034 0.054 0.044 
60 0.063 0.088 0.076 
120 0.16 0.11 0.13 
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7.3.2 Effects on population structure  

 

Optimal culture conditions (Chapter 3) were maintained during the tests. 

Salinity ranged between 30 – 33‰, and pH  8.1 ± 0.2. Nitrate, nitrite, and 

ammonia were below detection levels during the entire test (Red Sea® 

commercial aquarium test kits).  

 

After 90 d of exposure to zinc-spiked sediments there were statistically 

significant changes in population size at the highest contaminant concentration, 

134 µg/g sed. dry wt. zinc (Figure 7.1, Table 7.2). The total adult population size 

was reduced at the highest test concentration to an average of 57% of the control 

population (P=0.0138). This effect was not sex-specific as the numbers of males 

 
Figure 7.1 Survivorship (normalised to control population) after a 90 d exposure to 
sediment zinc. Averages and standard deviations are percent of controls. One-way 
ANOVA with a Dunnett’s post-hoc analysis used to test for significant differences 
from controls (n=3). * P>0.05 
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and females were equally reduced by 55% and 57% respectively (P = 0.0221, P 

= 0.0203). There were no significant changes in population size or evidence of 

changes in sex ratio in any other treatment. 

 

7.3.3  Adaptive changes in sensitivity 

7.3.3.1  Zinc sensitivity 

 

The sensitivity of copepods to zinc decreased in groups exposed to 82 

and 134 µg/g zinc compared to controls for both the LC50 and EC50 values 

(Table 7.3). The change in sensitivity was also seen as significant differences in 

the intercepts and slopes of the modelled responses. In the 82 µg/g treatment 

group there was a significant change in the intercept of the modelled dose 

responses for mortality (Diff = 1.413, SEdiff = 0.347, Z = 4.07, P< 0.001) and 

lethargy (Diff = 3.02, SEdiff = 0.909, Z = 2.73, P<0.001).  There was weak 

evidence for a change in slope for mortality (Diff = 0.898, SEdiff = 0.476, 

Z = 1.89, P= 0.06), and significant change in slope for lethargy (Diff = 3.64, 

SEdiff = 1.33, Z = 2.73, P= 0.006). For the 134 µg/g sediment treatment there was 

a significant change in modelled intercept for mortality (Diff =3.59, SEdiff 

=0.605, Z =5.94, P<0.001), and for lethargy (Diff =3.48, SEdiff = 0.907, Z = 3.84, 

P<0.001). There was no significant change in slope for mortality (Diff = 0.038, 

SEdiff = 0.589, Z = 0.06, P= 0.9), however, there was a significant difference in 

slope for the lethargic response (Diff = 4.04, SEdiff = 1.3, Z = 3.11, P= 0.002). 

There was not any significant differences in intercept or slope in the 47 µg/g zinc 

exposed population or between the control and the starting population. 

Table 7.2 Average final population sizes of adult Quinquelaophonte sp. (n = 3) in the control and 
treatment groups following a 90- d exposure to zinc, One-way ANOVA with a Dunnett’s post-
hoc analysis used to test for significant differences from controls (n=3). * P>0.05 
 
 Control 47 µg/g 82 µg/g 134 µg/g 

Population 
size ± SD 

549.0 ± 63.4 522.3 ± 58.1 454.3 ± 93.4 310.3 ± 75.7* 

SD: Standard deviation of the mean,  
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7.3.3.2  Phenanthrene sensitivity 

 

No changes in phenanthrene sensitivity of copepods were observed after 

exposure to sublethal levels of zinc after 90 days (no changes in intercept or 

slopes of modelled responses). EC50 and LC50 values ranged from 0.35 to 0.38 

mg/l and from 0.92 to 1.29 mg/l, respectively (Table 7.3).  

 

7.4. Discussion 

 

This chapter utilises the chronic 14 d bioassay in order to better 

understand the effects that pollution has on Quinquelaophonte sp., by assessing 

whether this copepod is a suitable model species to test multigenerational effects 

of low levels of contaminants. It also further characterises the species response to 

sediment-borne contaminants. In addition, the results generated in this chapter 

further adds to data for the response of Quinquelaophonte to reference 

contaminants.  

 

Table 7.3 Toxicity of aqueous zinc and phenanthrene to Quinquelaophonte sp. populations after 
90 d of exposure to sediment zinc. 96 h LC50 and EC50 for lethargy are given along with the 95% 
confidence values.  
 

 Zinc mg/l Phenanthrene mg/l 

Treatment 
group 

EC50 (95% CI) LC50 (95% CI) EC50 (95% CI) LC50 (95% CI) 

Start  
population 
 

0.76 (0.69 – 0.88) 0.97 (0.88 – 1.06) 0.38 (0.37 – 0.40) 0.96 (0.86 – 1.11) 

Control 0.74 (0.69 – 0.80) 1.06 (0.96 – 1.17) 0.35 (0.32 – 0.38) 1.29 (1.21 -1.40) 

47 µg/g 0.76 (0.71 – 0.81) 1.08 (0.96 –1.22) 0.36 (0.34 – 0.37) 0.92 (0.80 – 1.13) 

82 µg/g 0.98 (0.90 – 1.04) 1.69 (1.47 – 1.95) 0.35 (0.33 – 0.37) 0.96 (0.93 – 1.0) 

134 µg/g 1.07 (0.98 – 1.18) 2.34 (2.12 – 2.59) 0.37 (0.35 – 0.39) 1.04 (0.86 – 1.46) 
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The decrease in population size at the highest concentration tested, 134 

µg/g zinc, was of note as this concentration of zinc is below the ANZECC 

(2000) ISQV-low of 200 µg/g zinc. When the reduced population size in the 134 

µg/g zinc treatment is compared to the results with zinc from the 14 d chronic 

bioassay in Chapter 5, an inconsistency becomes apparent. In the 14 d bioassay 

there was significant reduction in total offspring at concentrations as low as 55 

µg/g zinc (>60%), with 85% reduction in the test population at 95 µg/g zinc, and 

almost complete shutdown of reproduction at 163 µg/g zinc. These data would 

have predicted that in 82 µg/g zinc treatment there would have been significant 

reductions in population size  (even potential for population collapse), and in the 

134 µg/g zinc the treatment group would have been expected to collapse and 

have no individuals remaining after 90 d.  However, it was observed that after 90 

d exposure to 82 µg/g zinc, there was no statistical change in the population size, 

and at 134 µg/g zinc there was a statistically significant reduction (44%) in 

population size (Figure 7.1, Table 7.2). This suggests that these populations were 

able to acclimate or adapt to the zinc exposure, to be able to reproduce, sustain 

and grow the population to an average size of 310 ± 76 adults (from the initial 

population of 100) for the 134 µg/g zinc exposed population. However, as this 

population size was reduced relative to the control population size (549 ± 63), it 

does suggest that this acclimation came at a cost.  

 

In the exposed populations there were changes in the acute sensitivity to 

zinc. The populations exposed to 82 and 134 µg/g zinc saw an increase in the 

EC50 for lethargy to 1.0 and 1.1 mg/l zinc, respectively. The LC50 values also 

increased to 1.7 and 2.3 mg/l zinc for these two groups. This indicates that the 

zinc-exposed copepods were more tolerant to zinc compared to the control 

population (EC50: 0.8 mg/l, LC50: 1.0 mg/l). This change in sensitivity explains 

the ability of the populations at these concentrations to be at higher abundances 

than those predicted from the results of the 14 d chronic bioassay. These 

populations have therefore adapted/acclimated to zinc exposure.  
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Population changes can be enacted through several genetic and non-

genetic mechanisms. Genetic mechanisms may include direct mutations to DNA, 

reduction in genetic diversity, and via the selection of specific “favourable” 

genes. The main genetic driver for adaption of the population to pollution 

pressures is through individuals with greater resistance having better 

survivorship and/or higher rates of reproduction (Bickham et al. 2000, Belfiore 

and Anderson 2001). Non-genetic mechanisms can also help individuals adapt to 

pollution. These non-genetic mechanism include altered behaviour, different 

metabolic rates, or increases in regulatory mechanisms (i.e. metallothionein for 

metal exposure) to alleviate toxic affect and/or increase tolerance to the exposed 

pollutant (Maltby and Crane 1994, Vedamanikam and Shazilli 2008). Obviously 

it is arguable that these “non-genetic” mechanisms still have a genetic root. That 

argument aside, it is unknown though which mechanism or mechanisms the 

apparent acclimation/adaptation to zinc observed in this chapter has occurred.  

 

Increased tolerance through any mechanism can be beneficial to a 

population in that it allows that population to persist in polluted areas, or 

persevere long enough to move or for the pollution to be removed.  However, the 

population may also become more sensitive to other factors, such as other 

pollutants or changes in environmental conditions (e.g. temperature), which may 

reduce overall fitness (Bickham et al. 2000, Medina et al. 2007). The ability of a 

population to handle different stressors ultimately affects the viability of the 

population in response to other pressures. In the current study the exposure of 

copepods to zinc was shown to result in population changes, presumably through 

enacting mechanisms that increased tolerance. It was of interest to determine 

whether that tolerance came at a cost in terms of sensitivity to another pollutant, 

phenanthrene. There was, however, no observed change in phenanthrene 

sensitivity. Zinc and phenanthrene have very different modes of action and so it 

is perhaps not surprising that there was not a change in phenanthrene tolerance. 
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Phenanthrene was chosen as it had been used in previous chapters of this thesis 

(Chapters 3 and 5) and the biological effects on Quinquelaophonte sp. are 

known.  Testing of other contaminants, specifically those with similar modes of 

action, such as metals, may be more fruitful in future studies.  

 

This aim of this chapter was to assess the suitability of 

Quinquelaophonte sp. as a model organism to study the effects of 

multigeneration contaminant exposure on populations. The results of the study 

showed that Quinquelaophonte sp. is a suitable model species to be used in these 

kinds of studies. As discussed, there was a change in the tolerance of the exposed 

copepods, shown both as an increase in acute LC50 values, and final population 

sizes that were greater than that which would have been predicted from the 14 d 

chronic bioassays (Chapter 5). However, there was no within-generation 

sensitivity control and this resulted in an inability to differentiate between 

within- and trans-generational changes of the populations. The addition of 

genetic and physiological measures of pollution exposure will increase the power 

of this method, and be able to detect within- versus trans-generational changes in 

populations. For example, measures of genetic diversity can provide information 

as to whether genes are being enriched in exposed population through the 

selection of specific traits or through genetic drift (Gardestrom et al. 2008). Gene 

expression (mRNA) can also be examined at different time-points of the 

exposure using microarrays or quantitative real-time PCR, to better understand 

the physiological responses at the genetic level (Ki et al. 2009). Also simple 

generational comparisons of sensitivity can also be used to examine 

physiological versus generic changes in tolerance (Vedamanikam and Shazilli 

2008).  

 

Future research using this test system to assess adaptive tolerance should 

focus on the mechanisms that allow for the adaptation, whether genetic or 

physiological. Further studies could also focus on the latent costs of the 
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adaptation and how persistent they are in the population. The following 

questions could be addressed: How will the population recover if the pollution 

pressure is removed? Will the population still be able to persist? Will 

populations be able to return to a pre-exposure state? Will they be able to 

compete with other species, or will they be outcompeted? The answers to these 

questions are critical to being able to protect populations that are threatened, and 

to provide the most effective protection for pristine environments.  

 

It is important to acknowledge that this chapter, like many other studies, 

has used only single toxicant exposures. As discussed previously in this thesis 

(Chapter 6), mixtures of contaminants can be more toxic than single contaminant 

exposures. Pollutant mixtures are thought to be harder to adapt to due to multiple 

levels of stress acting on different biological pathways (Gardestrom et al. 2008). 

This is an important area where more research is needed, as exposure to pollutant 

mixtures is the most likely environmental exposure scenario.  

 

7.5. Conclusions  

 

This chapter has shown that Quinquelaophonte sp. is an ideal species to 

investigate multigenerational effects of pollution. It validated a method that 

provides a framework for future studies to quantify the effects that low levels of 

pollution (i.e. those that are not causing overt effects in short exposures) have on 

population parameters. For the protection and conservation of natural 

environments it is vital that population-level effects of pollutants are understood. 

There are potential “time bombs” of latent costs due to micro-evolution and 

adaption to pollution. The more that is understood regarding how low-level 

pollution pressures effect populations, and the timescales that they occur over, 

the better the prevention of negative environmental impacts. There are still many 

unanswered questions as to how changes in population abundance, structure, 

tolerance to pollutants, and genetic diversity effect populations in the long-term. 
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Future research should focus on answering these questions and 

Quinquelaophonte sp. is an excellent model species to be used to examine these 

effects.    
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8. 

 

General Discussion  
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8.1 Overview of research  

 

This thesis has detailed the development of three bioassays using a native New 

Zealand copepod. Two of these bioassays allow for the testing of marine and estuarine 

sediments on a local species that is likely to be found in sediments from around New 

Zealand, and the third is an aquatic test. These tests allow for the effects of pollution to 

be identified and quantified based on adverse biological effects. This is an advance on 

monitoring methods that rely solely on chemical measurements of contamination 

levels, and toxicity prediction based only on these measures. Chemical characterisation 

of estuarine sediments and the derivation of SQV values such as the ISQG from the 

ANZECC (2000) guidelines, the PEL, and ERM from Long et al. (1998) and 

MacDonald et al. (1996), have important roles in sediment quality assessment.  

However contaminant levels exceeding these trigger values do not necessarily mean 

that there will be biologically-adverse effects (Hubner et al. 2009). Conversely, 

adverse biological effects can occur at levels below the trigger values as seen in 

Chapter 5 and by Kelly (2007). In Auckland’s Manukau and Waitemata Harbours 

Kelly (2007) found that benthic community structures were altered in similar ways to 

communities in contaminated areas, despite levels of pollution below trigger values. 

The use of the Quinquelaophonte sp. bioassay in these sediments may have been able 

to determine if these adverse effects were caused by pollution. Thus the use of the 

bioassay in conjunction with sediment chemistry/trigger values is required for a better 

assessment of environmental effects of toxicants. 

 

Bioassays are also advantageous in that they can account for the complex 

assortment of chemical mixtures that may occur in natural sediments. The variable 

composition of such sediments can have complex and unpredictable impacts on 

pollutant bioavailability, and subsequently, toxicity. Bioassays, such as those 

developed here, and when used in conjunction with chemical analyses, are 

consequently the most effective way to assess pollution risk to the local biota. When 

used in a tiered approach, such as that outlined in the ANZECC (2000) guidelines, 
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which uses multiple lines of evidence, the bioassay/chemical characterisation 

employed in the current thesis provides the best approach to monitoring potentially 

contaminated environments and informing management decisions.   

 

This thesis has carefully selected the most suitable New Zealand estuarine 

bioassay species for use in a wide range of applications. Amphipods have been used in 

several studies as a local bioassay species in New Zealand (Marsden and Wong 2001, 

King et al. 2006, Dupree and Ahrens 2007). Although combining both amphipods and 

copepod bioassays has been very successful (Simpson and Spadaro 2011), harpacticoid 

copepods exhibit greater sensitivity than amphipods (Greenstein et al. 2008). This 

provided a large part of the rationale for choosing a harpacticoid copepod to develop a 

new sediment bioassay for monitoring estuarine pollution. Harpacticoids are also 

advantageous in that they are present at the freshwater-marine interface, occupy a 

position at the base of many important marine and estuarine food webs, and have short 

life cycles (Ward et al. 2011). They are consequently found in high densities where 

terrestrial pollutants are often accumulated, and are an ecologically significant species. 

Their ecological importance makes the extrapolation of laboratory effects to native in 

situ species easier (Coull and Chandler 1992). 

 

The rationale for choosing Quinquelaophonte sp. over other harpacticoids was 

based on a variety of different factors, including life-history traits, cultivability and 

sensitivity. The sediment factors governing its distribution in a sand-mud flat were 

examined to provide more information regarding the ecology and habitat preferences 

of this and other potential bioassay species (Chapter 2). This is an important aspect of a 

bioassay that is often overlooked. The more information that is known about the “test” 

species, and its environmental requirements, the more confidence there is in the results 

derived from the bioassay. An understanding of the ecology of a species identifies the 

factors other than pollution that can affect behaviour, reproduction, or development, 

and which could be mistaken as a toxic effect. 
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The main products of this thesis are the sediment bioassays. The two sediment 

bioassays (acute and chronic) were validated using spiked sediments. To this end a 

method was developed for spiking of fine sandy sediment (that which was found to be 

preferred by Quinquelaophonte sp.) to ensure that there was adequate distribution of 

contaminants through the sediment. The spiked sediment bioassays were used to 

classify the responses of Quinquelaophonte sp. to sediment-bound contaminants. 

Mortality (both acute and chronic) was measured as this is the classical endpoint used 

in toxicity testing. The sublethal endpoints of mobility inhibition (acute) and reduced 

reproduction (chronic) were also measured. These bioassays can be used in both 

monitoring and environmental risk assessment to assess both current impacts of 

pollution as well as mitigating the risk of new compounds (see the Appendix).   

 

The three different reference contaminants (zinc, atrazine, and phenanthrene) 

showed markedly different effects on exposed individuals. Zinc showed a very narrow 

range of effects with an ACR of 6.7. This small ACR signals some concern for 

estuarine copepods, as it indicates that only relatively minor increases in zinc 

concentration will move toxicity from an individual-level acute effect to a more 

“serious” population-level chronic effect.  

 

Of all the reference contaminants tested, atrazine showed the widest range in 

effect concentrations with an ACR of 117,000. This large difference in toxic effects is 

most likely due to the specific endocrine disrupting effect of atrazine (Hayes et al. 

2002). The low levels at which atrazine showed reproductive effects (total offspring 

EC50 of 0.83 µg/g) are of concern as they are within the range of environmental 

concentrations (Rice et al. 2004). 

 

Phenanthrene showed adverse reproductive effects at very low concentrations 

(EC50 0.67 µg/g), with an ACR that was significantly higher than that predicted by its 

mode of action (Roex et al. 2000).  This suggests that there may be another mode of 

action of phenanthrene, one that is acting directly on the reproductive tissues or 

affecting juvenile development (Lotufo 1997). This variety of effects at different 
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contaminant exposure levels shows that the bioassay is able to elucidate adverse 

effects of low level contamination, as well as effects from contaminants with different 

modes of action. This suggests that the bioassay will be useful in identifying levels of 

contamination that might lead to subtle food web and community perturbations.  

 

The chronic bioassay was used to test field samples from a variety of estuaries 

that have different contaminant profiles. Napier and Invercargill estuarine sample sites 

are mainly affected by urban, industrial, and agricultural pollutants. During the testing 

of sediments the bioassay showed its versatility in being able to assess very different 

sediment types. This included very sandy sediments from the mouth of the Invercargill 

estuary (Omaui) to the fine organic-rich sediments near the river input (Invercargill 

dump) and in Napier. This is a vital characteristic of this bioassay as it allows for wide 

application in monitoring schemes throughout New Zealand.  

 

An interesting outcome of the research is that the bioassay picked up some 

non-chemical causes of toxicity. In Christchurch sediments, anoxic conditions were 

observed during the bioassay, likely the result of sewage contamination resulting from 

earthquake-impacted infrastructure. This, while not a chemical effect, is important as 

adverse effects related to non-chemical stressors may occur frequently in wild 

populations, and the bioassay is able to detect this deterioration in habitat quality.  

 

Native indigenous copepods also had effects on the bioassay. Due to 

inadequate refrigeration the native copepods survived when testing the Napier 

sediments. This prevented the ability to use the reproductive endpoints in the testing. 

Due to this adequate refrigeration and sieving is recommended to remove the majority 

of native fauna prior to testing.  
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Quinquelaophonte sp. was further characterised in terms of its response to 

pollution by looking at multigeneration exposures. The results of this study showed 

that in response to toxicant exposure the tolerance of the population, as measured by a 

96 h LC50, changed. The increase in tolerance illustrated that there is potential for 

populations to adapt or acclimate, through either genetic selection or physiological 

mechanisms, to pollution pressures. While adaptations to pollution can be beneficial to 

populations in exposed areas it can make them more vulnerable to reduced genetic 

diversity and latent costs.  For example, while they may appear to adapt, the latent cost 

of adaptation/acclimation may reduce life span, fecundity, tolerance to other stressors, 

competitiveness, or some other aspect of the organisms biology. Consequently 

biological adjustment to pollutant exposure may negatively impact the individual itself, 

but also may eventually result in adverse changes at the population level.  

 

8.1.1  Challenges and limitations  

 

During this thesis there have been many challenges which are worth 

highlighting. The first was the culturing of harpacticoid copepods. Establishing a 

laboratory culture of a bioassay organism is an essential step in ensuring that the 

results of the bioassay are not impacted by prior exposure history. A total of six species 

were bought into the laboratory as potential bioassay organisms. Only two species 

were able to be cultured successfully. The factors that were found to be the most 

important in culture survival were sediment type and processing, confirming findings 

of previous studies (Chandler 1986, Nipper and Roper 1995). Laboratory populations 

of R. propinqua and Quinquelaophonte sp., were the healthiest (highest density, 

highest proportions of gravid females) when cultured in the sediments that they were 

initially sourced from. While they were able to sustain populations in other sediments, 

they were never as healthy as when cultured in native sediments. The sediment used in 

cultures is therefore vitally important for having large healthy populations of copepods 

in the lab and so provides easy and effective testing of contaminants (Chandler 1986). 

Processing sediments (i.e. washing, sieving and sterilising) removed the majority of 
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sulphides and detritus which could reduce water quality, and allowed for monocultures 

of each copepod species by removing any native fauna (Chandler 1986).  

 

The other main challenge that was not able to be resolved was the extraction of 

DNA from individual copepods. This was planned as a major component of the 

multigeneration exposure in Chapter 7, and would have facilitated an analysis of 

genetic diversity during the exposures to zinc. It would have permitted an assessment 

as to whether observed changes in sensitivity were the result of genetic change. 

Multiple attempts were made to extract DNA from both individual and pooled 

individuals using a variety of different methods such as that of Schizas et al. (1997), as 

well as using commercial kits such as Qiagen® DNeasy and Sigma® RED extract N 

amp. There are several reasons that may explain why this was unsuccessful. Firstly 

these copepods are very small (<1 mm long), do not have a lot of DNA, and any DNA 

that is extractable may be contaminated with DNA from sediment bacteria and fungi. 

Furthermore they have a chitinous exoskeleton which is also thought to make DNA 

extraction difficult (Schizas et al. 1997). There are several methods for extracting DNA 

from eggs (Montero-Pau et al. 2008, Xu et al. 2011), and eggs may not have the same 

issues associated with adult individuals that interfere with DNA extraction.  Future 

studies may have better success using mitochondrial DNA, and primer amplification as 

this has been successfully used in other studies (Durbin et al. 2008). This lack of 

genetic endpoint was a short-coming of the multigenerational study as the exposed 

populations could not be assessed for reduced genetic diversity due to zinc exposure. 

This is an effect that has been seen in other studies (Gardestrom et al. 2008). Future 

research is needed to better assess the effects of long term pollutant exposure on 

genetic diversity, as reduced diversity can impair population fitness and ability to adapt 

(Staton et al. 2001, Morgan et al. 2007). 

 

The bioassays developed in this thesis are a very useful tool for environmental 

monitoring in New Zealand. While not the first harpacticoid bioassay (Chandler and 

Green 1996, Brown et al. 2005, Raisuddin et al. 2007, Perez-Landa and Simpson 

2011), it is the first with applicability for New Zealand that has been fully evaluated 
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and validated. This allows for a native species to be used to detect adverse effects on 

the local biota. Despite the versatility of the bioassay it is not a “one stop shop” for 

sediment toxicity evaluation. Different bioassay species have different exposure routes 

including particle ingestion, contact with sediment, and pore-water exposure (Green et 

al. 1993, Chandler et al. 1994, Simpson and King 2005, King et al. 2006, Greenstein et 

al. 2008). Therefore single species testing to evaluate sediment toxicity cannot be 

recommended (Greenstein et al. 2008, Simpson and Spadaro 2011).  It is suggested, 

however, that this bioassay can form a nucleus of tests that incorporate a suite of 

bioassay species to fully evaluate potential risks from pollution. Other test species that 

would work well in conjunction with this copepod bioassay include an amphipod 

bioassay, such as that used by Marsden and Wong (2001) or Dupree and Ahrens 

(2007), or a bivalve or polychaete worm bioassay (Moore and Dillon 1993).  A suite of 

species such as these will give the most accurate risk assessment of contaminated 

sediments as it would evaluate pollution through different exposure mechanisms and 

types of organisms, which is a better representation of a benthic community than a 

single species. When toxicity is found it is recommended that chemical 

characterisation be undertaken for TIE analysis to identify the potential causes of the 

toxicity.  

 

 

8.2 Objectives revisited 

 

The main objective of this thesis was to validate a marine and estuarine 

sediment bioassay with a native New Zealand harpacticoid copepod, in order to 

develop a tool for monitoring environmental impacts and conducting environmental 

risk assessment. This overall objective was split into distinct sub-objectives to ensure 

that the bioassay was well validated, and was a tool with real-world utility. These 

objectives, and how they were accomplished, are discussed below. 
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Objective 1: Selection of a suitable native New Zealand harpacticoid copepod 

bioassay species. 

 

An ecological assessment of several candidate copepod species was undertaken 

to understand as much as possible about the environment that they live in, and how 

environmental factors impact their distribution in situ (Chapter 2). Little is known 

about the ecology of many species of copepods. This chapter contributed novel 

understanding regarding aspects of native copepod ecology and assisted with the 

development of culture conditions by defining the most suitable sediment types.    

 

Two species were able to be cultured: Robertsonia propinqua and 

Quinquelaophonte sp. These two species were then compared across multiple traits, 

including culture density, reproductive rate in laboratory culture, ease of distinguishing 

males and females (for assessment of gender-based toxic impacts), geographic 

distribution, and sensitivity to contaminants. This then permitted selection of the 

species that would be best-suited for testing in a range of estuarine sediments, and 

which would also be sensitive to pollution, and thus act as a suitable sentinel of 

environmental impact (Chapter 3). 

 

Objective 2: Validation of sediment bioassays. 

 

In total there were three bioassays used and validated. First the aquatic 96 h 

acute test was used to assess and compare the sensitivity of Robertsonia propinqua and 

Quinquelaophonte sp. (Chapter 3). This method is a standard test that is used with 

species worldwide (ISO 1999), and was used with the New Zealand harpacticoid 

species with only minor modifications. This technique allows for rapid assessment of a 

variety of different contaminants or pollutant mixtures and permits easy comparison 

between species. Two sediment copepod bioassays were also validated using 

sediments spiked with three reference contaminants: zinc, atrazine and phenanthrene 

(Chapter 5). This required the validation of a sediment spiking method to ensure that 

there was an even contaminant distribution though the sediments (Chapter 4).  
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The sediment bioassays included an acute 96 h test that, in addition to 

mortality, included a sublethal endpoint (inhibition of mobility). This is an important 

addition to an acute test as it allows for increased test sensitivity (Dhawan et al. 1999, 

Wallace and Estephan 2004). It is also an environmentally relevant endpoint as an 

inhibited individual is more likely to have reduced survivorship (Brooks et al. 2009, 

Trekels et al. 2011). This endpoint can also be used in the aquatic tests. The chronic 

bioassay, using reproduction as an indicator of toxic effect, was the most sensitive, 

capable of detecting atrazine toxicity at a levels two orders of magnitude lower than 

those of acute tests (Chapter 5).   

 

Objective 3: Laboratory testing of field collected sediments. 

 

Sediments from three different estuaries from around New Zealand were tested. 

These included a variety of sediment types with differing organic content and grain 

size. The bioassay proved to be very versatile and differences in reproduction or 

survivorship were not influenced by sediment type. Toxic effects were seen at several 

of the sampling sites. Sites within Christchurch’s Avon-Heathcote Estuary were 

identified as being most toxic, likely owing to the effects of the Canterbury 

earthquakes and the dumping of sewage (Chapter 6).    

 

Objective 4: Population-level responses to low level contamination habitats. 

 

Population-level responses to contaminants were tested by exposing copepods 

to zinc-spiked sediment for several generations. Population size, sex ratios and aquatic 

LC50s to zinc and phenanthrene were used to assess the effects on the population. 

Testing sensitivity to both the tested contaminant (zinc) and a novel contaminant after 

generational exposure to zinc allowed for insight into the tradeoffs that populations 

potentially make as a consequence of adjusting to one stressor. There was a change in 

zinc sensitivity showing a response to the pollution pressure, either through changes in 

population genetic structure or individual physiological plasticity. 
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8.3 Future research   

  

Future research should include a continuing assessment of the predictive ability 

of the bioassay. This will add significant value to the utility of this tool. In particular, 

examining how the results of the bioassay translate to toxicity and changes in the 

ecosystem structure and functionality would be of interest. This could be accomplished 

by integrating the results of the bioassay with ecological assessments. This might 

include species diversity (Rodrigues and Quintino 2001), food web (Pojana et al. 

2003), biomass (Joseph and Joseph 2001), and contaminant transfer (Lawrence and 

Mason 2001) studies. The increased knowledge gained by better understanding the 

changes in ecology at contaminated locations, and how that relates to the results of the 

bioassay, will allow for better management decisions, as well as a better estimation of 

environmental impacts (Solomon et al. 1996).  

 

Additional methodologies to assess the long term effects of pollution will also 

strengthen the bioassay predictability. The multigenerational exposures showed 

changes in tolerance after four generations of exposure but there was no indication as 

to whether this was a genetic or a physiological effect. Understanding the nature of this 

effect will help to better integrate the ecological effects of wild populations exposed 

for generations and the results of the bioassay. Future research examining the 

transgenerational effects could include correlative approaches where sensitivities of the 

F1 generation (first generation exposed throughout life-cycle) are compared to the F3 

generation potentially giving insight into physiological tolerance (no difference 

between F1 and F3) and potential genetic adaptation (F3 more tolerant than F1 

generation) (Vogt et al. 2007). Alternatively, after multigenerational exposure, 

populations can be moved to clean sediments and after several generations tested again 

for sensitivity. If tolerance was still higher than the starting population then it might be 

concluded that genetic adaption had occurred through inherited tolerance 

(Vedamanikam and Shazilli 2008). It is also possible to examine the mechanistic 
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reasons for changes in sensitivity. This can include changes in expression of genes 

such as cytochrome P450, heat shock proteins, and vitellogenin, following 

contaminant exposure. This is just a small subset of genes that are known to change 

with toxicant exposure (Ki et al. 2009). Measures of genetic diversity with techniques 

such as amplified fragment length polymorphism (AFLP), microsatellites, or random 

amplification of polymorphic DNA (RAPD) allow for assessment of lost genetic 

diversity and population divergence, which can affect the long-term viability of a 

population (Medina et al. 2007, Gardestrom et al. 2008).  Further investigation of the 

latent costs of adapting to a variety of different pollutant and environmental stressors 

will help to better understand the effects of adaptation to pollution and the potential 

reduced viability of the populations (Ward and Robinson 2005, Salice et al. 2010). 

Being able to adapt to, and survive in, polluted environments is not always beneficial 

in the long run (Medina et al. 2007). The loss of the ability to adapt to other changing 

forces in the environment, other pollution sources, climate change, and/or disease, can 

severely impact populations (Boulding 2008). This is an area of research that should 

increase in importance across all ecosystems, as the majority of contamination is at 

low levels and this is the level where potential subtle effects can be overlooked. 

 

Creating additional bioassays with different estuarine species would 

complement the copepod bioassay and allow for optimal environmental protection in 

monitoring schemes. Having a suite of several bioassay species with different exposure 

mechanisms would provide a far more robust assessment of sediment toxicity 

(Davoren et al. 2005, Greenstein et al. 2008). This provides multiple lines of evidence 

to support management decisions and improves understanding of the causes of toxicity 

through the patterns in responses (Burton et al. 2002b, Chapman and Anderson 2005). 

This is a more thorough way to monitor environments, and to determine the best 

environmental safety procedures to minimise negative impacts that human activity has 

on New Zealand’s unique estuarine environment. In addition to developing more 

bioassays with local species, bioassays need to be wisely used. Monitoring schemes 

should be implemented in areas of high risk or in areas where conservation is 

paramount (ANZECC 2000).  
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8.4 Conclusion 

 

The marine environment is an important resource for humans, emphasised by 

the fact that over half of human settlements are located near coastal regions and 

estuaries. Estuaries are functionally special, biologically diverse ecosystems. That they 

are also one of the ecosystems most impacted by pollution, is a significant ecological 

issue. Pollution pressures are only going to become greater in the future and there 

needs to be monitoring schemes that help to prevent adverse effects. Such monitoring 

should be particularly adept at recognising early indicators of adverse effects.   

 

In this thesis a robust set of sediment and aquatic bioassays has been developed 

with the harpacticioid copepod, Quinquelaophonte sp. These bioassays have defined 

endpoints that encompass a variety of toxic impacts from reproductive effects, to 

immobility and mortality. There are a vast number of biological monitoring tools for 

assessing environmental impacts, however these biological tools are underused in 

environmental management and regulatory contexts (Van der Oost et al 2003). This 

thesis strongly recommends that sediment bioassays play a more critical role in future 

assessments of environmental quality, both in New Zealand and worldwide.  
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Environmental context. Oseltamivir (Tamiflu) is widely used to prevent and treat influenza but conventional 
wastewater processes involving sedimentation and biotic oxidation do not appear to significantly remove it 
from sewage, leading to its discharge into the environment. A range of advanced oxidation processes 
(AOPs) 
involving photolysis of aqueous solutions of oseltamivir with UV alone, UV/H2O2 and UV/H2O2/FeII is 
demonstrated to lead to photodegradation of oseltamivir to products with no ecotoxicity observed. These 
AOPs 
may therefore offer potentially environmentally friendly sewage water treatment options. 
 
 
Abstract. Aqueous solutions of the antiviral drug oseltamivir phosphate (OSP, Tamiflu, (3R,4R,5S)-ethyl 4-
acetamido- 
5-amino-3-(pentan-3-yloxy)cyclohex-1-enecarboxylate) were degraded using advanced oxidation processes (AOPs) 
involving photodegradation with UV alone, UV/H2O2 and UV/H2O2/FeII (photo-Fenton reaction). The photodecay of 
the parent OSP in all three cases followed first-order kinetics with respective rate constants of 0.21, 1.56 and 1.75 min 
_1 at 
208C in pH 7 phosphate-buffered Milli-Q water. The rate of UV/H2O2 photolysis in the presence of 2-methylpropan-
2-ol 
was significantly slower with an approximate first-order rate constant of 0.13 min 
_1 suggesting the involvement of 
_ 

OH in 
the degradation process. NMR spectroscopy, mass spectrometry and high-performance liquid chromatography 
(HPLC) 
with UV diode array detection were used to identify the crude photoproduct as the hydroxylated OSP derivative 
(3S,4R,5S)-ethyl 4-acetamido-5-amino-2-hydroxy-3-(pentan-3-yloxy)cyclohexanecarboxylate that occurs by an 
unknown mechanism. OSP and this crude photoproduct demonstrated no effect on the survival of Quinquelaophonte 
sp. over 96 h. 

Additional keywords: advanced oxidation process, antivirals, ecotoxicity, pharmaceuticals. 


