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A large chaetopterid polychaete, Mesochaetopterus rogeri sp. nov. is described as new from 

the Mediterranean Sea. The analyses of partial sequences from the nuclear 18S rRNA (643bp) 

and the mitochondrial Cytochrome Oxidase I (577bp) genes of representative individuals of 

all known chaetopterid genera indicated the initial assignment of the new species into 

Mesochaetopterus. These analyses also supported the monophyly of the family and revealed 

two well-supported clades: Chaetopterus / Mesochaetopterus and Spiochaetopterus / 

,Phyllochaetopterus. Mesochaetopterus rogeri sp. nov. was close to M. xerecus, here re-

described from newly collected material. Mesochaetopterus rogeri sp. nov. was characterized 

by: 1) two long tentacles with dorsal transversal black bands with alternating widths 

(sometimes with two additional longitudinal light-brown bands); 2) A region with nine 

chaetigers (up to 12), with 13 - 19 modified chaetae in the 4th; 3) B region with three flat 

segments, with accessory feeding organs in the 2nd and 3rd; 4) sandy straight tubes, 2.5 m 

long or more, vertically embedded in the sand. In the Bay of Blanes, M. rogeri sp. nov. occurs 

between 6 and 9 (up to 30) m deep, with a patchy distribution (< 1 ind. m-2), maximum 

densities in April/June (likely due to recruitment events) and minimum in 

September/November (likely a behavioural response to increasing sediment dynamics). 

Although it was originally thought that M. rogeri sp. nov. could be an introduced species, we 

argue that it is probably a native of the Mediterranean, which has been overlooked by 

scientists up to now. 

 

ADDITIONAL KEYWORDS: 18S rRNA - behaviour - Chaetopterus – Chaetopteridae – 

Cytochrome Oxidase I – distribution – genetics – Mediterranean Sea - Mesochaetopterus – 

Phyllochaetopterus - phylogeny – Spiochaetopterus. 
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INTRODUCTION 

 

During recent years, scuba divers have occasionally reported the presence of “strange” large 

worms having a pair of long palps with a characteristic striped “black and white” colour 

pattern in shallow sandy bottoms of the Iberian Mediterranean shoreline, mainly along the 

Catalan littoral. Up to now, the only available data on their presence were these incidental 

reports, sometimes accompanied by pictures of the living specimens “in situ” (Fig. 8A, B). 

The oldest known reference, a worm from Almería, SW Iberian Penninsula, appeared in an 

encyclopaedia in 1979, labelled as “Spionidae” (George & George, 1979, fig.8, pag. 353}.  

Routine monitoring of the brine discharge from the Blanes desalination plant in the 

shallow sandy bottoms facing the beach at Punta del Tordera (Catalan coast, NW 

Mediterranean) revealed a stable population, allowing the collection of enough appropriate 

material.  

In this study, we used a partial nuclear gene (18S rRNA) and a mitochondrial gene, 

Cytochrome Oxidase I (COI), aiming to confirm the assignment of the Catalan specimens into 

the correct genus within the Chaetopteridae (Annelida, Polychaeta), as well as to assess the 

phylogenetic relationships within the four known genera of the family: Chaetopterus, 

Mesochaetopterus, Spiochaetopterus and Phyllochaetopterus. 

The Catalan specimens were revealed to be an unknown species of Mesochaetopterus. 

Thus they are described as a new species, M. rogeri sp. nov, in spite of lacking data on the 

morphology and chaetal arrangement of the posterior-most segments (due to logistic 

difficulties of extracting complete worms). They were compared with all known species of 

the genus, particularly with Mesochaetopterus xerecus Petersen and Fanta, 1969, which 

closely resembles the new species both in size and in having striped palps (Petersen & Fanta, 

1969). In the case of M. xerecus, however, all material was lost (including the types). For this 

study, new material collected at Baranaguá Bay (Paraná, Brazil) was used both in genetic and 

morphologic analyses. In addition, we provide a brief diagnosis of the soft body of the 

species, together with a full description and pictures of its chaetal arrangement, which was 

poorly described and illustrated in the original description.  

The seasonal trends of the population in Punta del Tordera, habitat preferences, and 

behaviour of of Mesochaetopterus rogeri sp. nov. are also provided, compared with the 

known traits of the other known large-sized species of Mesochaetopterus and discussed, to 

attempt to explain the presence of such a large unknown worm in the widely investigated 
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shallow-waters of the Mediterranean Sea. 

 

 

MATERIAL AND METHODS 

 

Sampling procedure 

All observations on living worms and sampling were performed by SCUBA diving. Most 

sampling attempts were carried out off Punta del Tordera on the Catalan shoreline of the 

Mediterranean coast of the Iberian Peninsula (Fig. 1) from October 2001 to September 2004. 

As a first collection method, we used a PVC plate introduced obliquely into the sediment to 

cut the worm’s tube, trying to prevent the worms from withdrawing inside the tube. The body 

in Mesochaetopterus is divided into three differentiated parts: the nine to ten anterior-most 

segments, the two to three mid-body segments, and an undefined (but usually very numerous) 

number of posterior segments; these form the regions A, B and C, respectively. Using the 

PVC plate, the quick reaction of the worm only allowed for the collection of anterior 

fragments containing the A region and, at most, part of the B (as well as part of the tube). 

Successive attempts using either irritating or anaesthetizing compounds, sucking or impelling 

pumps of different types, did not result in collection of either entire specimens or larger 

fragments. The last attempt, carried out in September 2004, involved the archaeological 

research vessel “Tethys”, from the Centre d’Arqueologia Submarina of the Museu 

d’Arqueologia de Catalunya. The vessel is equipped with powerful suction devices, which 

allowed us to excavate up to 2.5 m deep into the sediment. However, the tube extended 

deeper into the sediment and only a large fragment of a worm (with ten segments of region C, 

in addition to A and B regions) was collected, after several hours of underwater working. 

Being the most complete available fragment, this specimen was selected as the holotype of 

the new species. 

The newly collected specimens of Mesochaetopterus xerecus were found in the Ilha do 

Mel, Baranaguá Bay (Paraná, Brazil). The worms were collected by researchers from the 

Centro de Estudos do Mar (Pontal do Sul, Brazil) from intertidal soft sediments at low tide 

using a shovel. 
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Genetic analysis, DNA extraction and sequencing  

For the genetic analyses, all newly collected specimens were preserved directly in 100% 

ethanol. Total genomic DNA was extracted from individuals using the QIAamp DNA Minikit 

(Qiagen). A fragment of 18S rRNA nuclear gene was amplified by polymerase chain reaction 

(PCR) using newly designed primers (Chae18SF: 5’-AAACGGCTACCACATCCAAG-3’, 

Chae18SR: 5’-AACTAAGAACGGCCATGCAC-3’). Cycle parameters consisted of a first 

denaturing step at 94ºC for 2 min, followed by 35 cycles of 1 min at 94ºC, 1 min at 55ºC and 

1 min at 72ºC, and a final extension at 72ºC for 7 min. Mitochondrial cytochrome oxidase I 

(COI) gene was amplified using primers HCO2198 (5’-

TAAACTTCAGGGTGACCAAAAAATCA-3’) and LCO1490 (5’-

TCAACAAATCATAAAGATATTGG-3’) (Folmer et al., 1994). The amplification profile 

was optimized for each extraction, optionally with a touchdown of five cycles of 94°C for 60 

seg, 45°C for 90 seg, 72°C for 60 seg, and then 35 cycles of 94°C for 30–40 seg, 51°C for 

30–90 seg, 72°C for 60 seg, with an initial single denaturation step at 94°C for 60–120 seg 

and a final single extension step at 72°C for 5–7 min. Both gene amplifications were carried 

out in 20 µL of total volume with 1X reaction buffer (Genotek), 2 mM MgCl2, 250 µM 

dNTPs, 0.25µM of each primer, 1U Taq polymerase (Genotek) and 20-30 ng genomic DNA. 

PCR were performed in a Primus 96 plus (MWG Biotech). PCR products were cleaned with 

the QIAquick PCR Purification Kit (Qiagen) or ethanol precipitation and sequenced with the 

BigDye Sequencing Kit ABI Prism. PCR products were purified by ethanol precipitation and 

analyzed on an ABI 3700 automatic sequencer (Applied Biosystems) from the ‘Serveis 

Cientifico-Tècnics’ of the ‘Universitat de Barcelona’. Representatives of all known genera of 

Chaetopteridae (i.e. Chaetopterus, Mesochaetopterus, Spiochaetopterus and 

Phyllochaetopterus) were used for the genetic analysis and the new sequences obtained were 

deposited in the EMBL (Table 1). For 18S rRNA, the GenBank sequences of Chaetopterus 

variopedatus from the Atlantic Ocean (U67324), C. pugaporcinus (DQ209224), 

Mesochaetopterus taylori (DQ209217) and Prionospio sp. (DQ209226) were also used. As 

well as, for COI, we have included sequences from GenBank of Chaetopterus pugaporcinus 

(DQ209257), Mesochaetopterus taylori (DQ209251), Phyllochaetopterus socialis 

(DQ209247) and Prionospio sp. (DQ209266). Prionospio sp. was used as outgroup. 

Specimens belonging to the two morphotypes of Mesochaetopterus rogeri sp. nov.  (i.e. with 

or without reddish bands in palps) were specifically selected for the analyses. 
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Sequence analysis and phylogenetic reconstruction 

Sequences were edited and aligned with SeqMan II (DNASTAR, Inc., Madison, Wis.) and 

ClustalX (Thompson et al., 1997) under default settings and verified visually. Gblocks 

software was used to check the alignments (Castresana, 2000), since regions that are not well 

conserved may not be homologous or may have been saturated by multiple substitutions, and 

the exclusion of poorly aligned positions and highly divergent regions aids phylogenetic 

reconstruction. The method makes the final alignment more suitable for phylogenetic analysis 

by selecting blocks of positions that meet a simple set of requirements regarding the number 

of contiguous conserved positions, lack of gaps, and the degree of conservation of flanking 

positions. Genetic divergence estimated as the percentage of haplotype sequence differences 

between species was calculated using the program PAUP* version 4.0b10 (Swofford, 2001). 

The homogeneity of base composition across taxa was assessed using the goodness-of-fit 

(!2
) test and the incongruence length difference (ILD) test (Farris et al., 1994) was used to 

assess analytical differences between genes; both tests are implemented in PAUP* ver. 4.0b10. 

In the latter test, only parsimony-informative characters were included and heuristic searches 

were performed with ten random stepwise additions with TBR branch swapping and 1000 

randomizations. In order to assess the degree of saturation, Ts, Tv and Ts+Tv versus genetic 

divergence for all pairwise comparisons in each gene independently were plotted. 

Each gene was analysed individually and both genes were joined creating a new data set. 

Phylogenetic trees were inferred by Bayesian inference (BI) using Mr Bayes 3.1.2 

(Huelsenbeck & Ronquist, 2001), since this method appears to be the best for inferring 

phylogenetic relationships between species (Alfaro et al., 2003; Carreras-Carbonell et al., 

2005). The computer program MODELTEST version 3.06 (Posada & Crandall, 1998) was used 

to choose the best-fit evolution model under the Akaike information criterion (AIC) for each 

gene separately and then subsequently used in the BI analyses (Posada & Buckley, 2004). The 

Markov chain Monte Carlo (MCMC) algorithm with four Markov chains was run for 

1,500,000 generations, sampled every 100 generations, resulting in 15,000 trees. The first 

1500 trees were eliminated since they did not reach stationarity for the likelihood values and 

the rest were used to construct the consensus tree and obtain the posterior probabilities of the 

branches. 

Morphological observations 

Light microscope (LM) micrographs were made with a Zeiss Axioplan (body and tube) and a 

Zeiss Stemi 2000-c (chaetae) stereomicroscopes equipped with the SPOT hardware and 
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software (SP100 KAF1400 digital camera and software version 2.1.) from Diagnostic 

Instruments Inc. For the LM micrographs of chaetae, each parapodia of the A region was 

dissected from the body and isolated in a Petri dish. Parapodia were carefully dissected and 

representatives of each chaetal type were removed with fine forceps under a compound 

microscope, prior to mounting on a slide. LM micrographs of uncini were made by dissecting 

a fragment from a parapodium and squashing it directly onto a slide. The Type Series of the 

new species and the newly collected specimens of Mesochaetopterus xerecus are deposited in 

the Museo Nacional de Ciencias Naturales (MNCN) of Madrid.  

 

Ecological data 

Data on population abundances in the Punta del Tordera were collected monthly by SCUBA 

during routine brine discharge monitoring from February 2002 to January 2004. To quantify 

the abundance of worms, the number of tentacle pairs protruding from the tube was noted 

along transects of 50 m long and 2 m wide. The abundances were monitored at two locations 

(south and facing the Tordera River), with two random sites per location and eight random 

transects per site. The seasonal pattern is represented as monthly averages of density 

(individuals m-2). Water temperature was registered in parallel with observations on the 

worms. Data on wave height were obtained from the mooring buoy (DATAWELL 

Waverider) controlled by the Laboratori d’Ingenieria Maritima of the Universitat Politècnica 

de Catalunya, located at 1 mile off Punta del Tordera (41° 38.81’ N; 02° 48.93’ E). Wave 

height was expressed as the significant wave height in cm (height corresponding to the 

average of 1/3 of the highest waves). The long-term climatic dataset was measured by Josep 

Pascual in l’Estartit, about 50 km north of Blanes. Water temperature (at 20 m deep) trends 

from 1969 to 2003 were estimated by linear regressions by means of the SYSTAT software 

(version 5.2.1 1990-92, by SYSTAT corporation). 

 

 

RESULTS 

Genetic analysis 

 

A total of 1220 bp was analysed for all genes combined: 643bp for 18S rRNA and 577bp for 

COI. The first gene presented 54 variable and 24 parsimony informative sites (8.40% and 



 

 

9 

9 

3.73%, respectively), whereas COI gene showed a greater proportion yielding 277 variable 

and 205 parsimony informative sites (48% and 35.53%, respectively). The Ts/Tv was 1.46 for 

18S rRNA and 1.01 for COI. Saturation tests carried out for each gene independently showed 

no evidence of sequence saturation in these genes (data not shown). The goodness-of-fit test 

for each gene showed homogeneous base composition across taxa (P = 1.00) and the partition 

homogeneity test showed no significant heterogeneity between genes (PILD = 0.46). Although 

there is no generally accepted P value for significant results, most authors agree data should 

be combined when P values are greater than 0.05 (Cristescu & Hebert, 2002; Russello & 

Amato, 2004). The models selected according to the AIC and applied to the tree 

reconstruction were as follows: TrN+I ("=0.002) for the 18S rRNA and GTR+I+G ("=3.38) 

for COI. 

We obtained a tree for each gene independently and combining both genes. Phylogenetic 

reconstruction using 18S rRNA has shown that the species selected to represent each 

chaetopterid genera form a monophyletic group with two well-supported clades 

corresponding to: 1) Chaetopterus and Mesochaetopterus, and 2) Spiochaetopterus and 

Phyllochaetopterus (Fig. 2A). The genetic distance between the two clades (mean 3.25%) was 

three times greater than within clades (mean 1.36 and 1.24% between Chaetopterus and 

Mesochaetopterus and Spiochaetopterus and Phyllochaetopterus, respectively) (Table 2). The 

mean genetic distance between species from the different Chaetopteridae genera was 2.09%. 

No genetic differences were found between the two morphotypes of M. rogeri sp. nov. (i.e. 

with and without reddish bands in palps), which were included in the Chaetopterus / 

Mesochaetopterus clade, closer to M. xerecus. Between this species and M. rogeri sp. nov., 

two diagnostic sites were detected (G to T in 145bp and C to T in 207bp positions), with a 

genetic distance of 0.31% (shaded box, Table 2). This was less than the distance between 

Chaetopterus and Mesochaetopterus genera (mean 1.36%), but was greater than between the 

two Mediterranean populations of C. variopedatus (0.16%). The genetic distance between 

both Mediterranean and Atlantic C. variopedatus populations were greater than that between 

the two Mesochaetopterus species (bold numbers, Table 2). 

Phylogenetic tree using COI gene yielded two well-supported clades, one containing all 

Chaetopterus species and the other containing Mesochaetopterus xerecus and M. rogeri sp. 

nov. However, M. taylori was clustered, with low node-support value, at Chaetopterus clade. 

All Mesochaetopterus and Chaetopterus species form a well-supported group clearly 

differentiated from Phyllochaetopterus socialis (Fig. 2B). No genetic differences were found 
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between the two morphotypes of M. rogeri sp. nov. (i.e. with and without reddish bands in 

palps). Between this species and M. xerecus the genetic distance was 1.21% (shaded box, 

Table 2). This was greater than between the two Mediterranean populations of C. 

variopedatus (0.35%). However, the genetic distance between both Mediterranean and 

Atlantic C. variopedatus populations were greater than that between the two 

Mesochaetopterus species (bold numbers, Table 2). 

The phylogenetic tree combining both genes was reconstructed, yielding high node-support 

values. Two well-supported clades were found. The first one included Chaetopterus and 

Mesochaetopterus, with the species belonging to each genus being clearly grouped and 

forming two different and highly supported groups. The second clade only included 

Phyllochaetopterus socialis, since COI gene could not be sequenced for any Spiochaetopterus 

species (Fig. 2C). 

 

Systematic account 

ORDER CANALIPALPATA 

SUBORDER SPIONIDA 

FAMILY CHAETOPTERIDAE 

MESOCHAETOPTERUS ROGERI SP. NOV. 

(FIGS. 3, 4, 5, 6) 

 

Diagnosis. Large Mesochaetopterus with well-developed peristomium, with a pair of long 

peristomial palps with successive series of dorsal transversal black stripes, alternating one 

thick and wide with one to several thin narrow ones, sometimes with two longitudinal dorsal 

and ventral orange to light-brown stripes and a lateral black stripe (most often present in the 

first basal half of the palp) and two longitudinal ciliated grooves. Second pair of palps and 

eyes absent. A region with nine (10-12) chaetigerous segments. Parapodia with notopodial 

lobes only, bearing capillary and lanceolate (dorsally) to oar-like and sickle-like (ventrally) 

chaetae. Fourth notopodia with 18(13-19), lanceolate, knife-like and stout modified chaetae. 

Ventral glandular shield long, pale brownish. B region with three elongated, flattened 

segments having biramous parapodia. Notopodia wing-like, bearing about 15 capillary 

chaetae. Neuropodia unilobed (segment 1) and bilobed (segments 2 and 3), bearing uncini 

with eight (nine) teeth. Associated feeding organs in segments 2 and 3. C region with all 
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segments nearly similar, bearing biramous parapodia with unilobed chaetigerous notopodia 

and bilobed uncinigerous neuropodia. Associated feeding organs absent. Tube longer than 2.5 

m, parchment-like internally, externally fully covered by sand grains. Tube ending unknown.  

 

A region. Holotype with nine segments, ranging from nine (N = 14), ten (N = 2) to 12 (N = 1), 

0.8 cm to 1 cm long. Prostomium small, triangular, light brown dorsally, with a rounded, 

entire anterior border. Eyespots absent. Peristomium extended, twice as long as and 

completely surrounding the prostomium, contracted in fixed worms. Two peristomial lips, 

separated by a mid-ventral notch with a variable brownish dorsal pigmentation. Two long 

dorsally-grooved palps arise dorsally just behind the junction of the latero-posterior 

peristomial borders, up to five times as long as the A region in preserved worms (up to 15 cm 

long “in vivo”). Palps with a characteristic colour pattern composed of: 1) two longitudinal 

orange to light-brown stripes (one dorsal and one ventral), covering the whole palp in the last 

third; 2) several successive series of dorsal or dorso lateral transversal black stripes, 

alternating one thick and wide with one to several thin and narrow ones (less than one third 

the thickness and from half to one third the width of the broad stripes); and 3) a longitudinal 

black stripe of variable length usually in the first basal half of the palps, just at the lateral 

limits of the orange ventral bands. Longitudinal orange bands absent in some specimens. Two 

longitudinal ciliated grooves (one dorsal and one ventral) on each palp. Second pair of small 

antennae or palps absent. Eyes absent. Mouth as a vertical slit, below the prostomium and 

surrounded by the peristomium. Anterior end of the dorsal ciliated groove just behind the 

prostomium, between the basis of the palps, forming a small triangular lip. Dorsal ciliated 

faecal groove running from the mouth, through the median line, to the posterior end. Ventral 

plastron long, pale brownish in colour (often darker posteriorly), restricted to the ventral side 

of A region, without secretory crescents but showing a characteristic distinct epithelium. 

Parapodia of A region uniramous, short, with notopodia only. Chaetae yellowish to pale 

orange (up to dark brown in A4), occurring dorso-laterally on two irregular question mark 

shaped rows on segments A1-A3 and A5-A6, and in a single, irregular, question mark shaped 

row on segments A4 and A7-A12. Chaetal arrangement changing in segments A1, A2 to A6 

(except A4) and A7 to A12; notopodia having from 15 (A1) to 70 (A7-A12) long and fine 

lanceolate dorsal chaetae, becoming progressively capillary when more dorsal; notopodia of 

A1 with about 30 small lanceolate, oar-like chaetae latero-ventrally; notopodia of A2 to A3 

and A5 t A6 with up to 35 oar-like chaetae latero-ventrally, the ventral-most chaetae twice as 

wide and long as the lateral ones, and twice as wide as the A1 ventral chaetae; from A7 to 
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A12, the ventral notopodial oar-like chaetae being replaced with sickle-like chaetae (up to 60 

chaetae per parapodia). 

A4 notopodia with up to 20 yellowish, transparent, finely pointed capillary chaetae in 

dorsal position (d); four to five yellowish, transparent knife-like chaetae more than five times 

wider than the lanceolate ones (ld1); one  to three dark yellow to brownish knife-like chaetae, 

stouter that the previous ones, with the tip of the curved edge slightly serrated (ld2); 13 to 19 

(typically 18) asymmetrical, knoblike, stout modified chaetae having serrated tips, the ventral 

chaetae (v) smaller than the lateral ones (lv1 to lv2). Modified chaetae dark brown, often 

partly embedded in the notopodia. 

 

B region. Always with three segments, 2.5 to 3.5 cm long, as a flat plate-like region. Flattened 

and elongated segments with their flanks dorsally glandular, all them similar in size, longer 

than C segments; B1 slightly narrower than B2 and B3. Associated feeding organs on 

posterior part of B2 and B3, only one per segment. Parapodia of B region biramous. 

Notopodia unilobed: B1 long, pointed, digitiform, distally slightly swollen (d1); B2 and B3 

wider than B1, triangular, with a groove on the anterior side, distally slightly swollen and 

with a dark pigmented band just before the distal swelling (d2, d3). From 11 to 13 extremely 

long and thin notochaetae, scarcely protruding from the tip of the notopodia; about 11 have 

tape-like tips, while two or three are capillary. Neuropodia unilobed in B1, with a single low 

ventral lobe (v1), and bilobed in B2 and B3, with a short, slightly anteriorly oriented 

dorsolateral lobe, and an elongate, posteriorly oriented ventral lobe (v2, v3). Uncini roughly 

D-shaped, with a single row of eight to nine minute teeth (most commonly 8); dorsal lobe 

with fewer uncini (about 60) than ventral lobe (over 400), in B2 and B3. Uncini of dorsal and 

ventral lobes in three or more irregular rows, with adjacent uncini somewhat displaced up or 

down in relation to each other. Uncini of dorsal lobes with teeth directed posteriorly, while 

those of ventral lobes have anteriorly directed teeth. Uncini of dorsal lobes smaller in size 

than ventral ones.  

 

C region. Known only from the holotype, incomplete, consisting of ten segments for about 5 

cm in length. First segment longer than the remaining ones, but shorter than those of B region. 

Parapodia biramous, as a flat plate-like region with glandular lateral epithelium. Gut 

markedly protruding from the body plan, dark green in living and recently preserved 

specimens. Notopodia poorly developed, nearly triangular or wing-like shaped, with five to 

ten very long and thin chaetae, scarcely protruding from the tip of the notopodia; three to nine 
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with tape-like tips and one to three capillary. Associated feeding organs absent. Neuropodia 

all bilobed, similar to B2 and B3 in shape, distribution and number of uncini. Uncini roughly 

D-shaped, with a single row of eight to nine minute teeth (most commonly eight), slightly 

smaller in posterior-most segments. 

 

Tube. Known part of the tube straight, completely buried into the sediment, except for the 

aperture, which protruded 1-2 cm from the sediment surface and was completely coated with 

sand grains (Fig. 2A). From the surface opening, the tube followed a vertical path downward 

for more than 2.5 m. Total tube length and shape of end still unknown. Tube structure very 

similar all along its length, with a relatively thin-walled, parchment-like material embedded 

with a thick external layer of sand grains, with a few (often only one) ramifications of the 

main tube at non-regular intervals, shorter than the main tube, filled with sand and closed at 

the junction by the main tube wall Tube colour changing from yellowish to blackish at around 

30 cm deep from the surface of the sediment. Detached fragments of sediment-filled or 

collapsed tubes of different diameters occurring around the inhabited ones. Tube surrounded 

by a thick cylinder of sand all along its length, about 6 cm in diameter, more compact than the 

remaining sediment and particularly evident when drilling around the inhabited tubes.  

 

Etymology. Species name dedicated to Roger Martin (first author’s elder son). 

 

Material examined. HOLOTYPE:  incomplete specimen, with the A and B regions and only 

10 segments of the C region, measuring 110 mm long by 11 mm of maximum width, MNCN 

6.01/10145. PARATYPES: 16 incomplete specimens (lacking the C region), 13-15 m deep, 

Punta del Tordera, Blanes (Girona, Catalunya, Spain, 41.40° N, 2.48° E), coll. D. Martin, 

MNCN 16.01/10146. One incomplete specimen (lacking the B and C regions), 7-10 m deep at 

Badalona (Barcelona, Catalunya, Spain, 41.27° N, 2.15° E), coll. L. Dantart and G. Álvarez, 

MNCN 16.01/10147. 

 

Known geographical distribution. Distributional area of the species (Fig. 1) based on 

underwater observations: Andalucía, SW Iberian Penninsula: 20-30 m depth on the west coast 

near Hotel La Parra, Almería, (observed by A. Svoboda, see George & George, 1979); 5 m 

deep at Cabo de Gata, Almeria (observed by J. Junoy). Valencia, W Iberian Penninsula: 10-15 

m deep at Cullera, south the river Jucar (observed by J. Tena team); 11 m deep at Canet d'En 
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Berenguer (observed by J. Tena team). Alicante, W Iberian Penninsula: 20 m deep at Punta 

del Rincón de Lois, Benidorm (observed by J. Tena team). Catalunya, NW Iberian 

Penninsula:  5-7 m deep at Punta de la Mora, Garraf (observed by B. Weitzmann); 10-15 m 

deep at Badalona (observed by L. Dantart, G. Álvarez and X. Turón); 30 m deep at Mataró 

(observed by L. Dantart); 20 m deep at Arenys de Mar (observed by B. Weitzmann); 10 m 

deep at Malgrat (observed by L. Dantart); 6 m deep at Blanes Harbour (observed by D. 

Martin); 6-10 m at Cala Sant Francesc, Blanes (observed by different divers of the CEAB); 6-

15 m deep at Cala S’Aguia, Pinya de Rosa, Blanes (observed by different divers of the 

CEAB); 10-15 m deep at Cala Pola, Tossa de Mar (observed by the Caulerpa team of the 

CEAB); west of Urbanization Rosamar, Sant Feliu de Guixols, 20-30m (observed by A. 

Svoboda).  

 

MESOCHAETOPTERUS XERECUS PETERSEN & FANTA 1969 

(FIGS. 7, 8, 9, 10, 11) 

 

Diagnosis. Based on Petersen & Fanta (1969) and on observations of newly collected 

specimens. Large chaetopterid (reaching up to 60 cm long “in vivo”) with a well-developed 

peristomium (about one-fifth of the A region length) surrounding the prostomium, and a pair 

of long peristomial palps up to twice as long as the A region in preserved worms. Palps with 

transversal dark pigmented rings (dark-orange to greenish-brown) of different widths, without 

a clear alternating pattern, and a pair of longitudinal ciliated grooves (one dorsal and one 

ventral). Second pair of small antennae or palps absent. Eyes present between insertion of the 

palps and the peristomium. Dorsal ciliated faecal groove running from mouth to posterior end 

(anus), along the median body line. Ventral plastron occupying the whole A region and up to 

one third of the first segment of B region.  

A region 1 to 1.5 cm long, with 8-14 chaetigerous segments (typically 11-12). Parapodia 

uniramous, notopodial lobes short; ventral glandular shield long, uniformly greenish in 

colour. B region of about 3 cm long, with four (up to seven) elongate segments and having 

associated feeding organs or cupules usually in segments 2 to 4 (up to 7). Parapodia biramous, 

as a flat plate-like region, with glandular lateral epithelium. Notopodia poorly developed, with 

a nearly triangular or wing-like shape. Uncinigerous neuropodia unilobed in first segment and 

bilobed in segments two and three. C region up to 55 cm long for 90 - 120 segments. 

Parapodia biramous, with unilobed notopodia and bilobed uncinigerous neuropodia. All 
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segments similar, except for some in the posterior-most pygidial region, which are shorter and 

have reduced parapodia. 

Tube longer than 1 m, parchment-like, externally covered by sand grains (inconspicuous 

in worms from muddy sandy bottoms), vertical or J-shaped, with a transverse partition with 

three perforations in the lower part, closed at the lower extremity and ending blindly in a 

nearly rounded apex.  

Males with elongate sperm having a long flagellum. Females with oocytes of about 200 

µm in diameter, present in all segment of the C region. Population densities at Ilha do Mel 

reaching about 100 ind. m-2.  

 

A region. Nine to 14 segments, more frequently nine (N = 3) or 13 (N = 3). Parapodia all 

uniramous, with notopodia only. Chaetae yellowish to pale orange (dark brown in A4), 

occurring dorso-laterally in several irregular, question mark shaped rows (a single row in A4). 

Chaetal arrangement changing in segments: A1, A2-A6 (except the A4), A7-A9 and A10-

A14; notopodia of Al with two types of chaetae, up to 25 very long and fine lanceolate to 

capillary dorsal chaetae, becoming finer as progressing to the dorsum, and about 30 small 

lanceolate, oar-like latero-ventral chaetae; notopodia of A2 to A14 with up to 30 very long 

and fine lanceolate dorsal chaetae, their flattened ends becoming shorter when more dorsal; 

notopodia from A2 to A3 and A5 to A6 with up to 35 oar-like latero-ventral chaetae, the 

ventral-most twice wider and longer than the lateral; notopodia from A7 to A9, with up to 30 

bayonet ventral chaetae and a few hooked latero-ventral chaetae; the bayonet chaetae 

becoming smaller and progressively replaced by the hooked ones in posterior-most segments; 

from A10 to A14, the hooked chaetae fully replacing the bayonet chaetae. 

A4 notopodia with up to 15 yellowish, transparent, finely pointed lancet-like dorsal 

chaetae (d); five yellowish, transparent knife-like chaetae more than twice wider than the 

lancet-like ones (ld1); two to five dark yellow to brownish knife-like chaetae, stouter that the 

previous ones, with the tip of the curved edge slightly serrated (ld2, ld3); 12 to 14 (typically 

11) asymmetrical, knoblike, stout modified chaetae having serrated tips, the ventral chaetae 

(v) smaller than the lateral ones (lv1-lv3). Modified chaetae dark brown, often partly 

embedded in the notopodia. 

 

B region. Usually with four (up to seven) segments having biramous parapodia. 12-16 

extremely long, thin notochaetae, scarcely protruding from the tip of the notopodia; about 12 

with flattened to lanceolate tips and two to three with pointed tips. Neuropodia unilobed in 
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segment B1 and bilobed in B2 and B3, with several hundreds of uncini irregularly disposed in 

two to three rows, roughly triangular, with seven (6-10) long curved teeth plus a few small 

ones (often difficult to distinguish) in the anterior and posterior ends of the serrated edge. All 

uncini of B1 similar in size, dorsal uncini of B2 and B3 smaller than ventral ones. 

 

C region. Incomplete, with more than 50 segments, all biramous. Notopodia with about ten 

long and thin chaetae (shorter than the notochaetae of B region), scarcely protruding from the 

tip of the notopodia, with flattened to lanceolate tips. Neuropodia all bilobed, with uncini 

irregularly disposed in two to three rows, similar in shape and teeth arrangement to those of B 

region. Uncini differing in size both dorso-ventrally and from anterior (smaller) to posterior 

(larger) sections of each neuropodia, clearer in anterior-most segments and progressively less 

evident in the posterior-most, becoming basically similar in size around segment C30. 

 

Material examined. Ten incomplete specimens (reaching up to 55 segments in the C region), 

low intertidal sandy beach, Ilha do Mel, Baranaguá Bay (Paraná, Brazil), 25° 34’ S, 48° 20’ 

W, October 30 2001, V. Radashevsky coll., MNCN 16.01/10148 

 

Habitat, behaviour and population density of Mesochaeopterus rogeri sp. nov. 

Mesochaetopterus rogeri sp. nov. commonly inhabits fine to coarse sandy bottoms (400 µm 

to 600 µm of grain diameter) between 5 and 30 m deep (but most commonly between 6 and 

15 m deep). These locations are often subject to medium-speed currents, which may facilitate 

the suspension-feeding behaviour of the worm. Different kinds of particles (possibly potential 

food) transported by the water currents were observed “in situ” when contacting the tentacles; 

they remained attached to the tentacles’ surface and started to be transported towards the 

mouth with the help of the ciliated grooves.  

When undisturbed, the tentacles protruded from the tube opening formed a V, with both 

tips arranged in spiral (Fig. 3A). Changes in current speed or direction did not trigger any 

response from the worm, except for the modification of the tentacle position induced by the 

new situation, which may lead toward a less regular tentacle arrangement in case of stronger 

currents (Fig. 3B). Any contact with the surrounding sediment induced the worm to retract 

inside the tube. A slow constant retraction occurred after a subtle contact. If the contact was 

not repeated, the worm stopped the reaction and re-acquired the typical position after a few 

minutes. Either repeated or violent contacts with the surrounding sediment caused a fast 
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retraction inside the tube. However, after several minutes, the worm protruded again to adopt 

its usual position. 

The worms were able to expel from the interior of their tubes both introduced liquids and 

small particles (such as sand grains) by means of a powerful exhalation current. In normal 

conditions, with the worms completely inside the tube, there was a regular 

exhalation/inhalation water flow, probably generated by peristaltic movements of the C 

region segments. This flow seemed similar to those described as a part of the feeding mode 

and ventilation system for other chaetopterid polychaetes, including Mesochaetopterus 

(Barnes, 1965; Sendall et al., 1995). 

The population density ranged between 1 to 3 ind. 40 m-2, but may reach up to 1 ind. 10 m-2 

(Fig. 12A). However, they were frequently found in clusters of 2 or 3 ind. m-2 separated from 

their neighbours by large unoccupied areas. Maximum densities tended to occur from April to 

June, together with rising temperatures, and could perhaps be related to recruitment events, as 

proposed for Mediterranean soft bottom invertebrates (Sardá et al., 1995, 1999). However, the 

seasonal pattern of this species differed from the general one proposed by these authors in that 

remarkable minimum densities occurred between September and November (particularly in 

October). This could not be explained by an increasing mortality after recruitment events 

leading to basal adult densities, as previously proposed (Sardá et al., 1995, 1999). In M. 

rogeri sp. nov., the density decrease seemed not to be related to mortality but to an adaptation 

to survive under the increasing instability of the sediment during the stormy autumnal period 

characteristic of a Mediterranean environment (Fig. 12A). In fact, the extraordinary length of 

the tube, as well as the ability to quickly retract inside, could represent an adaptation to such 

an unstable sedimentary regime. Together with the increase of instability of the water column 

(as expressed by the increase in wave height, Fig. 12B), the sediments tended to become more 

and more mobile, to the extent that the worms were not able to protrude above the surface and 

survived by hiding inside the tube, at a depth where the sediment became stable. This could 

explain the autumnal decrease in density (Fig. 12A), as the divers could not count the worms 

that did not protrude from the sediment surface. Moreover, this could also explain the 

occasional presence of empty ramifications and the huge amount of empty tubes found during 

the excavation collection. Accordingly, these were probably functional tubes, abandoned by 

the worms either during their normal growth or as a result of the above-mentioned adaptive 

process. Once storms ended, the worms built new tube sections to reach the surface so that 

there would be as many empty tubes as stormy events during the lifetime of each worm.  

This mode of life supports the potential influence of M. rogeri sp. nov. in structuring the 
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surrounding sediments, as a sediment stabilizer (dense populations inside extremely long 

tubes, palisades of empty tubes). Also, the presence of a cylinder of compact sediment 

surrounding the tube all along its length (i.e. more than 2.5 m deep into the sediment and 

reaching up to 6 cm in diameter) in M. rogeri sp. nov. (also reported for M. taylori) has been 

attributed to an “aerobic halo” generated by the presence of the tube (Sendall et al., 1995). 

Therefore, a possible significant bioturbating potential can also be attributed to the M. rogeri 

sp. nov. populations. 

 

Morphological comparison between Mesochaeopterus rogeri sp. nov. and all known species 

of the genus 

Previous studies on the intra- and interspecific variability in the genus Mesochaetopterus 

show that hard structures (i.e. chaetae and uncini) show a continuity both in shape and size 

from larvae to juveniles and adults (Bhaud, 2005). This allows the small-sized species of the 

genus - viz. M. minutus Potts, M. capensis (McIntosh), M. laevis Hartmann-Schroeder, M. 

crypticus Ben-Eliahu, and M. xejubus Petersen & Fanta – to be discardes for he purpose of the 

taxonomical comparison with Mesochaetopterus rogeri sp. nov. All these species seldom 

reach 3.5 cm long (see Table 1 in Nishi, 1999) and the largest uncinal plates are shorter than 

70 µm (Bhaud, 2005), while the holotype of M. rogeri sp. nov. measured about 9 cm long 

(lacking most of C region) and their uncinal plates are slightly longer than 110 µm.  

Among the large-sized Mesochaetopterus species (Table 3), M. rogeri sp. nov. resembled 

M. taylori and M. alipes in having three parapodia on region B. In addition to geographical 

distribution and tentacle colour pattern, the new species differs from the former in the number 

of A4 chaetae, shape of uncini from the B region and tube shape, and from the latter in the 

shape of A4 chaetae and tube composition. Mesochaetopterus alipes was found in Panama 

and is only known from the original description, which lacked many relevant data. 

Mesochaetopterus taylori was originally described from the Pacific coasts of British 

Columbia by Potts (1914) and has been subsequently reported along the Pacific and Atlantic 

coasts of America (Gilbert, 1984; Blake, 1996). The examination of material from 

Invertebrate Zoology, Royal British Columbia Museum and the Natural History Museum of 

Los Angeles seems to support the existence of different species along the different 

geographical locations where the species has been reported, some of them being probably 

new to science (M. Bhaud, unpublished results). The data for the comparison between M. 
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taylori and M. rogeri sp. nov. are thus based on the original description of the species (Table 

3).  

The possible coincidence of tentacle colour pattern (somewhat based on dark rings or 

bands), as well as the genetic analyses lead us particularly to compare the new species with 

M. xerecus. However, the original type material of this species was lost and the comparisons 

are based on newly collected material. In addition, this helped to complete the original 

description by Petersen and Fanta (1969). However, the striped pattern, as well as the 

additional reddish longitudinal stripes present in some specimens and the tentacle length, 

clearly identifies M. rogeri sp. nov. In addition, this species may be separated from M. 

xerecus by 1) the chaetal arrangement of the A region (including the A4 segment), and 2) the 

number and size of teeth, and the shape and outline of uncini from regions B and C (Table 3). 

Tube morphology of M. rogeri sp. nov. seems to coincide with that of M. ricketsi, at least 

in the known sections (2.5 m and 2 m, respectively). However, both species can be easily 

distinguished by the number of segments in region B (Table 3). 

 

 

DISCUSSION 

 

Phylogenetic approach 

The main purpose of the molecular analysis was to assign the new species (M. rogeri sp. nov.) 

to its correct genus. A second, but no less relevant consequence was that the phylogenetic 

relationships between Chaetopteridae genera could also be elucidated. All our analyses placed 

M. rogeri sp. nov. within a Mesochaetopterus / Chaetopterus clade, always closely related to 

M. xerecus, demonstrating that the new species described here belonged to Mesochaetopterus, 

coinciding with the results of the morphological study. 

The 18S rRNA gene is a slowly evolving sequence (Hillis & Dixon, 1991; Avise, 1994) 

and has been regarded as a very conservative marker of speciation events. With this gene, M. 

xerecus and M. rogeri sp. nov. appeared closely related (0.31%), but as distinct clades within 

the Mesochaetopterus clade (Table 2; Fig. 2A). Osborn et al. (2007) found similar values 

between Chaetopterus species (ranging from 0.4% to 1.6%). By including specimens of 

Chaetopterus variopedatus from Mediterranean (newly collected in Naples and Banyuls) and 

Atlantic (from Genbank, collected in Norwich, Norfolk, UK) coasts in the genetic analysis, a 

result that could be expected from a biogeographical point of view was revealed. While the 
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genetic distance between the Mediterranean Chaetopterus was less than half that of the two 

species of Mesochaetopterus, that between the Mediterranean and Atlantic Chaetopterus was 

more than twice (Banyuls) or even three times (Naples) greater, indicating that they are 

probably different species, the Atlantic one incorrectly identified as C. variopedatus. 

When analysing a faster evolving gene (COI), genetic divergence values between species 

obviously increase, the values between Chaetopterus species ranging from 18% to 21% 

(Osborn et al., 2007), similar to those found in the present study. Conversely, the genetic 

distance between Mesochaetopterus rogeri sp. nov. and M. xerecus was only 1.21% (i.e. 

smaller than that between the Mediterranean and Atlantic populations of C. variopedatus). 

Both 18S and COI genes suggested that the Mediterranean Chaetopterus belonged to the 

same species, while the Atlantic specimens must be considered as different. In fact, several 

different species of Chaetopterus have been described from European coasts, both 

Mediterranean and Atlantic, some of them being probably valid in addition to C. variopedatus 

(Petersen, 1984). Further studies focused on Chaetopterus are needed, involving more 

individuals and locations, to asses the taxonomical status of the C. variopedatus complex. 

The monophyly of the Chaetopteridae has been previously demonstrated (Osborn et al., 

2007), and our results confirmed this finding. However, the monophyly at the genus level 

seems not to be well resolved. According to our results, Mesochaetopterus is a sister group of 

Chaetopterus, both appearing to be monophyletic either using the 18S or the combined 18S 

and COI, and supported by high node support values (Fig. 2A, 2C). Conversely, M. taylori 

was first joined to the Chaetopterus clade when using COI alone, although with low node 

support values (Fig. 2B). In turn, the monophyly of Phyllochaetopterus and Spiochaetopterus 

cannot be assessed, since only one species per genus has been available for the analyses. 

Furthermore, it was impossible to obtain a COI sequence for the Spiochaetopterus species 

analysed in this paper (S. solitarius). In all studied cases, however, the specimens of both 

genera were closer to each other and clearly more distant from the Mesochaetopterus and 

Chaetopterus clades. 

 

Taxonomy, distribution and behaviour of Mesochaeopterus rogeri sp. nov. 

The fact that we initially thought that Mesochaetopterus rogeri sp. nov. could be an 

introduced exotic species initially lead us to the comparison with M. xerecus. Although 

comparison among all known species of the genus clearly points out the differences among 

them and M. rogeri sp. nov., the large sized Brazilian species apparently had the most similar 
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morphology (Table 3), this being supported by the genetic analyses. Moreover, the long-

living planktonic larvae typical of Chaetopteridae might have easily been introduced to the 

Mediterranean through a ballast water discharge from a ship coming from Brazil. The 

discovery of a new population of M. xerecus in the Ilha do Mel (Pontal do Sul, Brazil), close 

to the coasts from where the species was originally described (Rio de Janeiro), allowed us to 

discard the hypothesis that the Mediterranean species was the same as the Brazilian one. 

However, taking into account the conspicuous appearance of M. rogeri sp. nov. and the long-

term background knowledge on the polychaete fauna of the Mediterranean Sea, the possibility 

of an exotic origin for M. rogeri sp. nov. (from a foreign but still unknown region) cannot be 

dismissed. On the other hand, most known introduced species of marine invertebrates, 

including polychaetes, tend to occur as concentrated populations in geographically restricted 

areas, often in sheltered environments, such as harbours or coastal lagoons (Goulletquer et al., 

2002). According to numerous underwater observations, M. rogeri sp. nov. is currently 

widely distributed along the Iberian Mediterranean coast, particularly in Catalunya, which is 

contradictory to a hypothetical introduced origin for the species. 

Independently of the origin of the species, a second question occurs when trying to explain 

the increasing number of records in recent years. Could it be caused by a recent increase in 

the distributional area of the species? If so, this could be related either to the spreading of the 

species from warm southern waters (like those at Almería, from where the species was first 

recorded) due to an increase in seawater temperature (perhaps related to the global warming 

phenomenon) or to a decline of shellfish harvesting efforts due to over fishing of the smooth 

venus Callista chione (Linnaeus, 1758), this leading to a reduction in habitat disturbance. 

Although stimulating, exploration of the possible relationships between these hypotheses and 

the postulated expanding presence of Mesochaetopterus rogeri sp. nov. seems not to be 

possible at present, and falls out of the scope of this study.  

However, there is a simple framework allowing explanation of the increase of reports. 

Mesochaetopterus rogeri sp. nov. inhabits “uninteresting” sandy bottoms, which are seldom 

visited by divers. One of this visits (and the subsequent observation of the worm) occurred 

once in the 1970 (George & George, 1979), and a gap of about 20 years passed until the 

second record in 1995. The sand coverage of the tubes and the colour pattern of tentacles may 

help the species to remain camouflaged within the sediment, so that direct observations are a 

matter of chance. Nevertheless, the probability of observation rose with the increase in 

scientific and naturalist scuba divers in recent years: there were fewer than 100 divers 
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associated to the Catalan Federation of Underwater Activities (FECDAS) in 1954, while the 

current number exceeds 12000.  

From the point of view of traditional soft-bottom sampling, the behaviour and tube 

structure of Mesochaetopterus rogeri sp. nov. may also have contributed to “hide” the 

presence of the species in the widely investigated shallow-waters of the Mediterranean Sea. 

Its prompt reaction to any contact in the surrounding sediment, as well as the extreme length 

of the tube, make its collection virtually impossible. The initial contact of a grab or dredge 

with the sediment surface triggers a fast retraction inside the tube, so that only fragments of 

empty tubes are collected (R. Sardá, S. Pinedo and D. Martin, personal observations), as has 

been repeatedly observed during the long-term monitoring carried out in the Punta del 

Tordera (Sardá et al. 1995, 1999, 2000; Pinedo et al. 1996). Other large-sized species of 

Mesochaetopterus also build very long tubes, but they are either L-shaped, as in M. taylori 

(Sendall et al., 1995), or J-shaped, as is the case of M. xerecus (V. Radashevsky, personal 

communication; Petersen & Fanta, 1969). Moreover, they rarely extend into the sediment 

deeper than 30 cm or 1 m, respectively. In addition, they live in tidal environments so that 

collecting specimens at low tide is an easy task, in comparison to M. rogeri sp. nov. In fact, 

all attempts to collect entire specimens failed, and only the last one involving a large research 

vessel succeeded in obtaining the longest fragment (i.e. the holotype), which included a few 

segments of the C region. A similar situation was reported for M. ricketsi, whose the tubes 

extended vertically into the sediments for about 2 m, so that the entire tube was never 

collected and the orientation and structure of the lower end still remains unknown 

(MacGinitie and MacGinitie, 1949; Sendall et al., 1995). 

Taking this into account, and the fact that Mesochaetopterus rogeri sp. nov. seems to be 

perfectly adapted to the peculiar characteristics of its seasonally unstable sandy habitat, it 

seems more appropriate to argue that this species is more likely to be a native Mediterranean 

one that has been overlooked by scientists up to now.  
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Table 1. Accession numbers for the newly sampled and sequenced representative species of 

the family Chaetopteridae. N: number of individuals sequenced. 

 

Species Collection Locality N 18S EMBL COI EMBL 

Chaetopterus variopedatus 

(Renier, 1804) 

Naples 

(Italy) 

2 AJ966758 AM503094 

 Banyuls-sur-Mer 

(France) 

2 AJ966759 AM503095 

 Norwich, Norfolk 

(UK) 

2 U67324 AM503096 

Spiochaetopterus solitarius 

(Rioja, 1917) 

Port Vendres 

(France) 

2 AJ966760 nda 

Mesochaetopterus xerecus 

Petersen and Fanta, 1969 

Ilha do Mel 

(Brazil) 

3 AJ966763 AM503097 

Mesochaetopterus rogeri 

sp. nov. 

Blanes 

(Spain) 

3 AJ966762 AM503098 

Phyllochaetopterus socialis 

Claparède, 1870 

Banyuls-sur-Mer 

(France) 

2 AJ966761 DQ209247 
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Table 2. Matrix of pairwise genetic divergence within and between the species representative 

of all Chaetopteridae genera. M: Mesochaetopterus; C: Chaetopterus; S: Spiochaetopterus; 

P: Phyllochaetopterus; Atl: Atlantic; Med N: Mediterranean (Naples); Med B: Mediterranean 

(Banyuls); nda: No data available. Above and below diagonal values for COI and 18S gene 

values, respectively. 

 

 

M. rogeri sp. nov. 

 

M. xerecus 

 

M. taylori 

 

C. variopedatus  

(Med B) 

C. variopedatus 

(Med N) 

M. rogeri sp. nov. - 1.21 22.70 24.26 24.61 

M. xerecus 0.31 - 22.18 23.92 24.26 

M. taylori 1.56 1.24 - 22.01 22.36 

C. variopedatus (BAN) 1.56 1.40 2.18 - 0.35 

C. variopedatus (NAP) 1.71 1.56 2.33 0.16 - 

C. variopedatus (ATL) 1.40 1.56 2.33 0.78 0.93 

C. pugaporcinus 1.71 1.56 2.33 0.47 0.62 

P. socialis 3.27 3.27 3.42 3.42 3.58 

S. solitarius 2.80 2.80 3.27 3.11 3.27 

Prionospio sp. 4.82 4.67 4.67 4.98 5.13 

 

 C. variopedatus (Atl) C. pugaporcinus P. socialis S. solitarius Prionospio sp. 

M. rogeri sp. nov. 22.70 23.92 27.29 nda 29.64 

M. xerecus 22.36 23.57 26.92 nda 28.77 

M. taylori 21.14 20.80 26.02 nda 29.29 

C. variopedatus (BAN) 19.93 21.66 27.11 nda 28.94 

C. variopedatus (NAP) 19.93 21.66 27.11 nda 29.29 

C. variopedatus (ATL) - 19.58 25.49 nda 30.68 

C. pugaporcinus 0.93 - 26.39 nda 30.33 

P. socialis 3.89 3.27 - nda 29.01 

S. solitarius 3.27 2.96 1.24 - nda 

Prionospio sp. 5.13 5.13 5.91 5.44 - 
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Table 3. Comparison of the main characteristics of the currently known large-sized 

Mesochaetopterus species. (*) Data emended on the basis of the studied material. 

 

CHARACTERS 

M. rogeri 

sp. nov. 

M. taylori 

(Potts) 

M. xerecus  

Petersen and 

Fanta* 

M. ricketsi 

Berkeley and 

Berkeley 

Length of living worm 

(cm) 
8.3 (for the A, B, 

and 10 segments of 

C region) 

60 60 35 

Width of worm (cm) 0.8 – 1 1 0.8 - 1.5  1 
Tentacle colour dark pigmented 

rings and bands, and 

red longitudinal 

bands 

uniform light yellow dark pigmented 

rings 
? 

Relative length of 

tentacles : A region 
3-5 : 1 1 : 1 2 : 1 2 : 1 

Eyes absent absent present ? 
Parapodia of the A 

region 
9-12 (9) 9-11 (9) 8-14 (11) 10 

Chaetae of the A4 

segment 
13-19 (18) 10 7-17 (11) ? 

Shape of the modified 

A4 chaetae 
short, strong with 

finely serrated tip 
short, strong with 

truncated tip 
short, strong with 

finely serrated tip 
Fimbriated, with 

oblique edge 
Types of chaetae in the 

a region (except A4) 
3 3?  4 ? 

Parapodia of the B 

region 
3 3 4 (up to 7) 21 

Accessory feeding 

organs 
B2 B2-B3 B2-B3 (up to C4) B21 

Glandular lateral 

epithelium 
B1-C? B1-B3 B1-B4 B region 

Length of the largest 

uncini of the B region 

(!m) 

98 - 111 115 106 - 134 ? 

Number of teeth on the 

uncini of the B region 
8 (8-9) 9 (7-10) 7 (6-10) 8-10 

Relative length of 

teeth on the uncini of 

the B region 

2/5 of uncini width 1/3 of uncini width 1/2 of uncini width ? 

Outline of uncini of 

the B region 
roughly D-shaped, 

with slightly curved 

edges 

roughly triangular, 

with markedly 

curved edges 

roughly triangular, 

with straight edges 
roughly D-shaped, 

with straight edges 

Tube Straight up to 2.5 m 

deep, sand covered, 

lower end unknown 

L-shaped, 

parchment-like with 

sand granins 

embedded, strait 

section 10-20 cm 

deep  

Vertical or slightly 

J-shaped,1 m, 

parchment-like with 

sand grains 

embedded, lower 

end blid and 

reounded 

Straight up to 2 m 

deep, sand covered, 

lower end unknown 
 

 

Type locality Mediterranean California Brazil California 
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CHARACTERS 

M. alipes 

Monro 

M. japonicus 

Fijivwara 

M. selangolus 

(Rullier) 

M. 

mexicanus 

Kudenov 

Length of living worm 

(cm) 
80 25 25 (up to 60) > 9.5 

Width of worm (cm) 6 1 1 0.5 
Tentacle colour Opaque white, with 

traces of brown 
Unpigmented uniform pale brownish ? 

Relative length of 

tentacles : A region 
2 : 1 1 : 1 1.5 : 1 ? 

Eyes absent absent absent present 
Parapodia of the A 

region 
9 9 9-10 13 

Chaetae of the A4 

segment 
? 8 - 13 8 - 15 ? 

Shape of the modified 

A4 chaetae 
short, strong with 

truncated edge 
Truncated, spatulate, 

with serrations 
Truncated, spatulate, 

with serrations 
Oblique, 

distally 

dentate 
Types of chaetae in the 

a region (except A4) 
? ? ? 2 

Parapodia of the B 

region 
3 2 2 4 

Accessory feeding 

organs 
B2 B2 B2 B1-B4 

Glandular lateral 

epithelium 
B1 B1 and anterior B2 B1 and anterior B2 ? 

Length of the largest 

uncini of the B region 

(!m) 

? ? 72 - 85 140 

Number of teeth on the 

uncini of the B region 
8 9 - 10 7 - 8 8 - 9 

Relative length of teeth 

on the uncini of the B 

region 

? ? 1/2 of uncini width 1/2 of 

uncini 

width 
Outline of uncini of the 

B region 
? ? roughly D-shaped, 

with slightly curved 

edges ans serrated 

basis 

roughly 

triangular, 

with 

markedly 

curved 

edges 
Tube Parchment-like Strait, parchment-like, 

with bint lower end 
J-shaped, parchment-

like with embedded 

sand and periodic 

annulated rings and 

perforations at the 

lower end 

Parchment-

like 

Type locality Panama Japan Malaysia Mexico 
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Figure 1. Mesochaetopterus rogeri sp. nov., location of reports. A.- Iberian Peninsula. B.- Catalan coasts. C.- 

Blanes litoral.  = Seasonal monitoring at the Punta del Tordera. 
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Figure 2. Phylogenetic tree as inferred for the 18S rRNA and COI genes using three methods of analysis. 

Numbers above the branches represent bootstrap and posterior probability node support values based on 1000 

replicates (MP/ML/BI). Med: Mediterranean; Atl: Atlantic. 
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Figure 3. Mesochaetopterus rogeri sp. nov. A, B.- Two typical positions of the protruded tentacles in living 

worms (underwater pictures by L. Dantart). C.- Regions A, B and C (preserved worm, morphotype with reddish 

bands). D.- Ventral view of region A (preserved worm, morphotype without reddish bands). E.- Detail of the 

anterior end (dorsal view). F.- Detail of the anterior end (dorsal view, tentacles removed). Ar: A region; b1 to b3: 

segments of B region; d1 – d3: dorsal rami of B region segments; v1 –v3: ventral rami of B region segments; Cr: 

C region. Scale bars are cm. 
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Figure 4. Mesochaetopterus rogeri sp. nov., chaetae A.- Dorsal-most capillary from A1. B.- Tip for the dorsal-

most capillary from A1. C.- Dorsal fine-lanceolate from A1. D.- Tip of the dorsal fine-lanceolate from A1. E.- 

Ventral oar-like from A1. F.- Tip of the ventral oar-like from A1. G.- Ventral oar-like from A3. H.- Tip of the 

ventral oar-like from chaetiger A3. I.- Dorsal fine-lanceolate from A8. J.- Tip of the dorsal fine-lanceolate from 

A8. K.- Ventral sickle-like from A8. L.- Tip of the ventral sickle-like from A8. Scale bars are µm. 
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Figure 5. Mesochaetopterus rogeri sp. nov. A.- Chaetal arrangement of the modified A4 chaetiger. B-L.- 

Chaetae. B. Tip of the dorsal finely pointed capillary “d”. C.- Dorso-lateral transparent knife-like “ld1”. D.- Tip 

of the dorso-lateral transparent knife-like “ld1”. E.- Dorso-lateral brownish knife-like “ld2”. F.- Tip of the dorso-

lateral brownish knife-like “ld2”. G, I, K.- Whole view of the typical modified “lv1” (lateral), “lv2” (latero-

ventral) and “v” (ventral-most). H, J, L.- Tip of G, I, K, respectively. Scale bars are µm. 
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Figure 6. Mesochaetopterus rogeri sp. nov., uncini. A.- Dorsal-most from neuropodia B1. B.- Ventral-most 

from neuropodia B1. C.- From notopodia B2. D.- From neuropodia B2. E.- From notopodia B3. F.- From 

neuropodia B3. G.- From the anterior region of notopodia C2. H.- From the posterior region of notopodia C2. I.- 

From the anterior region of neuropodia C2. J.- From the posterior region of neuropodia C2. Scale Bars are µm. 
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Figure 7. Mesochaetopterus xerecus. A.- Dorsal view of region A (preserved). B.- Ventral view of region A 

(preserved). C - J.- Chaetae. C.- Dorsal-most capillary from A1. D.- Dorso-lateral fine-lanceolate from A1. E.- 

Ventral oar-like A1. F.- Tip of the ventral oar-like from A1. G.- Dorsal-most fine-lanceolate from A3. H.- Tip 

for the dorsal-most fine-lanceolate from A3. I.- Ventral oar-like A3. J.- Tip for the ventral oar-like from A3. 

Scale bars are cm in A, B and µm in C - J. 
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Figure 8. Mesochaetopterus xerecus, scheme of a mature sperm. 
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Figure 9. Mesochaetopterus xerecus, chaetae. A.- Dorsal-most capillary from A8. B.- Dorso-lateral fine-

lanceolate from A8. C.- Latero-ventral sickle-like from A8. D.- Tip of the latero-ventral sickle-like from A8. E.- 

Ventral-most lancet-like from A8. F.- Tip of the ventral-most lancet-like from A8. G.- Ventral-most sickle-like 

from A10. Scale bars are µm. 
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Figure 10. Mesochaetopterus xerecus. A.- Chaetal arrangement of the modified A4 chaetiger. B - J.- Chaetae. 

B. Tip of the dorsal finely pointed lancet-like (d). C.- Dorso-lateral transparent knife-like (ld1). D.- Dorso-lateral 

transparent knife-like (ld2). E.- Dorso-lateral brownish knife-like (ld3). F.- Latero-ventral brownish knife-like 

(ld3). G, H, I.- Typical modified: (lv2) lateral, (lv3) latero-ventral and (v) ventral-most. J.- Tip for the ventral-

most modified (v). Scale bars are µm. 
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Figure 11.- Mesochaetopterus xerecus, uncini. A.- Dorsal-most from neuropodia B1. B.- Ventral-most from 

neuropodia B1. C.- From notopodia B2. D.- From neuropodia B2. E.- From notopodia B3. F.- From neuropodia 

B3. G.- From the anterior region of notopodia C2. H.- From the posterior region of notopodia C2. I.- From the 

anterior region of neuropodia C2. J.- From the posterior region of neuropodia C2. K.- From notopodia C30. L.- 

From neuropodia C30. Scale Bars are µm. 
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Figure 12. Mesochaetopterus rogeri sp. nov., seasonal pattern at Punta del Tordera. A.- Water temperature at 

20 m deep and significant wave height. B.- Population density. 

 

 

 




