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ABSTRACT  1 

Plants containing condensed tannins (CTs) may hold promise as alternatives to synthetic 2 

anthelmintic (AH) drugs for controlling gastrointestinal nematodes (GINs). However, the 3 

structural features that contribute to the AH activities of CTs remain elusive. This study 4 

probed the relationships between CT structures and their AH activities. Eighteen plant 5 

resources were selected based on their diverse CT structures. From each plant resource, 6 

two CT fractions were isolated and their in vitro AH activities were measured with the Larval 7 

Exsheathment Inhibition Assay, which was applied to Haemonchus contortus and 8 

Trichostrongylus colubriformis. Calculation of mean EC50 values indicated that H. contortus 9 

was more susceptible than T colubriformis to the different fractions and that the F1 fractions 10 

were less efficient than the F2 ones, as indicated by the respective mean values for 11 

H.contortus F1 = 136.9 ± 74.1 µg/ml; and for H.contortus F2 = 108.1 ± 53.2 µg/ml and for T 12 

colubriformis F1 = 233 ± 54.3 µg/ml and F2=166 ± 39.9 µg/ml. The results showed that the 13 

AH activity against H. contortus was associated with the monomeric subunits that give rise 14 

to prodelphinidins (P < 0.05) and with CT polymer size (P < 0.10). However, for T. 15 

colubriformis AH activity was correlated only with prodelphinidins (P < 0.05). These results 16 

suggest that CTs have different modes of action against different parasite species. 17 

KEY WORDS 18 

Proanthocyanidins; larval exsheathment inhibition assay (LEIA); nematodes; ruminants; 19 

structure-activity relationships  20 
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INTRODUCTION  21 

Gastrointestinal nematodes (GINs) represent a major threat for the breeding and production 22 

of grazing ruminants. Up to now, their control has been based mainly on the repeated use 23 

of synthetic AH drugs. However, worm populations in small ruminants have consistently 24 

developed resistance against all AH drugs.1 Therefore, the search for alternative solutions 25 

to such drug treatments is now a necessity for a more sustainable control of these parasites.2 26 

The last two decades have provided evidence that some plants possess natural AH 27 

bioactivity, which is based on the presence of condensed tannins (CTs) and flavonoids. 28 

Such plants, therefore, represent a promising alternative to chemotherapy especially when 29 

used as nutraceuticals that combine beneficial effects on health and nutrition in small and 30 

large ruminants.3-6  31 

The involvement of CTs in the observed anthelmintic (AH) effects against parasitic 32 

nematodes has been suggested from several results acquired in vitro using either plant 33 

extracts or purified CT fractions7-10 and from in vivo studies with tannin-containing 34 

resources.11-15  35 

Differences in AH effects have repeatedly been noticed between abomasal versus intestinal 36 

nematode species of both small ruminant and cattle parasite.12 These observations have 37 

been made in in vitro9,10,16 and in vivo studies with the same CT-resources.13,15,17,18  38 

Some authors have suggested that different structural features of CTs are involved in their 39 

AH effects, namely: i) CT size7,10,19,20; ii) the type of flavan-3-ol subunits that give rise to 40 

either prodelphinidin (PD) or procyanidin tannins (PC)8,20,21,22 or iii) the stereochemistry of 41 

the C-ring in these subunits (i.e. trans vs. cis flavan-3-ols)19,22. Taken together, these 42 

observations led us to hypothesize that there are quantitative and qualitative differences 43 

between CTs, which determine their activity against parasitic nematodes. There is thus a 44 

need to evaluate the structure-activity relationship between tannins and GINs. A better 45 
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understanding of these plant compounds is also required for a more rational use of these 46 

nutraceutical feeds under farm conditions. 47 

Therefore, the objectives of the current study were: i) to examine the relationship between 48 

tannin structures and their anthelmintic activities by using 36 different tannin fractions that 49 

span CTs with a wide range of sizes and prodelphinidin/procyanidin and trans/cis-flavan-3-50 

ol ratio, ii) to evaluate whether responses towards CTs differ between abomasal and 51 

intestinal small ruminant nematode species. 52 

MATERIALS AND METHODS 53 

Chemicals 54 

Hydrochloric acid (37%, analytical reagent grade), butan-1-ol, acetic acid glacial (analytical 55 

reagent grade), acetone (analytical reagent grade), acetonitrile (HPLC grade), 56 

dichloromethane (laboratory reagent grade), hexane (GLC, pesticide residue grade) and 57 

methanol (HPLC grade) were obtained from ThermoFisher Scientific (Loughborough, UK); 58 

benzyl mercaptan (BM) from Sigma-Aldrich (Poole, UK); phosphate buffered saline (PBS) 59 

from Biomérieux (Marcy l’Etoile, France); SephadexTM LH-20 from GE Healthcare (Little 60 

Chalfont, UK); ultrapure water (MQ H2O) from a Milli-Q Plus system (Millipore, Watford, UK). 61 

Preparation of plant extracts and tannin fractions 62 

Eighteen different plant materials were used: aerial plants of Onobrychis viciifolia (OV) were 63 

collected on 7 June 2012 (Barham, Kent, UK); Trifolium repens flowers were collected from 64 

at NIAB (Cambridge, UK; sample TRa) or purchased from Zioła z Kurpi (Jednorożec, 65 

Poland; sample TRb); Lespedeza cuneata (LC) pellets from Sims Brothers Seed Company 66 

(Union Springs, AL, USA); Betulae folium leaves (Betula pendula Roth and/or Betula 67 

pubescens Ehrh.; BP), Tiliae inflorescentia flowers (T; a mixture of Tilia cordata, T. 68 

platyphyllos and T. vulgaris L), Salicis cortex bark (SA) from various Salix spp. (including S. 69 

purpurea L.; S. daphnoides Vill.; S. fragilis L.), Ribes nigrum leaves (sample RNb) from Flos 70 

(Mokrsko, Poland); Corylus avellana (CA) pericarp from Société Inovfruit (Musidan, France); 71 
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Juglandis folium leaves of Juglans regia L. (JR) from Kawon (Gostyń, Poland); inner bark of 72 

Pinus sylvestris (PS) from University of Turku (Turku, Finland); Salix babylonica catkins (SB) 73 

collected on 26 May 2012 (Emmer Green, UK); Salix caprea (SCL and SCT) leaves and 74 

twigs harvested on 19 June 2012 (Goring-on-Thames, UK); Ribes nigrum leaves (sample 75 

RNa) and Ribes rubrum leaves (RR) collected on 13 August 2012 from Hildred PYO farm 76 

(Goring-on-Thames, UK); Theobroma cacao beans (TC) from Peru (Imported by “Detox your 77 

world” inc., Norfolk, UK); Vitellaria paradoxa (VP) meal (i.e. residue of VP nuts after fat 78 

extraction; AarhusKarlshamm Sweden AB, Sweden). Samples OV and TRa were 79 

lyophilized, samples PS, CA, SCL, SCT, RNa, RR were dried at room temperature for <10 80 

days and then stored at room temperature. The different botanical families 23 of each plants 81 

are indicated in the Table 2.  82 

Extracts were prepared according to Stringano et al.24 with a few modifications. Plant 83 

samples (50 g; <1 mm sieve) were extracted with 70% acetone/H2O (500 ml, 7:3, v/v) and 84 

filtered under vacuum. Chlorophyll and lipids were removed with dichloromethane (125 ml) 85 

by liquid-liquid extraction. The remaining solvents were removed from the aqueous phase 86 

on a rotary evaporator at 35 °C. The aqueous extracts were centrifuged for 3 min at 4500 87 

rpm (Jouan CR3i Multifunction Centrifuge) to remove the remaining chlorophyll, insoluble 88 

particles and some precipitates. Extracts were freeze-dried and stored at -20 °C. 89 

Extracts were purified on SephadexTM-LH-20 chromatographic columns to remove 90 

impurities (mainly sugars and small phenolics) with water. Elution with acetone/H2O (3:7, 91 

v/v) yielded fraction 1 CTs (F1), a second elution with acetone/H2O (1:1, v/v) fraction 2 CTs 92 

(F2). In total 36 (18 F1 and 18 F2) fractions were tested using Haemonchus contortus and 93 

Trichostrongylus colubriformis infective third stage larvae (L3).  94 

Tannin analysis by thiolytic degradation and HPLC  95 

The purified CT fractions were subjected to thiolytic degradation as described by Gea et al.25 96 

with some changes in order to analyze CT contents (% CT) and features [(size in terms of 97 
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mean degree of polymerization, mDP; percentage of prodelphinidins and procyanidins 98 

within CTs, % PD and % PC; and percentage of trans- vs cis-flavanols, % trans and % cis)]. 99 

Freeze-dried samples (4 mg) were weighed into 10 ml glass tubes, methanol (1.5 ml) was 100 

added, followed by acidified methanol (0.5 ml of 3.3 % HCl/ in MeOH), benzyl mercaptan 101 

(50 µl) and a magnetic stirrer. The tube was capped and heated at 40 oC for 1 h in a water 102 

bath. Water (2.5 ml) was added to stop the reaction and the internal standard (0.5 ml of 103 

taxifolin: 0.05 mg/ml) was added. Samples were analyzed within 48 h by RP-HPLC25. 104 

Gastrointestinal nematodes 105 

The third-stage larvae (L3) were obtained from faeces of donor goats, kept indoors and 106 

infected monospecifically, with AH susceptible, strains of either H. contortus or T. 107 

colubriformis. The facilities hosting the animals and the trial was performed according to 108 

French ethical and welfare rules (agreement number C 31 555 27 of 19 August 2010).  109 

Coprocultures were maintained for 12 days at 23 °C in order to obtain the third stage larvae. 110 

Larvae were then recovered from faeces using the Baerman technique and stored at 4 °C 111 

in a horizontally vented cap flask at a concentration of 1000 – 1500 L3/ml. Prior to use the 112 

larvae were checked to ensure that at least 90% of them were mobile and ensheathed. 113 

The larval exsheathment inhibition assay (LEIA) 114 

The larval exsheathment inhibition assay was performed as described by Bahuaud et al.26 115 

to compare the inhibitory effects of the various tannin fractions (F1 and F2) on the 116 

exsheathment process of H. contortus and T. colubriformis. For both nematode species a 117 

batch of 2-month-old larvae was used to perform the in vitro assays. 118 

Briefly, 1000 ensheathed L3 larvae (H. contortus or T. colubriformis) were first incubated for 119 

3 hours at 20 °C with one of the fractions at serial dilutions from 600, 300, 150, 75 to 37.5 120 

µg/ml in PBS (0.1 M phosphate, 0.05 M NaCl, pH 7.2). In addition to all the tested fractions, 121 

negative controls (L3 in PBS) were run in parallel. After incubation, the larvae were washed 122 

and centrifuged, 3 times in PBS, and then submitted to the artificial exsheathment process 123 
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by contact with a solution containing sodium hypochlorite (2% w/v) and sodium chloride 124 

(16.5 % w/v), which had been diluted 1 to 350 in PBS. The exsheathment kinetics were 125 

measured under a microscope at x 200 magnification by identifying the proportion of 126 

exsheathed larvae. Regular examination was performed at 0, 20, 40 and 60 min after contact 127 

with the exsheathment solution. The exsheathment percentage was calculated according to 128 

the formula: (number of exsheathed larvae) x 100/ (number of exsheathed larvae + 129 

ensheathed larvae). For each fraction, four replicates were run per concentration and 130 

observation time to examine the exsheathment kinetics.  131 

Statistical analyses of the results 132 

The EC50 (effective concentration that causes 50 % exsheathment inhibition) for each tannin 133 

fraction was calculated at 60 min (using the software Probit Polo Plus®). First a 134 

nonparametric rank correlation of Spearman was calculated using a 2 by 2 correlation in 135 

order to evaluate the relationship between the structural parameters characterizing the 136 

tannin fractions, and also the relationship between the in vitro AH activity (EC50 of each 137 

fraction) and quantitative (% CT) and qualitative parameters (mDP, % PD and trans) of the 138 

respective F1, F2 and the combined F1 and F2 (F1+F2) fractions. Significant values (P < 139 

0.05) and (close to significance) values (P < 0.10) are reported. 140 

Then multivariate analyses, principal component analyses (PCA), were performed 141 

separately for each nematode species based on the combined data of F1+F2 to obtain an 142 

overall synthesis of the relationships between the effects on larval exsheathment and the 143 

main CT features. The five variables composing the column of the 2 PCA matrices included 144 

quantitative (% CT) and qualitative parameters (mDP, % PD and % trans values) plus the 145 

EC50 per species. The 36 rows of the matrix corresponded to the F1 and F2 data of the 18 146 

plant samples. All statistical analyses were performed using Systat® 9 software (SPSS Ltd). 147 

RESULTS 148 

Tannin analysis and relationships between structural parameters 149 
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The parameters, which characterized the 18 CT samples are provided in Table 1. The 150 

average % CT, mean degree of polymerization (mDP) and % prodelphinidins (PD) values 151 

were higher in the F2 compared with F1 fraction, whereas the mean % trans values were 152 

lower for F2. The Spearman correlation coefficients were positive and significant between 153 

the F1 and F2 fractions for mDP (r = 0.583, P < 0.05, df = 16), % PD (r = 0.975, P <0.01, 154 

df= 16), % trans (r = 0.728, P < 0.05, df = 16), which is due to the fact that these 15 plant 155 

species produce different CT types. There was no correlation for the % CT in both fractions 156 

(r = 0.082, NS, df = 16). 157 

When the Spearman correlation test was applied to the combined F1+F2 data (n = 36 158 

samples), there were positive correlation coefficients between % CT and mDP values (r = 159 

0.696; P < 0.01; df = 34). A non-significant negative correlation existed between % CT and 160 

% trans (r = -0.261; NS; df = 34) and between % PD and mDP values (r = 0.270; NS; df = 161 

34). This absence of a link between % PD and mDP is important, because column 162 

chromatography of CTs from the same plant material tends to lead to fractions, where % PD 163 

and mDP are positively correlated (unpublished observations). Therefore, these F1 and F2 164 

fractions enable the investigation of relationships between CT structures and AH activities. 165 

Trends were observed for % PD and % trans (r = 0.300; P < 0.08; df = 34). 166 

Anthelmintic activity 167 

The different fractions affected the larval exsheathment process in a dose-dependent way. 168 

The EC50 values for each of the F1 and F2 fractions per plant sample were used to 169 

characterize the AH activity and are shown for H. contortus and T. colubriformis in Table 2. 170 

For both parasites, EC50 values were generally lower with F2 than with F1 fractions. In 171 

addition, overall, EC50 values calculated for H. contortus were lower than those of T. 172 

colubriformis, suggesting that H. contortus was more susceptible to these fractions. Thus, 173 

the calculation of Spearman’s correlation coefficients between EC50 values, obtained 174 

respectively for F1 and F2, showed significant and positive values for both species 175 
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separately, i.e. H. contortus (r = 0.642; P < 0.05; df = 15) and T. colubriformis (r = 0.688; P 176 

< 0.01; df = 16). However, there were no correlations between the EC50 values of the F1 177 

fractions between H. contortus and T. colubriformis (r= -0.056; NS; df= 15) and also not for 178 

the F2 fractions (r= 0.397; NS; df= 16). Finally, there were also no correlations between the 179 

EC50 values of both parasite species with the F1+F2 combined data (r = 0.164; NS; df = 33). 180 

Figure 1 shows the EC50 score values in rank order for H. contortus and T. colubriformis, 181 

respectively. The 25% of the most effective plants against both GIN species (i.e. lowest EC50 182 

values) were Vitellaria paradoxa, Trifolium repens, Lespedeza cuneata, Ribes nigrum, 183 

Theobroma cacao and Betula spp. In addition, Onobrychis viciifolia was active against H. 184 

contortus and Ribes rubrum and Salix babylonica were active against T. colubriformis. 185 

Table 3 presents the Spearman’s correlation coefficients between the EC50 values and the 186 

various CT parameters for both nematode species in terms of the F1, F2 and the combined 187 

(F1+F2) data. For H. contortus, there were negative trends between EC50 and mDP and % 188 

PD of the F1 fraction and between EC50 and mDP of the (F1+F2) data. The correlation 189 

between EC50; and % PD was negative and significant for the (F1+F2) data. Somewhat 190 

surprisingly, a significant positive correlation was noticed for EC50 values and % CT of the 191 

F2 fractions. 192 

In contrast, for T. colubriformis there were no correlations with mDP or % CT. Instead, 193 

negative correlation coefficients between EC50 and % PD were close to significance for F1 194 

(r = -0.453; P < 0.10; df = 16); F2 (r = -0.439; P < 0.10; df = 16) and were significant for the 195 

combined (F1+F2) fractions (r = -0.403; P < 0.05; df = 34).  196 

When PCA was applied separately to either H. contortus or T. colubriformis, the two main 197 

components of axis 1 were mDP and % CT. For axis 2, % PD appeared as the key 198 

component. The plane defined by the combination of axes 1 and 2 (Figure 2) represented 199 

67 % of the overall variability for H. contortus and close to 70 % for T. colubriformis.  200 
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The main objective of the PCA was to analyze the overall combined relationships between 201 

the different variables and the effects on exsheathment as assessed by the EC50 values 202 

(Figure 2). Variables that are positively related are located on the same side of the plane. 203 

In contrast, variables that are negatively related are located in diagonally opposed 204 

quadrants. Analyses of these planes for both GIN species tend to confirm the 2 by 2 205 

Spearman’s correlation results. For Haemonchus, the EC50 values were in opposition to % 206 

PD and mDP values, and to a lesser extent to the % CT. For Trichostrongylus, the EC50 207 

values were mainly in opposition to % PD. 208 

DISCUSSION 209 

The study evaluated 36 CT fractions from 18 sources (15 plant species). These plants were 210 

chosen because they present a wide range of different CT features in terms of mDP, % PD 211 

and % trans values. It was expected that this variation would allow exploring the 212 

relationships between CTs and their AH activities. These particular CT parameters have 213 

been described previously as being involved in their biological activities.10,19,20,22,27-29 From 214 

these 15 plant species 18 tannin extracts were obtained that yielded two related CT fractions 215 

(i.e. F1 and F2 fractions). These 36 samples were used to test the effects of quantitative 216 

and qualitative differences between CTs. The range of CT concentrations tested with these 217 

fractions was chosen based on previous in vitro data, which had been obtained with plant 218 

extracts of known CT concentrations.16,26,27  219 

Three in vitro assays are available to explore the interactions between tannins and infective 220 

third stage larvae of gastro-intestinal nematodes30; i.e. the Larval Migration Inhibition Assay 221 

(LMIA), the Larval Feeding Inhibition Assay (LFIA) and the LEIA which has been used in the 222 

current study. The LEIA has been widely used to screen the AH activity of either plant 223 

extracts,26,30 tannin fractions8,10 or flavan-3-ol monomers.21,22 The LEIA has proved to be 224 

simple and reproducible and like the LFIA it also has the advantage that it allows calculation 225 

of EC50-values, which is rarely the case for the LMIA. Moreover, LEIA has been related to 226 
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similar in vivo processes.31 The LEIA was performed with 2-month-old larvae for both 227 

nematode species in order to allow comparison of EC50 values obtained with the F1 and F2 228 

fractions of each plant sample and between the 2 nematodes species. 229 

Overall, CT contents (% CT) were higher in the F2 than the F1 fractions and the EC50 values 230 

for F2 calculated for both nematodes were, in most cases, lower than for F1 fractions. This 231 

suggests a role for the % CT in the antiparasitic effect. Similar results were obtained by 232 

Williams et al.20 for the AH effects against Ascaris suum with a subset of these F1 and F2 233 

fractions. Many studies, based on different in vitro tests, have reported a dose-dependent 234 

AH effect when using tannin-containing plant extracts. For example, for some legume 235 

forages such dose-dependent effects have been described for i) O. viciifolia (sainfoin) with 236 

the larval migration inhibition assay (LMIA)7, LEIA31, egg hatch assay (EHA)28 and larval 237 

development inhibition assay (LDIA)28, and for ii) L. pedunculatus and L. corniculatus 238 

extracts with the LMIA and LDIA27,28, the larval feeding inhibition assay (LFIA) and LEIA.9 239 

Although surprisingly, there was a significant positive correlation between CT content and 240 

AH activity of the F2 fractions for H. contortus, there was, no significant correlation when 241 

combining the F1+F2 data. Similarly, Naumann et al.19 also found no relation between CT 242 

content and the AH activity against H. contortus L3 when comparing fractions from three 243 

legumes (Lespedeza stuevei, L. cuneata and Arachis glabrata). Novobilský et al.10 244 

compared the effects of different CT fractions from O. viciifolia on cattle nematodes of either 245 

the abomasum (Ostertagia ostertagi) or the small intestine (Cooperia oncophora). These 246 

authors also did not obtain consistent correlations between the CT contents and the in vitro 247 

AH activity as measured by LFIA.  248 

This discrepancy in relationship between dose and AH activity obtained with either CT-249 

containing extracts or fractions could perhaps be related to other compounds that are also 250 

present in extracts.7,21 Indeed Molan et al.22 also reported deleterious effects of flavan-3-ol 251 

monomers against T. colubriformis at different life cycle stages, i.e. eggs (EHA) and larvae 252 
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(LDIA, LMIA). The highest AH effect occurred with the epigallocatechin gallate (EGCG) 253 

monomer. This observation was confirmed by further studies with green-tea fractions that 254 

were tested against Teladorsagia circumcincta and T. colubriformis, where higher EGCG 255 

content was linked with a higher AH effect.8 Similarly, when monomeric subunits of CT were 256 

tested in the LEIA on H. contortus and T. colubriformis,21 a higher AH activity was observed 257 

with i) the monomeric subunits of PDs (i.e. gallocatechin, epigallocatechin) and ii) the galloyl 258 

derivatives of both PDs and procyanidins.  259 

Beside the possible contribution of CT concentration towards explaining antiparasitic 260 

activities, several authors have also suggested that CT structures (or quality) could explain 261 

some of the observations.8-10,19,20,22 For instance, it has been proposed that the biological 262 

activity is affected by the hydroxylation at the B-ring in flavan-3-ol monomers and in 263 

polymers, where the presence of an additional hydroxyl group (OH) increases the interaction 264 

with proteins. This could explain the generally higher activity of PDs compared to PCs. In 265 

addition, activity is also increased when galloyl groups are present.21,32-34  266 

Results of the 2 by 2 calculations of Spearman’s correlation coefficients as well as 267 

multivariate analyses (PCA) tended to confirm that the in vitro AH activity in terms of EC50 268 

was related to CT structural features for both H. contortus and T. colubriformis. In addition, 269 

our results suggest that different mechanisms appear to be involved for each nematode 270 

species. For H. contortus, AH activity appeared stronger for CTs with higher PD contents 271 

and larger sizes (mDP values). Although, as described by Williams et al.20 there was no 272 

effect of mDP or % PD within F2 fractions on the EC50 values. For the F1 fractions, lower 273 

EC50 values were associated with higher % PD and larger tannins (higher mDP values). 274 

Novobilský et al.10 suggested that mDP was a key factor in the LFIA against L3 of O. 275 

ostertagi and C. oncophora after testing O. viciifolia extracts and fractions.  276 

However, Naumann et al.19 found no clear evidence for CT size and inhibition of H. contortus 277 

motility. However, only a narrow range of CT sizes was investigated. Conversely to the 278 
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present data, Manolaraki35 found that lower mDP values were correlated with higher AH 279 

activity when extracts from 40 O. viciifolia accessions were tested by LEIA against H. 280 

contortus. Similarly, Barrau et al.7 found that a fraction that contained CTs (< 2000 Da) plus 281 

flavonol glycosides had higher AH effects against H. contortus larvae than a fraction that 282 

contained only CTs (>2000 Da). At this stage, it is important to note that the complexity of 283 

plant extract compositions and difficulties in purifying CTs are likely to account for some of 284 

these apparent contradictions. Acetone/water extracts from CT-containing plants consist of 285 

CTs plus low molecular phenolic compounds (e.g. flavones, flavonols, flavonol glycosides, 286 

etc). In addition, CTs usually occur as complex mixtures that contain low to high molecular 287 

weight tannins and the mDP-value simply describes the average ‘tannin size’ rather than 288 

the distribution profile of all CTs. In fact, we recently discovered that mixtures of CTs and 289 

flavonoids had higher AH activities than CTs on their own.36 Kozan et al.37 also reported that 290 

flavonol glycosides (luteolin-7-β-O-gucopyranoside and quercetin-3-O-β-glucopyranoside) 291 

from Vicia pannonica var. purpuracens, might also participate in the modulation of bioactivity 292 

of the highly AH extract and fractions against trichostrongylid larvae. This underlines that 293 

the proximity of biochemical structure between flavonol glycosides and CT (which are flavan-294 

3-ols’ polymers) could suggest a similar or close mechanism of action for both types of 295 

compounds. Taken together, the presence of non-CT compounds (such as flavonoid 296 

monomers) could, therefore, explain the apparently contradictory observations by 297 

Manolaraki35 and Barrau et al.7 The F1 fractions had only half the CT contents of F2 fractions 298 

(Table 1). However, the combination of F1+F2 data gave a close to significant correlation 299 

of EC50 and mDP values (Table 3). 300 

In contrast, for T. colubriformis, % PD was consistently (F1, F2, and combined F1+F2) 301 

related to AH activity. This agrees with other reports on T. colubriformis larvae, which found 302 

higher AH in vitro effects of PD- compared with PC-rich tannins.21,22  303 
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Interestingly, there were different susceptibilities between the two parasite species, which 304 

suggested that H. contortus was more susceptible than T. colubriformis. This is indicated by 305 

the overall lower EC50 values for the abomasal species with both types of CT fractions. 306 

Molan et al.8 also pointed out that the abomasal nematode T. circumcincta was more 307 

susceptible than T. colubriformis to the AH effects of flavan-3-ol monomers and oligomeric 308 

CTs in the LMIA. The same conclusion was drawn from in vitro studies that examined 309 

extracts from different woody plants (Rubus fructicosus, Quercus robur and Corylus 310 

avellana) against H. contortus, T. circumcincta and T. colubriformis based on LMIA and LEIA 311 

tests.16 However, other authors found no such differences in the response to quebracho or 312 

O. viciifolia extracts11,31 between abomasal or intestinal species. Moreno-Gonzalo et al.38,39 313 

even found a higher in vitro susceptibility of T. colubriformis compared to H. contortus and 314 

T. circumcincta when measuring the AH activity of extracts from different heather species 315 

(Calluna vulgaris, Erica cinerea and E. umbellata). It remains to be seen whether differences 316 

in assay conditions could account for some of these contradictory results. Moreover, it will 317 

be worth to explore whether exist species specific differences in the quality of larval sheath 318 

proteins between the abomasal vs the intestinal species in order to better understand the 319 

mode of actions of polyphenols against the different GIN species. 320 

Although it is difficult to extrapolate from in vitro to in vivo results, our current data provide a 321 

screening of CT-containing plants, whose AH properties will need to be explored further in 322 

controlled in vivo studies in order to develop their potential for on-farm exploitation. It is also 323 

worth noting that the CT fractions from three legumes ranked amongst the most effective 324 

ones (i.e. having the lowest EC50 values): L. cuneata pellets, O. viciifolia plants and T. 325 

repens flowers (Figure 1). The last decade has seen an accumulation of in vivo results that 326 

confirm the AH effects of L. cuneata and O. viciifolia against the main GIN species whether 327 

offered to small ruminants in the form of freshly grazed pasture,40,41 as hay,15,17,42 as 328 

silages42 or as pellets.18  329 
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As far as T. repens is concerned, no other data are available because the genus Trifolium 330 

sp is usually considered as a tannin-free legume43 and consequently the various Trifolium 331 

species have received little attention for their antiparasitic potential. However, Carlsen and 332 

Fomsgaard44 provided an extensive review of the secondary metabolites in T. repens and 333 

pointed out the high CT content in flowers. The current study found that CTs from T. repens 334 

flowers had a strong AH effect and confirmed the dose-dependent inhibition effects of T. 335 

repens tannins observed for C. oncophora in the LFIA.45 336 

The CT fractions of V. paradoxa were also ranked as highly effective against both nematode 337 

species and suggested that some agro-industrial by-products could be of interest for their 338 

antiparasitic properties. It is worth noting that AH effects on H. contortus and T. colubriformis 339 

were recently also described not only for cocoa seed but also for husk extracts using the 340 

EHA.46 341 

In conclusion, our results showed that structural features of condensed tannins are key 342 

factors that impact on the anthelmintic effects against gastro-intestinal nematodes of 343 

ruminants. In addition, there were differences in the susceptibilities of the abomasal as the 344 

intestinal nematode species. These differences have been described previously in the 345 

literature and could be related to the fact that the nematode sheath proteins differ in these 346 

parasite species. This could perhaps affect their interactions with the tannins. It is worth also 347 

to underline that the current results have been acquired on infective larvae and that other 348 

assays that target other parasitic stages might have different outcomes. Further studies will 349 

be needed to explore these interactions at the molecular level. 350 

ABBREVIATIONS USED 351 

Gastrointestinal nematodes, (GINs); condensed tannins (CT); anthelmintic (AH); mean 352 

degree of polymerization, (mDP); prodelphinidins, (PD); procyanidins, (PC); phosphate 353 

buffered saline, (PBS); larval exsheathment inhibition assay, (LEIA); infective stage 354 

nematode larvae, (L3); effective concentration for 50% inhibition of larvae’s exsheathment  355 
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(EC50); larval development inhibition assay, (LDIA);  larval feeding inhibition assay, (LFIA); 356 

egg hatch assay, (EHA); larval migration inhibition assay, (LMIA). 357 
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Figure Legends 

 
Figure 1: EC50 values (and 95% confidence interval) scores for A) Haemonchus contortus  

and B) Trichostrongylus colubriformis using F1 and F2 fractions from the 18 tannin-

containing plant resources 
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Figure 2: Multivariate principal component analyses (PCA) explained to condensed tannins 

for each parasite species: A) H. contortus, B) T. colubriformis. For both nematode species, 

the matrix was composed of 5 variables and 36 lines corresponding to 2 fractions (F1 and 

F2) of a range of 18 tannin-containing samples. Abbreviations: EC50 values based on LEIA 

(low values reflect high anthelmintic activities), CT (condensed tannins content, units g 

CT/100 g fraction); mDP (mean degree of polymerization of tannins); PD (% of 

prodelphinidins) trans (% of trans flavan-3-ols). The planes represent 67 % of the variability 

for H. contortus and 70 % for T. colubriformis, respectively. 
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Table 1: Chemical characterization of two tannin fractions from 18 plant resources (F1, and F2 fractions; % PC = 100 - % PD; % cis = 100 -% 

trans). 

 

Scientific name   Family23 Common 
name/sample 

% CT ± SD mDP ± SD % PD ± SD % Trans ± SD  

F1 F2 F1 F2 F1 F2 F1 F2 

Onobrychis 
viciifolia  

Leguminosae Sainfoin/ w hole 

plant 37.2 ±4.5 100±4.1 2.8±0.1 8.7±0.01 72±0.3 64.9±0.1 33.3±0.2 20.9±0.3 

Trifolium repens* Leguminosae White clover/ f low er 11.7±0.4 100±2.4 1.8±0 8.6±0.0 98.3±0.3 98.7±0.0 82.2±0.1 41.1±0.6 

Trifolium repens†   Leguminosae White clover/ f low er 13.4±0.4 82.4± 2.0 3.1±0.1 12.7±0.0 98.1±0.1 98.8±0.0 74.2±0.2 38.2±0.0 
Lespedeza 
cuneata   

Leguminosae Sericea lespedeza/ 

pellets 42.1±0.2 82.6±1.4 5±0.0 11.3±0.3 92.4±0.1 92.3±0.0 34.7±0.0 24.8±0.2 

Betula spp Betulaceae Birch/ leaf 12.9 ±0.3 63.6±2.5 2.2±0.0 8.3±0.1 44.7±0.1 58.9±0.1 59.3±0.1 29.3±0.1 

Corylus avellana    Corylaceae Hazelnut/ pericarp 49.2±1.1 67.5±0.6 4.6±01 9.2±0.1 18.3±0.9 20.9±0.8 59±0.11 52.2±0.35 

Juglans regia L.   Juglandaceae Walnut/ leaf 21.8±1.4 69.0±1.7 2.9±0.0 12.3±0.1 9.3±0.4 30.9±0.0 56.1±0.0 23.7±0.0 

Pinus sylvestris L.   Pinaceae Pine/ inner bark 54±2 79±2.4 2.3±0.0 6.6±0.2 15.1±0.6 11.2±1.7 51.9±0.7 21.9±1.8 

Tilia L.  Tiliaceae Lime tree/ f low er 47.5±2.8 91.7±3.8 2.0±0.0 7.9±0.1 1.1±0.0 0.9±0.1 16.4±0.0 4.4±0.1 

Salix spp Salicaceae White w illlow / bark 23.1±1.7 83.3±0.6 2±0.1 9.9±0.0 0.0±0.0 6.0±0.0 63.0±0.2 21.9±0.0 

Salix babylonica   
Salicaceae Weeping w illow / 

catkins 
40.2±2.8 97.4±2.2 2.9±0.0 8±0.3 24.6±0.1 33±1.7 44.5±0.2 42.3±1.2 

Salix caprea   Salicaceae Goat w illow / leaf 51.5±0.1 83.8±1.8 2.1±0.1 5.3±0.1 5.8±0.3 4.8±0.6 93.2± 0.3 95.8±0.2 

Salix caprea   Salicaceae Goat w illow / tw igs 72±1.1 93.2±11 2.1±0.0 5.3±0.1 15.6 ±0.9 21.3±0.71 59.4±0.1 37.2±0.4 

Ribes nigrum* Grossilariaceae Black currant/ leaf 59.8±1.3 100±1.7 2.5±0.0 6.5±0.1 93.7±0.07 94.5±0.11 87.2±0.1 93.0±0.1 

Ribes nigrum† Grossilariaceae Black currant/ leaf 55.5±3.2 77.1±3.9 3.8±0.0 11.8±0.1 94.0±0.0 95.3±0.0 91.5±0.1 81.2±0.1 

Ribes rubrum Grossilariaceae Red currant/ leaf 57.7±9.1 68.2±1.1 4.9±0.0 10±0.1 85.8±0.4 90.4±0.1 55.7±1.1 35.6±0.9 

Theobroma cacao  Malvaceae Cocoa/ seed 58.5±2.9 75.5±8.1 2.3±0.0 5.4±0.1 0.0±0.2 0.0±0.0 8.7±0.2 3.7±0.1 

Vitellaria 
paradoxa 

Sapotaceae Shea/ meal 
33.0±0.6 44.9±0.8 2.2±0.1 4.1±0.1 76.3±0.1 72.5±0.1 41.4±0.3 40.2±0.1 

  
 Mean values 

 
40.2±9.2 81.1±7.4 2.8±0.5 8.4±1.3 44.6±20.2 49.7±19.4 56.2±12.4 39.3±13.3 

 
*sample a; †sample b 
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Table 2: EC50 values by parasite and by fraction (F1 or F2) from each tannin-containing resource tested 

 
 

 

* the calculation of the EC50 values relying on the Polo Plus software gave the follow ing values for the effects against H contortus for T. repens (b) fraction F1 = 33.2 µg/ml and  fraction F2 = 14.5 µg/ml; for 

Lespedeza cuneate fraction F2 = 29,4 µg/ml, for Vitellaria paradoxa fraction F1 = 13, 6 µg/ml and fraction F2 = 16,5 µg/ml  

 

 

 

 Table 3: Spearman’s correlation coefficients for anthelmintic activity by nematode species according to tannin content and structural 

parameters in F1 and/or F2 fractions 

Plant Abbreviation Family26 H. contortus EC50 (95% CI) (µg/ml) T. colubriformis EC50 (95% CI) (µg/ml) 

F1 F2 F1 F2 

Onobrychis viciifolia OVF1/OV2 Leguminosae 62.7 (49.9-76.5) 212 (182-250) 203 (131-322) 147 (99-230) 
Trifolium repens (a) TRaF1/TRaF2 Leguminosae 287 (249-328) 177 (131-239) 110 (82.1-145) 152 (109-210) 

Trifolium repens (b) TRbF1/TRbF2 Leguminosae 37.5 < (0.7 -74.4) * 37.5 < (0.08-42.4) * 132 (92.3-186) 110 (63.2-166) 

Lespedeza cuneata LCF1/LCF2 Leguminosae 78.2 (28.1-157) 37.5 <( 2.5-55.3) * 198 (108-366) 94.9 (50.5-140) 

Corylus avellana CAF1/C1F2 Corylaceae 166 (82.5-441) 143 (104-170) 351 (287-441) 329 (209-671) 

Juglans regia L. JRF1/JRF2 Juglandaceae 94.7 (65.5-115) 70.6 (46.9-106) 258 (130-386) 243 (169-384) 

Betula spp BPF1/BPF2 Betulaceae 62.8 (58.6-82) 62.6 (19-90.3) 226 (163-335) 125 (86.7-169) 

Pinus sylvestris L.  PSF1/PSF2 Pinaceae 236 (192-290) 144 (125-167) 184 (121-305) 135.91 (112-163) 

Tilia L. spp. TF1/TF2 Tiliaceae 113 (82-157) 88.7 (66.1-107) 459 (353-660) 297 (258-335) 

Salix spp SAF1/SAF2 Salicaceae 188 (137-241) 138 (117-154) 300 (271-333) 191 (126-294) 

Salix babylonica SBF1/SBF2 Salicaceae 174 (120-206) 128 (69.8-166) 181 (152-214) 108 (83.8-132) 

Salix caprea (twigs) SCTF1/SCTF2 Salicaceae 195 (142-266) 132 (97.6-184) 385 (296-459) 125 (94.9-159) 

Salix caprea (leaves) SCLF1/SCLF2 Salicaceae 196 (86-217) 161 (133-191) 377 (316-435) 316 (243-420) 

Ribes nigrum (sample a) RNaF1/RNaF2 Grossilariaceae 145 (85-259) 157 (124-203) 145 (123-169) 89.5 (70.1-111) 

Ribes nigrum (sample b) RNbF2/RNbF2 Grossilariaceae 48.7 (78.1-158) 59.2 (18.5-111) 315 (212 -592) 209 (140-344) 

Ribes rubrum RRF1/RRF2 Grossilariaceae - 97.8 (85.4-305) 130 (84.5-199) 124 (99.5-152) 

Theobroma cacao   TCF1/TCF2 Malvaceae 208 (168-246) 65.2 (34.1-95.7) 76.1 (24.3-130) 122 (94.8-200) 

Vitellaria paradoxa VP1/VP2 Sapotaceae 37.5 < (0.7-29.1) * 37.5 < (0.48-36.5) * 169 (115-288) 76 (65.7-86.7) 
  Mean values 136.9 ± 74.1 108.1 ± 53.2 233 ± 54.3 166 ± 39.9 
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a P < 0.05, b P < 0.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Haemonchus contortus Trichostrongylus colubriformis 

F1 F2 F1 + F2 F1 F2 F1 + F2 

EC50 (µg/ml) EC50 (µg/ml) EC50 (µg/ml) EC50 (µg/ml) EC50 (µg/ml) EC50 (µg/ml) 
Degree of 

freedom (df) 
15 16 33 16 16 34 

 r - 
value 

P - 
value 

r - 
value 

P - 
value 

r - 
value 

P - 
value 

r - 
value 

P - 
value 

 r - 
value 

P - 
value 

r - 
value 

P - 
value 

% CT 0.30 0.44 0.61 a 0.50 0.12 0.29 0.10 0.43 0.01 0.43 -0.22 0.28 
    mDP -0.46 b 0.44 -0.28 0.43 -0.33 b 0.29 -0.17 0.43 0.19 0.43 -0.26 0.28 
% PD -0.44 b 0.44 -0.22 0.43 -0.35 a 0.34 -0.46 b 0.43 -0.43 b 0.43 -0.40 a 0.34 

% trans 0.08 0.44 0.12 0.43 0.18 0.29 0.12 0.43 -0.01 0.43 0.24 0.28 
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Figure 1 
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A) EC50 (μg/ml) values for Haemonchus contortus
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B) EC50 (μg/ml) score values for T. colubriformis
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Figure 2 
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A) PCA values for H. contortus 

CT
mDP

PD

trans

EC50

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1a
x
e
 1

axe 2

B) PCA for T. colubriformis
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