UNIFORM ALGEBRAS WITH UNBOUNDED
FUNCTIONS*

by Frank T. Birtel

Foreword: Most of the theorems in this article appear without proof.
References for published results and credits are included in the notes at the
end. Certain papers listed in the bibliography are not discussed; however,
these are given because they do embellish the general subject, or represent
a direction which is ignored in this exposition.

1. Introduction®

For our purposes a function algebra on Hausdorlt space X will be a uni-
formly closed subalgebra with 1 of the algebra CB(X) of bounded con-
tinuous functions on X. In the last fifteen years the theory of function
algebras (on compact spaces) has developed into a distinctive field, rich in
applications to classical function theory and rich in questions of interest
frequently overlooked by classical analysts. Much of this work needs and
supplements deep results and techniques in the theory of functions of several
complex variables.

Our purpose is to discuss the following more general algebras.

Definition 1.1. A uniform algebra A on a Hausdorfl space X is a sub-
algebra of the algebra C(X) of allcontinuous functions on X which contains
the'identity 1 and which is complete in the topology of uniform convergence
on compact subsets of X.

Developments comparable to the aforementioned research in function
algebras have not taken place in the study of uniform algebras. Even now
these algebras are getting limited attention, although it is abundantly clear
that here too there is an intimate relation to the theory of functions of
several complex variables. Neglect is probably due in large measure to the
primary importance in the theory of function algebras of dual arguments
based on representing and orthogonal measures. Uniform algebras do not
seem to be tractable yet to these methods.

* The author wishes to acknowledge his indebtedness to Frank Quigley and William
Meyers, and also wishes to thank C. E. Rickart for making preliminary copies of his
papers available.
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However, there are scattered results of the last decade and recently more
systematic studies which we wish to describe together with some few appli-
cations to the structure of specific uniform algebras.

In what follows the reader should relate the discussion, whenever possible,
to the concrete cases of algebras of holomorphic functions on subsets of C".

2. Inverse Limits of Function Algebras®
Let X be a topological space. A collection #" of compact subsets of X
satisfying:

2.1) UK = x,

Kext
(2.2) Every compact subset L of X is contained in some Ke 2,

will be called a norming family in X. Suprema on K will be denoted by
" 2 ”h If A is a uniform algebra on X and 7" is a norming family, then
{| - lx:K e} is a family of pseudonorms giving the topology of A. If
X is completely regular and if # can be chosen countable, then the uniform
algebra C(X) is metrizable. If X is ¢-compact and locally compact, the
existence of a countable norming family 2 is assured.

Let A be a uniform algebra on X. For ¥ < X denote by 4y the completion
of A[ Y'in the topology of uniform convergence on compact subsets of Y.
If Y is compact, Ay is the ” < ” y-completion of A| Y. lf Be Kl fhen
n(K’,K): A| K’ — A| K extends to a continuous mapping 7i(K’, K): Ax — Ay
with dense range. The collection {Ag;7(K',K):K,K'e X'} is called a
strongly dense inverse limit system. It follows easily that the inverse limit
of the function algebras A, is the uniform algebra A. Let A(A4y) (or simply
Ag) denote the set of non-zero homomorphisms of Ay into C and let A(A)
denote the set of non-zero continuous homomorphisms of 4 into C. Then

(2.3) A(4) = | ) A(4y)  (in a natural sense).

Ked
Precisely, A(A) is an injective, direct limit with mappings dual to those of
the inverse limit system.

Definition 2.1. A uniform algebra A is called a Frechet algebra or
F-algebra, if A is metrizable.

The conditions under which A(A) coincides with the set of all non-zero
complex homomorphisms of A are not completely known, but are mostly
irrelevant, It is however true, if A is a finitely generated uniform F-algebra.

As usual, A(A) is topologized by the weakest topology renderiug the maps
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2.4 J:A(4)—C given by j($) = ¢(f)

continuous. A(A) is closed in the weak* topology a(4*, 4). Should 4 separate
the points of X, then

(2.5) J: X = A(A) given by j(x) = 0,
with
3(f) = f(x) for all fed

identifies X with a subset of A(A4). j is continuous, but need not be open,
so in general we must distinguish topologically between X and jX.

We want to observe that if 4 is a uniform algebra on X, then
B(A) = {fe A: [[ fux = sup!f(x)| < w} is a function algebra on X.

Definition 2.2. Let 4 be a uniform algebra on X . For compact K < X,
we put

(2.6) hull,(K) = {p e AA): | f(@)| £ || f ||« for all fe A}.

For an arbitrary subset ¥ < X, we put

2.7) hull(Y) = [ hull,K
R K

where K is any compact subset of Y.

Theorem 2.1. If Y is a o-compact locally compact subspace of X, then
M(Ay) = hull (Y), both setwise and topologically.

Theorem 2.2. If.# isanorming family in X for the uniform F-algebra
Aon X, then # = {hull(K): Ke X'} is a norming family for 4. A is
a uniform F-algebra on A(A) and A is topologically isomorphic to A.

3. Natural Algebras and A-Holomorphic Functions®

Let X be a Hausdorfl space and 4 denote a subalgebra of C(X) with
the topology of uniform convergence on compact subsets of X . Following
Rickart we state:

Definition 3.1. A pair [X,A]is a system if A determines the topology
of X, i.e., if the weakest topology rendering all functions in A continuous
on X is the given topology of the space X.

Definition 3.2. [X, A]is a natural algebra, if [X,A] is a system and the
space A(A4) of continuous complex homomorphisms of 4 is X.
One analogue of the Silov boundary is the Rickart boundary d[X,A].
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Definition 3.3. The Rickart boundary o[X,A] of a system [X,A] is

{xe X: for all compact sets K = X,
x¢ K = x¢int(hull,K)}.

For locally compact spaces X, Definition 3.3 is equivalent to the following:

(3.1) xed[X,A] ifl there exists a compact set L= X
such that for all compact sets K > L, x is in the
Silov boundary &(4x) of the function algebra Ag.

The points x& X such that, for all compact sets K in X, x¢ K implies
x ¢ hull (K are called independent points and every local peak point of A4
in X is an independent point.

Theorem 3.1. Let [X,A] be a natural algebra and let
X, = hull(X\e[X,A]). Then [Xn,A|X0] is a natural algebra and
o[ X 4| Xo] = &

The relation between X and X, in case (X\0[X,A])” = X sheds some
light on this normalization procedure, X is the space of continuous complex
homomorphisms of the algebra A|X0 with the topology of uniform con-
vergence on the trace on X, of compact subsets of X .

It should be noted that local independent points (i.e., independent points
of [U,A| U] where U is open in X) are global independent points (i.e.,
independent points of [Z, A]).

Definition 3.4. Let [X,A] be a natural system and let Y be a subset
of X. H, ,(Y) is defined to be the algebra of continuous functions on Y
which are locally approximated on Y by functions in A. The elements of
this algebra are called A-holomorphic functions on Y of class 1.

Clearly this process of local approximation can be iterated transfinitely.
For any ordinal v, Let H, (Y) be the algebra of continuous functions
locally approximable on Y by functions in ( UH\,HA‘Q(Y)). For cardinality
reasons, the process terminates at some ordinal pu.

Definition 3.5. H, (Y) is called the algebra of A-holomorphic functions
on Yof class v. H,(Y) = H, (Y) denotes the algebra of all A-holomorphic
functions on Y.

Natural algebras [ X, 4] are known with the property that

(3-2) [X’A] i ”A.l(X) i HA,z(XJ-

Suppose X is a compact space, [X, 4] is a natural algebra and H, ,(X)
is the uniform closure of H 4 ,(X) in C(X). If B is a uniformly closed sub-
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algebra of C(X) such that A = B< H, (X), then is the homomorphism
space of B still X? In particular, is [ X, H, (X)] a natural algebra? Let M
be the homomorphism space of B.

(3.3) 8(4) = 6(H,,(X)) = 3(B) = 0(Hp,y(M))

follows from Rossi’s Local Maximum Modulus Theorem. ¢ € M implies
o | 4 = 0, for some unique point x € X. Define p: M — X by setting p(c) = x.
pis a continuous map and p(8,) = x. Define e C(M) by h(o) = h(p(c)),
for any continuous function h e C(X). Then

D LeX =[], =|A]-w;

(ii) fe A= = f (f denotes f as an element of B).

Suppose g€ B. Then there exists g, € H 4 ,(X) such that g,—~g on X. Thus

= lim f,;, uniformly on V,;,1 =j = m,, where f,; €A and V,,---, V.
cover X. By (i), {/,;,}i=1 is a uniform Cauchy sequence in C(p ,,J) For
ocep”'V,;, we have lim, f,; (o) —llm o Jui(p(0) = g.(p(0)) = §,(c). Hence, by
(11), g,,—llmf,,h uniformly on p~ V,U, 1=j=m,, n=1,2,---. Since p is onto,

W, V,,,,, cover M. So g,eHjy (M). Again (i) shows that

{g,,},,:I is unlformly Cauchy on M. A check of pointwise limits will show
&,— & uniformly on M or equivalently ge A, ,(M). Suppose now that
ge M\X so that p(g) # o. Then there exists ge B such that g(o) # g(p(0))
= g(p(0)) = £(0). But g€ Hy(M),sog— ge Hy ((M). This is a contradiction,
since g = § = g on X o §(Hy, (M) = 6(4), by 3.3, implies § = g on M.

This intriguingly simple argument of F. Quigley was expanded by him
to show that: if A =« B = H,(X), then the homomorphism space of B is X.

Let [X, A] be a natural algebra on a Hausdorff space X and suppose Q
is a subset of X. Let B < H Q).

Definition 3.6. A set G = Q is said to be B-convex if for every compact
set K = G, hull;K is compact and contained in G. If Q is H (Q)-convex,
then Q is said to be A-holomorphically convex.

Open Q contained in X are A-holomorphically convex if and only if the
system [Q, H ,(Q)] is natural. This fact follows from a generalization of the
Oka convexity theorem. We wish to state this result to show the remarkable
connection of this field with the theory of several complex variables.

Theorem 3.2. Let Q be an open subset of X. If G is any A-holomorphi-
cally convex subset of Q, then

G = {(0,h(0)):6€G and H,Q) = {h;: e A}}

is A ® P-convex in X x C, where P is the algebra of polynomials on
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o, {f& c X x C"is A® P-convexin X x C, then G is A-holomorphically
convex.

For certain open sets Q in X which are A-holomorphically convex, it is
possible to construct a function ge H,(Q) such that || g ||unn = 00
for every open set U that meets the boundary of Q. Also, the notion of
A-analytic varieties can be formulated in much the same manner as in several
complex variables, their A-convexity studied and uniform algebras defined
on them. :

Much of the arguments depend upon the following local maximum
modulus result.

Theorem 3.3. If [Z,A4] is a natural algebra, then each independent
point of H,(Z) is an independent point of [Z,A].

4. Ringed Spaces Defining Uniform Algebras*

Whereas inverse limits are the natural bridge from function algebras
to uniform algebras, the natural structure to bridge the theory of functions
of several complex variables and uniform algebras seems to be the ringed
space.

Using the work of Quigley we formulate the connection as follows:

Definition 4.1. A pair (X, A) is a ringed space if it is a subsheaf of rings
with identity of the sheaf of germs of continuous functions on the space X.
Let T(U, A) denote the sections over an open subset U < X relative to A.
If ¢ e (U, A), then there exists an open neighborhood ¥ of ue U and a
continuous function g on Vsuch that ¢(u) = g,, the germ of g at u. By
defining ¢(u)(u) = g(u) we obtain uniquely a continuous function on U.
For I'(U, A), let A(U) denote all functions obtained in this fashion. fe A(U)
is called an (X, A)-holomorphic function on U. If X is locally compact,
then call (X, A) a compact-open complete ringed space provided that A(U)
is closed in C(U) in the compact-open topology on C(U) for all open subsets
e X

Theorem 4.1. Let X be a locally connected Hausdorff space and
(X, A) a ringed space. Then a necessary and sufficient condition that A(U)
be quasi-analytic (vanishing on an open subset implies vanishing every-
where) for all open connected subsets U < X is that A be a Hausdor(f sheaf.

In particular, such Hausdorff sheaves have no zero divisors. This theorem
makes possible the notion of A-analytic continuation and domains of
existence in the framework of ringed spaces. Results have been obtained
along those lines.
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It is perfectly clear how the concept of ringed space provides a generic
geometric context for the algebras which were previously touched upon.
What is more, it is adaptable to a discussion of generalized meromorphic
functions.

Definition 4.2. Let (X, A) be a ringed space. Let E, be the set of ele-
ments of the stalk A, above x in A4 that are not zero divisors. 4, can be
embedded in a quotient ring B, with identity in which the units are
precisely the elements in E,. Let F, be the set of germs in E, which
do not belong to the closure of the zero subsheaf of 4. Each F, is multi-
plicatively closed. Let M, be the set of all b e B, such that b = st=! where
s€A, and teF,. In a natural fashion, M = | J,.xM, becomes a sheaf
of rings called the sheaf of fractions of A. lLet U be open in X and
¢el(U,M). Let Sp = {ueU: for all se A, and teF, with ¢(u) = st~*
we have #(u) = 0}. S¢ is closed and nowhere dense in U . With ¢ we associate
a function F¢ e C(U\ S¢) called the meromorphic function on U associated
with ¢.

Theorem 4.2. Let (X, A) be a ringed space. Let M be the sheaf of frac-
tions of A. For each xe X, let L, = {beM:b = st=' and 1(x) #0}. L, is
contained in M, L = ULx is a sheaf of local rings which can be considered
a subsheaf in which we can embed A of the sheaf of germs of continuous
Junctions. If ¢eI'(U,L), then M¢p = &. Thus L(U) = C(U).

5. Holomorphic Behavier in Uniform Algebras®

The preceding three sections focused on general perspectives in the study
of uniform algebras. But just as specific properties of the boundary value
algebra on the unit disk furnished much of the motivation to seek like
properties in general function algebras, most probably an analogously
pregnant source for uniform algebra is provided by the uniform algebra
of holomorphic functions of open subsets on the complex plane. Since
one of the more striking results about the boundary value algebras is Wermer’s
Maximality Theorem, perhaps a similar maximality theorem can be in-
vented at the outset.

Definition 5.1. A uniform algebra 4 on a Hausdorff space X is said
to be

(i) Liouville, if the only bounded functions in A are the constant functions
(ie. B(4) = O);

(ii) Montel, if bounded subsets of A are relatively compact;

(iii}y Without topological zero divisors, if there exists a norming family
A for A such that A|K for Ke 2 is without topological zero divisors
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in the sense of normed algebras (i.e., there does not exist a sequence {u,}
of elements of norm 1 corresponding to any element u 0 such that
|| u,u || - 0.).

Properties (i), (ii), and (iii) have been isolated precisely because no function
algebra enjoys these properties and because algebras of holomorphic func-
tions always are Montel and without topological zero divisors (certain
interesting ones are Liouville). Also, Liouville algebras and function al-
gebras are, in one sense at least, totally dissimilar.

Theorem 5.1. If A is a uniform algebra on an open connected subset G
of C with continuous homomorphism space G and containing the identity
function & :z — z, then the following statements are equivalent:

0) A = Hol(G);

(1) A is Montel,

(2) A is without topological zero divisors.

The next theorem shows that it is essential for the continuous homomor-
phism space of A to be G.

Theorem 5.2. If G is an open connected subset of C, then the uniform
closure P(G") in C(G") of the polynomials on C" is topologically isomorphic
to a separating uniform subalgebra A of C(G).

Thus, if G =hullyye,G =G, then G"=(G")~ and Hol(G") = P(G").
Hence, Hol(G") =~ A = C(G) and Hol(G) ; A. But 5.1(ii) and 5.1(iii) are
preserved by topological isomorphisms. (In the proof of Theorem 5.2,
A is finitely generated by f,,fs, "2 fo—1, Z where fi(1Si<n-—1) are
Peano functions.)

What now is the situation for uniform algebras on domains in C"? For
simplicity, we restrict the discussion to uniform algebras on polydisks with
point evaluations thereon giving the continuous homomorphisms.

Definition 5.2. A uniform algebra A4 on a polydisk Pin C" is said to
satisfy Condition (S) if constant extensions of restrictions of functions in
Ato coordinate slices are again in A4 (if z° € P and fe 4, then the functions
2 f(2°1,2%, 2% 15 24 2% 15+, 2% ) are in 4, 1 Sk S n).

Theorem 5.1°. Let A be a uniform algebra on an open polydisk P in C"
with continuous homomorphism space P and containing the coordinate
functions &Y, Z?, ..., %", If A saiisfies Condition (S), then the following
statements are equivalent:

(0) A = Hol(P);

(1) Aisa Montel algebra;

(2) A is without topological zero divisors.
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Turning to the Liouville property, we consider the following:

Definition 5.3. Let A4 be a uniform algebra with o-compact continuous
homomorphism space A(A4) contained in C and containing the identity
function &. Then A4 is said to satisfy

Condition (p): if there exists a neighborhood D of p in A(A) such that
for all ae Dthere is an ¢, > 0, f,€ 4, and g, = (Z"' — a)h,e Hol(W) where
W is a neighborhood of {(z,f,(z)):ze A(A4)} such that Reg,(z,f(2)) <0
whenever z € A(A) and 0 < |z — al<e,

In particular, if pe D = A(4) and D is open in the complex plane and
if there is a function fe A N CY)Y(D) such that 8f/8Z 0 on D, then Con-
dition (p) is satisfied: Let

—y o o
R(z) = f(z) — f(a) + @(a}(z a) + 5:5_;(&)(‘? —a) for zeD.
Then there exists ¢, > 0 such that

| ({%(a))"‘ R(z)’ <|z—al| for 0<|z—a| Le,.

0

Set f, = fand g (z,w) = _—(z —a) (%(a))_ (w — f(a) — ?—é(c:)(z—- a)).

Theorem 5.3. Let A be a uniform algebra on a e-compact A(4) in C
and let e A. If there exists pe A(A) such that A satisfies Condition (p),
then A'is not a Liouville algebra.

The proof of this theorem required a modification of a result of Rossi
which depends upon the solution of a Cousin II problem in C". From Theorem
5.4 we get the following characterization of the uniform algebra of entire
functions.

Theorem 5.4. Let A be a Liouville algebra on C with A(4)=C and
let ZeA. If A is generated by continuously differentiable functions, then
A = Hol(C).

For polydisks in C", a Theorem 5.4 again follows, if Condition (S) is
assumed on 4. Furthermore, as the next example shows, in this case Con-
dition (S) cannot be omitted without some further assumption.

Example 5.1. The uniform algebra of all continuous functions on C”
whose restrictions to complex lines through the origin are entire functions
has C" as continuous homomorphism space, contains the coordinate
functions, is Liouville, but is strictly larger than Hol(C").
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Theorem 5.5. If A is a singly generated Liouville algebra of continuous
SJunctions on C, then A is topologically isomorphic to Hol(C).
(Caution: There are singly generated Liouville algebras A with A(A) setwise
equal to C, which are, however, strictly larger than Hol(C)!).

[t could very well be the case that every separating Liouville algebra of
continuous functions on C is topologically isomorphic to Hol(C") for
some n. On the other hand, Example 5.1 might be a counterexample.

6. Uniform Algebras and Several Complex Variables®

In order to obtain Theorem 5.4 without any assumption about the existence
of continuously differentiable generators, it would suffice to know that
locally independent points of a separating uniform algebra 4 in metrizable
A(A) are peak points for functions in B(A4). This generalization of Rossi’s
Local Peak Point Theorem seems to be inaccessible and, as in the case
of the Local Peak Point Theorem for function algebras, dependent upon
methods of several complex variable theory. A natural first step is to prove
a generalized Arens-Calderon theorem for uniform algebras. It is via the
Arens-Calderon theorem anyhow that several complex variables is introduced
into the study of function algebras.

Definition 6.1. Let A be a uniform algebra and a = (a,,, a,)e A",
The joint spectrum o 4(a) of a relative to A is

{a(®) = (a(8) e C": e A(A)}.

Definition 6.2. Let 4, ¢ be as in Definition 6.1 and let S be a subset
of C". We define
(i) ¢(S)= lim {@(D);r”'n} where @(D) is the algebra of all holo-

D=5
Dopen

morphic functions on D and r”, are restriction maps. Thus ¢(S) is a
direct limit of ¢(D) for D = S, D open in C";
(ii) H(o4(@) = lim {(a,(a));r;} where “lim” denotes an inverse
a-,‘“(g}ga,;(g)
limit, A is an inverse limit of the Banach algebras A,, and r, are again
restriction maps.

Theorem 6.1. Let A be a uniform algebra and a = (ay, a,,-+, a,) e A"
There is a continuous representation N, (o4(a))— A such that
ALZ) =a;, Z; coordinate functions, 1<j<n, and A(1)=1. More
particularly, there is a continuous representation ©,:0(c (a))— A satis-
fyving the same conditions. (Continuity is with respect to the inverse limit

topology and direct topology, respectively.)
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Even with this generalized Arens-Calderon result it is not clear how to
get a generalization of Rossi’s theorem.

7. Some Open Questions’

A. Does the process of iterated local approximation terminate after a
finite number of steps? In particular, if functions locally in A4 are in A4, is
Hyy=Hy,or Hyy = A,,?

B. Are independent points of a natural algebra [X, A]local peak points
or strong boundary points of 4 in X?

C. If A and B are separating function algebras on a compact metrizable
space X and the minimal boundary of 4 and that of B coincide, do the
homomorphism spaces of 4 and B coincide?

D. Describe precisely the points of X in hull (X \3[X, A1)\ (X \o[ X, 4]).

E. If B(A) = [X, A], a natural algebra, separates the points of X, what
is the relation between dB(4) and [ X, A]? Inclusion is clear.

F. Let A be a separating function algebra on a compact space X. Is
H (A ) relatively maximal in C(A,)?

G. In Theorem 5.4’ replace Condition (S) by a more reasonable assump-
tion.

H. [Is every separating Liouville algebra of continuous functions on C
topologically isomorphic to Hol(C") for some n?

I. Is every n-generated Liouville algebra of continuous functions on C"
topologically isomorphic to Hol(C")?

J. Are the local peak points of a separating uniform algebra A with
metrizable continuous homomorphism space A(A4) peak points for functions
in B(A) on A(A)?

NOTES

1. Point separation on X by functions in A is usually incorporated into the definitions
of uniform and function algebras.

2. The concepts introduced in this scction have their general origin in the papers [/]
and [7] of Arens and Michael, respectively, on locally multiplicatively convex topological
algebras. Here they are formulated for uniform algebras only.

3. Numbered definitions and theorems all appear in the work of Rickart [/0), 11, /Z]
although often with different but equivalent formulations. Definition 3.3 follows Quigley’s
formulation. This concept of boundary was introduced earlier by Quigley in [8]. Condition
(3.1) is discussed by Mecyers in [§]. The elegant proof of the naturalness of the algebra of
H4(X) based on the natural algebra [X, 4] is due to Quigley. A slightly different version of
the result with a proof based on Theorem 3.2 can be found in [72]. For the most extensive
discussion of algebras of A-holomerphic functions the reader should consult [70].

4. With the exception of the general theory of ringed spaces, all concepts which are
defined in this section were developed by Quigley in [9], as is the theory alluded to in the
comments after Theorem 4.1. Additional results of this type are in the work [/0, /7] of
his student, M. Schauck. Also Theorems 4.1 and 4.2 together with detailed ramifications
are established in [9].

5. The investigation of this section was motivated by [2, 3] where appear the proof of
Theorem 5.5 and the comment of the Caution which follows. All the other theorems of
this section are the work of my student, W. Meyers, and can be found with ramifications in
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[5]. It was Meyers’ work which stimulated me to prepare this expository outline and which
constituted the major portion of my talk at the Rice University Conference on Complex
Analysis.

6. In an attempt to understand an Arens-Calderon type theorem stated in Rosenfeld
[13], Meyers conducted a comprehensive seminar [6] on spectral theory as developed by
Wacelbroeck [Z8]. Theorem 6.1 is an outgrowth of that seminar.

7. There is no claim to originality for this list of open questions. In one form or another
all of them have come up in conversations among Quigley, Meyers, and myself at Tulane
University.
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