Intertidal Invertebrates and Biotopes of Poole Harbour SSSI

and survey of Brownsea Island Lagoon

Report to Natural England

March 2010

Intertidal Invertebrates and Biotopes of Poole Harbour SSSI

and survey of

Brownsea Island Lagoon

Roger J.H Herbert, Kathryn Ross, Ralf Hübner & Richard A. Stillman

Report to Natural England

March 2010

Centre for Conservation Ecology & Environmental Change Bournemouth University Christchurch House Talbot Campus Fern Barrow Poole Dorset BH12 5BB

Tel: 01202 524111

CONTENTS

Executive Summary	5
Poole Harbour Survey	
Introduction	8
Table 1. CSM Attributes	9
Methods	9
Results	14
Table 2.Area of habitats.Table 3.Sediment Classification Schemes.Table 4.Summary of Biotopes assigned.Table 5.Non-native species.Table 6. Energy available and energy required ineach WeBS sector.	16 20 22
Discussion	27
Table 7. Invertebrate density comparison 1972-2009	32

Brownsea Island Lagoon Survey

Introduction
Methods
Results
Table 8. Brownsea Island Lagoon salinity & sediments35Table 9. Brownsea Lagoon biotopes
Discussion
Conclusion
Acknowledgements
References

Contents contd.

Figures

Figure 1. Poole Harbour location map.

Figure 2. Poole Harbour SSSI and SPA boundaries

Figure 3. Location of sampling stations

Figure 4. Extent and distribution of marine habitats in Poole Harbour

Figure 5. LIDAR coverage for 1998-2006 comparison

- Figure 6. Histogram showing changes in elevation of intertidal areas 1998-2006, (LIDAR data).
- Figure 7. LIDAR imagery of Holes Bay indicating areas variation >-0.6m vertical elevation
- Figure 8. LIDAR imagery of NE part of Holes Bay

Figure 9. LIDAR imagery of southern part of Holes Bay

Figure 10. LIDAR imagery of Furzey & Green Islands indicating areas variation >-0.6m vertical elevation 1998-2006

Figure 11. LIDAR imagery of Furzey & Green Islands indicating changes in vertical elevation 1998-2006

Figure 12. LIDAR imagery of Brands Bay indicating areas variation >-0.6m vertical elevation 1998-2006

Figure 13. LIDAR imagery of Brands Bay indicating changes in vertical elevation 1998-2006

- Figure 14. Distribution of intertidal sediments
- Figure 15. Algal % coverage
- Figure 16. Algal Biomass
- Figure 17. Sediment % organic content

Figure 18. Total No. of species found at each sampling station 2002 & 2009

- Figure 19. Margalef Species Richness at each sampling station 2002 & 2009
- Figure 20. Shannon Diversity indices at each sampling station 2002 & 2009
- Figure 21. Pielous Evenness at each sampling station 2002 & 2009

Figure 22. AMBI indices at each sampling station 2002-2009

Figure 23. Density of organisms at each sampling station 2002 & 2009

Figure 24. Intertidal biotopes of Poole Harbour

- Figure 25. Mean biomass of Hediste diversicolor
- Figure 26. Mean biomass of Nephtys hombergii
- Figure 27. Mean biomass of *Alitta (Neanthes) virens*
- Figure 28. Mean biomass of 'small worms'

Figure 29. Mean biomass of Hydrobia ulvae

Figure 30. Mean biomass of Abra tenuis

Figure 31. Mean biomass of Cerastoderma spp.

Figure 32. Mean biomass of Scrobicularia plana

- Figure 33. Mean biomass of *Mya arenaria*
- Figure 34. Mean biomass of *Ruditapes* spp.
- Figure 35. Mean biomass of Corophium volutator
- Figure 36. Mean biomass of *Cyathura carinata*

Figure 37. Total biomass at each sampling station

Figure 38. Map of WeBS sectors and sampling points

Figure 39. Energy availability in each WeBS sector

Figure 40. Energy requirements in each WeBS sector

Figure 41. Brownsea Island Lagoon sampling stations

APPENDICES

APPENDIX 1	Poole Harbour sample locations
APPENDIX 2	Poole Harbour salinity data.
APPENDIX 3	Poole Harbour sediment data.
APPENDIX 4	Poole Harbour invertebrate species abundance
APPENDIX 5	Poole Harbour Diversity Indices.
APPENDIX 6	Poole Harbour Taxonomic Distinctness indices
APPENDIX 7	Poole Harbour Species Biomass comparison 02/09
APPENDIX 8	Poole Harbour SIMPEROF Dendrogram.
APPENDIX 9	Poole Harbour BioEnv output
APPENDIX 10	Poole Harbour predator/prey energy balance
APPENDIX 11	Poole Harbour bird energy requirements
APPENDIX 12	Poole Harbour 2004/5 low tide WeBS counts
APPENDIX 13	Brownsea Lagoon sediments & salinity
APPENDIX 14	Brownsea Lagoon invertebrates & algae
APPENDIX 15	Brownsea species biomass
APPENDIX 16	Dendrogram of UK lagoon assemblages.
APPENDIX 17	Poole Harbour core sample matrix
APPENDIX 18	Brownsea Lagoon core sample matrix

EXECUTIVE SUMMARY

- 1. This study was commissioned by *Natural England* to monitor and report on the condition of the notified intertidal sediment features (excluding saltmarsh) within the Poole Harbour Site of Special Scientific Interest (SSSI) and Special Protection Area (SPA), using Common Standards Monitoring guidance. These features include 'Estuaries', 'Sheltered Muddy Shores' and 'Coastal Saline Lagoons'.
- 2. A decadal comparison of the topographic changes of the eastern part of the harbour, approximately between Arne and Sandbanks, was carried out using LIDAR data from 1998 and 2006. Estuarine habitats and features data were obtained from several sources including surveys of saltmarsh and intertidal areas 2003/4 by the Poole Harbour Study Group and the East Dorset Habitat map 2008/9 commissioned by the Environment Agency based on an Integrated Habitat System (IHS).
- 3. Of a total area of 43ha for which comparative LIDAR data is available for the eastern part of the harbour, excluding Wareham Channel, 21.02ha showed reduced elevation over the period 1998-2006, whereas 21.98ha showed evidence of accretion. Areas of highly significant saltmarsh erosion >60cm were evident in Holes Bay, around Furzey and Green Island. In the Brands Bay area there has been some quite distinct deepening in some of the saltmarsh creeks.
- 4. A benthic invertebrate survey of the harbour was carried out in October and November 2009 using a 500m x 500m sampling grid of 80 stations employed in the previous survey of September 2002. The area surveyed included mudflats, sandflats and areas of mixed sediment between Mean High Water Springs (MHWS) and Mean Low Water Springs (MLWS), excluding saltmarsh habitats. Access to most sites was by RNLI hovercraft. The saline lagoon on Brownsea Island was surveyed in November.
- 5. For biota, five core samples (10cm diameter) were obtained to depth of 15cm from each of the 80 sampling sites. All cores were processed using a 0.5mm sieve and stored in labelled pots containing 10% Formal saline. A separate core sample was taken for sediment analysis. A field assessment of macroalgal cover was supplemented by algal biomass measurement within core samples.
- 6. The numerical densities of all fauna were derived from the core samples, with the exception of the lugworm *Arenicola marina*, where densities were from cast counts. For the assessment of bird food availability at each station, biomass-length relationships of the larger invertebrates were obtained from transformations presented in the earlier 2002 survey report of Thomas et al. (2004).
- 7. Most of the harbour can be described as 'mud'; the predominant sediment fraction at 73% of sites had a median diameter of less than 0.063mm, compared with 80% of sites in 2002. Virtually the whole of the Wareham Channel, Lytchett Bay and Holes Bay consisted of these finer sediments. Sand and 'Muddy Sand' sediments were recorded just inside the harbour entrance, towards Rockley Point and south of Brownsea Island. Sites with mixed sediment, including sand and gravels (>2mm) were found throughout the harbour and notably parts of Brands Bay and close to the islands.

- 8. Apart from at the entrance, most parts of the harbour had patches of dense macroalgal growth, with highest coverage in the sheltered creeks and inlets south of Brownsea Island, and parts of Holes Bay. Seven of the 80 sites sampled had more than 70% coverage; these sites were in Brands Bay, Newton Bay, Fitzworth Point, south west of Holes Bay and south of Holton Heath.
- 9. A total of 88 invertebrate 'species' were recorded in the core samples comprising 38 annelid species, 21 mollusca, 21 crustacea and 8 other species, including sea anemones and insect larvae. The highest number of species recorded was at the mixed sediment shore at Baiter Park with a total of 29 species, spread over the five core samples. Other pockets of high species richness included Brands Bay, Parkstone Bay, Arne Bay and parts of the Wareham Channel. In total, 10 non-native species were found; published records exist for all except for the South African polychaete worm *Desdemona ornata*.
- 10. Overall species abundance varied considerably in the harbour, both within and between sampling stations. The most notable change since the 2002 survey is the considerable reduction in abundance of sedentary polychaete species, including spionidae and cirratulidae, and amphipod crustaceans, except *Corophium* spp., which has increased slightly. Small oligochaete worms were of comparable densities to 2002. Significant increases since 2002 were the density of catworm *Nephtys hombergii* and the bivalves *Macoma balthica*, *Mya arenaria* and the manila clam *Ruditapes philippinarum*. The sandy areas near the mouth of the harbour showed least changes with similar densities of amphipods *Urothoe* and *Bathyporeia*, and lugworm *Arenicola marina*. The density of species, diversity and biomass of Lytchett Bay was considerably less compared to 2002.
- 11. Multivariate analysis carried out using the nMDS and SIMPROF routines in PRIMER software revealed eight main statistically significant groupings. The distribution of biotopes is generally similar to the 2002 survey. Biotopes were assigned to each site, using the Marine Habitat Classification System v0405. Biotopes generally coincide with the distribution of sediments in the harbour. Most biotopes could be described as polychaete/oligochaete and bivalve assemblages of upper and mid-estuarine regions. The most characteristic species across most assemblages was the ragworm *Hediste diversicolor*. Wareham Channel and the western part of the harbour is given the classification LS.LMu.MEst.HedMac (*Hediste* and *Macoma* in littoral sandy mud). However the density of *Macoma* is still very low and so the assemblage might best be currently described as '*Hediste* with Mixed Bivalves', due to varying amounts of *Abra*, *Macoma*, *Scrobicularia*, *Mya* and the manila clam *Ruditapes philippinarum*.
- 12. A series of sites were characterised by a species poor assemblage consisting of the catworm *Nephtys hombergii* and frequently high oligochaete densities, particularly to the south of Brownsea Island and in the vicinity of Brands Bay. This region consistently scored low for several biodiversity indices, including AMBI and Average Taxonomic Distinctness (Δ⁺), which is particularly sensitive to ecological impacts and least affected by differences in sampling effort. This general area had high macroalgal mat coverage. Bio-Env and BEST routines in PRIMER revealed weak, yet statistically significant associations between the biological assemblages and % organic matter, % silt/clay and combinations of these two sediment variables. Weaker, though statistically significant, relationships were also found between combinations of these sediment variables and both % algal cover and algal biomass. However, the association between the invertebrate assemblages and either, or combinations, of the two algal measures were not statistically significant.

- 13. Overall, the average biomass per station (mg AFDW m⁻²) was calculated to be 74% of that measured in 2002.
- 14. In some WeBS sectors, available energy greatly exceeded energy requirement, most notably close to the mouth of the harbour where energy requirement was low but biomass availability was relatively high.
- 15. The overall ratio of energy availability to that required (S_p:S_a) calculated for those sectors for which data is complete (approximately two-thirds of all sectors), is 1.5. This compares with a value of 4:1, calculated in 2002 (Thomas et al. 2004) and below that of an expected range of 2.5-8:1 (Goss-Custard et al. 2004). We caution that figure is sensitive to method of calculation of intertidal feeding area.
- 16. For avocets, the ratios are well in excess of requirements, except for Sector 31 (lower part of Middlebere Creek) and Sector 3 (Brownsea Island Lagoon) which are borderline. For Blacktailed godwit, Redshank, Grey plover and Oystercatcher, the energy available appears to be well in excess of requirements in most measured sectors. For Shelduck, ratios for over half of sectors are generally low or borderline.
- 17. Consistent with the 2002 survey is that there are areas for which energy availability significantly exceeds that required, notably in Sectors 20 and 21, the Brands Bay and Bramble Bush Bay region. This area has high biomass, yet predator exploitation is low. Significant parts of this region are colonised by green macroalgal mats, which may deter birds from feeding in these areas, and similarly affected parts of the harbour.
- 18. The saline lagoon on Brownsea Island was sampled in November 2009, with permission from Dorset Wildlife Trust. Six sampling stations were identified, with good access from the outer wall. Three cores (10cm diameter) were obtained from the edges of the lagoon to a depth of 15cm from each station, plus an additional 6cm diameter core for sediment analysis. Floating seaweed samples (approximately 0.5 litre volume) were taken from each site for the examination of associated fauna.
- 19. A total of 23 species were found in the core samples, with an additional 4 species recorded in samples of seaweed and in net samples around the sluice. Overall the fauna consisted of 9 annelids, 10 crustacea, 3 mollusca and 4 other species including insect larvae and the Schedule 5 protected anemone species *Nematostella vectensis*. Both biotopes ENLag.Veg and ENLag.IMS.Ann were assigned to the lagoon.
- 20. The lagoon at Brownsea Island is of considerable conservation importance. The site has very high abundances of typical lagoonal species, that are either of international importance, nationally scarce or uncommon such as *Nematostella vectensis* and *Ventrosia ventrosa*. These species are restricted to lagoon habitats in Britain. A comparative analysis of the invertebrate assemblage of Brownsea Lagoon and other UK lagoons, using Bray-Curtis similarity indices, places the site within the same category as lagoons currently designated as Special Areas of Conservation (EU Habitats Directive).

Intertidal invertebrates and biotopes of Poole Harbour SSSI, and survey of Brownsea Island Lagoon

Report to Natural England

March 2010

1.0 Introduction & Background

- 1.1 At high tide, Poole Harbour has an area of water of approximately 3600ha, making it one of Europe's largest lowland estuaries (Humphreys & May, 2005). The harbour comprises extensive intertidal areas, saltmarshes and several islands, the largest of which is Brownsea Island close to the harbour entrance. The harbour is fed by several small rivers and streams that mostly discharge into the western end near the small town of Wareham. The harbour consists of one main basin and two smaller basins in the north, Lytchett Bay and Holes Bay. The harbour is classified as micro-tidal, having a spring tide range of 1.8m and a neap tide range of 0.6m. There is a double high water in the harbour, which produces a relatively long stand at high tide, such that for about 16 hours out of 24, the water level is above mean tide level (Humphreys, 2005). The entrance is particularly narrow, with fast tidal streams, and despite the tidal range the harbour has a tidal prism ratio of 0.45 for spring tides, meaning that about 45% of the water leaves the harbour on a spring ebb tide (Humphreys, 2005). Poole Harbour is an area of international importance for nature conservation and is designated under EU and UK legislation, and under the RAMSAR convention. The harbour supports large numbers of waterfowl including internationally important populations of shellduck, black-tailed godwit, avocet, Mediterranean gull and common tern.
- 1.2 The marine macrofauna of the harbour has been recently reviewed within several papers contained in *The Ecology of Poole Harbour* (Humphreys & May, 2005). These include a review of the intertidal macrofauna (Caldow et al. 2005), sub-tidal fauna (Dyrynda, 2005) and fisheries (Jenson et al. 2005). The intertidal mudflats of the harbour have been characterised by populations of ragworms (*Hediste diversicolor*) and King Ragworm (*Alitta (Neanthes) virens*) along with numerous smaller polychaete and oligochaete worm species. Prior to the 1990s, the fauna was dominated by much larger populations of molluscs, notably the bivalves *Scrobicularia plana* and *Macoma baltica* (Caldow et al. 2005).
- 1.3 This study, commissioned by *Natural England*, was to report on the condition of the notified intertidal sediment features (excluding saltmarsh) within the Poole Harbour Site of Special Scientific Interest (SSSI) and Special Protection Area (SPA) designated under the EU Birds Directive. These features include 'Estuaries', 'Sheltered Muddy Shores' and 'Coastal Saline Lagoons'. The monitoring of these features is also an objective of the Poole Harbour Aquatic Management Plan (2007).
- 1.4 Attributes of each feature, set out in Common Standards Monitoring Guidance (CSM) considered in this study are included in Table 1.

	Feature				
	Estuaries	Sheltered Muddy Shores (littoral sediments)	Coastal Saline Lagoons		
Attribute		seaments)	Lagoons		
Extent of Features					
Spatial Pattern of Habitats					
Salinity					
Sediment Character/Type/Organic					
Biotope Composition					
Species Composition of Biotopes					
Spatial Distribution of Biotopes					
Extent of sub-features					
Species Population Measures					
Food Availability for Birds					

Table 1. CSM attributes of each feature considered in this study.

2.0 Methodology – assessment of extent of features

- 2.1 Estuarine habitats and features data on GIS layers were obtained from several sources: (a) survey of saltmarsh prepared for the NBN South-West pilot project in 2003; (b) mudflat survey by the Poole Harbour Study Group using hand held GPS and ground truthing, (Dorset Environmental Records Centre, DERC) (c) East Dorset Habitat map; a new study commissioned by the Environment Agency based on an Integrated Habitat System (IHS) utilising high resolution aerial photography at scale 1:1250, obtained in 2008 and 2009. The flights for this study intended to coincide as close as possible to Mean Low Water Spring tides (MLWS). The maps are used for baseline inventories of saltmarsh as part of the UK response to the EU Water Framework Directive, and provide a benchmark against which the Environment Agency can measure the health of the UK's estuaries. (d) information on the general distribution of sublittoral habitats was obtained from Dyrynda (2005) and from epibenthic surveys carried out by the University of Swansea in the summer of 2003 as part of the impact assessment for the Channel-Deepening project (Poole Harbour Commissioners, 2007). This consisted of recording all species and an estimate of species biomass from trawling at 63 locations within the channels proposed for dredging and other channels including Holes Bay and Wareham Channel. The distribution of Seagrass (Zostera marina) was obtained from Collins (2009). The base is OS MasterMap and all layers snap to map features. The data was processed and presented in ArcGIS v9.3.1.
- 2.2 A decadal comparison of the topographic changes of the eastern part of the harbour, approximately between Arne and Sandbanks, was carried out using LIDAR data from 1998 and 2006, provided by the Environment Agency Geoinformatics group. The intertidal habitats of the western part of the harbour are not sufficiently visible in the 1998 survey, due to tidal conditions. A resolution of approximately 30cm elevation was considered appropriate for a comparison of LIDAR data obtained from two surveys over this period.

2.3 Information on measured changes in the bathymetry of the harbour during the Channel Deepening in 2006 was obtained by Poole Harbour Commissioners (Poole Harbour Commissioners, 2008).

3.0 Methodology: field survey

- **3.1** The area surveyed included mudflats, sandflats and areas of mixed sediment between Mean High Water Springs (MHWS) and Mean Low Water Springs (MLWS), excluding saltmarsh habitats (Fig 1). The SSSI (Fig 2) boundaries fall within this range (Mean High Water and Mean Low Water). The lagoon on Brownsea Island, which retains water at low tide, was surveyed separately. The methods used follow appropriate procedural guidelines 3.6 contained in the Marine Monitoring Handbook (Davies et al. 2001).
- **3.2** Fieldwork commenced on October 4th and was completed on November 20th. Sampling sites were located on a 500m x 500m sampling grid (Fig 3), used in the previous survey (Thomas et al. 2004). Most of the 80 sampling points on the survey grid were accessed by Royal National Lifeboat Institution (RNLI) hovercraft, at low water spring tides. Ten outings were necessary by hovercraft, with between 6 and 11 stations visited on each tide. To minimise disturbance, the environmentally sensitive areas of Lytchett Bay and the north end of Holes Bay, above the railway bridge, were accessed using a small displacement craft and RIB respectively. The sandy shores near Sandbanks and Rockley Point were visited on foot at low spring tides. Samples were taken as close as practically possible to each predetermined sampling point, located using a global positioning system (GPS). Sampling locations are shown in Appendix 1.
- **3.3** Air and sea temperatures during the survey period were above the seasonal average and in October the weather was generally calm. Heavy rain and strong winds caused the postponement of survey work in early November.
- **3.4** For biota, five core samples (10cm diameter) were obtained to a depth of 15cm from each sampling site, except for station 68 where only 3 samples were retrieved due to fast incoming tide. Additional sets of samples were obtained from the shore west of site 33, Rockley Point, HWN & MTL (n = 3) and close to Lilliput Sailing Club pontoon in the Blue Lagoon (n=5, Mean Tide Level). In Lytchett Bay and Blue Lagoon, a long-handle 'suction-corer', diameter 10cm, was deployed from a boat. In addition to the cores, 3 separate areas of 30 x 30 cm were dug with a garden spade to search for larger fauna including bivalves and worms. These were quantified and samples kept for further analysis.
- **3.5** At each site, a core (6cm diameter) was taken to a depth of 15cm for sediment particle size analysis and measurement of organic content.
- **3.6** In addition to the main grid sites, the rocky and mixed sediment shore below Baiter Park was surveyed separately on 14th October 2009 and March 25th 2010. Three 1m² quadrats were placed in each zone on the shore to quantify flora and fauna. A general search was made for other species on the shore.
- **3.7** A site description, following criteria in *Marine Monitoring Handbook* Method 3.6 (Davies et al. 2001), was completed for each site and most sites were photographed. This included a visual assessment of % algal cover within 5m of each sampling station and counts of lugworm (*Arenicola marina*) casts in a 1m² quadrat.

4.0 Methodology: sample processing and preservation

- **4.1** All cores were sieved through a 0.5mm Endecot sieve within 24hrs of sampling and stored in labelled pots containing 10% Formal saline. Checks on a random selection of samples were made after 72hrs post-collection to ensure adequate preservation. Samples were 'picked' under low power stereo binocular microscope. Quality assurance procedures included checking 10% of all samples to ensure adequate removal of fauna, including small polychaetes and oligochaetes.
- **4.2** Algae contained in core samples was separated and placed in individual sample labelled specimen bags and frozen. Upon de-frosting, samples were placed in a 0.5mm sieve and washed under running water to remove sediment. Samples were then placed in weighed crucibles, dried in an oven at 100 °C for 48 hrs and then re-weighed.
- **4.3** All fauna was identified to species level where possible. Taxonomy and nomenclature follow that of World Register of Marine Species (WoRMS: www.marinespecies.org). Where there has been a change to well known and accepted nomenclature this is given in brackets. Faunal counts within core samples were converted to densities per m². Only heads of worms were counted. The fauna found in the 'digs' was used to confirm biotope and presence of larger, less abundant species.
- **4.4** For biomass assessment the size of selected faunal species, considered to be sufficiently abundant and likely to be of importance as prey for birds, was measured using a micrometer eyepiece or ruler to nearest millimetre. For the larger worms (*Hediste, Nephtys* and *Alitta* (*Neanthes*)) the length of fragmented specimens was estimated by a regression analysis on head width vs length.
- **4.5** The numerical densities of fauna were derived from the core samples, with the exception of the lugworm *Arenicola marina*, where densities were derived from cast counts.
- **4.6** Core samples for sediment analysis were initially frozen to minimise organic decomposition. Two defrosted sub-samples were weighed, then thoroughly mixed with sodium hexametaphosphate solution to homogenise and muffled at 650° C to determine organic content. Remaining material was then wet-sieved over a stack to determine particle size fractions (< 63μ m, 63μ m, 125μ m, 250μ m, 500μ m, 1mm, 2mm).
- **4.7** In addition to in-house quality assurance procedures, samples of biota were also sent to Artoo Marine Biology consultants, Southampton, to confirm identifications and abundances.

5.0 Methodology – data analysis and processing

5.1 The five core samples from each site were combined and multivariate analysis was applied to determine macrofauna assemblage groupings using PRIMER v6 (Clarke & Gorely, 2006). Non-metric multidimensional scaling (nMDS) and Cluster Analysis was utilised to determine the similarity (Bray-Curtis similarity index) between sampling locations. This was carried out to establish whether different assemblages, and possibly biotopes, could be identified. Colonial epifauna such as bryozoans were scored 1 for their presence. The

nMDS plots show benthic assemblages from the different locations illustrated on a 2dimensional scale; the closer the distance between sampling locations the more similar the benthic assemblage. A measure of the agreement between the 2-D plot and multidimensional 'actual' solution is shown as value of 'stress' for each plot. The plot is considered a reasonable representation of location similarity if stress values are <0.1. A Cluster Analysis was also applied to further clarify identified groupings and a statistical probability applied to separation using the SIMPROF routine (PRIMER 6).

- **5.2** A biotope classification was assigned to each site, based on its similarity with those defined in the Marine Habitat Classification System of Britain & Ireland v0405 (Conner et al. 2004). This hierarchical system combines both physical habitat characteristics' with the observed biological community. The system is fully compatible with and contributes to the European system EUNIS. The assignation of biotope utilised both the assemblage nMDS & SIMPEROF data output from PRIMER, the sediment analysis and expert judgement. If an appropriate biotope could not be reasonably assigned, a conservative approach was adopted by moving up a tier in the classification hierarchy, or applying a transitional or temporary biotope. Although the Marine Classification System is still evolving as more information is generated, it is considered useful for describing site attributes and comparing sites.
- **5.3** Measures of species richness (Margalef Species Richness) and diversity (Shannon & Simpson Diversity indices) were calculated to compare with earlier studies on the estuary.
- **5.4** Measures of sample Taxonomic Diversity (Δ), Taxonomic Distinctness (Δ^*) Average Taxonomic Distinctness (Δ^+) and Variation in Taxonomic Distinctness (Λ^+) were calculated using PRIMER 6 (Clarke & Gorely, 2006). These indices of biodiversity are much less sensitive to sampling effort than other indices of diversity and species richness, and measure the taxonomic relatedness or taxonomic breadth of fauna in each sample.
- **5.5** The AMBI (AZTI Marine Biotic Index) was calculated for each sample using AMBI software (www.azti.es). AMBI was designed to establish the ecological quality of European coasts, analysing the response of soft-bottom communities to natural and maninduced changes in water and sediment quality (Borja et al. 2000, 2003a). The AMBI offers a 'pollution or disturbance classification' of a particular site, representing the benthic community 'health' and is being adopted for use in monitoring programmes associated with the European Water Framework Directive (WFD). The index measures the frequency of particular ecological groups of benthic organisms that have varying responses and sensitivities to disturbance and organic enrichment. The species library utilised was for February 2010.
- **5.6** To determine whether algal mats and sediment variables influence the composition of invertebrate assemblages the Bio-Env and BEST routines in PRIMER 6 were used. These routines attempt to correlate resemblance matrices of both environmental variables and biotic assemblages. Environmental variables chosen were % algal cover, algal biomass, sediment % organic matter and sediment % clay/silt (< 63μ m). The EM (expectation-maximisation) algorithm was employed to compute 'missing' values, where data had not been obtained (some of the sites were surveyed from a vessel at high tide, so an accurate assessment of algal cover could not be made).
- **5.7** For the assessment of bird food availability at each station, biomass-length relationships of the larger invertebrates were obtained from transformations presented in Thomas et al.

(2004) and accompanying Excel file:

(ENINVERTEBRATESsmallwormscorrected_2002.xls). For smaller species e.g. oligochaetes that were not measured, Ash Free Dry Weight (AFDW) values presented in Thomas et al (2004) were used wherever possible. For species where size-biomass relationships were not given, those of the closest taxonomic group were employed. For amphipods and other crustacea the relationship derived for *Gammarus locusta* was used. For all *Macoma* and juvenile *Mya arenaria* (<10mm), the relationship for *Abra tenuis* was utilised, whereas adult *Mya* and *Scrobicularia plana*, values given in Thomas et al (2004) were used.

5.8 The distribution of birds within the harbour is based on the most recent low tide WeBS counts, conducted in 2004/5. Count sectors differ from those in 2002. For some of the new sectors, counts are not available or the area of that sector has not been determined. Average biomass and energy availability per sector has been calculated as the mean value of those sampling sites falling within that sector. The energy available to different bird species within the harbour has been calculated on the basis of their preferred diet. The energy requirements for each WeBS sector were determined by converting the number of birds per sector into overwinter energy requirement in kJ using the following conversion factors (from Thomas et al. 2004):

Species	Energy conversion factor
Shelduck	2.902
Oystercatcher	4.018
Grey plover	8.333
Avocet	7.8889
Dunlin	22.6232
Redshank	10.606
Black-tailed godwit	6.1589
Curlew	2.9676

Energy availability in kJ was calculated using AFDM to kJ conversion factors from Thomas et al. (2004). On the energy availability map (Figure 39), energy per sector was calculated using the sector areas from Thomas et al. 2004, which used Admiralty Chart 2615 (extending from HWS to CD) multiplied by 0.39 to account for tidal exposure. For sectors which did not have comparable counterparts in Thomas et al (DP001, DP003, DP004, DP007, DP008, DP022, DP023, DP024, DP033) the areas were calculated in GIS using the area of the sector minus the low water springs area multiplied by 0.39. Energy availability for each species, and availability to requirement ratios were calculated using both estimates for available area, and are included in Appendix 11.

6.0 **Results**

The Results are presented as follows. Figures are to be found in the 'Figures' section. Most of the tabulated information is to found in the Appendices.

6.1 Estimation of 'Extent' of Poole Harbour Estuary, including the area of intertidal sediments, saltmarshes and lagoon. A more general assessment of sublittoral habitats is also given.

6.2 Description and distribution of sediments in Poole Harbour, Salinity and Macroalgal cover.

6.3 Description of invertebrate communities and biotopes in Poole Harbour.

6.4 Influence of algal mats on species assemblages

6.5 Non-native and notable species recorded in Poole Harbour.

6.6 Individual species distributions and biomass.

6.7 Estimation of biomass of invertebrate prey and energy available to birds in WeBS sectors of Poole Harbour.

6.1 Extent of Estuary

- 6.1.1 Locations of sites used within this report are presented in Figure 1. The general distribution of marine habitats, including intertidal sediments determined from 2008/9 aerial photography, is presented in Figure 4. As might be expected in a sheltered inlet, the harbour sediments primarily consist of fine grained silts and clays, mixed with coarser sands and gravels where wave or tidal energy is greatest, such as at the harbour entrance and in the major creeks and channels. The distribution of subtidal habitats is largely based on Dyrynda (2005) where studies were focussed on the navigable channels. Some extrapolation, based on field observations during this present survey, has been presented in Figure 4, particularly with respect to likely sediments and habitats between Mean Low Water Springs and Extreme Low Water Springs i.e. the area that was mapped through aerial photography (IHS) and the subtidal surveys. The area of seagrass *Zostera marina* in the Whitley Lake area, just inside Sandbanks, is a BAP Priority habitat and of particular conservation interest. Seahorses (*Hippocampus* sp.) were found at this location (Humphreys pers.comm.) in 2009.
- 6.1.2 The area of intertidal sediments and saltmarsh is presented in Table 2. Determinations from both the 2002/3 and 2008/9 are included for comparison. However, the validity of any quantitative comparison is questionable, given that the survey data obtained in 2002/3 was largely field based or a combination of field data and aerial photography, yet the 2008/9 data was obtained using aerial photography only.

Table 2. Area (ha) of main habitats determined from two recent studies.

Area of littoral sediment is that exposed between Mean High Water, as indicated on the Ordnance Survey Map, and approximately Mean Low Water Spring Tide, as determined by aerial photography.

Feature	2003/4	2008/9
Saltmarsh	422.9	385.6
Littoral Sediment	1359.1	1373.8
Littoral Rock	N/R	10
Water at MLWS	N/R	1816.3
Total		3585.7

- 6.1.3 In an attempt to quantify changes in the vertical elevation of intertidal habitat, that may have occurred through erosion or the accretion of sediments, LIDAR data obtained in 1998 and in 2006 was compared (© Environment Agency Geomatics group). Data for the western part of the harbour was not usable for comparative purposes as this had not been obtained during sufficiently low tides. Figure 5 shows the area of the harbour that was compared in this analysis and Figures 6-13 illustrate areas where the most significant changes have occurred: within Holes Bay, Brands Bay and Furzey and Green Island. Note that this analysis excluded areas outside of the harbour, where there have been significant changes in beach levels. Overall, as presented in Figure 4, of a total area of 43ha for which comparative LIDAR data is available, 21.02ha showed reduced elevation over this period, whereas 21.98ha showed evidence of accretion. Areas of highly significant erosion >60 cm, within the resolution of the survey (± 30 cm) are in total less than 3ha. In Holes Bay, eroded areas appear most significant around the edges of saltmarshes in the southern, eastern and northern region (Figures 5-7). Around Furzey and Green Island, there again appear to have been small areas of saltmarsh erosion (Figures 8-9), with perhaps a slight reduction in upper beach level. In the Brands Bay area (Figures 12-13) there has been some quite distinct deepening in some of the saltmarsh creeks.
- 6.1.4 The Poole Harbour Commissioners (PHC) bathymetric survey reports of 2007 and 2008, conducted throughout the harbour since the channel deepening project of 2005/6, state no significant differences to the background trends, as measured in previous surveys. The baseline for all depth comparisons is the 2005 Report covering 1849-2004. The tolerance of all surveys is +/- 0.08m. The changes in bed bathymetry around most of the saltmarshes are not clear from these surveys as they are mostly confined to the navigable channels.

6.2 Sediments, salinity and macroalgae

6.2.1 The distribution of sediments from the 80 sampling stations within Poole Harbour is shown in Appendix 2. Sediments are classified according to several different scales. Most of the biotope classifications refer to the Folk Scale (Table 3) and this will be used in this report. For consistency and to enable comparison with Thomas et al. (2004), the predominant sediment type is the sediment fraction representing more than 45% of the total sediment sample. Most of the harbour can be described as 'mud'; the predominant sediment fraction at 73% of sites had a median diameter of less than 0.063mm. This compares with 80% of sites in 2002, although the earlier survey just used the top 5cm of sediment, rather than a core to 15cm depth. Virtually the whole of the Wareham

Channel, Lytchett Bay and Holes Bay consisted of these finer sediments. Based on the information form cores samples, the approximate distribution of sediments is shown in Figure 14. Sand and 'Muddy Sand' sediments were recorded just inside the Harbour entrance, towards Rockley Point and south of Brownsea Island. Sites with mixed sediment, including sand and gravels (>2mm) were found throughout the harbour and notably parts of Brands Bay and close to the islands. Some sites at higher tidal levels also had coarser sediments. It is possible that those areas shown as 'sandy' may have finer sediments on the lower shore towards MLWS.

Wentworth Scale	Phi Class	Median diameter (mm)	Folk Scale (approx)
Granule	-1	>2.0	Sand
Very coarse sand	0	1.0	Sand
Coarse sand	1	0.5	Sand
Medium sand	2	0.25	Sand
Fine sand	3	0.125	Muddy Sand
Very fine sand	4	0.063	Sandy Mud
Coarse to fine silt	5-8	<.063	Mud

 Table 3 Approximate cross comparison of different sediment classification schemes.

- 6.2.1 The surface salinity data obtained from the Environment Agency is presented in Appendix 3. Importantly, the data shows a gradient in salinity with typically reduced salinities recorded in the Wareham Channel (4.5-20ppt) and higher salinities at the Harbour entrance (27.5-34.5ppt), which is within the range expected and previously recorded (Humphreys, 2005). At most sites, salinities are highest during the summer due to reduced river discharge and greater evapo-transpiration. However low salinities were recorded during the summer also.
- Macroalgal species forming green mats on the mud surface and identified for assessment 6.2.2 in the field were mostly Ulva spp. (NB Enteromorpha spp. are now referred to as Ulva spp.). Clumps of large brown algae (Fucus spp.) were occasionally seen attached to the cobbles and boulders on the mid and upper shore levels, however these were not included in the assessment. Similarly, wind blown or washed up algae was noted but not included. The extent of macroalgal mat coverage, as determined from % cover estimation is shown in Figure 15. Very little algae was recorded on the sandy sediments near the harbour entrance, although most parts of the remainder of the harbour had patches of dense growth, with highest coverage in the sheltered creeks and inlets south of Brownsea Island, and parts of Holes Bay. Seven of the 80 sites sampled had more than 70% coverage; these sites were in Brands Bay, Newton Bay, Fitzworth Point, south west of Holes Bay and south of Holton Heath. Relatively little attached macroalgae was found in the upper Wareham Channel. At the very head of the harbour, there were large quantities of wind blown and drift algae stranded at low tide. The percentage of algal cover could not be visibly determined at sites that were necessarily surveyed at high tide e.g upper part of Holes Bay, Lytchett Bay and Blue Lagoon. The algal biomass determined from the core samples helps to complete the picture (Figure 16), with high values in the north eastern part of Lytchett Bay, Wareham Channel, Holes Bay and south of Brownsea Island, particularly Brands Bay. There is a statistically significant correlation between visible cover and biomass (r=0.47, n=71, P>0.001). The map

showing % sediment organic matter (Figure 17) is also useful in indicating areas of organic enrichment. Organic matter is likely to include fluvial and marine debris, live algae, algal detritus and saltmarsh debris, in varying proportions. High values are evident in sheltered areas including Holes Bay, Lytchett Bay, Wareham Channel and Brands Bay.

6.3 **Invertebrate communities and Biotopes of Poole Harbour**

- 6.3.1 A total of 88 invertebrate 'species' were recorded in the core samples comprising 38 annelid species, 21 mollusca, 21 crustacea and 8 other species, including sea anemones and insect larvae, summarised in Appendix 4. An additional two sea anemone species, *Anemonia viridis* and *Cereus pedunculatus*, were recorded on the surface of the mud and sand flats when sampling in the field. The latter species was particularly abundant, especially at sites 48, 54 & 68 on sheltered fine sediments south of Brownsea Island and was almost certainly recorded in the cores (but not differentiated from other cnidaria in the above total figure as determination of preserved anemones is inconclusive). An additional 11 species were recorded on the mixed sediments and cobble foreshore at Baiter Park including limpet *Patella vulgata*, periwinkle *Littorina obtusata*, and porcelain crab *Pisidia longicornis*.
- 6.3.2 The species richness (total no. of species) varied between 1 and 29 species per site (Figure 18). The highest number of species recorded was at the mixed sediment shore at Baiter Park (site 71) with a total of 29 species spread over the five core samples (Figure 6). Other pockets of high species richness were well scattered across the harbour and included Brands Bay, Parkstone Bay, Arne Bay and parts of the Wareham Channel. The total number of species is higher than the 61 species, recorded in 2002 study, which only sampled a single core.
- 6.3.3 Species Richness measures are strongly dependant on sampling size and effort. The Species Diversity indices are shown in Appendix 5 and presented alongside 2002 data in Figures 19-21. Both the Shannon Weiner Diversity Index and Margalef Species Richness Index are generally greater than the earlier study in 2002, as are Pielou's Eveness indices. Biodiversity measures based on the relatedness of species e.g taxonomic diversity, are the least sensitive to sampling effort and presented in Appendix 6. One region of the harbour that consistently scores low for several of these indices, including Average Taxonomic Distinctness (Δ^+), is the area south of Brownsea Island, including Brands Bay.
- 6.3.4 The AMBI index map (Figure 22) shows eight 'Heavily Disturbed' sites, compared to five sites using data from 2002. Most of these sites occur in the area to the south of Brownsea Island, with others being in the Blue Lagoon and Parkstone Bay. However nine stations in the Wareham Channel that were previously categorised as having 'Moderate Disturbance' are now shown as having 'Slight Disturbance' in 2009.
- 6.3.5 Details of the abundance and biomass of selected taxa is given below. Overall species abundance varied considerably, both within and between sampling stations (Figure 23) The most notable change since the 2002 survey is the considerable drop in abundance of sedentary polychaete species, including spionidae and cirratulidae, and amphipod crustaceans, except *Corophium* spp., which has increased slightly. Other increases since 2002 are the density of catworm *Nephtys hombergii* and the bivalves *Macoma balthica*,

Mya arenaria and the manila clam *Ruditapes philipinarum*. The sandy areas near the mouth of the harbour showed least changes with similar densities of amphipods *Urothoe* and *Bathyporeia*, and lugworm *Arenicola marina*, although the errant polychaete *Scoloplos armiger* is in reduced abundance.

- 6.3.6 The multivariate analysis carried out using the MDS and SIMPROF routines in PRIMER 6 revealed eight main statistically significant groupings (P<0.05), as indicated on the dendrogram (Appendix 8), shown as clusters A, B1,B2, C, D,E,F,G. The groups within the substructure of the dendrogram shown in red could not be statistically differentiated. The stress level of the MDS output of 0.25 exceeded the accepted threshold of 0.1, and thus must be interpreted with caution.
- 6.3.7 From the SIMPEROF dendrogram (Appendix 8), Grouping A is a pair of sites (71&73) within predominantly mixed sand and muddy-sand sediments; Group B, those with mainly sandy sediments; Group C is characterised by higher densities of the prosobranch snail *Hydrobia ulvae* and bivalve *Abra tenuis*; Sites D & E are more closely related and generally have higher numbers of oligochaete worms, yet are statistically different, with D characterised by higher densities of the catworm *Nephtys hombergii*; Site F consists of five sites dominated by the amphipod *Corophium volutator* and the ragworm *Hediste diversicolor* common; Site G is a large group of 20 sites characterised by high densities of *Hediste*.
- 6.3.8 The Biotopes assigned to each site, using the Marine Habitat Classification System v0405 (Connor et al. 2004) are shown in Table 4 and shown spatially in Figure 24. Eight main Biotopes were determined, combining the MDS and SIMPROF dendrogram output from PRIMER 6, the sediment data and 'expert judgement'. Individual sites that were differentiated in SIMPROF as being significantly different to all others, notably 4, 21, 40, 46 & 75 were mostly classified at a lower level in the biotope hierarchy.
- 6.3.9 The biotopes generally coincide with the distribution of sediments in the harbour, with assemblages characteristic of sands present near the harbour entrance; these consist of the annelid worm *Scoloplos armiger*, lugworm *Arenicola marina* and amphipod *Urothoe*. Polychaete and bivalve assemblages are common throughout the harbour and are primarily differentiated by proximity to areas of reduced salinity.
- 6.3.10 The most characteristic species across most assemblages was the ragworm *Hediste* diversicolor, which was present at the majority of sites, and samples. Accepted variants of the Upper Estuary biotope LS.LMu.UEst.Hed (*Hediste diversicolor* in littoral mud) are present throughout the harbour, particularly in sheltered creeks, where dilution is likely to be an important factor. At these sites, the isopod *Cyathura carinata* was most frequent. Particularly high densities of the amphipod *Corophium volutator* were present with abundant *Hediste* in some sheltered creeks, particularly the upper Wareham Channel, Brands Bay and Middlebere Lake, which is characteristic of biotope LS.LMu.UEst.Hed.Cvol (*Hediste* and *Corophium* in littoral mud). The site at Middlebere Lake had conspicuously mixed sediment and it is possible that the biotope is LS.LMx.GvMu.HedMx.Cvol (*Hediste diversicolor* and *Corophium volutator* in littoral gravelly sandy mud). However, the classification does indicate the high probability of broad transition areas between this biotope and the corresponding muddy sediment biotope Hed.Cvol. The boundaries may be very indistinct, with HedMx.Cvol.

- 6.3.11 With the variety of bivalves present in association with ragworm *Hediste diversicolor*, much of the Wareham Channel and western part of the harbour is given the classification **LS.LMu.MEst.HedMac** (*Hediste* and *Macoma* in littoral sandy mud). However the density of *Macoma* is still very low and so the assemblage might best be currently described as '*Hediste* with Mixed Bivalves', due to varying amounts of *Abra*, *Macoma*, *Scrobicularia*, *Mya* and the manila clam *Ruditapes philippinarum*.
- 6.3.12 Assemblages of Littoral Mixed Sediment (LS.LMx.Mx) were locally distributed in the vicinity of Baiter Park and Parkstone Bay. The coarse and fine sediments create a varied habitat and as a consequence some of these sites were of high diversity. The shore at Baiter Park also consisted of cobbles and small boulders, covered with seaweeds *Fucus spiralis* and *F. serratus* and gastropod molluscs including *Littorina littorea* and *Patella vulgata*. Beneath the seaweed and cobbles were small amphipod and decapod crustaceans.
- 6.3.13 A series of sites were characterised by a species poor assemblage consisting of the catworm *Nephtys hombergi* and frequently high oligochaete densities (Assemblage Cluster D), particularly to the south of Brownsea Island and in the vicinity of Brands Bay. Tentatively, this has been assigned the biotope LS.LMu.UEst.NhomStr (*Nephtys hombergii* and *Streblospio shrubsolii* in littoral Mud), although *Streblospio* was rare or absent from many of these sites, the observed assemblage matches the classification description in other respects.

Group	Characteristic species	Biotope(s) assigned
A	This assemblage was characterised by mixed sediments, including sands and gravels, in addition to muds. The diversity was generally higher than average and included a broad range of taxa.	Littoral Mixed Sediment LS.LMx.Mx
B1	An assemblage of sandy shores, consisting largely of the annelid <i>Scoloplos armiger</i> , the lugworm <i>Arenicola marina</i> and amphipod <i>Urothoe</i> .	Polychaete/Bivalve dominated Muddy Sand Shores: LS.LSa.MuSa
B2	An assemblage on sands, without <i>Arenicola</i> and <i>Urothoe</i> but including <i>Scoloplos</i> and bivalves.	Polychaete/Bivalve dominated Muddy Sand Shores: LS.LSa.MuSa
С	An assemblage characterised by higher than average densities of <i>Hydrobia</i> <i>ulvae</i> , and bivalve <i>Abra tenuis</i>	Polychaete/Bivalve dominated mid estuarine Muds: LS.LMu.MEst
D	An assemblage characterised by catworm <i>Nephyts hombergii</i> and oligochaetes	<i>Nephtys hombergii</i> and <i>Streblospio</i> <i>shrubsolii</i> in littoral Mud. LS.LMu.UEst.NhomStr
Ε	A mixed and sometime diverse assemblage, yet with generally above average densities of oligochaetes: frequent in Holes Bay.	Polychaete/Bivalve dominated mid estuarine Muds:LS.LMu.MEst <i>Hediste</i> and oligochaetes in littoral mud:
F	An assemblage characterised by generally high densities of the ragworm <i>Hediste diversicolor</i> and the amphipod crustacean <i>Corophium volutator</i>	LS.LMu.UEst.Hed.Ol Hediste and Corophium in littoral mud: LS.LMu.UEst.Hed.Cvol
G	An assemblage characterised by generally high densities of the ragworm <i>Hediste diversicolor</i> , locally enhanced	Hediste diversicolor in littoral mud LS.LMu.UEst.Hed.
	and modified with bivalve molluscs including <i>Macoma balthica</i> , <i>Scrobicularia plana</i> , <i>Mya arenaria</i> or with reduced diversity in association with oligochaetes and or isopod <i>Cyathura</i>	Hediste, Macoma in littoral sandy muds LS.LMu.MEst.HedMac Hediste and oligochaetes in littoral mud:
	<i>carinata,</i> particularly in the upper estuary.	LS.LMu.UEst.Hed.Ol

Table 4 Summary of assemblages identified and Biotopes assigned (Conner et al. 2004).

6.4 **Influence of Algal mats on invertebrate assemblages**

The Bio-Env and BEST routines in PRIMER 6 were used to test the association between invertebrate assemblages and four environmental variables; % algal cover, algal biomass, sediment % organic matter and sediment silt/clay fraction. Two separate tests were carried out; the strength of the association between the assemblages and all four variables and combinations of variables, and the second test examined the algal parameters separately. The histograms and tabular output from the BEST routine is presented in Appendix 9. Using 999 permutations, weak, yet statistically significant associations (P=0.02) were found between the biological assemblages and with % organic matter ($\rho=0.283$), % silt/clay ($\rho=0.265$) and combinations of these two sediment variables ($\rho=0.302$). Weaker, though statistically significant, relationships were also found between combinations of these sediment variables and each of the algal parameters. However, the association between the invertebrate assemblages and either, or combinations, of the two algal measures were not statistically significant (P>0.14).

6.5 Non-native and notable species in Poole Harbour

- 6.5.1 In total, 10 non-native species were recorded and shown in Table 5. All are listed in Eno et al. (1997), except for the South African polychaete worm *Desdemona ornata*, first reported in the UK by Smith et al. (1999) and for which there are no previously published records in Poole Harbour, although the species was recorded in the harbour by the Environment Agency in March 2008. The Manila clam is now naturalised in the harbour and further details are provided below on abundance and biomass. Other notable occurrences are the Pacific Oyster *Crassostrea gigas*, recorded on harbour walls, steps and hard structures on the shore at Baiter Park and at the entrance to the Blue Lagoon, and the Japanese kelp *Undaria pinnatifida*. There are so far very few UK records of *Undaria* having naturalised on to the shore from pontoons and breakwaters. The Pacific Oyster has naturalised and needs to be monitored, as this species can form reefs on soft substrata.
- 6.5.2 There were no obvious signs of recently colonised southern species in the harbour as a result of rising sea temperatures. However the crustacean *Apseudes latreillii* (Crustacea:Tanaidae) has not previously been recorded and may be a new colonist, having a primarily southern distribution. The record could be its most easterly station in the Channel (Bamber pers.comm.).

Table 5 Non-native species recorded in Poole Harbour, October-November 2009. Abundance isapproximate SACFOR scale code.

Species	Details	Abundance
Crassostrea gigas (Pacific Oyster)	Recorded on harbour walls, entrance to	R
	Blue Lagoon and structures at Baiter Park	
Crepidula fornicate (Slipper limpet)	Live chains found on mud surfaces	О
Desdemona ornate (Polychaete)	Found in sediment cores; new introduction	Ο
Elminius modestus (Barnacle)	Established on hard substrata on the shore	А
Eusarsiella zostericolia (Ostracod)	Found in sediment cores. No previous published record in the Harbour	F
Grateloupia turturu (Red alga)	Found at Baiter park on mixed substrata	F
<i>Mya arenaria</i> (Clam)	Found in sediment cores and has widespread in finer sediments	С
Ruditapes philippinarum (Manila clam)	Found in sediment cores and now widespread in the harbour	F
Sytela clava (Korean Tunicate)	On hard substrata at Low water	F
Sargassum muticum (Brown alga)	Occasional clumps attached to shells or pebbles	О
Undaria pinnatifida (Brown alga)	One mature plant found naturalised attached to stone on beach at Baiter Park.	R

6.6 **Individual species distributions and biomass**

6.6.1 *Hediste diversicolor*

The mean density of the common ragworm (mean density 650 per m^2) was slightly higher than, but overall comparable with the 2002 mean density. In 2002, the species was generally much more restricted to the Wareham Channel, though is now much more widespread across the harbour. Considerable recruitment was evident in the samples and the overall biomass is greater than in 2002 (Figure 25).

6.6.2 Nephtys hombergii

Abundance of the catworm was almost double that of 2002 at 75 per m^2 . The species was distributed throughout the harbour although less so in the Wareham Channel. Particularly high densities were found in Brands Bay and south of Brownsea Island. The biomass of this species was over four times greater than in 2002 (Figure 26).

6.6.3 Alitta (Neanthes) virens

Now known as *Alitta virens*, the abundance of the King Ragworm was at considerably reduced densities compared with 2002. The digs in the sediment at each sampling station confirmed evidence from the core samples that this species has become relatively scarce in the harbour. The harbour biomass of the species was one third of that recorded in 2002 (Figure 27).

6.6.4 Oligochaetes

Worms of the genus *Tubicoides* made up the majority of this group and were patchily distributed around the harbour, with concentrations in areas of reduced salinity, such as the Wareham Channel, Holes Bay. Lytchett Bay and Brands Bay area and south of Brownsea Island. Overall densities of these small worms were comparable to 2002 figures.

6.6.5 Sedentary Polychaetes (inc cirratulidae, spionidae)

Significant reductions in the densities of these polychaetes were recorded, particularly cirratulidae. The dominant species in 2002, *Cirratulus filiformis* (mean density 3820 per m^2), was not recorded at all in this survey, or in March 2008 by the Environment Agency. The most abundant cirratulid was *Aphelochatea marioni* (mean density 556 per m^2), which was patchily distributed (this species, recorded previously known as 'Tharyx A', was the dominant cirratulid recorded by the Environment Agency in 2008. Spionidae were also considerably reduced; *Malacoceros fuliginosus* was not recorded, although *M.tetraceros* was occasionally found. The most abundant spionid was *Streblospio shrubsolii* (mean density 36 per m^2), which was not recorded in 2002. When combined with the oligochaetes and other 'small worms' the total biomass was a third of that recorded in 2002 (Figure 28). Cirratulids and spionidae were much more abundant in the lagoon on Brownsea Island (4550 per m^2 and 4374 per m^2 respectively (see Section 10.3).

6.6.6 Hydrobia ulvae

The distribution and abundance of the small prosobranch snail *Hydrobia ulvae* was generally comparable with 2002 (Figure 29), although considerably less were recorded in Lytchett Bay. The abundance in the Wareham Channel and south of Brownsea Island were slightly higher, especially in Brands Bay (Figure 29).

6.6.7 Abra tenuis

The density of this small bivalve has reduced in the harbour, especially in former strongholds within the Wareham Channel and Lytchett Bay (Figure 30).

6.6.8 *Cerastoderma* spp.

The combined densities of cockles *C.edule* and *C.glaucum* is remarkably similar compared to the *C.edule* of 2002, at approximately 30 per m^2 although the overall harbour biomass is now higher (Figure 31).

6.6.9 Scrobicularia plana

The mean density of this clam is less but comparable with that recorded in 2002 at 5.7 per m^2 . The species distribution is shown to be around the upper and middle section of the harbour, in fine muddy sediments (Figure 32).

6.6.10 Mya arenaria

This species is now very widespread, though predominantly in finer muds in the upper parts of the harbour. The mean density has increased from 10 per m^2 in 2002 to 29 per m^2 in 2009, although two-thirds of the individuals recorded were 2008-9 spat. Overall the harbour biomass is 40% less than that calculated in 2002 (Figure 33).

6.6.11 *Ruditapes philippinarum*

The now naturalised Manila clam has shown an increase in mean density from 5 per m^2 in 2002 to 12 per m^2 , and is widespread in the harbour. The overall harbour biomass is almost double that recorded in 2002 (Figure 34).

6.6.12 Macoma balthica

The mean density of this bivalve has increased from 1 per m^2 to 8 per m^2 since 2002. The species is widely distributed across the harbour where finer muds prevail.

6.6.13 Other mollusca

It is perhaps worth mentioning that a single juvenile razor clam, *Solen marginatus*, was recorded on the sands near Rockley Point, as was the bivalve *Dosinia lupinus*, neither of which were recorded in 2002. Many dead shells of *Solen* were found, which is perhaps indicative of large intertidal or subtidal populations developing.

6.6.14 Corophium volutator

The abundance of this important bird prey item was slightly higher than in 2002 with mean density of 456 per m^2 . Highest concentrations were in the creeks of Middlebere Lake, Holes Bay and upper parts of the Wareham Channel. The overall harbour biomass is also slightly greater than in 2002 (Figure 35).

6.6.15 Other Crustacea

Apart from *Corophium*, notable crustacea have in previous surveys included other isopod *Cyathura carinata* and amphipods such as *Microdeutopus gryllotalpa* and *Gammarus locusta*. While both species remain present in the harbour they were recorded at considerably reduced densities compared with 2002. Where found, they were often abundant.

6.7. Estimation of biomass and invertebrate prey availability

6.7.1 Based on the total biomass values measured for each of the eighty sites on the sampling grid, a total mean biomass of 18853 mg AFDW m⁻² was calculated for Poole Harbour. This is 74% of the mean total calculated in 2002 (25600 mg AFDW m⁻², from Thomas et al. 2004). Particularly high values were measured for the Wareham Channel, especially site 17 with the high density of manila clams (106464 mg AFDW m⁻²). Other areas of high biomass are Arne Bay and Brands Bay. Sites of relatively low biomass were scattered throughout the harbour, including the harbour entrance and in Lytchett Bay.

6.7.2 Bird distribution

The distribution of birds within the harbour is based on the low tide WeBS counts, conducted in 2004/5. The number of birds found within each WeBS sector is presented in Appendix 12. The number of birds quoted for each sector represents the average of counts conducted throughout the winter months of 2004/5.

Shelduck (Tadorna tadorna)

The greatest number of shelduck were recorded in areas DP018, and DP017 in the Wareham Channel. Large numbers were also recorded in DP030, around Arne Bay, and in DP028, in the south central part of the harbour. Shelduck were generally widespread throughout the harbour.

Oystercatcher (Haematopus ostralegus)

The two areas with the greatest numbers of oystercatchers were in the Wareham Channel (sectors DP018 and DP015) and in the north east of the harbour, to the south of Poole (DP004) and around Parkstone Bay (DP034). Oystercatchers were generally widespread throughout the harbour.

Grey plover (*Pluvialis squatorola*)

The density of grey plover was generally quite low throughout the harbour. Areas of highest numbers were the northwest corner of Holes Bay (DP009) and the south central part of the harbour (DP028).

Avocet (Recurvirostra avocetta)

Avocet were present at a small number of sites within the harbour. They were found in high numbers to the north of Brownsea Island (DP002) and around Middlebere (DP029 and DP031).

Dunlin (Chalidris alpina)

Dunlin were present in very high numbers in the Wareham Channel (especially DP018 and DP017) as well as in the south central part of the harbour (DP028) and around Middlebere (DP029 and DP031)

Redshank (Tringa totanus)

The greatest number of redshank were found in the northeast corner of Holes Bay (DP010). Other important areas were Lytchett Bay (DP016) and Middlebere (DP031).

Black-tailed godwit (Limosa limosa)

The largest numbers of black-tailed godwits were recorded in the Wareham Channel (areas DP018 and DP017). Other important areas included the northeast corner of Holes Bay (DP010) and in Arne Bay (DP030).

Curlew (Numenius arquata)

The greatest number of curlew were found in the Wareham Channel (DP018 and DP017 and DP015) and around the south central part of the harbour (DP028) and Middlebere (DP029).

 Table 6 Energy available and energy required in each WeBS sector.

WeBS sector code	Overwinter energy requirement ¹ (kJ x 10 ⁶)	Biomass availability ² (kJ/m ²)	Energy availability ³ (kJ x 10 ⁶)	Ratio of energy available to required
DP001	25.47	460.32	n/a	n/a
DP002	92.99	n/a	n/a	n/a
DP003	324.66	692.05	127.68	0.39 ⁴
DP004	61.23	469.24	53.51	0.87 ⁴
DP005	14.24	n/a	n/a	n/a
DP006	n/a	n/a	n/a	n/a
DP007	n/a	268.11	n/a	n/a
DP008	n/a	442.59	n/a	n/a
DP009	54.27	680.79	100.36	1.85
DP010	64.35	471.54	67.12	1.04
DP011	82.95	212.07	101.56	1.22
DP012	5.87	129.85	30.08	5.13
DP013	n/a	154.10	31.82	n/a
DP014	24.15	512.38	192.82	7.98
DP015	90.30	625.25	353.82	3.92
DP016	56.60	191.16	85.88	1.52
DP017	222.56	400.76	177.87	0.80
DP018	617.91	692.14	290.99	0.47
DP019	n/a	326.94	69.49	n/a
DP020	5.13	287.61	209.64	40.90
DP021	1.67	365.87	225.02	134.78
DP022	n/a	533.26	n/a	n/a
DP023	n/a	235.44	n/a	n/a
DP024	n/a	321.80	n/a	n/a
DP025	n/a	n/a	n/a	n/a
DP026	n/a	208.50	29.92	n/a
DP027	15.93	311.05	227.84	14.31
DP028	106.72	357.18	221.21	2.07
DP029	145.19	196.06	125.55	0.86
DP030	109.85	823.99	178.67	1.63
DP031	93.60	149.99	57.79	0.62
DP032	16.96	208.39	49.49	2.92
DP033	23.74	42.98	2.73	0.06 ⁴
DP034	37.49	n/a	n/a	n/a

¹ Missing values due to no WeBS data for sector
 ² Missing values due to no sampling points occurring within sector
 ³ Missing values due to WeBS sector area not determined
 ⁴ Area of segment calculated from 2004/5 WeBS areas minus the region below LWS.

- 6.7.3 The biomass availability for each WeBS sector is presented in Figure 37. Areas of greatest biomass density occurred in the northwest corner of Holes Bay (DP009), the upper estuary sector of the Wareham Channel (DP019), Arne Bay (DP030) and the southeast corner of the harbour (DP020 and DP024). The southwest corner of the harbour had generally low biomass density. Other areas of low biomass density included Lytchett Bay (DP016), the lower estuarine stretches of the Wareham Channel (DP012 and DP014) and northeast Holes Bay (DP010).
- 6.7.4 In some WeBS sectors, available energy greatly exceeded energy requirement, most notably close to the mouth of the harbour where energy requirement was low but biomass availability was relatively high (e.g. Sectors 20 & 21). Areas where energy availability was fairly close to energy requirement included the Wareham Channel and the northeast corner of Holes Bay (Sector 10). The energetic requirements and energy available to each species (based on its preferred diet) on a sector-by-sector basis are presented in Appendix 11. The overall ratio of energy availability to that required (S_p:S_a) calculated for those sectors for which data is complete (two-thirds) is 1.5. This compares with a value of 4:1, calculated in 2002 (Thomas et al. 2004) and below that of an expected range of 2.5-8:1 (Goss-Custard et al. 2004).
- 6.7.5 The (S_p:S_a) ratios for eight waterfowl species are given in Appendix 11. For Avocets, the ratios are well in excess of requirements, except for Sector 31 (lower part of Middlebere Creek) and Brownsea Island Lagoon, which are borderline. For Black-tailed godwit, Redshank, Grey plover and Oystercatcher, the energy available appears to be well in excess of requirements in measured sectors. For Shelduck, ratios for over half of sectors are generally low or borderline.

7.0 Discussion: Poole Harbour

The structure of the discussion is based around the Common Standards Monitoring guidance for *Estuaries* and *Littoral Sediments* (JNCC, version August 2004). Estuaries are complex ecosystems that are composed of a mosaic of subtidal, intertidal and surrounding terrestrial habitats. There is a gradient of salinity from freshwater at the head to increasingly marine conditions towards the open sea. Littoral sediments include those sedimentary habitats that fall between high and low water, including mudflats and sands, but not saltmarshes. Littoral sediment often displays considerable spatial heterogeneity in topography, sediment structure and sediment composition, resulting in corresponding heterogeneity in their associated biotopes.

7.1 The site attributes monitored in Poole Harbour are shown in Table 1. The four mandatory attributes (JNCC, 2004) are *Extent, Biotope Composition, Sediment Character* and *Distribution of Biotopes*. Species population measures including biomass estimation of bird feeding areas are also important to assess due to the international importance for waterfowl in Poole Harbour.

7.2 Estuaries

7.2.1 Extent of feature

The published area of the harbour is 3600ha (Humphreys & May, 2005). The total area of water, measured at Mean High Water using high resolution aerial photography is shown in Table 2 as 3585.7ha in 2008/9. Mapping the low tide mark was problematic, especially over the broad mudflats, as the area exposed cannot be precisely measured (Christopher Blair-Myers Peter Brett Associates pers. comm.). At low tide, the water is so shallow that the edge of the mudflats is barely visible, and over such broad areas the low water mark changes significantly with very small variations in the tidal state. The flights straddled ± 30 mins the low water, which can make a significant difference to the total extent observable in some regions. Areas where the mean low water as mapped by the Ordnance Survey (OS) are radically different compared with aerial photographs include Holton Bay, Brands Bay and north of Bramble Bush Bay. The extensive mudflats mapped by OS are either not visible or there is a poor correlation between the MLWM as mapped by OS and that visible in the aerial photographs (Christopher Blair-Myers Peter Bright Associates pers comm.). According to the 2008-9 monitoring report of the Channel Deepening project by Poole Harbour Commissioners, there has been no significant change in the bathymetry of the harbour, although monitoring is mainly carried out in the navigable channels. The LIDAR data in Fig 3 reveals some possible creek-deepening and likely saltmarsh erosion in the bays south of Brownsea Island. This may be considered part of natural cycling of sediments and saltmarsh morphology. It is suggested that some fixed point monitoring is established across the harbour to assess more precisely the rate of change.

7.2.2 Distribution and spatial pattern of habitats

This attribute is concerned with the position of the target habitats and their spatial relationship to one another. The main target habitat in the estuary is littoral sediment (muddy sands), which is primarily discussed in the next section. The main habitat in close proximity to littoral sediment is saltmarsh, and of course the water column. A comparison with the 2001/2 survey carried out by the Poole Harbour Study Group shows the general pattern of littoral sediment habitat, channels and saltmarsh, unchanged. The erosion of saltmarsh habitat has long been an issue of concern in the harbour; between 1947-2003, 245ha (38%) of saltmarsh was lost (Born, 2005). Extreme caution must be exercised in attempting to compare the 2002/3 survey and 2008/9 survey as the methodology is different. Visible evidence of erosion of saltmarsh was seen at a number of sites particularly in Holes Bay and the Wareham Channel. The die back of *Spartina anglica*, is also an important factor in the harbour and there were visible signs of this continuing.

Only an approximate indication of the spatial extent of sublittoral habitats is possible as most of the available data is from navigable creeks. The sediments between MLWS and ELWS (close to Chart Datum) have not been examined carefully as these were generally not visible from the aerial surveys. Field observations at ELWS indicate a general extension of the littoral sediments, however the duration of low water at extreme spring tides is so small that any detailed analysis must be obtained through core sampling along bathymetric transects.

The sea grass beds (*Zostera marina*) in Whitley Lake are of considerable conservation interest and their extent needs to be carefully monitored. It has not yet been possible to accurately calculate the precise area of this habitat, although the known distribution is presented in Collins (2009).

The Schedule 5 protected anemone *Nematostella vectensis* was not found in the Blue Lagoon, where it has been recorded previously (Sheader & Sheader, 1985). There is now limited retention of water at low tide and it appears that the lagoonal properties of the site have disappeared. Two specimens of the lagoon cockle, *Cerastoderma glaucum*, another lagoon indicator species, were found within additional core samples obtained from mudflats closer to Mean Tide Level (Site 77 supp), yet *C. glaucum* was also found at several other sheltered sites within the harbour, and at Brownsea Island Lagoon. The absence of *Nematostella* in 1992 (Sheader & Sheader, 1992) and in this survey suggests that the original population was likely to have been ephemeral. The area known as Blue Lagoon (Site 77) should be classified as a sheltered estuarine creek, rather than a saline lagoon.

7.2.3 Salinity

The salinity measurements obtained from the Environment Agency show a gradient of salinity between Wareham and the harbour entrance that is consistent with earlier data presented in Humphreys (2005). Reduced salinities are most evident in the Wareham Channel. Few measurements are available in the embayments and creeks which receive discharges from smaller streams. The data also indicate that seasonal variation is consistent with previous measurements, obtained at different locations in the harbour.

7.3 Littoral sediments

7.3.1 **Extent of feature**

The 2008/9 data show that intertidal sediment covers 1373.8ha of the harbour. Limitations of this analysis are discussed in 4.2.1 and 4.2.2 above. Of additional interest is the quality of the littoral habitat. The sediment composition is dealt with separately, however there was widespread scour of the mud surfaces by clam and/or cockle fishing activity, using pump-scoop methods, particularly in the Wareham Channel and in some of the creeks south of Brownsea Island.

7.3.2 Sediment Character/Sediment Type

Most of the harbour can be described as 'mud'; the predominant sediment fraction at 73% of sites had a median diameter of less than 0.063mm. This compares with 80% of sites in 2002, although the earlier survey only used the top 5cm of sediment, rather than a core to 15cm depth. Virtually the whole of the Wareham Channel, Lytchett Bay and Holes Bay consisted of these finer sediments. Sand and 'Muddy Sand' sediments were recorded just inside the harbour entrance, towards Rockley Point and south of Brownsea Island. Sites with mixed sediment, including muds sand and gravels were found throughout the harbour, notably at Baiter Park and Parkstone Bay, parts of Brands Bay and close to the islands. Some sites at higher tidal levels also had coarser sediments. The distribution of sands is again consistent with that observed in 2002. The sandbank to the south of Brownsea Island at site 70 is intact and sediment composition is similar to

2002. Natural changes in estuary morphology will undoubtedly cause some areas to shoal and others undergo deposition, so sediment character is likely to vary over both short and long timescales.

7.3.3 **Biotope Composition**

The main focus of this survey has been the biotopes that are considered to be of greatest conservation value and support a wide range of invertebrate species that provide food for overwintering wildfowl, for which the site is internationally designated. The list of biotopes presented is therefore not comprehensive as others will undoubtedly exist, for example on the upper parts of the shore and strandline. Eight main biotopes were classified in the harbour shown in Table 4. Most may be recognised under the lower level of polychaete/bivalve dominated upper-estuarine or mid-estuarine muds (LS.LMu.UEst and LS.LMu.MEst), and are largely characterised by the ragworm *Hediste diversicolor*, which was almost ubiquitous. It is possible that several subbiotopes may cycle as variants of *Hediste diversicolor* in littoral mud LS.LMu.UEst.Hed.

It has not always been the case that annelids have dominated the intertidal macrofauna of Poole Harbour. Historical records indicate that in the 1970s, a molluscan fauna, that included high densities of the bivalves Scrobicularia plana and Macoma balthica, were much more evident and widespread (Caldow et al. 2005). It is possible that these species declined due to pollution and metal contamination, particularly the use of tributyltin antifouling paints (TBT) in the 1960s and 1970s that affected many bivalve species (Langstone et al. 2003, Wardlaw, 2005). It is also possible that there is a natural, cyclical, succession of biotopes and that this was the original cause of molluscan decline. The numbers of Macoma are higher compared to 2002 and large areas of the Wareham Channel have been classified as the biotope 'Hediste Macoma in littoral sandy mud (LS LMu MEst. HedMac). It is perhaps more accurate to describe these areas as 'Hesiste with mixed bivalves', that include Macoma, Abra, Scrobicularia, *Cerastoderma* spp. *Mya* and *Ruditapes*. These areas are at risk of disturbance from clam and cockle dredging, which was evident in the Wareham Channel, Lytchett Bay and south of Brownsea Island. The Manila clam, Ruditapes philippinarium is not yet considered to be biotope forming and coexists with other bivalve species. Data on the species overall impact on littoral sediment biotopes in northern Europe is not available, although studies in the Venetian Lagoon appear to demonstrate that the species can potentially alter benthic community structure and functioning (Pranovi et al. 2006). A single *R.decussatus* was found in this survey, and has been recorded elsewhere in the harbour (J. Humphreys, pers.comm.), although has been absent in previous surveys.

The biotope at the head of the harbour, classified as '*Hediste* and oligochaetes in littoral mud' (LS LMu UEst.OI), was also characterised by moderately high densities of the isopod *Cyathura carinata*. This area is no doubt influenced by reduced salinities and could be categorised as a locally distinct biotope (suggested code LS LMu UEst Hed.Cy). The presence of this biotope is useful for confirmation of the salinity gradient in the upper sections of creeks and embayments. The creeks with high densities of the amphipod *Corophium volutator* such as Middlebere Lake and the upper part of Holes Bay, should also be recognised as important for feeding waterfowl, especially avocets. The biotope in these areas (*Hediste* and *Corophium* in littoral mud) LS.LMu.UEst.Hed.Cvol is relatively local in the harbour and should be specifically monitored.

7.3.4 **Distribution of biotopes**

The distribution of biotopes is generally similar to the 2002 survey (Thomas et al. 2004), although the codes used are from an earlier version of the classification. The *Hediste diversicolor* biotope (LS.LMu.MEst.Hed) with high *Cyathura carinata* abundance at the head of the Wareham Channel was previously recognised. The HedMacScrob biotope referred to in 4.3.3 was also found in the same locality, although with few S. plana. The Hediste and Corophium biotope (LS.LMu.UEst.Hed.Cvol) was previously noted in Middlebere Lake and areas of reduced salinity. The sandy biotopes were identified just inside the harbour entrance and not assigned to any higher level of resolution. It appears that there has not yet been much change in the overall distribution of biotopes in the harbour. One local yet important region exists between Brownsea Island and Brands Bay, where there is a higher than average density of the catworm Nephtys hombergii and Tubificoides spp. This has been tentatively classified as LS.LMu.UEst.NhomStr (Nephtys hombergii and Streblospio shrubsolii in littoral mud), although has few Streblospio. This area is also characterised by algal mats, as it was in the previous 2002 survey. It may be that there is some local enrichment in the vicinity providing optimum coincidence of environmental conditions for this assemblage of species. It is suggested that the extent and distribution of this biotope is specifically monitored. The extent of areas of mixed sediment, consisting of higher sand and gravel fractions are also worth monitoring as these could be indicative of bed shoaling and erosion.

7.3.5 Species composition of representative or notable biotopes

There were no nationally scarce species or biotopes observed in the harbour. However, of local importance to Condition Assessment must be the relative abundance of annelid worms and bivalve molluscs in the littoral sediments that represent key invertebrate prey items for waterfowl. These include the ragworm *Hediste diversicolor*, oligochates *Tubificoides* spp. bivalves *Macoma balthica*, *Scrobicularia plana* and the amphipod *Corophium volutator*. All these species were either as high or higher densities than in 2002.

The low density of cirratulids, spionids, and amphipoda species. might be expected within the range of variation that has been characteristic of Poole Harbour and 'where change is the norm' (Caldow et al. 2005 p106). However, it is worth obtaining small samples from different locations to monitor the range of temporal variation in these groups. For example, samples taken by the Environment Agency at 30 sampling stations from the western and southern areas of the harbour in March 2008 recorded mean densities of oligochaetes and smaller polychaetes of an order of magnitude greater than both the 2002 and 2009 surveys; combined *Tubificoides* spp. densities were 12000 per m^{-2} and combined sedentary polychaetes approaching 20000 per m^{-2} . Table 6 shows the density of key species at the four main surveys since 1972, including the current survey. The table shows that the overall density of invertebrates is lower than in 2002 and 1987, but higher than in 1972. Moreover, the density of the larger bivalves appears to have increased since 2002; perhaps the harbour is reverting back to the state pre 1987, whatever might be the cause. Mid term variability and the range of annual variability is still largely unknown. It might be sensible to target specific species or groups on an annual basis, such as a benthic grab survey at high water, that would capture the larger species of clams and ragworms, and from which sub-samples could be taken for smaller species. This would be logistically easier than attempting to access remote intertidal

areas at low water. The faunal composition, biomass and species density of Lytchett Bay was considerably more sparse than in 2002. This is certainly worth a follow up to determine whether the data was a seasonal aberration of indicative of more serious decline.

Table 7. Comparison of the average numerical densities of key species and groups of macroinvertebrates on intertidal flats in Poole Harbour over the past 37 years. For sources of earlier data see Caldow et al. (2005).

Year Survey	1972	1987	2002	2009
Scrobicularia plana	53	239	8	5
Macoma balthica	42	10	1	8
Other bivalves	27	133	300	191
All bivalves	120	383	310	205
Hydrobia	214	135	756	490
Errant polychaetes	376	478	814	769
Sedentary polychaetes	2023	6570	4909	925
Oligochaetes and Nermertines	6	1884	1841	1466
All worms	2398	8931	7564	3160
Corophium spp.	1540	2882	374	468
Other crustaceans	56	177	1430	332
All crustaceans	1577	3059	1804	800
All	4309	12508	10434	8820
No. of samples	189	168	80	396

There has been much debate over whether Poole Harbour is a lagoon or an estuary feature (Humphreys, 2005b). One species that was widespread in the harbour, yet has received previously little attention, is the lagoon cockle *Cerastoderma glaucum*. The species is characteristic of saline lagoons, yet is also found in sheltered parts of estuaries. It is not commonly recorded in the Solent estuaries, and this may be due to their more dynamic tidal regime. The species can also be overlooked and identified as *C.edule*. More information on its distribution would be beneficial as its abundance could be indicative of the current hydrodynamic regime in the harbour, which in the medium and longer term may be subject to changes caused by rising sea levels.

Overall, the variety of species composition and extent of biotopes observed and classified is consistent with those recorded in 2002. The biotopes of the harbour generally match the sediment characteristics very closely and are locally modified by dilution. These are important parameters to use in future monitoring.

7.3.6 **Biomass and bird food availability**

The ratios of energy availability to requirements, measured for those sectors for which complete data is available, is less than in 2002 and below the general average. Some of the WeBS count sectors have changed since 2002, and WeBS data for the most recent low tide counts (2003-4) is incomplete for all sectors, so the overall average availability of food may vary to that measured. The figure is sensitive to method of calculation of intertidal area. Consistent with the 2002 survey is that there are areas for which energy

availability significantly exceeds that required, notably in Sectors 20 and 21, the Brands Bay and Bramble Bush Bay region (Figures 38-40). This area has high biomass, yet predator exploitation is low. Significant parts of this region are colonised by green macroalgal mats, which may deter birds from feeding in these areas, and similarly affected parts of the harbour. The upper sections of the Wareham Channel were borderline in terms of energy availability. These regions are popular feeding areas for birds, and findings are consistent with those of 2002, when low ratios were also calculated for these sectors. The WeBS sector that incorporates the heavily utilised and potentially disturbed area in the vicinity of Parkstone Bay and Baiter Park has changed in its overall area, and so comparative energy availability to requirement ratios are unlikely to be accurate. From the biomass values, it is highly likely that, as in 2002, the food availability far exceeds requirements.

For the internationally important populations of avocets and black-tailed godwits, there appears to be generally high food availability, although areas where avocets preferentially feed are relatively small, and therefore the population is potentially vulnerable to disturbance. For shelduck, food availability was found to be borderline, theoretically at least. This is again consistent with findings in 2002, and Thomas et al. (2004) suggest that the birds may forage more widely across the harbour than in the areas within which counts have been made. It is also possible that the birds take other food items than those generally known, or that they take terrestrial species when roosting in fields and marshes at high tide. The energy available to curlew generally exceeds requirements, except in parts of the Wareham Channel. Invertebrate biomass may have been underestimated for this species as it will frequently take large prey items, that may not have been adequately sampled.

The 2009 invertebrate study was carried out in October and November, a month or so later than the 2002 survey, and it is possible that reduced productivity and mortality has resulted in lower figures for food availability in some areas. Winter mortality, due to predation and natural mortality, is considered worthy of investigation to determine the magnitude of overall reserves necessary for sustaining populations over the winter months.

As in the previous study, bird feeding activity is concentrated in relatively few areas of the harbour, some of which have high food energy reserves and others not. There is no obvious relationship between bird feeding and food availability. It may be that those areas not currently exploited are utilised during harsh weather or when specific disturbances force birds to move away from preferred areas, and visit these other sites, albeit temporarily.

Brownsea Island Lagoon

8.0 Introduction

The saline lagoon on the north eastern side of Brownsea Island is managed by the Dorset Wildlife Trust. The area that is now Brownsea Lagoon was first separated from the sea in the 1850s, when a sea wall was constructed, enclosing the area formerly known as St. Andrew's Bay, to provide grazing land for the livestock on Brownsea Island. Today, a non-tidal saline lagoon covers the area, with small artificial islands built by the Dorset Wildlife Trust that provide nesting habitats for summer migrants and resident breeding bird species. In the winter, the lagoon accommodates large feeding and roosting numbers of black-tailed godwits, avocets and other waterfowl. Water exchange is managed via a sluice in the south-eastern corner of the lagoon and on the east side by the wind-pump. The lagoon is fed by small streams that discharge through reed beds into the west side of the lagoon.

9.0 Methods

- **9.1** The extent of the open lagoon water habitat and saltmarsh was measured from the East Dorset Integrated Habitat Map described in 2.1. The maps were produced from aerial photographs obtained from flights on 7th May and 24th June 2008.
- 9.2.1 The lagoon was sampled on 6th November 2009, with permission from Dorset Wildlife Trust. Six sampling stations were identified, with good access from the outer wall (Figure 40). Three mud cores (10cm diameter) were obtained to a depth of 15cm from each station, plus an additional 6cm diameter core for sediment analysis. Floating seaweed samples (approximately 0.5 litre volume) were taken from each site for the examination of associated fauna. Each station was photographed and a salinity measurement obtained using a refractometer. Using a 1mm mesh standard pond net, three sweeps were taken to quantify the number of prawns (*Palaeomonetes varians*) at each site. An additional semi-quantitative survey was carried out in the vicinity of the main sluice of the lagoon.
- 9.2.2 The samples for biota were sieved through a 0.5mm mesh and preserved and sorted using the same methodology as the main Poole Harbour samples described in Section 4 above. The mean biomass per m^2 was calculated using the same methodology as for Poole Harbour sediments detailed in Section 5.7 above.

10.0 Results

The results are presented as follows:

- 10.1 Extent of Lagoon Habitat
- 10.2 Description and distribution of sediments and salinity in Brownsea Island Lagoon.
- 10.3 Description of invertebrate communities and biotopes in Brownsea Island Lagoon.
- 10.4 Estimation of biomass of invertebrate prey in Brownsea Lagoon.

10.1 Extent of water in lagoon.

The area of water in the lagoon shown in Figure 40 was calculated as 17.8ha. The area of saltmarsh in the lagoon was measured as 2.9ha.

10.2 Sediment composition, salinity and macroalgae

The composition of sediments at the lagoon sampling sites was found to be very variable (Table 1). While this is not uncommon in lagoons, it may not be representative of the whole lagoon, as access to the central deeper areas was restricted. Samples varied from having predominantly sand or muddy sand, although site BS2 consisted of finer sediments. Coarser sediments were found at the eastern edge of the lagoon. Overall the lagoon sediments should be classified as a sand or sandy mud.

Table 8. Particle Size Analysis of sediments in Brownsea Island Lagoon.% of each size fraction, and % organic content.

	% Particle Size Fraction							
								%
Site	2mm	1mm	500µm	250µm	125µm	63µm	<63µm	Organic
BS1	0.0	0.9	1.5	13.7	36.7	46.5	0.6	2.95
BS2	7.1	1.5	4.8	10.3	15.6	13.4	47.4	2.38
BS3	33.5	8.9	5.0	23.7	11.9	7.3	9.7	2.08
BS4	3.4	3.7	7.5	38.1	23.9	4.7	18.6	3.41
BS5	0.2	0.1	1.5	11.7	30.1	18.0	38.4	2.99
BS6	0.2	14.0	27.6	10.4	7.9	5.4	34.5	4.90

The salinity around the lagoon varied between 22 and 29ppt, with the lowest value recorded on the north western edge at site BS1. The highest salinities were found at the southern edge, and by the sluice.

Macroalgae was very patchily distributed around the lagoon including the central areas which were inaccessible. The most common species was the green alga *Chaetomorpha linum*, however there were also large floating clumps of the red alga *Gracilariopsis longissima* and occasional green sea lettuce *Ulva lactuca*. At the southern sluice, where the salinity is greater, other species were attached to stones and shells on the lagoon bed, including the Japanese brown alga *Sargassum muticum* and red algae *Aglaothamnion ?hookeri, Ceramium pallidum,Ceramium secundatum, Polysiphonia denudata* and *Polysiphonia elongata*.

10.3 Invertebrate communities & biotopes

A total of 23 species were found in the core samples, with an additional 4 species recorded in samples of seaweed and in net samples around the sluice (Appendix 8). Overall the fauna consisted of 9 annelids, 10 crustacea, 3 mollusca and 4 other species including insect larvae and the Schedule 5 protected anemone species *Nematostella vectensis*.

- 10.3.1 Lagoonal specialist species recorded were *Nematostella vectensis*, prosobranch mollusc *Ventrosia ventrosa* (formerly *Hydrobia ventrosa*), bivalve mollusc *Cerastoderma glaucum*, amphipod crustacean *Corophium insidiosum* and isopod crustacean *Idotea chelipes*.
- 10.3.2 Amongst the *Chaetomorpha linum* samples were found *Cerastoderma glaucum*, *Abra tenuis*, *Corophium volutator* and *Idotea chelipes*. On the *Ulva* samples, *Ventrosia ventrosa* and *Corophium insidiosum* were present and large numbers of *Idotea chelipes* were found on *Gracilariopsis longissima*.
- 10.3.3 Species richness and diversity did not vary widely across the lagoon, although the highest densities of individuals were at the northern end. Overall, the lagoon had very much higher densities of fauna compared to Poole Harbour mudflats. Of the annelids, the oligocahete *Tubificoides benedii* had the highest mean density of any species, followed by the polychaetes *Aphelochaeta marioni*, *Polydora cornuta* and ragworm *Hediste diversicolor*. The crustaceans were dominated by very high densities of *Corophium insidiosum*.
- 10.3.4 The density of the Schedule 5 anemone *Nematostella vectensis* was generally high throughout the lagoon, although significantly lower at sites BS3 & BS4, where the substrate was coarser.
- 10.3.5 According to the classification of English lagoon biotopes in Bamber (1997), Brownsea has two of the seven types identified, excluding the special Fleet lagoon biotopes. These are ENLag.Veg and ENLag.IMS. Ann. A description of these biotopes is presented in Table 8.

Table 9. Biotopes identified in Brownsea Lagoon, as classified by Bamber (1997).

English Lagoon Biotopes
ENLag.Veg
Submerged vegetation and associated fauna:
Ruppia/Enteromorpha/Chaetomorpha/Ulva
with
Idotea chelipes, Corophium insidiosum, Sphaeroma, Gammarus, Hydrobia spp. Gasterosteus aculeatus.
ENLag.IMS.Ann
Infralittoral muddy sand with tubificids, chironomids, hydrobiids, Capitella capitata, Hediste diversicolor, Cerastoderma glaucum, Corophium volutator, Abra tenuis.

10.4 Estimation of species biomass

The mean biomass per m² for each of the main taxa is given in Appendix 15. A total mean biomass of 33853 mg AFDW m⁻² was calculated for the lagoon, which is considerably greater than the mean biomass calculated for Poole Harbour in 2002 (18853 mg AFDW m⁻²) and for Poole Harbour in 2002 (25600 mg AFDW m⁻²). Only nine of the eighty sites sampled in Poole Harbour in 2009 had mean biomass values greater that this value for the lagoon. Just over half of the total biomass was contributed by small oligochaete and polychaete worms, with the ragworm *Hediste diversiclor* contributing another 24% of the total. The anemone *Nematostella vectensis* was excluded from the calculations as the species is not considered an important bird prey item.

11.0 Discussion

- 11.1 The structure of the discussion is based around the Common Standards Monitoring guidance for Lagoons (JNCC, version August 2004). Lagoons are areas of shallow coastal salt water, wholly or partially separated from the sea by sandbanks, shingle or rocks. Five main types have been identified in the UK and the lagoon at Brownsea is considered 'sluiced'.
- 11.2 The site attributes that are monitored are *Extent, Extent of Water, Salinity Regime, Biotope Composition, Extent of representative notable biotopes, Distribution of biotopes, Species composition of representative biotopes* and *Species Population measures.*

11.3 **Overall extent and extent of water in feature**

The overall extent of the lagoon is bounded by a sea wall which appears not have changed over the survey period 2002-2009, or indeed for many years. The area of water in the lagoon measured as 17.8ha in May/June 2008 will represent an almost maximum extent, as in the springtime the water levels are raised via the sluices to provide a degree of isolation for bird nesting on the islands within the lagoon. In the autumn the sluices are opened to increase the area of mudflats available for feeding waterfowl. There were areas of mudflat visible around the edges of the lagoon when sampled in November 2009. There had been rain previously and overall the water levels and area of lagoon was considered greater than the 60% water retention threshold considered necessary for maintaining favourable condition (JNCC, 2004).

11.4 Salinity regime

A gradient of salinity was observed between the western and south eastern corner of the lagoon. Overall the salinity gradient observed of 26-29ppt is well within the range 16-35ppt, outside which the Scheduled starlet sea anemone *Nematostella vectensis* will become moribund. It is suggested that data on the salinity of the lagoon be obtained on a seasonal or monthly basis to establish whether there any extended periods of hypo or hypersalinity.

11.5 **Biotope composition**

There has not been any previous biotope study of the lagoon on Brownsea Island. Overall the assemblages in the lagoon matched closely the biotopes **ENLag.Veg** and **ENLag.IMS.Ann**, described above. The former biotope is subjected to greater fluctuation as macroalgal levels rise and fall seasonally and drift around the lagoon when they become dislodged at the end of the growing period. The muddy sand biotope is likely to be more stable, although potentially vulnerable to salinity regime.

11.6 **Extent of biotopes**

The lagoon has a fixed wall around the edges so there is little room for expansion. Potentially, the biotope areas could be reduced by natural succession of the reed beds on the western side of the lagoon or through saltmarsh development and accretion. Very little is known of any cyclical changes in lagoon biotopes.

11.7 Species composition of notable biotopes and sub-features,

The lagoon at Brownsea Island is of considerable interest and although surveyed by Seasearch in 2008, its exclusion from previous lagoon surveys across the country in the 1980s and 1990s is surprising and regrettable. The site has very high abundances of typical lagoonal species, that are either of international importance, nationally scarce or uncommon such as Nematostella vectensis and Ventrosia ventrosa. These species are restricted to lagoon habitats in Britain. The lagoon cockle Ceratsoderma glaucum is mainly found in lagoons or in sheltered areas of estuaries. A comparative analysis of the invertebrate assemblage of Brownsea Lagoon and other UK lagoons, using Bray-Curtis similarity indices, places the site within the same category as lagoons currently designated as Special Areas of Conservation (Bamber, in prep. Appendix 16). A smallscale survey of the lagoon was carried out in September 2008 by SeaSearch who estimated densities of *Nematostella* to be 1000-1500 per m², which is of the same order of magnitude as the current survey. The densities of invertebrate species in the lagoon were found to be considerably higher than large areas of Poole Harbour, and thus must be an important food resource for waterfowl including the black-tailed godwit and avocet. The abundance of the lagoon amphipod Corophium insidiosum may be of particular importance to avocets, as the species is known to feed in areas of Poole Harbour where *Corophium volutator* is common. It was noted that the invasive Japanese seaweed Sargassum muticum was present in small quantities in the vicinity of the sluice. If the salinity of the lagoon was to rise appreciably then one might expect an increase in the population of this species. Whether lagoonal invertebrates would colonise the fronds is unknown, although they are likely to disappear should the lagoon become more saline. The non-native polychaete worm *Desdemona ornata* was also recorded in the lagoon. This species is a relatively recent introduction to the regional marine fauna and appears to be benign in littoral habitats. It has been found in Poole Harbour during this current survey and also in other lagoons in England (Bamber, pers.comm.).

11.8 **Biomass and bird food availability**

At only 17.8ha, the lagoon might appear to be of limited importance for wintering waterfowl. However the high numbers of birds recorded on the site is likely to be partly attributed to the high density and biomass of the invertebrates within the lagoon sediments. Energy availability for Brownsea lagoon exceeded requirements for all bird species except for oystercatchers, when the species energy requirements were considered separately. However when the energy requirements for all species was considered together, as such a large number of birds are present in a small area, the energy requirements are 2.6 times greater than the energy availability, suggesting that competition for resources in this area must be fierce and supplemented with feeding in the harbour. Owing to the shallow waters, food is accessible to most bird species throughout the tidal cycle, providing resources when the remainder of the harbour sediments are covered at high tide. Because of access difficulties, the sediments in the middle of the lagoon were not sampled. It would be useful to do so to confirm the biomass estimate across the whole site. It would also be valuable to gain an estimate of winter mortality of invertebrates and production throughout the summer. This research is important considering the likely reconstruction of the lagoon habitat elsewhere in the Poole harbour environs, should it be lost through sea level rise.

12.0 Conclusion

The lagoon is of high nature conservation importance and currently in good ecological condition. Its international importance should perhaps be more widely known amongst Poole Harbour stakeholders. Plans to reconstruct the lagoon or create new lagoon habitat in the harbour should be investigated considering the vulnerability of this site, and other intertidal bird feeding areas in the harbour. Seasonal changes in the lagoon with respect to algal cover, nutrient levels and salinity would also be extremely useful.

13.0 Acknowledgements

The authors would like to express their considerable thanks and gratitude to Andrew Woods and colleagues of the RNLI who made this survey possible, and also to Poole Harbour Commissioners for their support. We are also grateful for data made available by the Environment Agency Geomatics Group and Dorset Office, especially Suzy Witt, and Richard Caldow and Sue Burton of Natural England. Special thanks also to Frank Elston of Dorset Workboats, Chris Thain of Dorset Wildlife Trust for access to Brownsea Island Lagoon, John Humphreys and Matt Harris for boatwork and fieldwork, Dr Roger Bamber for help with fieldwork and species identification. Special thanks to the Field, Laboratory and Research Assistants Sam Cottingham, Reece Woolgar, Jane Wilkin, Sarah Kerr, Steven Colledge, Christopher Butler, Stephen Treby, David Bray, Christopher Ranford, Michael Strowger, Chris Moody, Elena Canterelo.

14.0 References

Bamber, R.N. 1997. *Assessment of saline lagoons within Special Areas of Conservation*. English Nature Report No. 235.Peterborough.

Bamber, R.N. Sheader, M., Sheader, A & Somes, R. 1997. Assessment of the Solent saline lagoon resource, 1997. Report to Hampshire & Isle of Wight Wildlife Trust.

Borja, A., Franco, J. & Perez, V. 2000. A Marine Biotic Index to establish the Ecological Quality of Soft-Bottom Benthos Within European Estuarine and Coastal Environments. *Marine Pollution Bulletin*, 40:1100-1114.

Borja, A. Muxika, I & Franco, J. 2003. The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. *Marine Pollution Bulletin*, 46:835-845.

Borja, A & Muxika, I. (*In Press*) Guidelines for the use of AMBI (AZTI's Marine Biotic Index) in the assessment of the benthic ecological quality. *Marine Pollution Bulletin*.

Born, K. 2005. Predicting habitat change in Poole Harbour using aerial photography. In: Humphreys, J & May V (Eds.) 2005. *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:239-253.

Bowls, F.& English, P. 2005. Sediment Quality and Benthic Invertebrates in Holes Bay. In: *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:223-229.

Caldow, R., McGrorty, S., West, Lev dit Durell, S., Stillman, R & Anderson, S. 2005. Macro-invertebrate Fauna in the intertidal mudflats, In: Humphreys, J & May V (Eds.) 2005. *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:91-108.

Caldow, RWG; Stillman, RA; Durell, , et al. Benefits to shorebirds from invasion of a non-native shellfish. *Proceedings of the Royal Society B-Biological Sciences* 274:1449-1455.

Clarke, K.R., Gorley, R.N. 2006. Plymouth Routines in Multivariate Research *PRIMER* v6. Plymouth.

Collins, K. 2009. Comparison of video sledge and echo-sounder for Seagrass surveys in Studland Bay and Poole Harbour. Draft Report to Natural England. National Oceanography Centre, Southampton.

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Norther, K.O & Recker, J.B. 2004. *The Marine Habitat Classification for Britain & Ireland. v04 05.* JNCC, Peterborough. Obtainable from www.jncc.gov.uk/Marine Habitat Classification. Accessed 25/3/2010.

Davies, J., Baxter, J., Bradley, M., Connor, D., Khan, J., Murray, E., Sanderson, W., Turnbull, C. & Vincent, M. 2001 *Marine Monitoring Handbook*, 405 pp, ISBN 1 85716 550 0

Dyrynda, P.2005. Sub-tidal ecology of Poole Harbour- Overview. In: Humphreys, J & May V (Eds.) 2005. *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:109-130.

Eno, C.N., Clark, R.A., & Sanderson, W (Eds). 1997. Non-native marine species in British Waters: a review and directory. Peterborough, JNCC

Goss-Custard, J.D., Stillman, R.A., West, A.D.Caldow, R.W.G., Triplet, P., dit Durell, S.E.A.le V. and McGrorty, S. 2004. When enough is not enough: shorebirds and shellfishing. Proceedings of the Royal Society (Lond) Series B. 271:233-237.

Humphreys, J. 2005. Salinity and Tides in Poole Harbour: Estuary or Lagoon? In: Humphreys, J & May V (Eds.) 2005. *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:35-47

Humphreys, J & May V (Eds.) 2005. *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier. 282pp.

Humphreys, J, Caldow, R.W.G., McGrorty, S., West, A.D., Jensen, A.C. Population dynamics of naturalised Manila clams *Ruditapes philippinarum* in British coastal waters. *Marine Biology* 151:2255-2270

Jenson, A., Hmphreys, J., Caldow R., Cesar, C. 2005. The Manila Clam in Poole Harbour.In: *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:163-173.

Langstone, W.J., Chesman, B.S., Burt, G.R., Hawkins, S.J., Readman. J. & Worsfield, P.2003. *Site Characterisation of the South-West European Marine Sites – Poole Harbour SPA*. A study carried out by Plymouth Marine Science Partnership on behalf of the Environment Agency and English Nature

Natural England. 2007. Poole Harbour: *Best Practice Guidelines for small developments*. Natural England, Wareham Dorset.

Poole Harbour Commissioners. 2007. *Poole Harbour Aquatic Management Plan*. Poole, Dorset.

Poole Harbour Commissioners. 2007. *Poole Harbour Approach Channel Deepening*. *Report on Harbour Monitoring*, August 2007. Poole Dorset.

Pearce, S.R.2009. *Monitoring Report – Poole Harbour 2008*. Poole Harbour Commissioners. Poole Quay Dorset.

Pranovi F, Franceschini G, Casale M, Zucchetta M, Torricelli P, Giovanardi O. 2006 An ecological imbalance induced by a non-native species: The Manila clam in the Venice Lagoon. *Biological Invasions*, 8:595-609.

SeaSearch. 2008. Brownsea Island SeaSearch Surveys: Summary Report. Available from <u>www.seasearch.org.uk</u>. Accessed March 2010.

Sheader, M. & Sheader, A., 1985. Survey of brackish coastal lagoons. Sussex to Dorset, 1984-5. Field Report and appendix (record sheets). Nature Conservancy Council CSD Report No. 739.

Sheader, M. & Sheader, A., 1992. A survey of Blue Lagoon, Poole Harbour, with special reference to the anemone, *Nematostella vectensis* Stephenson. Unpublished Report to English Nature, October 1992.

Smith, P R J, Perrett, J, Garwood, P and Moore, G .1999. Two additions to the UK marine fauna: Desdemona ornata Banse, 1957 (Polychaeta, Sabellidae) and Grandidierella japonica Stephensen, 1938 (Amphipoda, Gammaridea). *Newsletter of the Porcupine Natural History Society*, (2): 8-11.

Thomas, N.S., Caldow, R.,McGrorty, S., Durell, Le V dit S.E.A., West, A.D& Stillman, R. 2004. *Bird prey availability in Poole Harbour*. Poole Harbour Study Group publication No. 5, Wareham.

Underhill-Day J & Dyrynda, P. 2005. Non-native species in and around Poole Harbour. In: *The Ecology of Poole Harbour*. Proceedings in Marine Science 7. Amsterdam, Elsevier:159-162.

Underhill-Day, J.2007. *A condition assessment of the Poole Harbour European Marine Site*. Poole Harbour Study Group: Publication No. 9. Poole Harbour Study Group Wareham Dorset.

WoRMS. World Register of Marine Species. <u>www.marinespecies.org</u>. Accessed March 2010.

Figure 4. Extent and distribution marine habitats in Poole Harbour. See text for data sources. © Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

Saltmarsh & Sediment data from East Dorset Habitat map © Environment Agency, 2010

Hectares (ha)Elevation change ranges (b)0.0004(-5.40) - (-5.10)0.0004(-2.73) - (-2.43)0.00052(-1.54) - (-1.24)0.00292(-1.54) - (-1.24)0.0292(-1.24) - (-0.94)0.3204(-0.94) - (-0.65)0.3204(-0.94) - (-0.65)0.3204(-0.94) - (-0.65)11.9572(-0.35) - (-0.35)11.9572(-0.35) - (-0.05)6.4388(-0.05) - (0)11.9566(0) - (+0.24)11.1956(-0.24) - (+1.4)0.0108(+0.24) - (+1.43)0.0012(+0.84) - (+1.43)0.0016(+1.43) - (+1.73)0.0004(+2.92) - (+3.22)		
	Hectares (ha)	Elevation change ranges
	0.0004	(-5.40) - (-5.10)
	0.0004	(-2.73) - (-2.43)
	0.0052	(-1.54) - (-1.24)
	0.0292	(-1.24) - (-0.94)
	0.3204	(-0.94) - (-0.65)
	2.2648	(-0.65) - (-0.35)
	11.9572	(-0.35) - (-0.05)
	6.4388	(-0.05) - (0)
	20.7656	(0) - (+0.24)
	1.1956	(+0.24) - (+0.54)
	0.0108	(+0.54) - (+0.84)
	0.0028	(+0.84) - (+1.14)
	0.0012	(+1.14) - (+1.43)
	0.0016	(+1.43) - (+1.73)
	0.0004	(+2.92) - (+3.22)

21.98 ha went through a process of accretion.

© Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/

and 2009. A single core sample was taken in 2002, five core samples in 2009. Figure 18. Total No. of species found at each sampling station in 2002

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

 Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

Figure 22. AZTI Marine Biotic Index (AMBI) at each sampling station in 2002 and 2009.

O Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

Sediment data from East Dorset Habitat map Environment Agency, 2010

 Natural England (2010) reproduced with the permission of Natural England

(http://www.naturalengland.org.uk/copyright/)

...... **qo ooe**

8200p

Figure 25. Mean biomass Hediste diversicolor at each sampling station in 2002 and 2009.

Sediment data from East Dorset Habitat map Environment Agency, 2010

 Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/) Figure 26. Mean biomass Nephtys hombergii at each sampling station in 2002 and 2009.

Sediment data from East Dorset Habitat map © Environment Agency, 2010

© Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

Figure 27. Mean biomass Alitta (Neanthes) virens at each sampling station in 2002 and 2009.

Neanthes virens (mg ADFW m⁻²)

Sediment data from East Dorset Habitat map © Environment Agency, 2010

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

© Natural England (2010) reproduced with the

(http://www.naturalengland.org.uk/copyright/)

permission of Natural England

Figure 28. Mean biomass (mg ADFW m-2) of 'small worms' including oligochaetes and polychaetes (inc cirratulidae & spionidae) at each sampling station in 2002 and 2009.

 Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

Sediment data from East Dorset Habitat map © Environment Agency, 2010

© Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/) Sediment data from East Dorset Habitat map © Environment Agency, 2010

Figure 30. Mean biomass (mg ADFW m⁻²) of Abra tenuis at each sampling station in 2002 and 2009.

Sediment data from East Dorset Habitat map © Environment Agency, 2010

© Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

Figure 31. Mean biomass (mg ADFW m⁻²) of Cerastoderma spp. at each sampling station in 2002 and 2009.

Cerastoderma spp. (mg ADFW m⁻²)

Sediment data from East Dorset Habitat map Environment Agency, 2010

© Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

Sediment data from East Dorset Habitat map © Environment Agency, 2010

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

 Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/) Figure 33. Mean biomass (mg ADFW m⁻²) of *Mya arenaria* at each sampling station in 2002 and 2009.

Mya arenaria (mg ADFW m⁻²)

 Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021
 Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/) Sediment data from East Dorset Habitat map © Environment Agency, 2010 Figure 34. Mean biomass (mg ADFW m⁻²) of *Ruditapes* spp. at each sampling station in 2002 and 2009. All specimens were R.philipinarium except for a single R.decussatus at station 63 in Brands Bay in 2009

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021 © Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/) Sediment data from East Dorset Habitat map © Environment Agency, 2010 Figure 35. Mean biomass (mg ADFW m⁻²) of *Corophium volutator* at each sampling station in 2002 and 2009.

Corophium volutator (mg ADFW m⁻²)

Sediment data from East Dorset Habitat map © Environment Agency, 2010 © Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021 © Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/)

00058

Figure 36. Mean biomass (mg ADFW m⁻²) of *Cyathura carinata* at each sampling station in 2002 and 2009.

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021 © Natural England (2010) reproduced with the permission of Natural England (http://www.naturalengland.org.uk/copyright/) Sediment data from East Dorset Habitat map © Environment Agency, 2010

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

Figure 39. Energy availability for wintering waterfowl in each WeBS sector (Sector 1 refers to Sector DP001 etc)

Figure 40. Energy requirements for wintering waterfowl in each WeBS sector (Sector 1 refers to Sector DP001 etc).

© Crown Copyright and database right (2010) Ordnance Survey Licence Number 1000022021

APPENDIX 1 Poole Harbour Sampling Locations

Аг	PENI	BNG ^(a,b)	 	ing Locati	0115	WGS84 ^(c)			I	UTM ^(c,d)	depth
	zone	eastings northings	latitude	longitude	latitude	longitude	latitude	longitude	zone	eastings northings	ab. LAT ^(a)
1	SY	94598 87489	50.6870276	-2.0778326	50°41.22165'N	002°04.66995'W	50°41'13.299"N	002°04'40.197"W	30U	565141 5615427	1.9
2	SY	94550 88048	50.6920541	-2.0785205	50°41.52325'N	002°04.71123'W	50°41'31.395"N	002°04'42.674"W	30U	565086 5615986	1.1
3	SY	94435 88459	50.6957490	-2.0801549	50°41.74493'N	002°04.80930'W	50°41'44.696"N	002°04'48.558"W	30U	564965 5616395	1.1
4	SY	94932 87593	50.6879659	-2.0731061	50°41.27795'N	002°04.38637'W	50°41'16.677"N	002°04'23.182"W	30U	565474 5615536	1.3
5	SY	95021 87989	50.6915278	-2.0718516	50°41.49167'N	002°04.31110'W	50°41'29.500"N	002°04'18.666"W	30U	565558 5615933	1.4
6	SY	94930 88485	50.6959874	-2.0731469	50°41.75925'N	002°04.38882'W	50°41'45.555"N	002°04'23.329"W	30U	565460 5616428	1.1
7	SY	95169 89036	50.7009445	-2.0697704	50°42.05667'N	002°04.18622'W	50°42'03.400"N	002°04'11.173"W	30U	565691 5616982	1.3
8	SY	95006 89481	50.7049448	-2.0720846	50°42.29668'N	002°04.32508'W	50°42'17.801"N	002°04'19.505"W	30U	565522 5617425	1.2
9	SY	95532 87664	50.6886094	-2.0646133	50°41.31657'N	002°03.87680'W	50°41'18.994"N	002°03'52.608"W	30U	566073 5615615	1.3
10	SY	95502 87983	50.6914779	-2.0650420	50°41.48867'N	002°03.90252'W	50°41'29.320"N	002°03'54.151"W	30U	566039 5615933	1.3
11	SY	95492 88515	50.6962619	-2.0651902	50°41.77572'N	002°03.91142'W	50°41'46.543"N	002°03'54.685"W	30U	566021 5616465	1.0
12	SY	95510 89059	50.7011541	-2.0649421	50°42.06925'N	002°03.89653'W	50°42'04.155"N	002°03'53.792"W	30U	566032 5617009	1.0
13	SY	95521 89544	50.7055156	-2.0647924	50°42.33093'N	002°03.88755'W	50°42'19.856"N	002°03'53.253"W	30U	566037 5617495	0.9
14	SY	95516 90035	50.7099310	-2.0648693	50°42.59587'N	002°03.89217'W	50°42'35.752"N	002°03'53.530"W	30U	566025 5617985	1.1
15	SY	95494 90494	50.7140585	-2.0651867	50°42.84350'N	002°03.91120'W	50°42'50.610"N	002°03'54.672"W	30U	565997 5618444	1.1
16	SY	96086 88629	50.6972915	-2.0567813	50°41.83748'N	002°03.40688'W	50°41'50.249"N	002°03'24.413"W	30U	566614 5616587	1.0
17	SY	95991 89570	50.7057530	-2.0581369	50°42.34518'N	002°03.48822'W	50°42'20.711"N	002°03'29.293"W	30U	566506 5617527	0.9
18	SY	95978 90016	50.7097636	-2.0583260	50°42.58582'N	002°03.49957'W	50°42'35.149"N	002°03'29.974"W	30U	566487 5617973	1.1
19	SY	96054 90496	50.7140806	-2.0572549	50°42.84483'N	002°03.43530'W	50°42'50.690"N	002°03'26.118"W	30U	566557 5618454	1.1
20	SY	96500 89000	50.7006305	-2.0509232	50°42.03783'N	002°03.05538'W	50°42'02.270"N	002°03'03.323"W	30U	567023 5616964	1.2
21	SY	96539 90061	50.7101720	-2.0503812	50°42.61032'N	002°03.02287'W	50°42'36.619"N	002°03'01.372"W	30U	567048 5618025	1.1
22	SY	96495 90462	50.7137778	-2.0510083	50°42.82667'N	002°03.06050'W	50°42'49.600"N	002°03'03.630"W	30U	566998 5618426	1.1
23	SY	96824 86547	50.6785733	-2.0463135	50°40.71440'N	002°02.77882'W	50°40'42.864"N	002°02'46.729"W	30U	567380 5614515	1.4
24	SY	97088 89476	50.7049144	-2.0426011	50°42.29487'N	002°02.55607'W	50°42'17.692"N	002°02'33.364"W	30U	567604 5617448	0.7
25	SY	97030 90570	50.7147521	-2.0434316	50°42.88513'N	002°02.60590'W	50°42'53.108"N	002°02'36.354"W	30U	567532 5618541	0.9
26	SY	97007 91013	50.7187357	-2.0437611	50°43.12415'N	002°02.62567'W	50°43'07.449"N	002°02'37.540"W	30U	567503 5618984	1.2
27	SY	97000 92014	50.7277373	-2.0438687	50°43.66423'N	002°02.63212'W	50°43'39.854"N	002°02'37.927"W	30U	567482 5619984	1.1
28	SY	97502 91500	50.7231176	-2.0367527	50°43.38705'N	002°02.20517'W	50°43'23.223"N	002°02'12.310"W	30U	567991 5619477	1.1
29	SY	97487 92026	50.7278477	-2.0369690	50°43.67087'N	002°02.21813'W	50°43'40.252"N	002°02'13.088"W	30U	567969 5620003	1.1
30	SY	98036 86089	50.6744602	-2.0291573	50°40.46762'N	002°01.74943'W	50°40'28.057"N	002°01'44.966"W	30U	568598 5614074	1.1
31	SY	97880 86957	50.6822654	-2.0313702	50°40.93592'N	002°01.88222'W	50°40'56.155"N	002°01'52.933"W	30U	568430 5614940	1.4
32	SY	98047 89032	50.7009259	-2.0290181	50°42.05555'N	002°01.74108'W	50°42'03.333"N	002°01'44.465"W	30U	568569 5617017	1.8
33	SY	98000 90500	50.7141269	-2.0296920	50°42.84762'N	002°01.78152'W	50°42'50.857"N	002°01'46.891"W	30U	568503 5618484	0.6
34	SY	97988 92033	50.7279127	-2.0298708	50°43.67477'N	002°01.79225'W	50°43'40.486"N	002°01'47.535"W	30U	568470 5620017	1.1
35	SY	98500 86489	50.6780588	-2.0225925	50°40.68353'N	002°01.35555'W	50°40'41.012"N	002°01'21.333"W	30U	569057 5614480	1.0
36	SY	98502 86997	50.6826271	-2.0225664	50°40.95763'N	002°01.35398'W	50°40'57.458"N	002°01'21.239"W	30U	569052 5614988	1.3
37	SY	98610 87514	50.6872766	-2.0210398	50°41.23660'N	002°01.26238'W	50°41'14.196"N	002°01'15.743"W	30U	569153 5615506	0.7
38	SY	98617 87994	50.6915932	-2.0209427	50°41.49558'N	002°01.25657'W	50°41'29.735"N	002°01'15.394"W	30U	569153 5615986	1.0
39	SY	98500 89000	50.7006395	-2.0226035	50°42.03837'N	002°01.35622'W	50°42'02.302"N	002°01'21.373"W	30U	569023 5616991	1.4
40	SY	99012 86995	50.6826103	-2.0153477	50°40.95662'N	002°00.92087'W	50°40'57.397"N	002°00'55.252"W	30U	569562 5614993	1.4

APPENDIX 1 Poole Harbour Sampling Locations

				•	•								
41	SY	99001	87985	50.6915131	-2.0155063	50°41.49078'N	002°00.93038'W	50°41'29.447"N	002°00'55.823"W	30U	569537	5615983	1.5
42	SY	99471	86058	50.6741848	-2.0088491	50°40.45108'N	002°00.53095'W	50°40'27.065"N	002°00'31.857"W	30U	570033	5614062	1.4
43	SY	99517	86960	50.6822963	-2.0081996	50°40.93778'N	002°00.49198'W	50°40'56.267"N	002°00'29.519"W	30U	570067	5614965	1.5
44	SY	99490	87532	50.6874401	-2.0085828	50°41.24640'N	002°00.51497'W	50°41'14.784"N	002°00'30.898"W	30U	570033	5615536	1.5
45	SY	99485	91987	50.7275026	-2.0086611	50°43.65015'N	002°00.51967'W	50°43'39.009"N	002°00'31.180"W	30U	569967	5619991	2.0
46	SY	99602	92425	50.7314415	-2.0070041	50°43.88648'N	002°00.42025'W	50°43'53.189"N	002°00'25.215"W	30U	570078	5620431	0.8
47	SY	99982	86538	50.6785017	-2.0016177	50°40.71010'N	002°00.09707'W	50°40'42.606"N	002°00'05.824"W	30U	570538	5614549	1.1
48	SY	99982	87077	50.6833488	-2.0016179	50°41.00093'N	002°00.09707'W	50°41'00.056"N	002°00'05.824"W	30U	570531	5615088	1.1
49	SZ	00186	90994	50.7185732	-1.9987296	50°43.11438'N	001°59.92378'W	50°43'06.863"N	001°59'55.427"W	30U	570682	5619007	1.6
50	SZ	00003	91537	50.7234562	-2.0013220	50°43.40737'N	002°00.07932'W	50°43'24.442"N	002°00'04.759"W	30U	570491	5619548	1.7
51	SY	99891	92010	50.7277097	-2.0029090	50°43.66258'N	002°00.17453'W	50°43'39.755"N	002°00'10.472"W	30U	570373	5620019	1.9
52	SZ	00521	85510	50.6692570	-1.9939903	50°40.15542'N	001°59.63942'W	50°40'09.325"N	001°59'38.365"W	30U	571091	5613528	2.1
53	SZ	00456	85992	50.6735916	-1.9949096	50°40.41550'N	001°59.69458'W	50°40'24.930"N	001°59'41.675"W	30U	571019	5614009	1.3
54	SZ	00500	86962	50.6823145	-1.9942859	50°40.93887'N	001°59.65715'W	50°40'56.332"N	001°59'39.429"W	30U	571050	5614980	1.1
55	SZ	00507	91042	50.7190047	-1.9941825	50°43.14028'N	001°59.65095'W	50°43'08.417"N	001°59'39.057"W	30U	571002	5619060	0.8
56	SZ	00500	91446	50.7226377	-1.9942812	50°43.35827'N	001°59.65687'W	50°43'21.496"N	001°59'39.412"W	30U	570990	5619464	1.0
57	SZ	00533	92057	50.7281322	-1.9938131	50°43.68793'N	001°59.62878'W	50°43'41.276"N	001°59'37.727"W	30U	571014	5620075	0.2
58	SZ	00500	92500	50.7321160	-1.9942801	50°43.92697'N	001°59.65682'W	50°43'55.618"N	001°59'39.409"W	30U	570975	5620518	0.7
59	SZ	00993	86016	50.6738068	-1.9873101	50°40.42842'N	001°59.23860'W	50°40'25.705"N	001°59'14.316"W	30U	571556	5614041	2.1
60	SZ	00956	86545	50.6785640	-1.9878325	50°40.71385'N	001°59.26995'W	50°40'42.831"N	001°59'16.197"W	30U	571512	5614569	0.9
61	SZ	01589	85023	50.6648758	-1.9788796	50°39.89255'N	001°58.73277'W	50°39'53.553"N	001°58'43.966"W	30U	572165	5613056	1.8
62	SZ	01490	85553	50.6696422	-1.9802784	50°40.17853'N	001°58.81670'W	50°40'10.712"N	001°58'49.002"W	30U	572059	5613584	1.8
63	SZ	01500	86076	50.6743454	-1.9801349	50°40.46072'N	001°58.80810'W	50°40'27.643"N	001°58'48.486"W	30U	572062	5614108	1.6
64	SZ	01486	87000	50.6826547	-1.9803296	50°40.95928'N	001°58.81978'W	50°40'57.557"N	001°58'49.187"W	30U	572036	5615031	0.9
65	SZ	01511	87479	50.6869622	-1.9799739	50°41.21773'N	001°58.79843'W	50°41'13.064"N	001°58'47.906"W	30U	572054	5615511	1.9
66	SZ	02027	84950	50.6642181	-1.9726827	50°39.85308'N	001°58.36097'W	50°39'51.185"N	001°58'21.658"W	30U	572604	5612989	2.0
67	SZ	01970	85499	50.6691553	-1.9734864	50°40.14932'N	001°58.40918'W	50°40'08.959"N	001°58'24.551"W	30U	572540	5613537	0.9
68	SZ	02043	86021	50.6738492	-1.9724507	50°40.43095'N	001°58.34703'W	50°40'25.857"N	001°58'20.822"W	30U	572606	5614060	1.7
69	SZ	02037	86619	50.6792269	-1.9725325	50°40.75362'N	001°58.35195'W	50°40'45.217"N	001°58'21.117"W	30U	572592	5614658	1.0
70	SZ	01985	86995	50.6826084	-1.9732666	50°40.95650'N	001°58.39600'W	50°40'57.390"N	001°58'23.760"W	30U	572535	5615033	0.5
71	SZ	02007	90026	50.7098652	-1.9729396	50°42.59192'N	001°58.37638'W	50°42'35.515"N	001°58'22.583"W	30U	572516	5618064	1.0
72	SZ	02499	85901	50.6727684	-1.9659982	50°40.36610'N	001°57.95990'W	50°40'21.966"N	001°57'57.594"W	30U	573063	5613946	1.3
73	SZ	02500	90500	50.7141259	-1.9659544	50°42.84755'N	001°57.95727'W	50°42'50.853"N	001°57'57.436"W	30U	573002	5618545	0.7
74	SZ	02988	85919	50.6729281	-1.9590780	50°40.37568'N	001°57.54468'W	50°40'22.541"N	001°57'32.681"W	30U	573552	5613971	2.0
75	SZ	03008	90506	50.7141776	-1.9587591	50°42.85065'N	001°57.52555'W	50°42'51.039"N	001°57'31.533"W	30U	573510	5618558	1.2
76	SZ	03370	86360	50.6768919	-1.9536683	50°40.61352'N	001°57.22010'W	50°40'36.811"N	001°57'13.206"W	30U	573928	5614417	1.8
77	SZ	03498	90021	50.7098135	-1.9518232	50°42.58880'N	001°57.10940'W	50°42'35.328"N	001°57'06.564"W	30U	574007	5618079	1.6
78	SZ	04505	87958	50.6912548	-1.9375860	50°41.47528'N	001°56.25517'W	50°41'28.517"N	001°56'15.310"W	30U	575041	5616030	1.0
79	SZ	04650	88462	50.6957860	-1.9355270	50°41.74717'N	001°56.13162'W	50°41'44.830"N	001°56'07.897"W	30U	575180	5616536	1.0
80	SZ	04615	88966	50.7003186	-1.9360165	50°42.01912'N	001°56.16098'W	50°42'01.147"N	001°56'09.659"W	30U	575138	5617039	1.3

^(a) extracted from Thomas et al. (2004) ^(b) presumed to be based on OSGB36, zones assumed ^(c) converted ^(d) based on WGS84

APPENDIX 1 Poole Harbour Sampling Locations

		BNG		w	GS84
	zone	eastings	northings	latitude	longitude
1	SY	94598	87489	50°41.22165'N	002°04.66995'W
2	SY	94550	88048	50°41.52325'N	002°04.71123'W
3	SY	94435	88459	50°41.74493'N	002°04.80930'W
4	SY	94932	87593	50°41.27795'N	002°04.38637'W
5	SY	95021	87989	50°41.49167'N	002°04.31110'W
6	SY	94930	88485	50°41.75925'N	002°04.38882'W
7	SY	95169	89036	50°42.05667'N	002°04.18622'W
8	SY	95006	89481	50°42.29668'N	002°04.32508'W
9	SY	95532	87664	50°41.31657'N	002°03.87680'W
10	SY	95502	87983	50°41.48867'N	002°03.90252'W
11	SY	95492	88515	50°41.77572'N	002°03.91142'W
12	SY	95510	89059	50°42.06925'N	002°03.89653'W
13	SY	95521	89544	50°42.33093'N	002°03.88755'W
14	SY	95516	90035	50°42.59587'N	002°03.89217'W
15	SY	95494	90494	50°42.84350'N	002°03.91120'W
16	SY	96086	88629	50°41.83748'N	002°03.40688'W
17	SY	95991	89570	50°42.34518'N	002°03.48822'W
18	SY	95978	90016	50°42.58582'N	002°03.49957'W
19	SY	96054	90496	50°42.84483'N	002°03.43530'W
20	SY	96500	89000	50°42.03783'N	002°03.05538'W
21	SY	96539	90061	50°42.61032'N	002°03.02287'W
22	SY	96495	90462	50°42.82667'N	002°03.06050'W
23	SY	96824	86547	50°40.71440'N	002°02.77882'W
24	SY	97088	89476	50°42.29487'N	002°02.55607'W
25	SY	97030	90570	50°42.88513'N	002°02.60590'W
26	SY	97007	91013	50°43.12415'N	002°02.62567'W
27	SY	97000	92014	50°43.66423'N	002°02.63212'W
28	SY	97502	91500	50°43.38705'N	002°02.20517'W
29	SY	97487	92026	50°43.67087'N	002°02.21813'W
30	SY	98036	86089	50°40.46762'N	002°01.74943'W
31	SY	97880	86957	50°40.93592'N	002°01.88222'W
32	SY	98047	89032	50°42.05555'N	002°01.74108'W
33	SY	98000	90500	50°42.84762'N	002°01.78152'W
34	SY	97988	92033	50°43.67477'N	002°01.79225'W
35	SY	98500	86489	50°40.68353'N	002°01.35555'W
36	SY	98502	86997	50°40.95763'N	002°01.35398'W
37	SY	98610	87514	50°41.23660'N	002°01.26238'W
38	SY	98617	87994	50°41.49558'N	002°01.25657'W
39	SY	98500	89000	50°42.03837'N	002°01.35622'W
40	SY	99012	86995	50°40.95662'N	002°00.92087'W

	I	BNG		WGS84	
	zone	eastings	northings	latitude	longitude
41	SY	99001	87985	50°41.49078'N	002°00.93038'W
42	SY	99471	86058	50°40.45108'N	002°00.53095'W
43	SY	99517	86960	50°40.93778'N	002°00.49198'W
44	SY	99490	87532	50°41.24640'N	002°00.51497'W
45	SY	99485	91987	50°43.65015'N	002°00.51967'W
46	SY	99602	92425	50°43.88648'N	002°00.42025'W
47	SY	99982	86538	50°40.71010'N	002°00.09707'W
48	SY	99982	87077	50°41.00093'N	002°00.09707'W
49	SZ	00186	90994	50°43.11438'N	001°59.92378'W
50	SZ	00003	91537	50°43.40737'N	002°00.07932'W
51	SY	99891	92010	50°43.66258'N	002°00.17453'W
52	SZ	00521	85510	50°40.15542'N	001°59.63942'W
53	SZ	00456	85992	50°40.41550'N	001°59.69458'W
54	SZ	00500	86962	50°40.93887'N	001°59.65715'W
55	SZ	00507	91042	50°43.14028'N	001°59.65095'W
56	SZ	00500	91446	50°43.35827'N	001°59.65687'W
57	SZ	00533	92057	50°43.68793'N	001°59.62878'W
58	SZ	00500	92500	50°43.92697'N	001°59.65682'W
59	SZ	00993	86016	50°40.42842'N	001°59.23860'W
60	SZ	00956	86545	50°40.71385'N	001°59.26995'W
61	SZ	01589	85023	50°39.89255'N	001°58.73277'W
62	SZ	01490	85553	50°40.17853'N	001°58.81670'W
63	SZ	01500	86076	50°40.46072'N	001°58.80810'W
64	SZ	01486	87000	50°40.95928'N	001°58.81978'W
65	SZ	01511	87479	50°41.21773'N	001°58.79843'W
66	SZ	02027	84950	50°39.85308'N	001°58.36097'W
67	SZ	01970	85499	50°40.14932'N	001°58.40918'W
68	SZ	02043	86021	50°40.43095'N	001°58.34703'W
69	SZ	02037	86619	50°40.75362'N	001°58.35195'W
70	SZ	01985	86995	50°40.95650'N	001°58.39600'W
71	SZ	02007	90026	50°42.59192'N	001°58.37638'W
72	SZ	02499	85901	50°40.36610'N	001°57.95990'W
73	SZ	02500	90500	50°42.84755'N	001°57.95727'W
74	SZ	02988	85919	50°40.37568'N	001°57.54468'W
75	SZ	03008	90506	50°42.85065'N	001°57.52555'W
76	SZ	03370	86360	50°40.61352'N	001°57.22010'W
77	SZ	03498	90021	50°42.58880'N	001°57.10940'W
78	SZ	04505	87958	50°41.47528'N	001°56.25517'W
79	SZ	04650	88462	50°41.74717'N	001°56.13162'W
80	SZ	04615	88966	50°42.01912'N	001°56.16098'W

Basemap adapted from Gray, 1985. Poole Harbour - Ecological sensitivity analysis of the shoreline. Copyright NERC, reproduced with the permission of the CEH

		SMPT Grid			
URN	Name	Ref	Mean	Max	Min
	POOLE BAY				
50024473	SHELLFISH WATER	SZ0950089000	34.3	35.1	33.4
	POOLE HARBOUR WFD FISH		00 4	o 4 =	o =
50900007	WATER COLUMN DATA	SY9862086684	28.1	34.5	0.5
	POOLE HARBOUR TWELVE		<u> </u>	05.0	00 F
50900149	(SOUTH DEEP)	SZ0162786649	30.6	35.0	22.5
	POOLE HARBOUR 1		00.4	<u> </u>	
50900387	WAREHAM CHANNEL BUOY 82	SY9630689097	20.1	29.2	4.5
	POOLE HARBOUR - UPPER		~~ ~	<u> </u>	<u> </u>
50911036	SOUTH DP	SZ0070087200	28.0	28.0	28.0
	POOLE HARBOUR TEN		~~~~	0 4 F	07 F
50950106	(HARBOUR ENTRANCE)	SZ0342986947	32.3	34.5	27.5
	POOLE HARBOUR SIX		047	.	00 F
50950125	(NEAR BUOY NO 36)	SZ0351089208	31.7	34.3	22.5
	POOLE HARBOUR FOUR		00.4	00.0	<u> </u>
50950217	(POOLE BRIDGE)	SZ0062690356	29.4	32.8	20.8
	POOLE HARBOUR THREE		<u> </u>	00.0	40.0
50950249	(HUTCHINS BUOY 71)	SY9943789299	28.2	33.3	16.8

APPENDIX 2. Poole Harbour salinity (ppt) measured between January 2007 - December 2009. Source: Environment Agency.

APPENDIX 3: Particle Size Analysis and Organic content of Poole Harbour Sediments from each sampling station.

			0/ -	f h F 4'.	_			%
C *4		. 1		of each Fractio		. (2	. (2	Organic
Site	>2mm	>1mm	>500µm	>250µm	>125µm	>63µm	< 63μm	7.06
1	0.00	0.04	0.10	0.09	1.92	8.42	89.43	7.36
2	0.00	0.00	0.04	0.08	0.26	11.98	87.64	6.73
3	0.00	0.00	0.06	0.37	0.67	8.31	90.59	9.30
4	0.00	0.02	0.03	0.08	0.33	8.47	91.08	7.78
5	0.00	0.18	0.20	0.37	5.45	14.80	79.00	7.23
6	0.00		. . .	^ 		10 54		
7	0.00	0.82	0.54	0.77	2.50	12.76	82.62	5.70
8	0.00	0.09	0.47	1.06	2.22	4.00	92.15	7.23
9	0.00	0.05	0.03	0.22	0.42	5.99	93.29	6.93
10	0.00	0.15	0.27	0.63	2.37	23.78	72.80	5.03
11	0.00	0.07	0.06	0.19	1.60	5.21	92.86	8.06
12	0.00	0.00	0.26	0.17	0.87	10.46	88.23	5.08
13	0.44	0.48	0.46	0.57	1.07	7.07	89.91	8.31
14	0.00	0.19	0.87	1.56	2.62	10.65	84.11	5.49
15	0.05	0.26	0.51	0.77	1.10	4.73	92.58	5.98
16	0.00	0.05	0.23	9.13	25.01	1.71	63.87	4.39
17	0.00	1.14	1.20	0.81	3.97	14.52	78.36	4.94
18	0.06	0.11	0.23	0.24	0.90	14.96	83.50	6.31
19	0.00	0.41	0.72	1.52	2.28	2.52	92.55	4.65
20	1.16	5.91	23.52	37.80	14.53	3.54	13.54	1.79
21	0.31	0.16	0.36	0.68	3.94	10.77	83.79	18.29
22	0.23	0.12	0.78	10.58	10.78	7.88	69.63	6.22
23	23.75	7.09	5.57	3.15	2.21	1.40	56.85	6.50
24	0.00	0.00	0.10	0.52	18.01	8.28	73.08	4.52
25	0.10	0.29	1.96	24.87	9.34	3.73	59.70	6.44
26	0.00	0.02	0.04	0.18	0.53	0.77	98.47	5.32
27	0.07	0.03	0.09	0.32	1.68	6.48	91.34	7.96
28	0.00	0.43	0.60	0.65	0.50	4.69	93.13	5.29
29	0.00	0.01	0.15	0.19	2.93	6.51	90.20	7.86
30	15.32	10.53	2.05	1.10	2.43	1.74	66.82	5.84
31	5.41	11.92	4.98	1.58	0.68	1.23	74.21	5.81
32	11.07	7.14	3.22	2.10	2.47	3.47	70.53	5.79
33	1.70	2.51	10.89	50.54	22.60	5.89	5.87	1.43
34	0.00	0.05	0.00	0.20	10.28	14.31	75.16	8.34
35	0.00	0.00	0.15	1.89	1.74	4.09	92.13	6.32
36	0.17	0.22	7.60	21.18	3.01	1.76	66.05	5.30
37	0.00	0.34	11.41	50.18	8.74	3.23	26.10	3.16
38	2.61	3.96	10.50	33.96	37.79	4.68	6.50	0.65
39	14.72	6.21	6.97	13.64	7.61	2.23	48.61	2.82
40	1.19	0.17	11.90	36.95	16.61	4.48	28.71	1.97
41	0.00	0.17	2.78	54.27	28.72	3.05	11.02	1.52
42								
43	0.00	0.22	0.77	1.52	4.91	5.64	86.95	5.78
44	0.00	0.00	0.09	0.64	2.27	6.56	90.43	6.47
45	0.00	0.04	0.10	0.15	0.24	1.15	98.31	6.06
46	0.02	0.11	0.25	0.45	0.61	1.28	97.28	7.70
47	1.17	0.40	0.34	0.18	1.03	13.38	83.51	4.48
48	0.00	0.03	0.24	4.89	10.55	15.70	68.58	4.00
49	0.02	0.04	0.09	0.12	2.74	6.12	90.88	7.42

APPENDIX 3 contd.: Particle Size Analysis and Organic content of Poole Harbour Sediments from each sampling station.

				%	of each fractio	'n			% Organic
Site	:	>2mm	>1mm	>500µm	>250µm	>125µm	>63µm	< 63µm	
	50	0.00	0.27	0.23	0.81	3.51	7.07	88.12	6.22
	51	0.00	0.32	0.25	0.22	0.67	3.91	94.63	9.47
	52	0.18	0.84	7.19	44.53	19.33	4.43	23.48	1.47
	53	0.00	0.06	0.68	2.99	12.59	18.41	65.27	4.07
	54	0.00	0.03	1.04	18.79	43.48	8.21	28.46	2.10
	55	0.00	0.19	0.48	0.66	0.96	4.06	93.66	11.09
	56	0.00	0.31	0.38	0.83	6.56	13.85	78.06	7.16
	57	0.19	0.66	0.68	1.47	4.61	14.75	77.64	6.40
	58	0.00	0.05	0.60	0.90	1.36	4.32	92.77	7.74
	59	0.00	0.08	0.21	0.47	0.90	1.34	97.00	6.56
	60	0.00	0.28	4.74	18.67	18.46	13.02	44.83	2.35
	61	0.00	0.17	0.25	1.14	1.75	9.86	86.82	5.01
	62	0.09	0.12	0.15	0.64	4.39	9.91	84.70	5.11
	63	0.00	0.04	0.17	0.62	10.68	28.00	60.49	4.48
	64								
	65	1.20	0.77	1.77	46.96	34.81	5.48	9.02	1.20
	66	0.00	0.65	1.75	29.50	10.34	29.00	28.76	8.63
	67	0.00	0.13	0.03	1.40	17.20	23.42	57.82	3.60
	68	0.00	0.07	0.16	0.87	58.90	14.46	25.54	1.62
	69	0.04	0.07	0.16	0.99	40.30	14.21	44.23	3.56
	70	0.00	0.53	1.62	44.85	43.94	1.61	7.44	1.12
	71	11.08	9.91	29.80	29.06	9.76	1.89	8.51	1.13
	72	0.04	0.40	9.11	57.60	20.07	2.09	10.69	0.82
	73	15.73	8.92	15.61	33.22	14.40	2.99	9.12	2.32
	74	0.00	0.00	0.07	0.35	2.87	8.85	87.86	2.87
	75	0.00	0.04	0.24	37.02	51.37	4.87	6.46	1.10
	76	0.00	0.03	1.41	42.91	45.87	2.31	7.48	0.59
	77	0.00	0.15	0.40	2.04	19.98	36.30	41.14	4.49
	78	0.04	0.04	1.57	39.44	48.52	0.55	9.85	0.35
	79	0.01	0.05	0.19	32.33	63.94	0.59	2.89	0.31
	80	4.33	3.08	14.95	47.70	19.52	0.38	10.04	0.58

APPENDIX 4. Mean density of taxa recorded from Poole Harbour (Excluding Brownsea Island Lagoon) in 2009 and in 2002 (adapted from Caldow et al. 2005). Where a taxon differs at species level this is shown in notes. P= present. The 2002 data combines samples in cores and fauna collected from surface dredges with a hand net.

	Density per m ²	Density per m ²	Notes
Group	2009	2002	
PHYLUM CNIDARIA (Actiniaria)	191.0	114.7	
PHYLUM NEMATODA	27.7	9.9	
PHYLUM NEMERTEA			
Lineus viridis	7.02	12.7	Nemertine
PHYLUM HIRUDINEA			
PHYLUM ANNELIDA			
Ampharete balthica	2.3	34 (A.grubei)	
Anaitides mucosa	18.3	9.9	
Aonides oxycephala	0.3		
Aphelochaeta marioni	555.9		
Arenicola marina	3.5	3.3	
Capitella capitata	131.6	113.3	
Chaetozone christii	23.5		
Cirratulidae indet.	4.2		
Cirratulus filiformis		3819.6	
Cirriformia tentaculata	1.6	9.9	
Caulleriella zetlandica	9.3		
Cossura longissima	0.3		
Desdemona ornata	12.6		
Eteone foliosa	0.6		
Eteone longa	251	60.9	
Eumida cf sanguinea	2.3		
Eumida punctifera	0.3		
Glycera tridactyla	1.0	1.4	
Harmothoe sp.		1.4	
Hediste diversicolor	649.9	614.7	
Heteromastus filiformis		9.9	
Janua pagenstecheri	68.0		
Malacoceros tetraceros	0.6	422	(M.fulginosus)
Mediomastus fragilis	0.3		
Melinna palmata	10.9		
Neanthes virens	8.4	80.7	
Neoamphitrite figulus	0.3		
Nephtys hombergii	74.6	46.7	
Nephtys kersivalensis	8.0		
Notomastus latericeus	10.0		
Parapionosyllis minuta	0.3		
Polycirrus sp.	1.9	29.7	P.caliendrum
Polydora cornuta	11.6		
Polydora sp.	4.8		
Pomatoceros lamarki	0.3		
Pseudopolydora antennata	1.0		
Pygospio elegans	12.5	11.3	
Scolelepsis spp.	1.3	31.1	(11.3 S.squamata; 19.8 S.foliosa)
Scoloplos armiger	45.7	263.4	
Serpulidae sp.	1.3		
Spio martinensis	8.4		
Spionidae sp	1.6	151.5	
Streblospio shrubsolii	35.7		

APPENDIX 4 Contd.			
	Density per m ²	Density per m ²	Notes
Group	2009	2002	
Talitrus saltator		1.4	
Oligochaeta Total	1431.5	1818.5	
Tubificoides sp.	244.5		
Tubificoides benedii	665.3	1818.5	
Tubificoides pseudogaster	518.9		
· · · · · · · · · · · · · · · · · · ·			
Ostracoda sp.	121.6		
Eusarsiella zostericola	7.4		
Mysidae spp		0.1	
Mesopdopsis slabberi		15.6	
Neomysis integer		35.4	
Praunus flexuosus		9.9	
Copepoda	1.6		
Cirripedia			
Amphibalanus improvisus	2.3		
Elminius modestus	39.9		
Isopoda			
Apseudes latreillii	17.4		
Cyathura carinata	82.0	355.5	
Idotea balthica	0.3	1.4	
Idotea chelipes	7.1		
Idotea neglecta		4.2	
Amphipoda			
Ampelisca brevicornis	2.9		
Bathyporeia indet.	1.3	2.8	B.sarsi
Corophium arenarium		28.3	
Corophium volutator	456.5	373.9	
Gammaropsis palmata		7.1	
Gammarus locusta	3.2	277.6	
Melita palmata	21.2		
Microdeutopus gryllotalpa	48.3	635.9	
Microprotopus maculeatus	14.5		
Phtisica marina	0.3		
Urothoe pulchellus	35.7	42.5	U.poseidonis
Decapoda			
Carcinus maenas	1.6	2.1	
Crangon crangon	1.9	1.2	
Liocarcinus arcuatus	1.3		
Palaemon longirostris		2.8	
Palaemon serratus		1.4	
PHYLUM MOLLUSCA	440.0	054.0	
Abra tenuis	113.2	254.9	
Alderia modesta	2.3		
Cerastoderma edule	23.8	30.2	
Cerastoderma glaucum	6.1		
Crepidula fornicata	P	0.9	
Dosinia lupinus	1.3	0.4	
Gibbula umbilicalis	0.6	0.4	
Haminoea navicula	1.3	1.4	
Hinia reticulata	0.6	0.2	
Hydrobia ulvae	489.6	756.3	
Leptochitona cinereus	0.3	4.0	Littering opp
Littorina littorea	1.3	4.0	Littorina spp.
Littorina saxatilis agg.	0.6		
Macoma balthica	8.7	1.4	

APPENDIX 4. Contd.			
	Density per m ²	Density per m ²	Notes
Group	2009	2002	
Mya arenaria	29.0	9.9	
Mytilus edulis	0.6		
Parvicardium exiguum	0.3		
Retusa obtusa	9.7		
Ruditapes decussatus	0.3		
Ruditapes phillipinarum	12.6	4.6	
Scrobicularia plana	5.7	8.5	
Solen marginatus	0.3		
Venerupis saxatilis	0.3		
PHYLUM ECHINODERMATA			
Amphipholis squamata	14.2		
PHYLUM INSECTA			
Chironomidae	63.7	54.2	inc pupae
Dolichopodidae	0		
Insecta indet	0.3		
Insecta larvae	5.5		
PHYLUM TUNICATA		0.4	
PHYLUM CHORDATA			
Pomatochistus sp.	1.9		
Bryozoa indet.	1.3		

Site	Num species	Number of species present	Numerical per co	erical density per core	Numerical density per m^2	l density n^2	Margalef specie richness d=(S- 1)/logeN	Margalef species richness d=(S- 1)/logeN	Species ∉ Pielou J=	Species evenness Pielou J=H'/logeS	Shannon Indé	Shannon diversity Index H'	Sim diversit	Simpson diversity Index
,	2002	2009	2002	2009*	2002	2009*	2002	2009	2002	2009	2002	2009	2002	2009
-	7	12		26	19301	3310	0.61	1.36	0.53	0.74	1.04	1.83	0.53	0.79
7	9	10		13	4305	1655	0.60	1.21	0.88	0.64	1.57	1.47	0.77	0.66
с	10	8		17	10201	2165	0.98	0.91	0.74	0.76	1.69	1.58	0.77	0.72
4	9	1		97	6571	12350	0.57	1.07	0.79	0.49	1.42	1.18	0.72	0.50
5	6	14		84	5216	10695	0.93	1.43	0.61	0.61	1.33	1.62	0.63	0.67
9	6	13		34	26965	4329	0.78	1.43	0.28	0.70	0.61	1.79	0.23	0.76
7	9	10		14	4216	1783	0.60	1.21	0.72	0.67	1.29	1.54	0.67	0.70
œ	9	5		27	3739	3438	0.61	0.49	0.87	0.61	1.56	0.98	0.76	0.57
6	7	5		27	5099	3438	0.70	0.49	0.84	0.34	1.63	0.54	0.76	0.26
10	1	18		102	23692	12987	0.99	1.81	0.46	0.63	1.10	1.82	0.50	0.76
5	8	16		114	43398	14515	0.66	1.57	0.27	0.30	0.56	0.82	0.24	0.38
12	7	7		5	27536	637	0.59	0.94	0.15	0.79	0.29	1.54	0.10	0.73
13	5	10		22	2039	2801	0.52	1.14	0.72	0.47	1.17	1.08	0.58	0.57
14	7	16		65	4066	8276	0.72	1.66	0.74	0.61	1.43	1.70	0.69	0.75
15	9	15		38	5673	4838	0.58	1.65	0.56	0.56	1.00	1.53	0.50	0.62
16	6	80		23	16679	2928	0.82	0.88	0.34	0.46	0.74	0.96	0.33	0.49
17	-	23		74	8	9422	00.00	2.41	* * * *	0.64	0.00	2.00	0.00	0.80
18	1	13		72	6651	9167	1.14	1.73	0.62	0.89	1.48	2.28	0.69	0.88
19	7	6	,	80	6482	1019	0.68	1.15	0.46	0.69	06.0	1.52	0.46	0.70
20	ო	7	,	34	914	4329	0.29	0.72	0.39	0.76	0.42	1.48	0.23	0.74
21	6	80		ю	1372	382	1.11	1.17	0.92	0.79	2.01	1.65	0.85	0.71
22	12	14		48	7991	6112	1.22	1.53	09.0	0.47	1.50	1.25	0.66	0.55
23	4	5		109	0266	13878	0.33	0.42	0.34	0.75	0.48	1.20	0.24	0.66
24	9	10		1	12022	1401	0.53	1.24	0.28	0.85	0.50	1.96	0.21	0.83
25	9	1		10	9869	1273	0.54	1.40	0.32	0.83	0.58	2.00	0.30	0.83
26	6	14	ı	24	25380	3056	0.79	1.62	0.59	0.66	1.30	1.75	0.67	0.74

APPENDIX 5: Species Richness and Diversity and each sampling point, 2002 & 2009. * represents mean value for 5 cores taken in 2009; **** only one species present

	ġ	
	annon diversity Index H'	
600	Shannor Inde	0000
2002 & 2	Species evenness Pielou J=H'/logeS	
g point, 2	Species evenness Shannon diversity Pielou J=H'/logeS Index H'	
ontd: Species Richness and Diversity and each sampling point, 2002 & 2009	Margalef species richness d=(S- 1)/logeN	
and each	Margalef richnes 1)/lo	0000
iversity a	nerical density per m^2	
ss and D	Numerica	0000
s Richne	Numerical density Numerical density per core per m^2	
: Specie	Numeric per	0000
5 contd	lumber of cies present	
PPENDIX 5 co	N	0000
APP	Site	

	Nim	Number of	Numeric	Numerical dencity	Numerical density	Idencity	richnes d=(S-	species s d=(S-	Sharias	Sneriae avannaee	Shannon diversity	diversity	Simpon	000
Site	species	species present	per	per core	per m^2	n^2	1)/logeN	geN	Pielou J=	Pielou J=H'/logeS	Index H'	x H'	diversity Index	/ Index
I	2002	2009	2002	2009*	2002	2009*	2002	2009	2002	2009	2002	2009	2002	2009
27	11	7		22	36089	2801	0.95	0.76	0.69	0.81	1.66	1.57	0.75	0.76
28	6	6		12	40192	1528	0.75	1.09	0.53	0.75	1.17	1.65	0.52	0.75
29	5	8		5	3059	637	0.50	1.07	0.65	0.81	1.04	1.69	0.52	0.77
30	7	12		61	15413	7767	0.62	1.23	0.44	0.67	0.85	1.66	0.39	0.76
31	11	16	,	20	16659	2546	1.03	1.94	0.76	0.75	1.82	2.08	0.79	0.83
32	11	14	,	23	23914	2928	0.99	1.68	0.52	0.68	1.24	1.78	0.56	0.74
33	6	12	,	7	6022	891	0.92	1.62	0.54	0.91	1.18	2.26	0.60	0.88
34	6	5		16	16546	2037	0.82	0.53	0.80	0.40	1.76	0.64	0.79	0.29
35	8	15		69	2047	8785	0.92	1.54	0.85	0.50	1.77	1.37	0.80	0.53
36	6	15		30	4087	3820	0.96	1.70	0.69	0.35	1.53	0.93	0.71	0.33
37	10	8		19	2606	2419	1.14	0.91	0.92	0.50	2.13	1.04	0.87	0.46
38	7	13		15	2379	1910	0.77	1.59	0.63	0.75	1.22	1.93	0.54	0.80
39	7	19		58	2735	7385	0.76	2.04	0.73	0.54	1.41	1.58	0.66	0.65
40	21	14	,	18	73222	2292	1.79	1.68	0.57	0.69	1.75	1.83	0.75	0.76
41	80	20	,	34	1594	4329	0.95	2.28	0.82	0.58	1.70	1.73	0.80	0.69
42	11	16	,	29	18321	3692	1.02	1.83	0.57	0.77	1.36	2.15	0.69	0.85
43	12	6	,	24	49859	3056	1.02	1.00	0.59	0.52	1.47	1.14	0.70	09.0
44	11	6	,	28	2869	3565	1.26	0.98	0.61	0.63	1.45	1.39	0.68	0.68
45	ю	15	,	92	1700	11714	0.27	1.50	0.57	0.56	0.63	1.52	0.34	0.69
46	15	17	,	19	26548	2419	1.37	2.05	0.51	0.78	1.38	2.21	0.61	0.85
47	9	13		19	2946	2419	0.63	1.55	0.56	0.67	1.01	1.72	0.52	0.72
48	9	6		1	331	1401	0.86	1.14	0.78	0.79	1.40	1.74	0.73	0.78
49	7	6	,	1	1728	1401	0.80	1.11	0.55	0.73	1.07	1.61	0.53	0.71
50	11	-	,	15	7023	1910	1.13	1.33	0.65	0.84	1.55	2.02	0.74	0.85
51	10	13	·	148	3572	18844	1.10	1.24	0.57	0.57	1.32	1.46	0.65	0.69
52	13	15	ı	21	29627	2674	1.17	1.79	0.58	0.79	1.49	2.13	0.71	0.82

2002 2009 2012 2019 2013 56 11 11 11 11 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 114 <th>Site</th> <th>Numk species</th> <th>Number of species present</th> <th>Numeric</th> <th>Numerical density per core</th> <th>Numerical density per m^2</th> <th>l density n^2</th> <th>Margalef species richness d=(S- 1)/logeN</th> <th>species s d=(S- geN</th> <th>Species - Pielou J⁼</th> <th>Species evenness Pielou J=H'/logeS</th> <th>Shannon diversity Index H'</th> <th>diversity x H'</th> <th>Sim diversi</th> <th>Simpson diversity Index</th>	Site	Numk species	Number of species present	Numeric	Numerical density per core	Numerical density per m^2	l density n^2	Margalef species richness d=(S- 1)/logeN	species s d=(S- geN	Species - Pielou J ⁼	Species evenness Pielou J=H'/logeS	Shannon diversity Index H'	diversity x H'	Sim diversi	Simpson diversity Index
		2002	2009	2002	2009*	2002	2009*	2002	2009	2002	2009	2002	2009	2002	2009
	53	£	9		5	1020	637	0.58	0.80	0.91	0.75	1.47	1.34	0.74	0.65
	54	13	6		15	13377	1910	1.26	1.06	0.73	0.72	1.88	1.59	0.79	0.74
	55	9	7		9	829	764	0.74	0.94	0.66	0.88	1.18	1.71	0.65	0.79
9 11 - 45 6041 5730 0.22 1.19 0.73 0.26 1.61 0.62 0.74 11 10 - 2 0 6397 2546 1.14 1.15 0.76 0.86 1.84 1.33 0.78 12 1 - 1 547 2292 1.14 1.15 0.76 0.86 1.84 1.33 0.78 4 12 - 141 454 17953 0.49 1.12 0.76 0.48 1.66 0.99 0.79 5 - 141 454 17953 0.39 0.74 0.56 1.27 0.76 0.69 0.73 0.56 0.73 0.57 0.56	56	14	14		25	12656	3183	1.38	1.77	0.46	0.77	1.22	2.04	0.56	0.80
	57	6	1		45	6041	5730	0.92	1.19	0.73	0.26	1.61	0.62	0.74	0.23
	58	1	10		20	6397	2546	1.14	1.15	0.78	0.58	1.87	1.33	0.78	0.64
	59	1	1	•	18	5570	2292	1.16	1.31	0.77	0.68	1.84	1.64	0.79	0.72
	60	12	80		17	5342	2165	1.28	0.92	0.66	0.48	1.65	0.99	0.69	0.51
5 4 - 17 2407 2165 0.51 0.39 0.74 0.50 120 0.69 0.63 7 6 - 6 1829 764 0.80 0.85 0.54 0.80 1.05 1.43 0.55 14 13 - 21 1250 2801 0.42 0.63 0.76 0.80 1.43 0.55 14 13 - 81 12383 10313 1.38 1.30 0.71 0.49 189 1.27 0.79 17 5 - 144 173 0.35 0.50 0.84 1.47 0.55 7 5 - 144 123 0.17 0.39 0.56 0.56 1.43 0.55 1 8 2 0.44 1.14 1.13 0.17 0.49 1.26 0.74 0.55 1 1 1 1 1 1 0.50 <td< td=""><td>61</td><td>4</td><td>12</td><td></td><td>141</td><td>454</td><td>17953</td><td>0.49</td><td>1.12</td><td>0.76</td><td>0.48</td><td>1.05</td><td>1.20</td><td>0.63</td><td>0.56</td></td<>	61	4	12		141	454	17953	0.49	1.12	0.76	0.48	1.05	1.20	0.63	0.56
	62	5	4		17	2407	2165	0.51	0.39	0.74	0.50	1.20	0.69	0.63	0.39
	63	7	9		9	1829	764	0.80	0.85	0.54	0.80	1.05	1.43	0.55	0.69
1413-8112383103131.381.300.710.491.891.270.79819-3076021390880.801.700.390.500.801.470.4175-9680611461.131.010.520.841.251.750.5053-1449717830.970.530.700.561.360.500.8053-48227061120.520.230.610.130.980.1470.5536-310243820.290.860.660.910.751.260.5079511416370.520.250.610.130.930.710.930.711113-672926385310.971.260.900.961.732.010.801113-672926385310.971.340.440.440.460.731.732.010.911213-109688011461.261.260.801.732.010.910.701213-109688013781.260.800.921.732.010.91121020222.022.030.530.641.272.010.9112 <t< td=""><td>64</td><td>4</td><td>9</td><td></td><td>22</td><td>1250</td><td>2801</td><td>0.42</td><td>0.63</td><td>0.76</td><td>0.53</td><td>1.05</td><td>0.94</td><td>0.63</td><td>0.44</td></t<>	64	4	9		22	1250	2801	0.42	0.63	0.76	0.53	1.05	0.94	0.63	0.44
8 19 - 307 6021 39088 0.80 1.70 0.39 0.50 0.80 1.47 0.41 11 8 - 9 6806 1146 1.13 1.01 0.55 0.84 1.25 1.75 0.50 5 - 14 497 1783 0.97 0.53 0.70 0.56 1.36 0.50 0.60 5 - - 14 4216 1145 0.52 0.23 0.61 0.13 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 18 35 - 1141 637 0.87 0.36 0.56 0.56 1.56 0.56	65	14	13		81	12383	10313	1.38	1.30	0.71	0.49	1.89	1.27	0.79	0.61
	66	80	19		307	6021	39088	0.80	1.70	0.39	0.50	0.80	1.47	0.41	0.70
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	67	1	80	,	6	6806	1146	1.13	1.01	0.52	0.84	1.25	1.75	0.52	0.80
5 3 - 48 2270 6112 0.52 0.23 0.61 0.13 0.98 0.14 0.55 3 6 - 3 1024 382 0.29 0.86 0.50 0.91 0.55 1.63 0.35 18 35 - 114 4216 14515 2.02 3.55 0.68 0.68 1.97 2.43 0.78 17 9 - 5 1141 637 0.85 1.28 0.69 0.50 1.91 2.43 0.78 11 13 - 67 29263 8531 0.97 1.34 0.44 0.48 1.05 1.24 0.57 0.66 0.57 0.51 0.51 0.57 10 20 - 91 7084 1.25 1.24 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.57 0.51 0.51 0.57 <td>68</td> <td>7</td> <td>5</td> <td></td> <td>14</td> <td>497</td> <td>1783</td> <td>0.97</td> <td>0.53</td> <td>0.70</td> <td>0.56</td> <td>1.36</td> <td>06.0</td> <td>0.69</td> <td>0.53</td>	68	7	5		14	497	1783	0.97	0.53	0.70	0.56	1.36	06.0	0.69	0.53
3 6 - 3 1024 382 0.29 0.86 0.50 0.91 0.55 1.63 0.35 18 35 - 114 4216 14515 2.02 3.55 0.68 0.91 0.55 1.63 0.35 17 9 - 5 1141 637 0.85 1.28 0.89 0.92 1.73 2.01 0.80 11 13 - 67 29263 8531 0.97 1.34 0.44 0.48 1.05 1.24 0.87 12 13 - 91 7084 1.25 1.26 0.66 0.57 1.63 0.57 10 20 19 6880 13878 1.25 1.26 0.66 0.57 1.24 0.57 10 20 20 6959 1146 1.26 1.26 0.61 0.72 0.91 0.76 11 9 10 2 12	69	5	с		48	2270	6112	0.52	0.23	0.61	0.13	0.98	0.14	0.55	0.05
	70	ю	9		ю	1024	382	0.29	0.86	0.50	0.91	0.55	1.63	0.35	0.77
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	71	18	35		114	4216	14515	2.02	3.55	0.68	0.68	1.97	2.43	0.78	0.83
	72	7	6		5	1141	637	0.85	1.28	0.89	0.92	1.73	2.01	0.80	0.85
12 13 - 109 6880 13878 1.25 1.26 0.66 0.35 1.63 0.91 0.70 10 20 - 91 7084 11586 1.02 2.03 0.53 0.64 1.21 1.91 0.52 12 10 - 9 6959 1146 1.24 1.29 0.74 0.73 1.84 1.67 0.78 9 8 - 12 3184 1528 0.99 0.96 0.74 0.73 1.84 1.67 0.78 7 9 - 20 8185 2546 0.67 1.02 0.49 0.57 0.94 1.67 0.78 7 10 - 32 3752 4074 0.73 1.08 0.64 1.26 0.54 8 8 - 29 10906 3692 0.75 0.88 0.35 0.91 0.37 0.90 0.31	73	1	13		67	29263	8531	0.97	1.34	0.44	0.48	1.05	1.24	0.57	09.0
10 20 - 91 7084 11586 1.02 2.03 0.53 0.64 1.22 1.91 0.52 12 10 - 9 6959 1146 1.24 1.29 0.74 0.73 1.84 1.67 0.78 9 8 - 12 3184 1528 0.99 0.96 0.70 0.41 1.53 0.86 0.71 7 9 - 20 8185 2546 0.67 1.02 0.49 0.57 0.94 1.26 0.74 7 10 - 32 3752 4074 0.73 1.08 0.42 0.83 1.48 0.37 8 8 - 29 10906 3692 0.75 0.88 0.35 0.43 0.30 0.30 0.33	74	12	13		109	6880	13878	1.25	1.26	0.66	0.35	1.63	0.91	0.70	0.43
12 10 - 9 6959 1146 1.24 1.29 0.74 0.73 1.84 1.67 0.78 9 8 - 12 3184 1528 0.99 0.96 0.70 0.41 1.53 0.86 0.71 7 9 - 20 8185 2546 0.67 1.02 0.49 0.57 0.94 1.26 0.74 7 10 - 32 3752 4074 0.73 1.08 0.42 0.83 1.48 0.37 8 8 - 29 10906 3692 0.75 0.88 0.35 0.90 0.33	75	10	20		91	7084	11586	1.02	2.03	0.53	0.64	1.22	1.91	0.52	0.79
9 8 - 12 3184 1528 0.99 0.96 0.70 0.41 1.53 0.86 0.71 7 9 - 20 8185 2546 0.67 1.02 0.49 0.57 0.94 1.26 0.54 7 10 - 32 3752 4074 0.73 1.08 0.42 0.63 1.48 0.54 8 8 - 29 10906 3692 0.75 0.88 0.35 0.43 0.73 0.90 0.33	76	12	10		6	6959	1146	1.24	1.29	0.74	0.73	1.84	1.67	0.78	0.71
7 9 - 20 8185 2546 0.67 1.02 0.49 0.57 0.94 1.26 0.54 7 10 - 32 3752 4074 0.73 1.08 0.42 0.83 1.48 0.37 8 8 - 29 10906 3692 0.75 0.88 0.35 0.43 0.73 0.30 0.33	77	6	80	·	12	3184	1528	0.99	0.96	0.70	0.41	1.53	0.86	0.71	0.36
7 10 - 32 3752 4074 0.73 1.08 0.42 0.64 0.83 1.48 0.37 8 8 - 29 10906 3692 0.75 0.88 0.35 0.43 0.73 0.90 0.33	78	7	6		20	8185	2546	0.67	1.02	0.49	0.57	0.94	1.26	0.54	0.63
8 8 - 29 10906 3692 <u>0.75 0.88 0.35 0.43 0.73 0.90 0.33</u>	79	7	10	,	32	3752	4074	0.73	1.08	0.42	0.64	0.83	1.48	0.37	0.69
	80	80	80		29	10906	3692	0.75	0.88	0.35	0.43	0.73	0.00	0.33	0.43

APPENDIX 5 contd: Species Richness and Diversity and each sampling point, 2002 & 2009

APPENDIX 6: Measures of site Taxonomic Diversity (Δ), Taxonomic Distinctness (Δ^*) Average Taxonomic Distinctness (Δ^+) Total Taxonomic Distinctness ($S\Delta^+$) and Variation in Taxonomic Distinctness (Λ^+) were calculated using PRIMER 6 (Clarke & Gorely, 2006). Data from mean of five samples obtained from each site in Poole Harbour, 2009. Lower values of (Δ^+) are highlighted. See text for discussion.

	Delta	Delta*	Delta+	sDelta+	Lambda+
Site	(Δ)	(Δ^*)	(Δ^+)	$(S\Delta^+)$	(Λ^+)
1	73.76	89.54	89.14	1069.70	298.76
2	35.47	70.49	85.19	851.85	311.39
3	64.64	90.16	86.90	695.24	364.23
4	49.56	95.94	82.12	903.33	412.67
5	71.13	96.24	89.86	1437.78	306.93
6	66.44	87.02	90.38	1175.00	288.60
7	56.34	80.51	87.78	877.78	288.89
8	55.50	97.33	90.00	450.00	233.33
9	28.36	98.24	96.67	580.00	81.48
10	68.55	86.91	88.11	1674.07	349.19
11	28.01	74.18	89.95	1529.17	332.02
12	59.21	81.42	83.33	583.33	396.83
13	56.03	97.69	88.18	970.00	370.43
14	67.28	92.12	93.33	1400.00	198.94
15	57.86	91.15	90.79	1361.90	259.16
16	35.56	73.15	89.88	719.05	244.83
17	63.50	94.79	92.42	2125.76	235.76
18	74.69	84.64	82.38	1235.71	480.57
19	53.53	76.32	87.04	783.33	418.38
20	55.43	73.86	79.37	555.56	394.31
21	63.31	88.83	92.86	742.86	226.76
22	70.14	90.77	89.31	1428.89	295.35
23	61.65	92.22	95.56	573.33	54.32
24	73.99	89.32	85.19	851.85	434.84
25	72.75	86.36	90.91	1090.91	312.98
26	65.21	88.37	89.53	1163.89	271.43
27	73.32	97.10	95.24	666.67	83.14
28	68.61	90.28	87.58	963.33	365.84
29	64.57	84.23	88.10	704.76	314.63
30	74.43	96.37	93.59	1216.67	201.07
31	81.25	95.63	91.07	1639.22	279.69
32	72.80	92.06	90.32	1354.76	300.43
33	69.71	79.42	88.03	1144.44	355.39
34	28.86	99.46	93.33	466.67	122.22
35	45.95	86.04	90.48	1357.14	263.79
36	28.18	83.52	90.63	1359.52	301.18
37	47.58	85.94	87.96	791.67	240.91
38	74.11	92.29	90.66	1269.23	269.89
39	60.20	85.12	87.89	1757.89	353.46
40	46.24	59.79	87.08	1393.33	395.66
41	57.51	82.03	82.47	1814.29	412.91
42	80.08	94.51	91.54	1556.25	306.36
43	60.16	97.83	94.24	1036.67	254.73
44	54.78	80.62	84.81	848.15	442.25
45	67.11	98.06	93.81	1407.14	181.25
46	76.70	89.88	86.40	1468.75	352.13

	Delta	Delta*	Delta+	sDelta+	Lambda+
Site	(Δ)	(Δ^*)	(Δ^{+})	$(S\Delta^{+})$	$(\Lambda^{^+})$
47	64.01	85.69	90.48	1266.67	354.96
48	71.28	86.11	86.06	946.67	391.55
49	61.09	85.49	87.50	787.50	329.86
50	75.02	87.39	93.94	1127.27	165.29
51	68.76	92.63	86.63	1212.82	318.80
52	78.99	93.49	91.30	1552.08	281.73
53	52.64	74.73	90.48	633.33	491.31
54	57.39	76.30	84.81	848.15	392.87
55	79.33	95.07	92.59	833.33	222.91
56	66.73	96.78	90.00	1350.00	283.60
57	47.53	96.68	93.16	1211.11	174.04
58	59.89	93.89	84.81	848.15	392.87
59	51.99	69.05	86.11	1033.33	442.62
60	45.67	84.26	80.09	720.83	398.45
61	52.34	93.55	91.03	1274.36	313.23
62	5.84	83.06	72.22	216.67	246.91
63	63.79	98.51	95.24	666.67	162.51
64	33.83	70.80	76.19	609.52	484.69
65	27.72	45.53	87.73	1228.21	353.08
66	69.33	98.42	93.65	1966.67	200.43
67	64.90	78.85	89.35	804.17	449.89
68	51.13	85.37	80.00	480.00	488.89
69	15.86	92.28	80.00	400.00	600.00
70	73.29	91.88	85.71	600.00	510.20
71	66.16	86.06	89.24	3123.53	313.81
72	73.34	82.79	86.97	956.67	340.31
73	55.69	84.68	78.02	1092.31	420.51
74	33.28	76.99	89.21	1338.10	290.90
75	58.20	73.46	86.27	1811.67	397.46
76	57.25	78.19	79.39	873.33	403.67
77	32.23	80.20	80.09	720.83	521.91
78	57.84	89.38	78.48	863.33	491.64
79	62.37	90.50	86.67	866.67	377.78
80	51.36	85.46	86.97	956.67	350.41

APPENDIX 7

Biomass of key species and groups (mg AFDW $\rm m^{-2}$) in Poole Harbour 2002 and 2009

	2002	2009
Small worms	8105	2684
Neanthes virens	4567	1494
Hediste diversicolor	2453	2999
Mya arenaria	2323	1444
Cerastoderma spp.	2155	2613
Arenicola marina	1176	928
Ruditapes spp.	1155	2132
Scrobicularia plana	1118	617
Nephyts spp.	552	2067
<i>Littorina</i> spp.	537	130
Hydrobia ulvae	449	397
Abra tenuis	301	142
Cyathura carinata	252	76
Carcinus maenas	213	198
Corophium volutator	148	184
Gammarus locusta	39	1
Macoma balthica	1	74
Crangon crangon	1	662
Other amphipods		15

similarity in PRIMER 6. Fourth Root Transform. 2D Stress 0.25. Grouped assemblages shown A -G. Linked groups shown in black are statistically significant p<0.05.

APPENDIX 9

```
Parameters
Rank correlation method: Spearman
Method: BIOENV
Maximum number of variables: 5
Resemblance:
Analyse between: Samples
Resemblance measure: D1 Euclidean distance
Variables
  1 Algae Biomass
  2 Algae % Cover
  3 % Organic
  4 % Clay Silt
Global Test
Sample statistic (Rho): 0.302
Significance level of sample statistic: 0.2%
Number of permutations: 999 (Random sample)
Number of permuted statistics greater than or equal to Rho: 1
Best results
No.Vars
          Corr. Selections
           0.302 3,4
      2
      3
           0.296 2-4
      3
           0.296 1,3,4
           0.293 All
      4
           0.283 3
      1
      2
           0.269 1,3
           0.265 4
      1
           0.262 1,4
      2
      2
           0.259 2,3
      3
           0.258 1-3
Outputs
                     BEST
 164 –
```


APPENDIX 10

Predator prey energy balance

The energy requirements for each bird species were calculated using the following data parameters from Thomas et al (2004):

Species	Energy consumption in kJ/day	Feeding days per year
Shelduck	1624.51	212
Oystercatcher	1023.64	243
Grey plover	554.75	212
Avocet	606.66	212
Dunlin	181.96	243
Redshank	387.62	243
Black-tailed godwit	667.71	243
Curlew	1386.89	243

Available energy was calculated from the average biomass for the sampling sites within each sector, for each of the invertebrate species. Ash-free dry mass in kg was converted to kJ using the following conversion factors that have been obtained from literature and presented in Thomas et al (2004):

	kJ per kg
Species	AFDM
Hediste diversicolor	19678.9
Nereis virens	19678.9
Nephtys hombergii	19678.9
Arenicola marina	19678.9
Small annelids	21353.7
Cyathura carinata	23028.5
Gammarus locusta	23028.5
Microdeutopus gryllotalpus	23028.5
Corophium volutator	23028.5
Corophium arenarium	23028.5
Urothoe poseidonis	23028.5
Other crustacea	23028.5
Carcinus maenas	16748
Crangon crangon	23028.5
Cerastoderma edule	21353.7
Ruditapes phillipinarum	21353.7
Abra tenuis	21353.7
Mya/Scrobicularia	21353.7
Macoma balthica	21353.7
<i>Littorina</i> sp.	16748
Hydrobia ulvae	16748
Other molluscs	21353.7
Other species	18004.1

APPENDIX 11. Poole Harbour predator/prey energy balance (using WeBS areas)

		A/R ratio			0.46		,					9.81	,			,		32.16							,			,	37.48	,	3.45	,	0.93	8.10		
I	Energy available	(kJ x 10 ⁶)	16.75		38.87	26.37	ı		21.13	18.94	29.42	16.16	26.55	5.16	11.86	22.42	128.77	36.69	98.83	60.62	51.19	70.61	86.67	19.22	9.10	17.11	0.00	19.75	19.00	104.03	103.97	68.55	27.31	29.77	2.73	
	Enerav	available (kJ/m ²)	89.20		540.16	231.24	ı		87.94	257.49	217.97	116.34	121.70	81.31	103.13	98.33	298.14	95.11	226.33	156.13	292.03	242.46	138.97	283.69	235.44	302.76		152.29	184.69	160.20	183.05	284.06	75.66	179.62	42.98	
Avocet	Energy required	(kJ x 10°)		63.13	83.6619	,	,	,		,		1.65	,	,	,	,	ı	1.14										ı	0.51	,	30.17	,	29.41	3.68		,
		A/R ratio			3.08	393.11	,	,		,	17.45	,	,	8.91	,	,	,	,	420.10									,	27.77	22.88	377.94	1132.06	143.35	ı	0.00	
I	Energy available	(kJ x 10 ⁶)	16.41	0.00	38.78	47.18	0.00	0.00	29.61	20.27	35.60	31.27	32.08	1.07	0.95	38.28	152.10	15.17	100.83	71.52	40.87	52.76	82.54	19.42	2.91	4.24	0.00	1.82	13.33	98.85	90.71	135.85	51.61	29.77	0.00	0.00
er	Enerav	available (kJ/m ²)	87.37		539.01	413.68	,	,	123.26	275.52	263.80	225.10	147.03	16.84	8.27	167.87	352.17	39.32	230.91	170.12	192.29	181.16	132.34	286.53	75.20	75.04		14.02	129.54	152.22	159.70	562.98	142.96	179.62	32.79	
Grey Plov	Energy required	(kJ x avi (hJ) (kJ			12.60	0.12	,	,		,	2.04	ı	,	0.12	,	ı	ı	ı	0.24									ı	0.48	4.32	0.24	0.12	0.36	ı	0.12	
		A/R ratio	0.35	0.00	0.19	0.67	0.00	,		,	0.62	34.27	1.65	0.65	,	1.86	7.15	11.31	8.31	3.13		1.16	90.73					ı	0.66	5.82	7.52	6.22	2.97	6.91	0.00	0.00
I	Energy available	(kJ x 10 ⁶)	6.19	0.00	11.46	27.57	0.00	0.00	44.13	5.04	7.72	59.70	18.53	3.08	2.73	31.56	226.08	47.86	111.66	221.28	30.55	3.46	90.33	16.92	0.78	4.09	0.00	4.69	6.90	114.33	80.53	117.74	45.89	29.24	0.00	0.00
tcher	Enerav	available (kJ/m ²)	32.94		159.21	241.75	,	,	183.67	68.56	57.20	429.73	84.91	48.54	23.70	138.41	523.45	124.06	255.72	569.91	174.31	11.87	144.84	249.65	20.19	72.40		36.18	67.04	176.06	141.78	487.94	127.13	176.38	0.43	
Oystercatcher	Energy required	(kJ x 10 ⁶)	17.92	1.99	59.98	41.07	12.94	,		,	12.44	1.74	11.20	4.73	,	16.92	31.61	4.23	13.44	70.68		2.99	1.00					ı	10.45	19.66	10.70	18.91	15.43	4.23	4.23	36.83
		A/R ratio		0.00	1.18	1.66	,				0.19	1.32	0.41	3.10		13.87	7.75	0.16	1.11	0.08		38.90							2.35	0.41	0.58	0.54	1.32	0.33	00.0	
I	Energy available	(kJ x 10 ⁶)	10.8974	0	32.5285	22.346	0	0	3.45927	16.9292	4.49971	3.62929	13.9294	1.0677	3.36319	9.55908	13.3565	3.14394	57.3435	7.05757	8.73887	40.2129	75.0596	2.49947	2.12492	1.18186	0	2.07764	6.49136	15.3969	11.5323	23.5313	7.26037	0.91723	0	0
	Enerav	available (kJ/m ²)	58.02		452.09	195.95	,	,	14.40	230.10	33.34	26.12	63.84	16.82	29.25	41.92	30.93	8.15	131.32	18.18	49.86	138.09	120.35	36.88	55.00	20.91		16.02	63.09	23.71	20.30	97.51	20.11	5.53	32.35	
Shelduck	Energy required	(kJ x 10 ⁶)		14.47	27.57	13.44	,	,		,	23.43	2.76	34.11	0.34	,	0.69	1.72	19.30	51.69	91.32		1.03						ı	2.76	37.90	19.99	43.76	5.51	2.76	13.44	
	WeBS	sector code	DP001	DP002	DP003	DP004	DP005	DP006	DP007	DP008	DP009	DP010	DP011	DP012	DP013	DP014	DP015	DP016	DP017	DP018	DP019	DP020	DP021	DP022	DP023	DP024	DP025	DP026	DP027	DP028	DP029	DP030	DP031	DP032	DP033	DP034

	_	A/R ratio		-			-	•	·	·			-	1	•				-	-	•		•	•	·	•	·	·	·		-		-	•	-	•
	Energy available	(kJ x 10 ⁶)	70.79	0.00	11.46	26.60	0.00	0.00	26.87	5.32	25.72	32.21	18.53	3.03	1.25	31.89	151.77	24.42	52.83	61.81	26.08	22.93	32.45	16.92	0.85	4.36		4.67	7.01	103.26	86.99	112.63	47.10	31.73	0.00	0.00
	Energy	available (kJ/m ²)	376.19		159.21	230.30			111.18	68.13	242.45	223.16	84.91	47.76	10.82	137.78	331.14	60.29	112.79	159.20	148.78	86.65	51.80	249.65	20.19	72.40		35.79	66.45	155.79	141.15	465.92	125.66	176.38	0.43	
Curlew	Energy required	(k.) x 10 ⁶)	5.05	0.34	8.76	3.71	1.01			,	12.47	14.15	21.57	0.67	,	6.07	53.92	7.41	67.39	318.44	ı	1.01	0.67	ı						28.98	58.30	23.93	25.61	5.05	3.71	
		A/R ratio																							·			ı		1426.28	75.53	11.33	33.09	70.13		
	Energy available	(kJ x 10 ⁶)	86.45		41.35	50.89	0.00	0.00	63.86	30.89	90.26	62.15	45.90	8.24	15.29	114.14	265.77	72.10	174.39	252.16	60.96	83.60	204.94	36.14	9.10	18.12		26.47	32.00	231.58	110.37	198.73	53.74	34.16	2.73 2.00	0.00
lack-tailed Godwit	Energy	available (kJ/m ²)	460.32		574.65	446.25			265.79	419.89	668.80	447.36	210.35	129.85	132.95	500.55	615.35	186.89	399.37	649.45	347.82	287.09	328.61	533.26	235.44	320.63		204.13	311.05	356.60	194.31	823.54	148.86	206.09	42.98	
Black-tail	Energy required	(k.) 10 ⁶)	0.16	12.83	59.91	,			,	,	,	31.99	12.02	,	,	,	2.92	12.83	68.36	61.86	,	,		ı	,			ı		0.16	1.46	17.54	1.62	0.49		
		A/R ratio																																		
	Energy available	(kJ x 10°)	15.81	0.00	46.47	27.78	0.00	0.00	21.86	22.67	31.03	20.32	27.16	8.19	15.56	25.09	136.48	47.92	109.20	67.35	54.12	70.77	121.51	19.22	9.10	18.10	0.00	24.65	19.00	107.12	104.95	68.04	28.98	34.54	0.00	0.00
×		available (kJ/m ²)																																208.39		
Redshank	Energy required	(k.j x 10 ⁶)	0.57	0.19	0.57	1.13	0.28		,		2.73	10.65	4.05	,	,	0.47		7.35	,	3.21		0.09		ı	ı			ı	1.51	2.07	3.87	1.70	5.85	0.75	0.47	0.66
		A/R ratio																																		
	Energy available	(kJ x 10 ⁶)	15.88	0.00	44.07	26.34	0.00	0.00	21.69	20.55	5.16	19.52	26.84	5.16	14.29	25.12	132.07	38.34	99.44	60.44	51.76	61.39	107.46	19.22	9.10	17.18	0.00	20.32	19.00	104.37	104.97	68.04	27.72	30.16	0.00	0.00
	Energy	available (kJ/m ²)	84.56		612.44	230.95			90.26	279.35	38.25	140.52	123.01	81.31	124.29	110.16	305.79	99.38	227.72	155.67	295.30	210.80	172.31	283.69	235.44	303.93	ı	156.66	184.69	160.71	184.80	281.94	76.79	181.92	42.98	
Dunlin	Energy required	(k.) 10°)	1.77	0.04	1620.00	1.77			,	,	1.15	1.41	,	,	,	,	0.13	4.33	21.44	72.40	,	,		,				,	0.22	13.61	20.47	3.89	9.81	,	1.77	
	WeBS	sector code	DP001	DP002	DP003	DP004	DP005	DP006	DP007	DP008	DP009	DP010	DP011	DP012	DP013	DP014	DP015	DP016	DP017	DP018	DP019	DP020	DP021	DP022	DP023	DP024	DP025	DP026	DP027	DP028	DP029	DP030	DP031	DP032	DP033	DP034

																													-							
		A/R ratio			,		,					10.05						37.46			,			,		,	,		266.8′		3.89		0.99	11.61	,	,
	Energy	(kJ x (kJ x 10 ⁶)		,		,	ı	,			32.13	16.56	58.29	18.84	21.30	37.00	168.71	42.73	100.45	65.64	62.07	176.73	85.47	,	,	,	,	21.86	135.29	99.22	117.22	61.60	29.15	42.66	,	,
		available (k,l/m²)	89.20	,	540.16	231.24	ı	,	87.94	257.49	217.97	116.34	121.70	81.31	103.13	98.33	298.14	95.11	226.33	156.13	292.03	242.46	138.97	283.69	235.44	302.76	,	152.29	184.69	160.20	183.05	284.06	75.66	179.62	42.98	
Avocet	Energy	(kJ x (kJ x		63.13	83.6619		ı	,				1.65						1.14	,				ı	ı		,	,		0.51		30.17		29.41	3.68		
		A/R ratio		,			ı				19.06			32.51					427.00		,		ı	,		,	,		197.67	21.82	426.09	1017.26	153.01			
	Energy	(kJ x 10 ⁶)		ı		,	ı	,			38.89	32.04	70.42	3.90	1.71	63.17	199.29	17.67	102.48	73.19	40.68	132.05	81.39	ı	,		ı	2.01	94.89	94.27	102.27	122.08	55.09	42.66		
irr uala) er		criergy available (k,I/m²)	87.37	,	539.01	413.68	ı	,	123.26	275.52	263.80	225.10	147.03	16.84	8.27	167.87	352.17	39.32	230.91	170.12	192.29	181.16	132.34	286.53	75.20	75.04	,	14.02	129.54	152.22	159.70	562.98	142.96	179.62	32.79	
Grey Plove	Energy	(kJ x (kJ x		ı	12.60	0.12	ı	,			2.04			0.12					0.24	ı	ı		ı	ı	,	,	ı	,	0.48	4.32	0.24	0.12	0.36		0.12	
		A/R ratio		,		,		,			0.68	35.11	3.63	2.38	,	3.08	9.37	13.17	8.44	3.39	,	2.90	89.48	,	,	,	,	,	4.70	5.55	8.48	5.59	3.17	9.90	,	
ice (usil	Energy	avaliable (kJ x 10 ⁶)		,		,	ı	,			8.43	61.17	40.67	11.25	4.89	52.09	296.22	55.74	113.49	239.60	37.05	8.65	89.08	,	,		,	5.19	49.11	109.04	90.79	105.80	48.98	41.89	,	
Jy Dalan cher		critergy available (k,l/m²)	32.94		159.21	241.75	ı		183.67	68.56	57.20	429.73	84.91	48.54	23.70	138.41	523.45	124.06	255.72	569.91	174.31	11.87	144.84	249.65	20.19	72.40		36.18	67.04	176.06	141.78	487.94	127.13	176.38	0.43	
Oystercatcher	Energy	(kJ x (kJ x	17.92	1.99	59.98	41.07	12.94				12.44	1.74	11.20	4.73		16.92	31.61	4.23	13.44	70.68	,	2.99	1.00	,		,	,		10.45	19.66	10.70	18.91	15.43	4.23	4.23	36.83
ualui/pr		A/R ratio		,	0.62	,	ı	,			0.21	1.35	0.90	11.31	,	22.89	10.16	0.19	1.13	0.08	,	97.37	,	,	,	,	,	,	16.76	0.39	0.65	0.48	1.41	0.48		
bour pre	Energy	available (kJ x 10 ⁶)		,	44.07	,	ı	,			4.91537	3.71873	30.5738	3.89749	6.03944	15.7748	17.5002	3.66156	58.284	7.64205	10.5975	100.655	74.0214	,	,		,	2.29917	46.2138	14.6836	13.0017	21.1451	7.74971	1.31423		,
Appendix 11. Poole narbour predator/prey energy balance (using Aurinany chart data Shelduck Grey Plover		criergy available (k,l/m²)	58.02	,	612.44	195.95	ı	,	14.40	230.10	33.34	26.12	63.84	16.82	29.25	41.92	30.93	8.15	131.32	18.18	49.86	138.09	120.35	36.88	55.00	20.91	,	16.02	63.09	23.71	20.30	97.51	20.11	5.53	32.35	
Shelduck	Energy	(kJ x (kJ x		14.47	71.6079	13.44	ı	,			23.43	2.76	34.11	0.34	,	0.69	1.72	19.30	51.69	91.32	,	1.03	,	,	,	,	,	,	2.76	37.90	19.99	43.76	5.51	2.76	13.44	
Appella		sector	DP001	DP002	DP003	DP004	DP005	DP006	DP007	DP008	DP009	DP010	DP011	DP012	DP013	DP014	DP015	DP016	DP017	DP018	DP019	DP020	DP021	DP022	DP023	DP024	DP025	DP026	DP027	DP028	DP029	DP030	DP031	DP032	DP033	DP034

Appendix 11. Poole Harbour predator/prey energy balance (using Admiralty chart data)

		A/R ratio								2.87	2.24	1.89	16.42	- 0 55	o 3.48	3.65	0.74	12.0	- 62 48	47.27				ı		3 33	1.55	4.22	1.89	8.29		
	Energy	(kJ x 10 ⁶)			,	ı	ı	,		35.74	31.77	40.67	11.06	2.23 E1 0E	01.00 187.39	27.09	50.06	66.93 31.62	53.16 63.16	31.86		ı			5.14 48.67	96.48	90.39	101.03	48.42	41.89		
	Energy	available	376.10		159.21	230.30	ı		111.18 68 12	242.45	223.16	84.91	47.76	10.82	331.14	60.29	112.79	159.20	86.65	51.80	249.65	20.19	72.40		35.79 66.45	155 70	141.15	465.92	125.66	176.38	0.43	-
Curlew	Energy	(kJ x (kJ x	5 05	0.34	8.76	3.71	1.01	,		- 12.47	14.15	21.57	0.67	- 6 07	53.92	7.41	67.39	318.44	101	0.67		ı		ı		- 28 08	58.30	23.93	25.61	5.05	3.71	•
		A/R ratio			,	ı	,	,			1.99	8.38	,		- 119.15	6.55	2.59	4.58				,				- 1360 21	85.15	10.18	35.33	100.49		•
	Energy	(kJ x 10 ⁶)			,	ı	,	'		- 98,59	63.68	100.74	30.08	27.45 100.26	348.22	83.97	177.25	283.27	209 27	202.11		,			29.30 227 84	220.85	124.43	178.58	57.36	48.95		
Black-tailed Godwit	Energy	available	460 32		574.65	446.25	,		265.79 410.80	668.80	447.36	210.35	129.85	132.95 FOD FF	615.35	186.89	399.37	649.45 347 82	287 09	328.61	533.26	235.44	320.63		204.13 311.05	356.60	194.31	823.54	148.86	206.09	42.98	
Black-ta	Energy			12.83	59.91						31.99	12.02	ı		- 2.92	12.83	68.36	01.80								- 16	1.46	17.54	1.62	0.49		
		∆/R ratio								12.39	1.95	14.70	ı	- 07 0.4	- 10	7.59	1 1 1	G1.22	1878.69					ı	- 80.68	49.25	30.61	36.02	5.29	65.62		
	Energy	(kJ x 10 ⁶)	<u> </u>							33.89	20.82	59.60	29.90	27.94	41.41 178.82	55.81	110.99	12.92 65.63	177 13	119.83				, i	27.28 135.20	102.69	118.33	61.14	30.93	49.49		
¥	Energy	available	84.17	- - -	645.78	243.59	,		90.96 308 15	229.90	146.28	124.45	129.05	135.28	316.01	124.23	250.08	308.78	243.01	194.84	283.69	235.44	320.16		190.09 184.60	164.95	184.78	281.94	80.27	208.39	42.98	
Redshank	Energy	(kJ x 10 ⁶)	0.57	0.19	0.57	1.13	0.28			2.73	10.65	4.05	,	- 77 0		7.35		3.21	60 0	р.					י די	10.0	3.87	1.70	5.85	0.75	0.47	0.66
		A/R ratio			,	ı				4.91	14.14	ı	ı		- 1304.92	10.31	4.71	0.90				ı		,	- 61010	7 31	5.78	15.72	3.02	,		
	Energy				,	ı	ı	,		5.64	20.00	58.91	18.84	25.67 41 46	41.40 173.04	44.65	101.07	65.45 62.77	153.66	105.98		,			22.48 135 20	00 53	118.34	61.14	29.59	43.21		-
	Enerow	available (k l/m²)	84.56	b, i	612.44	230.95	ı		90.26 270.35	38.25	140.52	123.01	81.31	124.29	305.79	99.38	227.72	79.661	210.80	172.31	283.69	235.44	303.93	-	156.66 184.60	160 71	184.80	281.94	76.79	181.92	42.98	•
Dunlin	Energy	(kJ x	127	0.04	71.6079	1.77	ı	,		1.15	1.41	ı	,		- 0.13	4.33	21.44	12.40				,		,	- 0 00	13.61	20.47	3.89	9.81		1.77	-
	MaRc	sector		DP002	DP003	DP004	DP005	DP006	DP007	DP009	DP010	DP011	DP012	DP013	DP015	DP016	DP017	DP018	DP020	DP021	DP022	DP023	DP024	DP025	DP026		DP029	DP030	DP031	DP032	DP033	DP034

APPENDIX 12

DP031

DP032

DP033

DP034

DP035

Bir	d distributio	n within Poole H	arbour fro	m 2004/5 \	WeBS low	tide winter c	ounts.	
WeBS sector			Grey				Black- tailed	
code	Shelduck	Oystercatcher	Plover	Avocet	Dunlin	Redshank	Godwit	Curlew
DP001	-	72	-	-	40	6	1	15
DP002	42	8	-	498	1	2	79	1
DP003	-	-	-	-	-	-	-	-
DP004	39	165	1	0	40	12	0	11
DP005	-	52	-	-	-	3	-	3
DP006	-	-	-	-	-	-	-	-
DP007	-	-	-	-	-	-	-	-
DP008	-	-	-	-	-	-	-	-
DP009	68	50	17	-	26	29	-	37
DP010	8	7	-	13	32	113	197	42
DP011	99	45	-	-	0	43	74	64
DP012	1	19	1	-	-	0	-	2
DP013	-	-	-	-	-	-	-	-
DP014	2	68	-	-	-	5	-	18
DP015	5	127	-	-	3	-	18	160
DP016	56	17	-	9	98	78	79	22
DP017	150	54	2	-	485	0	421	200
DP018	265	284	-	-	1638	34	381	945
DP019	-	-	-	-	-	-	-	-
DP020	3	12	-	-	-	1	-	3
DP021	-	4	-	-	-	-	-	2
DP022	-	-	-	-	-	-	-	-
DP023	-	-	-	-	-	-	-	-
DP024	-	-	-	-	-	-	-	-
DP025	-	-	-	-	-	-	-	-
DP026	-	-	-	-	-	-	-	-
DP027	8	42	4	4	5	16	-	-
DP028	110	79	36	-	308	22	1	86
DP029	58	43	2	238	463	41	9	173
DP030	127	76	1	-	88	18	108	71
			-					

-

-

APPENDIX 13

a: Brownsea Island Lagoon salinity, measured 6 November 2009.

See Fig 12 for sampling locations

Site	BS1	BS2	BS3	BS4	BS5	BS6	Sluice
Salinity (ppt)	22	26	26	26	29	26	29

b: Brownsea Island Lagoon. Particle Size Analysis and Organic content of sediments. Data shows % of each size fraction, and % organic content.

Site	2mm	1mm	500µm	250µm	125µm	63µm	<63µm	% Organic
BS1	0.0	0.9	1.5	13.7	36.7	46.5	0.6	2.95
BS2	7.1	1.5	4.8	10.3	15.6	13.4	47.4	2.38
BS3	33.5	8.9	5.0	23.7	11.9	7.3	9.7	2.08
BS4	3.4	3.7	7.5	38.1	23.9	4.7	18.6	3.41
BS5	0.2	0.1	1.5	11.7	30.1	18.0	38.4	2.99
BS6	0.2	14.0	27.6	10.4	7.9	5.4	34.5	4.90

c: Brownsea Island Lagoon. Particle Size Analysis of sediments. Cumulative % of all sediment fractions at each site (BS1-BS6).

	Site	BS1	BS2	BS3	BS4	BS5	BS6	Mean No. per m ²
ACTINIARIA Nematostella vectensis		4444	4825	254	762	5799	3048	3189
PHYLUM NEMATODA		85	0	0	0	85	0	28
PHYLUM ANNELIDA Aphelochaeta marioni Capitella capitata Desdemona ornata Hediste diversicolor Polydora cornuta Pygospio elegans Streblospio shrubsolii Tubificoides benedii Tubificoides pseudogast	ter	2667 42 42 1228 4148 254 0 6561 0	4656 212 0 2582 3386 0 212 12783 212	974 127 0 1481 381 0 0 2286 0	7365 85 4868 3344 0 42 2540 0	127 169 0 42 0 42 11725 0	11513 0 1439 3132 0 42 9354 0	4550 106 21 1933 2406 42 56 7541 35
PHYLUM CRUSTACEA Ostracoda sp. Praunus inermis Amphipoda Corophium insidiosum Corophium volutator		0 0 15788 0	0 42 2624 127	42 0 3598 169	0 0 10116 0	0 0 1185 42	0 42 466 0	7 14 5630 56
Melita palmata Isopoda Idotea chelipes Sphaeroma rugicauda Decapopda Palaemonetes varians		85 0 42 0	0 42 0 0	42 127 42 0	42 42 0 0	0 169 42 0	0 42 0 42	28 71 21 7
PHYLUM MOLLUSCA Abra tennuis Hydrobia ventrosa		7365 12317	550 3471	85 12190	1608 10243	85 2286	85 423	1630 6822
PHYLUM INSECTA Chironomidae Insecta indet		85 42	0 85	0 85	0 42	0 42	0 0	14 49
Total individuals per m ²		55279	35895	21971	41274	21932	29723	34258

APPENDIX 14a : Brownsea Island Lagoon. Mean density of fauna (No. per m^2) recorded from core samples (n = 3) obtained from six sites around the lagoon.

APPENDIX 14b. Brownsea Island Lagoon Species Diversity Indices:

S =Total No. of species; N= Total No. of individuals; d = Margalef species richness; d J'= Pielous evenness; H= Shannon Diversity Index; $1-\lambda'$ =Simpsons Diversity Index; Δ =Taxonomic Diversity; Δ * =Taxonomic Distinctness.

Site	S	Ν	d	J'	H'(loge)	1-λ'	Δ	Δ*	Δ+	s∆+	λ+
BS1	16	1304	2.09	0.69	1.92	0.82	80.05	97.37	93.47	1495.56	181.93
BS2	15	846	2.08	0.72	1.94	0.81	74.55	92.13	91.59	1373.81	281.08
BS3	15	517	2.24	0.55	1.48	0.65	63.31	98.03	92.38	1385.71	232.96
BS4	14	973	1.89	0.71	1.88	0.82	77.73	94.75	91.58	1282.05	222.06
BS5	14	516	2.08	0.49	1.29	0.63	62.46	99.38	93.59	1310.26	236.69
BS6	12	700	1.68	0.62	1.53	0.73	62.43	86.02	92.17	1106.06	212.29

APPENDIX 14c: Brownsea Island Lagoon. Fauna (No. individuals) recorded in algal samples (approx 1L volume) collected at each sampling point, where possible. CL denotes *Chaetomorpha linum*; UL denotes *Ulva lactuca*; GL denotes *Gracilariopsis longissima;* P denotes 'Present'

Si	te 1	1 2	3	4	5	6	Sluice
Alga	С	L		UL	GL		GL
CRUSTACEA							
Amphipoda Corophium insidiosum	, 1	1		2			
Corophium volutator	,			1			
Gammarus locusta							3
Isopoda							
Idotea chelipes					120		13
Decapopda							
Crangon crangon							1
MOLLUSCA							
Abra tennuis	7						
Cerastoderma glaucu	m 1						
Crepidula fornicata Hydrobia ventrosa				12			Р
				12			

APPENDIX 14d: Brownsea Island Lagoon. No. of the prawn *Palaeomonetes varians* recorded in three pond-net sweeps at each site. SA denotes 'Superabundant' ie >20

Site/Sweep	1	2	3	4	5	6	Sluice
1	4	5	0	3	0	0	SA
2	5	4	2	4	0	0	SA
3	0	0	0	0	0	0	SA
Mean	3.0	3.0	0.7	2.3	0	0	SA
SD	2.6	2.6	1.2	2.1	0	0	

APPENDIX 14e: Brownsea Island Lagoon. Algal species recorded. R denotes 'Rare';
'P' denotes 'Present'.

	Site	1	2	3	4	5	6	Sluice
Chaetomorpha linum		0	F	Α				
<i>Ulva</i> sp.		Р	F		R	R	0	
Sargassum muticum								R
Aglaothamnion ?hookeri,								Р
Ceramium pallidum								Р
Ceramium secundatum								Р
Gracilariopsis longissima (Tspore	e)	F	0			0		Р
Polysiphonia denudata	,							Р
Polysiphonia elongata								Р
Total % cover C.linum & Ulva sp.		10	40	70	5	3	10	

APPENDIX 15 Average biomass (mg AFDW m-2) of taxa found in Brownsea Lagoon, November 2010. Mean density calculated from 3 core samples obtained from 6 sites around the edge of the lagoon. Biomass calculated from regression equations of length-weight in Thomas et al 2004. The anemone *Nematostella vectensis* was excluded from the calculations.

Таха	Mean Biomass Mg AFDW m ⁻²
Hediste diversicolor	8090.14
Abra tenuis	2112.78
Ventrosa ventrosa	4316.05
Corophium spp.	1497.72
Small worms*	17786.24
Other crustaceans**	49.92

Total

33852.87

* Small worms includes: PHYLUM NEMATODA Tubificoides sp. Tubificoides benedii Tubificoides pseudogaster Aphelochaeta marioni Capitella capitata Desdemona ornata Polydora cornuta Pygospio elegans Streblospio shrubsolii Hediste <=5mm ** Other crustaceans includes: Praunus inermis Idotea chelipes Sphaeroma rugicauda Melita palmata Palaemonetes varians

Brownsea lagoon included. Cluster A are more saline than Cluster B. Many lagoons in Cluster A1 APPENDIX 16. Dendrogram showing similarity of UK Lagoon invertebrate assemblages, with have Scheduled species (Bamber in prep).

% Similarity

APPENDIX 17: Poole Harbour Survey Core Sample Matrix Data show No. of individuals in each core (10cm diameter) from each of five samples obtained from each site.

	Site Numbers per core PHYLUM CNIDARIA	A	B	<u>C</u>	1 D 0	. E	Mea 0.0		A	B	<u>с</u>	2 D 0	E	Mea 0.0		A 0	B	C 0	3 D	E 0	Mean SE		В	c	4 D	E	Mean SD	<u>A</u>	B	c	5 D
	PHYLUM ACTINIARIA	0	0	0	Ó	Ó	0.0	0.0	ò	Ō	ō	0	Ō	0.0	0.0	0	0	0	0	0	0.0 0.0	6	23	5	11	3	9,6 8,0	6	6	32	0 16
																															0
	Nematostella vectensis												0	0.0	0.0	Ó	0	0	0	0	0.0 0.0	0	Ō	Ō	Ō	ō	0.0 0.0	Ō	ō	Ó	Ó
ControllContro	PHYLUM NEMERTEA	0	0	0	Ó	0	0,0	0.0	0	0	0	D	0			. 0	Ó														0
	PHYLUM HIRUDINEA													0.0	0.0	0			0	0	0.0 0.0	0	0	0	0	Ó	0.0 0.0	0	Ō	0	Ó
	Polychaeta total		7																												62 9
Desc Desc Desc Desc Desc Des																									0					0	0
Subsect Subsect <t< td=""><td>Aonides oxycephala</td><td></td><td>Ó</td><td>Ó</td><td>ō</td><td>0</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ō</td><td>0.0</td><td>0.0</td><td>Ō</td><td>ō</td><td>ō</td><td>Ó</td><td>Ó</td><td>0.0 0.0</td><td>Ō</td><td>Ō</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td>0</td></t<>	Aonides oxycephala		Ó	Ó	ō	0	0.0	0.0	0	0	0	0	ō	0.0	0.0	Ō	ō	ō	Ó	Ó	0.0 0.0	Ō	Ō	0	0	0					0
	Aphelochaeta marioni Arenicola marina	0																													0
Subsection Subsection Subsection Subsectio	Capitella capiteta Chostazana abriatii	-	-	-			0.0	0.0	0	0	0	0	0	0.0	0.0	Ó	0	0	0	0	0.0 0.0	0	Ó	Ó	Ó	0	0.0 0.0	ō	Ō	0	Ó
Subset Subset Subset Subset Subset Subset Subset Subse Subse Subse	Cirratulidae (Indet.)	•	-	-																											0
	Cirriformia tentaculata Caullarialla zatlandica																				0.0 0.0	0									0
Such Aleman C <thc< th=""> C C C C C C C C C C C C C C C C C C C C C C C <thc< th=""> <thc< th=""> <thc< th=""> C <</thc<></thc<></thc<></thc<>	Cossura longe	-																													0
	Desdemona omata Eteone foliosa								1																						0
	Eteone longa	2	0	2	3	0	1.4	1.3	Ō	Ó	ō	0	Ó	0.0	0.0	0		1	1												1
Super best Super best Super best Super b					-					-	-																				0
	Glycera tridactyla		ō			Ō	0.0	0.0	ō	Ó	Ó	Ó		0.Ó	0,0	0	0	0	0	Ō	0.0 0.0	0	0	0	0						ő
Name Name Name Name Na	Hediste diversicolor Janua pagenstecheri												4																7	9	7
And Partial Martine Martina Martine Martine Martine Martine Martine Martine Mar	Malacoceros tetraceros	Ō	0	Ō	ō	ō	0.0	0.0	0	Ō	Ő	Ō	ō	0,0	0.0	Ó	Ó	Ō	Ō	0	0.0 0.0	0	0							0	ő
		-	-	0																											0
marks C C C C C C C C C C C C C C C C <	Microphthalmus cf similis		Ó		Ō	0	0,0	0.0	0	0	0	0	Ď	0.0	0.0	ō	Ō	0	0	Ó	0.0 0.0	0	ō	· 0	ō	0	0.0 0.0	0	Ó	0	0
	Neanthes virens Nemertina	0			-							-	-																		0
misseles series ser	Neoamphitrite figuius	-	Ō	-	ō	ò	0.0	0.0	ō	ō	Ō	Ō	ō	0.0	0.0	0	Ó	Ó	ō	0	0.0 0.0	0	Ó	0	Ō	0	0.0 0.0	0	0	0	0
endersideor	Nephtys nombergii Nephtys kersivalensis																													-	0
	Notomastus latericeus Parapionosvilis minuta			-			0.0	0.0		-	-	-									0.0 0.0		D	Ō	Ō	ō	0.0 0.0	Ó	ō	0	Ó
	Polycimus sp		0		Ō	Ō	0.0	0.0	ō	Ō	-	Ó	Ō	0.0	0.0																0
	Polydora comuta Polydora so	0	-	1	-	-		0.4	-	-											0.0 0.0		0		1	0	0.2 0.4	2	1	2	0
Number pressureNumber pressure	Pomatoceros lamarki	õ	õ	Ō	ō	0	0.0	0,0	ō	ò	Ō	ō	0	0.0	0.0	Ó		-	ō	Ō	0.0 0.0		0	ò	Ó	Ó	0.0 0.0				0
	Pseudopolydora paucibranchia. Pygospio elegans	0 0							-								0	0	-		0.0 0.0	0	-	-			0.0 0.0				Ó
Subscience in the second se	Sabella pavonina	-	0	0	0	0	0.0	0.0	Ō	ō	ō	ō	ō	0.0	0.0	Ō	ō	Ō	õ	ō	0.0 0.0	Ō	Ó	ō	0	0	0.0 0.0	0	Ó	Ó	ō
	Scolelepsis sp. Scoloplos armiger									U D		-							-			-									
specimine and any and any	Serpulidae sp. Sela mortinopole													0.0	0.0			0		-					0	0	0.0 0.0	Ō	ō	ō	Ó
Description of the second of the sec	spionidae sp	-								-	-	-	-			-															
Definitione integratione integration	Streblospio shrubsolii Direcebaata total	4	1						1	0	-		-	0.2	0.4	-	2	3		0	1.0 1.4		ō	1			1.0 1.0	0	0	5	1
unimale <th< td=""><td>Tubificoldes sp.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>4</td><td>4</td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>53 0</td></th<>	Tubificoldes sp.								0	0						-	4	4		1			1								53 0
MTLMMTLMMTLMMTLMMNNN <th< td=""><td>Tubificoldes benedil Tubificoldes pseudocester</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>1</td><td></td><td>-</td><td>-</td><td></td><td></td><td>2</td><td>4</td><td>0</td><td></td><td>0</td><td></td><td></td><td>0</td><td>-</td><td></td><td></td><td>0.0 0.0</td><td></td><td>0</td><td>0</td><td>0</td></th<>	Tubificoldes benedil Tubificoldes pseudocester								0	1		-	-			2	4	0		0			0	-			0.0 0.0		0	0	0
</td <td>PHYLUM CRUSTACEA</td> <td>5</td> <td>3</td> <td>7</td> <td>3</td> <td>9</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>4 9</td> <td>-</td> <td>1</td> <td></td> <td></td> <td>1 90</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>53 7</td>	PHYLUM CRUSTACEA	5	3	7	3	9			1	1			1					4 9	-	1			1 90								53 7
speedered mega-scale as a speedered mega-																		4													0
intra-standard	Copepoda: Harpacticolda	0	Ó	Ó	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	ō	-	-	-	-	0.0 0.0										0
mp-black	Prenus inermis Cirripedia total																0	-	-										0	0	0
species landimi entering landimi ente	Imphibalanus improvisus											Ó	ò	0.0	0,0	ò	Ō	Ó	Ó	0	0.0 0.0	Ō	0	0	0	0	0.0 0.0	ò			
secure analysis with a secure analysis of a secu	sopoda total								-							-	0	-	-						0			-	-		
	pseudes latreillii								-	-	-						0	-					0		0		0.0 0.0	0		0	
phenomenomelopenetic is a propensional series of a	dotea balthica	0	0	Ó	Ó	Ó	0.0	0,0									0								0						6 0
mempelse sheeled wild wild wild wild wild wild wild wil																								-				-	-		0
ambroade 0 0 0 0 </td <td>Imphipoda total</td> <td></td> <td></td> <td>Ó</td> <td>2</td> <td>Ó</td> <td>0.4</td> <td>0,9</td> <td>ō</td> <td>0</td> <td>1</td> <td>Ō</td> <td>0</td> <td>0.2</td> <td>0.4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>Ó</td> <td>0.0 0.0</td> <td>77</td> <td>84</td> <td>40</td> <td>99</td> <td>34</td> <td>66.8 28.4</td> <td>-</td> <td>1</td> <td>0</td> <td>1</td>	Imphipoda total			Ó	2	Ó	0.4	0,9	ō	0	1	Ō	0	0.2	0.4	0	0	0	0	Ó	0.0 0.0	77	84	40	99	34	66.8 28.4	-	1	0	1
originary 0 0 0 0<	Umpelisca brevicornis Bathyporela Indet.																						-	-							0
orphi/har orphi/har <t< td=""><td>Corophium arenarium</td><td></td><td></td><td></td><td></td><td></td><td>0,0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.0</td><td></td><td></td><td></td><td>ō</td><td>ò</td><td>0.0 0.0</td><td>0</td><td>Ó</td><td>ò</td><td>ò</td><td>34</td><td>6.8 15.2</td><td>ō</td><td></td><td>ō</td><td>ŏ</td></t<>	Corophium arenarium						0,0							0.0	0.0				ō	ò	0.0 0.0	0	Ó	ò	ò	34	6.8 15.2	ō		ō	ŏ
minimize sector	Sorophium inslaiosum Corophium volutator	-									-																		0		0
either partial 0 <	Eminius modestus													0.0	0.0				0		0.0 0.0		-	-			0.0 0.0			Ō	ó
	Aelita palmata		-														-								0				0	0	0
Intelase involves 0	ficrodeutopus grilotalpus ficroprotopus maculeatur	0	0	0	0	0	0.0		0	0	0	0	0				0	0	0				0	0	0	0	0.0 0.0	0	0	0	Ó
exceptopsional 0 <	htisica marina	Ō	ō	ō	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0															
methy methy <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0 0.0</td><td></td><td></td><td></td><td></td></th<>																											0.0 0.0				
bear bear <th< td=""><td>Carcinus maenas</td><td>0</td><td>0</td><td>0</td><td>0</td><td>ò</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>Ó</td><td>0</td><td>0</td><td>0.0</td><td>0.0</td><td>0</td><td>Ó</td><td>Ō</td><td>Ō</td><td>ō</td><td>0.0 0.0</td><td>Ó</td><td>Ð</td><td>0</td><td>0</td><td>Ó</td><td>0.0 0.0</td><td>0</td><td>ò</td><td>0</td><td>0</td></th<>	Carcinus maenas	0	0	0	0	ò	0.0	0.0	0	0	Ó	0	0	0.0	0.0	0	Ó	Ō	Ō	ō	0.0 0.0	Ó	Ð	0	0	Ó	0.0 0.0	0	ò	0	0
ellemannes vulans 0	rangon crangon locarcinus arcuatus																														
brackennsk 0 0 1 0 0 2 2 4 0	alaemonetes varians	0	0	0	0	0	0.0	0.0	0	Ó	0	0	0	0.0	0.0	0	0	Ó	0	0	0.0 0.0	0	0	0	0	Ó	0.0 0.0	D	ō	ō	ō
defail and basis 0	HYLUM MOLLUSCA																														10 0
errestocheming glucum 0	lderia modesta									D	0	0	0	0.0	0.0	0	0	0	Ó	0	0.0 0.0	0	Ó	0	0	0	0.0 0.0	0	Ó	Ó	ō
merelika familaria alta merelika familaria familaria familaria familaria familari familari familari	erastoderma glaucum	0	Ó	0	Ó	0	0.0	0.0	Ð	0	Ō	ō	Ō	0.0	0.0	0	ō	Ó	Ó	Ó	0.0 0.0										
blacki sumble class 0	repidula fornicata Iosinia Iupinus			0			0.0	0.0				0	0	0.0	0.0	0	Ó	0	0	0	0.0 0.0	ō	0	ō	ō	ō	0.0 0.0	Ó	ò	Ō	0
annines anxiella 0	libbula umbilicalis	0	Ð	0	0	0	0.0	0.0	0	0	Ó	Ó	0	0.0	0.0	0	Ó	Ó	ò	Ō											
ydrobla udwe 1 1 1 3 2 15 0 <	laminoea navicula linia reticulata													0.0	0,0				0		0.0 0.0						0.0 0.0	0	0	0	Ó
order blave 0 <th< td=""><td>lydrobia ulvae</td><td>1</td><td>1</td><td>1</td><td>3</td><td>2</td><td>1.6</td><td>0.9</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>4</td><td></td><td></td><td></td></th<>	lydrobia ulvae	1	1	1	3	2	1.6	0.9	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	4			
theorine littlores 0)																										0.0 0.0			0	0
accoma balticica 0	ittorina littorea	0	Ó	0	0	0	0.0	0.0	0	0	Ó	Ó	Ō	0.0	0.0	0	ō	0	Ó	ò	0.0 0.0	0	0	ō	Ó	Ó	0.0 0.0	0	0	0	0
ye arenante 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ittorina saxatilis a gg. facoma balthica																														
andicarding exiguium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	fya arenaria	0	0	ō	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	Ó	Ó	Ó	Ó	Ō	0.0 0.0	Ō	ō	ō	ō
strusse obtase 0	lytilus edulis arvicardium exiguum																														
addrages decursatus 0	etusa obtusa	0	Ó	Ó	0	0	0.0	0.0	D	0	0	0	Ó	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0	0	Ō	Ō
udlapse pallighinarum 0	uditepes decussatus																														
ylen marginistica 0	uditapes phillipinarum	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	Ó	0	0.0 0.0	0	ō	0	0	Ó	0.0 0.0	0	ō	0	
menuples sexualitis 0	crobicularia plana olen marginatus																														1
mphiphiphis squamata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enerupis saxatilis	ō	ō	Ō	Ō	ō	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0	0	0	ò
YNLUM NSECTA 0 <t< td=""><td>HYLUM ECHINODERMATA mphipholis squamata</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	HYLUM ECHINODERMATA mphipholis squamata																														
Michogodidae 0 <t< td=""><td>HYLUM INSECTA</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>Ó</td><td>Ó</td><td>Ö</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	HYLUM INSECTA	0	0	0	0	0	0.0	0.0	0	0	Ó	Ó	Ö	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0	0	0	0
secta findet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	hironomidae olichopodidae																														
Y1LUM CHORDATA 0	secta indet	0	Ó	Ō	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0	Ō	ō	0
matachalistus sp. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	secta larvae HYLUM CHORDATA																														
yazza indef. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	0	0	0	0.0	0.0	0	0	Ō	0	ō	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0	ò	Ó	Ó
tal number of Individuals per 17 13 42 36 23 26 12 13 9 15 16 12 13 3 17 20 27 10 11 17 7 102 127 82 124 48 97 33 60 79 126 95	omatochistus sp.			Ð	D	0	0.0	0.0	0	0	0				0.0	0	0	0	D	0	0.0 0.0	0	0	0	0	~	0.0 0.0	0	0	0	0
						0				0	0	0	0	0,0	0.0	0	0	0	0	0	0.0 0.0										
tal number of Individuals per 1 2165 1655 5348 4584 2928 3336 1579 1655 1146 1910 2037 1528 1655 349 2165 2546 3438 1273 1401 2165 887 12987 16170 10441 15788 6112 12299 4164 7639 10059 16043 1209	omatochistus sp. ther (incl algae) ryozoa indef.	0	0	0	Ó		0.0	0,0	Ō								-					0	0	0	0	0	0.0 0,0	0	0	0	C

				11					10							- 10																		
0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	246 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7200059000000000000000000000000000000000								1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0 \\$	A 000000000000000000000000000000000000	B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C1000000000000000000000000000000000000	13 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E0000000001110000000000000000000000000	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	A0000000100100010000000000000000000000	B0000000000000000000000000000000000000	C ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	14 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E0000000085000054000000100000000000000000	0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	400000000000000000000000000000000000000	B 00 00 00 00 00 00 00 00 00 00 00 00 00	C C C C C C C C C C C C C C C C C C C	15 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	003000000000000000000000000000000000000	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	A0000000000000000000000000000000000000
0.0 0.0 0.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0			0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 0	0 0.0 0 0.0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000011006	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000100000000000000000000000000000000000	0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0		0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		001000000000000000000000000000000000000	001000000000000000000000000000000000000	0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0 0 0 0 0 0 0

	C D 0 0	, E 0	Mea 0.0		A 0	В	<u>с</u> 0	17 D	E	Mea		A	В	c	18 D	E	Mea		A	В	с	19 D	E	Mea		A	В	с	20 D	E	Mean	SD
0	0 0	0	0.0	0.0		1	1	0 0 0	0 0 0	0.0 0.4 0.0	0.0 0.5 0.0	0	0 0 0	0 0 0	0 0 0	0	0.0 0.0 0.0	0.0	0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0		0	0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0
0	0 0 0 0	0	0,0 0,0	0,0	0	0	0	0	0	0.0	0.0	0	0 0	0 0	0 0	0 0	0.0	0.0		0 0	0	Č O	ő	0,0 0,0	0.0	Č O	0	0	D O	0 0	0.0	0.0 0.0 0.0
0	0 0 0 0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0 0	Ŭ O	0 0	0	0 0	0.0	0.0		č o	0	0	0 0	0,0 0,0	0.0	0	0 0	0	ő	ŏ	0.0	0.0 0.0 0.0
-	0 0 16 18	0 62	0.0 21.0			0 47	0 18	0 23	0	0.0	0.0	03	0	0	0	0 8	0.0	0.0	0	0 11	0 9	0 10	0	0.0	0.0	0 38	0 17	0 42	0 50	0 21	0.0 33.6	0.0 14.1
9 1	6 18 0 0			\$ 23.4		29 0	14	6	19	17.8		3	4	2	5	7 0	4.2	1.9	4	11		10 0	2	7.2	4.0	24 0	13 0	27	33 0	14	22.2	8.6
0	0 0 0 0	0 0	0.0	0,0	0	0	0	0	0 D	0.0	0.0	0 0	0	0	0	o o	0.0	0.0	0	000	0	0	0	0.0	0.0	Ó	0	0	ō	0	0.0	0.0 0.0
1 1	9 12 0 0			21.		5	2	4	0	2.2	2.3 0.0	1	2	0	2	3	0.0 1.6 0,0		0	4	4	0 5	1	0.0	0.0	0 13	4	0 21	6	8	0.0 10.4	0,0 6,8
0	0 0	0	0.0	0.0	0	0 0	0	ů o	0 0	0,0 0,0	0.0	0 0	ŏ	Ő	0 Q	0	0.0	0.0	0	0	0	0 0 0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0	0	0 0 0	0	0.0	0.0
0	0 0	0	0.0 0.0	0.0	0	0	0	0 0	ů D	0.0	0.0 0.0	0	0 0	0	0	0 0	0.0	0.0	0	ő	0 0	0 0	0	0.0	0.0	0	0	0 0 0	0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0
0	0 0 0 0	0	0.0	0.0	0	0	0	0	0	0,0	0.0	0	0	0	0	0 0	0.0	0.0	Ö 0	ŏ	ő	ů 0	ů o	0.0	0.0	0 0	0 0	0	0 0	0 0	0.0 0.0	0.0
0	0 0 0 0	0 0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0 0	0	0.0	0.0	ů o	0 0	0 0	ů o	0	0.0	0.0	0	0 0	ő	0 0	0	0.0	0.0
0	0 0 0 0	3 0	0.6 0,0	1.3 0,0	0	1	0	0	0	0.2 0.0	0.4	0	0	0	Č O	0 0	0.0		Ŭ D	0 D	0 0	ů o	0	0.0 0.0	0.0	1	0	0 0	0 0	1	0.4 0.0	0.5
0		0 0	0.0 0.0	0.0 0.0	0	0	0 0	0	0	0.0	0.0 0.0	0	0 0	0	0 0	0 0	0,0	0.0	0	0	0	0 0	0	0,0 0,0	0,0 0,0	0 0	0 0	ů o	0	0	0.0	0.0 0.0
7 0		6 0	5.4 0.0	2.5 0.0	20 0	21 0	10 0	2 0	19 0	14.4 0.0	8.2 0.0	2 0	2 0	1 0	1 0	2	1.6 0.0	0.5	3	7	2	5	0	3.4 0.0	2.7 0.0	9	9 0	6 0	27 0	5	11.2 0.0	9.0 0.0
0 (0	0.0 0.0	0.0 0,0	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0	0	0.0 0,0	0.0 0.0	0	0	0	. 0 0	0	0.0 0.0	0.0 0.0	0	0	0	0	0 0	0.0	0.0
0 0	o o	0 0	0.0 0.0	0.0 0,0	0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0,0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	0 0	0	0	0 0	0.0 0.0	0,0 0,0
0 0	0	0 0	0.0 0.0	0,0 0,0	0 0	0	1 0	0 0	0 0	0.2 0.0	0.4 0.0	0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	1	0	0	0.2 0.2	0.4 0.4	0	0	0	0 0	0 0	0.0 0.0	0.0 0.0
0 0	0 (0 0	0.0 0.0	0.0 0.0	0 0	0	0 1	0 0	0	0.0 0.2	0.0 0.4	0	0	0 0	0 2	0 1	0.0 0.6	0.0 0.9	0 1	0	0 1	0 0	0 1	0.0 0.6	0.0 0,5	0	°0	0 0	0 0	0	0.0 0.0	0.0 0.0
0 (0 (0	0.0 0.0	0.0 0.0	0	0 0	0 0	0	0 0	0.0 0.0	0.0 0.0	0 0	0	1 0	0	0 0	0.2 0.0	0.4 0.0	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0
0 0	0 (0	0.0 0.0	0.0	0 0	0 0	0	0 0	0 0	0,0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0 0	0	0 0	0.0 0.0	0.0 0,0	0 0	. C D	0	0 0	0 0	0.0 0.0	0.0 0.0
1 0) Ó	0	0.2	0,4 0.0	1	2	0	0 0	0 0	0,6 0,0	0.9 0.0	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0	0 0	. 0 0	0 0	0,0 0,0	0.0 0.0	1 0	0 0	0	0	0 0	0.2 0.0	0.4 0.0
0 0		0.	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0,0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0
0 0		0	0.0 0.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0,0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0	0	0.0 0.0	0.0 0.0
0 0	0	0	0.0 0.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0	0	0	0	0,0 0.0	0.0 0,0
0 0		0	0.0	0.0	0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0 0	0.0 0.0	0.0 0.0
) 0	0	0.0 0.0 0.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0	0.0 0.4	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0
0 0	0	0	0.0	0.0 0.0 0.0	0 0	18 0 12	4 0 1	17 0 17	2 0 2	8,2 0.0	8,6 0,0	0	0	0	0	0	0.2	0.4	0	0	0	0	0	0.0 0.0	0,0 0,0	14 0	4	15 0	17 0	7	11.4 0.0	5.6 0.0
0 0		03	0.0	0.0	0 81	6	3 100	0	0	6.4 1.8 41.2	7.6 2.7 46.0	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	0.2 0.0 0.0	0.4 0.0 0.0	0	0 0 0	000	0 0 0	0	0.0	0.0 0.0	12 2	0 4	15 0	3 14	1	6.2 5.2	6.8 5.4
0 0	Ó	1	0.2	0.4	0	o o	0	0	0	0.0	0.0	0	0	0	0	ő	0.0	0.0	0	0	0	0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0	0 0 0	0	0	0.0 0.0 0.0	0.0
0 0	Ó	0 0	0.0 0.0	0.0	0 D	0 0	0 0	1	0	0.2	0.4 0.0	0	0	ő	0	ů o	0.0	0.0	ŏ	0	0	000	0	0.0 0.0 0.0	0.0	0	0	0	0 0 0	0 0 0	0.0	0.0 0.0 0.0
0 0	0	0 0	0,0 0,0	0.0 0.0	0	2	100 5	16 0	0 0	23.6 1.4	43.2 2.2	0	0 0	ů o	0 0	Ŭ D	0.0	0.0	ů ů	0 0	0	ů o	0 0	0.0	0.0	0	0	ů 0	0	0 0	0.0 0.0	0.0 0.0
0 0 2 0	0	0 1	0.0 0.6	0.0 0.9	0	0	95 0	16 0	0 0	22.2 0.0	41.3 0.0	0 0	0 0	0	0	0	0.0 0.0	0.0	0 0	0	0 0	0	0 0	0.0	0.0	0 0	0 0	Ŭ D	0 0	0 0	0.0	0,0 0.0
0 0 2 0	0	0 1	0.0 0.6	0.0 0.9	0 0	0	0 0	0	0 0	0.0 0.0	0.0 0,0	0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0	0	0 0	0	0	0	0.0 0.0	0.0
0 0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 D	0	0 0	0	0.0 0.0	0.0
0 0	0	0 1	0.0 0.2	0.0 0.4	0 80	0 4	0 0	0 1	0	0.0 17.0	0.0 35.3	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0	0	0	0 0	0	0,0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0
00	0 0	0	0.0 0.0	0.0 0.0	0	0	0 0	0 0	0 0	0,0 0.0	0.0 0.0	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0	0 0	0	0 0	0	0,0 0,0	0.0 0.0	0	0	0 0	0	0	0.0	0.0 0.0
0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0	0 0.	0 0	0 0	0	0.0 0.0	0.0 0.0
0 0	0	1	0.2 0.0	0.4 0.0	0 79	0	0	0	0	0.0 16.2	0.0 35.1	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0
0 0	0	0	0,0 0.0	0.0	0	2	0	0	0	0.0 8.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0	0 0	0.0 0.0	0.0 0.0
0 0	0	0	0.0 0.0	0,0 0.0 0.0	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0	0	0.0 0,0	0.0 0.0
0 0	0	0	0.0 0.0 0.0	0.0	0	0	0	0	0	0.0	0.0	000	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0
0 0		0 0	0.0 0.0	0.0 0.0	0 0	1	ů o	0	0	0.4 0.2 0.0	0.5 0.4 0.0	0	0 0 0	000	0 0 0	0 0	0.0 0.0 0.0	0.0	0	0 0 0	0	0 0 0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0
0 0	0 0	0	0.0 0.0	0.0	1	0 0	0	0 0	0	0.0 0.2 0.0	0.4 0.0	0	o o	0 0	0	0	0.0	0.0 0.0 0.0	0 0 0	0	0 0 0	0 0	0 0 0	0,0 0,0	0.0	0 0 0	0 0 0	0 0	0	0	0.0 0.0	0.0
0 0	0	1	0.2 0.0	0.4 0.0	3	10 0	3 0	7 0	1	4.8 0.0	3.6 0.0	3 0	5 0	ů 0	4	7	3.8 0.0	2.6 0.0	1	0 0	1	2	1 0	0.0 1.0 0.0	0.0 0.7 0.0	3	0	0	0 0 0	0 0 0	0.0 0.6 0.0	0.0 1.3 0.0
0 0	0 0	0 0	0.0 0.0	0.0 0.0	0	0	0	D O	0	0.0	0.0	0	0	0	Õ	0 1	0.0 0.2	0.0 0.4	ů 0	0 0	0 0	0	ů o	0.0 0.2	0,0 0.4	0 0	0	0 0	0 0	o o	0.0 0.0	0.0
0 0 0 0	0	0 0	0,0 0,0	0.0 0,0	0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	1 0	0	0	0	4	1.0 0.0	1.7	0 0	0	0	o o	0 0	0.0	0.0 0.0	0	0	0 0	Č O	0	0.0 0.0	0,0 0,0
0 0 0 0	0	0 0	0.0 0,0	0.0 0.0	0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0 0	0	0.0	0.0 0.0	0 0	0	0	Ŭ D	ů O	0.0 0.0	0.0 0.0
0 0 0 0		0 0	0.0 0.0	0.0 0.0	0 0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 D	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0,0 0,0	0.0
0 0	Ō	1 0	0.2 0.0	0.4 0.0	0 0	6 0	0	0	0 0	1.2 0.0	2.7 0.0	0	1 0	0 0	2 0	1 0	0.8 0.0	0.8 0.0	1 0	0 0	0	0 0	0 0	0.2 0.0	0.4 0.0	3 0	0	0 0	0	0	0.6 0.0	1.3 0.0
0 0	ō	0	0.0 0.0	0.0	0	0	0	0	0	0.0 0.2		0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0
0 0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.2	0.0 0.4	0 0	0 1	0	0	0 0	0.0 0.2	0.0 0.4	0	0 0	0 0	0 1	0 1	0.0 0.4	0.0 0.5	0	0 0	0	0 0	0 0	0.0 0.0	0.0 0.0
0 0	0	000	0.0	0.0	0	0	0	0	0	0.0 0.4	0.0 0.5	1	1	0	0	0	0.4 0.0	0,5 0,0	0	0	1	0	0	0.2 0.0	0.4 0.0	0	0	0	0	0 0	0.0 0.0	0.0 0.0
0 0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0	0.0 0.0
0 0	0 0	0 0 0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0	1	0	0	0	0	0.2	0.4	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0	0		0.0 0.0
0 0	0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	1 0 0	2 2 0	0	6 0	1	2.0 0.4	2.3 0.9	0	1	0	2	0	0.6	0.9 0.5	0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0	0.0
0 0	0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0
0 0	0	0	0.0	0.0 0.0 0.0	0	0	0	0	0	0.0 0.0 0.0	0.0 0.0 0.0	0	0 0 0	0	0 0 0	0 0 0	0.0	0,0	0	000	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0
0 0	0	0	0.0	0.0	0	0	0	0	0 0	0.0 0.0 0,0	0.0 0.0 0.0	0	0	0 0 0	0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0	0.0	0 0 0	0	0	0	0		0.0
0 0	0 0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0 0.0	0.0 0.0 0.0	0	0	0	0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0	0 0	0	0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0	0.0
0 0 0 0	0 0	0 0	0.0 0.0	0.0 0.0	ů o	0 0	0 0	0 0	0 0	0.0	0.0 0.0	0	0	o o	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0 0.0	0	0	0	0	0	0.0	0.0 0.0 0.0
0 0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0 1	0	0 0	0.0 0.2	0.0 0.4	0	0	0	ů o	0	0.0	0.0 0.0	ů o	00	0	o o	0	0.0	0.0 0.0	0	0	0	0	0	0.0	0.0
11 16		66	23	25	105	65	122	48	22	72	41	6	9	2	9	15	8	5	5	11	10	12	3	8	4	41	17	42	50	21	34	14
1401 203	/ 2292	8403	2903	3162	13369	B276	15534	6112	2801	9218	5216	764	1146	255	1146	1910	1044	607	637	1401	1273	1528	382	1044	504	5220	2165	5348	6366	2674	4354	1831

Site				21						2	2						23						24							25
Numbers per core PHYLUM CNIDARIA	A	<u>B</u>		D	E	Mear 0.0	1 SD 0.0	A	B(Mea 0.0		A 0	B 0	0	D 0	<u>Е</u> 0	Mean SD 0.0 0.0	A 0	<u>В</u> 0	C 0		E	Mean 0,0	0.0	A 0	В 0	с 0	D0
PHYLUM ACTINIARIA	0	0	0	0	0	0.0	0,0	11	11 1	9	<u>ا</u>	8.6	7.7	Ó	0	0	0	0	0.0 0.0	0	0	0	0	0	0,0	0.0	0	0	1	1
Anemonia viridis Cereus pedunculatus	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0					0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
Nematostella vectensis	0	0	0	Ó	Ó	0.0	0.0		0 4					Ó	Ó	Ó	Ö	ō	0.0 0.0	Ó	Ó	Ō	0	ō	0.0	0.0	0	0	0	0
PHYLUM NEMATODA PHYLUM NEMERTEA	. 0 0	0	0 0	0	0	0.0 0.0	0,0 0.0	0	0 0				0.4 0.0	0	0	0	0 0	0	0.0 0.0 0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	0	0	0 0
PHYLUM HIRUDINEA PHYLUM ANNELIDA	0 6	0	0 D	0	0 3	0.0 2.4	0.0 2.5	0 6	0 (0 12	0 19	0 18	0 13	0 13	0.0 0.0	0 3	0 2	0 3	0 17	0 7	0.0 6.4	0.0 6.2	0 1	0 5	0 7	0 0
Polychaeta total	5	ō	D	3	3	2.2	2.2	6	117 4	16	3 1	0 28,6	49,5	12	19	18	13	13	15.0 3.2	1	2	3	11	2	3.8	4.1	1	5	7	0
Ampharete balthica Anaitides mucosa	0	0	0	0	0 0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0	0	0 0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0 0
Aonides oxycephala Aphelochaeta marioni	0	0	0	0	0	0.0 0.2	0.0 0.4	0 5	0 0				0.0 48,2	0	0	0 0	0 0	0	0.0 0.0	0	0	0	0	0	0.0 2.4	0.0	0	0	0	0
Arenicola marina	ō	o	0	Ó	Ď	0.0	0.0	Ó	0 () () d	0.0	0.0	0	0	0	0	0	0.0 0.0	0	2 0	0 0	8 0	2 0	0.0	3.3 0.0	0 0	1 0	0 0	0 0
Capitella capitata Chaetozone christil	0	0	0	0	0	0.0 0.0	0.0 0,0	0	0 0				0.0 0.0	0	0	0	0 0	0	0.0 0.0	0	0	0	0	0	0,0 0.0	0.0 0.0	0	0	0	0 0
Cirratulidae (indet.) Cirriformia tentaculata	0	0	0	0	0	0.0	0.0	0	0 0			0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	Ō	0	0	0.0	0.0	Ō	Ö	Ö	0
Caulleriella zetlandica	0	ō	ŏ	0	Ó	0.0	0.0	0	0 0			0.0	0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0
Cossura longe Desdemona ornata	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0	0	0 0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0 0
Eteone foliosa	Ó	Ó	0	0	0	0.0	0.0	0	0 0) () (0.0	0.0	0	Ó	o	0	0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	D	0	0
Eteone longa Eumida of sanguinea	0	0	0	0 0	0 0	0.0 0.0	0.0 0,0	0	0 0) (0,5 0.0	0	0	0	0 0	0 0	0.0 0.0	0	0	0	1	0	0.2 0.0	0.4 0.0	0 0	0	0	0 0
Eumida punctifera Glycera tridactyla	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0,0	0	0	0	0	0 0	0.0 0.0 0.0 0.0	0	0	0	0	0	0,0 0,0	0.0 0.0	0 0	0 0	0	0 0
Hediste diversicolor	3	ō	Ō	3	2	1.6	1.5	1	1 () 1	1	0.8	0.4	12	19	18	13	13	15.0 3.2	0	0	0	0	0	0.0	0.0	1	з	5	0
Janua pagenstecheri Malacoceros tetraceros	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0	0 0	0 0	0	0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
Mediomastus fragills Melinna palmata	0	0 0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0				0,0 0,0	0 0	0 0	0	0 0	0	0.0 0.0	0	0	0	0	0 0	0.0	0,0 0.0	0	0 0	0	0
Microphthalmus cf similis	ō	0	Ō	0	0	0.0	0.0	0	0 0) () d	0.0	0,0	0	0	0	0	0	0.0 0.0	ō	Ō	Ō	0	0	0.0 0,0	0.0	0	0	2 0	0
Neanthes virens Nemertina	1	0	0 0	0	0	0.2 0,2	0.4 0.4	0	2 1				1.0 0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	, 0 1	0	0
Neoamphitrite figulus	o o	0	0 0	0 0	0 0	0.0	0.0	0	0 0		(0.2	0.4	0	0 0	ŏ o	0 0	0	0.0 0.0	0	0	0	0	D	0.0	0,0	0	0	Ó	0
Nephtys hombergli Nephtys kersivalensis	Ō	0	Ó	0	0	0,0	0.0	0	0 0) C	0	0.0	1.3 0.0	Ó	Ó	Ó	0	0 0	0.0 0.0 0.0 0.0	1 0	0	3 0	2 0	0	1.2 0.0	1.3 0.0	0 0	0	0 0	0 0
Notomastus latericeus Parapionosvilis minuta	0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0	0	0 0	0 0	0.0 0.0 0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0
Polycirrus sp	ō	Ō	ō	ō	Ó	0.0	0.0	Ó	o c) Ö	· (0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0
Polydora cornuta Polydora sp	0	0	0 0	0	0 0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0	0 0	0 0	0 0	0.0 0.0 0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
Pomatoceros lamarki Pseudopolydora paucibranchia	0 D	0	0	0	0	0.0 0.0	0.0	0 D	0 0	0	· C	0.0	0.0	0 0	0	0	0 0	0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0	0.0	0	0	0	0
Pygospio elegans	ō	Ō	Ó	Ō	0	0.0	0.0	0	0 0	0	0	0.0	0.0	Ó	Ó	0	Ó	ò	0.0 0.0	Ó	Ó	Ó	Ó	ō	0.0	0,0	0	ō	0	Ō
Sabella pavonina Scolelepsis sp.	0	0	0	Û O	0	0.0 0.0	0.0 0.0	0	0 0				0,0 0,0	0 0	0	0 0	0	0	0.0 0.0 0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0,0	0 0	0	0	0
Scolopios armiger Serpulidae sp.	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0	0	0.0	0.0 0.0	0 0	0 0	0	0 0	0	0.0 0.0 0.0 0.0	0	0	0	0 0	0	0.0 0.0	0.0	0	0	0 0	0
Spio martinensis	0	Ó	0	Ō	0	0.0	0.0	0	0 0	0	C	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0	0,0 0,0	0	Ó	Ó	0
Spionidae sp Streblospio shrubsolii	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 D.4	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0,0 0.0	0	0	0	0 0
Oligochaeta total	1	0	0	0	0	0.2	0.4	0 0	27 1				10.7	0	Ö	Ó	0	0	0.0 0.0	2	0	0	6	5	2.6	2.8	0	0	0	0
Tubificoides sp. Tubificoides benedii	1	0	0	0	0	0.2 0.0	0.4 0.0	0	22 1 0 0				8.7 0.0	0	0	0	0 0	0 0	0.0 0.0 0.0 0.0	0 2	0	0	2 4	2 3	0.8 1.8	1.1 1.8	0 0	0	0	0 0
Tubificoides pseudogaster PHYLUM CRUSTACEA	0 0	0	0	0	0	0.0 0.4	0.0 0.5	0	5 C 0 1	-			2.2 1.7	0 75	0 58	0 157	0 58	0 84	0.0 0.0 86.4 41.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 1	0	0	0 0
Ostracoda sp.	Ó	Ó	Ó	0	Ó	0.0	0.0	0	0 1	0	C	0.2	0.4	8	1	109	51	58	45.4 43.6	0	Ó	Ó	0	0	0.0	0.0	Ó	Ō	Ō	0
Eusarsiella zostericola Copepoda: Harpacticoida	0	0	0 0	0 0	0 0	0.0 0.0	0.0 0,0	0	0 0				0,9 0,0	0	0	0 0	0	0 0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0,0	0 0	0	0	0 0
Pranus inermis Cirripedia total	0	0	0 0	0	0 0	0.0 0.0	0.0 0,0	0	0 0				0.0 0.0	0	0	C O	0	0	0.0 0.0	0	0 0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0
Amphibalanus improvisus	0	ō	0	0	0	0.0	0.0	Ď	o c	0	Ó	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	Ó
Elminius modestus Isopoda total	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0			0.0	0.0 0.4	0	0	0	0 0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0 0
Apseudes latreillii Cvathura carinata	0 0	0 0	0	0 D	0 0	0.0	0.0	0	0 0			0.2	0.4	0	0	0	0 0	0 0	0,0 0.0	0	0	0	Ó	ò	0.0	0.0	o	ò	0	0
idolea balthica	0	0	ŏ	0	0	0.0	0.0	ő	0 0				0.0	0 0	ō	0	0	0 0	0.0 0.0 0.0 0.0	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	1 0	0	0 0	0
ldotea chelipes Sphaeroma rugicauda	0	0	0	0	0	0.0 0.0	0.0 0.0	0					0.0 0.0	0	0	0 0	0 0	0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0
Amphipoda total	0	Ó	Ó	1	1	0.4	0.5	Ó	0 0	Ó	0	0.0	0.0	67	57	48	7	26	41.0 24.3	0	0	0	0	0	0.0	0.0	0	0	0	0
Ampelisca brevicomis Bathyporela indet.	0 0	0 0	0 0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0 0 0				0.0 0.0	0 0	0 0	0	0 0	0 0	0.0 0.0 0.0 0.0	0 0	0	0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0
Corophium arenarium Corophium insidiosum	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0				0,0 0,0	0	0	0	0 0	0	0.0 0.0 0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0
Corophium volutator	ō	ō	Ō	1	1	0.4	0.5	0	0 0	0	0	0.0	0,0	67	57	48	7	26	41.0 24.3	Ó	0	0	0	0	0.0	0.0	0	0	0	0
Elminius modestus Gammarus locusta	0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0				0,0 0,0	0 0	0	0 0	0 0	0	0.0 0.0	0 0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0
Melita palmata Microdeutopus grilotalpus	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0				0.0 0.0	0	0	0	0	0 0	0.0 0.0	0	0	0	0	0	0,0 0.0	0,0 0.0	0	0	0	0
Microprotopus maculeatus	ō	ō	Ó	0	0	0.0	0.0	0	0 0	ō	0	0.0	0.0	Ō	ō	ō	ō	ō	0.0 0.0	0	ō	Ō	ō	ō	0.0	0.0	ō	ō	ō	0
Phtisica marina Urothoe brevicomis	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0 0	0	0 0	0	0.0 0.0 0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 D
Decapopda total Carcinus maenas	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0	0 0			0.2	0.4	0	Ö	0	0 0	0	0.0 0.0	0	0	0	0 0	0 0	0.0	0.0	0	0	Ċ O	0
Crangon crangon	D	0	0	o	Ó	0.0	0.0	0	Ó O	0	0	0.0	0.0	0 0	0 0	0	0	0 0	0.0 0.0 0.0 0.0	0	0	0	0	0	0.0 0.0	0.0	0	0 0	0	0
Liocarcinus arcuatus Palaemonetes varians	0	0	0 0	0	0 0	0.0 0.0	0.0 0.0	0	0 0			0.2	0.4 0.0	0 0	0 0	0	0 0	0 0	0.0 0.0 0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0 0
PHYLUM MOLLUSCA Abra tennuis	0	1	0	1	0 0	0.4	0.5 0.0	0	0 0	1	0	0.2	0.4	7 0	12 0	8 0	11 0	0 0	7.6 4.7 0.0 0.0	1.	17 0	0 0	3 0	2	4.6 0.0	7.0 0.0	3	0 0	1 0	1
Alderia modesta	ò	0	0	0	0	0.0	0.0	D	0 0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0
Cerastoderma edule Cerastoderma giaucum	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0		0 0		0.4 0.0	0 0	0	0 0	0 0	0 0	0.0 0.0	0	1 0	0	1	0 0	0.4 0.0	0,5 0,0	2 0	0 0	1 0	0 0
Crepidula fornicata Dosinia lupinus	0	0 0	0 0	0 D	0 0	0.0	0.0	0 0	0 0	0	0	0,0	0.0	0 0	0 0	0 D	0 0	0	0.0 0.0	0	Ō	Ó	0	Ō	0.0	0.0	0	Ō	õ	ō
Gibbula umbilicalis	Ó	Ó	0	Ď	0	0.0	0.0	0	0 0	0	0	0.0	0.0	Ó	Ō	D	ō	0 0	0.0 0.0	ō	0 0	0 0	0	0	0.0 0.0	0,0 0,0	0	0 0	0 0	0 0
Haminoea navicula Hinia reticulata	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0
Hydrobia ulvae	0	1	0	0	0	0.2	0.4	0	0 0	0	0	0.0	0.0	7	12	8	11	0	7.6 4.7	1	14	0	0	0	3.0	6.2	0	Ō	ò	0
Hydrobia ventrosa Leptochitona cinereus	0	0 0	0 0	0 0	0 0	0.0 0.0	0,0 0,0	0 0	0 0	0	0	0.0	0.0 0.0	0	0	0	0 0	0 0	0.0 0.0 0.0 0.0	0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0 0
Littorina littorea Littorina saxatilis a gg.	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0 0	0	0 0	0 0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0
Macoma baithica	Ó	0	0	Ó	0	0.0	0.0	Ó	0 0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	Ó	0	0	0	2	0.4	0.9	0	0	0	0
Mya arenaria Mytilus edulis	0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0	0 0	0	0 0	0 0	0.0 0.0	0	2 0	0 0	1 0	0 0	0.6 0.0	0,9 0.0	0 0	0	0 0	1 0
Parvicardium exiguum Retusa obtusa	0 0	0	0 0	ů 0	0 0	0.0	0.0 0.0	0	0 0	0	0	0.0	0.0	C O	0 0	ů o	0	0	0.0 0.0	0	ů o	0	Ó	0	0.0	0.0	0	ō	Ō	ō
Retusa oveta	0	0	0	0	0	0.0	0.0	0	0 0	0	0	0.0	0.0	0	Ó	0	Ó	Ó	0.0 0.0	Ó	Ċ.	0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0
Ruditapes decussatus Ruditapes phillipinarum	0 0	0 0	0	0 1	0 0	0.0 0.2	0.0 0.4	0 0	00				0.0 0.0	0 0	0	0	0 0		0.0 0.0 0.0 0.0	0	C O	0	0	0 D	0.0 0.0	0.0 0.0	0	0	0	0
Scrobicularia plana	0	0	0	0	0	0.0	0.0	0	0 0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	1	0	0.2	0.4	o	0	0	Ó
Solen marginatus Venerupis saxatilis	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0 0	0 0	0 0	0 0	0	0.0 0.0	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0
PHYLUM ECHINODERMATA Amphipholis squamata	0 0	0	0 0	0 0	0 0	0.0	0.0	0 0	0 0	ō	ō	0.0	0.0	0 0	0	0 0	0	ō	0.0 0.0	0	0	ů o	0	0 0	0.0	0.0	ů o	Ó	Ó	Ó
PHYLUM INSECTA	0	0	0	0	0	0.0	0.0	0	0 0	0	Ó	0.0	0.0	0	0 1	0	0 0	0	0.2 0.4	0	0 0	Ó	0	ò	0.0 0.0	0.0 0.0	ō	0 0	0 0	0
Chironomidae Dolichopodidae	0	0	0 0	0	0 0	0.0 0.0	0.0 0,0	0	0 0				0.0 0.0	0	0 0	0	0 0		0.0 0.0	0	0 0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0
Insecta indet	0	0	0	Ó	0	0.0	0.0	0	0 0	0	0	0.0	0.0	0	0 1	0	0	0	0.0 0.0	0	0	0	ō	ō	0.0	0.0	0	0	0	ō
insecta larvae PHYLUM CHORDATA	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0 0				0.0 0.0	0 0	1 0	0 0	0 0	0	0.2 0.4 0.0 0.0	0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0
Pomatochistus sp. Other (incl algae)	0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 0				0.0 0.0	0 0	0 0	0 0	0		0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
Bryozoa indef.	0	õ	0	0	õ	0.0	0.0	0	0 0	0	0	0.0	0.0	0	0	0	0		0.0 0.0	0	õ	0	0	õ	0.0	0.0	0	0	0	0
Total number of individuals per :		1	0	5	4	3	3	17	155 35				61	94	90		82		109 42	4	19	3	20	9	11	8	5	5	9	2
Total number of individuals per I	764	127	0	637	509	407	330	2165	19735 445	6 165	5 241	9 6086	7704	11968	11459	23300 1	0441 1	12350 1	13904 5301	509	2419	382	2546	1146	1401	1030	637	637	1146	255

0 0.0 0.0 0

	SD	A	в	c	31 D	E	Mean		Ą	В	c	32 D	E		SD	A	В	c	33 D	E		SD	A	B	c	34 D	E	Mean		A	В	c	35 D		Mean SD	<u>A</u>
	0.0 0.0 0.0 0.4	ō	0 0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0	ō	0 0 0	ō	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 1	0.0 0.0 0.0 0.2	0.0 0.0 0.0	ō	0 0 0	0 0 0	000	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0	0 0 0	0 0 0	0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
	0.0 7.5 5.9	7	0 26 19	6 3	1	0 12 7	0.0 10.8 7.2	0.0 9.4 7.0	0	0 0 3 3	0	5 2	0 65 42	0,0 15.0 9.6	0.0 28.0 18.1	0 5 5	0 0 5 5	0 5 5	7	0 5 5	0.0 5.4 5.4	0.0 0.9 0.9	0	7 4	0	0 1 0	0 2 0	0.0 0.0 2.0 0.8	0.0 0.0 2.9 1.8	0 51 50	0 85 85	0 21 21	0 113 105	0 20 20	0.0 0.0 0.0 0.0 58.0 40.7 56.2 38.1	
	0.0 0.0 0.0	0 4	0 0 14	0 0 0	0 0 0	0 0 0	0.0 0.0 3.6	0.0 0.0 6.1	0	0	0 0 0	0 0 0	0 0 39	0.0 0.0 7.8	0.0 0.0 17.4	0 0 0	0 0 0 0	0 0 0	0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0	0 0 3	0 0 0	0 0 0	0 0 0	0.0 0.0 0.6	0.0 0.0 1.3	0 0 3	0 0 9	0 0 2	0 0 14	0 0 1	0.0 0.0 0.0 0.0 5.8 5.5	0 D 0 0
	0.0 0.0 0.0	0	0	0 0 0	0 0 0	0	0.0 0.0 0.0	0.0 0.0 0.0	0	0	Ō	0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0	0	0	0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0	0 0 0	0 0 0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	0	0 2 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.4 0.9 0.0 0.0	0 0 0
	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 1 0 1	0 0 0	0 0 0	0.0 0.2 0.0 0.2	0.0 0.4 0.0 0.4	0 0 0	0 0 0	0 0 0	0 1 0	0 0 0	0.0 0.0 0.2 0.0	0.0 0.0 0.4 0.0	0 0 0	0 0	0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0000	0 0 0 2	0 0 0 0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.9	0 0 0
	0.0 0.0 5.9	0 0 1	0 0 0	0	0 0 0	0 0 0	0.0 0.0 0.2	0.0 0,0 0.4	0 0 0	0 0 2	0 0 0	0 0 0	0 0 1	0.0 0.0 0.6	0.0 0.0 0.9	0	0 1 0	0 0 0	0	0 0 0	0.0 0.2 0.0	0.0 0.4 0.0	0 0 0	0 0 0	0	0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 47	0 0 61	0 0 19	0 0 88	0 0 19	0.0 0.0 0.0 0.0 46.8 29.3	Ō
	0.0 0.0 0.0	0 0 0	0 0 0	0 0	0 0 0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0,0 0,0 0,0	0	0 0 0	0 0 0	0 0 0	0 0 0	0,0 0,0 0,0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
	0.0 0.0 0.0 0.0	1 0 0 0	4 0 0	0 D	1 0 0	2 0 0 0	1.8 0.0 0.0 0.0	1.3 0.0 0.0 0.0	0 0 0	0 1 0	0	0 0 1 0	0 0 1 0	0.0 0.0 0.6 0.0	0.0 0.0 0.5 0.0	0 0 2 0	0 0 0	0 0 1 0	0 0 1 0	0 0 2 0	0.0 0.0 1.2 0.0	0.0 0.0 0.8 0.0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 1 0
	0.0 0.0 0.0 0.0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 1 0	0.0 0.0 0.2 0.0	0.0 0.0 0.4 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 1	0 0 0	0 0 1	0.0 0.0 0.4	0.0 0.0 0.5	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0	0 0 0	0 0 0	0,0 0.0 0.0	0.0 0.0 0.0	0 1 0	0 0 0	0 1	0 0 0	0 0 0	0.0 0.4 0.0	0,0 0,5 0.0	0 0 0	0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0,0 0,0 0,0	0 0 0	0 0	0 0 0	0 0 0	000	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0
	0.0 0.0 0.0 0.0	0 0 0	000	0 0 0	0	0000	0.0 0.0 0.0	0,0 0.0 0.0	0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 1 0	2	0	0 3 0	0 0 0	1.4 0.0 1.2 0.0	1.1 0.0 1.3 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
	1.9 1.3 1.3 0.0	1 0 0 1	7 0 7 0	5 0 5 0	0 0 0	5 0 5 0	3.6 0.0 3.4 0,2	3.0 0.0 3.2 0.4	0	0000	0	3 0 3 0	23 23 0 0	5.4 4.6 0.6 0.0	9,9 10.3 1.3 0.0	0 0 0	0 0 0	000	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	3 3 0 0	0 0 0	1 1 0 0	2 2 0 0	1.2 1.2 0.0 0.0	1.3 1.3 0.0 0.0	1 1 0 0	0 0 0	0 0 0	8 8 0	0 0 0	1.8 3.5 1.8 3.5 0.0 0.0 0.0 0.0	1 0 0 1
0 0	8.6 0.0 0.0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.2 0.0 0.0	0.4 0.0 0.0	0 0 0	1 0 0	0 0 0 0	0 0 0	0 0 0	0.2 0.0 0,0	0.4 0.0 0.0	0 0 0	0 0 0	0	0 0 0	0 0 0	0.0 0,0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	3 0 0	0.6 0.0 0.0	1.3 0.0 0.0	0 1 0	5 2 0	2 0 0	0 0 0	4 0 0	2.2 2.3 0.6 0.9 0.0 0.0	0
0 0 1 1 0	0.0 0.0 0.8	0	0 0 1	0 0 1 0	0 0 0	0 0 0	0.0 0.0 0.4	0.0 0.0 0.5	0	0 0 0	0 0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0	0 0 0	Ō	0 0 0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 2	0 5	0 0 3	0 3	0 0 2	0.0 0.0 0.0 0.0 3.0 1.2	0 0 2
6.8 0	0.5 0.0 0.4 0.0	0 0	0 0	-	0 0 0	0 0 0	0.4 0.0 0.0 0.0	0.5 0.0 0.0 0.0	0 0 0	0 0 0	õ	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0	0 0 0	ō	0000	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0	0 0 0	0	0 0 0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	0	ō	0	0	0 0 0	3.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ō
6.6 0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0 0	0 0 0	000	0 0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0000	2 0 0 0	0 0 0	0.4 0.0 0.0 0.0	0.9 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
0.0 0	0.0 0.0 0.0	000	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	ō	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	
0.0 0	0.0 0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0	0	0	0 0	0 1	0.0 0.0 0.2	0.0 0.0 0.4	0 0	0	0	0000	0 0	0.0 0.0 0.2	0.0 0.0 0.4	0 0 0	0 0	0 0	0 0 0	0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
6.0 0	0.0 0,0 26,0	0 0 0	0 0 2	0 0 1	0 0 1	0 0 3	0.0 0,0 1.4	0,0 0,0 1,1	0 0 7	0 0 0	0 0 3	0 0 1	0 0 3	0.0 0.0 2.8	0.0 0.0 2.7	0 0 0	0 0 3	0 0 0	0 0 1	0 0 0	0.2 0.0 0.0 0.8	0.0 0.0 1.3	0 0 6	0 0 37	0 0 9	0 0 7	0 0 8	0.0 0.0 0.0 13.4	0.0 0.0 13.2	0 0 1	0 0 8	0 0 5	0 0 5	0 0 0 8	0.0 0.0 0.0 0.0 0.0 0.0 5.4 2.9	0 0 2
0.0 0	0.0 0.0 0.0 0.0	0 0 0	0 0 0 0	0 0 1 0	0000	0 0 1 0	0.0 0.0 0.4 0.0	0.0 0.0 0.5 0.0	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0	0 2 0 0	0.0 0.6 0.0 0.0	0.0 0.9 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 1 0 0	0 0 0	0 1 0 0	0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0	0 1 0 0
0.0 0 0 0.0	0.0 0.0 0.0 7.5	0 0 0	0000	0 0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0 7	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 1.4	0.0 0.0 0.0 3.1	0000	0 0 2	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.4	0.0 0.0 0.0 0.9	0 0 0	0 0 0 37	0 0 9	0 0 7	0 0 0 8	0.0 0.0 0.0 13.4	0.0 0.0 0.0 13,2	0 0 0	0 0 0 1	0 0 0	0 0 2	0 0 0 2	0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0	0 0 0
0.9 0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0,0 0,0	0,0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
0.0 0 0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0 0 0	0 0 2	0 0 0	0 0 1	0 0 2	0.0 0.0 0.0 0.0 1.0 1.0	0 0 0
0.0 0	0.0 0.0 0.0 0.0	0 0 0	0 1 0	0 0 0 0	0 0 1 0	0 2 0 0	0.0 0.4 0.4 0.0	0.0 0.9 0.5 0.0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0 1	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.2	0.0 0.0 0.0 0.4	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0
0.0 0 0 0.0 </td <td>0.0 0.0 1.6 0.0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0.0 0.0 0.0 0.0</td> <td>0.0 0.0 0.0 0.0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0.0 0.0 0.0 0.0</td> <td>0.0 0.0 0.0 0.0</td> <td>0 0 0</td> <td>0000</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0.0 0.0 0.0 0.0</td> <td>0.0 0.0 0.0 0.0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0 0</td> <td>0.0 0.0 0.0 0.0</td> <td>0.0 0.0 0.0 0.0</td> <td>0 0 0</td> <td>0 · 0 0</td> <td>0 0 0</td> <td>0 0 0</td> <td>0 0 0 0</td> <td>0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>0 0 0 0</td>	0.0 0.0 1.6 0.0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0000	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 · 0 0	0 0 0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0
0.0 0 0 0 0 0 0.0 0.0 0 0 0 0 0 0 0 0 0	0.0 1.6 0.0 0.0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0.0 0,0 0,0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0000	0 0 0	0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0 0 0
	0.0 36	0 11	0 43	0 19	0 2	0 26	0.0 20	0.0 16	0 10	0 7	0 4	0 7	0 68	0.0 23	0.0 36	0 5	0 8	0 6	0 10	0 6	0.0 7	0.0 2	0 6	0 44	0 9	0 8	0 13	0.0 16	0.0 16	0 55	0 105	0 31	0 121	0 34	0.0 0.0 69 41	0 36

Maaa 0,0 0,0 0,0 0,0 0,0 0,0 0,0
0.0 0.0 0.0
0.0 0.0 0.0
SD 0.0 0.0
A 0000011000220000110000000001000010000000
0.0 0.0 0.0
SD 0.0 0.0
C 1 1 0 0 0 0 0 0 0 5 0 1 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Mean 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.8 3.9 3.6 3.7 3.7 3.8 3.9 3.9 3.9
3.3 2.0.0 0.0.
E 01000000510000000000000000000000000000
Mean 0.0
0.0 0.5 0.5 0.5 0.5 0.6 0.5 0.0

•

e mbers per core IYLUM CNIDARIA	A 0	<u>B</u>	с 0	41 D 0	E	Mear 0,0	n SD 0.0	A 0	B	C 0	42 D 0	E	Mear 0.0	n SD 0.0	A 0	B	C 0	43 D 0	E	Mean 0.0	SD 0.0	A 0	B	C 0	44 D	E 0	Mean 0.0	SD 0.0	A 0	B	<u>c</u>	45 D 0
IYLUM ACTINIARIA emonia viridis	0	0	0	ů ů	2	0.0 0.4 0.0	0.9 0.0	č	0	1	0	0	0.0	0.5 0.0	1	0	1	0	0	0.0	0.0 0.5 0.0	0	1	0	0	0	0.0	0.0 0.4 0.0	0 3 0	6 0	0	0
reus pedunculatus matostella vectensis	0	0	0	0	0 0	0.0 0.0	0.0	0 0	0	0 0	0	0 0	0.0	0.0	0	0 0	0 0	0	0 0	0.0	0.0 0.0	0	0 0	ů o	0 0	0 0	0.0	0.0	0 0	0 0	0 0	0 D
YLUM NEMATODA YLUM NEMERTEA	0	0	0	0	0 0	0.0	0.0	0	0 0	0 0	0	0	0.0	0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	ů o	0 0	0 0	0.0	0.0	0	0	0 0	0
YLUM HIRUDINEA YLUM ANNELIDA	0	0	0 57	0	0 27	0.0	0.0 16.8	0	0 3	0 32	0	0 2	0.0 9.2	0.0 13.0	0	0 7	0 11	0 27	0 12	0.0	0.0 9.4	0 27	0 41	0 22	0 27	0 19	0.0	0.0	0 14	0 23	0 18	0 36
lychaeta total ppharete balthica	12		24 0	12 0	15 0	14.8 0.0	5.4 0.0	8	3 0	32 0	1 0	2	9.2 0.0	13.0	1	2	1	1	0	1.0	0.7 D.0	14	22	17	14 0	8	15.0	5.1 0.0	9	5	4	5 0
altides mucosa nides oxycephala	0		1	0 0	0	0.4	0.5	1	0 0	0 0	0 0	0 0	0.2	0.4	ů o	0	0 0	0 0	ů D	0.0	0.0	0 D	0 0	õ	0 0	0 0	0.0	0.0	0 0	0	ů D	0 0
helochaeta marioni anicola marina	5	2	2	0 0	1	2.0 0.0	1.9	6	1	5	0	0	2.4	2.9	0 0	0 0	1	Ō	0	0.2	0.4	B	19	11	8	3	9,8	5.9	0	ō	ō	0
pitella capitata aetozone christii	0	0	0	Ó	2	0.4	0.9	0	2	25	Ō	1	5,6	10.9	0	ō	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
ratulidae (indet.)	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
riformia tentaculate ulleriella zetlandica	0	0	Ó	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
ssura longe sdemona ornata	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0,0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0	0	0	0 0
one foliosa one longa	2	0	0	0 0	0 0	0.0 0.4	0,0 0,9	0 1	0 0	0 0	0 0	0	0.0 0.2	0.0 0.4	0	0 0	0	0 0	0 0	0.0 0.0	0.0 0.0	0 1	0	0 1	0 1	0	0.0 0.6	0.0 0.5	0	0	0 0	0 0
mida cf sanguinea mida punctifera	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0	0	0,0 0,0	0,0 0,0	0	0	0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0	0 0
rcera tridactyla diste diversicolor	0 2	0 4	0 16	1 4	0 8	0.2 6.8	0.4 5.6	0 0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0 0	0.0 0.0	0.0 0,0	0 2	0 3	0 3	0 2	0 4	0.0 2.8	0.0 0.8	0 6	0 5	0 4	0 5
nua pagenstecheri lacoceros tetraceros	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0	0	0	0 D	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0 0
diomastus fragilis linna palmata	0	0 2	0 0	0 4	1 0	0.2 1.2	0.4 1.8	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0
crophthalmus cf similis anthes virens	0	0	0	0	0	0.0 0.2	0.0 0.4	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0	0 0	0.0 0.0	0,0 0.0	0 1	0 D	0 2	0	0	0.0	0,0 0,7	0 0	0 0	ů o	0 0
mertina camphitrite figulus	0	0	0	0 0	0	0.0	0.0 0.0	0 0	0	2	1	1	0.8 0.0	0.8 0.0	1	0 0	0 D	0	0 0	0,2 0,0	0.4	o o	0	0 0	o o	0 0	0.0	0.0	1	0 0	0 0	ő o
phtys hombergii phtys kersivalensis	0 0	1	0	0 0	1	0.4 0.4	0.5	ŏ	0	0	0 0	0	0.0 0.0	0.0	000	0	0 0	0	0	0.0 0.0	0.0	2	0	0	2	0	0.8	1.1 0.0	0	0	0	0
tomastus latericeus rapionosyllis minuta	0 0	0	Ô	0	0	0.0 0.0	0.0	0 0	0	0	0 0	0	0.0 0.0	0.0 0.0	ő	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
ycirrus sp ydora comuta	0	0	000	0	0	0.0 0.2	0.0 0.4	0	0	0	0	0	0.0 0.0	0.0 0.0 0.0	0	2	0	1	0	0.6 0.6	0.0 0.9 0.0	0	0	0	0	0,0	0.0	0.0	0	0	0	0
ydora combia ydora sp natoceros iamarki	ő	0	0	0	0	0.2 0.0 0.0	0.4	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0	0	Ō	0	Ō
natoceros iamano sudopolydora paucibranchia. nospio elegans	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0 0.0	0	Ō	0	0	0	0.0	0.0	1	0	0	0
belle pavonina	0	0	0	0	0	0.0 0.0 0.0	0.0	0	0	0	0	0	0.0	0.0	0	Ó	0	Ó	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0
olelepsis sp. olopios armiger Trulidao sp	1	1	0 3 0	0 3 0	1	0.0 1.8 0.0	1.1	0	0	0 0 0	0 0 0	0	0.0	0.0	Ó	000	0 0 0	0	0 0 0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0
pulidae sp. o martinensis	0	0	0	0	Ó	0.0	0.0 0.0	0	Ó	0	0	Ō	0.0	0.0 0.0	0	0	0	0	0	0.0 0,0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
onidae sp eblospio shrubsolii	1	0	0	0	0	0.2 0.0	0.4 0.0	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0	0,0 0.0	0.0 0.0	0	0 0	0	0 0	D D	0.0 0.0	0.0 0,0	0 0	0	0 0	0 0
gochaeta total officoides sp.	26 0	0	33 0	0 0	12 0	17.0 0.0	12.8 0.0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	1 0	5 0	10 0	26 0	12 0	10.8 0.0	9.5 0.0	13 0	19 0	5 0	13 0	11 0	12.2 0.0	5.0 0.0	5 0	18 18	14 0	31 0
vificoides benedii vificoides pseudogaster	0 26	0 14	0 33	0 0	0 12	0.0 17.0	0.0 12.8	0 0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	1 0	5 0	10 0	26 0	12 0	10.8 0.0	9.5 0.0	0 13	0 19	0 5	0 13	0 11	0,0 12.2	0.0 5.0	5 0	0	14 0	31 0
YLUM CRUSTACEA racoda sp.	0 0	1 0	1 0	0 0	1 0	0.6 0.0	0.5 0.0	4 0	13 0	2 0	0 0	6 0	5.0 0.0	5.0 0.0	1	0	0	0	0 0	0.2 0.2	0.4 0.4	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	39 0	29 1	96 8	31 7
sarsiella zostericola pepoda: Harpacticoida	0 0	0 0	0	0 0	1	0.2 0.0	0.4 0.0	0 0	. 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	4 0	0	0	0 0
nus inermis ripedia total	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0,0 0,0	0 0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0 0
phibalanus improvisus Iinius modestus	0 0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0	0 0	0	0 0
poda total seudes latreillii	0	0	0	0	0 0	0.0 0.0	0.0 0.0	4 0	11 0	1 0	0	5 0	4.2 0.0	4.3 0.0	0	0	0 0	0 0	0	0.0	0,0	0 0	0	0	0	0 0	0.0	0,0	0 0	0	0 0	0
athura carinata Iea batthica	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0 0	0	0	0	0	0.0	0.0	0	0	0	0
ea chelipes aeroma rugicauda	0	0	0	0	0	0.0 0.0	0.0 0.0	4 0	10 0	1	0 0	5	4.0 0.0	3.9 0.0	0	0	0	0	0 0	0.0	0.0	0	0	0 D	0	0	0.0	0.0	0	0	0 D	0 0
phipoda total pelisca brevicomis	0	1	1	0	0	0.4	0.5	0	2	1	0 0	1	0.8	0.8	0 0	0	0	0	0 0	0.0	0.0	ů o	0 0	0 0	0 0	0 0	0,0 0,0	0.0	35 0	28 0	68 0	24 0
hyporela indet. ophium arenarium	0	0	0 0	0	0	0.0	0.0	0	0 0	0 0	0 0	0 0	0.0	0.0	0 0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	ů D	0 0	0 0	0 0	0 0	0.0	0.0 0.0	Ŭ D	0 0	0 0	0 0
ophium insidiosum ophium volutator	Ŭ 0	0 0	0 0	0	Č O	0.0	0.0	0	Ŭ D	ů o	0	D D	0.0	0,0 0,0	0 0	ů o	0 0	Č O	0	0.0	0.0	0	0	o o	0 0	0 0	0.0 0.0	0.0	0 35	0 28	0 88	0 24
ninius modestus nmarus locusta	ő	0 0	0	0 0	0	0.0	0.0	ő	0	0 D	o o	0	0.0	0.0 0.0	0	0	0 0	0	0	0.0 0.0	0.0	0	0	0	0	0	0.0	0.0 0.0	0	28 0 0	0	0
ita palmata rodeutopus grilotalpus	0 0	0 0	0 D	0	ů o	0.0	0.0 0.0	0 0	0 D	1	0 0	0 0	0,2	0.4 0.0	0	ů o	0 0	0	o o	0.0 0.0	0.0 0.0	o o	0 0	0	0	0	0.0 0.0	0.0	0	0	0	0
roprotopus maculeatus isica marina	0 0	1	1	0 0	0 D	0.4 0.0	0.5	0	2	0	0	1	0.6 0.0	0.9	0 0	0 0	0 0	0	0 0	0.0 0.0	0.0 0.0	0 0	0	0 0	o o	0	0.0 0.0 0.0	0.0	0 0	0	0	0
thoe brevicomis apopda total	0 0	0	ů o	ů 0	0	0.0	0.0	0	0 0	0	0	0	0.0 0.0	0.0	o o	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	o o	0	0.0	0.0	0	0	0	0
cinus maenas	0 0	0	0 0	0	0 0	0.0	0.0	0	ō	0 0	0	Ó	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0,0	0.0	0	0	0	ò
ngon crangon carcinus arcuatus comonetes varians	0	0	0	0	0	0,0 0.0	0.0 0.0	0	0 0 0	Ó	0	0	0.0	0.0	0	0 0 0	0	0	0 0 0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0
aemonetes varians YLUM MOLLUSCA	0	1	1	1	0 3	0.0 1.2	0.0	0 11	15	0 9	0 2	0	0.0 7.4	0.0 6.3	0 50	1	0 4	0	1	0.0 11.4	0.0 21.6	0	0 2	0	0	0	0.0	0.0 0.8	0 14	0	0 20	0 25
a tennuis eria modesta estadorma odulo	000	0	1	0	0	0.0	0,0 0.4	0	0	0	000	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0 0.0	0	0	1	0
astoderma edule astoderma glaucum	0	0	0	0	0	0.2	0.4	1	1	1	0	0	0.6 0.0	0.5 0,0	1	0	0	0	1	0.4 0.6	0.5 0,5	0	0	0	0	1	0.2 0.0	0.4 0.0	0	0	0	1
pidula fornicata Inia lupinus	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0,0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0,0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0 0	0	0 0
bula umbilicalis ninoea navicula	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0
a reticulata Irobia ulvae	0	0	0	0	0	0.0 0.0	0.0 0.0	0 3	0 1	0 0	0 0	0 0	0.0 0.8	0.0 1.3	0 48	0 0	0 3	0 0	0 0	0.0 10.2	0.0 21.2	0 0	0 0	0 0	0 0	0 D	0.0 0.0	0.0 0.0	0 14	0 0	0 18	0 24
irobia ventrosa tochitona cinereus	0 0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0	0	0.0	0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0	0,0 0.0	0	0	0	0
rina littorea rina saxatilis agg.	0	0	0	0	0	0.0 0.0	0.0 0,0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0	0 0	0	0.0	0,0 0.0	0	0 0	0 0	0 0
oma balthica arenaria	00	0 1	0	0 0	0 2	0.0	0,0 0,9	0 1	ů 0	0 2	0 0	ů o	0.0 0.6	0.0 0.9	0 0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	1	1	0	° °	0.4	0.5 0.4	0	0 0	0	0 0
arenana us edulis icardium exiguum	000	0	0	0	0	0.0	0.0	0	0	0	0	0	0.6 0.0 0.2	0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	Ō	0	0	0
sa obtusa	Ó	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.4	0	0	Ó	0	0	0.0	0.0	0	Ō	0	0	0	0.0 0.0	0.0	0	0	0	0
a ovata apes decussatus	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
itapes phillipinarum obicularia plana	0	0	0	0	0	0.0 0.0	0.0 0.0	0 5	1 12	6	1	0	0.4 4.8	0.5 4.8	1	0	0	0	0	0.2 0.0	0,4 0.0	0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	0	0 0	1 0	0 0
en marginatus erupis saxatilis	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0,0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0,0 0,0	0	0 0	0 0	0
LUM ECHINODERMATA	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0	0	0.0 0.0	0.0 0.0	0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0	0	0	0	0 0
/LUM INSECTA	0	0 0	0 D	0	0 0	0.0 0.0	0.0	1	0 0	22	0 0	32 32	7.0 7.0	14.0 14.0	0 0	0 0	0 0	0 0	0	0.0	0.0 0.0	0 0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0 0
chopodidae octa indet	0 0	0 0	0 0	0 0	ů o	0.0 0.0	0.0	o o	0 0	0 0	0	0	0.0	0.0	0	o o	o o	o o	0	0.0	0.0 0.0	0	0	0	C O	0	0.0 0.0	0.0 0.0	0	0 0	0	0
cta larvae /LUM CHORDATA	ő	ů o	0 0	0 0	0	0.0 0.0	0.0	ů o	0	0 0	o o	° 0	0.0	0.0 0.0	0	o o	° °	0	0	0.0	0.0 0.0	0	0	o o	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0
natochistus sp. er (incl algae)	0 0	° 0	0	0 0	0	0.0 0.0	0.0	0 0	0	0	0 0	0 0	0.0 0.0	0.0	0	0 0	0	0 0	o o	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0
zoa indef.	õ	õ	ŏ	õ	0	0.0	0.0	õ	0	0	õ	0	0.0	0.0	0	0	0	0	0	0.0	0.0	o	0	0	0	0	0.0	0.0	0	0	0	0
I number of individuals per :	38	27	59	. 13	33	34	17	24	31	46	3	40	29	17	54	8	16	28	13	24	18	27	44	23	27	20	28	9	70	58	134	92
Inumber of individuals per i	4838	3438	7512	1655	4202	4329	2142	24 3056	3947	5857			3667	2126	6875	8 1019	2037	3565			18 2345										134 17061 1	

105 13369	E 0 0 0 0 0 0 0 0 5 3 5 C C C 2 C C C C C C C C C C C C C C C
92 11688	Mean 0.0
30 3805	SD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 1910	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 3183	800000000000000000000000000000000000000
40 5093	C 0 0 0 0 0 0 0 0 0 276 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 637	4D 000000000000000000000000000000000000
12 1528	
19 2470	Monr 0.00
14 1729	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	A 000000000000000000000000000000000000
38 4838	B 030000002522000000000000000000000000000
16 2037	C 000000000000000000000000000000000000
11 1401	47 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 1401	
19 2394	Maan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
11 1422	SD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
8 1019	A 000000005/0000000000000000000000000000
37 4711	B 070000000283010120000000000000000000000000
2 255	
5 637	$\begin{array}{c} 4B \\ \bullet \\ $
	Maari 0.0 1.00000000000000000000000000000000
15 1892	SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
	A 0 0 0 0 0 0 0 5 1 0 0 0 0 1 0 0 0 0 0 0
	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 1146	4D - - - - - - - - - - - - - - - - - - -
11 1375	Maan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
5 600	SD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
6 764	A 0000000550000000000000000000000000000
16 2037	800000011000400000000000000000000000000
4 509	C 0 0 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0
7 891	5D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 1910	Moan 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
000000030000000027000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 2 0 0 0 0 0 15 0 0 0 0 0 0 0 15 0 0 0 0 0
000000000000000000000000000000000000000
000000100000100010000000010010000000000
0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
000000200000100000000010000000000000000
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 a a o 1 a o o o o o a a 1 a o o o o o o
0 0 0 1 0 6 0 0 0 0 0 12 7 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
0.0 0.0 0.0 0.0 0.0 0.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 1 0 0 0 0
000000000000000000000000000000000000000
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

17 2165	
51 6494	1 ************************************
11 1401	
37 4711	E 0 24
25 3183	0.6 12. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
18 2327	0) 0.6.8 0) 0.6.9 0) 0.6.9 0) 0.6.9 0) 0.6.9 0) 0.6.9 0) 0.6.9 0) 0.6.9 0) 0.6.9 0) 0.6.19 0)
41 5220	0 0
11 1401	B 0 8 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0
6 764	U0%2222223%300000110000000000000000000000
147 18717	5,000000000000000000000000000000000000
18 2292	
45 5679	Mess Mess 0.0.0 0.0.
59 7485	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
24 3056	0 0 0 0 0 0 3 3 3
35 4456	<u>B</u> BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
11 1401	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 2292	Coccccccc+4accccccccccccccccccccccccccccc
11 1401	
20 2521	0.0 0.0 0.0 0.0 0.0 0.0
10 1284	0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td< td=""></td<>
4 509	• 0
23 2928	1 0 0 0 20 6 0 0 4 0 0 0 0 0 0
4 509	
46 5857	50 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
11 1401	
18 2241	Meaa 0.00
18 2250	0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0
18 2292	0 0 0 0 0 0
21 2674	B 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 1655	UC 0 0 0 0 0 0 0 0 0 1 9 0 1 0 1 0 0 0 0 0
8 1019	600° < < < < < < < < < < < < < < < < < <
25 3183	E 000000000000000000000000000000000000
17 2165	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 849	

	Numbers per core PHYLUM CNIDARIA PHYLUM ACTINIARIA	0 0	0	0 0	D E 0 0 0 1	Mean SE 0.0 0.0 0.2 0.4	0	ō		0	Mean 0.0 0.0	0.0	<u>A B</u> 0 0 0 0	0 14			0.9	A 0 0	B C 0 C	0	0 0	Mean SD 0.0 0.0 0.0 0.0	0	8 0
				0	0 0	0.0 0.0	ō	ō	0 0	Ó		0.0	o o	Ó	0	0.0	0.0	0	0 0		0			(
	PHYLUM NEMATODA																					0.0 0.0		0
Desc Desc Desc Desc De								0			0.0					0.0	0.0	Ō	0 0	0	0	0.0 0.0	0	Ċ
	PHYLUM ANNELIDA	12	62	9	6 159	49.6 65.	16	14	27 7	19	16.6	7.3	3 3	2	2 (2.0	1.2	15	13 8	14	59	21.8 21.0	5	0
	Ampharete balthica		0	0	0 0	0.0 0.0	0	D	0 0	0	0.0	0.0												0
	Aonides oxycephala	1 0																						0
						7.0 8.8	0						0 0	0	0 6	0,0	0.0	Ó	3 0	0	Ō	0.6 1.3	1	0
	Capitella capitata	Ó	D	0	0 0	0.0 0.0	0	0	0 0	0	0.0	0.0	0 0	0	0 (0.0	0.0	ō	0 1	0	0	0.2 0.4	0	0
	Cirratulidae (indet.)	Ō	ō	0	0 0	0.0 0.0	0	0	0 0	0	0.0	0.0	0 0	0										0
			-																					0
											0.0	0.0 0	0 0	0		0.0	0.0		0 0	0	0	0.0 0.0	Ó	0
	Eteone foliosa	0	Ó	0 (0 0	0.0 0.0	Ō	Ó	0 0	0	0.0	0.0 (0 0	Ó	0 0	0.0	0.0	ō	0 0	0	0	0.0 0.0	0	0
	Eumida cf sanguinea	Ō	ō	0 (0 0	0.0 0.0	0	Ó	0 0	0	0.0	0.0 0	o 0		0 0	0.0	0.0							0
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td></th<>																								0
		-	-													0.6	0.9	0	1 1	2	2	1.2 0.8	1	0
Adversarie Adversarie Adversarie Adversari	Malacoceros tetraceros	Ó	ō	0 0	0 0	0.0 0.0	0	Ō	ō ō	0	0.0	0.0 0	0 (0	0 0	0.0	0.0	0	0 0	Ó	0	0.0 0.0	0	0 0
	Melinna palmata	0	ō	0 (0 0	0.0 0.0																		0
			-																			0.0 0.0	0	0
Andersonstration B				0 0	0 0	0.0 0.0	0	Ó	o o	0	0.0	0.0 0	0	ō	0 0	0.0	0.0	0	0 0	0	Ó	0.0 0.0	0	0
	Nephtys hombergii	Ó	ō	0 0	0 0	0.0 0.0	0	1	0 0	1														0
	Notomastus latericeus	0	ō	0 0	0 0	0.0 0.0	0	0	0 0															0
					0 0	0.0 0.0	Ó	0	0 0	0	0.0	0.0 0) Ó	Ó	0 0	0.0	0.0	Ó	0 0	Ó	0	0.0 0.0	ō	Ó
	Polydora cornuta	ō	Ď	ò c	0	0.0 0.0	0	0	0 0	0	0.0	0.0 0	0 0	0	0 0	0.0	0.0	Ō	0 0	ō	Ō	0.0 0.0	0	0 0
	Pometoceros lamarki	ō	ō	0 0	0 (0.0 0.0	0	0	0 0	0	0,0	0.0 C) 0	0	0 0									0 0
biskeyse		0 0	-								0.0	0.0 0) 0	0	0 0	0.0	0.0	0	0 0	0	0	0.0 0.0	0	0 0
state state <th< td=""><td>Sabella pavonina</td><td></td><td>Ō</td><td>0 0</td><td>0 0</td><td>0.0 0.0</td><td>ō</td><td>ō</td><td>0 0</td><td>0</td><td>0.0</td><td>0.0 0</td><td>0</td><td>0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>Ó</td><td>0 0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0</td><td>0</td></th<>	Sabella pavonina		Ō	0 0	0 0	0.0 0.0	ō	ō	0 0	0	0.0	0.0 0	0	0	0 0	0.0	0.0	Ó	0 0	0	0	0.0 0.0	0	0
Space Space	Scoloplos armiger	Ó	Ō	0 0	0 0	0.0 0.0	0	o ·	0 0	0	0.0	0.0 0	0	0	0 0	0.0	0.0	Ó	0 0	D				0 0
backets backs backs backs backs backs backs backs backs backs backs backs <																					0	0.0 0.0		0 0
Objec Objec <th< td=""><td>Spionidae sp</td><td>0</td><td></td><td></td><td></td><td>0.0 0.0</td><td>0</td><td>0</td><td>0 0</td><td>Ó</td><td>0.0</td><td>0.0 0</td><td>0</td><td>o</td><td>0 0</td><td>0.0</td><td>0.0</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0</td><td>0</td></th<>	Spionidae sp	0				0.0 0.0	0	0	0 0	Ó	0.0	0.0 0	0	o	0 0	0.0	0.0	0	0 0	0	0	0.0 0.0	0	0
Deba Deba Deb Deb </td <td>Oligochaeta total</td> <td></td> <td>42</td> <td>3 5</td> <td>138</td> <td>39.0 57.6</td> <td>16</td> <td>12 2</td> <td>7 7</td> <td>18</td> <td>16.0</td> <td>7.4 3</td> <td>1</td> <td></td> <td>0 0</td>	Oligochaeta total		42	3 5	138	39.0 57.6	16	12 2	7 7	18	16.0	7.4 3	1											0 0
Texpension: Texpensin: Texpensin: Texpensin: Texpensin: Texpension:	Tubificoides benedil													0										0
Chiraconis h. 0 0 0 </td <td>Tubificoides pseudogaster PHYLUM CRUSTACEA</td> <td></td> <td></td> <td></td> <td></td> <td>10.0 18.0</td> <td>0</td> <td>0</td> <td>0 0</td> <td>18</td> <td>3,6</td> <td>8.0 0</td> <td>0</td> <td></td> <td>0 0</td> <td>0.0</td> <td>0.0</td> <td>12</td> <td>7 0</td> <td>11</td> <td>48</td> <td>15.6 18.7</td> <td>0</td> <td>0</td>	Tubificoides pseudogaster PHYLUM CRUSTACEA					10.0 18.0	0	0	0 0	18	3,6	8.0 0	0		0 0	0.0	0.0	12	7 0	11	48	15.6 18.7	0	0
Constraine Constra	Ostracoda sp.	0	0	0 0) ()	0.0 0.0	0	0	0 0	0	0.0	0.0 0	0	0	0 0									0 0
Prime Prim Prime Prime																								0
Ample Ample <th< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.0 O</td><td>0</td><td>0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>Ó</td><td>0 0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0 1</td><td>0</td></th<>		•									0.0	0.0 O	0	0	0 0	0.0	0.0	Ó	0 0	0	0	0.0 0.0	0 1	0
Impersion beach Impersion	Amphibalanus improvisus	ō	0	0 0	0 O	0.0 0.0	ō	0 0	0 0	0	0.0	D.O 0.0	0	0	0 0	0.0	0.0	0	0 0	0	0			0 0
Accentent labeling 0	Isopoda total	-																						0
Inder berthy 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.0 0.0</td><td></td><td>0 (</td><td>0 0</td><td>0</td><td></td><td></td><td></td><td>0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>0</td><td>0 0</td><td>Ó</td><td>0</td><td>0.0 0.0</td><td>0 0</td><td>ŏ</td></t<>						0.0 0.0		0 (0 0	0				0	0 0	0.0	0.0	0	0 0	Ó	0	0.0 0.0	0 0	ŏ
Spheres Spheres <t< td=""><td>ldotea balthica</td><td>õ</td><td>0</td><td>0 0</td><td>0</td><td>0.0 0.0</td><td>0</td><td>0 0</td><td>0 0</td><td>Ó</td><td>0.0</td><td>0.0 0</td><td>ō</td><td>0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>0</td><td>0 0</td><td>0</td><td>0</td><td>0.0 0.0</td><td>0 0</td><td>0 0</td></t<>	ldotea balthica	õ	0	0 0	0	0.0 0.0	0	0 0	0 0	Ó	0.0	0.0 0	ō	0	0 0	0.0	0.0	0	0 0	0	0	0.0 0.0	0 0	0 0
Amplificational and all all all all all all all all all al	Sphaeroma rugicauda	ō	0	0 0	0	0.0 0.0	0																	0
bathypose krade. 0						88.8 46.9		0 (0 0	0	0.0	0.0	0	0	1 0	0.2	0.4	0	0 0	ō	0	0.0 0.0	0 0	ō
Conception matches 0	Bathyporeia indet.	ō	ō	0 0	0	0.0 0.0	ō	0 0	0 0	0	0.0	0.0 O.C	Ď	o	0 0	0.0	0.0	0	0 0	ō	0	0.0 0.0	0 0	0
Conception woldnets 37 114 114 38 120 8.8 4.5 0 </td <td>Corophium insidiosum</td> <td>ō</td> <td>Ō</td> <td>0 0</td> <td>0</td> <td>0.0 0.0</td> <td>0</td> <td>0 0</td> <td>o o</td> <td>0</td> <td>0.0</td> <td>0.0 0</td> <td></td> <td>0 0</td>	Corophium insidiosum	ō	Ō	0 0	0	0.0 0.0	0	0 0	o o	0	0.0	0.0 0												0 0
Gammanic Social 0	Corophium volutator									0	0.0	0.0 0	0	0	0 0	0.0	0.0	0	0 0	Ó	0	0.0 0.0	0 0	ō
Metroductory afficially 0	Gammarus locuste	ō	0	0 0	0	0.0 0.0	Ō	ō č	0	0	0.0	0.0 0	0	0	1 0	0.2	0.4	0	0 0	0	0	0.0 0.0	0 0	0
Actrophysis		-	-																	0				0
Interface harvicornis 0		0	0							0			0	0	0 0					Ó	0	0.0 0.0		0
Cardingin manages 0	Urathoe brevicomis		0	0 0	0	0.0 0.0	Ó	0 0) ()	0	0.0	0.0 O.	0	ō	0 0	0.0	0.0	0	0 0	Ó	0	0.0 0.0	0 0	0
Caragon caragon 0	Carcinus maenas	Ó	0	0 0	0	0.0 0.0	0	0 0) Ó	0	0.0	.o 0	Ó	Ó	0 0	0.0	0.0	0	0 0					0
Philomonese varians 0	Llocarcinus arcuatus										0.0	0,0 1			0 0	0.2	0.4	0			0	0.0 0.0	0 0	
Abra tennuis 0 <t< td=""><td></td><td></td><td></td><td>0 0</td><td>0</td><td>0.0 0.0</td><td>Ó</td><td>0 0</td><td>0</td><td>0</td><td>0.0</td><td>0.0 0</td><td>0</td><td>0</td><td>0 0</td><td>0.0</td><td>0.0</td><td>0</td><td>0</td><td>ō</td><td>0</td><td>0.0 0.0</td><td>0 0</td><td>0</td></t<>				0 0	0	0.0 0.0	Ó	0 0	0	0	0.0	0.0 0	0	0	0 0	0.0	0.0	0	0	ō	0	0.0 0.0	0 0	0
Aldoria modelate 0	Abra tennuis	ò	D	ō ō	4	0.8 1.8	Ó	0 0	i o	0	0.0	0.0	0	0	0 0	0.0	0.0	0 0	0 0					
Cereastadorms fusical 1 0 <											0.0	0.0			0 0	0.0	0.0	0 0	0 0	Ó	0	0.0 0.0	0 0	
Docking helphus 0	Cerastoderma giaucum	1	0	0 0	0	0.2 0.4	0	0 0	0	0	0.0	.0 0	0	0	0 0	0.0	0.0	0 0	0 C	0	0	0.0 0.0	0 0	0
Gibbalization 0 <	Dosinia lupinus	ō	Ó	0 0	0	0.0 0.0	ō	0 0	Ó	0	0.0	0.0	0	0	0 0	0.0	0.0	0 1	0 0	0	0	0.0 0.0	0 0	
Initial attacutata 0	Heminoea navicula	-							0	0	0.0 0	.0 0	0		0 0	0.0	0.0	0 (0 0	ò	0	0.0 0.0	0 0	0
Hydrobia ventosa 0	Hinla reticulata	ō	Ó	0 0	0	0.0 0.0	0	0 0	0	0	0.0 0	0 0.	Ō	ō	0 0	0.0	0.0	0 (0	Ó	0	0.0 0.0	0 0	0
Leptochlama cinereus 0	Hydrobia ventrosa	Ó	0	0 0	Ó	0.0 0.0	0	0 0	0	0	0.0 0	0 0												
Littoring sexedilis egg. 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0 0</td> <td>0</td> <td>0</td> <td>0.0 0</td> <td>0 0.</td> <td>0</td> <td>0</td> <td>0 0</td> <td>0.0</td> <td>0.0</td> <td>0 0</td> <td>0 (</td> <td>Ō</td> <td>0</td> <td>0.0 0.0</td> <td>0 0</td> <td>0</td>								0 0	0	0	0.0 0	0 0.	0	0	0 0	0.0	0.0	0 0	0 (Ō	0	0.0 0.0	0 0	0
Mysextensifie 0 <	Littorina saxatilis agg.	ō	Ō	ō ō	Ó	0.0 0.0	Ó	0 0	Ó	0	0.0 0	0 0.	0	0	0 0	0.0	0.0	0 0	0	ō	0	0.0 0.0	0 0	0
Mydius edulis 0 <	Mya arenaria	0	0	0 0	0	0.0 0.0	0	0 0																
Refuse achitica 0											0.0 0	0 0.	0	0	0 0	0.0	0.0	0 0) 0	0	0	0.0 0.0	0 0	0
Hudispes docussatus 0	Retusa obtusa	0	0	0 0	4	0.8 1.8	ō	0 0	Ō	0	0.0 0	. 0 0.	0	ō	0 0	0.0	0.0	0 0	0	0	0	0.0 0.0	0 0	ò.
Ruditages philipharum 0	Ruditapes decussatus	0	0	0 0	0	0.0 0.0	ō	0 0	ò													0.0 0.0	0 0	0
Solon marginalus 0	Ruditapes phillipinarum		0	0 0	0	0.0 0.0	0	0 0	ō	0	0.0 0	0 0.	ō	0	0	0.0	0.0	0 0) ()	0	0	0.0 0.0	0 0	0
Weinspis sexatility 0	Solen marginatus	0	0	0 0	0	0.0 0.0	0	0 0	ō	0	0.0 0	0 0.	0	0	0 0	0.0	0.0	0 0) 0	0	0	0.0 0.0	0 0	0
Amplipatilis squamata 0 <th0< th=""></th0<>	venerupis saxatilis PHYLUM ECHINODERMATA										0.0 0	0 0.	0			0.0	0.0	0 0) Ó	0	0	0.0 0.0	0 0	0
Chironomidae 1 0 0 2 0.6 0.9 0	Amphipholis squamata		Ō	0 0	0	0.0 0.0	0	0 0	0	0	0.0 0	0 0.	Ó	0	0 0	0.0	0.0	0 0	i ó	Ō	ō i	0.0 0.0	0 0	0
Delichopodidies 0	Chironomidae		0	0 0	2	0.6 0,9	0	0 0	0	0	0.0 0	0 0.	0	0	0 0	0.0								
Insectialarvae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0	0.0 0.0	0		0		0.0 0	0 0.	0	Ō	0 0	0.0	0.0	0 0	0	0	0	0.0 0.0	0 0	0
Pomatochistrus sp. 0	Insecta larvae	0	0	o o	0	0.0 0.0	0	0 0	0	Ō	0.0 0	0 0	Ō	0	0 0	0.0	0.0	0 0	0	0	0	0.0 0.0	0 0	0
Other (Incl algae) 0	Pomatochistus sp.	0	0	0 0	0	0.0 0.0	0	0 0	0	ō	0.0 0	0 0	0	0	0 0	0.0	0.0							
Total number of individuals per core 51 196 123 46 291 141 104 16 14 27 7 19 17 7 4 3 16 3 4 6 6 15 13 8 14 59 22 21 9			0	0 0		0.0 0.0	0	0 0	0	Ō	0.0 0	0 0.	0	0	0 0	0.0	0.0	ō ō	0	0	0 1	0.0 0.0	0 0	0
		-																		-				'
	Total number of individuals per core Total number of individuals per m^2	51 6494 2	196 1. 24956 15	23 46 661 585;	291 7 37051	141 104 18004 13197	16 2037 1	14 27 783 343	7 8 891									15 1: 910 164	38 551019	14 1783	59 7512 2	22 21 776 2670 4	9 1 146 12	1 27

						66						67							68							69							70
<u> </u>	Mean	SD	A	В	<u></u>	D		lean SI		В	c	D	E	Mean		A	В	c	D	E	Mean		A	В	c	D	Е	Mean		A	В	c	D
ō	0.0 0.2	0.0 0.4	0 0	0	0	0 1		0.0 0.0 2.8 5.1		. 0 0	0 D	0 0	0 0	0.0 0.0	0,0 0,0	0	0 6	0 1	0	0	0.0 1.4	0.0 2.6	0	missing missing		missing missing		0.0 5.5	0.0 7.8	0	0 0	0	missing missing
0	0.0 0.0	0.0 0.0	0	0	0	0		0.0 0.0 0.0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0	missing missing
Ó	0.0	0.0	0	Ó	Ó	ō	0	0.0 0.0	0	Ó	ō	D	0	0.0	0.0	0	ō	0	Ō	0	0.0	0.0	0	missing	0	missing	, missing	0.0	0.0	Ō	0	0	missing
0	0.0 0.0	0.0 0.0	0 0	0	0	0		1.2 1.8 0.0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0 0	missing missing
0 156	0.0 77.6	0.0 76.6	0 221	0 122	0 39	0 53		0.0 0.0 05.0 72.		0 13	0 5	0	0	0.0 7.0	0.0 6.1	0 6	0 38	0 6	07	0 7	0.0 12.8	0.0 14.1	0 19	missing		missing		0.0 114.0	0.0	0	0 3	0	missing missing
5	7.8	7.3	1	6	2	9	16	6.8 6.1	5	3	5	2	1	3.2	1.8	5	9	6	5	4	5.8	1.9	6	missing	4	missing	missing	5.0	1.4	2	3	1	missing
0 0	0.0 0.0	0,0 0,0	0	0 5	0 1	0		0.0 0.0 1.8 2.2		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	° c	0	0.0 0.0	0.0 0.0	0	missing missing	0 0	missing missing		0,0 0,0	0.0 0.D	0	0	0	missing missing
0	0.0 1.6	0.0 1.8	0	0	0	0		D.O 0.0		0	0	0	0	0.0 0.2	0.0 0,4	0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing		0.0 0.0	0.0 0.0	0	0 0	0	missing missing
0	0.0	0.0	0	0	0	0	0	0.0 0.0	0	0	0	0	0	0.0	0,0	0	0	0	Ó	0	0.0	0.0	ō	missing	0	missing	missing	0.0	0.0	ŏ	0	0	missing
0	2.4 0.0	5.4 0.0	0	0 0	0 0	9 0		4.0 5.8 0.0 0.0		0	0	0	0	0,0 0,0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	1	0	0	missing missing
0	0.0 0.0	0.0 0.0	0	0 0	0.	0		0.0 0.0 0.0 0.0		0	0	0	0	0,0 0,0	0.0 0.0	0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing	0.0 0.0	0.0 0.0	0 0	0	0 0	missing
Ó	0.0	0.0	0	0	Ō	Ō	0	0.0 0.0	0	0	ō	Ó	0	0.0	0.0	0	0	0	ō	Ó	0.0	0.0	ő	missing	ő	missing	missing	0.0	0.0	0	0	0	missing missing
0 0	0.0 0.0	0.0 0.0	0	0 0	0	0		0.0 0.0 0.0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing		0.0 0.0	0.0 0.0	0	0	0	missing missing
0	0.0 0.8	0.0 1.8	0	0	0	0		0.0 0.0 0.0 0.0		0	0	0	0 0	0.0 0.0	0.0 0.0	0	C C	0 0	0	0	0.0 0.0	0.0	0	missing	0	missing	missing	0.0	0.0	ò	Ó	ò	missing
0	0.0	0.0	Ó	Ó	Ó	0	0	0.0 0.0	Ó Ó	Ó	Ó	0	0	0.0	0.0	ů	Ō	Ō	0	0 0	0.0	0.0 0.0	õ	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0 0	0 0	missing missing
0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0		0.0 0.0 0.0 0.0		0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0,0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0 0	missing missing
1	0.8 0.0	0.4 0.0	0 0	0	0	0 0	0	0.0 0.0 0.0 0.0	0	0	0	0	0	0.0	0.0	Ó	0 D	0	1	0 0	0.2	0.4	Ó	missing	ò	missing	missing	0.0	0.0	Ō	0	0	missing
ō	0.0	0.0	0	0	D	0	0	0.0 0.0	0	D	0	Ó	Ó	0.0 0.0	0.0 0.0	0	0	0	Ð	Ō	0.0 0.0	0.0 0.0	0	missing missing	õ	missing missing	missing	0.0 0.0	0,0 0,0	0	0 0	0 0	missing missing
0 0	0.0 0.0	0.0 0.0	0	0	0	0).0 0.0).0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.4	0.0 0. 9	0 2	missing missing	0	missing missing		0.0 1.0	0.0 1.4	0	0	0	missing missing
0	0.0 0.0	0.0 0.0	0	0	0	0 0		0.0 0.0 0.0 0.0		0 0	0	0	0 0	0.0	0.0	ō	0	0	0	0	0.0	0.0	0	missing	Ō	missing	missing	0.0	0.0	ō	0	0	missing
Ō	0.0	0.0	1	ō	1	õ	0	0.4 0.5	0	ò	Ó	. 0 0	D	0.0 0.0	0.0 0.0	0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0 0	0 0	missing missing
0	0.0 0.0	0.0 0.0	0	0	0	0).0 0.0).0 0.0		0 3	0 5	0	0	0.0 2.2	0.0 2.2	0 5	0 9	0	0 4	0 4	0.0 5.2	0.0 2.2	0 4	missing missing	0	missing missing	missing	0.0 2.0	0.0 2.8	0	0	0	missing missing
0	0.0	0.0	0 0	0 0	0	0	0	0.0 0.0	1	Ő	0	2	1	0,8	0,8	Ó	Ó	0	Ó	Ó	0.0	0.0	Ó	missing	4	missing	missing	2.0	2.8	ō	ó	1	missing
ő	0.0 0.0	0.0 0.0	0	0	0 0	0 0	0).0 0.0).0 0.0		0 0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0	0	0.0 0.0	0.0 0.0	0	missing missing	o o	missing missing		0.0 0.0	0.0 0.0	0	0	0 0	missing missing
0	0.0 0.0	0.0 0.0	0	0 0	0	0 0).0 0.0).0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0 0	0 0	0.0 0,0	0.0 0.0	0	missing missing	0	missing		0.0 0.0	0.0 0.0	0 0	0	0	missing missing
Ō	0.0	0.0	0	0	0	Ó	0	0.0 0.0	0	0	0	0	0	0.0	0.0	0	0	0	0	Ó	0.0	0.0	ò	missing	ŏ	missing	missing	0.0	0.0	0	0	Ó	missing
0	0.0 0.0	0.0 0,0	0	0 0	0	0).0 0.0).0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0	missing missing
4 0	1.0 0.0	1.7 0.0	0	0	0	0).0 0.0).0 0.0		0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing	0.0 0.0	0.0 0.0	0 0	0	0 0	missing
0	0.0	0.0	ō	ō	ō	ō	0	0.0 0.0	Ó	· 0	Ō	Ó	Ó	0.0	0.0	ō	Ō	Ō	0	0	0.0	0.0	0	missing	ō	missing	missing	0.0	0.0	0	0	0	missing missing
0	1.2 0.0	2.7 0.0	0	0 0	0	0).0 0.0),0 0,0		0	0	0	0	0.0 0.0	0.0 0,0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0	missing missing
0	0.0 0.0	0.0 0.0	0 0	1 0	0 0	0	0	0.2 0.4 0.0 0.0	0	0	0	0	0	0.0 0.0	0,0 0,0	0	0	0	0	0 0	0.0	0.0	0	missing	0	missing	missing	0.0	0.0	0	0	0	missing
0	0.0	0.0	Ó	0	0	Ō	2	.4 0.9	0	0	0	Ð	0	0.0	0.0	0	Ó	õ	ō	0	0.0	0.0	õ	missing missing	õ	missing missing		0.0 0.0	0.0 0.0	0	2 0	0	missing missing
151 151	69.8 42.0	72.5 65.6	220 0	116 0	37 0	44 0		8.2 74.9		10 0	0	0	0	3.8 0.0	5.2 0.0	1	29 0	0	2 0	3 0	7.0 0.2	12.3 0.4	13 0	missing missing	205 0	missing missing		109.0 0.0	135.8 0.0	0	0	0	missing missing
0	0.2	0.4	220 0	116 0	37	44 0	74 9	8.2 74.9	. 0	10 0	0	0	0 0	2.0	4.5	Ö	0	0	0	0	0.0	0.0	0	missing	Ó	missing	missing	0.0	0.0	0	ō	ō	missing
0	0.4	61.7 0,5	7	69	0 9	21	47 3	0.0 0.0 0.6 26.1	0	0	0 2	0 0	1	1.8 0.6	4.0 0.9	0 0	29 D	0 0	2 0	3 0	6.8 0.0	12.5 0.0	13 0	missing missing	205 0	missing missing		109.0 0.0	135.8 0.0	0 2	0	0 0	missing missing
0	0.0 0.0	0,0 0,0	0	0	0	0		0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0 0	0	0	missing missing
0	0,2	0.4	0	0	0	Ó	0 0	.0 0.0	Ó	Ö	0	0	0	0.0	0,0	Ó	0	Ó	0	0	0.0	0.0	0	missing	Ő	missing	missing	0.0	0.0	Ō	0	Ö	missing
0	0.0 0.0	0.0	0	Ō	Ó	0	0 0	0.0 0.0	0 0	0	0	0 0	0	0.0 0.0	0,0 0,0	0	0	0	0 0	0	0.0 0.0	0,0 0.0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0 0	0 0	0 0	missing missing
0	0.0 0.0	0.0 0.0	0	0	0	0		0,0 0,0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	0	0	0 0	0	0.0 0.0	0.0 0.0	0	missing	0	missing		0.0 0.0	0.0 0.0	0	0 0	0 0	missing missing
0	0.0	0.0	0	0	0	0	0 0	0.0 0.0	0	Ó	0	0	0	0.0	0.0	0	Ó	0	Ó	0	0.0	0.0	o	missing	0	missing	missing	0.0	0.0	ō	0	Ó	missing
0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 (0.0 0.0	0	0	0	0	0	0,0 0.0	0,0 0.0	0 0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0 0	missing missing
0	0.0 0.0	0.0 0.0	0	0	0	0 0		0.0 0.0	0	0	0	0	0	0.0 0,0	0.0 0.0	0	0	0	0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing	0.0 0.0	0.0 0.0	0	0 0	0	missing missing
Ó	0.0	0.0	ō	0	0	0	0 (0.0 0.0	0	Ð	0	0	ŏ	0.0	0.0	0	0	õ	0	Ó	0.0	0.0	0	missing	õ	missing	missing	0.0	0.0	0	0	ů.	missing
0	0.0 0.0	0.0 0.0	7 0	68 0	9 0	21 0		0.4 26.4	1 0 0	0	2 0	0	1	0.6 0.0	0.9 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	2	0	0	missing missing
0	0.0 0.0	0.0 0.0	0	0 0	0	0		0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing	missing	0.0 0.0	0.0 0.0	0 0	0 0	0 0	missing missing
0	0.0	0.0	0	Ó	Ó	Ó	0 0	.0 0.0	0	ō	ō	Ō	0	0.0	0.0	0	0	Ó	0	0	0.0	0.0	0	missing	õ	missing	missing	0.0	0,0	0	0	õ	missing
0	0.0 0.0	0.0 0.0	2 0	0 0	0 0	0 0		.4 0.9	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0 0	0	0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing missing		0.0 0.0	0.0 0.0	0	0	0	missing missing
0	0.0 0.0	0.0 0.0	0	0	0	0		0.0	0	0	2 0	0	0	0.4 0.2	0.9 0.4	0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing	0.0 0.0	0.0 0.0	0	0 0	0	missing missing
0	0.0	0.0	5	68	9	21		0.0 26.8		Ő	ő	ŏ	ò	0.0	0.0	õ	Ő	ŏ	Ö	ŏ	0.0	0.0	ŏ	missing	0	missing	missing	0.0	0.0	0	ō	0	missing
0	0.0	0.0	0 0	0	0 0	0		0 0.0	ů	0	0	0	0	0.0	0.0 0.0	0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing missing	0.0 0.0	0.0 0.0	0	0	0	missing
0	0.0 0.2	0.0 0.4	0	0	0	0		.0 0.0	0	0	0	0	0	0.0 0,0	0.0 0.0	0 D	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0	missing		0.0 0.0	0,0 0,0	0	0 0	0	missing
0	0.0	0.0	0	0	0	0	0 0	.0 0.0	0.	0	0	0	0	0.0	0.0	Ó	0	ŏ	0	0	0,0	0.0	õ	missing	ŏ	missing	missing	0.0	0.0	Ó	0	0	missing
ò	0.2 0.0	0.4 0,0	0 0	0 1	0 0	0 0	0 0	.0 0.0 .2 0.4	0 0	0	0 0	0 0	0	0.0 0.0	0.0 0.0	0	0 0	0	0 0	0	0,0 0,0	0.0 0.0	0.	missing missing	0	missing	missing missing	0.0 0.0	0,0 0.0	0 0	0 0	0 0,	missing missing
0 3	0.0 2.4	0.0 1.8	0 150	0 159	0 99	0 105		.0 0.0 9.0 35.8	0	0	0	0 2	0	0.0 0.8	0.0 1.1	0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0 0	missing	missing missing	0.0 0.0	0.0 0.0	0 4	0 0	0	missing missing
0 0	0.0 0.0	0.0 0.0	16 1	B	7	1	5 7	.4 5.5	0	0	0	0	0	0.0	0.0	0	0	ō	0	0	0.0	0.0	0	missing	0	missing	missing	0.0	0.0	ò	0	ò	missing
0	0.0	0.0	i	1	0	2	1 1	.0 0.7	0	2 0	0	2 0	0 0	0.8 0.0	1.1 0.0	0 0	0	0	0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0		missing missing	0,0 0.0	0.0 0.0	0 4	0 0	1	missing missing
0	0.0 0.0	0,0 0,0	0	0 0	0	0		.0 0.0 .0 0.0	0	0	0	0	0 0	0.0 0.0	0.0 0.0	0 0	0	0	0	0	0.0 0.0	0.0 0.0	0	missing missing	0		missing missing	0.0 0.0	0.0 0.0	0 0	0	0	missing missing
0	0.0 0.0	0.0 0.0	0 0	0 0	0	0		.0 0.0 .0 0.0	0	0	0	0	0 D	0.0 0.0	0.0 0.0	0	0	Ó	0	0 D	0.0	0.0	0	missing	0	missing	missing	0.0	0.0	0	0	0	missing
0	0.0	0.0	0	0	0	0	0 0	.0 0.0	Ó	Ó	Ō	Ō	0	0.0	0.0	0	Ó	0 0	Ó	D	0.0 0.0	0.0 0.0	0	missing missing	0		missing missing	0.0 0.0	0.0 0.0	0 0	0 0	0 0	missing missing
0 3	0.0 1.6	0.0 1.5	0 130	0 145	0 90	0 101		.0 0.0 8.2 34.2	0	C O	0	0	0 0	0.0 0.0	0,0 0,0	0 0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing	missing missing	0.0 0,0	0.0 0.0	0 0	0	0 0	missing missing
0	0.0	0.0	0	0	0	0	0 0	.0 0.0	0	0	0	0	0	0,0	0.0	0	0	0	0	0	0,0	0,0	Ō	missing	0	missing	missing	0.0	0.0	0	0	0	missing
o	0.0	0.0 0.0	0 0	0 0	0	0 0	0 0	.0 0.0 .0 0.0	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0		missing missing	0.0 0.0	0.0 0.0	0 0	0	0	missing missing
0	0.0 0.0	0.0 0.0	0	0 1	1 0	1		.4 0.5	0	0	0	0	0	0.0 0.0	0.0 0.0	0 0	0	0	0 0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing missing	0.0 0.0	0.0 0.0	0 0	.0 0	0 0	missing missing
Ó	0.8	0.8	2	1	1	0	0 0	.8 0.8	Ó	0	Ó	ō	0	0.0	0.0	0	0	ō	0	0	0.0	0.0	ō	missing	0	missing	missing	0.0	0.0	0	0	Ō	missing
0	0.0 0.0	0.0 0.0	0	0	0	0	0 0	.0 0.0 .0 0.0	0 0	0	0 0	0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0	0 0	0.0 0.0	0.0 0.0	0 0	missing missing	0	missing	missing missing	0.0 0.0	0.0 0.0	0 0	0 0	0 0	missing missing
0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0		.0 0.0 .0 0.0	0 0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0		missing	0.0 0.0	0.0	0 0	0	0	missing
D	0.0	0.0	0	0	0	0	0 0	.0 0.0	0	Ó	0	Ō	0	0.0	0.0	0	0	0	0	0	0.0	0,0	ō	missing	0	missing	missing	0.0	0.0	0	0	ō	missing missing
0		0.0 0.0	0 0	3 0	0 0	0 0	0 0	.8 1.3 .0 0,0	0 0	0 0	0 0	0 0	0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0	0 0	0.0	0.0 0.0	0 0	missing missing	0 0	missing missing	missing missing	0.0 0.0	0.0 0.0	0 0	0 0		missing missing
0	0.0 0.0	0.0 0.0	0 0	0 0	0 0	0 0		.0 0.0 .0 0.0	0	0	0	0	0	0.0 0.0	0.0 0,0	0	0	0	0 0	0	0.0	0.0 0.0	0	missing missing	0	missing missing	missing	0.0 0.0	0.0	0	0	0	missing
ō	0.0	0.0	0	0	Ō	0	0 0	.0 0.0	0	0	0	0	0	0,0	0.0	Ó	Ó	0	0	0	0.0	0.0	0	missing	0	missing	missing	0.0	0.0	0	0	0	missing
o o		0.0 0.0	0 15	0 72	0 12			.0 0.0 1.2 24.8	0	0 0	0 0	0 0	0 0	0.0 0.0	0.0 0.0	0 0	0 0	0	0 0	0	0.0 0.0	0.0 0.0	0 0	missing missing		missing missing	missing missing	0.0 0.0	0.0 0.0	0 0	0 0	0 0	missing missing
0	0.0	0.0 0.0	15 0	72 0	12 0		20 2	.2 24.8	0	0	0	0	0	0.0	0.0	0 D	0	0	0	0	0,0	0.0 0,0	0	missing	0	missing	missing	0,0	0.0	0	0 0	0	missing
Ó	0.0	0.0	0	0	0	0	0 0	0.0 0.0	0	Ō	0	Ó	0	0.0	0.0	0	ō	ō	0	Ó	0.0	0.0	ò	missing missing	0	missing		0.0 0.0	0.0 0.0	0	Ó	0	missing missing
0	0.0	0.0 0.0	0 1	0 0	0 0	0 0	0 0	.0 0.0 .2 0.4	0 1	0 0	0 1	0	0 0	0.0 0.4	0.0 0.5	0	0	0 0	0	0 0	0.0 0.0	0,0 0.0	0	missing missing		missing missing	missing missing	0,0 0.0	0.0 0.0	0 0	0 0	0 0	missing missing
0 0		0.0 0.0	1 0	0 0	0 0	0 0		.2 0.4	1 0	0	1 0	0 0	0 0	0.4 0.0	0.5 0.0	0 0	0 0	0 0	0	0 0	0.0 0.0	0.0 0.0	0	missing missing	0	missing	missing	0.0	0.0	0	0	0	missing missing
Ő		0.0	Ö	Ö	Ö	Ő		.0 0.0	Ő	õ	õ	ō	0	0.0	0.0	õ	õ	0	0	0	0.0	0.0	õ	missing	0	missing	missing	0.0	0.0	õ	0	0	missing
159			394					07 119		15	8	4	2	9	6	6	44	7	7	7	14	17	19	0	220	0	0	48	97	8	3	2	0
20245	10202 \$,00¥ 5	JU 106 5	H240 1	20245 2	.5/19/4	JUI J 39	088 1518	1910	1910	1019	209	255	1120	771	/64	5602	691	891	891	1808	2122	c419	0	28011	0	0	6086	12301	1019	382	255	0

i

0.0 0.0 0.0 0.0 39 4938	SD 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.031.8 0.00 0.00
0 0 0 5 637	400000000000000000000000000000000000000
0 0 0 3 382	B0100000000000000000000000000000000000
0 0 0 3 382	
0 0 0 9 1146	
0 0 0 23 2928	E ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
0.0 0.0 0.0 0.0 9 1095	Mental Me
0.0 0.0 0.0 0.0 8 1071	0.0 0.0 0.4 0.0 0.4 0.0 0.0
0 0 0 26 3310	A 000000000000000000000000000000000000
0 0 0 1 127	
0 0 0 3 382	
0 0 0 19 2419	7 D 0 0 0 0 0 0 0 9 4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 11 1401	
0.0 0.0 0.0 0.0 12 1528	Monit 0.00
0.0 0.0 0.0 0.0 11 1347	
0 0 0 25 3183	o 1 0 0 0 0 0 0 12 12 0 0 0 0 0 0 0 0 0 0
0 0 0 19 2419	B00000000088000002000002200000000000000
0 0 0 10 1273	
0 0 0 12 1528	76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 33 4202	E00000000001188000010000000000000000000
0.0 0.0 0.0 0.0 20 2521	11.8. 6.9. 0.2. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0. 0.0. 0.0.0.0. 0.0. 0.0.0.0.0. 0.0. 0.0.0.0.0.0. 0.0. 0.0.0.0.0.0.0. 0.0.0. 0.0.0.0.0.0.0.0.0.0.0.0. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
0.0 0.0 0.0 0.0 9 1206	0.0 0.0 0.4 0.0 0.0
0 0 0 29 3692	00000000000000000000000000000000000000
0 0 0 28 3565	ο λοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοοο
0 0 0 29 3692	
0 0 0 45 5730	790000000000000000000000000000000000000
0 0 0 31 3947	E0000000000000000000000000000000000000
0.0 0.0 0.0 0.0 32 4125	Montal 0.00 0.00 0.00 <
0.0 0.0 0.0 0.0 7 907	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 10 1273	400000000000000000000000000000000000000
0 0 0 16 2037	B 0000000011000000000000000000000000000
0 0 0 64 8149	C 0 0 0 0 0 0 17 0 0 4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 26 3310	800000000000000000000000000000000000000
0 0 0 27 3438	E0000009001830000000000000000000000000000
0.0 0.0 0.0 29	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 21 2676	SD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

APPENDIX 18. Brownsea Island lagoon core sample matrix. Data shows No. of individuals in each core (10cm diameter) in samples ABC from each site.

		ပ		26	0			0	84	0		64	0	0	13	30	0	0		0	0	0	0	0	0	10	0	0	0	0		-	ю		0	0
87	9	В		23	0			0	73	0		105	0	0	10	21	0	-		0	1	0	0	0	0	1	0	0	0	-		0	7		0	0
		A		23	0			0	64	0		103	0	0	1	23	0	0		0	0	0	1	0	0	0	0	0	0	0		-	0		0	0
		ပ		63	0			0	143	0		0	-	0	0	0	0	0		0	0	0	1	0	0	2	1	0	0	0		0	38		0	-
86	5	В		62	0			0	108	0		2	-	0	0	-	0	~		0	0	0	0	1	0	16	0	0	0	0		2	13		0	0
		A		12	2			0	26	0		-	2	0	0	0	0	0		0	0	0	3	0	0	10	0	0	0	0		0	3		0	0
		ပ		0	0			0	0	0		4	0	0	18	0	0	0		0	0	0	1	0	0	4	0	0	0	0		10	78		0	0
85	4	В		14	0			0	0	0		66	0	-	06	73	0	-		0	0	0	0	0	0	213	0	-	0	0		21	67		0	0
		٩		4	0			0	60	0		71	2	1	7	9	0	0		0	0	0	0	0	0	22	0	0	0	0		7	97		0	-
	3	ပ		2					З	0		4				2		0		0	0	0				48				0		-	44		0	
84		B		2	0			0	49	0				0				0		-	0	0	0	-	0	35	0	0	0	0		0	83		0	0
		٩		2	0			0	2	0		14	0	0	20	5	0	0		0	0	0	1	0	0	2	4	1	0	0		1	161		0	0
83	2	ပ		37	0			0	189	0		49	2	0	24	35	0	4		0	-	0				9	2	0	0	0			22		0	0
		B		71	0			0	102	0		31	2		13	89	0	-		0	0	0	0	0		~	0		0	0		3			0	-
		۷		9				0	÷	5		30	-			7					0		-		0				0	0		e			0	-
82		ပ		29	0			0	74			31				31	0					0				Ì						46			2	
	-	B		44	-				78			20		1						0	0	0	0	0	0	172	0	-	0	0		81	36		0	0
		٩		32	1			0	3	0		12	0	0	8	2	0	0		0	0	0	0	1	0	157	0	1	0	0		47	130		0	0
		Core																																		
Site No (as on Database)	Site No. New (as on Fig 41)		ACTINIARIA	Nematostella vectensis	PHYLUM NEMATODA	PHYLUM ANNELIDA	Oligochaeta	Tubificoides sp.	Tubificoides benedii	Tubificoides pseudogaster	Polychaeta	Aphelochaeta marioni	Capitella capitata	Desdemona ornata	Hediste diversicolor	Polydora cornuta	Pygospio elegans	Streblospio shrubsolii	PHYLUM CRUSTACEA	Ostracoda sp.	Praunus inermis	Isopoda	Idotea chelipes	Sphaeroma rugicauda	Amphipoda	Corophium insidiosum	Corophium volutator	Melita palmata	Decapopda	Palaemonetes varians	PHYLUM MOLLUSCA	Abra tenuis	Ventrosa ventrosa	PHYLUM INSECTA	Chironomidae	Insecta indet

