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11.1 Introduction
This chapter deals with benthic invertebrates inhabiting the extensive inter-reef soft bottom habitats 

and those occurring on the reef, excluding corals. For the remainder of the chapter, the term ‘benthic 

invertebrate’ refers to all invertebrates excluding corals. An assessment of the impacts of climate 

change on non-coral benthic invertebrates poses particular challenges: i) benthic invertebrates 

include an extraordinary diversity of marine organisms, including many microscopic, infaunal, 

boring or ephemeral species that can be difficult to sample and are poorly known taxonomically; ii) 

benthic invertebrates employ a diversity of reproductive strategies, broadly including planktotrophy 

(development through feeding larvae), lecithotrophy (development through non-feeding larvae) and 

direct development (release of post-metamorphic juveniles), as well as asexual reproduction, making 

broad generalisations of dispersal capabilities difficult; iii) factors determining species distributions are 

poorly known for most species; iv) benthic invertebrates exhibit a tremendous variety of lifestyles and 

forms, including colonial, sedentary and errant species; v) many species include either a pelagic larval 

or adult stage, so effects of climate change may vary during their lives (see McKinnon et al. chapter 6 

for comments on planktonic forms); and, vi) research on the biogeography of benthic invertebrates 

on the Great Barrier Reef (GBR) is strongly biased towards commercial or destructive species. 

Owing to the general lack of data on marine invertebrates on the GBR, much of our comparative 

information will be taken from examples based on other coral reef areas. In some cases, this will 

include studies from temperate areas, information from the fossil record, and data from closely related 

species that occur elsewhere. 

This chapter will focus on representatives of the most conspicuous groups: sponges, echinoderms, 

molluscs and crustaceans, with comments on other groups wherever possible.

No attempt has been made to include meiofauna in this review, which, while being abundant 

and diverse on the GBR, have been poorly studied. Many of the generalisations made about the 

macrofauna, however, would also be applicable to this component of the fauna. While mention 

is made of intertidal habitats, this will be more fully covered in the coastal and estuarine chapter 

(Sheaves et al. chapter 19). Similarly, species living in estuarine habitats will be covered in more detail 

in the mangrove chapter (Lovelock and Ellison, Chapter 9).

11.1.1 Benthic invertebrates of the GBR 

Benthic invertebrates are diverse and abundant both on reefs and in inter-reef areas. Most, if not all, 

marine phyla are represented257, ranging in size from microscopic to macroscopic (up to 1.5 metres in 

length for Tridacna gigas). Our knowledge of the fauna is patchy and biased towards larger animals, 

especially those living on coral substrate, and those associated with commercial harvesting, shell 

collecting, or aquaculture211. Ponder et al.211 summarise what is known about all the macro invertebrates 

found on the GBR, and Hutchings et al.144 provide a synopsis of the benthic invertebrate diversity. 

11.1.1.1 Soft-bottom communities

The GBR includes soft-bottom communities that extend from the coast to beyond the outer barrier 

reefs, from shallow intertidal zones to depths of 200 metres. Most of these communities occur within 

the Great Barrier Reef lagoon. Some areas are vegetated; the boundaries of some seagrass beds are well 
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defined (Waycott et al. chapter 8) and extensive meadows of Halimeda occur in deep water (50 to 96 

metres) along much of the GBR73. Sediments range from fine mud at the mouth of rivers to calcareous 

sands151,251 (Figure 11.1) that largely determine species composition141. Sediment type is often used 

as a surrogate for biodiversity in defining the bioregions in inter-reef habitats of the GBR�,68, though 

latitudinal variation may be masked by the distribution and availability of suitable sediments.

Figure 11.1 Distribution of sediments in the GBR  

�	 For further information, see www.gbrmpa.gov.au/corp_site/key_issues/conservation/rep_areas  

Prepared using data from the GBRMPA  and Australian Institute of Marine Science.
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The Great Barrier Reef Seabed Biodiversity Project coordinated by the Australian Institute of  

Marine Science is attempting to map and document sessile epibenthic fauna�. This report, due for 

completion in mid 2007, records many new species and new occurrences of species across the GBR 

(P Doherty pers comm). Nevertheless, this extensive spatial survey has collected only the larger 

epibenthic fauna and some of the larger infaunal organisms, because dredges and videos were 

employed rather than grabs. Complete documentation of GBR biodiversity will take years, if not 

decades, to complete. No comprehensive infaunal survey has been undertaken. Although Birtles and 

Arnold24,25 did complete several infaunal cross-shelf transects in the 1970s and 1980s, sorting of the 

samples has not been completed. Elsewhere, infaunal lagoon sediments have been found to have very 

high species richness and diversity5,157,92. 

11.1.1.2 Coral reef communities 

More than 2900 coral reefs are present throughout the GBR region, varying greatly in size and position, 

from shallow inshore waters to the outer barrier reef. This includes fringing reefs around more than 

900 islands, shallow and deep isolated reefs, and those forming extensive reef ecosystems133,134. 

While the corals of the GBR are well documented and exhibit considerable across-shelf and latitudinal 

variation280, patterns for associated fauna are far less well known. Benthic invertebrates occur both 

on the surface of the reef, and deep within the coral substrate as borers (eg molluscs, polychaetes, 

sponges) or as cryptofauna (eg molluscs, polychaetes, bryozoans, brachiopods) living in burrows 

or crevices sometimes created by the borers138,227,172. Knowledge of the diversity of borers and 

cryptofauna of coral substrates is limited to a few localised studies103,138. Hutchings137 and Peyrot-

Clausade et al.208 showed that the composition of the boring community is largely determined by 

substrate type (ie coral species) and the time since coral death, with the community changing as the 

substrate is bioeroded202. 

11.1.2 Current understanding of bioregionalisation 

11.1.2.1 Sponges

Major trends from biodiversity analyses of Australian tropical fauna at smaller ‘intra-regional’ spatial 

scales indicate that sponges frequently form spatially heterogeneous assemblages with patchy 

distributions129, sometimes with as little as 15 percent similarity in species composition between 

geographically adjacent reef sites126. Several environmental variables are known to contribute to 

community heterogeneity: light, depth, substrate quality and nature, availability of specialised 

niches, water quality and flow regimes, food particle size availability, and larval recruitment and 

survival288,127,229. At larger landscape scales (ie scale diversity, definition from Hooper et al.132), 

latitudinal gradients of species richness are absent, moving from eastern temperate to tropical coastal 

and shelf faunas131,132. However, significant differences in species composition are evident between the 

major Australian marine coastal and shelf bioregions, the Coral Sea and sub-Antarctic territories130. 

Those differences might be the result of glacial sea-level changes that have impacted current systems 

and the resulting connectivity among regions. 

�	 www.reef.crc.org.au/resprogram/programC/seabed/index.htm
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One of the three biodiversity ‘hot spots’ around tropical Australia, each containing more than 600 

species of sponges, is restricted to the mid- and outer reefs on the GBR, including the Coral Sea Reefs 

and the Marion Plateau132. Lizard Island and the Capricorn Bunker Group in the southern GBR (more 

than 250 species each) were found to have exceptionally rich faunas. 

Although clear bioregionalisation of sponge distributions was not evident, between 5 and 15 percent 

of regional faunas (New Caledonian fauna130, Sahul Shelf fauna127) appeared to have wide Indo–Pacific 

ranges. More recently, however, molecular evidence disputed the existence of these so-called widely 

distributed species (eg Astrosclera willeyana296, Chondrilla spp.273), suggesting that they may instead 

consist of several cryptic sibling species, each with high genetic diversity that is not clearly manifested 

morphologically. However, determining acceptable, definable or practical spatial scales for these 

cryptic species boundaries still remains unclear. 

11.1.2.2 Echinoderms 

Echinoderms are a conspicuous and diverse component of the invertebrate fauna of the GBR57, 

76,55,99,235,22,39. The 630 species of echinoderms recorded from the GBR are divided as follows: sea 

stars (Asteroidea), 137 species; brittle stars (Ophiuroidea), 166 species; sea urchins (Echinoidea), 

110 species; sea cucumbers (Holothuroidea), 127 species; and feather stars (Crinoidea), 90 species. 

Although a detailed bioregionalisation survey has not been carried out on echinoderms of the GBR, 

the recent Great Barrier Reef Seabed Biodiversity Project is likely to significantly expand our knowledge 

of the group. For the most part, echinoderms from tropical Australia are non-endemics with a broad 

distribution in the Indo–Pacific Ocean76,56,71,236,235,109,237. Some currently recognised echinoderm species 

may prove to be complexes of species, some of which may be discerned by life history traits and 

subtle morphological differences62,196. For example, several sea star species in the genera Cryptasterina 

and Aquilonastra have been shown to each comprise a species complex62,197, and some of these species 

could be endemic to the GBR37. The Cryptasterina group includes both free-spawning species with a 

planktonic larva and viviparous brooders that give rise to crawl-away juveniles62,35. Molecular analyses 

have been key to discovery of this previously undetected species diversity. Similarly, several studies 

of sea stars indicate genetic differences within populations on either side of the Indo–West Pacific 

break292,18,293. Some of these genetic differences in the crown-of-thorns starfish (Acanthaster planci) 

and the cobalt-blue starfish (Linckia laevigata) may have been influenced by recent past (Pleistocene) 

changes in climate and sea level18. Both of these are free spawners with a dispersive larva21,292. This 

indicates strong potential for modification of the genetic structure of marine invertebrate populations 

as a result of climate change. 

Sea cucumbers and brittle stars are the most abundant echinoderms in most parts of the GBR, 

though species of Echinometra and feather stars, living in the open, are perhaps more conspicuous in 

subtidal areas7,25,22,78,39. Although diverse, sea stars are not abundant, with the exception of spectacular 

outbreaks of Acanthaster planci (crown-of-thorns starfish). Sea urchins, too, are generally not abundant 

on the GBR compared with other areas13,221, although species of Echinometra and Diadema can be 

locally abundant. 

Sea cucumbers form a diverse and conspicuous assemblage of species throughout the GBR. They live 

in a variety of habitats, from exposed reefs (eg Actinopyga mauritiana) to intertidal and deep lagoons 

(eg Holothuria, Actinopyga, Stichopus species)110,109,274,39. Sea cucumber genera include commercial 
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species that comprise the bêche-de-mer fishery. A recent genetic study of the commercial sea 

cucumber (Holothuroidea) known as the black teat fish, Holothuria nobilis, revealed that the fishery was 

composed of at least two species separated at the Indo–West Pacific break: H. nobilis from the Indian 

Ocean and H. whitmaei from the Pacific277. The taxonomy of several other commercially important sea 

cucumber species and species complexes on the GBR is currently being investigated36.

The species richness of brittle stars on the GBR is impressive, with species in the families Ophiocomidae, 

Ophiotrichidae and Ophiodermatidae being well represented. Brittle stars are often common under 

slabs of coral rubble and in crevices shoreward of live coral habitats252,40.

The echinoderm fauna of the northern GBR is more diverse than the fauna along the southern margin in 

the Capricorn Bunker group (Byrne, unpublished data). For example, brittle stars are particularly diverse 

in the northern GBR where they utilise rubble and boulder habitat and can be very abundant in shallow 

water and intertidal areas39. While this habitat exists elsewhere, such as One Tree Reef on the southern 

GBR, a similar diversity and abundance of tropical brittle stars is not evident (Byrne, unpublished data). 

The reason is not known, but may be related to larval supply. In contrast, holothuroids are prevalent 

throughout the GBR and are abundant and diverse in the southern GBR112,113, 114,39. 

11.1.2.3 Molluscs 

Molluscs pose a unique challenge in regard to examination of their distribution patterns on the GBR. 

Gosliner et al.102 estimated that molluscs encompassed 60 percent of all marine invertebrate species in 

the Indo–West Pacific, and the phylum is one of the largest and most diverse in the marine environment. 

Thus, Mollusca are rarely examined in their entirety in biogeographical studies. Rather, a particular class 

or smaller taxonomic or ecological group is typically surveyed. Moreover, molluscan surveys on tropical 

reefs are usually biased towards macromolluscs, do not account for parasitic or commensal species, 

and do not adequately consider spatial heterogeneity, thus greatly underestimating overall molluscan 

diversity27. There is also a much larger emphasis on shelled species compared to sacoglossans, 

nudibranchs and other unshelled molluscs. Thirty percent of the estimated 3400 Indo–West Pacific 

opisthobranch species are probably undescribed101. Intensive surveys in New Caledonia revealed 2738 

species of molluscs, an order of magnitude larger than previously reported for this region27 and likely 

similar to GBR molluscan diversity. Single specimens represented 20 percent of these species, and 

28.5 percent of species were represented only by empty shells, suggesting that the current number 

of molluscan species recorded in the tropical Indo–West Pacific considerably underestimates actual 

diversity27. This same survey identified molluscs ranging in size from 0.4 to 450 mm, with most species 

(33.5%) having an adult size smaller than 4.1 mm. In contrast, ‘seashell’ species (larger than 41 mm) 

accounted for only eight percent of total species27, but research and surveys often focus on these larger 

species (eg Catterall et al.46), particularly those of commercial importance. 

The large area and discontinuous habitat of the GBR makes spatial heterogeneity particularly important 

to quantifying molluscan diversity. Molluscan diversity and abundance in a given community are 

influenced by many abiotic factors. Substrate is one of the most important factors to influence 

molluscan assemblages11,302, with great variation among hard- and soft-bottom assemblages. Small, 

herbivorous gastropods with low species diversity often dominate in seagrass beds173, while larger 

predatory macromolluscs are more common on hard substrates, particularly coral reefs. A survey 

of a drowned reef off the Venezuelan coast revealed that only 21 percent of macromollusc species 
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were found in both soft- and hard-bottom areas33. Great variation in molluscan assemblages also 

exists within hard- and soft-bottom communities. On hard substrates, coral-associated molluscs 

are prevalent on coral reefs, and encrusting and crevice-dwelling bivalves dominate non-coral 

substrates302. The quality of hard substrates seems to particularly influence the abundance of predatory 

gastropods, with more neogastropods on hard substrates with refuges than on flat hard surfaces161. 

Both infaunal bivalves and gastropods are found in sandy substrates, and these assemblages may 

directly correlate with grain size. Molluscan assemblages in soft sediments show continuous variation 

related to environmental gradients69. 

Similar to other phyla (eg echinoderms, crustaceans), molluscs on the GBR include a comparatively 

large proportion of species with a broad Indo–West Pacific range. In a study of molluscs on Elizabeth 

and Middleton reefs immediately south of the GBR, 89 percent of molluscan species sampled 

occurred throughout the Indo–West Pacific and only 3.1 percent of these species were endemic169. 

Despite their low richness, endemic species may be the most abundant on some reefs169. Surveys 

of benthic invertebrates indicate that volutes have the highest degree of endemism, and overall 

endemism occurs most frequently on the GBR with shared components between New South Wales 

and southern Queensland171. 

Some species with a high level of genetic differentiation between archipelagos elsewhere in the 

Indo–West Pacific show little genetic variation on the GBR, such as the turbinid Astralium183. Similarly, 

the giant clam Tridacna maxima shows significant genetic variation between archipelagos in French 

Polynesia, but even with its high dispersal capabilities166, shows little differentiation on the GBR19. 

Within the GBR, genetic diversity may show latitudinal gradients. Two tropical trochids with similar 

lecithotrophic life histories (including the commercially harvested Trochus niloticus) show increasing 

genetic differentiation from northern to southern GBR populations26. Reasons for these patterns 

remain unknown but suggest that distance alone does not control marine speciation183. 

11.1.2.4 Crustaceans 

Crustaceans are speciose and abundant throughout the GBR with around 1300 species so far 

recorded from the area. The most conspicuous are the comparatively large decapods (crabs, shrimps 

and lobsters) and stomatopods (mantis shrimps), and other small-bodied but speciose groups such 

as peracarids, ostracods and copepods. Nevertheless, little information is presently available on the 

bioregionalisation of Crustacea on the GBR. Many of the commercial decapods in Queensland waters 

exhibit heterogeneous latitudinal and longitudinal distributions. For instance, northern, central and 

southern prawn fisheries are dominated by Endeavour (Metapenaeus spp.) and tiger prawns (several 

species of Penaeus), banana (Fenneropenaeus merguiensis) and red-spot king prawns (Melicertus 

longistylus), and bay (Metapenaeus spp.) and eastern king prawns (Melicertus plebejus), respectively291. 

The red-spot king prawn is a largely reef or inter-reef species favouring calcareous sediments, whereas 

banana and giant tiger prawns favour muddy inshore turbid waters on muddy substrates. Though 

juveniles of many species of commercial prawns use the same nursery habitats (namely coastal 

seagrass), adults have different substrate preferences60,260,106. Similarly, commercial crabs and crayfish 

are not uniformly distributed throughout eastern Queensland. The blue swimming crab (Portunus 

pelagicus), though ranging along the entire Queensland coast including inter-reef areas, appears in 

greatest numbers in southern coastal waters. The mud crab (Scylla serrata), also ranging widely in 
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Great Barrier Reef waters, is most common coastally where its favoured mangrove habitat is principally 

located. Similarly, tropical spiny lobsters (eg Panulirus ornatus and P. bispinosus) are most prevalent in 

the northern GBR, although they range further south into New South Wales70,63.

Assemblages of coral-associated crustacean cryptofauna exhibit highest abundance and species 

richness on back-reef sites on mid-shelf reefs214,215. Whereas copepods dominate mid-shelf cryptofaunal 

assemblages, the proportions of ostracods and peracarids are significantly higher on inner-shelf 

reefs, despite lower overall richness. Factors that might account for the observed patterns are scale-

dependent, with primary production variation at the cross-shelf scale and microhabitat features at the 

replicate level. Similarly, the highest diversity and density of pelagic copepods on an inter-reef transect 

of the central GBR occurs in mid-shelf waters289. 

Similar patterns have also been observed for Indonesian coral-dwelling Stomatopoda, with highest 

species richness on mid-shelf reefs77. However, composition of inshore, mid-shelf and outer-reef 

stomatopod ‘communities’ was significantly different. Distribution patterns of stomatopod species 

in the lagoons of New Caledonia and the Chesterfield Islands indicate patchy and discontinuous 

distributions that are highly correlated to environmental variables such as sediment type, terrigenous 

input and hydrodynamics225. On the GBR, distribution patterns of Stomatopoda remain to be thoroughly 

examined. Nevertheless, based on data derived from Ahyong2, 50 percent of GBR stomatopods 

are shared with New Caledonia and the Chesterfield Islands, and 34 percent are shared with the 

Spermonde Reefs, Indonesia2,3. Distributions of stomatopods on the GBR often appear to be highly 

correlated with substrate, terrigenous input and hydrodynamics77,225. Though latitudinal gradients 

have not been analysed in detail, increasing species richness of both inter-reef and coral-dwelling 

stomatopods generally follows a northward trend, and this appears to also hold for most decapods. 

11.1.2.5 Other groups

Information on the distribution and abundance of other benthic invertebrates is patchy. For example, 

polychaetes are abundant in both sediments and in reef habitats throughout the GBR. Detailed 

taxonomic studies exist for some families (eg Terebellidae, Nereididae). Polychaete species exhibit 

a range of biogeographical patterns, from occurring throughout the reef to narrow-range endemics 

(Hutchings unpublished data), and it is likely that these patterns will hold for many polychaete 

families. Whereas some species have been reported with broad Indo–Pacific distributions, closer 

examination usually shows this is rarely valid142. Soft corals on the GBR exhibit greatest diversity on 

mid-shelf reefs, although cover is relatively low (often less than 5%)81. Inshore and offshore species 

also occur on these mid-shelf reefs, though some species are restricted to these reefs.

Bryozoans are well represented on the GBR by more than 300 species, though this number is probably 

a significant underestimate100. Many of the ascidians found on the GBR range widely throughout the 

Indo–Pacific; particularly common are large mats of diademnids with algal symbionts181.

11.1.3 Geographical range summary 

In summary, benthic marine invertebrates on the GBR include widely distributed Indo–Pacific species, 

as well as species with a distinct northern or southern distribution. In each group, species with 

discrete distributions (narrow-range endemics) also occur. Some species occur in inshore waters 
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and can tolerate a wide range of environmental conditions, while others seem be limited to specific 

environments82. For example, some corals and other benthic invertebrates in the Daintree region 

show a remarkable tolerance for extreme turbidity and sediment load after heavy rains. Similarly, 

several coral reef stomatopods, such as Gonodactylaceus falcatus, G. graphurus and Pseudosquilla 

ciliata tolerate the varying salinity, turbidity and sedimentation prevalent on coastal or nearshore 

reefs. Other reef stomatopods, such as members of the Takuidae, occur only on reefs under a more 

‘oceanic’ influence77 (Ahyong unpublished data). Some sponges are well adapted to live in more 

turbid environments (eg mangroves74) and are generally more abundant and diverse in back-reef 

areas on the GBR (Wörheide pers obs). Similar patterns were obtained for other invertebrate groups, 

with species more abundant in, or restricted to, inshore muddy environments, and some infauna 

favouring inshore turbid environments199. As already indicated the distribution of infauna is heavily 

dependent upon sediment type and organic content, the distribution of which is related to factors 

such as river plumes for terrestrial-derived sediments, wave patterns, and ocean currents. 

The GBR consists of a mosaic of habitats and, because the distribution of the benthos is largely 

driven by the availability of suitable habitat, much of the fauna consists of isolated populations. 

Interconnectivity of benthic invertebrate populations has not been examined on the GBR, with only 

a few exceptions. Populations of giant clams and crown-of-thorns starfish are genetically continuous, 

as would be expected from species with pelagic larvae26,18. Similarly, considerable gene flow exists 

between populations of coral species with pelagic larvae136. Populations of tiger prawns (several 

Penaeus spp.) in Queensland, though exhibiting a degree of sub-structuring, are also genetically 

continuous106. It is noteworthy, however, that some mollusc populations with little genetic variation 

on the GBR exhibit a high level of genetic differentiation between archipelagos elsewhere in the 

Indo–West Pacific183, and genetic diversity may follow latitudinal gradients26.

The origin of the GBR and its subsequent geological history are well documented (eg Davies and 

Hopley67, Davies65). The present-day GBR is young (approximately 9000 years old), and is built on 

the foundations of previous GBRs (over a period of approximately 600,000 years since the mid-

Pleistocene222. Reef growth initiated on the Marion Plateau post–early Miocene (23 million years ago) 

(Davies66 and literature cited therein) and successive GBR ecosystems are not necessarily identical 

owing to the great differences in pathways and processes that influence connectivity between the 

biota over geological time (eg Cappo and Kelley43 and literature cited therein). Certainly, the cyclical 

rise and fall of sea level after the glacial low stand 18,000 years before present (Larcombe et al.164 

and literature cited therein) had major impacts on connectivity and distribution of marine biota on 

the GBR by leaving large areas of the GBR exposed, dry and unsuitable for marine organisms. A 

comparison of drill-core data from around Lizard Island with sea-level curves for northeast Australia 

indicated rapid reef initiation (within 500 years) at Lizard Island after flooding of the granite basement 

about 6700 years before present222.

11.1.4 The role of benthic invertebrates on the GBR 

Benthic marine invertebrates play a variety of roles in the GBR. Macrofaunal activity in sediments 

is important in global nutrient cycling and transport, transport of sediments, processing of 

pollutants, and secondary production including commercial species257, though these roles are rarely 

quantified. The macrofauna, as already mentioned, encompasses a tremendous diversity of phyla. 
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The component species exhibit a range of feeding and reproductive cycles, and are important food 
sources for groups at higher trophic levels, including fish, many commercial species of crustaceans 
and intertidal wading birds. 

Inter-reef areas are rarely a homogenous habitat of sediment. Rather, they are a mosaic of sediments 
and isolates of sponge, gorgonians and molluscs that provide substrate for many mobile species, 
including fish. Only in areas that have been subjected to heavy trawling will such important habitats 
be absent140. 

Sponges are an important component of macrobenthic communities on hard substrates, as well 
as small isolates on soft substrates. They continuously filter water, removing bacteria and dissolved 
organic and particulate organic matter. However, recent studies clearly show that these cryptic 
communities are pivotal in nutrient and carbon cycling on the reef224,226. In addition, recent initiatives 
to establish viable aquaculture of commercial bath sponges in the Torres Straits, in collaboration with 
local indigenous people, highlight their socio-economic importance. Sponges also provide shelter and 
microhabitats for other fish and invertebrates�,120. 

Echinoderms also play important roles in the GBR, particularly as bioturbators and predators. 
Aspidochirotid holothurians are benthic deposit feeders and are prominent members of the soft-
sediment benthos275,276. Burrowing species are particularly important in bioturbation and oxygenation 
of the nutrient-poor carbonate sediments that dominate much of the GBR274,275,276. Loss of these 
holothurians from lagoon and inter-reef areas therefore, is likely to affect sediment–ecosystem 
processes275,276. The influence of crown-of-thorns starfish on the ecology of macrobenthic communities 
on the GBR is probably one of the most important among the invertebrates185,61,149.

Molluscs act at all trophic levels: as prey, predators (including carnivorous, herbivorous, deposit-
feeding, filter-feeding and verminivorous species), parasites, and hosts (for symbiotic or parasitic 
organisms). Like some echinoderms and crustaceans, infaunal molluscs are important bioturbators, 
such as Cerithideopsilla cingulata in subtropical mudflats152. Bivalves may be particularly important to 
some reef or inter-reef communities because many are filter feeders able to improve water quality. 
For example, giant clams from Tonga weighing 850 grams, can filter up to 600 ml of water per 
minute160. Since filtration rates largely depend on body size160, Tridacna maxima and T. squamosa, 
the species of giant clam most common on the GBR, can be expected to filter water at a similar rate 
based on their similar size. Gastropods and bivalves include some of the engineers of the reef, acting 
as builders through the remains of their calcified shells299, as architects through their boring behaviour 
that provides habitat for cryptofauna186, and as demolishers through boring behaviour or predation 
that can weaken coral attachment58,232. Several GBR species of molluscs are also aquacultured or 
commercially harvested for food (eg Trochus sp., scallops, squid)290,301, nacre (eg Trochus niloticus)301, 
or whole shells (eg Strombus sp., Conus sp., Volute sp.) (see Weis et al.285 for comprehensive list of 
species collected for their shells in Queensland). The most popular species in the Australian specimen 
shell trade are by far those in the Cypraeidae, followed by the Volutidae and Haliotidae210. 

Crustaceans are also important at all trophic and ecosystem levels. For example, copepods are 

important grazers and a major food source for larval and adult fish111. Burrowing decapods, 

particularly thalassinideans and alpheid shrimps are significant bioturbators189. Peracarids and other 

�	 http://www.crctorres.com/research/T1-6.html 
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micro crustaceans are significant for their scavenging, detrital recycling and low trophic position155,154. 

Decapods and stomatopods are commercially harvested from inter-reef areas throughout the GBR. 

Some of the most important commercial decapods (namely crabs and prawns) are opportunistic 

feeders, being both predatory and facultative scavengers284. Stomatopods and many decapods can 

be high-level predators in all habitats2, and are in turn preyed upon by pelagic fish (as larvae) and 

demersal fish (as adults). 

Loss of marine invertebrates will have major socio-economic consequences in terms of commercial 

and recreational fisheries and tourism with many divers and photographers fascinated by marine 

invertebrates, especially nudibranchs4 and flat worms191.

Many benthic invertebrates are also a rich source of bioactive compounds with various medicinal, 

industrial and commercial applications. Sponges, bryozoans and ascidians are the major source of 

toxic secondary metabolites in the sea188 and therefore have been the prime target for research84. 

Other marine invertebrates, such as nudibranchs, have the ability to sequester and modify 

compounds obtained from dietary sources, thus providing even more potential for useful bioactive 

compounds from benthic invertebrates53,204. Some evidence indicates that bioactive compounds 

of certain invertebrates may vary according to region and even reef83. These compounds are likely 

dependent on food sources, changes to microbial faunas across small environmental gradients, or 

seasonally changing habitat conditions.

11.2 Vulnerability of benthic invertebrates to climate change 
Whereas individual components of climate change are discussed below, in reality, benthic invertebrates 

will be subjected to several concurrent stressors that may exacerbate the effect of other stressors (see 

section 11.3.2). For example, a species that is already stressed by rising temperatures will probably be 

far more susceptible to other stressors, such as ultraviolet radiation (UVR) and salinity extremes125,218. In 

many cases, the extreme events will have greatest impact on individuals. Lough (chapter 2) provides 

ranges of predicted changes, and much greater changes may occur at particular sites with impacts 

varying during the year and their effects varying according to the life stage of the organism. In 

addition, the speed of change is important for all the factors considered, and detailed predictions are 

not available generally, let alone for particular sites. These factors make assessing the vulnerability of 

the tremendous diversity of marine invertebrates on the GBR extremely difficult and imprecise.

11.2.1 Exposure

11.2.1.1 Ocean circulation 

Currently, there is no consensus on whether the direction or strength of currents within the GBR will 

change, although it seems highly likely. The GBR is presently dominated by two large-scale global 

circulation systems: the south-easterly trade wind circulation, and the Australian summer monsoon 

westerly circulation. These effectively divide the year into the warm summer wet season (October 

to March) and the cooler winter dry season (April to September). Any changes to these circulations 

have the potential for major impacts on the recruitment of benthic invertebrates, many of which have 

pelagic larvae. If established current variations265 occur earlier or later in the year, larval dispersal may 
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be affected as well as food availability for pelagic larvae. Changes in water currents may also impact 

food availability for many of the filter-feeding organisms in benthic communities (McKinnon et al. 

chapter 6) in terms of abundance and quality of available food, shifting water masses of different 

temperatures and the influence of increased runoff.

11.2.1.2 Water temperature

Sea surface temperatures (SSTs) have increased on the GBR, although not uniformly, with the degree 

of increase being greater in winter than summer and greater in the central and southern regions than 

the northern GBR. Projected rises are 1 to 3ºC and it seems likely that SST extremes will change and 

follow air temperature extremes. Certainly, increased incidences of coral bleaching are evident, often 

leading to the death of corals and associated fauna, thereby modifying coral reef communities. While 

effects will be greatest in shallow waters, increased temperatures will be transmitted through the 

water column with effects decreasing with depth. 

In addition to increasing SSTs, the number of days with temperature extremes is also on the rise. 

The GBR is already experiencing a greater number of more extreme hot days and nights, and fewer 

cold days and nights with respect to air temperature (Lough chapter 2). Coastal air temperatures are 

predicted to rise by 4 to 5ºC by 2070, although not uniformly along the GBR. For example, at the 

offshore Myrmidon Reef automatic weather station, average daily SSTs ranged from a minimum of 

24ºC in the last week of August to a maximum of 29ºC in the first week of February (4.8ºC range)�. 

However, the difference between the minimum and maximum observed daily SSTs is 9.5ºC, so local 

extremes are likely to have significant effects on intertidal and shallow water species217 with effects 

varying along the coast.

11.2.1.3 Light spectra

Changes in water temperature and storm events may affect dissolved organic carbon and particulate 

matter, which will in turn modify the attenuation of light and UVR in a given region244. Recent analyses 

suggest that turbidity accounted for 74 to 79 percent of variation in light irradiance in a shallow 

subtidal coral reef, with increasing attenuation at depths9. In addition, recent evidence suggests that 

climate change may delay recovery of the ozone layer245, and ozone depletion may be linked to more 

rapid climate change117, thereby exposing intertidal and shallow-water organisms to longer periods 

of human-increased UVR. 

Species living in intertidal and shallow water will be most vulnerable to changes in light attenuation 

and UVR exposure, especially those with symbiotic algae such as giant clams75, sponges122, 

anemones278,75 and those spawning in intertidal habitats exposed to full sun218.

11.2.1.4 Physical disturbance (tropical storms)

In the past 30 years the number of cyclones affecting the GBR may have declined, but those that do 

occur are more intense192 (Lough chapter 2). Predicted enhanced greenhouse conditions include both 

warmer SSTs and changes in the atmospheric temperature profile with a 5 to 12 percent increase 

in wind speeds and higher rainfall. It is unclear, however, whether there will be changes in location 

�	 For further information, see http://www.aims.gov.au/pages/facilities/weather-stations/weather-index.html 
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and frequency of tropical storms and to what extent they will be modulated by El Niño–Southern 

Oscillation (ENSO) events. Increased intensity of storm events will disturb or destroy reef habitats, 

especially in shallow and coastal waters. Associated increases in storm surge will also impact on 

shallow coastal communities. These impacts will be compounded by rising sea level (see 11.2.1.5).

Although it is unclear how rainfall patterns will change along the GBR coast, rainfall patterns and 

river flows are projected to exhibit greater variation between wet and dry years than in the past, with 

spatial and inter-annual variability modulated by ENSO and Pacific Decadal Oscillation (PDO) (Lough 

chapter 2).

The most vulnerable groups of organisms during storm activities, with associated increased river flow 

and sedimentation, are sessile species or egg masses in the intertidal or shallow subtidal which are 

physically torn from the substrate or buried, and infaunal organisms that are physically dislodged 

by wave action that erodes the habitat. Both groups have difficulties in reattaching themselves or 

reburrowing into the sediment before being washed out to sea, onto unsuitable habitats or stranded 

on beaches294. A general trend of shifting community structure with increasing sedimentation or 

resuspension has been observed for sponges16,44. Similarly, fluctuations in sediment load were partly 

responsible for changes in the structure and composition of sponge assemblages on tropical rocky 

shores in the Bay of Mazatlan (Pacific Ocean, Mexico)44, and in a New Zealand study, sediment levels 

of more than 0.5 cm precluded settlement. Re-settlement success appears to be inversely correlated 

with sediment depth16. For the temperate reef sponge Cymbastella concentrica, increased siltation led 

to a reduction in weight and a lower reproductive activity230. It has also been shown for Caribbean 

sponges that strong storms (hurricanes) have a dramatic impact on sponge communities, with loss of 

nearly half of the individuals and biomass in San Blas (Panama) during Hurricane Joan in 1988298.

11.2.1.5 Ocean acidification and sea level rise

The oceans are becoming more acidic owing to absorption of anthropogenic carbon dioxide from the 

atmosphere175,198,238,159. The long term natural variability of oceanic pH is unknown, but can be inferred 

through study of coral skeletons206. A recent study of boron isotopes in coral from the southwestern Pacific 

provided evidence that large variations in pH have occurred over approximately 50 year cycles and that 

these natural pH cycles can modulate the impact of ocean acidification on coral reef ecosystems206,180. 

In addition, efficient lagoon flushing is required for reef water to achieve pH equilibrium with the open 

ocean206. Thus, effects of predicted progressive acidification of the ocean on coral reef communities will 

differ among reefs depending on natural cycles and degree of reef flushing.

It is expected that ocean acidification will have a major impact on organisms such as molluscs and 

echinoderms that use calcium carbonate for skeletal support of their bodies162,250. Other groups 

likely to be affected are foraminifera, soft corals and sea fans, as they also incorporate calcium 

carbonate into their skeletons. Calcification rates are depressed at lower pH and are influenced by 

temperature162. Conversely, some speculate that sea warming might stimulate increased calcification 

through enhancement of the physiological processes involved, potentially ameliorating the effect 

of acidification176,158,159. The predicted impact of ocean acidification on coral reef invertebrates is 

controversial and a consensus is unlikely to be reached in the short term176,158,206,159,180. Any changes to 

structure or density of coral skeletons, however, could impact the infaunal communities associated 

with either living or dead coral138.
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If the presently observed rate of sea level rise continues to 2100 then global sea level would be 310 ± 

30 mm higher than in 1990, and this rate may accelerate over time52. Certainly, there will be regional 

variations along the GBR as the coastal topography and islands will determine the influence of tides 

and extent of inundation, in addition to modulation by ENSO events. The regional projection for sea 

level rise is 0.1 to 0.9 metres by 2010 (Lough chapter 2). The communities most vulnerable to sea 

level rise will be intertidal, seagrass and mangrove communities (Waycott et al. chapter 8, Lovelock 

and Ellison chapter 9 and Sheaves et al. chapter 19). Benthic invertebrates associated with live corals 

in shallow water are potentially vulnerable if these coral colonies fail to keep up with rising sea level.

11.2.2. Sensitivity 

11.2.2.1 Ocean circulation 

Changes in ocean circulation have the potential to disperse larvae over unsuitable habitats for 

settlement. The process of settlement is critical for many invertebrates, especially for sedentary or 

sessile species, and a clear correlation has been observed between the time propagules spend in the 

water column and dispersal distance246,247. If larvae are dispersed over unsuitable habitat, they will fail to 

metamorphose and settle. Even if they can delay settlement, this is only an option for a limited time205. 

Species with short larval periods are most likely to be directly affected by changing ocean currents 

through dispersal to unfavourable sites or areas with a lower concentration of larvae, while those with 

longer larval periods or direct development may be more tolerant to changing currents because they 

will presumably be able to delay settlement until they arrive at a suitable habitat. For example, Littorina 

saxatalis, which releases brooded juveniles, is more widespread than the planktotroph L. littorea. This 

supports the hypothesis that species with long-lived larvae may be vulnerable to problems associated 

with current mediated dispersal, including a settling population too low to be viable (Johannesson148 

and literature cited therein). Filter-feeding organisms may also be affected by changes in current 

patterns, as the quality or abundance of their food supply in the water column may change.

11.2.2.2 Water temperature

Rising water temperatures will certainly impact on benthic invertebrates, but the degree of impact 

will vary between species and range from little impact to death. We have little precise information 

on lethal threshold temperatures, but we do know that water temperature affects metabolic rate and 

the timing of reproduction for some groups, including sponges89,90, ascidians15,163, molluscs268, and 

polychaetes98. Increased temperature, in concert with other stressors like sedimentation, increased 

nutrients and physical damage will contribute to an increased abundance of certain sponge groups 

(eg boring sponges) and has been found to be responsible for decreases in live coral cover on a reef 

studied in Belize (Caribbean Sea239). However, no relationship between warm water incursions and 

bleaching of the sponge Xestospongia muta has been observed (J Pawlik pers comm).

It is predicted that extremes in water temperature will increase, which are likely to have significant 

effects both on survival of larvae and adults, as well as affecting growth and reproduction. The 

sensitivity of a species to thermal changes will probably vary geographically. Changes are predicted 

to be greatest in the central and southern part of the GBR, so species occurring in these areas are 

most likely to be impacted. 
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Development and growth rates of marine invertebrates are strongly and positively correlated to 

temperature93,200,150. The strength of this relationship will depend on life history characteristics that will 

determine exposure to thermal fluctuations and extremes. For example, developmental rates of species 

that spawn in exposed habitats, during low tides, or daytime may be more affected by temperature 

changes and extremes than species that spawn in sheltered habitats, during high tides, or at night216. 

Development of larvae influences the thermal history of the population and spawning season93,150. 

Increased temperature may reduce dispersal potential by accelerating growth rates and reducing  

time spent in the water column, thereby potentially limiting or reducing gene flow between  

otherwise connected populations195. Isolation of populations could render them more susceptible to 

localised extinction.

11.2.2.3 Ocean acidification

All marine biota that have calcareous skeletons are sensitive to ocean acidification because carbonate 

saturation, which is related to pH, has a major effect on calcification rates157,159. The predicted 

decrease in ocean pH by 0.4 to 0.5 pH units by 2100 may impact on the ability of invertebrates 

to secrete protective skeletons85. The biota most sensitive to ocean acidification includes a broad 

suite of calcifying organisms including molluscs184, echinoderms, crustaceans, bryozoans, serpulid 

polychaetes, foraminifera119 and some species of sponges, particularly at ocean conditions with pH 

lower than 7.5184,119. These organisms have evolved the protective use of a shell or calcareous skeleton. 

Predicted changes in ocean pH will negatively affect shell and skeleton formation, development and 

strength, thereby affecting their primary function, as protection from physical damage, including 

predation. Indeed, recent modeling suggests that molluscs evolved optimal shell morphologies in 

response to predators145, so any weakening of the shell may increase risk of predation. Calcification 

studies of gastropods and sea urchins indicated that a 200 parts per million increase in carbon dioxide 

(CO2) in sea water adversely affected growth250. 

11.2.2.4 Light spectra

Spectral changes associated with increased turbidity, sedimentation, and storm frequency will impact 

benthic invertebrates that obtain at least part of their nutrition from photosynthetic symbionts (eg 

giant clams75 and anemones278). Sensitivity to turbid conditions will likely be species-specific, with 

some species able to switch to heterotrophy for long periods, thereby adapting to turbidity and 

increased light attenuation8.

Sponge-zooxanthellae associations appear to be more stable than coral-zooxanthellae associations, at 

least in some hadromerid sponges122. Although sponges bleach less frequently than adjacent corals281, 

completely bleached individuals ultimately die91. A recent study of bleaching of Xestospongia muta 

in the Caribbean, however, suggests that cycles of bleaching are not necessarily deleterious (J Pawlik 

pers comm).

Increased UVR exposure may also negatively affect species without adequate or adaptive behavioural 

or chemical protection. Sessile organisms (such as didemnid ascidians) or those unable to detect 

UVR will be more vulnerable than species able to move away from damaging UVR. Marine animals 

obtain chemical sunscreens called mycosporine-like amino acids (MAAs) from symbioses or diet249. 
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In the latter case, photoprotective function cannot be intrinsically induced. Therefore, animals that 

rely heavily on MAAs for protective function, but obtain these solely through their diet, may be 

particularly vulnerable to increased UVR exposure.

11.2.2.5 Sea level rise

Rising sea level has the potential to inundate obligate intertidal species and shallow seagrass beds and 

adjacent mangroves (Waycott et al. chapter 8, Lovelock and Ellison chapter 9), which are home to diverse 

benthic marine invertebrate communities. Impacts will depend on the magnitude and rate of such 

changes. If the rate of change is slow, then seagrass communities and associated benthic communities 

have the potential to expand into shallower water. Conversely, loss of deep seagrass and conversion to 

a sandy or muddy substrate will drastically change invertebrate community composition. 

Sea level rise may also affect benthic communities that are relatively isolated by geographical barriers 

by facilitating larval dispersal. The effect of geographical barriers could be reduced with heightened 

sea level, resulting in recruitment of invader species to a formerly isolated area17. Alternatively, 

increased larval dispersal between previously semi-isolated intraspecific populations could also help 

to maintain genetic continuity.

Coral communities (Hoegh-Guldberg et al. chapter 10) will be affected by sea level rise, which in turn 

will alter available substrate and affect other dependent benthic invertebrates11. Bioeroders, such as 

boring sponges228, have further potential to destabilize the reef framework, making it more vulnerable 

to fatal storm damage. 

11.2.2.6 Physical disturbance

Sessile organisms are vulnerable to detachment via physical disturbance. The magnitude of these 

effects will depend on their ability to reattach or withstand periods of detachment (eg Wilson294). 

11.2.2.7 Rainfall and river flood plumes

Marine benthic invertebrates can be highly sensitive to changes in salinity (eg encapsulated molluscs216) 

and many species have, at best, a limited ability to osmoregulate in the presence of freshwater194. 

Different life stages usually have varying sensitivities with newly settled recruits the most vulnerable 

(see Webster and Hill chapter 5). Some species may be able to avoid this stressor by burrowing deeper 

into the sediment where salinity changes are reduced, and others can close their shells to exclude 

fresh water, but these reactions can only be sustained for short periods during which no feeding can 

occur. Reactions to flooding and salinity changes are likely to be species-specific within most groups. 

For example, recent studies show that two colonial ascidians with similar life histories show different 

tolerances to low salinities (E Westerman pers comm). Sponges also seem to be affected by salinity 

changes, with evidence of decreased growth rates and lower reproductive activity230. In addition, 

the size of the banana prawn harvest in the Gulf of Carpentaria and eastern Queensland strongly 

correlates with rainfall263, while reproduction and activity of the blue swimming crab is negatively 

affected by low salinity209,212. Echinoderms are probably the most stenohaline of the benthic groups, 

with limited tolerance to decreases in salinity, particularly amongst the larvae182. In summary, the 

timing and duration of salinity reductions will be critical and effects will vary among taxa.
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11.2.3 Impacts

11.2.3.1 Ocean circulation 

Changes in ocean circulation can affect food availability to suspension feeders287, larval supply 

and upwelling. Food availability is an important factor controlling reproduction in some marine 

invertebrates (eg egg production in the ascidian Botrullus schlosseri108, so changes in ocean circulation 

may have significant impacts on reproduction, larval survival and species ranges. 

If larvae are dispersed to unsuitable habitats, and adults subjected to suboptimal current patterns, 

present species ranges could be significantly altered. Changes in circulation and upwelling, with 

downstream effects on primary productivity, will not only have implications for larval survival and 

recruitment, but also food availability for filter feeding animals such as crinoids, sponges, ascidians 

and many epifaunal bivalves. 

Certain groups of molluscs may be more resistant to extinction as a result of changes in ocean 

circulation pattern. Examination of the distribution of narrow-aperture rock-dwelling gastropods, 

based on museum collections, has revealed that they are not significantly affected by deep-sea 

barriers in the Indo–West Pacific, a finding consistent with the resistance to extinction and high level 

of recent speciation of this group279. 

11.2.3.2 Water temperature

Although little data exist on current geographic range changes in the GBR for most benthic 

invertebrates, the fossil record of molluscs indicates that water temperature has indeed played a 

major role in migrations and extinctions of many species, particularly in conjunction with sea level 

changes121. Some species have extended their range during warmer periods (eg Australian species 

introductions to New Zealand during the Pleistocene17, northward extension of Venericardia procera 

in the southwestern Atlantic during the late Quaternary1. Other species presumably were unable 

to adapt to climate change and became locally extinct (eg the extinction of Tegula atra in the 

southwestern Atlantic during the late Quaternary1 or completely extinct (eg many molluscs in the 

southern hemisphere during the Cretaceous-Tertiary extinction event and associated climate change264. 

In contrast, Jackson and Sheldon147 suggest that temperature fluctuations and sea level change have 

had little impact on species composition of molluscs and corals in the fossil record throughout tropical 

America. They suggest that there is no correlation between the magnitude of environmental change 

and the subsequent ecological and evolutionary response, although the speed of change was much 

slower than what we are currently observing. While fossil coral communities have been studied in 

detail in the GBR201, associated benthic invertebrates have not. Jackson and Johnson146 point out that 

the excellent marine fossil record and the similarity between ancient and current species provides a 

great opportunity to investigate effects of environmental change on communities and ecosystems, but 

‘unfortunately, this potential has not been fully exploited because of lack of well-sampled time series 

and adequate statistical analysis’. As ecological communities were profoundly altered by human activity 

long before modern ecological studies began, Jackson and Johnson146 suggest that data from the 

Holocene should be considered the only standard for ‘pristine’ communities prior to human impact. 

The wide variety of reproductive strategies in many benthic invertebrates makes generalisations 

on timing of reproduction difficult. For some species, such as the broadcast spawning sponges 



326 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

Xestospongia bergquistia and X. testudinaria, spawning was observed during periods of warm water 

just prior to water temperature reaching its maximum90. However, larval release in other species is 

not predictable, as in the viviparous sponge Leucetta chagosensis (Wörheide pers obs), or occurs year-

round, as in the brooding shallow water sponge Amphimedon queenslandica (formerly referred to as 

Reniera sp.168. Similarly, molluscan reproductive patterns are often unpredictable or species-specific, 

with no obvious relationships with taxonomy or avoidance of thermal stress219. Most echinoderm 

species appear to spawn in summer and can be induced to spawn in response to temperature 

fluctuation220,54. Some species with benthic development, including a new species of Aquilonastra from 

One Tree Island, lays its eggs in masses on intertidal rubble in winter, potentially as an adaptation to 

avoid the effects of high temperature on embryonic development, similar to that exhibited by closely 

related non-tropical species34. Many of the most abundant aspidochirotid sea cucumbers on the GBR 

including Holothuria species and Stichopus chloronotus have distinct summer and winter patterns 

of sexual and asexual reproduction. They spawn gametes in summer and exhibit a peak in clonal 

reproduction by fission (splitting in half) in the winter113,167. 

Rising water temperature will almost certainly lead to species spawning earlier or for longer periods (eg 

ascidians, E Westerman pers comm) and may affect larval recruitment success. In the case of species 

producing planktotrophic larvae, this may not necessarily coincide with phytoplankton availability. 

This temporal separation of zooplankton and the phytoplanktonic food source is reported in the 

Atlantic and attributed to climate change118. In addition, species requiring other benthic organisms 

to provide cues for metamorphosis or food for juveniles may also fail to spawn at an optimal time. 

For example, some nudibranchs are specialised feeders on a single species of sponge, ascidian or 

bryozoan. Changes in spawning behaviour may therefore negatively affect larval metamorphosis or 

juvenile feeding if these substrates are not readily available. 

Rising water temperature and associated factors are likely to affect larvae more than adults. Though 

not a tropical ecosystem, increased ocean temperatures correlate with zooplankton decline in the 

California Current233. Meroplankton (species in plankton for only part of its life cycle) seem to be more 

vulnerable to warming water than holozooplankton (species in plankton permanently)118, providing 

support to the hypothesis that larvae of marine invertebrates are more vulnerable to changing 

temperatures than adults. Any impact studies should therefore account for larval stages (McKinnon 

et al. chapter 6). 

On temperate shores, Fitzhenry and Podolsky87 found that increasing temperatures impacted 

negatively on reproductive success of the barnacle Chthalmus fragilis. Populations of species at the 

boundary of their temperature tolerances will either die due to elevated temperatures, fail to breed, 

or in some way modify their physiological processes such as respiration, growth and reproduction 

to adapt to the new conditions (eg molluscs1). Temperature also affects key metabolic enzymes in 

littorinid molluscs, with variations found in populations at different latitudes and shore levels259 and 

similarly in the bivalve Mytilus edulis49.

Species that only occur in far northern regions of the GBR may extend their populations further 

south with rising temperature. Range extensions into warmer waters have been documented in the 

northern hemisphere both through the fossil record (eg Aguirre et al.1) and through research on 

current populations (eg Hiscock et al.123). Obviously, migration of species is only feasible for mobile 
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organisms, but the pelagic larvae of sedentary or sessile species may settle further south or in deeper 

water and change distribution ranges. While boundary changes are yet to be documented for any 

Australian reef species, Barry et al.14 and Sagarin et al.240) found climate-related long-term faunal 

changes for Californian rocky intertidal communities after only a 0.75ºC increase in water temperature 

and a 2.2ºC increase in air temperature. Similarly, the dramatic decline in mussel beds along the 

California coast is attributed to warming waters. Note, however, that a recent comparison of late 

Pliocene and present-day molluscan assemblages from Cornwall in the United Kingdom suggests 

that climate change will not affect overall richness in this region, although species composition will 

change283. No similar comparisons have been made with the molluscan fossil record in the Indo–West 

Pacific. In other temperate areas there is also good evidence of intertidal communities changing with 

increases in both air and sea temperature243. 

If water temperature increases persist for only a short time (eg a few days), some benthic burrowing 

species may avoid unfavorable conditions by burrowing deeper where temperature changes are 

lower (eg amphipods272), and others by reducing their metabolism (eg ascidians15). Their continuing 

survival, however, will depend on the frequency and timing of warming events, especially in relation 

to life cycles, with certain stages more vulnerable.

Recent research also suggests that ocean warming can facilitate the establishment and spread 

of invasive species. Stachowicz et al.262 compared distribution patterns of ascidians with ocean 

temperature over 12 years and found that introduced species recruited earlier in warmer years, while 

native species showed no such relationship. Laboratory studies revealed that two invasive ascidian 

species grew faster than native species, but only at the warmest summer temperatures, suggesting 

that community changes due to climate change are primarily the result of changing temperature 

extremes, rather than annual mean changes262. The order of species recruitment has a huge effect on 

community structure. Warmer water temperatures can facilitate earlier colonisation by invaders and 

associated community shifts to dominance by invaders262. 

11.2.3.3. Ocean acidification

The impact of ocean acidification on marine invertebrates will depend on the rate of change of 

seawater pH, relative to its natural variability206. It is expected that the impacts of ocean acidification 

will be greatest in surface and shallow water41. Current knowledge of the biology of skeleton 

formation indicates that the predicted changes in ocean pH by 0.4 to 0.5 units by 2100 may 

impact the ability of marine invertebrates to secrete protective skeletons. Existing skeletons may 

be weakened, providing less protection from predators and physical damage from trawling and 

storm activity, and less resistance to other physical factors, such as desiccation in the intertidal238,162. 

Impaired skeletogenesis is expected to compromise survivorship of both planktonic and benthic life 

stages of coral reef invertebrates162. The larval skeleton of gastropods, sea urchins and other benthic 

invertebrates are particularly fragile and may not be produced under acidic conditions162. This may 

result in complete recruitment failure of a whole suite of benthic invertebrates. In addition, some 

organisms may also show indirect effects of ocean acidification by diverting resources from their shells 

towards improving physiological function. For example, the bivalve Mytilus galloprovincialis dissolves 

its calcium carbonate shell during periods of prolonged hypercapnia in order to increase haemolymph 

bicarbonate and limit acidosis184.
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Increased carbon dioxide in surface waters has also been shown to lower metabolic rate in  

benthic invertebrates184. This may impact populations by affecting feeding, growth and reproduction.

11.2.3.4 Light spectra

Increases in light attenuation associated with increased turbidity and sedimentation will negatively 
affect organisms with photosynthetic symbionts. For example, turbid conditions with reduced light 
availability are known to impair the physiology of the giant clam T. gigas75. The relationship between 
turbidity, heterotrophy and autotrophy is well studied among corals and their photosymbionts8,79, but 
the effects of turbidity on most non-coral photosymbionts remain unknown. Under turbid conditions 
and sedimentation, the effects on corals can result in a switch to heterotrophy8, reduced growth300, 
or even expulsion of zooxanthellae286. The latter case may have serious consequences for the host, 
including death256,286. Increased turbidity on coral reefs may also result in shifts in the bioeroding 
communities from sponges to bivalves and polychaetes177.

11.2.3.5 Sea level rise

Sea level rise may affect current coral reefs by shifting coral recruitment to ‘new’ shallow waters. This 
will affect distributions of other benthic invertebrates associated with corals. 

Data derived from the mid to late Holocene record of a southeastern Australian lagoon indicates 
that sea level fluctuations and associated changes in sedimentation caused community change in 
estuarine and intertidal environments, with a shift from dominance by molluscs and foraminifera to 
charophytes, associated with a sea level drop and closure of the lagoon94. It is currently unknown 
how community dominance will shift on the GBR with sea level rise but, as mentioned previously, the 
biggest impacts will most likely occur in shallow, intertidal, and estuarine zones.

In addition, recruitment of benthic invertebrates to localised areas may be impacted if current 
geographic barriers to larval dispersal are bridged by sea level rise. Ben17 found evidence of this 
phenomenon on a much larger and dramatic scale with the Pleistocene extinction of 29 species 
of molluscs and the introduction of warmer water species in New Zealand after the breach of the 
Auckland isthmus caused by rising sea levels17. Obviously, no such similar formidable geographic 
barrier exists on the GBR, but sea level rise may breach smaller barriers to facilitate dispersal of 
larvae currently isolated from areas. This could result in local introductions of species and possibly 
competition-mediated extinctions, but could also help maintain genetic continuity between 
previously semi-isolated intraspecific populations.

Although global climate change is usually discussed only in terms of its negative effects, sea level 
rise may have a positive effect on the benthic invertebrates of coral reefs. Sea level has remained 
relatively static for the past several thousand years, and coral reefs have therefore reached an elevation 
where continued upward growth is constrained by sea level256. As sea level rises, this constraint is 
removed, ultimately increasing the availability of coral substrate for benthic invertebrates. As a result, 
invertebrate diversity in some lagoon environments may increase. Whereas current conditions ensure 
lagoon communities are limited by stressors associated with ocean circulation (eg salinity extremes 
or nutrient depletion), sea level rise may affect water circulation in these environments such that 

conditions more closely represent the open ocean256.
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11.2.3.6 Physical disturbance

Increased storm activity will also indirectly impact inshore communities through more frequent 

mass flooding and increased runoff. These storm events may temporarily or permanently increase 

localised turbidity and freshwater input. In addition, direct impact of storms and higher sea levels 

may fragment fringing reefs, reducing their wave-breaking ability, leading to changes on island or 

mainland beaches248. With increased storm intensity, it is predicted that flood plumes will be larger 

and extend further offshore (see section 11.2.3.7). Sediment distribution, critical for many benthic 

infaunal organisms141, may be altered in the short term by storm events, especially in shallow water, 

and in the long term by altered hydrographic regimes. The amount of change will depend on the 

nature of the sediment, with fine sediments most easily disturbed and resuspended leading to 

increased turbidity. Changes in turbidity will affect certain specialist faunas such as phototrophic 

sponges, which are sensitive to light and turbidity changes288 (see section 11.2.3.4). Octocorals are 

susceptible to abrasion, dislodgement by storm waves, movement of sand and rubble80, and during 

extreme events communities can be decimated. 

11.2.3.7 Rainfall and river flood plumes

Freshwater plumes can be lethal to marine invertebrates, depending on the duration and resulting 

salinity. Increased monsoon activity on the northern GBR could well result in decreased seasonal 

salinity. Reduced salinity can be lethal to octocorals and other invertebrates on reef flats emersed 

at low tide during heavy rain or in freshwater lenses of river plumes80. Community changes among 

colonial ascidian communities along the eastern United States have been with reduced salinity. After 

heavy flooding, sessile assemblages were dominated by the tolerant Botryllus schlosseri, in contrast to 

the normal mixed communities of B. schlosseri and Botryllouides violaceus (E Westerman pers comm). 

Even more concerning is the fact that B. violaceus is a recent invader and seems better adapted to 

changing and extreme environmental conditions than native species or less recent arrivals. The GBR 

may be similarly vulnerable to sessile invasive species with greater salinity tolerances. 

Benthic organisms may also be indirectly affected by rainfall and river flood plumes in terms of food 

availability. Effects of rainfall on plankton will affect food availability for pelagic larvae, filter feeders 

and deposit feeders, as well as organisms higher up the food chain. Indeed, freshwater influx can 

negatively affect plankton abundance. For example, around Pulau Seribu, Indonesia, zooplankton 

composition showed significant seasonal differences10, and zooplankton volume decreased during 

the wet season213. 

Increased levels of sedimentation can negatively affect rates of photosynthesis in octocorals223 due 

to light absorption by particles deposited on the colonies or suspended in the water column. In 

the Caribbean, mass mortality of gorgonians was recorded after large river floods importing high 

sediment loads95 and in some cases the fungus Aspergillus was exported from the land to the inshore 

waters. Mass mortality of Gorgonia ventalina and G. flabellum has been observed253,190. On the GBR, 

flood plumes often contain nutrients, top soil and pesticides, which impact negatively on octocorals, 

making them more susceptible to fungal infections, colonisation by algae, barnacles, bryozoans or 

anemones. Often high levels of partial mortality occur in colonies80. It seems likely that other colonial 

organisms or sessile invertebrates will be similarly affected. 
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11.2.4 Adaptive capacity 

11.2.4.1 Water temperature

Analyses of the fossil record have revealed broad patterns indicating the adaptive capacities of 

molluscan groups to broad-scale change. During the Cretaceous-Tertiary extinction event, molluscan 

deposit feeders in the Southern Hemisphere were the group most resilient to changing environmental 

conditions, but this depended on life history characteristics and habitat264. Suspension-feeding 

molluscs, on the other hand, exhibited the highest extinction rate264. Of all molluscan groups, bivalves 

from genera with large horizontal and vertical ranges had the highest survival rate, while carnivorous 

gastropods with planktotrophic development showed the highest rate of speciation264. Responses of 

these taxa to water temperature and currents may be paralleled by GBR species, based on similar 

feeding mechanisms, developmental mode and phylogeny. 

Species can move into colder and deeper water or into cooler waters of higher latitudes (eg the 

bivalve Venericardia procera1), but this is an option only for species with planktonic larvae or mobile 

adults, and where suitable habitat is available. Sessile or colonial animals that rely largely on asexual 

reproduction will be severely hampered. Some species of octocorals, when bleached by increased 

water temperatures, are able to survive for several months, while colonies shrink to small sizes and 

undergo fragmentation to produce a large number of new recruits80.

Several sponge species that occur on the GBR range further south to the subtropics (eg calcarean 

Leucetta chagosensis297). Recent analyses128 have found several major species turnover points along 

the eastern coast, with one around the Tweed River (border of New South Wales and Queensland) 

separating the northeast and southeast Australian bioregions. Indeed, it was reported that in the 

Moreton Bay/Stradbroke Islands region, tongues of warmer tropical and cooler temperate waters 

overlap with the consequence that the fauna contains a spatially discrete (vertically stratified) mix of 

temperate (greater than 30 metres depth) and tropical (shallower water) species64. However, there 

is no direct evidence that those tropical sponges can successfully reproduce there, although they 

may be capable of doing so as water temperatures increase in the future. Similarly, many molluscs 

occur across both tropical and subtropical regions. Indeed, egg masses of a few species with typically 

tropical distributions, such as the cowrie, Cypraea erosa and the sea slug, Berthellina citrina, have been 

found in temperate waters as far south as Wollongong (Przeslawski pers obs). Numerous tropical 

crustaceans also regularly range into New South Wales and many are reproductive south of the GBR. 

Several tropical echinoderms also have a wide distribution, from the northern GBR to as far south as 

the Solitary Islands in New South Wales237 (Byrne unpublished data) suggesting that some species will 

migrate further south. 

Colonisation of the southern GBR by ophiuroids will depend on the presence of suitable habitat, 

and the rubble banks at One Tree Reef and other locations in the southern GBR are likely to provide 

the habitat required by these species. One species that is likely to expand its range on the GBR 

in conjunction with warming is the tropical brittle star, Ophiocoma scolopendrina. This is probably 

the most abundant ophiuroid throughout the Indo–Pacific, where it forms dense aggregations in 

intertidal reef flat, rubble and sand/rubble habitats40,193. It is highly fecund and has a planktotrophic 

larva with a probable two to three week dispersive phase54. Ophiocoma scolopendrina seems to be an 

opportunistic species but, as a specialist of the intertidal, is a heat-tolerant (eurythermal) species193. 
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At present, this brittle star is locally superabundant in shallow water on Lizard Island and elsewhere 

in the northern GBR, but is only occasionally encountered on the southern GBR (Byrne unpublished 

data). Although a southward expansion is likely, it is not clear how it may respond to warming of the 

northern regions of the GBR. Ophiocoma scolopendrina is a robust species and may be one of the first 
indicators of faunal change in the intertidal on the southern GBR. 

The broad latitudinal distribution of many invertebrates along the GBR indicates that they can 
reproduce across a range of temperatures, including those at the northern and southern margins of 
the GBR. Range extensions of species southward along the GBR and changes in reproductive timing 
as a phenotypic response are likely to occur in response to climate change203,28. The southern GBR 
may therefore function as a refuge of biodiversity if reproductive and recruitment failure occurs in a 
warmer northern GBR. 

Species that now inhabit the GBR and breed successfully at their southern limits in subtropical 
or temperate waters are probably able to extend their range further south with increasing water 
temperature, subject to appropriate habitat. Such frontier species may be best adapted to temperature 
changes associated with global climate change. As they already occur in limited numbers in cooler 
waters, range shifts would probably be relatively rapid, with southern populations increasing and 
northern populations decreasing. Some invasive species seem to have the adaptive capacity to cope 
with increasing temperatures. Fields et al.86 found that invasive species of Mytilus were better adapted 
than native species to increases in changes in temperature with regards to their physiology.

Southern extension of species will depend on available substrate. Those species associated with 
coral substrates may be limited in their ability to move southwards, whereas benthic invertebrates 
occurring on inter-reef areas are less likely to be limited by substrate availability. For many groups 
such as polychaetes (Hutchings unpublished data), molluscs (W Ponder pers comm) and probably 
Crustacea (Ahyong unpublished data), a greater diversity occurs in coral rubble and soft sediments 
than associated with live coral substrates. Therefore, while loss of coral through regular bleaching 
events would change the community, it might not appreciably impact the overall diversity of these 
groups. In contrast, many species of soft corals have very specific habitat requirements such as light 
availability, wave and flow exposure, steepness of the reef slope and sedimentation rates80. Suitable 
substrate for new recruits are generally more limited for soft corals, so their ability to move south will 
be determined by the availability of hard substrates, which are somewhat lacking south of the current 
boundaries of the GBR.

11.2.4.2 Sea level rise

Mobile species can migrate landwards if suitable habitats are available, but sedentary species can 
only migrate through successful larval recruitment to newly established marine habitats (for further 
comments see chapters 8, 9 and 20).

11.2.4.3 Light spectra 

Some tropical marine ecosystems seem to have marginal capacity to cope with turbid conditions, 

periodic storms and sedimentation that increase light attenuation as confirmed by recent 

observations165,207 and examination of the fossil record241. On the GBR, benthic invertebrates with 

photosymbionts already at their range limits may become locally extinct with increased turbidity 



332 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

and sedimentation. The severity of the response may depend on the animal’s reliance on its 

photosymbionts. For example, if the animal can obtain sufficient nutrients directly from feeding 

during periods of turbidity and sedimentation, the lack of light may cause few problems, and 

increased suspended organic particles may even contribute significantly to nutrition8. However, if the 

animal depends heavily on its photosymbionts for nutrients, periods of turbidity may be fatal.

11.2.4.4 Ocean circulation, ocean acidification, physical disturbance, rainfall and  
river flood plumes

Some species may benefit from ocean circulation changes through recruitment, providing such 

changes increase favourable conditions for larvae. For example, populations of the seashell Strombus 

luhuanus on the GBR showed consistently high recruitment for two years following ENSO events, 

likely due to ocean circulation changes and upwelling of nutrient-rich waters46. 

In the fossil record there are many examples of dramatic changes in faunal composition following 

major shifts in circulation, the formation of the circumpolar current242 and the Gulf Stream being 

two key examples. With these major changes in circulation and associated temperature changes, 

faunal composition changed completely, suggesting little or no adaptive capacity when changes are 

massive. However, smaller changes at temperate latitudes during the Pleistocene suggest that some 

adaptation is possible121,153. Clearly, the rate and magnitude of change will determine whether the 

fauna can adapt. 

If changes are short-term and intermittent, adults may be able to survive periods of limited food 

supply by absorbing body tissue and stopping or reducing reproduction (eg sea urchins38,30). Some 

larvae have the ability to delay settlement until a suitable substrate is found (eg crustaceans205 and 

molluscs97,231, but this comes at the cost of reduced growth or prolonged time in vulnerable larval 

stages42,97,231.

The capacity of most benthic invertebrates to adapt to increased storm activity is probably limited. 

One area worthy of further investigation is morphological plasticity - perhaps growth forms of 

sedentary or colonial species may be able to change. Various coral species exhibit different degrees 

of arborescence according to habitat and many nephtheid species (octocorals) prevent tear damage 

during storms by temporarily contracting their colonies80. 

There is likely to be no short-term capacity for marine invertebrates to adapt to changing rainfall and 

river flood plumes, given their limited ability to osmoregulate.

The impact of ocean acidification on calcifying marine invertebrates will depend on species’ 

adaptability and there are few experimental data on this. The genetic control of skeleton formation 

in marine invertebrates is precise and the physiological processes involved are complex. Skeleton 

formation is similar among the echinoderm classes that diverged over 500 million years ago. This 

indicates that these and other calcifying benthic invertebrates will have limited capacity to adapt their 

skeleton forming mechanisms in response to the comparatively rapid changes expected in ocean pH. 

The decrease in pH of sea water will be greatest in shallow water and so populations of some species 

living at greater depth may be less affected by ocean acidification.
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A multitude of factors contribute to the effect of changes in ocean circulation on marine invertebrate 

distributions (eg organismal biology and life history, flow fields, coastline topography, habitat and 

settlement preferences, and the physics of transport) so predictions about outcomes of such circulation 

changes are difficult. However, some results suggest that simple, common flow fields, which are often 

observed in association with biogeographic boundaries worldwide, might potentially constrain the 

geographic range of a species, even when suitable habitat outside that range is abundant. Such 

boundaries can function as barriers to dispersal and range expansion, with their permeability critically 

depending on the species’ life history and temporal variability in the nearshore flow field96.

11.2.5 Vulnerability and thresholds 

11.2.5.1 Ocean circulation

Larvae dispersed to unsuitable habitats will die, as will adults unable to feed effectively. Obviously, larvae 

of species dependent on coral substrate for settlement may be highly vulnerable, especially southern 

populations due to limited areas of reef south of the GBR115,116. Species colonising inter-reef habitats 

may have more opportunities to settle outside of the GBR, because of the more ‘generalised’ habitat. 

Extensive studies have shown the importance of substrate for marine invertebrate settlement51,174,98,104. 

11.2.5.2 Water temperature

Distribution changes in direction and magnitude are largely unknown and difficult to predict for 

benthic invertebrates. However, inshore communities may be more at risk than those offshore, and 

species already at their temperature limits are most at risk. These species may be able to move south 

as frontier species, but this depends on the availability of suitable habitat. The fossil record indicates 

that migratory response to changing temperature is species-specific1,17,264. For example, as a result of 

climate change during the late Quaternary, the bivalve Venericardia procera migrated northwards in 

the Atlantic while the gastropod Tegula atra became locally extinct1. 

Life-history strategies will likely play an important role in the ability of a species to migrate in 

response to changes in water temperature. In sponges, life-history strategies vary considerably 

across different taxa, with exact details frequently unknown179. External gamete production is often 

highly synchronous and putatively controlled by diverse exogenous and endogenous events, often 

shortly before the peak summer temperature is reached89. Sponges with brooded larvae, especially 

in sub-littoral and intertidal species, may release gametes continuously throughout the year, while 

others release in one or two peaks, usually during the warm season. The duration of the reproductive 

period may also be controlled by environmental factors such as water temperature, and significant 

inter-population differences in timing have been observed179. Another factor that may be important 

is whether species with short life cycles can adapt better than longer-lived species, especially if 

temperature increases are rapid. Perhaps some insight could be obtained by examining invasive or 

‘weed’ species that can build up large populations rapidly178. 

Temperature and developmental rates positively correlate in many marine invertebrates195. Any increase 

in temperature will likely cause higher growth rates in embryos, larvae and juveniles, although such 

change would vary according to temperature change, spawning behaviour and species. However, 
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other abiotic factors may interact with temperature to stunt development125,218, highlighting the need 

to consider other potential variables associated with global or local change. 

In adults, temperature may not always significantly affect growth. In a survey of molluscs at Heron 
Island, Frank88 found that shell growth and temperature were not related within a single population. 
However, shell growth preceded reproduction in some species88, so temperature may indirectly affect 
adult growth by affecting the timing of reproduction. 

Many invertebrates, including echinoderms and polychaetes, are known to participate in mass 
spawning of corals12. This annual event is controlled by lunar cues and is potentially fine-tuned 
by water temperature. Lunar cues are likely to initiate this reproductive event, regardless of sea 
temperature change. However, too little is known about the influence of temperature to make useful 
predictions. On the southern GBR, echinoderms also spawn around the time that corals release. 
Hypotheses explain the evolution of mass spawning among different species. Firstly, there is a 
relationship between mass spawning and temperature differential. Mass spawning occurs in regions 
where there is a greater difference in seasonal temperatures. On the GBR, where thermal conditions 
fluctuate seasonally, this results in species taking advantage of optimal conditions. Mass spawning 
swamp predators and increases the survivorship potential of each species12. Ultimately, it is unknown 
why species on the GBR spawn synchronously, but climate change may nevertheless interfere directly 
or indirectly with current spawning patterns. Climate change may also affect fecundity and body size, 
but there are currently limited data available for non-coral benthic marine invertebrates. 

Marine intertidal molluscs, such as oysters, are exposed to multiple stressors in estuaries, including 
varying environmental temperature and levels of trace metals that may interactively affect their 
physiology. Exacerbation of cadmium effects by elevated temperature suggests that oyster populations 
subjected to elevated temperature may become more susceptible to trace metal pollution258. This is 
an important issue given the increasing human population along the Queensland coast and potential 
consequences for the aquaculture industry.

11.2.5.3 Ocean acidification

Any reductions in densities of coral skeletons will impact on the boring and cryptofaunal communities 
present within live and dead coral138. Similarly, changes to encrusting communities have the potential to 
modify the suite of benthic invertebrates that are associated with such communities. For many benthic 
invertebrates the most vulnerable life stage is their pelagic larva. The threshold tolerance for survival in 
reduced pH conditions are known for few taxa162,250 and is an area identified for focused research159. 

11.2.5.4 Other light spectra, sea level rise, physical disturbance, rainfall and  
river flood plumes

Species with resident zooxanthellae are likely to be most vulnerable, as sea level rise, rainfall and 
physical disturbance associated with turbidity and sedimentation increase light attenuation and affect 

rates of photosynthesis in symbionts75 (see section 11.2.3.4). Changes in algal distribution and loss of 

live coral colonies will impact on herbivores and those associated with living coral colonies, such as 

obligate symbionts (eg hapalogastrid and trapeziid crabs45).
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The vulnerability of invertebrates to sea level rise will largely be determined by the speed and 

magnitude of sea level rise. Vertical accretion rates of coral reefs are not predicted to be sufficient to 

keep up with an estimated sea level rise of 15 mm per year (eg Buddemeier and Smith32). However, 

the fossil record shows that some Pacific coral reefs (eg the Huon Peninsula, Papua New Guinea, kept 

pace with sea level changes during the Younger Dryas Event at the end of the last glacial maximum 

(approximately 11,000 years before present), when sea level rose by 50 metres over about 5,000 

years (a rate of 10 mm per year)48. During the same period the growth on the GBR often lagged 

behind67. Evidence from a Triassic reef in the Austrian Alps, however, suggests that the observed three 

well-defined reef growth stages were not only affected by small-scale sea level fluctuations, but also 

by storm damage and increased sedimentation input20. 

Intertidal and shallow water species are most vulnerable to increased storm activity. Increased river 

flow and sedimentation will most severely impact sessile or infaunal species that cannot avoid the 

disturbance. They will be buried, torn from the substrate or washed away. In any case, they are unlikely 

to be able to reburrow or reattach themselves to the substrate and will most likely perish. The success 

of settlement or resettlement is inversely correlated with sediment depth, and there is a general 

trend of shifting community structure observed for sponges based on increasing sedimentation and 

resuspension16,298,44 (see section 11.2.1.4). 

Fringing reefs can effectively buffer wave action, but loss of reef framework already weakened by 

bioerosion, is far more susceptible to breakage during storms, which leads to increased erosion 

of beaches and coastal structures143. Significant differences in bioeroding communities, strongly 

influenced by water quality, are present both within and between reefs and across the shelf, at least in 

the northern GBR199. Coral substrate with boring communities dominated by boring sponges may be 

more flexible and better able to withstand the shearing forces of storms than communities dominated 

by other borers.

The timing of fresh water inputs is critical. Larvae may be far more susceptible to surface plumes than 

adults, so fresh water influxes during reproductive periods may have a greater impact than at other 

times (Przeslawski216 and literature cited therein). This is particularly important for species that die after 

spawning because it may lead to loss of an entire season’s recruitment. 

All the above factors will act synergistically, and the impact on benthic invertebrates will vary 

according to existing natural and anthropogenic stressors (eg ultraviolet radiation, overfishing and 

terrestrial runoff) and the rates of environmental change. 

11.3 Linkages with other ecosystem components
The vertical linkages that exist in lagoon systems on the GBR are detritus driven with tight nutrient 

cycling. One of the most important sources of detritus is coral mucous. If the linkage between coral 

and soft-sediment communities is lost with a reduction in productivity, the abundance of benthic 

species will decrease. In addition, changes in benthic-pelagic coupling may have detrimental effects 

on both benthic and planktonic invertebrates (eg diurnal migration of crustaceans; McKinnon et al. 

chapter 6, Kingsford and Welch chapter 18). 
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Horizontal linkages exist between reefs and soft-sediments, including seagrass beds and mangroves 

(Waycott et al. chapter 8 and Lovelock and Ellison chapter 9). For example, penaeid prawns support 

a multi-million dollar fishery off the coast of eastern Queensland. Penaeids are typically trawled from 

nearshore and inter-reef areas. Larvae of most commercial penaeids in GBR waters require nearshore 

or estuarine seagrass habitats for settlement and growth to maturity, and consequently are highly 

susceptible to loss of seagrass. Some species, such as the banana prawn (Fenneropenaeus merguiensis) 

and giant tiger prawn (Penaeus monodon), favour turbid inshore habitats105,106. In other species, such 

as the red-spot king prawn (Melicertus longistylus), juveniles use the reef flat as a nursery area, and 

adults occupy the adjacent lagoon and inter-reef carbonate sediments72,107. Juveniles of most species 

of commercial penaeid, however, ‘grow out’ in estuaries and nearshore seagrass beds, and migrate to 

offshore lagoon and inter-reef waters. Similarly, commercial crab species, such as the blue swimming 

crab (Portunus pelagicus) and mud crab (Scylla serrata), are tied to seagrass beds as juveniles and 

move into deeper water as adults, with the latter species migrating offshore. Any factors that reduce 

the extent or quality of seagrass habitats could negatively impact prawn and crab populations, and 

the productivity of the fishery. For example, seasonal reductions in salinity and increased turbidity 

associated with high summer rainfall appear to be a primary determinant of seagrass species 

distribution29,60. Moreover, increased nutrient loads from terrestrial runoff are known to be detrimental 

to penaeid larvae187,271. High summer river flows are linked to higher productivity of several fisheries, 

partly through the stimulating downstream movement of individuals and partly through stimulating 

growth rates and survivorship through increased primary productivity. High summer flows are 

important for emigration of juvenile prawns and sub-adults to near- and offshore habitats, and may 

further stimulate production through increased food availability170. Despite the complex interactions 

of changing environmental parameters, changes in rainfall patterns and freshwater input will directly 

impact seagrass communities (Waycott et al. chapter 8). Obviously, the net impact will depend on 

the magnitude and direction of changes in environmental parameters.

Benthic invertebrates are an important food source for many animals higher in the food chain such 

as fish, marine turtles and permanent and migratory birds. Therefore, reduction or loss of these 

invertebrate communities can have severe effects at higher trophic levels. 

11.3.1 Constraints to adaptation 

Lagoon and subtidal species may be more vulnerable to changing conditions than intertidal species 

because they presumably have not evolved the same level of protective functions to dynamic and stressful 

conditions. For example, interspecific comparisons of turban snails revealed that an intertidal species had 

more effective heat-shock responses than a subtidal species270,269. However, the degree of generality of this 

observation is unknown. At least among polychaetes and crustaceans, many intertidal species also occur 

in shallow subtidal habitats, suggesting no difference in ability to respond to stressful conditions.

11.3.2 Interactions between stressors 

The most tangible and visible impact of climate change on the GBR to date has been mass coral 

bleaching. This undoubtedly has had a major impact on obligate associates of corals and the non-

coral benthos (eg lower food availability and habitat loss). Surprisingly, the impact of coral bleaching 

on these organisms has not yet been monitored on the GBR. 
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Among benthic invertebrates, interactions between environmental factors may play a particularly 

important role in assessing climate change impacts. Benthic invertebrates are often sessile (eg 

sponges and bryozoans), slow moving (eg many echinoderms and gastropods) or infaunal, and are 

therefore restricted in their ability to escape unfavourable conditions that may amplify the negative 

effects of stressors associated with climate change. 

Many studies examining the impacts of climate change focus on single factors, and these may 

falsely suggest that increased temperature, current changes, varying precipitation or other stressors 

associated with climate change will not significantly affect an organism. Whereas a single factor 

considered in isolation may have a negligible overall effect, the combined impact of multiple factors 

may be significant. For example, a single-factor study examining the effects of UVR on marine 

invertebrate development suggested that molluscan embryos of Siphonaria denticulata and Bembicium 

nanum were invulnerable to natural intensities of UVR218. Subsequent multifactor experiments revealed 

that these ‘invulnerable’ embryos are in fact susceptible to the negative effects of UVR when exposed 

to synchronous stressors, including those associated with climate change such as temperature, salinity 

and desiccation217. Interactions between abiotic and biotic factors may also affect larval settlement 

and behaviour, directly affecting community composition and structure. Settlement cues for marine 

invertebrate larvae probably involve multiple factors156,282, including temperature and salinity266, each 

of which will be modified by global climate change. 

The invasive ability of marine invertebrates should also be considered in a multifactor context234. 

Single-factor studies are relatively simple with easily interpreted results, but they may underestimate 

‘real-world’ effects. Such studies are most appropriate as a baseline or platform for further multifactor 

research. Some data suggest that impacted communities are more susceptible to invasion by 

introduced species59. However, as most introduced species arrive in estuaries and tend to remain 

there, it is difficult to know if impacted reef environments are susceptible to these invaders. 

Multifactor experiments are even more important when the relationships between potential stressors 

are considered. Climate change will involve multiple abiotic factors such as fresh water input (salinity) 

and temperature, and these factors will in turn affect other abiotic and biotic stressors such as oxygen 

availability and parasitism. This forms a complex web of potential interactions (Figure 11.2). To further 

complicate matters, the interactive effects of many stressors, including those associated with climate 

change, are complex125 and have both acute and chronic effects256. Some stressors may even have 

different effects on the same species, depending on the history of the assemblage or environment135. 

Thus, to avoid oversimplification, generalisations concerning interactive effects of abiotic and biotic 

factors should be made cautiously and only when numerous species have been examined. The use of 

multifactor experiments to study impacts of climate change at appropriate temporal, taxonomic, and 

spatial scales represents a significant challenge to ecologists but is crucial to provide an ecologically 

realistic assessment. 

11.3.3 Threats to resilience 

As stated previously, the response of marine benthic communities to climate change is difficult to 

assess because of the lack of knowledge about basic distribution and ecology for most species. 
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Figure 11.2 Interactions of abiotic and biotic variables that can affect benthic invertebrates 
(adapted from Przeslawski216). Variables listed do not include events associated with them  
(eg flooding, runoff and storms), rather only the specific stressors are included� 

Similarly, resilience to these impacts is largely unknown. While the ecosystem may be able to recover 

from single events, we believe the potential for recovery from multiple stressors or recurrent events 

expected from climate change would be significantly reduced. Such a situation is being observed with 

coral communities that have been bleached several times. These reefs do not recover to pre-bleached 

conditions124 before being subjected to another bleaching event, supporting the contention that it is 

the speed, frequency and magnitude of change that are the major threats.

11.4 Summary and recommendations 

11.4.1 Major vulnerabilities to climate change 

Species that depend on coral reef substrate will have reduced success with loss of coral communities 

and increased rates of bioerosion, leading to reduction of available reef substrates (Hoegh-Guldberg  

et al. chapter 10, Fabricius et al. chapter 17) (Figure 11.3). In contrast, faunas associated with soft 

bottoms, including those in inter-reef/shelf habitats or small coral isolates, will primarily be affected by 

changes in temperature (Figure 11.4) and may be able to survive either by moving into deeper, cooler 

water or into higher latitudes. Intertidal communities, including coastal/estuarine communities, will 

be impacted by physical loss of habitat in some areas as a result of sea level rise and more frequent 

storm events, but perhaps also with expansion of habitat in other areas (Sheaves et al. chapter 19) 

(Figure 11.5). Communities will be impacted by increased air and ocean temperatures, as well as 

changes in rainfall patterns. 

�	 This list is by no means comprehensive, but instead illustrates the relationships between potential stressors. The 
relationships illustrated are not ubiquitous or exhaustive, rather, each arrow represents a potential relationship that  
has been identified in at least one study. A single arrow indicates a relationship in which one variable affects the other. 
A double arrow indicates a relationship in which both variables affect each other.
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10 Sanford 1999
11 Ma & Purcell 2005
12 Williamson et al 1999

13 Lenniham et al 1999
14 Gillanders & Kingsford 2002
15 Przeslawski 2005
16 Wissman 2003



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

339Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

11.4.1.1 Extinctions and change of reef framework 

Some populations of invertebrates, particularly those in the northern GBR, may be vulnerable to 

extinction due to their inability to respond phenotypically to the pace of environmental change. This 

may be a widespread phenomenon given that the entire Indo–Pacific will be subjected to similar 

warming as the northern GBR, although populations currently in the cooler part of their ranges may 

survive. Local extinction risk has been highlighted in terrestrial models with extinction rates between 

15 and 37 percent predicted for mid-range climate change scenarios267. A decline in invertebrate 

community diversity in response to ocean warming has already been documented for intertidal 

habitats in North America240,254, but similar studies have yet to be conducted on the GBR. Similarly, 

the studies of Tomanek269 and Sorte and Hofmann261 have found that the gastropod Nucella caniculata 

is more stressed at its range edges, supporting the suggestion that many intertidal invertebrates may 

be at the limit of their ability to adapt, even to a small increase in temperature269. Much remains to 

be investigated as to the ability of invertebrates to adapt to higher temperatures.

During the Pleistocene era, sea level rise combined with increased water temperature may have 

contributed to periods of extinction17. However, Indo–West Pacific coral and mollusc species had 

a lower rate of extinction then their Caribbean counterparts256, suggesting that this region may be 

less vulnerable to species extinction than other tropical regions. Furthermore, although coral reef 

Figure 11.3 Main climate change drivers that may affect benthic invertebrates living on reefs
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Figure 11.4 Main climate change drivers that may affect benthic invertebrates of  
inter-reef/shelf habitats

communities in the Pacific changed during these periods of sea level rise, there was little evidence of 

large-scale or permanent loss of overall diversity256. 

Compared to other tropical marine ecosystems in the Indo–West Pacific, there are relatively few 

narrow-range endemics on the GBR, and the risk of complete extinction may be comparatively low 

overall. There are exceptions, however, including narrow-range endemic sea stars on the Queensland 

coast and GBR islands62,37. Partial and local extinctions are a risk, perhaps particularly in the case of 

coastal species. Hooper and Kennedy129 and Hooper and Ekins128 report between 50 and 70 percent 

of sponge species from subtropical and tropical waters, respectively, are known only from single 

specimens. Thus, significant proportions of genetic diversity are at risk through small-scale regional 

extinctions driven by climate change. 
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Increased rates of coral death following bleaching and other physiological stresses result in increased 

rates of bioerosion leading to loss of reef framework202. If scleractinian corals do not readily adapt to 

rising sea surface temperatures and if frequency of bleaching events increases, increasing proportions 

of structural elements of the reef that would normally be quickly recolonised (eg coral skeletons) 

remain barren for longer periods. As a result, it is expected that abundance and density of bioeroding 

sponges (primarily the families Clionaidae, Spirastrellidae and Alectonidae) will increase and further 

weaken the structural framework of the reef239. With an additional expected increase in tropical 

cyclone intensity and frequency, complete destruction of large reef areas, especially the more exposed 

parts, is likely. 

Figure 11.5 Main climate change drivers that may affect benthic invertebrates living in  
coastal and estuarine habitats of the GBR
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Marine benthic invertebrates are not only vulnerable to extinction from overwhelming environmental 

stressors, but from loss of habitat. Those particularly vulnerable are obligate associates of live corals, 

including molluscs (both gastropods and some bivalves)232, hapalocarcinid and trapeziid crabs45, 

polychaete worms255 and coral-associated barnacles6. Similarly, many sponges are niche specialists on 

reefs, found only in particular habitats such as in caves, overhangs and coral interstices127, such that 

degradation or destruction of niches will impact on the constituent species. Crinoids are a diverse 

assemblage of coral reef specialists78,39 that depend on live coral reef habitat and are depleted when 

corals are impacted by crown-of-thorns starfish78. 

11.4.1.2 Range extensions of keystone species 

Range extensions of keystone species can have a disproportionate effect on community structure. A 

recent example is the range extension of the sea urchin Centrostephanus rodgersii into Tasmania, likely 

due to changes in current flow associated with climate change7. In Tasmania this urchin has contributed 

to a phase shift from a kelp-dominated community to a barren seascape7. Another example is the recent 

invasion of the clam Potamocorbula amurensis in San Francisco Bay. This species has greatly contributed 

to the regional CO2 source through its respiration and calcification, with associated implications for 

ocean acidification50. With range shifts of keystone species, the GBR may be similarly vulnerable to 

invasive species, particularly if invasive species are able to recruit earlier than native species262. 

The corallivorous crown-of-thorns starfish, Acanthaster planci, has caused well-documented and 

widespread damage to many coral reefs in the Indo–Pacific over the past four decades23. Crown-of 

thorns starfish generally occur in low densities on the GBR, but periodically appear in large numbers. 

These cycles on the GBR have occurred from 1962 to1976, 1979 to 1991 and 1993 to the present31. 

The outbreak ends when coral prey is exhausted. Reef recovery following intense predation by the 

starfish is variable, with some reefs not recovering for 10 to15 years61. The starfish, while reasonably 

common in the southern GBR, does not appear to exhibit the characteristic outbreak cycle in the 

south that it does in the north, although there was a major outbreak at Elizabeth and Middleton reefs 

in the mid-1980s139. It is likely that sea temperature has a major influence on the timing of spawning 

and on the larval performance in this species. There is potential that populations of the starfish may 

become larger in the south, facilitated by increased temperatures associated with climate change. If 

this temperature rise is accompanied by increased intensity flood plumes and associated nutrients, as 

is predicted, then plagues are likely to become more common in the southern GBR. There is good 

evidence that plagues are facilitated by eutrophic terrestrial runoff21,31. 

Many invertebrates on the GBR have a wide latitudinal distribution, and it is likely that reproduction 

varies markedly between the northern and the southern regions, as shown for corals. For example, 

the echinoderm Ophiocoma dentata spawns at the same time as the corals (November to December) 

on the northern GBR, but in summer and winter on the southern GBR (Byrne unpublished data). The 

generality of this phenomenon on the GBR is unknown. 

11.4.1.3 Community structure 

As already mentioned, range extensions of keystone species can affect community structure7. 

Community structure can also be dramatically altered by changes in substrate. Modeling of bleaching 

events on coral reefs and rates of recovery clearly show that the persistence of hard corals will depend 
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in part on the factors that constrain excessive algal biomass295. If the proportion of algae cover on 

the reef increases – as is already occurring on inshore reefs – this will modify the ability of non-corals 

to recruit to the reef. Relatively few species of molluscs232 and polychaetes138 are associated with live 

corals as opposed to soft sediments or coral rubble. However, changes from living coral substrate 

to dead coral or algae would change these communities dramatically302, not only for the molluscs 

and polychaetes, but also for all other groups that are found predominantly on or in living corals. 

Following from this scenario, increasing algal proliferation would lead to a higher abundance of 

grazers (eg echinoids, gastropods and chitons), followed by excessive bioerosion and loss of reef 

framework and biodiversity202. 

11.4.2 Potential management responses 

Multi-scale approaches may provide suitable management strategies for benthic invertebrates of 

the GBR. This approach is advocated by Chabanet et al.47 to quantify anthropogenic disturbance at 

various scales on tropical reefs, but could be modified to quantify effects of various stressors associated 

with both climate change and direct anthropogenic disturbance. Climate change can be viewed 

as a series of disturbances, some continuous (eg ocean temperature and acidification) and some 

stochastic (eg storms and flooding). A multi-scale approach to climate change on the GBR may allow 

comparison and impact assessment over a range of scales, which is particularly suited to the spatial 

heterogeneity, diversity of life histories and substrate-specificity of benthic invertebrates. 

Building resilience to climate change impacts could be achieved by reducing the impact of  

other anthropogenic stressors such as eutrophication from land runoff, trawling, recreational fishing 

and tourism. 

Education of the public to engender stewardship and community awareness of benthic invertebrates 

and their critical role in GBR ecosystem health will be important to the success of protective 

management strategies. 

Marine invertebrate conservation strategies on the GBR should recognise the possibility of locally 

unique bioactives and intraspecific genetic variation that may be important to the success of species, 

including widespread species. 

11.4.3 Recommendation for future studies 

Given the short time available it is imperative that future studies to assess the impacts of climate 

change are clearly targeted. We suggest that the primary purposes of these studies as related to 

benthic invertebrates should be to:

•	 detect change

•	 implement management strategies

•	 attempt to stop or reduce predicted impacts.

Targeted surveys should be undertaken for a limited number of invertebrate species, which should 

be selected to encompass the range of reproductive strategies found in invertebrates, including both 

sexual and asexual reproduction, brooders and free-spawners, and species with long- and short-lived 
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larvae. These species should also exhibit a range of distributions along the GBR, from widely distributed 

Indo–Pacific species, to ones restricted to particular regions of the GBR and narrow range endemics. 

In addition, targeted species should exhibit a range of life styles and occupy varying habitats both on 

reefs and in inter-reef areas. Species selected should be taxonomically well known and easy to identify 

by non-specialists with limited training (a small workshop of invertebrate biologists could develop 

such a list of target species). The selected taxa should be sampled seasonally to document changes 

in density, timing of spawning, reproductive success, size and community interactions. In addition, 

both commercially and non-commercially important species should be targeted. By sampling along 

the GBR, regional differences should be detected. The surveys must use statistically valid sampling 

techniques to ensure that the results are robust. 

The data from these targeted surveys will highlight the types of species that are most impacted, 

as well as the regions of the reef where maximum impact is occurring. Combining this data with 

concurrently measured physical data, it may be possible to identify other factors that are contributing 

to these highly impacted sites, such as excessive trawling causing increased suspended matter in the 

water column, high nutrient levels from land runoff, high tourist activity, etc. The impact of these 

factors can then be modified by management strategies.

To accurately assess the impacts of climate change and implement appropriate conservation 

management strategies, a measure of stress on GBR organisms is required before they will show visible 

sub-lethal effects. Biochemical measurements of stress seem the most promising method, including 

quantification of heat-shock proteins and thermal acclimation, DNA repair rates and antioxidant 

measurements. Benthic invertebrates are ideal for these studies269. They are relatively easy to collect, 

monitor and culture in the laboratory; represent a huge range of phyla, habitats and life histories for 

comparative analyses; and include genera in which similar work has already been conducted in other 

regions (eg Nucella261 and Tegula269).

The results of these studies will need to be published in recognised scientific journals, but precise 

summaries in plain English also need to be made available to the general public through the media. 

Only then is it likely that there will be enough political will to implement actions to either stop or 

reduce the impacts. 

Finally, given the high profile of the GBRMPA, these results and strategies should then be made 

available worldwide for other managers of tropical marine ecosystems to implement.



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

345Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

References 
1	 Aguirre ML, Sirch Y and Richiano S (2005) Late Quaternary molluscan assemblages from the coastal area of Bahia 

Bustamante (Patagonia, Argentina): paleoecology and paleoenvironments. Journal of South American Earth Sciences 20, 
13–32.

2	 Ahyong ST (2001) Revision of the Australian Stomatopod Crustacea. Records of the Australian Museum, Supplement 
26, 1–326. 

3	 Ahyong ST (2006) Shallow water Stomatopoda of New Caledonia (0-100 m). In: CE Payri and B Richer de Forges 
(eds) Compendium of Marine Species from New Caledonia. Documents Scientifiques et Techniques II7. pp. 291–293.

4	 Allen GR and Steene R (1994) Indo-Pacific Coral Reef Field Guide. Tropical Reef Research, Singapore.

5	 Alongi DM (1990) The ecology of tropical soft-bottom benthic ecosystems. Oceanography Marine Biology Annual 
Review 28, 381–496.

6	 Anderson DT (2003) Barnacles: Structure, Function, Development and Evolution. Chapman and Hall, London. 

7	 Andrew NL and Byrne M (2007) Centrostephanus. In: J Lawrence (ed) The Biology and Ecology of Edible Urchins. Elsevier 
Science, Amsterdam, pp. 191–204.

8	 Anthony KRN and Fabricius K (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying 
turbidity. Journal of Experimental Marine Biology and Ecology 252, 221–253. 

9	 Anthony KRN, Ridd PV, Orpin AR, Larcombe P and Lough J (2004) Temporal variation of light availability in coastal 
benthic habitats: effects of clouds, turbidity, and tides. Limnology and Oceanography 49, 2201–2211.

10	 Arinardi OH (1978) Seasonal variations of certain major zooplankton groups around Panggang Island, northwest of 
Jakarta. Marine Research in Indonesia 21, 61–80. 

11	 Augustin D, Richard G and Salvat B (1999) Long-term variation in mollusc assemblages on a coral reef, Moorea, 
French Polynesia. Earth and Environmental Science 18, 293–296. 

12	 Babcock R, Mundy C, Keesing J and Oliver J (1992) Predictable and unpredictable spawning events: in situ behavioural 
data from free-spawning coral reef invertebrates. Invertebrate Reproduction and Development 22, 213–228. 

13	 Bak RPM (1990) Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Marine Ecology Progress Series 66, 
267–272.

14	 Barry JP, Baxter CH, Sagarin R and Gilman SE (1995) Climate-related long term faunal changes in a California rocky 
intertidal community. Science 267, 672–675. 

15	 Bates WR (2005) Environmental factors affecting reproduction and development in ascidians and other 
protochordates. Canadian Journal of Zoology 83, 51–61.

16	 Battershill CN and Bergquist PR (1990) The influence of storms on asexual reproduction, recruitment, and survivorship 
of sponges. In: K Rützler (ed) New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington, DC,  
pp. 397–403.

17	 Ben AG (2004) Marine Mollusca of oxygen isotope stages of the last 2 million years in New Zealand. Part 1: Revised 
generic positions and recognition of warm-water and cool-water migrants. Journal of the Royal Society of New Zealand 
34, 111–265.

18	 Benzie JAH (1999) Major genetic differences between crown-of-thorns starfish (Acanthaster planci) populations from 
the Indian and Pacific Oceans. Evolution 53, 132–145.

19	 Benzie JAH and Williams ST (1997) Genetic structure of giant clam (Tridacna maxima) populations in the West Pacific 
is not consistent with dispersal by present-day ocean currents. Evolution 51, 768–783.

20	 Bernecker M, Weidlich O and Flügel E (1999) Response of triassic reef coral communities to sea-level fluctuations, 
storms and sedimentation: evidence from a spectacular outcrop (Adnet, Austria). Facies 40, 229–279.

21	 Birkeland C (1982) Terrestrial run-off as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea).  
Marine Biology 69, 175–185. 

22	 Birkeland C (1988) The influence of echinoderms on coral-reef communities. In: M Jangoux and JM Lawrence (eds) 
Echinoderm Studies. Vol 3 AA, Balkema, Rotterdam, pp. 1–79.

23	 Birkeland C and Lucas JS (1990) Acanthaster planci a major management problem of coral reefs. CRC Press, 
Boca Raton. 

24	 Birtles A and Arnold P (1983) Between the reefs: some patterns of soft substrate epibenthos on the central Great 
Barrier Reef. In: JT Baker, RM Carter, PW Sammarco and KP Stark (eds) Inaugural Great Barrier Reef Conference, James 
Cook University Press, Townsville, pp. 159–163.

25	 Birtles A and Arnold P (1988) Distribution of trophic groups of epifaunal echinoderms and molluscs in the soft 
sediment areas of the central Great Barrier Reef. Proceedings of the 6th International Coral Reef Symposium 3, 325–332.



346 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

26	 Borsa P and Benzie JAH (1996) Population genetics of Trochus niloticus and Tectus coerulescens, topshells with  
short-lived larvae. Marine Biology 125, 531–541.

27	 Bouchet P, Lozouet P, Maestrati P and Heros V (2002) Assessing the magnitude of species richness in tropical marine 
environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society 
75, 421–436. 

28	 Bradshaw WE and Holzapfel CM (2006) Evolutionary response to rapid climate change. Science 312, 1477–1478. 

29	 Bridges KW, Phillips RC and Young PC (1982) Patterns of some seagrass distributions in the Torres Strait, Queensland. 
Australian Journal of Marine and Freshwater Research 33, 273–283. 

30	 Brockington S and Clarke A (2001) The relative influence of temperature and food on the metabolism of a marine 
invertebrate. Journal of Experimental Marine Biology and Ecology 258, 87–99.

31	 Brodie J, Fabricius K, De’ath G and Okaji K (2005) Are increased nutrient inputs responsible for more outbreaks 
of crown-of-thorns starfish? An appraisal of the evidence. In: PA Hutchings and D Haynes (eds) Proceedings of 
Catchment to Reef: Water Quality Issues in the Great Barrier Reef Region Conference. Marine Pollution Bulletin 51, 
266–278. 

32	 Buddemeier RW and Smith SV (1988) Coral reef growth in an era of rapidly rising sea level: predictions and 
suggestions for long-term research. Coral Reefs 7, 51–56.

33	 Buitrago J, Capelo J, Gutierrez J, Rada M, Hernandez R and Grune S (2006) Living macromolluscs from a paleo-reef 
region on the northeastern Venezuelan continental shelf. Estuarine Coastal and Shelf Science 66, 634–642.

34	 Byrne M (1995) Changes in larval morphology in the evolution of benthic development by Patiriella exigua 
(Asteroidea), a comparison with the larvae of Patiriella species with planktonic development. Biological Bulletin 188, 
293–305.

35	 Byrne M (2006) Life history evolution in the Asterinidae. Integrative and Comparative Biology 46, 243–254.

36	 Byrne M (In press) Species composition of Australia’s tropical bêche-de-mer sea cucumbers (Echinodermata: 
Holothuroidea) in the Stichopus complex. Biologue 32.

37	 Byrne M and Walker SJ (In press) Distribution and reproduction of intertidal Aquilonastra and Cryptasterina species 
(Asterinidae) from One Tree Island, Southern Great Barrier Reef. Bulletin of Marine Science.

38	 Byrne M, Andrew NL, Worthington DG and Brett PA (1998) The influence of latitude and habitat on reproduction in 
the sea urchin Centrostephanus rodgersii in New South Wales, Australia. Marine Biology 132, 305–318.

39	 Byrne M, Cisternas P, Hoggett A, O’Hara T and Uthicke S (2004a) Diversity of echinoderms at Raine Island, Great 
Barrier Reef. In: T Heinzeller and JH Nebelsick (eds) Echinoderms: München. Taylor and Francis Group, London,  
pp. 159–164. 

40	 Byrne M, Smoothey A, Hoggett A and Uthicke S (2004b) Population biology of shallow water ophiuroids from  
Raine Island and Moulter Cay, Northern Great Barrier Reef. In: T Heinzeller and JH Nebelsick (eds) Echinoderms: 
München. Taylor and Francis Group, London, pp. 165–170. 

41	 Caldeira K and Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425, 365.

42	 Cancino JM and Gallardo JS (2004) Effects of delaying settlement on the life expectancy of the bryozoan Bugula 
flabellata (Bryozoa: Gymnolaemata). Revista Chilena de Historia Natural 77, 227–234.

43	 Cappo M and Kelley R (2001) Connectivity in the Great Barrier Reef World Heritage Area – an overview of pathways 
and processes. In: E Wolanski (ed) Oceanographic Processes of Coral Reefs: Physical and Biological Links in the Great 
Barrier Reef. CRC Press, Boca Raton, pp 161–188.

44	 Carballo JL (2006) Effect of natural sedimentation on the structure of tropical rocky sponge assemblages. Écoscience 
13, 119–130.

45	 Castro P, Ng PKL and Ahyong ST (2004) Phylogeny and systematics of the Trapeziidae Miers, 1886 (Crustacea: 
Brachyura), with the description of a new family. Zootaxa 643, 1–70. 

46	 Catterall CP, Poiner IR and O’Brien CJ (2001) Long-term population dynamics of a coral reef gastropod and responses 
to disturbance. Austral Ecology 26, 604–617.

47	 Chabanet P, Adjeroud M, Andrefouet S, Bozec YM, Ferraris J, Garcia-Charton JA and Schrimm M (2005) Human-
induced physical disturbances and their indicators on coral reef habitats: a multi-scale approach. Aquatic Living 
Resources 18, 215–230.

48	 Chappell J and Polach H (1991) Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea. 
Nature 349, 147–149.

49	 Chapple JP, Smerdon GR, Berry RJ and Hawkins AJS (1998) Seasonal changes in stress-70 protein levels reflect thermal 
tolerance in the marine bivalve Mytilus edulis L. Journal of Experimental Marine Biology and Ecology 229, 53–68.



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

347Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

50	 Chauvaud L, Thompson JK, Cloern JE and Thouzeau G. (2003) Clams as CO2 generators: The Potamocorbula amurensis 
example in San Francisco Bay. Limnology and Oceanography 56, 391–407.

51	 Chia FS and Rice ME (eds) (1978) Settlement and Metamorphosis of Marine Invertebrate Larvae. Elsevier, New York. 

52	 Church JA and White NJ (2006) A 20th century acceleration in global sealevel rise. Geophysical Research Letters 33, 
LO1602, doi: 10.1029/2005GL024862

53	 Cimino G, Fontana A and Gavagnin M (1999) Marine opisthobranch molluscs: Chemistry and ecology in sacoglossans 
and dorids. Current Organic Chemistry 3, 327–372.

54	 Cisternas P, Selvakumaraswamy P and Byrne M (2004) Evolution of development and the Ophiuroidea – revisited.  
In: T Heinzeller and JH Nebelsick (eds) Echinoderms: München. Taylor and Francis Group, London, pp. 521–526. 

55	 Clark AM (1976) Echinoderms of coral reefs. In: OA Jones and R Endean (eds) Biology and Geology of Coral Reefs VIII. 
Biology 2. Academic, New York 10, pp. 105–204. 

56	 Clark AM and Rowe FWE (1971) Monograph of Shallow-water Indo-West Pacific Echinoderms. Trustees of the British 
Museum (Natural History), London.

57	 Clark HL (1946) The echinoderm fauna of Australia: its composition and its origin. Papers Department of Marine Biology 
Carnegie Institution Washington 566, 1–567. 

58	 Clark TH and Morton B (1999) Relative roles of bioerosion and typhoon-induced disturbance on the dynamics of a 
high latitude scleractinian coral community. Journal of the Marine Biological Association of U.K. 79, 803–820.

59	 Cohen AN and Carlton JT (1998) Accelerating invasion rate in a highly invaded estuary. Science 379, 555–559.

60	 Coles RG, Lee Long WJ, Squire BA, Squire LC and Bibby JM (1987) Distribution of seagrasses and associated juvenile 
commercial penaeid prawns in north-eastern Queensland waters. Australian Journal of Marine and Freshwater Research 
38, 103–119. 

61	 Colgan MW (1987) Coral reef recovery on Guam (Micronesia) after catastrophic predation by Acanthaster planci. 
Ecology 68, 1592-1605.

62	 Dartnall AJ, Byrne M, Collins J and Hart MW (2003) A new viviparous species of asterinid (Echinodermata, Asteroidea, 
Asterinidae) and a new genus to accommodate the species of pan-tropical exiguoid sea stars. Zootaxa 359, 1–14. 

63	 Davie PJF (2002) Crustacea: Malacostraca: Phyllocarida, Hoplocarida, Eucarida (Part 1). In: A Wells and WWK Houston 
(eds) Zoological catalogue of Australia. Vol. 19.3A. CSIRO Publishing, Collingwood.

64	 Davie PJ and Hooper JNA (1994) The Queensland Museum and marine studies in Moreton Bay. In: JG Greenwood and 
NJ Hall (eds) The Future of Marine Science in Moreton Bay. University of Queensland Press, St. Lucia, pp. 105-112. 

65	 Davies PJ (1992) Origins of the Great Barrier Reef. Search 23, 193-196.

66	 Davies PJ (1994) Evolution of the Great Barrier Reef. Australian Geologist 92, 21–24.

67	 Davies PJ and Hopley D (1983) Growth fabrics and growth rates of Holocene reefs in the Great Barrier Reef. Journal of 
Australian Geologists and Geophysicists 8, 237–251.

68	 Day J, Fernandes L, Lewis A, De’ath G, Slegers S, Barnett B, Kerrigan B, Breen D, Innes J, Oliver J, Ward T and Lowe D 
(2002) The Representative Areas Program for protecting biodiversity in the Great Barrier Reef World Heritage Area. In: 
K Moosa, S Soemodihardjo, A Nontji, A Soegiarto, K Romimohtarto, Sukarno, and Suharsono (eds) Proceedings of the 
Ninth International Coral Reef Symposium. pp. 687–696.

69	 DeFelice RC and Parrish JD (2001) Physical processes dominate in shaping invertebrate assemblages in reef-associated 
sediments of an exposed Hawaiian coast. Marine Ecology Progress Series 215, 121–131. 

70	 DEH (Department of Environment and Heritage) (2004) Assessment of the Queensland East Coast Tropical Rock Lobster 
Fishery. Australian Government, Department of the Environment and Heritage, pp. 1–20.

71	 Devaney DM (1974) Shallow-water asterozoans of Southeastern Polynesia. Micronesica 10, 105–204. 

72	 Dredge MCL (1990) Movement, growth and natural mortality rate of the red spot king prawn, Penaeus longistylus 
Kubo, from the Great Barrier Reef Lagoon. Australian Journal of Marine and Freshwater Research 41, 399–410.

73	 Drew EA and Abel KM (1988) Studies on Halimeda. I. The distribution and species composition of the Halimeda 
meadows through the Great Barrier Reef Province. Coral Reefs 6, 195–205. 

74	 Duran S and Rützler K (2006) Ecological speciation in a Caribbean marine sponge. Molecular Phylogenetics and 
Evolution 40, 292–297. 

75	 Elfwing T, Blidberg E, Sison M and Tedengren M (2003) A comparison between sites of growth, physiological 
performance and stress responses in transplanted Tridacna gigas. Aquaculture 219, 815–828.

76	 Endean R (1957) The biogeography of Queensland’s shallow water echinoderm fauna (excluding Crinoidea) with a 
re-arrangement of the faunistic provinces of tropical Australia. Australian Journal of Marine and Freshwater Research 8, 
233–273. 



348 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

77	 Erdmann MV (1997) The ecology, distribution and bioindicator potential of Indonesian coral reef stomatopod communities. 
PhD Thesis, University of California, Berkeley.

78	 Fabricius K (1994) Spatial patterns in shallow-water crinoid communities in the central Great Great Barrier Reef. 
Australian Journal of Marine and Freshwater Research 45, 1225–1236. 

79	 Fabricius K (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis.  
Marine Pollution Bulletin 50, 125–146. 

80	 Fabricius K and Alderslade P (2001) Soft corals and sea fans. A comprehensive guide to the tropical shallow-water genera 
of the Central –West pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science Townsville.

81	 Fabricius K and De’ath G (2000) Soft Coral Atlas of the Great Barrier Reef. Australian Institute of Marine Science,  
http://www.aims.gov.au/pages/research/soft-corals/soft-corals00.html.

82	 Fabricius K, De’ath G, McCook L, Turak E and Williams DM (2005) Changes in algal, coral and fish assemblages along 
water quality gradients on the inshore Great Barrier Reef. Bulletin of Marine Science 51, 384-398. 

83	 Fahey SJ and Garson MJ (2002) Geographic variation of natural products of tropical nudibranch Asteronotus cespitosus. 
Journal of Chemical Ecology 28, 1773–1785. 

84	 Faulkner J (2002) Marine natural products. Natural Products Reports 19, 1–48. 

85	 Feely R, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ and Millero FJ (2004) Impact of anthropogenic CO2 on the 
CaCO3 systems in the oceans. Science 305: 362.

86	 Fields PA, Rudomin EL and Somero GN (2006) Temperature sensitivities of cytosolic malate dehydrogenases from 
native and invasive species of marine mussels (genus Mytilis): sequences-function linkages and correlations with 
biogeographic distribution. Journal of Experimental Biology 209, 656–667.

87	 Fitzhenry TM and Podolsky BE (2003) Consequences of site selection, temperature stress and its effects on 
reproductive success in Chthamalus fragilis. Annual Meeting of the Society for Integrative and Comparative Biology 
2004, New Orleans LA, USA. Integrative and Comparative Biology 43, 963. 

88	 Frank PW (1969) Growth rates and longevity of some gastropod mollusks on the coral reef at Heron Island.  
Oecologia 2, 232–250. 

89	 Fromont J (1994) Reproductive development and timing of tropical sponges (Order Haplosclerida) from the Great 
Barrier Reef, Australia. Coral Reefs 13, 127–133. 

90	 Fromont J and Bergquist PR (1994) Reproductive biology of three sponge species of the genus Xestospongia  
(Porifera: Demospongiae: Petrosida) from the Great Barrier Reef. Coral Reefs 13, 119–126. 

91	 Fromont J and Garson M (1999) Sponge bleaching on the West and East coasts of Australia. Coral Reefs 18, 340.

92	 Frouin P and Hutchings PA (2001) Macrobenthic communities in a tropical lagoon (Tahiti, French Polynesia, Central 
Pacific). Coral Reefs 19, 277–285. 

93	 Fujisawa H (1989) Differences in temperature dependence of early development of sea urchins with different growing 
seasons. Biological Bulletin 176, 96–102.

94	 Garcia A, Jones BG, Chenhall BE and Murray-Wallace CV (2002) The charophyte Lamprothamnium succinctum as an 
environmental indicator: a Holocene example from Tom Thumbs Lagoon, eastern Australia. Alcheringa 26, 507–518.

95	 Garzón-Ferreira J and Zea S (1992) A mass mortality of Gorgonia ventalina (Cnidaria: Gorgoniidae) in the Santa Marta 
area, Caribbean coast of Columbia. Bulletin of Marine Science 50, 522-526.

96	 Gaylord B and Gaines SD (2000) Temperature or Transport? Range Limits in Marine Species Mediated Solely by Flow. 
The American Naturalist 155, 769–789.

97	 Gebauer P, Paschke K, and Anger K (2003) Delayed metamorphosis in Decapod crustaceans: evidence and 
consequences. Revista Chilena de Historia Natural 76, 169–175.

98	 Giangrande A (1997) Polychaete reproductive patterns, life cycles and life histories: an overview. Oceanography and 
Marine Biology: An Annual review 35, 323–386.

99	 Gibbs PE, Clark AM and Clark CM (1979) Echinoderms from the northern region of the Great Barrier Reef, Australia. 
Bulletin British Museum Natural History (Zoology) 30, 103–144. 

100	 Gordon D and Bock P (In press) Bryozoans. In: PA Hutchings, MJ Kingsford and O Hoegh-Guldberg (eds) The Great 
Barrier Reef; Biology, environment, and management. CSIRO Publishing, Collingwood.

101	 Gosliner TM and Draheim R (1996) Indo-Pacific opisthobranch gastropod biogeography: how do we know what we 
don’t know? American Malacological Bulletin 12, 37–43. 

102	 Gosliner TM, Behrens DW and Williams GC (1996) Coral reef animals of the Indo-Pacific. Sea Challengers: Monterey. 

103	 Grassle JF (1973) Variety in Coral Reef Communities. In: OA Jones and R Endean (eds) The Biology and Geology of  
Coral Reefs. Volume 11, Biology 1. Academic Press. New York and London, pp. 247–270. 



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

349Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

104	 Green KM, Russell BD, Clark RJ, Jones MK, Garson MJ and Skilleter GA (2002) A sponge allelochemical induces 
ascidian settlement but inhibits metamorphosis. Marine Biology 140, 355–363.

105	 Grey DL, Dall W and Baker A (1983) A Guide to the Australian Penaeid Prawns. Department of Primary Production of 
the Northern Territory, Darwin, pp. 1–140. 

106	 Gribble NA (2002) Tiger Prawns In: LE Williams (ed) Queensland’s fisheries resources: current condition and recent trends 
1988-2000. Department of Primary Industries Queensland, Brisbane, pp. 47–50.

107	 Gribble NA and Dredge MCL (2002) Northern King Prawns In: LE Williams (ed) Queensland’s fisheries resources: current 
condition and recent trends 1988-2000. Department of Primary Industries Queensland, Brisbane, pp. 39–41.

108	 Grosberg RK (1988) Life history variation within a population of the colonial ascidian Botryllus schlosseri: The genetic 
and environmental control of seasonal variation. Evolution 42, 900–920.

109	 Guille AL, Laboute P and Menou J-L (1986) Guide des étoiles de mer, oursins et autres échinoiderms du lagon de 
Nouvelle-Calédonie. ORSTOM, Paris. 

110	 Hammond LS, Birtles RA and Reichelt RE (1985) Holothuroid assemblages on coral reefs across the central section of 
the Great Barrier Reef. Proceedings of the Fifth International Coral Reef Congress 2, 285–290. 

111	 Hamner WM, Jones MS, Carleton JH, Hauri IR and Williams DMcB (1988) Zooplankton, planktivorous fish, and water 
currents on a windward reef face: Great Barrier Reef, Australia. Bulletin of Marine Science 42, 459–479. 

112	 Harriott VJ (1980) The ecology of the holothurian fauna of Heron Reef and Moreton Bay. MSc Thesis, University of 
Queensland, St. Lucia. 

113	 Harriott VJ (1982) Sexual and asexual reproduction of Holothuria atra Jaeger at Heron Island reef Great Barrier Reef. 
Australian Museum Memoir 16, 53–66. 

114	 Harriott VJ (1996) Heron Island reef flat: 15 years of change. The Great Barrier Reef. Science, Use and Management. 
Volume 2, 145–149. 

115	 Harriott VJ and Banks SA (2002) Latitudinal variation in coral communities in eastern Australia: a qualitative biophysical 
model of factors regulating coral reefs. Coral Reefs 21, 83–94. 

116	 Harriott VJ, Banks SA, Mau RL, Richardson D and Roberts LG (1999) Ecological and conservation significance of the 
subtidal coral reef communities of northern New South Wales, Australia. Marine and Freshwater Research 50, 299–306. 

117	 Hartmann DL, Wallace JM, Limpasuvan V, Thompson DJW and Wolton JR (2000) Can ozone depletion and climate 
change interact to produce rapid climate change? Proceedings of the National Academy of Science 9, 1412–1417. 

118	 Hay GC, Richardson AJ, and Robinson C (2005) Climate change and marine plankton. Trends in Ecology and Evolution 
20, 338–344. 

119	 Hayward BW, Grenfell HR, Nicholson K, Parker R, Wilmhurst J, Horrocks M, Swales A and Sabaa AT (2004) 
Foraminiferal record of human impact on intertidal estuarine environments in New Zealand’s largest city. Marine 
micropaleontology 53, 37–66.

120	 Henkel TP and Pawlik JR (2005) Habitat use by sponge-dwelling brittlestars. Marine Biology 146, 301–313. 

121	 Hetherington R and Reid RGB (2003) Malacological insights into the marine ecology and changing climate of the late 
Pleistocene-early Holocene Queen Charlotte Islands archipelago, western Canada, and implications for early peoples. 
Canadian Journal of Zoology 81, 626–661.

122	 Hill M and Wilcox T (1998) Unusual mode of symbiont repopulation after bleaching in Anthosigmella varians: 
acquisition of different Zooxanthellae strains. Symbiosis 25, 279–289.

123	 Hiscock K, Southward A, Tittley I and Hawkins S (2004) Effects of changing temperature on benthic marine life in 
Britain and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems 14, 333–362. 

124	 Hoegh-Guldberg O (2005) Low coral cover in a high-CO2 world. Journal of Geophysical Research 110, C09S06, 
doi:10.1029/2004JC002528.

125	 Hoffman JR, Hansen LJ and Klinger T (2003) Interactions between UV radiation and temperature limit inferences from 
single-factor experiments. Journal of Phycology 39, 268–272.

126	 Hooper J (1998) Sponge biodiversity, distribution and biogeography. In: C. Levi (ed) Sponges of the New Caledonian 
lagoon. Editions de l’Orstom, Collection Faune et Flore Tropicales, Paris, pp. 65-73. 

127	 Hooper JNA (1994) Coral reef sponges of the Sahul Shelf - a case for habitat preservation. Memoirs of the Queensland 
Museum 36, 93–106. 

128	 Hooper JNA and Ekins M (2005) Collation and validation of museum collection databases related to the distribution of 
marine sponges in northern Australia. Report to the National Oceans Office, Australia. http://www.oceans.gov.au/NMB.jsp

129	 Hooper JNA and Kennedy JA (2002) Small-scale patterns of sponge biodiversity (Porifera) on Sunshine Coast reefs, 
eastern Australia. Invertebrate Systematics 16, 637–653. 



350 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

130	 Hooper JNA and Lévi C (1994) Biogeography of Indo-West Pacific sponges: Microcionidae, Raspailiidae, Axinellidae. 
In: RWM Soest, TMG Kempen and J-C Braekman (eds) Sponges in Time and Space. Balkema, Rotterdam, pp. 191–212. 

131	 Hooper JNA, Kennedy JA, List-Armitage SE, Cook SD and Quinn R (1999) Biodiversity, species composition and 
distribution of marine sponges in northeast Australia. Memoirs of the Queensland Museum 44, 263–274. 

132	 Hooper JNA, Kennedy JA and Quinn RJ (2002) Biodiversity ‘hotspots’, patterns of richness and endemism, and 
taxonomic affinities of tropical Australian sponges (Porifera). Biodiversity and Conservation 11, 851–885. 

133	 Hopley D, Parnell KE and Isdale PJ (1989) The Great Barrier Reef Marine Park: dimensions and regional patterns. 
Australian Geographical Studies 27, 47–66. 

134	 Hopley D, Smithers SG and Parnell KE (2007). The Geomorphology of the Great Barrier Reef : Development, Diversity and 
Change. Cambridge University Press. 

135	 Hughes TP and Connell JH (1999) Multiple stressors on coral reefs: A long-term perspective. Limnology and 
Oceanography 44, 932–940. 

136	 Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE, Willis BL (1990) Patterns of 
recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63.

137	 Hutchings PA (1974) A preliminary report on the density and distribution of invertebrates living in coral reefs. 
Proceedings of the Second International Coral Reef Symposium 2, 285–296.

138	 Hutchings PA (1986) Biological Destruction of Coral Reefs—A review. Coral Reefs 4, 239–252. 

139	 Hutchings PA (ed) (1988) A biological survey of Middleton and Elizabeth Reefs. Report prepared for Australian 
National Parks and Wildlife. Canberra. 

140	 Hutchings PA (1990) A review of the effects of trawling on macro benthic epifaunal communities. Australian Journal of 
Marine and Freshwater Research 41, 111–120.

141	 Hutchings PA (1998) Biodiversity and functioning of polychaetes in benthic sediments. Biodiversity and Conservation 7, 
1133–1145 .

142	 Hutchings PA and Glasby CJ (1991) Phylogenetic Implications of the Biogeography of Australian Terebellidae. Ophelia 
Supplement 5, 565–572.

143	 Hutchings PA and Salvat B (2000) French Polynesia In: C Sheppard (ed) Seas at the Millennium:An Environmental 
Evaluation Volume II, Elsevier, pp.813–826.

144	 Hutchings PA, Kingsford MJ and Hoegh-Guldberg O (eds) (In press) The Great Barrier Reef Biology, environment, and 
management CSIRO Publishing, Collingwood.

145	 Irie T and Iwasa Y (2005) Optimal growth pattern of defensive organs: The diversity of shell growth among mollusks. 
American Naturalist 165, 238–249.

146	 Jackson JBC and Johnson KG (2000) Life in the last few million years. Paleobiology 26, 221-235.

147	 Jackson JBC and Sheldon PR (1994) Constancy and change of life in the sea. Philosophical Society of London B 
Biological Sciences 344, 55-60.

148	 Johannesson K (1988) The paradox of Rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than 
one having a planktonic larval dispersal stage. Marine Biology 99, 507–513.

149	 Johnson C (ed) (1992) Crown-of-thorns starfish on the Great Barrier Reef: reproduction, recruitment and 
hydrodynamics. Australian Journal of Marine and Freshwater Research 43,1–146. 

150	 Johnson LG and Babcock RC (1994) Temperature and the larval ecology of the crown-of-thorns starfish, Acanthaster 
planci. Biological Bulletin 187, 304–308.

151	 Johnstone RW, Koop K and Larkum AWD (1990) Physical aspects of coral reef lagoon sediments in relation to detritus 
processing and primary production. Marine Ecology Progress Series 66, 273–283. 

152	 Kamimura S and Tsuchiya M (2004) The effect of feeding behavior of the gastropods Batillaria zonalis and 
Cerithideopsilla cingulata on their ambient environment. Marine Ecology Progress Series 144, 705–712.

153	 Kawahata H and Awaya Y (eds) (2006) Global Climate Change and Response of Carbon cycle in the Equatorial Pacific 
and Indian Oceans and Adjacent Landmasses, Elsevier Oceanography Series Vol. 73, Elsevier, Amsterdam.

154	 Keable SJ (1995) Structure of marine invertebrate scavenging guild of a tropical reef ecosystem: field studies at Lizard 
Island, Queensland, Australia. Journal of Natural History 29, 27–45. 

155	 Kensley BF (1983) The role of isopod crustaceans in the reef crest community at Carrie Bow Cay, Belize.  
Marine Ecology 5, 29–44. 

156	 Kingsford MJ, Leis JM, Shanks A, Lindeman KC, Morgan SG and Pineda J (2002) Sensory environments, larval abilities 
and local self-recruitment. Bulletin of Marine Science 70, 309–340. 



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

351Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

157	 Kleypas JA, McManus JW and Menez LAB (1999) Geochemical consequences of increased atmospheric carbon dioxide 
on coral reefs. Science 284, 118–120.

158	 Kleypas JA, Buddemeier RW, Eakin CM, Gattuso J-P, Guinotte J, Hoegh-Guldberg O, Iglesias-Prieto T, Jokiel PL, 
Langdon C, Skirving W and Strong AE (2005) Comment on “Coral reef calcification and climate change: The effect of 
ocean warming” Geophysical Research Letters 32: L08601, doi:10.1029/2004GL022329.

159	 Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL and Robbins LL (2006) Impacts of ocean acidification on coral 
reefs and other marine calcifiers: A guide for future research, report of a workshop held 18-20 April 2005, sponsored by 
the National Science Foundation, National Oceanographic and Atmospheric Administration and the US Geological 
Survey, St. Petersburg, Florida.

160	 Klumpp DW and Lucas JS (1994) Nutritional ecology of the giant clams Tridacna tevoroa and T. derasa from Tonga: 
influence of light on filter-feeding and photosynthesis. Marine Ecology Progress Series 107, 147–156. 

161	 Kohn AJ and Levetin PJ (1976) Effect of habitat complexity on population density and species richness in tropical 
intertidal predatory gastropod assemblages. Oecologia 25, 199–210. 

162	 Kurihara H and Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Marine 
Ecology Progress Series 274, 161–169.

163	 Lambert G (2005) Ecology and natural history of the protochordates. Canadian Journal of Zoology 83, 34–50.

164	 Larcombe P, Carter RM, Dye J, Gagan MK and Johnson DP (1995) New evidence for episodic post-glacial sea-level 
rise, central Great Barrier Reef, Australia. Marine Geology 127, 1–44.

165	 Larcombe P, Costen A and Woolfe KJ (2001) The hydrodynamic and sedimentary setting of nearshore coral reefs, 
central Great Barrier Reef shelf, Australia: Paluma Shoals, a case study. Sedimentology 48, 811–835.

166	 Laurent V, Planes S and Salvat B (2002) High variability of genetic pattern in giant clam (Tridacna maxima) populations 
within French Polynesia. Biological Journal of the Linnean Society 77, 221–231. 

167	 Lee J, Byrne M and Uthicke (In press) Asexual and sexual reproduction in the aspidochirotid sea cucumber Holothuria 
difficilis at One Tree Island, Great Barrier Reef. In: L Harris (ed)  International Echinoderms Conference, New Hampshire, 
AA Balkema, Rotterdam.

168	 Leys SP and Degnan BM (2001) Cytological Basis of Photoresponsive Behavior in a Sponge Larva. Biological Bulletin 
201, 323–338. 

169	 Loch I and Rudman WB (1992) Molluscs. In: R Longmore (ed) Reef Biology: a survey of Elizabeth and Middleton Reefs, 
South Pacific. Australian National Parks and Wildlife Service, Canberra, 3, 69–88. 

170	 Loneragan NR and Bunn SE (1999) River flows and estuarine ecosystems: implications for coastal fisheries from a 
review and a case study of the Logan River, southeast Queensland. Australian Journal of Ecology 24, 431–440.

171	 Lucas PH, Webb T, Valentine PS and Marsh H (1997) The Outstanding Universal Value of the Great Barrier Reef World 
Heritage Area. Great Barrier Reef Marine Park Authority, Townsville, Qld. 

172	 Lüter C, Wörheide G and Reitner J (2003) A new thecideid genus and species (Brachiopoda, Recent) from submarine 
caves of Osprey Reef (Queensland Plateau, Coral Sea, Australia). Journal of Natural History 37, 1423–1432. 

173	 McClanahan TR (1992) Epibenthic gastropods of the Middle Florida Keys: the role of habitat and environmental stress 
on assemblage composition. Journal of Experimental Marine Biology and Ecology 160, 169–190. 

174	 McEdward LR (ed) (1995) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton. 

175	 McManus JW and Menez LAB (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral 
reefs. Science 284, 118–120.

176	 McNeil BI, Matear RJ and Barnes D (2004) Coral reef calcification and climate change: The effect of ocean warming. 
Geophysical Research Letters 31: L22309, doi:10.1029/2004GL021541.

177	 MacDonald IA and Perry CT (2003) Biological degradation of coral framework in a turbid lagoon environment, 
Discovery Bay, north Jamaica. Coral Reefs 22, 523–535.

178	 MacDougall AS and Turkington R (2005) Are invasive species the drivers or passengers of change in degraded 
ecosystems? Ecology 86, 42–55.

179	 Maldonado M (2006) The ecology of sponge larve. Canadian Journal of Zoology 84, 175–194. 

180	 Matear RJ and McNeil BI (2006) Comment on “Preindustrial to modern interdecadal variability in coral reef pH”. 
Science 314, 595b.

181	 Mather P (In press) Ascidians. In: PA Hutchings, MJ Kingsford and O Hoegh-Guldberg (eds) The Great Barrier Reef; 
Biology, environment, and management. CSIRO Publishing, Collingwood.

182	 Metaxas A and Young CM (1998) Behaviour of echinoid larvae around sharp haloclines: effects of salinity gradient and 
dietary conditioning. Marine Biology 131, 443–459.



352 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

183	 Meyer CP, Geller JB and Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid 
gastropods. Evolution 59, 113–125.

184	 Michaelidis B, Ouzounis C, Paleras A and Portner HO (2005) Effects of long-term moderate hypercapnia on acid-base 
balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series 293, 109–118.

185	 Moran PJ (1986) The Acanthaster phenomenon. Oceanography and Marine Biology: Annual Review 24, 379–480.

186	 Morton B (1983) Coral associated bivalves of the Indo-Pacific. In: KM Wilbur and WD Russell-Hunter (eds) The 
Mollusca Vol. 6 Ecology. Academic Press, New York, pp. 139–224.

187	 Muir P, Sutton D and Owens L (1991) Nitrate toxicity in Penaeus monodon protozoea. Marine Ecology 108, 67–71. 

188	 Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE and Li S (1999) The discovery and development of marine 
compounds with pharmaceutical potential. Journal of Biotechnology 70, 15–25. 

189	 Murphy RC and Kremer JN (1992) Benthic community metabolism and the role of deposit-feeding callianassid shrimp. 
Journal of Marine Research 50, 321–340. 

190	 Nagelkerken I, Buchan K, Smith GW, Bonair K, Bush P, Garzón-Ferreira J, Botero L, Gayle P, Heberer C, Petrovic C, 
Pors L and Yoshioka P (1997) Widespread disease in Caribbean sea fans. 1. Spreading and general characteristics. 
Proceedings of the 8th International Coral Reef Symposium 1, 679–682.

191	 Newman L and Cannon L (2005) Fabulous Flatworms: a guide to marine polyclads. CD ROM, Australian Biological 
Resources Study/CSIRO Publishing, Collingwood.

192	 Nicholls N, Landsea C and Gill J (1998) Recent trends in Australian region tropical cyclone activity. Meteorology and 
Atmospheric Physics 65, 197–205. 

193	 Oak T and Scheibling RE (2006) Tidal activity pattern and feeding behaviour of the ophiuroid Ophiocoma 
scolopendrina on a Kenyan reef flat. Coral Reefs 25, 213–222. 

194	 Oglesby LC (1978) Salt and water balance. In: PJ Mill (ed) Physiology of Annelids. Academic Press, London, pp 555–658.

195	 O’Connor ML, Brune JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP and Weiss JM (2007) Temperature control of 
larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National 
Academy of Sciences 104, 1266–1271.

196	 O’Hara TD, Byrne M and Cisternas PA (2004) The Ophiocoma erinaceus complex: another case of cryptic speciation in 
echinoderms. In: T Heinzeller and JH Nebelsick (eds) Echinoderms: München. Taylor and Francis Group, London, 
pp. 537–542.

197	 O’Loughlin PM and Rowe FWE (2006) A systematic revision of the asterinid genus Aquilonastra O’Loughlin, 2004 
(Echinodermata: Asteroidea). Memoirs of Museum Victoria 63, 257–267.

198	 Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RE, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, 
Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, 
Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y and Yool A (2005) Anthropogenic ocean 
acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686. 

199	 Osorno A, Peyrot-Clausade M and Hutchings PA (2005) Patterns and rates of erosion in dead Porites across the  
Great Barrier Reef, Australia after 2 and 4 years of exposure. Coral Reefs 24, 292–303.

200	 Palmer AR (1994) Temperature sensitivity, rate of development, and time to maturity: geographic variation in 
laboratory-reared Nucella and a cross-phyletic overview. In: WH Wilson Jr, SA Stricker and GL Shinn (eds) Reproduction 
and development of marine invertebrates. Johns Hopkins University Press, Baltimore, pp. 177–194.

201	 Pandolfi JA (1999) Response of Pleistocene Coral Reefs to Environmental Change Over Long Temporal Scales. American 
Zoologist 39, 113–130.

202	 Pari N, Peyrot–Clausade M and Hutchings PA (2002) Bioerosion of experimental substrates on high islands and atoll 
lagoons (French Polynesia) during 5 years of exposure. Journal Experimental Marine Biology and Ecology 276, 109–127. 

203	 Parmesan C and Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. 
Nature 42, 37–42.

204	 Pawlik JR, Kernan MR, Molinski TF, Harper MK and Faulkner DJ (1988) Defensive chemicals and the Spanish dancer 
Nudibranch Hexabranchus sanguineus and its egg ribbons macrolides derived from a sponge diet. Journal of 
Experimental Marine Biology and Ecology 119, 99–110. 

205	 Pechenik JA and Eyster LS (1989) Influence of delayed metamorphosis on the growth and metabolism of young 
Crepidula fornicata (Gastropoda) juveniles. Biological Bulletin 176, 14–24.

206	 Pelejero C, Calvo E, McCulloch MT, Marshal JF, Gagan MK, Lough JM and Opdyke BN (2005) Preindustrial to modern 
interdecadal variability in coral reef pH. Science 309, 2204–2207.

207	 Perry CT (2004) Structure and development of detrital reef deposits in turbid nearshore environments, Inhaca Island, 
Mozambique. Marine Geology 214, 143–161. 



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

353Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

208	 Peyrot-Clausade M, Hutchings PA and Richard G (1992) Successional patterns of macroborers in massive Porites at 
different stages of degradation on the barrier reef, Tiahura, Moorea, French Polynesia. Coral Reefs 11, 161–166.

209	 Pillay KK and Nair NB (1971) The annual reproductive cycles of Uca annulipes, Portunus pelagicus and Metapenaeus 
affinis (Decapoda: Crustacea) from the south-west coast of India. Marine Biology 11, 152–166.

210	 Ponder WF and Grayson JE (1998) The Australian Marine Molluscs considered to be potentially vulnerable to the shell 
trade. http://www.deh.gov.au/biodiversity/trade-use/wild-harvest/pubs/pondrpt1.pdf.

211	 Ponder WF, Hutchings PA and Chapman R (2002) Overview of the Conservation of Australia’s marine invertebrates.  
A report for Environment Australia, Canberra http://www.amonline.net.au/invertebrates/marine_overview/index.html.

212	 Potter IC, Chrystal PJ and Loneragan NR (1983) The biology of the blue manna crab Portunus pelagicus in an 
Australian estuary. Marine Biology 78, 75–85.

213	 Praseno DP and Arinardi OH (1974) Plankton volumes and their distribution in “perairan Pulau-Pulau Seribu” during 
the west and east monsoons 1971. Oseanologi di Indonosia 2, 27–40 (in Indonesian). 

214	 Preston NP and Doherty PJ (1990) Cross-shelf patterns in the community structure of coral-dwelling Crustacea in the 
central region of the Great Barrier Reef. I. Agile shrimps. Marine Ecology Progress Series 66, 47–61. 

215	 Preston NP and Doherty PJ (1994) Cross-shelf patterns in the community structure of coral-dwelling Crustacea in the 
central region of the Great Barrier Reef. II. Cryptofauna. Marine Ecology Progress Series 104, 27–38. 

216	 Przeslawski R (2004) A review of the effects of environmental stress on embryonic development within intertidal 
gastropod egg masses. Molluscan Research 24, 43–63. 

217	 Przeslawski R (2005) Combined effects of solar radiation and desiccation on the mortality and development of 
encapsulated embryos of rocky shore gastropods. Marine Ecology Progress Series 298, 169–177. 

218	 Przeslawski R, Davis AR and Benkendorff K (2005) Synergies, climate change and the development of rocky shore 
invertebrates. Global Change Biology 11, 515–522. 

219	 Przeslawski R and Davis AR (In press) Does spawning behavior minimize exposure to environmental stressors for 
encapsulated gastropod embryos on rocky shores? Marine Biology.

220	 Ramafofia C, Byrne M and Batteglene S (2003) Reproduction of the commercial sea cucumber Holothuria scabra in 
Solomon Islands. Marine Biology 142, 281–288. 

221	 Reaka-Kudla M, Feingold JS and Glynn W (1996) Experimental studies of rapid bioerosion of coral reefs in the 
Galapagos Islands. Coral Reefs 15, 101–107.

222	 Rees SA, Opdyke BN, Wilson PA, Fifield LK and Vladimir L (2006) Holocene evolution of the granite based Lizard Island 
and MacGillivray Reef systems, Northern Great Barrier Reef. Coral Reefs 25, 555–565.

223	 Reigel B and Branch GM (1995) Effects of sedimentation on the energy budgets of four scleractinian (Bourne 1900) 
and five alcyonacean (Lamouroux 1816) corals. Journal of Experimental Marine Biology and Ecology 186, 259–275.

224	 Ribes M, Coma R, Atkinson MJ and Kinzie RA III (2005) Sponges and ascidians control removal of particulate organic 
nitrogen from coral reef water. Limnology and Oceanography 50, 1480–1489. 

225	 Richer de Forges B and Moosa MK (1992) Distribution of stomatopods (Crustacea) in the lagoons of New Caledonia 
and Chesterfield Atoll. Raffles Bulletin of Zoology 40, 149–162. 

226	 Richter C and Wunsch M (1999) Cavity-dwelling suspension feeders in coral reefs - A new link in reef trophodynamics. 
Marine Ecology Progress Series 188, 105–116. 

227	 Richter C, Wunsch M, Rasheed M, Kotter I and Badran MI (2001) Endoscopic exploration of Red Sea coral reefs 
reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730. 

228	 Risk MJ, Sammarco PW and Edinger EN (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier 
Reef. Coral Reefs 14, 79–86. 

229	 Roberts DE and Davis AR (1996) Patterns in sponge (Porifera) assemblages on temperate coastal reefs off Sydney. 
Australian Marine and Freshwater Research 47, 897–906. 

230	 Roberts DE, Davis AR and Cummins SP (2006) Experimental manipulation of shade, silt, nutrients and salinity on the 
temperate reef sponge Cymbastela concentrica. Marine Ecology Progress Series 307, 143–154.

231	 Roberts RD and Lapworth C (2001) Effect of delayed metamorphosis on larval competence, and post-larval survival 
and growth, in the abalone Haliotis iris Gmelin. Journal of Experimental Marine Biology and Ecology 258, 1–13

232	 Robertson R (1970) Review of the predators and parasites of stony corals, with special reference to symbiotic 
prosobranch gastropods. Pacific Science 24, 43–54. 

233	 Roemmich D and McGowan J (1995) Climatic warming and decline of zooplankton in the Californian current.  
Science 267, 1324–1326. 



354 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups

234	 Romanuk TN and Kolasa J (2005) Resource limitation, biodiversity, and competitive effects interact to determine the 
invasibility of rock pool microcosms. Biological Invasions 7, 711–722. 

235	 Rowe FWE (1985) Preliminary analysis of distribution patterns of Australia’s non-endemic, tropical echinoderms. In: 
BF Keegan and BDS O’Connor (eds) Proceedings of the Fifth International Echinoderms Conference. Balkema, Rotterdam, 
pp. 91–98. 

236	 Rowe FWE and Doty JE (1977) The shallow-water holothurians of Guam. Micronesica 13, 217–250. 

237	 Rowe FEW and Gates J (1995) Echinodermata. Zoological Catalogue of Australia vol 33. CSIRO Publishing, Collingwood.

238	 Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide 30 Jun 2005 http://www.
royalsoc.ac.uk/document.asp?latest=1andid=3249. 

239	 Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. ACTA Geologica Hispanica 37, 61–72.

240	 Sagarin RD, Barry JP, Gilman SE and Baxter CH (1999) Climate related change in an intertidal community over short 
and long time scales. Ecological Monographs 69, 465–490. 

241	 Sanders D and Baron-Szabo RC (2005) Scleractinian assemblages under sediment input: their characteristics and 
relation to the nutrient input concept. Paleogeography, Paleoclimatology and Paleoecology 216, 139–181.

242	 Scher H and Martin E (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312,  
428–430. 

243	 Schiel DR, Steinbeck JR and Foster MS (2004) Ten years of induced ocean warming cause comprehensive changes in 
benthic communities. Ecology 859, 1833–1839.

244	 Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG and Stainton MP (1997) Climate-induced changes in the 
dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36, 9–28. 

245	 Schnadt C, Dameris M, Ponater M, Hein R, Grewe V and Steil B (2004) Interaction of atmospheric chemistry and 
climate and its impact on stratospheric ozone. Climate Dynamics 18, 501–517. 

246	 Shanks AL, Grantham BA and Carr MH (2003a) Propagule dispersal distance and the size and spacing of marine 
reserves. Ecological Applications 13, S159–S169.

247	 Shanks AL, McCulloch A and Miller J (2003b) Topographically generated fronts, very nearshore oceanography and the 
distribution of larval invertebrates and holoplankters. Journal of Plankton Research 25, 1251–1277. 

248	 Sheppard C, Dixon DJ, Gourlay MJ, Sheppard A and Payet R (2005) Coral mortality increases wave energy reaching 
shores protected by reef flats: examples from the Seychelles. Estuarine Coastal and Shelf Science 64, 223–234. 

249	 Shick JM and Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: Biosynthesis, accumulation, and 
UV-protective functions in aquatic organisms. Annual Review of Physiology 64, 223–262.

250	 Shirayama Y and Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. Journal 
Geophysical Research 110, C09S08, doi: 10.1029/2004JC002618.

251	 Skilleter GA and Underwood AJ (1993) Intra- and inter-specific competition for food in infaunal coral reef gastropods. 
Journal of Experimental Marine Biology and Ecology 173, 29–55. 

252	 Sloan NA, Clark AM and Taylor JD (1979) The echinoderms of Aldabra and their habitats. Bulletin of the British Museum 
of Natural History Zoology 37, 81–128.

253	 Smith G, Ives LD, Nagelkerken IA and Ritchie KB (1996) Caribbean sea fan mortalities. Nature 383, 487. 

254	 Smith JR, Fong P and Ambrose RF (2006) Dramatic declines in mussel bed community diversity: response to climate 
change? Ecology 87, 1153–1161. 

255	 Smith R (1985) Photoreceptors of serpulid polychaetes. PhD Thesis. James Cook University of North Queensland, 
Townsville. 

256	 Smith SV and Buddemeier RW (1992) Global change and coral reef ecosystems. Annual Review of Ecology and 
Systematics 23, 89–118. 

257	 Snelgrove PVR (1998) The biodiversity of macrofaunal organisms in marine sediments. Biodiversity and Conservation 7, 
1123–1132.

258	 Sokolova IM (2004) Cadmium effects on mitochondrial function are enhanced by elevated temperatures in a marine 
poikilotherm, Crassostrea virginica Gmelin (Bivalvia : Ostreidae). Journal of Experimental Biology 207, 2639–2648

259	 Sokolova IM and Pörtner H (2001) Temperature effects on key metabolic enzymes in Littorina saxatilis and L. obtusata 
from different latitudes and shore levels. Marine Biology 139, 113–126.

260	 Somers IF (1987) Sediment type as a factor in the distribution of the commercial penaeid prawn species of the 
western Gulf of Carpentaria. Australian Journal of Marine and Freshwater Research 38, 133–149.



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

355Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 1

1
: �V

u
ln

erab
ility o

f b
en

th
ic in

verteb
rates o

f th
e G

reat B
arrier R

eef to
 clim

ate ch
an

g
e

261	 Sorte CJB and Hofmann GE (2004) Changes in latitudes, changes in aptitudes: Nucella canaliculata (Mollusca : 
Gastropoda) is more stressed at its range edge. Marine Ecology Progress Series 274, 263–268. 

262	 Stachowicz JJ, Terwin JR, Whitlatch RB and Osman RW (2002) Linking climate change and biological invasions: Ocean 
warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Science 99, 15497–15500.

263	 Staples DJ and Vance DJ (1986) Emigration of juvenile banana prawns, Penaeus merguiensis, from a mangrove estuary 
and recruitment to offshore areas in the wet–dry tropics of the Gulf of Carpentaria, Australia. Marine Ecology Progress 
Series 27, 239–252.

264	 Stilwell JD (2003) Patterns of biodiversity and faunal rebound following the K-T boundary extinction event in Austral 
Palaeocene molluscan faunas. Paleogeography, Paleoclimatology, and Paleoecology 195, 319–356.

265	 Sturman A and Tapper N (1996) The Weather and Climate of Australia and New Zealand. Oxford University Press.

266	 Thiyagarajan V, Harder T and Qian P-Y (2003) Combined effects of temperature and salinity on larval development 
and attachment of the subtidal barnacle Balanus trigonus Darwin. Journal of Experimental Marine Biology and Ecology 
287, 223–236. 

267	 Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, 
Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend 
Peterson A, Phillips OL and Williams SE. (2004) Extinction risk from climate change. Nature 427, 145–148. 

268	 Thompson TE (1958) The influence of temperature on spawning in Aldaria proxima (A. and H.) (Gastropoda: 
Nudibranchia). Oikos 9, 246–252.

269	 Tomanek L (2005) Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): 
interspecific variation in protein expression and acclimation ability. Journal of Experimental Biology 208, 3133–3143. 

270	 Tomanek L and Somero GN (2000) Time course and magnitude of synthesis of heat-shock proteins in congeneric 
marine snails (Genus Tegula) from different tidal heights. Physiological and Biochemical Zoology 73, 249–256. 

271	 Tsai S-J and Chen J-C (2002) Acute toxicity of nitrate on Penaeus monodon juveniles at different salinity levels. 
Aquaculture 213, 163–170. 

272	 Tsubokura T, Goshima S and Nakao S (1997) Seasonal horizontal and vertical distribution patterns of the supralittoral 
amphipod Trinorchestia trinitatis in relation to environmental variables. Journal of Crustacean Biology 17, 674–686.

273	 Usher KM, Sutton DC, Toze S, Kuo J and Fromont J (2004) Biogeography and phylogeny of Chondrilla species 
(Demospongiae) in Australia. Marine Ecology Progress Series 270, 117–127. 

274	 Uthicke S (1999) Sediment bioturbation and impact of feeding activity of Holothuria (Halodeima) atra and Stichopus 
chloronotus, two sediment feeding holothurians, at Lizard Island, Great Barrier Reef. Bulletin of Marine Science 64, 
129–141. 

275	 Uthicke S (2001a) Nutrient regeneration by abundant coral reef holothurians. Journal Experimental Marine Biology  
and Ecology 265, 153–170. 

276	 Uthicke S (2001b) Interactions between sediment-feeders and microalgae on coral reefs: Grazing losses versus 
production enhancement. Marine Ecology Progress Series 210, 125–138. 

277	 Uthicke S, O’Hara TD and Byrne M (2004) Species composition and molecular phylogeny of the Indo-Pacific teatfish 
(Echinodermata: Holothuroidea) bêche-de-mer fishery. Marine and Freshwater Research 55, 1–12.

278	 Verde EA and McCloskey LR (2002) A comparative analysis of the photobiology of zooxanthellae and zoochlorellae 
symbiotic with the temperate clonal anemone Anthopleura elegantissima (Brandt) - II. Effect of light intensity.  
Marine Biology 141, 225–239. 

279	 Vermeji GJ (1987) The dispersal barrier in the tropical Pacific: Implications for molluscan speciation and extinction. 
Evolution 41, 1046–1058. 

280	 Veron JEN and Stafford-Smith M (2000) Corals of the World. Australian Institute of Marine Science, Townsville. 

281	 Vicente VP (1990) Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto 
Rico. Coral Reefs 8, 199–202.

282	 Walters LJ, Miron G and Bourget E (1999) Endoscopic observations of invertebrate larval substratum exploration and 
settlement. Marine Ecology Progress Series 182, 95–108. 

283	 Warwick RM and Turk SM (2005) Predicting climate change, effects on marine biodiversity: comparison of recent and 
fossil molluscan death assemblages. Journal of the Marine Biological Association of the United Kingdom 303, 167–175. 

284	 Wassenberg TJ and Hill BJ (1990) Partitioning of material discarded from prawn trawlers in Moreton Bay. Australian 
Journal of Marine and Freshwater Research 41, 27–36.

285	 Weis A, Dunning M and Gaffney P (2004) Ecological assessment of Queensland’s marine specimen shell collection fishery. 
A Report Prepared for Queensland Government Department of Heritage and Environment, Canberra.



286	 Wesseling I, Uychiaoco AJ, Alino PM, Aurin T and Vermaat JE (1999) Damage and recovery of four Philippine corals 
from short-term sediment burial. Marine Ecology Progress Series 176, 11–15.

287	 Wieters EA, Kaplan DM, Navarrete SA, Sotomayor A, Largier J, Nielsen KJ and Veliz F (2003) Alongshore and temporal 
variability in chlorophyll a concentration in Chilean nearshore waters. Marine Ecology Progress Series 249, 93–105.

288	 Wilkinson CR and Cheshire AC (1989) Patterns in the distribution of sponge populations across the central Great 
Barrier Reef. Coral Reefs 8, 27–134. 

289	 Williams D McB, Dixon P and English S (1988) Cross-shelf distribution of copepods and fish larvae across the central 
Great Barrier Reef. Marine Biology 99, 577–589. 

290	 Williams LE (2002) Queensland’s fisheries resources: current condition and recent trends 1988-2000. Department of 
Primary Industries Queensland, Brisbane, pp. 1–24.

291	 Williams LE and Dredge MCL (2002) Trawl fisheries in Queensland. In: LE Williams (ed) Queensland’s fisheries resources: 
current condition and recent trends 1988-2000. Department of Primary Industries Queensland, Brisbane, pp. 16–21.

292	 Williams ST and Benzie JAH (1996) Genetic uniformity of widely separated populations of the coral reef starfish Linckia 
laevigata from the West Pacific and East Indian Ocean, revealed by allozyme electrophoresis. Marine Biology 126, 
99–108.

293	 Williams ST, Jara J, Gomez E and Knowlton N (2002) The marine Indo-West Pacific break: contrasting the resolving 
power of mitochondrial and nuclear genes. Integrative and Comparative Biology 42, 941–952.

294	 Wilson WH Jr. (1986) Detachment of egg masses of a polychaete: environmental risks of benthic protective 
development. Ecology 67, 810–813.

295	 Wooldridge S, Done T, Berkelmans R, Jones R and Marshall P (2005) Precursors for resilience in coral communities in a 
warming climate: a belief network approach. Marine Ecology Progress Series 295, 157–169.

296	 Wörheide GB, Degnan M, Hooper JNA and Reitner J (2002a) Phylogeography and taxonomy of the Indo-Pacific 
reef cave dwelling coralline demosponge Astrosclera willeyana – new data from nuclear internal transcribed spacer 
sequences. In: KM Moosa, S Soemodihardjo, A Soegiarto, K Romimohtarto, A Nontji, Soekarno and Suharsono (eds) 
Proceedings of the 9th International Coral Reef Symposium, pp. 339–346. 

297	 Wörheide G, Hooper JNA and Degnan BM (2002b) Phylogeography of western Pacific Leucetta ‘chagosensis’  
(Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the  
Great Barrier Reef World Heritage Area (Australia). Molecular Ecology 11, 1753–1768. 

298	 Wulff JL (1995) Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14, 
55–61.

299	 Yamano H, Miyajima T and Koike I (2000) Importance of foraminifera for the formation and maintenance of a coral 
sand cay: Green Island, Australia. Coral Reefs 19, 51–58. 

300	 Yentsch CS, Yentsch CM, Cullen JJ, Lapointe B, Phinney DA and Yentsch SW (2002) Sunlight and water transparency: 
cornerstones in coral research. Journal of Experimental Marine Biology and Ecology 268, 171–183.

301	 Young B and Challen S (2004) Ecological assessment of Queensland ’s East Coast Trochus Fishery. A report to the 
Australian Government Department of Environment and Heritage from the Queensland Government Department of 
Primary Industries and Fisheries, Brisbane.

302	 Zuschin M, Hohenegger J and Steininger F (2001) Molluscan assemblages on coral reefs and associated hard substrata 
in the northern Red Sea. Coral Reefs 20, 107–116.

356 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part II: Species and species groups


