

Synthesis of heterocyclic annulated quinones and quinoid compounds

Pieter Claes

IIIII
UNIVERSITEIT

Generalists know less and less about more and more until eventually they know nothing about everything. Specialists know more and more about less and less until eventually they know everything about nothing.

Members of the jury

Prof. Dr. Els Van Damme (Chairman)

Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University

Prof. Dr. Xavier Pannecoucke

Institut de Recherche en Chimie Organique Fine de Rouen, France

Prof. Dr. ir. Guido Verniest

Department of Chemistry, Faculty of Sciences, Vrije Universiteit Brussel

Prof. Dr. Annemieke Madder

Department of Organic Chemistry, Faculty of Sciences, Ghent University

Prof. Dr. ir. Bruno De Meulenaere

Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University

Dr. ir. Sven Mangelinckx

Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University

Promoter

Prof. Dr. ir. Norbert De Kimpe

Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University

Dean

Prof. Dr. Paul Van Cauwenberge

Rector

Prof. Dr. ir. Guido Van Huylebroek

ir. Pieter Claes

Synthesis of heterocyclic annulated quinones and quinoid compounds

Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences:

Chemistry

Dutch translation of the title:

Synthese van heterocyclisch geanneleerde chinonen en chinoide verbindingen

ISBN 978-90-5989-635-2
$9^{1789059} 896352^{2}>$

The author and the promoter give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author.

Ghent, 2013

The author,

ir. Pieter Claes

Prof. Dr. ir. Norbert De Kimpe

Woord vooraf

Met het de verdediging van dit doctoraat komt een einde aan negen jaar van mijn leven waar ik steeds met heimwee naar zal terugkijken. De faculteit bio-ingenieurwetenschappen is zonder enige twijfel de tofste van de hele wereld en ik heb hier altijd graag gewerkt en gestudeerd. De weg naar het doctoraat was zelden recht en de afgelopen vier jaar werden de nodige obstakels omzeild of beklommen. Ik stond er gelukkig niet alleen voor en ik ben iedereen die me in raad en of daad heeft bijgestaan zeer dankbaar. Ik wil dan ook al mijn (voormalige) collega doctoraatsstudenten en ATP'ers bedanken, het is altijd vree plezant geweest op de bureau, binnen en buiten het labo en alle plaatsten daartussen. Natuurlijk verdienen ook vrienden en (schoon)familie een eervolle vermelding. Iedereen bij naam noemen zou mensen onrecht aandoen maar de volgende mensen verdienen toch een bijzondere vermelding. Eerst en vooral prof. De Kimpe, om me de kans te bieden dit doctoraal onderzoek te verwezenlijken en me te vormen tot de wetenschapper die ik vandaag ben. Sven en Jan om me gedurende mijn thesis reeds te begeleiden en me te lanceren in mijn doctoraat alvorens ze ons verlieten richting industrie. Gert, Nils, Stijn, zijn opvolger Koen en wisselende stand-ins voor de doorgaans ontspannende rondjes whist tijdens de pauze. Francis, mijn thesisstudent voor zijn bijdrage aan dit onderzoek. Bart, voor zijn hulp bij het creëren van deze cover en om me nog enigszins normaal te doen voelen. Davy en de mensen van het WIV, het was steeds aangenaam samenwerken en we hebben samen zeker mooie resultaten geboekt. Cedric, mijn zwem- en klimmatje, ik hoop dat je er snel terug bovenop bent en dat we er nog lang samen een lap tegen kunnen geven. Last but not least wil ik Sophie bedanken: jij bent er altijd voor mij geweest en bent zonder enige twijfel het beste dat me ooit overkomen is.

Pieter

Table of contents

1 Introduction and Goals 1
1.1 General background 1
1.2 Quinones in nature 1
1.3 Quinones in industry 2
1.4 Goals of the research 3
1.5 Tuberculosis 5
2 Literature overview: 1,4-quinones in modern day drugs: (bio)synthesis and mechanism of action 7
2.1 1,4-Naphthoquinones 7
2.1.1 Atovaquone 35 7
2.1.2 Parvaquone 43 and buparvaquone 44 9
2.2 Anthraquinones 9
2.2.1 Anthracyclines 9
2.2.2 Ametantrone 73a and mitoxantrone 73b 13
2.2.3 Anthrapyrazoles 78 14
2.2.4 Pixantrone $\mathbf{8 0}$ 15
2.2.5 Diacerein 81 16
2.3 Benzoquinones 16
2.3.1 Mitomycins 86 16
2.4 Ansamycins 17
2.4.1 Geldanamycin 104 18
2.4.2 Rifamycins 20
2.5 1,4-Quinone derived drugs 24
2.5.1 Trabectedin 133 24
2.6 Conclusion 27
3 Results and discussion 28
3.1 Introduction 28
3.2 Catalytic addition of pyridinium ylids to form C-1 functionalised pentalongin derivatives 1328
3.2.1 Attempted synthesis of ascomycone A, B and 1-hydroxydehydroherbarin 15a-c 34
3.2.2 Attempted synthesis of mansouramycins A-D 16 40
3.2.3 Attempted synthesis of 3-hydroxymollugin 228 45
3.2.4 Conclusion and discussion 47
3.3 Unexpected aminonaphthol synthesis 47
3.3.1 Conclusion and discussion 57
3.4 Attempted synthesis of C-4 fluorinated pyranonaphthoquinones 275 57
3.4.1 Conclusion and discussion 59
3.5 Synthesis of benzo[j]phenanthridinediones, tetrahydrobenzo[j]phenanthridinediones, octahydrobenzo[j]phenanthridinediones and dialkyltetrahydrobenzo[g]pyrimido[4,5- c]isoquinolinetetraones as new leads against Mycobacterium tuberculosis 59
3.5.1 Introduction 59
3.5.2 New entries towards the benzo[j]phenanthridinedione scaffold 61
3.5.3 Alternative entries towards the benzo[j]phenanthridinedione scaffold 73
3.5.4 Synthesis of 1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-diones 19 74
3.5.5 Synthesis of 8,11-bridged 1,2,3,4,8,9,10,11-octahydrobenzo[j]phenanthridine-7,12- diones 22 77
3.5.6 Synthesis of 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones 365 82
3.5.7 Alternative entries towards the tetra/octahydrobenzophenanthridinedione scaffold 83
3.5.8 Attempted further derivatisation of the octahydrobenzo[j]phenanthridine scaffold 88
3.5.9 Synthesis of dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones 20 89
3.5.10 Conclusion and discussion 92
3.6 Synthesis of analogues of the bioactive natural products cleistopholine 23 and sampangine 24. 93
3.6.1 Conclusion 100
3.7 Palladium(II)-catalysed synthesis of $2 H, 3^{\prime} H$-spiro[benzofuran-3,2'-naphthoquinones] 29:
novel spirocyclisation reaction of quinones 100
3.7.1 Synthesis of the starting 2-aryloxymethyl-1,4-naphthoquinones 27 101
3.7.2 Investigation and optimisation of the reaction conditions 102
3.7.3 Synthesis of further derivatives and proposed reaction mechanism 105
3.7.4 Alternative substrates for the spirocyclisation reaction 107
3.7.5 Unexpected Claisen-type rearrangement of 2-aryloxymethyl-1,4-quinones 27 and 207a 115
3.7.6 Conclusion and discussion 116
4 Perspectives 117
5 Experimental section 119
5.1 General experimental methods 119
5.2 Catalytic addition of pyridinium ylids 119
5.2.1 Synthesis of 1-(2-hydroxyethoxy)pyranonaphthoquinones 13 119
5.2.2 Synthesis of acetonylated 1,4-naphthoquinones 157 121
5.2.3 Synthesis of isoindolodiones 163, 165 and 167 123
5.2.4 Methyl 1-(naphthalene-1,4-dione-2-carbonyloxy)-4-hydroxy-3-methoxynaphthalene-2- carboxylate 170 124
5.3 Attempted synthesis of ascomycone A, B and 1-hydroxydehydroherbarin 15 124
5.3.1 Synthesis of 2-bromo-6-(1,3-dioxolan-2-yl)-4-methoxybenzenes $\mathbf{1 8 1}$ 124
5.3.2 2-Bromo-6-(1,3-dioxolan-2-yl)-1,4-benzoquinone 180 125
5.3.3 Formylation of 6,8-dimethoxynaphth-1-ol 178 125
5.3.4 3-Cyano-3-(6-methyl-2-oxo-2H-pyran-4-yl)phthalide 192 126
5.4 Attempted synthesis of mansouramycins A-D 16 127
5.4.1 5,6-Dibromo-2-(4-bromophenoxymethyl)cyclohex-2-ene-1,4-dione 208 127
5.4.2 Synthesis of 5,8-dimethoxy-3-methylisoquinoline 210a via a Pomeranz-Fritsch sequence 127
5.5 Attempted synthesis of 3-hydroxymollugin 228 131
5.6 Unexpected aminonaphthol synthesis 133
5.6.1 General procedures for the synthesis of N, N-dialkylbenzamides 133
5.6.2 General procedure for TBDMS or TIPS protection ${ }^{163}$ 134
5.6.3 General procedure for TBDPS protection ${ }^{164}$ 137
5.6.4 General procedure for the preparation of 2-allyl-6-silanyloxy- N, N-dialkylbenzamide derivatives 138
5.6.5 2-But-2-enyl-6-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamide 266 142
5.6.6 Organolithium mediated ring-closure 142
5.7 Attempted synthesis of C-4 fluorinated pyranonaphthoquinones 275 144
5.7.1 1,4-Dimethoxy-2-hydroxymethyl-3-arylethynylnaphthalenes 277 144
5.8 New entries towards the benzo[j]phenanthridinedione scaffold 145
5.8.1 1,4-Dimethoxynaphthalene-2-carboxylic acid 293 145
5.8.2 General procedure for the preparation of N-2-bromophenyl-1,4-dialkoxynaphthalene-2- carboxamides 296 and 323 147
5.8.3 General procedure for the preparation of N-2-bromophenyl- N-methoxymethyl-1,4- dialkoxynaphthalene-2-carboxamides $\mathbf{3 0 0}$ or 324. 148
5.8.4 General procedure for the preparation of 7,12-dialkoxy-5-methoxymethyl-5 H - benzo[j]phenanthridin-6-ones $\mathbf{3 0 1}$ or $\mathbf{3 2 5}$ 151
5.8.5 General procedure for the preparation of 7,12-dimethoxy-5H-benzo[j]phenanthridin-6- ones 287 153
5.8.6 N-2-Bromophenyl- N-tert-butoxycarbonyl-1,4-dimethoxynaphthalene-2-carboxamide 306 154
5.8.7 Organolithium addition to 7,12-dialkoxy-5-methoxymethyl-5 H -benzo[j]phenanthridin- 6-ones $\mathbf{3 0 1}$ or $\mathbf{3 2 5}$ 154
5.8.8 Oxidative demethylation of MeLi adducts 299a and 311 158
5.8.9 7,12-Dimethoxy-6-formylbenzo[j]phenanthridine 312 159
5.8.10 Methyl 1-hydroxy-4-iso-propoxynaphthalene-2-carboxylate 320 159
5.8.11 1,4-Di-iso-propoxynaphthalene-2-carboxylic acid 322 159
5.8.12 Triflation of 7,12-dimethoxy-5H-benzo[j]phenanthridin-6-ones 287 160
5.8.13 7-Ethoxy-12-methoxy-5-methoxymethyl-3-methyl-5 H -benzo[j]phenanthridin-6-one 330 161
5.8.14 Synthesis of 6-alkoxy-7,12-dimethoxy-3-methylbenzo[j]phenanthridines 334 162
5.8.15 5-Methoxymethyl-3-methyl-5H-benzo[j]phenanthridine-6,7,12-trione 333 163
5.8.16 $\quad N$-Methoxy-1,4-dimethoxynaphthalene-2-carboxamide 337 163
5.9 Synthesis of 1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-diones 19 164
5.10 Synthesis of octahydrobenzophenanthridinediones 22. 167
5.10.1 Synthesis of 6-(1,3-dioxolan-2-yl)-1,2,3,4-tetrahydronaphthalene-5,8-diones 350a, 350b and 6-(1,3-dioxan-2-yl)-1,2,3,4-tetrahydronaphthalene-5,8-dione 350c. 167
5.10.2 Synthesis of octahydrobenzophenanthridinediones 22a-22g 171
5.10.3 Synthesis of enamine adduct 352c. 174
5.10.4 6-Bromo-4-tert-butylcyclohex-1-enyl-5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methano- naphthalene-6-carboxylate 379' 174
5.11 Synthesis of dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones 20 175
5.11.1 Synthesis of 6-amino-1,3-dialkyluracils 389 175
5.11.2 Synthesis of amino-iso-propylcyclohexenones 395 176
5.11.3 Synthesis of 1,4-dihydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxaldehydes 388. 176
5.11.4 Synthesis of 2,4-dialkyl-8,9,10,11-tetrahydrobenzo[g]pyrimido[4,5-c]isoquinoline- 1,3,7,12(2H,4H)-tetraones 20 177
5.11.5 Synthesis of $3,4,8,9,10,11$-hexahydro-2 $H-8,11$-methanobenzo[j]phenanthridine-1,7,12- triones 397 185
5.12 Synthesis of analogues of the bioactive natural products sampangine 24 and cleistopholine 23 186
5.12.1 Synthesis of $7 H$-naphtho[3,2,1-i,j]-2,6-naphthiridin-6-one 403. 186
5.12.2 Synthesis of 3-substituted-1-methylbenzo $[g]$ isoquinoline-5,10-diones 25 186
5.12.3 Synthesis of 3-substituted-1-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10- diones 404 187
5.12.4 Synthesis of 5-substituted-7 H-naphtho[3,2,1-de]naphthyridine-7-ones 26 189
5.12.5 6-Acetyl-1,2,3,4-tetrahydro-1,4-methano-5,8-naphthoquinone 407 191
5.13 Palladium(II)-catalysed synthesis of $2 H, 3^{\prime} H$-spiro[benzofuran-3,2'-naphthoquinones]] 29192
5.13.1 Synthesis of 2-aryloxymethyl-1,4-naphthoquinones 27 and 433 192
5.13.2 Synthesis of $2^{\prime} H, 3 H$-spiro[benzofuran-3,2'-naphthoquinones] 29 195
5.13.3 Synthesis of 2-aryloxymethyl-1,4-benzoquinones 207 198
5.13.4 Synthesis of 2' $\mathrm{H}, 3 \mathrm{H}$-spiro[benzofuran-3, 2'-benzoquinones] 419 200
5.13.5 Synthesis of $3^{\prime} H$-spiro[chroman-3, 2'-naphthalene]-1', 4'-dione 422 201
5.13.6 Synthesis of 2-(4-hydroxybenzyl)-1,4-quinones 413 and 441a 202
5.13.7 Synthesis of N-protected 2-phenylaminomethyl-1,4-naphthoquinones 432 203
5.13.8 Synthesis of 2-phenoxymethylchromen-4-one 436 206
6 Summary 207
7 Samenvatting 215
8 References 223
9 Curriculum Vitae 236

List of abbreviations

9-BBN	9-Borabicyclo[3.3.1]nonane
AHBA	3-Amino-5-hydroxybenzoic acid
ATR	Attenuated total reflectance
Boc	tert-Butoxycarbonyl
BPO	Benzoyl peroxide
CAN	Cerium ammonium nitrate
CRM	Complex reaction mixture
DABCO	1,4-Diazabicyclo[2.2.2]octane
DCC	N,N -Dicyclohexylcarbodiimide
DCP	3,5-Dichloropyridine
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL	Diisobutylaluminium hydride
DMAP	4-(Dimethylamino)pyridine
DMSO	Dimethyl sulfoxide
DMF	N,N-Dimethylformamide
DMF-DMA	N, N-Dimethylformamide dimethyl acetal
HIV	Human Immunodeficiency Virus
IC	Inhibitory Concentration
LDA	Lithium N,N-diisopropylamide
LiHMDS	Lithium bis(trimethylsilyl)amide
MIC	Minimum Inhibitory Concentration
MOM	Methoxymethyl
MS	Multiple Sclerosis
Ms	Methanesulfonyl
MTBE	Methyl tert-butyl ether
NBS	N-Bromosuccinimide
NFS	N-Fluorobenzenesulfonimide
NRP	Nonribosomal Peptide Synthetase
NMP	N-Methyl-2-pyrrolidone
OTf	Trifluoromethanesulfonate
PIFA	[Bis(trifluoroacetoxy)iodo]benzene
PKS	Polyketide synthase
PPTS	Pyridinium p-toluenesulfonate
selectfluor	1-Chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)
TB	Tuberculosis
TBDMS	tert-Butyldimethylsilyl
TBDPS	tert-Butyldiphenylsilyl
TFA	Trifluoroacetic acid
TFAA	Trifluoroacetic anhydride
THF	Tetrahydrofuran
TOSMic	Tosylmethylisocyanide
TPCD	Tetrakis(Pyridine)Cobalt(II) Dichromate
Ts	para-Toluenesulfonyl
WHO	World Health Organisation
Xantphos	4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene
XDR-TB	Extensively drug resistant tuberculosis

1 Introduction and Goals

1.1 General background

The subject of this PhD thesis concerns the field of quinones, which are a class of cyclic conjugated diketones in which the carbon atoms of the carbonyl groups are part of the ring structure. Quinones can be subdivided in ortho-quinones, such as ortho-benzoquinone 1, and para-quinones such as parabenzoquinone 2. Even though ortho-quinones constitute an important class of compounds, the current research deals with para-quinones. Depending on the number of annulated rings, quinones can be divided in three main groups: benzoquinones 1 and 2, naphthoquinones 3 and anthraquinones 4 . As the title of the thesis reveals, the current research deals with quinones that contain a heterocyclic ring. Anthraquinones bearing an oxygen atom at the 2 position are called pyranonaphthoquinones $\mathbf{5}$, when the heteroatom is nitrogen, they are called 2-aza-anthraquinones 6 .

1 1,2-benzoquinone

2 1,4-benzoquinone

3 1,4-naphthoquinone

4 9,10-anthraquinone

5 pyranonaphthoquinones

6 2-aza-anthraquinones

The first time quinones emerged in the literature dates back to the early 1800 's when 1,4 -benzoquinone 2 was obtained by the oxidation of quinic acid, ${ }^{1}$ which was isolated from a Cinchona species (Rubiaceae), a genus of medicinal plants native to tropical South America. In this respect, the word 'quinone' is etymologically traced to the Quechua word 'kina-kina', which means holy bark.

1.2 Quinones in nature

Quinones are widely distributed in plants, fungi and bacteria, arthropods and echinoderms. ${ }^{2}$ Their appearance in other phyla is rare apart from the widely distributed 'bioquinones' such as ubiquinone ('ubique' is Latin for everywhere), which are involved in cellular respiration and photosynthesis. These secondary metabolites enhance the survival chances of the producing organism by enhancing inter- and intraspecies communication and competition, facilitation of reproduction, deterrence of predators and chemical defence against parasites and diseases. A striking example of quinones in
higher animals are the bombardier beetles (Carabidae) which, when physically assaulted, eject a hot quinoid spray from the tip of their abdomen. ${ }^{3}$ A beautiful example of intraspecies communication is Leucosceptrum canum (Lamiaceae), 'the bird's coca cola tree' in which a proline-benzoquinone adduct acts as a colour attractant to bird pollinators. ${ }^{4}$ Secondary metabolites represent a large source of biologically and pharmacologically active compounds and often serve as leads for drug development. ${ }^{5}$ Moreover, the use of medicinal plants in traditional medicine is still very popular in many developing countries. ${ }^{6}$ Quinones constitute a major and important group within bioactive natural products, as they have been shown to possess antitumour, antibacterial, antiviral, antifungal and antiprotozoal activities, of which many examples can be found throughout this thesis. Therefore, they are a popular subject amongst synthetic organic chemists. ${ }^{7}$ Even to date, new quinones continue to be isolated from various sources. ${ }^{8}$ However, quinone chemistry is not limited to the synthesis of potential bioactive compounds. Recently, it was discovered that mussels 'glue' themselves to their wet substrate using quinone chemistry, which inspired researchers to create a new type of medical adhesive for use in pancreatic islet transplantation, an experimental procedure for patients with type 1 diabetes. ${ }^{9}$

1.3 Quinones in industry

The first industrial synthesis of quinones dates back from 1868 when the natural dye alizarin 7 was synthesised. ${ }^{10}$ This was the first time that a natural pigment was duplicated synthetically. As this process replaced the expensive and labour intensive extraction process of the roots of Madder plants (Rubia sp.), the synthetic alizarin 7 could be produced for a fraction of the cost of the natural product. This boosted the use of quinones in organic synthesis even though quinone dyes are mostly replaced by more stable pigments such as azo dyes. Lawsone 8, isolated from leaves of the Henna plant (Lawsonia inermis, Lythraceaea), is used as a dye for the skin, fingernails, hair, cloth and leather. ${ }^{11}$

7 Alizarin

8 Lawsone

The most important application of quinones in industry is the production of hydrogen peroxide. ${ }^{12}$ Hydrogen peroxide is manufactured almost exclusively by the Riedl-Pfleiderer process, in which an anthraquinone is circulated between its reduced and oxidised form by means of reduction with H_{2} followed by oxidation with air and liberation of hydrogen peroxide.

1.4 Goals of the research

(1) As stated above, natural products are an important source of lead compounds towards drug discovery. ${ }^{5}$ For instance, anticancer drugs such as daunorubicin, doxorubicin, mitomycin and mitoxantrone are all quinones derived from natural products or are natural products themselves. Pentalongin 14 was isolated from the roots of the African woody herb Pentas longiflora Oliv. ${ }^{13}$ The roots of this herb are used in the traditional Kenyan medicine as a cure against tapeworm, itchy rash and acne. A decoction of the roots is mixed with milk and used as a cure for malaria, but causes acute diarrhoea and acts as a purgative. In Rwanda the plant is known as Isagara and it is mixed with butter as an ointment to treat scabies and the skin disease Pityriasis versicolor. ${ }^{14} \mathrm{~A}$ first goal of this thesis was a search for a catalytic method to synthesise 1-(2-hydroxyethoxy)pyranonaphthoquinones 13 starting from 2-(1,3-dioxolan-2-yl)-1,4-naphthoquinone 11, which is a substitute for the corresponding unstable 2-formyl-1,4-naphthoquinone. As these compounds $\mathbf{1 3}$ bear and acetal function at C-1, they are versatile synthetic intermediates, which not only allow functionalisation at this position but also easy conversion into the corresponding 2-aza-anthraquinones. These properties would allow the total synthesis of natural products such as 1-hydroxydehydroherbarin 15a, the ascomycones A 15b and B 15c and the mansouramycins 16 . Even though a non-catalytic version of this reaction is widely used in quinone chemistry, catalysis would reduce the number of reaction steps, reduce the use of toxic pyridine and allow for a wider substrate scope.

15a 1-Hydroxydehydroherbarin 15b \& c Ascomycone A \& B

16 Mansouramycin A - D
(2) At our research department, substantial research has been devoted towards the synthesis of new bio-active pyranonaphthoquinones and 2-aza-anthraquinones. ${ }^{15,16,17}$ The current efforts focus on the synthesis of a library of benzo[j]phenanthridine-7-12-dione 18 derivatives, which will be tested in collaboration with the Scientific Institute of Public Health (Uccle, Brussels) against Mycobacterium tuberculosis and some related Mycobacteria such as M. bovis, M. avium subspecies and M. ulcerans. During previous research, various benzo[j]phenantridine-7-12-diones 18 were tested against Mycobacterium tuberculosis. ${ }^{18}$ It was found that these 2 -aza-anthraquinones $\mathbf{1 8}$ showed promising antimycobacterial activity even though this activity was accompanied by a relatively high cytotoxicity. Therefore, the synthesis of variations of the benzo[j]phenanthridinedione scaffold $\mathbf{1 8}$ was envisaged focusing on the design of more 'out of plain' derivatives and further functionalisation of the benzo[j]phenanthridinedione scaffold at C-6. Thus, the synthesis of C-6 substituted benzo[j]phenanthridinediones 17, 1,2,3,4-tetrahydrobenzo[j]phenanthridinediones 19, 8,9,10,11tetrahydrobenzo[j]phenanthridinediones 21, 1,2,3,4,8,9,10,11-octahydrobenzo[j]phenanthridinediones 22 and dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones 20 was envisaged.

17

$20 \mathrm{X}=\mathrm{O}, \mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}$

18

21

19

$22 \mathrm{X}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{O}$
(3) Cleistopholine 23 and sampangine 24 are two strongly related polycyclic aromatic alkaloids isolated from different plants belonging to the Annonaceae family with a wide range of interesting biological activities. ${ }^{19}$ As they are reported to have antimycobacterial activity and as it is postulated
that 2-aza-anthraquinones are more bioactive than their corresponding 1-aza-analogues, a short and efficient synthesis of analogues $\mathbf{2 5}$ and $\mathbf{2 6}$ of cleistopholine $\mathbf{2 3}$ and sampangine $\mathbf{2 4}$ was envisaged.

23 Cleistopholine

25

26
(4) During previous research, it was found that the reaction of 2-phenoxymethyl-1,4naphthoquinone 27a with palladium(II) acetate did not yield the expected benzopyranonaphthoquinone 28 but led to spirocyclisation product 29a. In the present study, this surprising reaction was thoroughly investigated in order to propose a mechanism, to develop catalytic conditions, to synthesise derivatives and to explore the scope and limitations. The $2 H, 3 ' H$ -spiro[benzofuran-3,2'-naphthoquinone] structural motif has never been prepared before. Even though several methods to synthesise structurally similar spiroheterocyclic compounds exist in the literature, ${ }^{20}$ the oxygen atom is always directly connected to the spiro carbon.

1.5 Tuberculosis

Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis. It typically affects the lungs (pulmonary TB) but can affect other sites as well (extrapulmonary TB). The disease is spread in the air when sick people with pulmonary TB expel bacteria, for example by coughing. In general, a relatively small proportion of people infected with Mycobacterium tuberculosis will develop TB disease; however, the probability of developing TB is much higher among immunosuppressed and human immunodeficiency virus (HIV) positive people. ${ }^{21}$ Without treatment, mortality rates are high. Treatment for new cases of drug-susceptible TB consists of a 6-
month regimen of 4 first-line drugs: isoniazid 30, ethambutol 31, pyrazinamide 32, and rifampicin 33. ${ }^{21}$

Treatment for multidrugresistant TB (MDR-TB), defined as resistance to isoniazid $\mathbf{3 0}$ and rifampicin 33, the two most powerful anti-TB drugs, is longer and requires more expensive and toxic drugs. For most patients with MDR-TB, the current regimens recommended by WHO last 20 months. TB is an enormous healthcare challenge, especially in immunosuppressed and HIV-positive patients. In 2011, there were an estimated 8.7 million new cases of TB (13% co-infected with HIV) and 1.43 million people died from TB, including almost one million deaths among HIV-negative individuals and 430000 among people who were HIV-positive. TB is one of the top killers of women, with 300000 deaths among HIV-negative women and 200000 deaths among HIV-positive women in 2011. ${ }^{21}$ In addition to its high prevalence, drug-resistant isolates have emerged in most parts of the world. Research efforts have centred on the development of new chemical entities with improved antimicrobial coverage of Mycobacterium tuberculosis and a simpler dosing schedule. Advantages of such an agent may be greater efficacy, improved patient compliance, less resistance and decreased healthcare costs. ${ }^{21}$ Given the high rate of attrition, a steady supply of new chemical entities is crucial. ${ }^{22}$

By the end of 2012, bedaquiline 34 (brand name Sirturo ${ }^{\circledR}$, manufactured by Johnson \& Johnson) was approved by the US Food and Drug Administration. It is a diarylquinoline anti-TB drug and the first new medicine to fight TB in more than 40 years. It is specifically approved to treat multidrugresistant TB. ${ }^{23}$

34 Bedaquiline

2 Literature overview: 1,4-quinones in modern day drugs: (bio)synthesis and mechanism of action

This literature overview aims at giving an overview of 1,4-quinones that are currently in use in modern medicine or are in phase I-III clinical studies.

2.1 1,4-Naphthoquinones

2.1.1 Atovaquone 35

Atovaquone $\mathbf{3 5}^{24}$ has broad-spectrum activity against Plasmodium spp., P. carinii, Babesia spp., and Toxoplasma gondii. It is a highly lipophilic compound with very low aqueous solubility. Currently, atovaquone $\mathbf{3 5}$ is marketed as Mepron (GlaxoSmithKline). Atovaquone $\mathbf{3 5}$ is used to treat or prevent pneumocystis pneumonia in AIDS patients, ${ }^{25}$ in combination with azithromycin for the treatment of babesiosis, it is active against Toxoplasma gondii and used for patients with toxoplasmosis that are intolerant to standard therapies or multiple drug intolerance. ${ }^{26}$ Atovaquone $\mathbf{3 5}$ is available as a combination preparation with proguanil $\mathbf{3 7}$ under the brand name Malarone (GlaxoSmithKline) for the treatment and prevention of malaria. ${ }^{27}$ The drug is structurally similar to ubiquinone $\mathbf{3 6}$ (coenzyme Q), which is an integral component of the electron transport system in aerobic respiration. Ubiquinone 36 accepts electrons from dehydrogenase enzymes and passes them to electron transport cytochromes. Atovaquone 35 inhibits the binding of ubiquinone 36 to the protozoal cytochrome complex. The consequence of this inhibition is the collapse of the mitochondrial membrane potential. Atovaquone 35 is prepared by means of radical alkylation of 2-chloro-1,4-naphthoquinone 39 with 4-(4-chlorophenyl)cyclohexanecarboxylic acid $\mathbf{3 8}$ in low yield followed by alkaline hydrolysis of the vinylic chloride $\mathbf{4 0}{ }^{28}$

37 Proguanil
$\mathrm{HO}_{2} \mathrm{C}$

38
1 equiv.

40 7\%

$$
\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 4: 5, \Delta, 3 \mathrm{~h}
$$

The low yield of the radical alkylation step has been subject of intense research. However, few higher yielding processes were discovered. In 2009 a patent was filed in which Atovaquone 35 was prepared by means of a radical alkylation of 4-(4-chlorophenyl)cyclohexanecarboxylic acid 38 and 1,4naphthoquinone 3 . The obtained quinone 41 was chlorinated and subsequently dehydrochlorinated to yield intermediate $\mathbf{4 0}$, which was then treated identical as above. ${ }^{29}$

2.1.2 Parvaquone 43 and buparvaquone 44

Parvaquone 43 and buparvaquone 44 are 2-hydroxy-1,4-naphthoquinone antiprotozoal drugs related to atovaquone 35. These compounds are used in the treatment of East Coast fever, a lympho-destructive disease of cattle, caused by the protozoan parasite Theileria parva. ${ }^{30}$ They are synthesised using the same radical alkylation-hydrolysis procedure as atovaquone $35 .{ }^{31}$ Parvaquone $\mathbf{4 3}$ and other cyclohexyl substituted quinones are metabolised in mammals via hydroxylation at the 4-position of the cyclohexyl ring. Therefore, this position was blocked in buparvaquone $\mathbf{4 4}$ with a tert-butyl group resulting in a compound which is approximately eight times more active in vivo than parvaquone 43. ${ }^{30 \mathrm{a}}$

43 Parvaquone

44 Buparvaquone

2.2 Anthraquinones

Anthraquinones constitute the largest group of quinones in medicinal use. Given their flat nature, they are excellent intercalating agents and are therefore mainly applied as antitumour drugs. They are all very lipophilic and have thus to be administered intravenous.

2.2.1 Anthracyclines

Anthracyclines are anthraquinones coupled with an amino-sugar used in cancer chemotherapy. Their corresponding aglycons are called anthracyclinones. Anthracyclines are amongst the most important drugs in the treatment of many neoplastic diseases, such as leukaemias, lymphomas, lung, ovarian, breast and uterine cancers. They have the widest spectrum of activity in human cancers and only a few cancers (e.g. colon cancer) are unresponsive to them. ${ }^{39}$ Unfortunately, chronic administration of anthracyclines induces cardiomyopathy leading to heart failure. ${ }^{32}$

Anthracyclines have three mechanisms of action: (a) Intercalation between the base pairs of the DNA or RNA strands, thus preventing replication. ${ }^{33}$ (b) Inhibition of topoisomerase II thus blocking DNA transcription and replication by preventing the relaxation of the supercoiled DNA. (c) Creation of free oxygen radicals that damage DNA and cell membranes. This is the main cause of the cardiotoxicity of anthracyclines, which is thought to be caused by the formation of semiquinone free radicals. These radicals can lead to tissue damage through mechanisms such as membrane lipid peroxidation. The heart is more susceptible to this process owing to a relative lack of free radical detoxifying enzymes.

The two most prominent anthracyclines are daunorubicin (daunomycin) 63 and doxorubicin (doxomycin) 64. They were developed as anticancer agents in the 1960's. Daunorubicin $\mathbf{6 3}$ was
isolated from Streptomyces peucetius var. caesius. Doxorubicin 64 (brand name Adriamycin) is closely related to daunorubicin 63 and was isolated by mutating the Streptomyces strain from which daunorubicin 63 was isolated. ${ }^{34}$ Doxorubicin 64 is more potent than daunorubicin 63 , and one of the most widely prescribed and effective cytotoxic anticancer agents. ${ }^{35}$ The most serious clinical limitations are dose-dependent cardiotoxicity and susceptibility to multi-drug resistance. ${ }^{36}$ The main mode of action of doxorubicin 64 is DNA intercalation: when doxorubicin 64 is intercalated, the C-9 ketone and the daunosamine sugar moiety coordinate in the minor groove and stabilise the DNA complex by hydrogen bounding and interaction with topoisomerase II. Biosynthetically, daunorubicinone is derived from 9 acetate units and 1 propionate unit, which accounts for the ethyl group. The biosynthesis of doxorubicin 64 is completed in three stages: (a) formation of ε rhodomycinone 58 via a polyketide synthase pathway, (b) formation of thymidine diphosphate (TDP)-L-daunosamine 51 starting from D-glucose-1-phosphate and (c) glycosylation followed by postmodifications (methylation, decarboxylation, and hydroxylation). As with many complex natural products, the chemical synthesis of doxorubicin $\mathbf{6 4}$ is challenging e.g. the introduction of the labile 7,9-dihydroxy functionality. ${ }^{37}$ Doxorubicin 64 and daunorubicin 63 are produced via genetically engineered Streptomyces strains. Although a number of organisms (including S. peucetius ATCC 29050) produce daunorubicin 63, S. peucetius ATCC 27952 is the only organism reported to produce doxorubicin $64{ }^{38}$

A large number of semi-synthetic anthracyclines exist but none of them is significantly better than the original doxorubicin 64. ${ }^{39}$ Promising doxorubicin 64 derivatives involve mainly alteration of the sugar structure ${ }^{40}$ or alterations at C-9. ${ }^{41}$ As doxorubicin 64 is hard to synthesise chemically, ${ }^{37}$ most derivatisation approaches start from the complete molecule, which is complicated due to the present polyfunctionality and sensitivity to heat, pH , metal ions and light. Therefore, selective microbial
transformations are often deployed. ${ }^{42}$ For instance valrubicin 65, which is used to treat bladder cancer, ${ }^{43}$ is synthesised chemo-enzymatically from doxorubicin 64 by means of a Pseudomonas cepacia lipase catalysed esterification followed by N-trifluoroacetylation with trifluoroacetic anhydride (TFAA). ${ }^{44}$

Epirubicin 66 has the opposite chirality as doxorubicin 64 at the 4'-position. It is prepared from daunorubicin 63 by oxidation of the $4^{\prime}-\mathrm{OH}$ followed by stereoselective reduction of the ketone and bromination of C-14 followed by hydrolysis of the $14-\mathrm{CH}_{2} \mathrm{Br}$ fragment. ${ }^{45}$ It is used for the treatment of carcinomas, lymphomas and sarcomas. Other clinically relevant anthracyclines include pirarubicin 67 (carcinomas, lymphomas, sarcoma), idarubicin 68a (acute leukaemias), carminomycin 68b, aclarubicin 69 (acute leukaemias and non-Hodgkin's lymphomas) and zorubicin 70 (acute leukaemias).

66 Epirubicin

67 Pirarubicin

68a Idarubicin $\mathrm{R}=\mathrm{H}$ 68b Carminomycin $\mathrm{R}=\mathrm{OH}$

As so far no better alternative for doxorubicin 64 is found, some methods focus on 'mechanical' modification of doxorubicin 64. Such methods include using prodrugs, encasing doxorubicin 64 in liposomes or changing the drug administration method to retard the height of peak plasma levels. High peak plasma levels are thought to be related to the cardiotoxicity of doxorubicin $64 .{ }^{39}$ Alternatively, doxorubicin 64 can be administered together with a substance that mitigates cardiotoxicity, such as dexrazoxane or amifostine. ${ }^{46}$

2.2.2 Ametantrone 73a and mitoxantrone 73b

The anthraquinone ametantrone 73a was identified as an antitumour compound by means of random screening. Mitoxantrone 73b (brand name Novantrone ${ }^{\circledR}$) was prepared in an attempt to design structurally less complex analogues of doxorubicin 64, focusing on the anthraquinone and amino moieties as most important sites for intercalative binding. ${ }^{47}$ On a molar base, mitoxantrone 73b is ten to 100 times more potent than ametantrone $\mathbf{7 3 a}^{48}$ and it is active against both solid tumours and leukaemias. ${ }^{47}$ Intravenous mitoxantrone 73b treatment improved neurological disability and delayed progression in multiple sclerosis (MS) patients. Its presumed mechanism of action in patients with MS is via immunomodulatory mechanisms, although these remain to be fully elucidated. ${ }^{49}$ Ametantrone

73a and mitoxantrone 73b are synthesised by means of the addition of 2-(2-aminoethylamino)ethanol to 2,3-dihydro-1,4-dihydroxyanthraquinones 71a and 71b in tetramethylethyleendiamine (TMEDA) followed by oxidation with chloranil and HCl salt formation. ${ }^{50}$ As with all anthraquinone anticancer drugs, cardiotoxicity is a major side effect. The cardiotoxicity of mitoxantrone 73b and doxorubicin 64 has been associated with the metal chelating ability of the adjacent hydroxyl and quinone groups. Formation of drug-metal complexes could enhance redox cycling by a metal catalysed type reaction. The lower cardiotoxicity associated with mitoxantrone 73b than with doxorubicin $\mathbf{6 4}$ is ascribed to the diminished rate of superoxide radical formation.

4 equiv. HCl in EtOH

1.02 equiv. chloranil

2-methoxyethanol, $0^{\circ} \mathrm{C}$ to r.t., o.n.

73a Ametantrone $\mathrm{R}=\mathrm{H}$ no yield given
73b Mitoxantrone $\mathrm{R}=\mathrm{OH}$ quant.

2.2.3 Anthrapyrazoles 78

A strategy to reduce cardiotoxicity is to modify the quinone chromophore so that the reduction of the quinone is more difficult. This can be achieved by rendering the redox potential of the quinone more negative, thus rendering more difficult the electron addition. Chromophore modified synthetic analogues are designed to be more resistant to enzymatic reduction while retaining the planarity of the parent quinone scaffolds. ${ }^{51}$ Another important factor responsible for the cardiotoxic side effects is the affinity displayed by the quinones for their oxidoreductases as they stimulate oxygen free radical production. ${ }^{51}$

The quinone chromophore is turned more resistant to enzymatic reduction by replacing a carbonyl group in the B ring with an imine moiety. This substitution decreases redox cycling and the generation
of semiquinone free radicals. ${ }^{56}$ Based on the abovementioned considerations, a new class of DNA complexers, the anthra[1,9-cd] pyrazol-6(2H)-ones (anthrapyrazoles) 78 were synthesised. ${ }^{52}$ The anthrapyrazoles 78 inhibit DNA, RNA and protein synthesis but they are much more potent inhibitors of DNA synthesis than RNA. This is in contrast to doxorubicin 64 and mitoxantrone $\mathbf{7 3 b}$ which have equivalent activity in both processes. Reaction of anthraquinones $\mathbf{7 5}$ with a monoalkylhydrazine gave chloroanthrapyrazoles 76, whose subsequent condensation with primary or secondary alkylamines provided the target 'two-armed' anthrapyrazoles 78. ${ }^{53}$ Losoxantrone 78a ${ }^{54}$, pyroxanthone $\mathbf{7 8} \mathbf{b}^{55}$ and teloxantrone 78c are the three most studied anthrapyrazoles and were evaluated against various types of cancer. ${ }^{56,57}$

78a Losoxantrone $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2} 97 \%$
78b Teloxantrone $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHCH}_{3} 52 \%$
78c Pyroxantrone $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2} 48 \%$

77a $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2} 50 \%$
77b $R^{1}=\mathrm{OBn}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHCH}_{3} 68 \%$
77c $R^{1}=\mathrm{OBn}, \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2} 72 \%$

2.2.4 Pixantrone 80

Pixantrone dimaleate ${ }^{58} 80$ is significantly less cardiotoxic than mitoxantrone 73b and in phase III clinical studies for the treatment of patients with non-Hodgkin's lymphoma. ${ }^{59}$ It is prepared by reaction of difluoro-2-aza-anthraquinone 79 with N-Boc-protected ethylenediamine followed by Boc deprotection and maleate salt formation. Pixantrone dimaleate $\mathbf{8 0}$ is approved by the United States Food and Drug Administration and the European Medicines Agency. It is marketed by Cell Therapeutics Incorporated under the brand name Pixuvri ${ }^{\circledR} .{ }^{60}$

1) 5 equiv. $\mathrm{BocHN} \sim \mathrm{NH}_{2}$

NMP, $60^{\circ} \mathrm{C}, 4.5 \mathrm{~h}$

79

80 Pixantrone 67\% overall

2.2.5 Diacerein 81

Unlike other anthraquinones, diacerein (diacetylrhein) $\mathbf{8 1}$ is not an intercalating drug but is used to treat osteoarthritis. ${ }^{61}$ Diacerein is a slow-acting drug taken as a pill that may slow down the breakdown of cartilage and relieve pain and swelling. Its use is disputed as it not clear whether diacerein $\mathbf{8 1}$ works and whether it is safer than other drugs used to treat osteoarthritis. ${ }^{62}$

81 Diacerein

2.3 Benzoquinones

2.3.1 Mitomycins 86

Mitomycins 86 were isolated from various Streptomyces $s p$. and are used as anticancer compounds against a wide range of tumours. ${ }^{63}$ They have a complex aza-heterocyclic basic skeleton consisting of an aziridine fused to a pyrroloindolodione. ${ }^{64}$ Mitomycins $\mathbf{8 6}$ act as prodrugs by in vivo transformation to the active metabolite giving irreversible bis-alkylation of DNA. Mitomycin C 86b is the most studied mitomycin and was isolated from the bacterium Streptomyces lavendulae. It has become one of the most effective drugs against non-small-cell lung carcinoma, as well as other tumours. ${ }^{65}$ The mitosane core 85 is derived from a combination of 3-amino-5-hydroxybenzoic acid (AHBA) 82, carbamoyl phosphate 83 and D-glucosamine $84 .{ }^{66}$ AHBA 82 is also a common precursor to other anticancer drugs, such as the rifamycins $\mathbf{1 1 0 - 1 1 3}$ and geldanamycin $\mathbf{1 0 4}$. The use of mitomycin C 86b in cancer treatment relies on the cytotoxic selectivity for hypoxic cells characteristic of solid tumours. ${ }^{67}$ Even though mitomycin C 86b is relatively unreactive toward DNA, it becomes a reactive alkylating agent upon reduction. ${ }^{68}$ Reduction of the quinone moiety followed by ring opening of the aziridine creates a 1,6 -Michael acceptor to which initial DNA attack occurs. Next, the carbamoyl moiety is expelled, thus forming a second site of addition for the DNA molecule. To date, little
synthetic modified mitomycins have been prepared and it is known to be a notoriously difficult synthetic target. ${ }^{69}$

82
85 mitosane core

86a Mitomycin $\mathrm{AR}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{H}$
86b Mitomycin $C R^{1}=\mathrm{NH}_{2}, \mathrm{R}^{2}=\mathrm{H}$
86c Mitomycin $F R^{1}=\mathrm{OMe}, \mathrm{R}^{2}=\mathrm{Me}$
86d Porfyromycin $R^{1}=\mathrm{NH}_{2}, R^{2}=\mathrm{Me}$
$\downarrow \begin{aligned} & 2 \mathrm{e}^{-}, 2 \mathrm{H}^{+} \\ & -\mathrm{MeOH}\end{aligned}$

2.4 Ansamycins

Ansamycins ('ansa' is Latin for handle) consist of an aromatic moiety which is bridged at nonadjacent positions by an aliphatic polyketide chain. The aromatic moiety can be either a naphthalene or a naphthoquinone ring system as in the naphthalenic ansamycins naphthomycin, tolypomycin, halomycin, the rifamycins or the streptovaricins or it can be a benzene or a benzoquinone ring system as in the benzenic ansamycins geldanamycin, herbimycin or ansamitocin. ${ }^{70}$ The biosynthesis of this class of antibiotics involves the assembly of AHBA 82, followed by sequential addition of the polyketide chain, which then undergoes further tailoring processes. The origin of AHBA $\mathbf{8 2}$ is related
to the shikimate pathway. Reductive amination of uridine diphosphate (UDP) 3-ketoglucose 94 followed by isomerisation and transketolisation leads to aldimine 99, which is condensed with phosphoenolpyruvate 100 towards 3,4-dideoxy-4-amino-D-arabinoheptulosonic acid 7-phospate (aminoDAHP) 101. AminoDAHP 101 is cyclised towards 5-deoxy-5-amino-3-dehydroquinic acid (aminoDHQ) 102, which dehydrates to 5-deoxy-5amino-3-dehydroquinic acid (aminoDHS) 103 which further dehydrates to AHBA $\mathbf{8 2} .^{70}$

2.4.1 Geldanamycin 104

Geldanamycin 104 is a benzoquinone ansamycin that binds to the ATP binding site of the heat shock protein of $90 \mathrm{kDa}(H s p 90)$ and inhibits its function. It was originally discovered in the Actinobacterium Streptomyces hygroscopicus. ${ }^{71}$ Hsp90 serves a chaperone role to properly fold and deliver client proteins to appropriate intracellular locations and is transcriptionally upregulated by heat and other stressors. Thus, compounds that inhibit Hsp90 could affect tumours by blocking the synthesis of molecules on which tumours depend for their development. Geldanamycin 104 induces Hsp90 mediated degradation of proteins that are mutated in tumours preferentially over their normal cellular counterparts. Despite the powerful antitumour qualities of geldanamycin 104, hepatotoxicity limits its uses as an anticancer drug. It was found that derivatisation of geldanamycin at position 17 led to a reduction of the hepatotoxic properties, and improved solubility. 17-Allylamino-17demethoxygeldanamycin (17-AAG, tanespimycin) ${ }^{72} 105 a$ underwent various phase II clinical studies and a phase III clinical trial but its use proves to be limited as the bioavailability is modest, the compound is instable and it has a low therapeutic index. ${ }^{73,74} 17$-(Dimethylaminoethylamino)-17demethoxygeldanamycin (17-DMAG, alvespimycin) $\mathbf{1 0 5 b}$ is a more water-soluble analogue of
geldanamycin 104 and is administered as the HCl salt. It has been evaluated for the treatment of solid tumours ${ }^{75}$ and leukaemia. ${ }^{76}$ IPI-493 105c is another orally available derivative, currently in phase I studies. ${ }^{74}$ A drawback of these drugs is that the benzoquinone moiety must undergo reductive metabolism and detoxification by quinone oxidoreductase NQ1 before they can act against Hsp90. ${ }^{74}$ Less prone to oxidative stress and more water soluble than tanespimycin 105a or alvespimycin $\mathbf{1 0 5 b}$ is IPI-504 (retaspimycin hydrochloride) 106, which has been evaluated in phase II and phase III clinical trials. ${ }^{74}$

As all ansamycins, geldanamycin 104 originates from AHBA 82, which is elaborated with a polyketide chain followed by macrocyclic lactam formation. The initial PKS product, progeladanamycin 107bis, is converted in geldanamycin by post-PKS modification steps, which include C-17 hydroxylation, C-17 O-methylation, C-21 oxidation, C-7 carbamoylation and C-4,5 oxidation. ${ }^{77}$ Even though most chemical functionalisation is done at the benzoquinone moiety, it is possible to introduce variations in the polyketide structure by genetic engineering of the ketoreductase, dehydratase or enoylreductase domains of PKS. ${ }^{78}$

2.4.2 Rifamycins

The rifamycin antibiotics are fermentation products of Streptomyces mediterranei sp. One of the substances originally isolated by S. mediterranei sp . n. was rifamycin B 110. Even though rifamycin B 110 has no antibacterial activity, it is not stable and readily degrades to the very active derivative rifamycin S 111, even in buffered neutrals solutions and air as the oxidant. Rifamycin S 111 inhibits the growth of Gram-positive bacteria at concentrations as low as $0.0025 \mu \mathrm{~g}$ of antibiotic per ml. The sodium salt of rifamycin SV $\mathbf{1 1 3}$ was the first commercial available rifamycin under the brand name Rifacin ${ }^{\circledR} .{ }^{81}$ Clinically, the rifamycins proved to be a very valuable class of antibiotics, especially for the treatment of TB , but the naturally occurring compounds had the disadvantage of not being orally active. ${ }^{79}$

The antibacterial activity of rifamycins relies on the inhibition of bacterial RNA synthesis. This inhibition is not due to interaction with the template but to the high affinity of rifamycins to
prokaryotic DNA dependent RNA polymerase. ${ }^{80}$ Since this inhibition is highly specific, the rifamycins are an important tool in the study of RNA biosynthesis and metabolism. ${ }^{79}$

110 Rifamycin B

112 Rifamycin O

Ox.

111 Rifamycin S
Red.

113 Rifamycin SV

When the structure of the natural rifamycins was elucidated, ${ }^{81}$ various semisynthetic derivatives were prepared. In many cases, rifamycin S $\mathbf{1 1 1}$ or SV 113 were modified by the introduction of substituents in position three, which contains the only aromatic hydrogen. Chemical modifications are mostly done on the quinone chromophore as these modifications do not alter the antimicrobial properties. It was found that N, N-disubstituted hydrazones showed very high activity against gram positive bacteria and Mycobacterium tuberculosis.

Rifampicin (US: rifampin) 33, the compound most widely used for both clinical an biochemical purposes, is an orally available 3- N-(4-methylpiperazinyl)formimidoyl derivative of rifamycin SV 113. ${ }^{79}$ Eukaryotic enzymes are at least 10^{4} times less sensitive to inhibition by rifampicin $\mathbf{3 3}$. It is one of the most potent and broad spectrum antibiotics against bacterial pathogens and is a key component of anti-TB therapy. Rifampicin 33 diffuses freely into tissues, living cells and bacteria making it extremely effective against intracellular pathogens like Mycobacterium tuberculosis. ${ }^{82}$ As bacteria quickly develop resistance against rifampicin 33, the drug is typically used in combination with other antimycobacterial agents, especially isoniazid 30. ${ }^{70}$

Like rifampicin 33, rifaximin 120 binds to the β-subunit of bacterial DNA-dependent RNA polymerase and inhibits bacterial RNA synthesis. Rifaximin 120 is a nonabsorbable oral antibiotic that acts locally in the gastrointestinal tract and is used to treat traveller's diarrhoea and for the treatment of hepatic encephalopathy. ${ }^{83}$ Rifapentine 117 differs in structure from rifampicin $\mathbf{3 3}$ by the presence of a cyclopentyl ring instead of a methyl substituent on the piperazinyl moiety. Both rifapentine 117 and its active metabolite, 25-desacetylrifapentine, localise within monocyte derived macrophages, thus allowing for intracellular inhibition of Mycobacterium tuberculosis as compared with that of the parent or metabolite alone. ${ }^{84}$ Spiropiperidyl substituted rifamycin derivative rifabutin $\mathbf{1 2 2}^{85}$ is a firstline oral agent recommended by the WHO for the treatment of MDR-TBC. ${ }^{86}$ It is active against a number of rifampicin 33 resistant clinical pathogens.

Rifampicin 33 and rifapentine 117 are prepared starting from 3-formylrifamicin SV 115 and the appropriate hydrazine $116{ }^{87}$ 3-Formylrifamycin SV 115 is prepared by oxidation-reduction ${ }^{88}$ of 3(diethylaminomethyl)rifamicin SV 114, which in turn is prepared by means of a Mannich reaction starting from rifamycin SV 113. ${ }^{89}$ Rifaximin 120 is prepared by reaction of 3-bromorifamycin S $118{ }^{90}$ and 2-amino-4-picoline 119 followed by reduction with ascorbic acid. Rifabutin 122 is prepared by reaction of 3-bromorifamycin S 118 with ammonia followed by condensation with N -isobutylpiperidin-4-one 121.

Biosynthetically, the rifamycins are synthesised starting from AHBA 82, via a type I polyketide pathway (PKS I) in which chain extension is performed using 2 acetate and 8 propionate units. An oxidative cyclisation step forms the naphthoquinone subunit, which after further polyketide chain extension ring-closes to the macrocyclic lactam. Further post-modification steps, which include oxidation, methylation and acetylation steps, lead to the rifamycins.

130a Rifamycin W hemiacetal $X=O H$
130b Rifamycin Z X = O

2.5 1,4-Quinone derived drugs

2.5.1 Trabectedin 133

Trabectedin (ecteinascidin 743, ET743) $\mathbf{1 3 3}$ is an alkaloid consisting of three fused tetrahydroisoquinoline rings isolated from the marine tunicate Ecteinascidia turbinata, ${ }^{91}$ it is marketed under the brand name Yondelis ${ }^{\circledR}$ for the treatment of various cancers. Trabectedin $\mathbf{1 3 3}$ is the only novel DNA interactive small molecule to have gained market approval in the last few years. ${ }^{92}$ The mechanism of action of trabectedin $\mathbf{1 3 3}$ is different from that of other anticancer drugs. Two of the tetrahydroisoquinoline rings form a covalent interaction with the minor groove of DNA, while the
third ring protrudes from the DNA molecule, thus allowing interactions with other macromolecules. ${ }^{93}$ In contrast to standard antineoplastic alkylating agents such as cyclophosphamide that bind guanine at the $N-7$ or $O-6$ position in the DNA major groove, trabectedin 133 binds to the exocyclic $N-2$ amino group of guanines in the DNA minor groove through an iminium intermediate generated in situ by dehydration of the hemi-aminal. The hemi-aminal moiety is imperative for the pharmacological activity of trabectedin 133, as related compounds without this reactive group were 100 times less active than trabectedin. ${ }^{94}$

Trabectedin 133 is currently produced semi-synthetically in 21 steps starting from Cyanosafracin B 132, which is produced via fermentation on a kilogram scale from the wild-type producer Pseudomonas fluorescens. ${ }^{95}$

132 Cyanosafracin B

133 Trabectedin

The similarity of trabectedin $\mathbf{1 3 3}$ to other bacterial derived natural products such as safracin and the saframycins is an indication that trabectedin $\mathbf{1 3 3}$ is of prokaryotic origin, likely from a bacterium that is closely associated to E. turbinata. ${ }^{96}$ Trabectedin 133 is synthesised by nonribosomal peptide synthetases ${ }^{97}$ (NRP) starting from three tyrosines, a methionine and a glycolic acid unit. Initially, tyrosine is hydroxylated and methylated towards building blocks 134 and 135 . A double Pictet-Spengler-like condensation of fragment $\mathbf{1 3 8}$ with two modified tyrosines leads to dimeric tetrahydroisoquinoline 143 , which then intramoleculary cyclises to form the bridged A-B ring fragment 144. The C ring is then formed by oxidative cyclisation of the thiol group, followed by multiple tailoring steps leading to macrocycle 146 which is condensed with a third modified tyrosine 147, thus forming spirocyclic tetrahydroisoquinoline fragment 149 , which is further converted in trabectedin 133. ${ }^{98,99}$

Using metagenomic sequencing of total DNA from the tunicate/microbial consortium, it was found that Candidatus endoecteinascidia frumentensis produces trabectedin 133. As with many symbiotic bacteria, it is not possible to cultivate it in the lab. Significant efforts have been made to identify the NRP genes to allow direct production of the drug through metabolic engineering. ${ }^{100}$

2.6 Conclusion

Medicinal chemists often distrust the quinone scaffold due to the common prejudice that their multitude of mode of action turns them into non-selective compounds 'that are active against everything'. However, this literature overview clearly demonstrates that quinones play a key role in modern medicine. Apart from the well-known anthracyclines and other DNA-damaging agent such as mitomycin C 86b and pixantrone 81, which are all widely used in the treatment of cancer, other quinones are in medicinal use which are highly selective for a certain group of organisms. For instance atovaquone $\mathbf{3 5}$ selectively kills protozoa while the rifamycins selectively kill Gram-positive bacteria with rifampicin 33 being one of the first-line antibiotics in the battle against tuberculosis. The high selectivity that can be obtained with these compounds is a strong incentive to develop new antimycobacterial quinones and to develop new strategies towards the synthesis of heterocyclic annulated quinones.

3 Results and discussion

3.1 Introduction

The experiments performed in this PhD thesis aim at the development of new entries into the synthesis of heterocyclic quinones and the development of new quinone leads active against Mycobacterium tuberculosis.

Pyridinium ylids are a very important tool in quinone chemistry and probably the best way of introducing acetonyl side chains on the quinone scaffold. Therefore, a catalytic version of this chemistry would make a valuable contribution to the tools available for the quinone chemist. For instance, some pyridinium salt are very hard to prepare due to their high hygroscopicity so it would be interesting to have a method that departs directly from the corresponding α-haloketones.

An important goal is the development of new synthetic strategies for both the elaboration as well as further derivatisation of the benzo[$j]$ phenanthridine scaffold, a lead compound from previous research, towards new antimycobacterial compounds possessing higher activity and greater selectivity. In this respect, also the synthesis of C-4 fluorinated pyranonaphthoquinones was envisaged as potential new leads against M. $t b$.

When unexpected reactions were encounter, they were further investigated in detail. In this respect, a new entry in the synthesis of aminonaphtholes and a catalytic synthesis of spironaphthoquinones, a scaffold previously unknown in the literature, is discussed.

3.2 Catalytic addition of pyridinium ylids to form C-1 functionalised pentalongin derivatives 13

Pyridinium ylids are versatile tools in organic synthesis, giving rise to different heterocycles, for instance pyridines, furans, azepines, etc. ${ }^{101}$ More specifically, in quinone chemistry, pyridinium ylids proved to be very useful to introduce acetonyl side chains onto quinone moieties. After introduction of the acetonyl side chain, further elaboration towards the natural product isagarin, ${ }^{102}$ anthraquinones, pyranonaphthoquinones, ${ }^{103} 2$-aza-anthraquinones ${ }^{104}$ and indolizines ${ }^{105}$ has been reported.

During previous research, 3-aryl-1-(2-hydroxyethoxy)-1 H -benzo[g]isochromene-5,10-diones $\mathbf{1 3}$ were obtained by means of the reaction of a pyridinium salt and 2-(1,3-dioxolan-2-yl)naphthoquinone $\mathbf{1 1}$ in the presence of triethylamine. ${ }^{106}$ Recently, catalytic versions of this ammonium ylid chemistry emerged to synthesise cyclopropanes ${ }^{107}$ and aziridines ${ }^{108}$ as well as an enantioselective cyclopropanation using a synthetic modified quinine as the chirality inducing agent. Benefits of this
method are the catalytic use of organic base and the in situ preparation of ammonium salts as well as the corresponding ylids. Even though most papers use DABCO (1,4-diazabicyclo[2.2.2]octane) as the catalytic tertiary amine, no reaction was observed when these reaction conditions were applied to 1-bromo-3-methylbutan-2-one 12i and 2-(1,3-dioxolan-2-yl)-1,4-naphthoquinone 11. ${ }^{109}$ Repeating the same reaction with a catalytic amount of pyridine instead of DABCO yielded 1-(2-hydroxyethoxy)-3-isopropyl- $1 H$-benzo $[g]$ isochromene-5,10-dione $\mathbf{1 3 i}$ in 31% yield. A side product $\mathbf{1 5 5 i}$ was formed due to addition of a second pyridinium ylid 152 onto the enone moiety of intermediate $150 b i s$ followed by elimination of pyridine and aerobic oxidation. It was isolated in 10% yield and was also found in the other reaction mixtures but only in trace amounts. In the optimal reaction conditions, 1.5 equivalents $\mathrm{Na}_{2} \mathrm{CO}_{3}$, one equivalent α-halogenated ketone 12, one equivalent 2-(1,3-dioxolan-2-yl)-1,4naphthoquinone 11 and 0.2 equivalents pyridine are reacted overnight at room temperature to form the acylmethyl substituted quinone 150. Subsequently, heating at $60^{\circ} \mathrm{C}$ for 20 hours induced cyclisation towards 1-(2-hydroxyethoxy)pyranonaphthoquinones 13.

155i 10\%
The catalytic version of the reaction proved to give similar results in the synthesis of 1-(2hydroxyethoxy)pyranonaphthoquinones $\mathbf{1 3}$ in comparison to the equimolar method (Table 1). It has however the advantage that there is no need to preform the pyridinium salt and only a catalytic amount of pyridine is needed.

Table 1. Comparison between the equimolar and catalytical synthesis of 1-(2hydroxyethoxy)pyranonaphthoquinones 13.

Compound	X	R	Equimolar method (\%)		Catalytic method (\%)	
			Crude ${ }^{\text {c }}$	Isolated Yield	Crude ${ }^{\text {c }}$	Isolated Yield
13a	Br	$\mathrm{C}_{6} \mathrm{H}_{5}$	57	52	24	-
13b	Br	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	47	43	72	-
13c	Br	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	55	52	53	32
13d	Br	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	44	41	77	-
13e	Br	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	68	65	57	-
13f	Br	4-MeC66 H_{4}	$70^{\text {b }}$	69	52	-
13g	Br	2,5-(MeO) $2_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$72^{\text {b }}$	48	57	-
13h	Cl	Me	64	42	$70^{\text {a }}$	-
13i	Br	$i-\mathrm{Pr}$	51	27	60	31
13j	Cl	t-Bu	81	74	$42^{\text {a }}$	18

Notes: (a) for $\mathrm{X}=\mathrm{Cl}$, the reaction only occurred upon the addition of $10 \mathrm{~mol} \%$ of KI and heating for 2 d at $60^{\circ} \mathrm{C}$. (b) reaction under the given reaction conditions yielded a mixture of $\mathbf{1 5 0}$ and $\mathbf{1 3}$ and the reaction mixture was heated at $50^{\circ} \mathrm{C}$ for 12 h in the presence of 5 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to obtain complete conversion. (c) Occurrence in the crude reaction mixture after workup determined by means of LC.

When the above developed reaction was applied to alternative substrates such as 2-bromo-1,4naphthoquinone 156a, or menadione 156b and 2-bromo-4'-chloroacetophenone 12 e or bromomethyl isopropyl ketone 12i, the corresponding acetonylnaphthoquinones 157 were obtained and no further cyclisation was observed towards naphtho[2,3-b]furan-4,9-diones $\mathbf{1 5 9}$ for the bromine substituted compounds. In case of the reaction of 2-bromo-1,4-naphthoquinone 156a and bromomethyl isopropyl ketone 12i, a trace amount of 6-isobutyrylbenzo[f]pyrido[2,1-a]isoindole-7,12-dione 158a was obtained. In case of 1,4-naphthoquinone 3, a complex reaction mixture was obtained. No reaction was observed when menadione $\mathbf{1 5 6 b}$ was reacted with ethyl chlorofluoroacetate $\mathbf{1 6 0}$ in the presence of 0.2 equiv. pyridine and 1.5 equiv. of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in boiling acetonitrile.

Repeating the reaction with a full equivalent of pyridine, 2-bromo-1,4-naphthoquinone 156a and 2bromoacetophenone 12a, resulted in the formation of 6-benzoyl-benzo[f]pyrido[2,1-a]isoindole-7,12dione $\mathbf{1 5 8 b}$ in 80% yield after 2.5 days heating in acetonitrile. Addition of pyridinium ylid 152a to 2-bromo-1,4-naphthoquinone $\mathbf{1 5 6 b}$ results in pyridinium intermediate 161, which then undergoes intermolecular cyclisation towards compound 162. After elimination of the bromide atom, intermediate $\mathbf{1 6 3}$ is oxidised by air oxygen towards benzoisoindole $\mathbf{1 5 8 b}$, which might explain the sluggishness of the reaction.

Repeating the reaction with quinoline 164 and isoquinoline 166 gave the corresponding 13-benzoylbenzo[5,6]isoindolo[2,1-a]quinoline-7,12-dione 165 and 8-benzoylbenzo[5,6]isoindolo[1,2a]isoquinoline-9,14-dione, 167 in 44% and 70% yield, respectively.

An alternative method to prepare these benzoisoindoles is known in the literature in which 1,4naphthoquinone is reacted with a pyridinium salt in the presence of tetrakis(pyridine)cobalt(II) dichromate (TPCD) as the stoichiometric oxidant. ${ }^{110}$ The yields are similar as compared to the reaction discussed above but the reaction times are significantly shorter. This type of reactions with pyridinium ylids in which the heterocyclic base is incorporated in the end product have recently received considerable attention to synthesise indolizines, imidazo[1,2-a]pyridines and pyrrolo[2,1a]isoquinolines. ${ }^{111,112}$

When 2-methoxycarbonyl-1,4-naphthoquinone 156c was reacted with a bromomethyl ketone, pyridine and $\mathrm{K}_{2} \mathrm{CO}_{3}$, a dimerisation-like reaction of the starting material occurred and no acetonylated product was observed. When the reaction was repeated at $-45^{\circ} \mathrm{C}$, this dimerisation-like reaction still occurred. Executing the reaction with only a catalytic amount of pyridine, gave pseudo-dimer with putative structure $\mathbf{1 7 0}$ in quantitative yield. A plausible mechanism is proposed: 1,4-addition of pyridine across the quinone chromophore leads to zwitterion $\mathbf{1 6 8}$ which then attacks across the ester function of a second quinone to form adduct $\mathbf{1 6 9}$. This quinone $\mathbf{1 6 9}$ is then converted in the end product $\mathbf{1 7 0}$ through substitution of pyridine by methoxide. In an attempt to gain additional structural evidence for this putative structure 170, a mild basic hydrolysis ${ }^{113}$ was performed. This resulted in the formation of a highly polar, insoluble yellow solid from which 1,4-dihydroxy-3-methoxynaphthalene-2-carboxylic acid $\mathbf{1 7 2}$ was identified. 1,4-Naphthoquinone-2carboxylic acid $\mathbf{1 7 1}$ was not observed and it is very likely that this compound is not stable under the present conditions. Additional evidence should be collected to establish the structure of compound $\mathbf{1 7 0}$ with certainty.

3.2.1 Attempted synthesis of ascomycone A, B and 1-hydroxydehydroherbarin 15a-c

Benzo $[g]$ chromenediones with an acetal function at $\mathrm{C}-1$, such as pentalongin analogues $\mathbf{1 5}$, are found in nature. 1-Hydroxydehydroherbarin 15a was isolated from a Corynespora species occurring in the cavern beard lichen Usnea cavernosa. ${ }^{114}$ Ascomycone A 15b and B 15c were isolated from an unidentified Ascomycete and exhibit activity against the phytopathogens Magnaporthe grisea (rice blast fungus) and Fusarium graminearum (wheat head blight fungus). ${ }^{115}$ Their corresponding dihydro analogues thysanone $\mathbf{1 7 3}$ and astropaquinones B $\mathbf{1 7 4 a}$ and C $\mathbf{1 7 4 b}{ }^{116}$ have pronounced biological properties, such as inhibition of HRV-3C protease. The interesting biological activities of $\mathbf{1 7 3}$ and $\mathbf{1 7 3}$ have raised considerable interest among synthetic chemists. ${ }^{117,127}$

15a 1-Hydroxydehydroherbarin

15b Ascomycone A

15c Ascomycone B

173 thysanone

174a Astropaquinone B

174b Astropaquinone C

It was envisaged to synthesise 1-hydroxydehydroherbarin 15 a and ascomycone $A \mathbf{1 5 b}$ and $B \mathbf{1 5 c}$ by means of the abovementioned catalytic pyridinium ylid methodology. Retrosynthetically, reaction of (1,3-dioxolan-2-yl)-1,4-naphthoquinone $\mathbf{1 7 6}$ with chloroacetone $\mathbf{1 2 h}$ followed by hydrolysis or methanolysis of the acetal function would lead to the desired 1-hydroxyherbarin 15a or ascomycones 15b and 15c. Dioxolanylnaphthoquinone 176 would be synthesised by means of a regioselective Diels-Alder reaction between Brassard diene 179, which is readily available from methyl 3oxobutanoate, and 2-bromo-6-(1,3-dioxolan-2-yl)-1,4-benzoquinone 180. The latter quinone $\mathbf{1 8 0}$ could be prepared starting from 2-hydroxy-5-methoxybenzaldehyde 182. It should be noted that one cannot simply brominate 2,5 -dimethoxybenzaldehyde as this would result in formation of the wrong isomer. Alternatively, dioxolanylnaphthoquinone 176 could be prepared starting from 6,8-dimethoxynaphth-1-ol 178 by means of formylation and acetalisation followed by $\mathrm{Cu}(\mathrm{I})$ mediated air oxidation ${ }^{118}$ of the naphthol towards quinone 176.

Thus, 2-hydroxy-5-methoxybenzaldehyde $\mathbf{1 8 2}$ was brominated with bromine in glacial acetic acid ${ }^{119}$ followed by acetalisation of aldehyde 183a resulting in 2-bromo-6-(1,3-dioxolan-2-yl)-4methoxyphenol 181a in 93\% yield. 2-Bromo-6-(1,3-dioxolan-2-yl)-1,4-dimethoxybenzene 181b was prepared analogously in 95% yield. Attempts to oxidise these substrates by means of cerium ammonium nitrate (CAN) resulted in a complex mixture due to hydrolysis of the dioxolanyl function. No reaction was observed upon attempted oxidation of dimethoxybenzene $\mathbf{1 8 1 b}$ with four equivalents of $\mathrm{CoF}_{3} .{ }^{120}$ By means of [bis(trifluoroacetoxy)iodo]benzene (PIFA), it was possible to oxidise phenol 181a towards 2-bromo-6-(1,3-dioxolan-2-yl)-1,4-benzoquinone 180, in 53\% yield, which only had a limited stability. Unfortunately, this quinone 180 failed to undergo the desired Diels-Alder reaction with Brassard diene 179, even though this reaction has been successfully applied in quinone chemistry on similar substrates. ${ }^{121}$ It appeared that no matter which conditions were used, no product was formed and the starting benzoquinone 180 simply decomposed while the Brassard diene remained intact (Table 2). As the quinone-2-carboxadehydes that would result from the hydrolysis of the dioxolanyl group are not stable, entries 2-9 focus on the addition of a base to trap the HBr that would be formed during the restoring of the aromaticity after the initial Diels-Alder reaction. In entry 10 , the TMSgroup of Brassard diene $\mathbf{1 7 9}$ was in situ deprotected with MeLi in an attempt create a more reactive diene.

Table 2. Attempted reaction conditions for the Diels-Alder reaction of benzoquinone $\mathbf{1 8 0}$ with Brassard diene 179.

Entry	Additive	T	$\mathrm{t}(\mathrm{h})$	Result	Entry	Additive	T	$\mathrm{t}(\mathrm{h})$	Result
1	none	0	0	-	6	2 equiv. pyridine	0	0	-
2	2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	0	0	-	7	2 equiv. pyridine	r.t.	15	-
3	2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	r.t.	15	-	8	2 equiv. pyridine	$50^{\circ} \mathrm{C}$	7	-
4	2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	$50^{\circ} \mathrm{C}$	7	-	9	2 equiv. pyridine	Δ	36	-
5	2 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	Δ	36	-	10	1 equiv. MeLi then $\mathbf{1 8 0}$	-	-	$\mathrm{crm}^{\text {a }}$

(a) Complex reaction mixture

Giving the difficulties with the Diels-Alder reaction, alternative pathways were investigated. It was envisaged to synthesise 2-(1,3-dioxolan-2-yl)-8-hydroxy-6-methoxy-1,4-naphthoquinone $\mathbf{1 7 6}$ starting from 6,8-dimethoxynaphth-1-ol 178. ${ }^{122}$ A modified Vislmeier-Haack formylation with DMF and oxalyl chloride ${ }^{123}$ yielded a mixture of 2-formyl-8-hydroxy-1,3-dimethoxynaphthalene 184a and 2-formyl-1-hydroxy-6,8-dimethoxynaphthalene 184b. Unfortunately, the undesired regioisomer 184a was the major product due to the strong directing effect of the two methoxy groups. Repeating the reaction at $0^{\circ} \mathrm{C}$ only slowed down the reaction and an identical ratio of regioisomers was obtained. When the reaction was performed at $-78^{\circ} \mathrm{C}$, no reaction was observed. Regioselectivity is often an issue in the functionalisation of oxygenated naphthalenes. ${ }^{124}$

The reaction mechanism is depicted below: initial reaction of oxalyl chloride with DMF leads to the formation of reactive intermediate 188 , which then reacts with naphthol 178 towards chloroaminals 189. Hydrolysis then leads to the formation of aldehydes $184 \mathbf{a}$ and $\mathbf{1 8 4 b}$.

Alternatively, a phthalide annulation strategy ${ }^{125}$ could be deployed with model substrates 4-bromo-6-methyl-pyran-2-one 190a ${ }^{126}$ or 4-methoxy-6-methyl-pyran-2-one 190b as the Michael acceptors and 3cyanophthalide 191a or 3-tosylphthalide 191b as the phthalides. When the reaction was performed under the standard phthalide annulation conditions, complex mixtures were obtained is all cases.

However, when the reaction was performed using only one equivalent of $\mathrm{LiOt} t-\mathrm{Bu}$ at $-90^{\circ} \mathrm{C}$ with 4-bromo-6-methyl-pyran-2-one 190a and 3-cyanophthalide 191a, 3-cyano-3-(6-methyl-2-oxo-2H-pyran-$4-y l)$-phthalide 192 was isolated in 77% yield. No reaction was observed with the less reactive 4-methoxy-6-methyl-pyran-2-one 190b and the reaction could not be performed with 3-tosylphthalide 191b as it was insoluble at $-90^{\circ} \mathrm{C}$ in THF. 3-Cyano-3-(6-methyl-2-oxo-2H-pyran-4-yl)-phthalide 192 appeared to be relatively stable and could not be converted into the corresponding
pyranonaphthoquinone 193 (Table 3). A similar strategy towards the ascomycones 15, deploying a Staunton-Weinreb annulation, was attempted unsuccessfully by Brimble et al. ${ }^{127}$

Table 3. Attempted reaction conditions to convert 3-cyano-3-(6-methyl-2-oxo-2H-pyran-4-yl)phthalide 192 into pyranonaphthoquinone 193.

Entry	Reagents	conditions
1	0.1 to 1 equiv. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to $\Delta, 2 \mathrm{~d}$
2	0.1 to 1 equiv. $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	PhMe or $\mathrm{CH}_{2} \mathrm{Cl} l_{2}$, r.t. to $\Delta, 4 \mathrm{~d}$
3	0.2 equiv. DABCO	THF, r.t. to $\Delta, 3 \mathrm{~d}$

It was also investigated whether it would be possible to oxidise the readily available pyranonaphthoquinones $194{ }^{263}$ towards 1-methoxypyranonaphthoquinones $195 .{ }^{128}$ However, no results were obtained. Other authors also failed to perform this transformation in their quest for ascomycones 15. ${ }^{127}$

While these trials were performed, a total synthesis of 1-hydroxydehydroherbarin 15a, ascomycones A 15b and B 15c was published using the pyridinium ylid methodology discussed above. The authors also attempted a Diels-Alder reaction to construct quinone intermediate 176 and experienced the same problem. After thorough investigation of the reaction, it was found that the problems could be overcome by replacement of the 1,3-dioxolanyl group by a 1,3-dioxanyl group. ${ }^{129}$

3.2.2 Attempted synthesis of mansouramycins A-D 16

Mansouramycins A-D 16 are cytotoxic isoquinolinediones isolated from a marine-derived Streptomyces sp. isolate Mei37. ${ }^{130}$ They are closely related to the cytotoxic caulibugulones A-F 198 from the marine bryozoan Caulibugula intermis. ${ }^{131}$ Caulibugulones A-F 198 were synthesised by oxidation of 5-aminoisoquinoline followed by functionalisation of the quinone moiety. ${ }^{132}$

16a Mansouramycin $A X=H, R^{1}=R^{2}=M e$
16b Mansouramycin $B X=C I, R^{1}=H, R^{2}=M e$
16c Mansouramycin $C X=H, R^{1}=H, R^{2}=\mathrm{CO}_{2} \mathrm{Me}$
16d Mansouramycin $D X=H, R^{1}=H, R^{2}=$ indol-3-yl

198a Caulibugulone $A X=H, Y=O, R=M e$
198b Caulibugulone $B X=B r, Y=O, R=M e$
198c Caulibugulone $C X=C I, Y=O, R=M e$
198d Caulibugulone $D X=H, Y=O, R=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
198e Caulibugulone $E X=H, Y=N H, R=M e$
198f Caulubigilone $F X=\mathrm{H}, \mathrm{Y}=\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}, \mathrm{R}=\mathrm{Me}$

As the C-1 alkoxy substituted pyranonaphthoquinones $\mathbf{1 3}$ can readily be converted into the corresponding 2-aza-anthraquinones by means of $\mathrm{NH}_{4} \mathrm{OAc}$ in acetic acid ${ }^{106}$ or $\mathrm{NH}_{4} \mathrm{OH},{ }^{104 a, 133}$ it was attempted to apply the abovementioned pyridinium ylid methodology to the synthesis of mansouramycins A-D 16. Thus, it was envisaged to react 2-(1,3-dioxolan-2-yl)-6-methylamino-1,4benzoquinone 200a or 2-phenoxymethyl-6-methylamino-1,4-benzoquinone 200b and a bromomethyl ketone 201 to form pyranobenzoquinone 199a or 199b. This quinone would then be converted in the mansouramycins 16 using an appropriate nitrogen source.

Thus, the synthesis of benzoquinone 200b by means of a radical alkylation reaction of an amino substituted quinone was envisaged. The quinone was protected as the dimethyl acetal in order to introduce the phenoxymethyl side chain regioselectively. As a methylamino group is not tolerated by most oxidative reagents, the nitrogen atom was acetylated and an oxidative dearomatisation in anhydrous methanol with PIDA ${ }^{134}$ was effectuated towards N-(6,6-dimethoxy-3-oxocyclohexa-1,4-dienyl)-acetamide 203. When the radical alkylation reaction was performed, the phenoxyacetic acid 204a hydrolysed the acetal and no alkylated product could be retrieved. When the reaction was repeated using quinone 205, no alkylated product could be obtained either. Alternatively, an anilide could be directly oxidised to the quinone with Dess-Martin periodinane, however this has been so far only demonstrated on para-substituted anilides. ${ }^{135}$

Attempts to directly add NaN_{3}, amines, ${ }^{136}$ amides ${ }^{137}$ or benzylhydroxylamine ${ }^{138}$ to benzoquinone intermediate $\mathbf{1 8 0}$ all led to decomposition of the starting material. Attempts to prepare a brominated phenoxymethylbenzoquinone as a more robust alternative for 2-bromo-6-(1,3-dioxolan-2-yl)-1,4benzoquinone $\mathbf{1 8 0}$ by bromination of phenoxymethyl-1,4-benzoquinone 207a, led to the formation of 5,6-dibromo-2-(4-bromophenoxymethyl)-cyclohex-2-ene-1,4-dione 208. Also attempts to perform Buchwald-Hartwig coupling reactions with dioxolanylbromobenzenes 181 using either $\operatorname{Pd}(0){ }^{139}$ or $\mathrm{Cu}(\mathrm{I})^{140}$ as a catalyst did not yield any coupling product either (Table 4). An alternative entry into this
building block would be nitration followed by reduction and functionalisation of 2-hydroxy-5methoxybenzaldehyde 182. Unfortunately, this route could not be completed due to time constraints.

181
209

Table 4. Attempted reaction conditions for the Buchwald-Hartwig amination of bromobenzenes 181.

Entry	R	Catalyst	Base	Ligand	Solvent, t, T
1	Me	$5 \mathrm{~mol} \% \mathrm{Cu}_{2} \mathrm{O}$	2 equiv. $\mathrm{NaO} t$ - Bu	None	NMP, $100^{\circ} \mathrm{C}, 10 \mathrm{~h}$
2	H	$5 \mathrm{~mol} \% \mathrm{Cu}_{2} \mathrm{O}$	2 equiv. $\mathrm{NaO} t-\mathrm{Bu}$	None	NMP, $100^{\circ} \mathrm{C}, 10 \mathrm{~h}$
3	Me	$3 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$	2 equiv. $\mathrm{NaO} t-\mathrm{Bu}$	$9 \mathrm{~mol} \%$ xantphos	PhMe, $100^{\circ} \mathrm{C}, 18 \mathrm{~h}$
4	Me	$2.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	2 equiv. $\mathrm{NaO} t-\mathrm{Bu}$	$5 \mathrm{~mol} \% t-\mathrm{Bu}_{3} \mathrm{P}$	PhMe, $100^{\circ} \mathrm{C}$, up to 3 d
5	Me or H	$5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	2 equiv. NaOPh	$5 \mathrm{~mol} \%$ xantphos	PhMe or 1,4-dioxane $100^{\circ} \mathrm{C}$, up to 3 d
6	Ac or Bz	$2.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{dba})_{2}$	2 equiv. $\mathrm{NaO} t-\mathrm{Bu}$	$5 \mathrm{~mol} \% \mathrm{t}$ - $\mathrm{Bu}_{3} \mathrm{P}$	PhMe, $100^{\circ} \mathrm{C}$, up to 3 d

An alternative strategy would be to synthesise the isoquinoline skeleton 210 via a Pomeranz-Fritsch reaction starting from 2,5-dimethoxybenzaldehyde 211 and amino acid ester 212. All these amino acid esters 212 are either commercially available or can be made in one step from readily available starting materials. ${ }^{141}$

Reductive amination of alanine methyl ester $\mathbf{2 1 2 a}{ }^{142}$ with 2,5 -dimethoxybenzaldehyde $\mathbf{2 1 1}$ followed by acid base extraction proved to be a very useful method to prepare amine 213 in good yield and without flash chromatography. This in contrast to the reaction of alanine methyl ester 212a with 2-bromomethyl-1,4-dimethoxybenzene 214, which leads predominantly to dialkylated product $\mathbf{2 1 5}$. After testing several N-sulfonylation conditions, it was found that N-tosyl or N-mesyl protection could be most efficiently effectuated by means of reaction of 1.3 equivalents of p-tosyl or mesyl chloride in pure pyridine, yielding sulfonamides 216a and 216b in 76% and 79% yield, respectively, without the need for flash chromatography. Initially, DIBAL was used to convert this intermediate into the corresponding aldehyde $\mathbf{2 1 7}$ but, as mixtures of the aldehyde and alcohol were obtained, it was found more convenient to completely reduce the ester to the alcohol with LiAlH_{4} followed by a Swern oxidation. ${ }^{143}$ When aldehyde 217 was heated in $\mathrm{HCl} / 1,4$-dioxane, tetrahydroisoquinoline $\mathbf{2 1 8}$ was formed instead of the desired dihydroisoquinoline. ${ }^{144}$ Attempts to aromatise this compound 218 by mesylating the alcohol in boiling acetonitrile only gave trace amounts of isoquinoline 210a even after two days of reflux. Also no aromatisation occurred when the compound was oxidised with CAN. After some experimentation it was found that aldehyde 217 could be converted into isoquinoline 210a by means of reaction in neat chlorosulfonic acid ${ }^{145}$ in low yield (Table 5). Subsequent oxidative demethylation with CAN gave quinone $\mathbf{2 2 0}$ in good yield.

Table 5. Attempted reaction conditions to convert aminoaldehyde 217 in isoquinoline 210a.

Entry	reagent	Solvent	Time	Temp	Result
1	1 mol\% $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	PhMe	o.n.	Δ	Complex reaction mixture
2	3 equiv. p-TsOH $\cdot \mathrm{H}_{2} \mathrm{O}$	PhH	3 h	Δ	5% 210a
3	e equiv. POCl_{3}	CHCl_{3}	15 h	r.t.	No reaction
4	3 equiv. POCl_{3}	CHCl_{3}	15 h	Δ	Complex reaction mixture
5	10 equiv. $\mathrm{ClSO}_{3} \mathrm{H}$	-	5 min	$-20^{\circ} \mathrm{C}$	44% 210a
			then 15 min	r.t.	

Even though this procedure presents a way of synthesising the mansouramycin quinone building block, the sequence is long, the yields are low and the cyclisation step harsh and low-yielding. Moreover, it is not a demonstration of the developed methodology and the steps that would complete this synthesis have already been demonstrated in the synthesis of related natural products. After the establishment of this synthetic route it was found that in 2008 a German PhD student completed the synthesis of three Mansouramycins 16. However, this synthesis was overlooked as it was never
published and was only discovered by obtaining his PhD thesis. The methodology is very similar: the isoquinoline skeleton is synthesised by means of a Pictet-Spengler reaction followed by dehydrogenation of the tetrahydroisoquinoline. ${ }^{146}$

Even though many mild and elegant methods exist in the literature to synthesise the isoquinoline or pyridine ${ }^{147}$ skeleton, they are almost invariably substituted by aromatic substituents ${ }^{148}$ and most are unsuited to synthesise simple alkyl substituted isoquinolines.

An attempt to prepare isoquinoline 210a in a 'one pot' protocol by means of addition of MeLi onto dimethoxyacetonitrile $\mathbf{2 2 1}^{149}$ followed by reaction with 2-bromomethyl-1,4-dimethoxybenzene 214 only led to homocoupled product 222 probably due to failure of MeLi to add across dimethoxyacetonitrile 221 under the presented conditions.

Another attempt to perform a one pot oxidative addition of enamine $\mathbf{2 2 4}^{150}$ onto 2,5dihydroxybenzaldehyde 223 followed by ammonia mediated ring-closure and addition across the quinone moiety lead to pyrrolidin-1-yl-isoquinoline-5,8-diones $\mathbf{2 2 5}$ in low yield.

3.2.3 Attempted synthesis of 3-hydroxymollugin 228

3-Hydroxymollugin 228 is a cytotoxic compound which has been isolated from Rubia cordifolia ${ }^{151}$ and Pentas longiflora. ${ }^{152}$ It was recently synthesised in our research group in two steps from mollugin by means of a bromination followed by hydrolysis. ${ }^{153}$ A short and efficient synthesis of
hydroxymollugin was envisaged by means of an oxa-6- π electrocyclisation of acetonylnaphthoquinone 226, analogous to a synthesis of mollugin. ${ }^{154}$

Methyl-3-(3-methyl-2-oxobutyl)-1,4-naphthoquinone-2-carboxylate 226 was prepared by means of reaction of pyridinium salt 229 at low temperature with methoxycarbonyl-1,4-naphthoquinone $\mathbf{1 5 6 c}$ in good yield. ${ }^{15}$ It was imperative to use no more than one equivalent of $E t_{3} \mathrm{~N}$ as the use of even a slight excess lead to significant formation of methyl-9b-hydroxy-2-isopropyl-5-oxo-5,9b-dihydronaphtho[1,2-b]furan-4-carboxylate 230. Unfortunately, none of the tested conditions lead to the desired 3-hydroxymollugin 228. Interestingly, when acetonylnaphthoquinone 226 was heated in the presence of phenylboronic acid, as in the key step of the synthesis of rubicordifolin, ${ }^{155}$ one compound was formed with five additional aromatic protons, suggesting the incorporation of phenylboronic acid. Recording of a ${ }^{11} \mathrm{~B}$ NMR spectrum revealed a shift of 28.38 ppm , consistent with a phenylboronic ester. Thus, phenylboronic acid ester $\mathbf{2 3 1}$ was obtained in almost quantitative yield.

Table 6. Attempted reaction conditions for the cyclisation of acetonylnaphthoquinone 226 towards 2-hydroxymollugin 228.

Entry	Base	Additive	Solvent	Temperature	Time	Result
1	2.5 equiv. $\mathrm{Et}_{3} \mathrm{~N}$	None	PhMe	$110^{\circ} \mathrm{C}$	17 h	No reaction
2	none	2 equiv.	PhMe	$110^{\circ} \mathrm{C}$	4 h	No reaction
		ZnCl_{2}	$t-\mathrm{BuOH} / \mathrm{THF}$		r.t.	16 h
3	5 equiv. $\mathrm{LiO} t-\mathrm{Bu}$	None	$1: 1$	Complex		
4	2 equiv. $\mathrm{KO} t-\mathrm{Bu}$	None	THF	r.t.	2 h	reaction mixture
5	2 equiv.	None	THF	$-78^{\circ} \mathrm{C}$ to	4 h then	Complex
	LiHMDS		$0^{\circ} \mathrm{C}$	10 h	reaction mixture	
6	2 equiv. $\mathrm{LiO} t-\mathrm{Bu}$	None	THF	$-78^{\circ} \mathrm{C}$ to	4 h then	Complex
7	-	1 equiv.	PhMe	$0^{\circ} \mathrm{C}$	10 h	reaction mixture

Compound $\mathbf{2 3 0}$ could not be purified and upon attempted recrystallisation from methanol, methanol adduct $\mathbf{2 3 2}$ was formed. Even though from a mechanistically point of view, the formation of 232a is more likely, it was not possible to unambiguously assign the structure using HSQC and HMBC spectra.

3.2.4 Conclusion and discussion

A catalytic version of pyridinium ylid chemistry was developed and applied on the synthesis of C-1 substituted pyranonaphthoquinones 13. The method works equally well as the corresponding stoichiometric reaction but has advantages such as the reduction of the necessary amount of pyridine, the elimination of the need to prepare the corresponding pyridinium salts. When this method is applied on 2-bromo-1,4-naphthoquinone 156a, the aromatic base is incorporated in the product resulting in the formation of benzo[$f]$ isoindolediones. It was attempted to apply the catalytic methodology on the total synthesis of some naturally occurring quinones. Unfortunately, no synthesis could be completed due to failure to synthesise the appropriate starting material. Nevertheless, this is a work in progress and the total synthesis of the Mansouramycins $\mathbf{1 6}$ should be completed following the pyridinium ylid route highlighted above rather than via the Pomeranz-Fritsch route.

3.3 Unexpected aminonaphthol synthesis

Azamonosporascone $\mathbf{2 3 3}$ is a isoindoloquinone isolated from the fungus Monosporascus cannonballus, a plant pathogen that causes severe production losses to muskmelon and watermelon. ${ }^{156}$ Its synthesis was envisaged from the reaction of quinone monoketal $\mathbf{2 3 5}$ and p-tosylmethyl isocyanate 234 (TosMIC). The quinone moiety is protected as its monoketal as addition of TosMIC to the
corresponding quinone would lead to aromatisation, thus preventing cyclisation to the pyrrole ring. ${ }^{157}$ Selective cleavage of the methoxy ether ortho of the carbonyl function would then lead to azamonosporascone 233. ${ }^{158}$ Quinone monoketal 235 can be prepared from naphthol 178, which is prepared by MeLi mediated cyclisation of N, N-diethylallylbenzamide 236. ${ }^{159}$

236

Thus, 2,4-dimethoxy- N, N-diethylbenzamide 237 was ortho-lithiated with t - BuLi , followed by $\mathrm{Li}-\mathrm{Cu}(\mathrm{I})$ exchange using $\mathrm{CuBr}_{2} \cdot \mathrm{Me}_{2} \mathrm{~S}$ and subsequently reacted with allyl bromide to 2-allyl- N, N-diethyl-4,6dimethoxybenzamide 236 in $\mathbf{4 1 \%}$ yield. Even though procedures exist that convert the organolithium in a Grignard reagent using $\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}$, followed by reaction with allyl bromide, no reaction was observed following these protocols. ${ }^{159}$ Allylated amide 236 was then cyclised with MeLi towards naphthol 178 which was oxidatively dearomatised using PIFA in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ and ethylene glycol. ${ }^{160}$ Initial attack of naphthol $\mathbf{1 7 8}$ on a first molecule of PIFA 238, leads to activated intermediate 239, on which ethylene glycol attacks in a 1,4-fashion followed by elimination of the trifluoroacetoxyiodobenzene residue. After aromatisation and attack on a second molecule of PIFA 238, intramolecular cyclisation and elimination leads to quinone monoketal 235. When quinone monoketal 235 was reacted with TosMIC, ${ }^{161}$ a highly insoluble substance was obtained that could not be purified nor characterised.

In order to tackle this problem, it was decided to synthesise a range of alternative substrates for this reaction. Initially, the synthesis of tert-butyldimethylsilanoxy substituted quinone monoketal $\mathbf{2 4 5}$ was envisaged starting from ortho-silanoxy functionalised naphthol $\mathbf{2 4 4}$. Thus, 2-(tert-butyldimethylsilanyloxy)-4-methoxy- N, N-dimethylbenzamide $\mathbf{2 4 2}$ was reacted with allyl bromide as described above towards allylbenzamide $\mathbf{2 4 3}$ in good yield. Surprisingly, the subsequent reaction with MeLi did not result in the expected naphthol $\mathbf{2 4 4}$ but 8-dimethylamino-3-methoxynaphthalen-1-ol $\mathbf{2 4 6}$ was formed in 90% yield as the sole reaction product. It was isolated as a white solid which turned purple upon standing. Even though the structure bears close resemblance to proton sponges, reports on this aminonaphthol structure are quite rare in the literature. 5-Amidonaphthols have been deployed as substrates for a dye sensitised oxidation towards the corresponding 5 -amido-1,4-naphthoquinones. ${ }^{162}$

One precedent of this surprising reactivity was found in the literature, in which N, N-diethyl-2-(3-trimethylsilanylpropenyl)-benzamide $\mathbf{2 4 7}$ was converted into N, N-diethyl-1-aminonaphthalene $\mathbf{2 4 8}$ in 35% yield under the presented conditions via a Peterson olefination-like reaction. ${ }^{122}$

Confronted with this surprising reaction, it was decided to investigate its scope and limitations in depth. Starting from salicylic acids $\mathbf{2 4 9}, N, N$-diethy1 ${ }^{163} \mathbf{2 5 0}$ and N, N-dimethyl $\mathbf{2 5 1}$ benzamides were synthesised, protected with a TBDMS, a TIPS ${ }^{164}$ or a TBDPS ${ }^{165}$ group and subsequently allylated towards 2-allyl-6-silanyloxy- N, N-dialkylbenzamide $\mathbf{2 5 3}$ and $\mathbf{2 5 6}$ in good to excellent yield with exception of the TBDPS group, which seemed to interfere with the allylation step. In case of 3methylbenzamide 253e, a complex reaction mixture was retrieved from the allylation reaction probably due to concomitant deprotonation of the benzylic hydrogens. In case of other substituted dimethylbenzamides such as 3-methoxy-, 5-methoxy- and 4-trifluoromethyl-2-(tert-butyldimethyl-silanyloxy)- N, N-dimethylbenzamide, the allylation reaction gave mixtures of unreacted starting material, mono- and double allylated products probably due to a combination of coordinating and inductive effects. In case of 2,4-bis-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamide, deprotection of the TBDMS group ortho of the amide function occurs probably due to a combination of sterical hindrance and the strong electron donating effect of the TBDMS groups.

$$
\begin{array}{ll}
\text { 250 } R=E t, R^{1}=H & \text { 252a } R=E t, R^{1}=H, R^{2}=\text { TBDMS } 95 \% \\
\text { 251a } R=M e, R^{1}=H & \text { 252b } R=E t, R^{1}=H, R^{2}=\text { TIPS } 93 \% \\
\text { 251b } R=R^{1}=M e & \text { 252c } R=M e, R^{1}=H, R^{2}=\text { TBDMS } 89 \% \\
& \text { 252d } R=M e, R^{1}=H, R^{2}=\text { TIPS } 84 \% \\
& \text { 252e } R=M e, R^{1}=M e, R^{2}=\text { TBDMS } 36 \%
\end{array}
$$

253a $R=E t, R^{1}=H, R^{2}=$ TBDMS 88%
253b $R=E t, R^{1}=H, R^{2}=\operatorname{TIPS} 91 \%$
253c $R=M e, R^{1}=H, R^{2}=$ TBDMS 65%
253d $R=M e, R^{1}=H, R^{2}=\operatorname{TIPS} 98 \%$
253e $R=M e, R^{1}=M e, R^{2}=$ TIPS CRM

1) 1.1 equiv. t-BuLi, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$
2) 2 equiv. $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S},-10^{\circ} \mathrm{C}, 40 \mathrm{~min}$
3) 2 equiv. $\mathrm{Br},-78^{\circ} \mathrm{C}$ to r.t., o.n.

$250 \mathrm{R}=\mathrm{Et}, \mathrm{R}^{1}=\mathrm{H}$
$254 \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{OMe}$

255a $R=E t, R^{1}=H, R^{2}=$ TBDPS 95\%
255b $R=M e, R^{1}=O M e, R^{2}=$ TBDPS 64%

256a $R=E t, R^{1}=H, R^{2}=$ TBDPS trace
256b $R=M e R^{1}=O M e, R^{2}=\operatorname{TBDPS} 29 \%$

Next, the allylated compounds 253 and 256b were reacted with MeLi or LDA. Only the compound bearing a TBDMS protective group and a N, N-dimethylamide gave the desired aminonaphthol 257 in 47 and 57% yield, respectively. All other combinations gave complex mixtures and neither the aminonaphthol 257 nor the corresponding hydroxynaphthol $\mathbf{2 5 8}$ were observed (Table 7).

Table 7. Reaction of 2-allylbenzamides $\mathbf{2 5 3}$ and 256a with MeLi or LDA.

Base	R^{1}	H	H		OMe	
	R^{2}	TBDMS	TIPS	TBDPS		
	R	Me	Et	Me	Et	Me
MeLi		$\mathbf{2 5 7}$	Complex reaction	Complex reaction	Complex reaction	Complex reaction
	47%	mixture	mixture	mixture	mixture	
LDA	$\mathbf{2 5 7}$	Complex reaction	Complex reaction	Complex reaction	Complex reaction	
	57%	mixture	mixture	mixture	mixture	

It was hypothesised that no reaction was observed due to the extra sterical hindrance induced by the TIPS, TBDPS or diethylamidogroup. Therefore, N-(2-hydroxybenzoyl)pyrrolidine 259a and N-(2hydroxybenzoyl)morpholine 259b were synthesised as the 'tied back' alkyl chains would result in less sterical hindrance. As LDA was found to give the best yield in the above trail, allylated benzamides 261 were reacted with 2.2 equiv. of LDA, unfortunately none of them yielded the desired aminonaptholes. No results were obtained either with only 1 equivalent of LDA or with the much weaker base $\mathrm{LiO} t$ - Bu .

Table 8. Reaction of 2-allylbenzamides $\mathbf{2 6 1}$ with LDA or LiOt-Bu.

X	n	Base	Result	X	n	Base	Result
CH_{2}	1	2.2 equiv.	Complex reaction	CH_{2}	1	1.0 equiv.	Complex reaction mixture
		LDA	mixture		LDA		
O	2	2.2 equiv.	Complex reaction	CH_{2}	1	2.2 equiv.	No reaction
		LDA	mixture			LiOt t -	

Having established that the cyclisation reaction only occurred when the protective group is a TBDMS group and the amide a N, N-dimethylamide, the reactivity of allyl-tert-butyldimethylsilanyloxy- N, N dimethylnaphthalenecarboxamides 264 was investigated. Starting from the three possible orthohydroxynaphthoic acids 262, allyl-tert-butyldimethylsilanyloxy- N, N-dimethylnaphthalenecarboxamides 264 were synthesised as described above. In case of 3-allyl-1-(tert-butyldimethylsilanyloxy)- N, N-dimethylnaphthalene-2-carboxamide 264a, a low isolated yield was obtained as various side products were formed, reducing the amount of t-BuLi to 1.1 equiv. gave an isolated yield of 44%.

1) 10 equiv. $\mathrm{SOCl}_{2}, \Delta, 2.5 \mathrm{~h}$
2) 1.5 equiv. $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$

262a 4 equiv. $\mathrm{Et}_{3} \mathrm{~N}$
 0.02 equiv. DMAP 1.3 equiv. $\mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 6 h

263a 62\%

1) n equiv. t-BuLi THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$
2) 2 equiv. CuBr. $\mathrm{Me}_{2} \mathrm{~S}$ THF, $-10^{\circ} \mathrm{C}, 40 \mathrm{~min}$
3) 2 equiv.

THF, $-78^{\circ} \mathrm{C}$ to rt , o.n.

1) 10 equiv. $\mathrm{SOCl}_{2}, \Delta, 2.5 \mathrm{~h}$

262b
2) 1.5 equiv. $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$ 4 equiv. $\mathrm{Et}_{3} \mathrm{~N}$
3) 1.1 equiv. TBDMSCl 0.02 equiv. DMAP 1.3 equiv. $\mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 6 h

263b 48\%

1) 1.1 equiv. t - BuLi THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$
2) 2 equiv. $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$ THF, $-10^{\circ} \mathrm{C}, 40 \mathrm{~min}$
3) 2 equiv.

THF, $-78^{\circ} \mathrm{C}$ to r.t., o.n.

264a 24\% ($n=1.1$) $44 \%(n=1.0)$

264c 65\%

263c 65\%

1) 10 equiv. $\mathrm{SOCl}_{2}, \Delta, 2.5 \mathrm{~h}$
2) 1.5 equiv. $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$ 4 equiv. $\mathrm{Et}_{3} \mathrm{~N}$

3) 1.1 equiv. TBDMSCI 0.02 equiv. DMAP 1.3 equiv. $\mathrm{Et}_{3} \mathrm{~N}$

264b 71\%
4) 2 equiv. THF, $-78^{\circ} \mathrm{C}$ to r.t., o.n.
THE, 78° Cort.
5) 1.1 equiv. t-BuLi THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$
6) 2 equiv. CuBr. $\mathrm{Me}_{2} \mathrm{~S}$ THF, $-10^{\circ} \mathrm{C}, 40 \mathrm{~min}$

262c $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 6 h

When 1-allyl-3-(tert-butyldimethylsilanyloxy)- N, N-dimethylnaphthalene-2-carboxamide 264b was reacted with LDA, a 2:1 mixture of naphthol $\mathbf{2 6 5 b}$ and starting material 264b was obtained. When the reaction was repeated with MeLi , 8-dimethylaminophenanthren-9-ol 265b was isolated in low yield.

In case of N, N-dimethyl-8-allyl-2-(tert-butyldimethylsilanyloxy)-naphthalene-1-carboxamide 264c, a complex reaction mixture was obtained, as could be expected since ring closure would form a nonaromatic seven-membered ring. Contrary to what was expected, a complex mixture was retrieved as
well in case of N, N-dimethyl-3-allyl-1-(tert-butyldimethylsilanyloxy)-naphthalene-2-carboxamide 264a. Other bases such as LDA, LiHMDS of KHMDS also gave complex mixtures.

264c

Next, a butenyl side chain was introduced by means of a Kumada coupling. ${ }^{166}$ Thus was the arylmagnesium species resulting from ortholithiation and transmetalation of N, N-dimethylbenzamide 252c reacted with crotyl bromide and bis(triphenylphosphine)nickel(II) dichloride as a catalyst. Even though a low yield of crotylated amide 266 was obtained as the reaction was only performed once and no optimisation was attempted. When amide 266 was reacted with a lithiated base, either no reaction (LDA) or a complex mixture (MeLi) was obtained. Apparently the additional sterical hindrance introduced by the methyl group impedes allyl anion from attacking the amide.

As it was observed that the aminonaphtholes turned purple when exposed to air, it was attempted to oxidise 8-dimethylaminonaphthalen-1-ol 257 with PIFA. However, this reaction led to immediate decomposition of the starting aminonaphthol 257.

Based on the abovementioned observations, a mechanism was proposed. As an alkyllithium reagent or LDA is not capable to deprotect a TBDMS-group, this should happen via an intramolecular reaction. Initial deprotonation of the allyl side chain gives a mesomeric stabilised anion that can attack the TBDMS group which is then transferred to the amide oxygen either via a S_{N} 2-type reaction either via
a hypervalent silicium intermediate 268 as a pentavalent silicon centre is permitted due to hybridisation with the vacant d-orbitals of silicon. Subsequent deprotonation followed by elimination of the tert-butyldimethylsilyloxy group leads to aminonaphthol 246. This mechanism explains why two equivalents of base are needed and why more sterical hindered groups do not give any reaction. Related tert-butyldimethylsilyl transfer reactions are known in the literature in which a carbon nucleophile reacts with an ortho-silanoxybenzaldehyde or an ortho-silanoxyacetophenone followed by trapping of the resulting oxyanion by the neighbouring silyl group. ${ }^{167} O, O$-TBDMS and TBDPS migrations have been observed in polyols. ${ }^{168}$

In an alternative trial, it was attempted to form azamonosporascone $\mathbf{2 3 3}$ from anhydride $\mathbf{2 7 0}{ }^{169}$ and N tosylpyrrole 271 based on the literature precedent that 1-(benzenesulfonyl)pyrrole reacts smoothly with 2,5-dimethoxybenzoyl chloride to give a good yield of the corresponding 3-benzoylpyrrole. ${ }^{170}$ To do so, N, N-diethylbenzamide 237 was ortho-lithiated followed by quenching with dry carbon dioxide gas to form N, N-diethyl-3,5-dimethoxyphthalamic acid 272. ${ }^{171}$ However, when it was attempted to hydrolyse this compound towards the desired dicarboxylic acid 273, decarboxylation occurred and 3,5-dimethoxybenzoic acid 274 was obtained.

3.3.1 Conclusion and discussion

During an attempted synthesis of the natural product azamonosporascone 233, an unexpected aminonaphthol synthesis was discovered upon reaction of 2-allyl-6-(tert-butyldimethylsilanyloxy)-4-methoxy- N, N-dimethylbenzamide $\mathbf{2 4 3}$ with methyllithium. The scope and limitations of this reaction were investigated in debt and it was found that reaction only occurred when the amide was and N, N dimethylbenzamide and the silanoxy group was a tert-butyldimethylsilanyloxy group. The base should be methyllithium or LDA. Moreover, the reaction seems to work better for benzamides than for naphthamides. As an extension of this work, it might be interesting to investigate the reactivity of N monoalkylated 2-allyl-6-silanoxybenzamides under the presented conditions.

3.4 Attempted synthesis of C-4 fluorinated pyranonaphthoquinones 275

Very few compounds or strategies exist towards heterocyclic quinones bearing a fluorine atom in the heterocyclic moiety. During previous research at our department, fluorinated pentalongin analogues 275 were prepared by means of a late stage fluorination of the pyran moiety followed by acid catalysed double bound regeneration in low yield. ${ }^{172}$ An alternative strategy was envisaged in which both the pyran ring and the fluorine substituent are constructed in one step starting from alkyne 277 and an electrophilic fluorine source by means of a gold catalysed 6-endo-dig cyclisation. ${ }^{173,174}$

Thus, 3-bromo-1,4-dimethoxy-2-hydroxymethylnaphthalene 280 was prepared by means of ionic and radical bromination ${ }^{175}$ of naphthalene 278 followed by hydrolysis of the benzylic bromide ${ }^{176}$ and isolated in 53% yield together with 10% of aldehyde 279 resulting from overbromination. 3-Bromo-1,4-dimethoxy-2-hydroxymethylnaphthalene 280 was then coupled with an arylacetylene 281 to form 1,4-dimethoxy-2-hydroxymethyl-3-arylethynylnaphthalenes 277. When these alkynes 277 were brought into reaction with selectfluor and AuCl , a complex reaction mixture was retrieved. From spectral analysis it was observed that selectfluor, which is besides a source of electrophilic fluorine also a strong oxidant, oxidised dimethoxynaphthalenes 277 towards the corresponding quinones $\mathbf{2 8 2}$ and further decomposed it.

Further attempts to perform the proposed cyclisation such as shortening of the reaction time, augmenting the catalyst loading, addition of a base, use of another fluorinating agent, all gave either no reaction or stranded on the abovementioned problem (Table 9).

Table 9. Attempts towards the cyclisation-fluorination of alkyne 277a.

Fluorinating agent	Additive	Catalyst	Solvent	T	t	Result
5 equiv. selectfluor	-	$\begin{aligned} & \hline 10 \mathrm{~mol} \% \\ & \mathrm{AuCl} \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} \\ & 1: 1 \end{aligned}$	r.t.	2 h	Complex reaction mixture
2.5 equiv. selectfluor	5 equiv. $\mathrm{Na}_{2} \mathrm{CO}_{3}$	$\begin{aligned} & 5 \mathrm{~mol} \% \\ & \mathrm{AuCl} \end{aligned}$	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} \\ & 1: 1 \end{aligned}$	r.t.	4 d	No reaction
2.5 equiv. NFSI	-	$\begin{aligned} & 5 \mathrm{~mol} \% \\ & \mathrm{AuCl} \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CN}$	$\begin{aligned} & \text { r.t. to } \\ & 50^{\circ} \mathrm{C} \end{aligned}$	1 d	No reaction
2.5 equiv. NFSI	-	$\begin{aligned} & 5 \mathrm{~mol} \% \\ & \mathrm{AuCl} \\ & \hline \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CN}$	Δ	o.n.	Complex reaction mixture

3.4.1 Conclusion and discussion

It was attempted to synthesise C-4 fluorinated pyranonaphthoquinones $\mathbf{2 7 5}$ as these compounds are of interest from both a synthetic as a biological point of view. Unfortunately, the proposed strategy did not work as the electrophilic fluorine source preferentially reacts with the hydroquinone moiety rather than effectuate the desired gold catalysed 6 -endo-dig cyclisation. An alternative entry into this interesting scaffold could be the addition of a fluorinated enamine $\mathbf{2 8 4}$ onto 2 -hydroxymethyl-1,4naphthoquinone 283.

3.5 Synthesis of benzo[j]phenanthridinediones, tetrahydrobenzo[j]phenanthridinediones, octahydrobenzo[j]phenanthridinediones and dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones as new leads against Mycobacterium tuberculosis

3.5.1 Introduction

At our research department, substantial research has been devoted towards the synthesis of new 2-aza-anthraquinones having antimycobacterial activity. ${ }^{16,17}$ In collaboration with the Scientific Institute of Public Health (Uccle, Brussels), where a PhD student, Davie Cappoen, performs his doctoral research on the testing of the antimycobacterial activity, cytotoxicity, genotoxicity etc., various sets of compounds were prepared and tested and based on the results, new sets of compounds were developed. Apart from Mycobacterium tuberculosis, other clinically relevant mycobacteria were
tested. M. bovis, closely related to Mycobacterium tuberculosis, causes tuberculosis in ruminants but can also infect humans. ${ }^{177}$ M. avium subsp. avium is a bird pathogen birds but can cause opportunistic infections in AIDS patients. M. avium subsp. paratuberculosis causes Johne's disease or paratuberculosis in ruminants which may be linked to Crohn's disease in humans. ${ }^{178}$ M. ulcerans ultimately causes Buruli ulcer, a necrotizing skin disease. ${ }^{179}$ No biotesting results will be discussed as this is part of a separate PhD . During this research, various interesting leads were identified that deserve further research.

During previous research, various benzo[j]phenantridine-7-12-diones 18 were tested against Mycobacterium tuberculosis. ${ }^{18}$ It was found that 3-methylbenzo[j]phenanthridine-7,12-dione 18a showed promising antimycobacterial activity even though this activity was accompanied by a relatively high cytotoxicity. Also benzophenanthridines, although mostly benzo[c]phenanthridines, occur in nature and some of them show potent antibacterial activities. ${ }^{180}$ Calotrixin A 285a and B $\mathbf{2 8 5 b}$, isolated from two cyanobacteria, ${ }^{181}$ are structurally very similar to the proposed structures and have been shown to possess antimalarial and anticancer activities. Various total syntheses of both compounds have been reported. ${ }^{182}$

18a $\mathrm{MIC}_{50}=0.21 \mu \mathrm{M}$
$\mathrm{IC}_{50}=3.21 \mu \mathrm{M}$

285a Calotrixin A

285b Calotrixin B

Therefore, the synthesis of variations of the benzo[j]phenanthridinedione scaffold $\mathbf{1 8}$ were envisaged. It was attempted to introduce an aminoalkylamino side chain on the benzo[j]phenanthridinedione scaffold as in the anticancer drugs mitoxantrone 73b and pixantrone $\mathbf{8 0}$ and derivatives thereof (see section 2.2). In order to synthesise more 'out of plane' derivatives to counter potential intercalation, the synthesis derivatives in which one or two of the ring are turned aliphatic was envisaged. This would result in the synthesis of $1,2,3,4$-tetrahydrobenzo[j]phenanthridinediones 19 with an aliphatic D-ring, 8,9,10,11-tetrahydrobenzo $[j]$ phenanthridinediones 21 with an aliphatic A-ring and octahydrobenzo[j]phenanthridinediones 22 with both an aliphatic A and D-ring. As a further expansion of the tetrahydrobenzo $[j]$ phenanthridinedione skeleton, the synthesis of dialkyltetrahydrobenzo $[g]$ pyrimido $[4,5-c]$ isoquinolinetetraones $\mathbf{2 0}$ was envisaged.

21

$22 \mathrm{X}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{O}$

3.5.2 New entries towards the benzo[j]phenanthridinedione scaffold

Benzo[j]phenanthridinediones 18 have been synthesised at our research department using a palladium(II) acetate mediated intramolecular Heck reaction. ${ }^{18}$ However, a relatively complex starting material is required, a large amount of palladium(II) acetate is needed to effectuate the cyclisation step and the overall yield is moderate. Therefore, alternative, shorter or more versatile pathways to this promising leads were investigated. From a synthetic strategic point of view, it was preferred to introduce the C-ring as a lactam, thus allowing further functionalisation of C-6. The direct or acidcatalysed ring closure of naphthoquinone amides 286 and the organometal-catalysed ring closure of halogenated amides $\mathbf{2 8 8}$ were investigated. Also a direct or an organometal-catalysed ring closure of an appropriate imine 289 was considered.

Initially, it was investigated whether quinone amides 286 could be directly converted into the corresponding lactams as can be done with the corresponding esters. ${ }^{183}$ Direct formation of an amide starting from 1,4-dihydroxynaphthoic acid did not result in any favourable results due to autoxidation and 1,4-addition of 3-methylaniline 291. It was then attempted to convert methyl-1,4-dimethoxynaphthalene-2-carboxylate $\mathbf{2 9 0}^{16}$ into the corresponding amide 292 using microwave irradiation in the presence of $\mathrm{KO} t-\mathrm{Bu} .{ }^{184}$ Despite testing several conditions, the maximum isolated yield was 43%. Next, methyl-1,4-dimethoxy-naphthalene-2-carboxylate 290 was saponified towards the corresponding carboxylic acid 293 and reacted with DCC and 3-methylaniline 291. However, in all cases, approximately 1:1 mixtures of the desired amide 292 and DCC adduct 294 were obtained.

3 equiv. KOH
1,4-dioxane/ $\mathrm{H}_{2} \mathrm{O}$
2:1, r.t., o.n.

Subsequently, N-meta-tolyl-1,4-dimethoxynaphthalene-2-carboxamide 292 was oxidatively demethylated towards 2-meta-tolylaminocarbonyl-1,4-naphthoquinone 286a in 47\% yield. However this quinone did not cyclise in the presence of TFA even after 2.5 days of boiling under reflux in toluene. Also, the palladium-catalysed intramolecular arylation of N-(2-bromophenyl)amide 296a did not work out and resulted in a mixture of unidentified high-molecular weight compounds.

Direct imination followed by an intramolecular Heck reaction would be a very elegant way of constructing the benzo[j]phenanthridine skeleton. Thus, it was attempted to form the imine derived from 2-acetyl-1-hydroxy-4-methoxynaphthalene 297a with 2-bromoaniline 298a. However, no imination was observed using Deans Stark conditions, $\mathrm{Ti}(\mathrm{OEt})_{4}$ or molecular sieves. As it was suspected that the peri-hydroxyl function interfered in the imination process, it was methylated and the product was reacted again with 2-bromoaniline 298a and molecular sieves. Even though some imine 289a was formed, no further conversion was observed after heating for 15 h and isolation was not attempted. When palladium(II) acetate was added to this mixture, the formation of benzophenanthridine 299a was observed but only in trace amounts (Table 10). No further attempts were performed as the palladium catalysed ring closure of amides followed by functionalisation seemed to be a more viable route. Direct oxidative coupling of an aniline with 2-acetyl-1,4dihydroxynaphthalene has been described in the literature to synthesise these compounds but this resulted in a mixture of various addition products amongst which the desired benzo[j]phenanthridine-7,12-diones $\mathbf{1 8}{ }^{185}$

Table 10. Attempted synthesis of benzophenanthridine 299a via imination followed by a Heck reaction.

Entry	R	Step 1	Result	Step 2	Result
1	H	$\begin{aligned} & 1 \mathrm{~mol} \% p \text {-TsOH } \cdot \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{PhMe}, \Delta, 24 \mathrm{~h} \end{aligned}$	No reaction	-	
2	H	$\begin{aligned} & 3 \text { equiv. } \mathrm{Ti}(\mathrm{OEt})_{4} \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, r.t., } 2 \mathrm{~d} \end{aligned}$	No reaction	-	-
3	H	$4 \AA \mathrm{MS}, \mathrm{PhMe}, \Delta$, 15 h	Complex reaction mixture	-	-
4	H	$4 \AA$ MS, 5 equiv. $\mathrm{NaHCO}_{3}, \mathrm{PhMe}, \Delta$, 15 h	Complex reaction mixture	-	-
5	Me	$4 \AA \mathrm{MS}, \mathrm{PhMe}, 70^{\circ} \mathrm{C}$, 15 h	$\begin{aligned} & \text { 289a } \\ & +297 b \end{aligned}$	$10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} 30 \mathrm{~mol} \% \mathrm{PPh}_{3}$ 2 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3} \mathrm{PhMe}, \Delta, 100^{\circ} \mathrm{C}$, 18 h	$\begin{aligned} & \text { 299a } \\ & \text { (trace) } \\ & +297 \mathbf{b} \\ & \hline \end{aligned}$

A literature search revealed that in order to perform palladium-catalysed intramolecular arylation on N-arylbenzamides, they have to be tertiary. ${ }^{186}$ Thus, N-2-bromophenyl-1,4-dimethoxynaphthalene-2carboxamides 296 were prepared by means of reaction of the acid chloride of 1,4-dimethoxynaphthalene-2-carboxylic acid $\mathbf{2 9 3}$ and the appropriate bromoaniline $\mathbf{2 9 8}$ in the presence of 2 equiv. of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The corresponding MOM protected amides $\mathbf{3 0 0}$ were prepared in moderate to good yields by reaction with MOMCl and NaH in anhydrous THF and occurred as a mixture of two rotamers. A slight increase in yield was observed when the reaction was performed in DMF. Alternative MOM-protection procedures such as the use of MOMBr or the reaction of dimethoxymethane in the presence of $\mathrm{P}_{2} \mathrm{O}_{5}$ did not give better yields. ${ }^{186 \mathrm{~b}} \mathrm{~N}$-MOM protected amides 300 then underwent a palladium-catalysed intramolecular arylation in good to excellent yields towards lactams 301. These lactams could be converted into the previously prepared benzo[j]phenanthridinediones $\mathbf{1 8}$ using literature methods. ${ }^{182,187}$

293

18

$6 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ $18 \mathrm{~mol} \% \mathrm{PPh}_{3}$

2 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$
PhMe, $100^{\circ} \mathrm{C}$, 18 h

$$
\begin{aligned}
& \text { 301a } R^{1}=R^{2}=R^{3}=H 96 \% \\
& \text { 301b } R^{1}=R^{3}=H, R^{2}=\mathrm{CH}_{3} 72 \% \\
& \text { 301c } R^{1}=R^{2}=H, R^{3}=\mathrm{CH}_{3} 78 \% \\
& \text { 301d } R^{2}=H, R^{1}=R^{3}=\mathrm{CH}_{3} 58 \%
\end{aligned}
$$

296a $R^{1}=R^{2}=R^{3}=H 75 \%$
296b $R^{1}=R^{3}=H, R^{2}=\mathrm{CH}_{3} 54 \%$
296c $R^{1}=R^{2}=H, R^{3}=\mathrm{CH}_{3} 88 \%$
296d $R^{2}=H, R^{1}=R^{3}=\mathrm{CH}_{3} 99 \%$
1.5 equiv. MOMCI
2.2 equiv. NaH THF, $30^{\circ} \mathrm{C}, 16 \mathrm{~h}$

300a $R^{1}=R^{2}=R^{3}=H 62 \%$ (DMF 69\%)
300b $R^{1}=R^{3}=H, R^{2}=\mathrm{CH}_{3} 70 \%$
300c $R^{1}=R^{2}=H, R^{3}=\mathrm{CH}_{3} 37 \%$
300d $R^{2}=H, R^{1}=R^{3}=\mathrm{CH}_{3} 73 \%$

The mechanism of the intramolecular Heck reaction is clarified in the scheme below. Contrary to a normal Heck reaction, palladacycle formation does not occur via an $\mathrm{S}_{\mathrm{E}} \mathrm{Ar}$ mechanism but via a proton abstraction mechanism. ${ }^{188}$ Thus, initial oxidative addition leads to organopalladium intermediate 302, which then undergoes ligand exchange towards $\mathbf{3 0 3}$ as bromine is to weakly basic to effectuate the deprotonation step. ${ }^{189}$ Next, Pd participates in an agnostic interaction with the C-H bound, followed by deprotonation via the carbonate ligand and formation of the palladacycle 304. Reductive elimination leads to the desired benzo[j]phenanthridinediones $\mathbf{3 0 1}$ and restores the Pd catalyst for a next cycle.

7,12-Dimethoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-ones 301 were deprotected with concentrated HCl towards lactams 287. Alternatively, this deprotection step could be performed with TFA ${ }^{190}$ in a similar yield but an easier purification. Lactam 287a was oxidised with CAN towards 6hydroxybenzo[j]phenanthridinedione 305. However, a highly insoluble compound was formed which could not be characterised by NMR or LC-MS. As this would not make a good biotesting candidate, no further attempts were made to synthesise analogues of this compound.

Other N-protective groups were evaluated but none of them gave results that were as good as the MOM group. While N-(2-bromophenyl)-1,4-dimethoxynaphthalene-2-carboxamide 296a smoothly reacted with Boc anhydride, the corresponding Heck reaction with intermediate 306 was a failure and even after two days of reflux, no full conversion was obtained.

Attempts to prepare a N-tert-butyl protected amide $\mathbf{3 0 9}$ either by reaction of N-tert-butylaniline $\mathbf{3 0 8}^{191}$ with carboxylic acid 293 or by direct reaction of amide 296a with tert-butyl 2,2,2-trichloroacetimidate 310 were unsuccessful, probably due to sterical hindrance.

Next, the synthesis of 6 -alkyl substituted benzo[j]phenanthridine derivatives was envisaged. Thus, MeLi was added ${ }^{192}$ to MOM-protected benzo[j]phenanthridine 301a. Apart from the expected 6methylbenzo[j]phenanthridine 299a, a 1,4-adduct 311 was isolated. This is rather remarkable as organolithium reagents are very hard reagents and tend to react in a 1,2-fashion and examples of this reactivity in the literature are rather rare. ${ }^{193}$ Oxidation of the obtained reaction products with CAN yielded the desired 6-methylbenzo[j]phenanthridine-7,12-dione 313 and 7-hydroxy-5-methoxymethyl-7-methyl-5,7-dihydrobenzo[j]phenanthridine-6,12-dione 314. As a check whether the quinone function is really primordial for biological activity, both compounds were tested against Mycobacterium tuberculosis. While quinone $\mathbf{3 1 3}$ showed an activity comparable to the previously
tested benzo[j]phenanthridinediones 18, no activity was observed for compound 314. As the methyl function could serve as an attachment point for the synthesis of bifunctional molecules, it was oxidised with SeO_{2} in 1,4-dioxane towards the corresponding aldehyde 312. This aldehyde $\mathbf{3 1 2}$ was then reductively aminated with the first-line anti-TBC drug isoniazid 30. Even though the imine was formed and appeared to be stable in solution, the corresponding amine $\mathbf{3 1 5}$ readily decomposed and could not be isolated.

When the intriguing organolithium addition was repeated with n-hexyllithium, a third reaction product 316, which was formed by double addition, was the major product. Even though the reaction temperature was further lowered to $-100^{\circ} \mathrm{C}$, no increase of 1,2 -addition was observed. This confirms that the reaction is under sterical control and that initial attack preferentially occurs at C-7. The desired C-6 alkylated compounds $\mathbf{3 1 8}$ were only minor products and the amounts were too small to be further oxidised towards the targeted quinones.

318a R = H 9\%
318b R = Me 12\%

In order to tackle this problem, the methyl group was replaced by an iso-propyl group to augment sterical hindrance at this position. Therefore, the synthesis of di-iso-propoxynaphthalene carboxylic acid 322 was envisaged. However, due to the additional sterical hindrance either no reaction occurred or only one hydroxy group was alkylated resulting in the formation of methyl 1-hydroxy-4-isopropoxynaphthalene-2-carboxylate 320. It was then found that by using a large excess of iso-propyl bromide in DMF followed by saponification the desired carboxylic acid 322 could be synthesised in good yield. ${ }^{194}$

319

Having in hand carboxylic acid 322, the abovementioned synthesis sequence was repeated to form 5-methoxymethyl-7,12-di-iso-propoxy-5H-benzo[j]phenanthridin-6-one 325. However, when n-hexyllithium was added to this compound, a mixture consisting mainly of unreacted starting material (30\%), 1,4-addition product 326 (30\%) and 17% of double addition product 327 containing only a trace amount of the desired 1,2-adduct $\mathbf{3 2 8}$ was formed.

325 96\%
324 44\%

An alternative would be to convert lactams 287 in the corresponding triflates $\mathbf{3 2 9}$ with triflic anhydride and to perform the addition reaction on these substrates. However these reactions were found to be low yielding and the products $\mathbf{3 2 9}$ hard to isolate. Even though reaction was observed with $\mathrm{Tf}_{2} \mathrm{O}$ catalysed by DMAP in pyridine, ${ }^{195}$ the yield was rather low. No reaction was observed when triflation was attempted with an alternative triflating agent such as $\mathrm{PhNTf}_{2} .{ }^{196}$ Moreover, alternatives in the modern literature exist to perform this conversion in a one-pot fashion. ${ }^{197}$ The triflate group of 7,12-dimethoxy-2,4-dimethylbenzo[j]phenanthridin-6-yl trifluoromethanesulfonate 329d was removed by means of $\mathrm{Et}_{3} \mathrm{SiH}$ under $\mathrm{Pd}(0)$-catalysis followed by oxidative demethylation to yield 2,4-dimethyl-benzo[j]phenanthridine-7,12-dione 18d, which was not prepared during previous studies. The palladium catalysed reduction is a mild alternative to direct reduction of the lactam function with LiAlH_{4} followed by acid hydrolysis, which is known to be low yielding for this specific type of compounds. ${ }^{182,187}$ However, as the triflation step is low yielding, there is little advantage in this specific case.

Next, the synthesis of 6-aminoethylamino substituted benzophenanthridines $\mathbf{1 7}$ was investigated by studying the reaction of MOM-protected lactam 301b with ethylenediamine as it is known that an amidine can be synthesised directly from a pyridinone and an amine. ${ }^{203}$ This would result in compounds similar to the anticancer drugs mitoxantrone 73b and pixantrone $\mathbf{8 0}$. Moreover, this would allow the preparation of salts thus improving aqueous solubility and hence bioavailability, a major problem with this class of compounds. ${ }^{198}$ When lactam 301b was brought into reaction in boiling ethanol and NaH as a base, the 7-methoxy group was substituted by an ethoxy group leading to 7ethoxyphenanthridine 330. Even though surprising, this is conform the abovementioned observations regarding 1,4-alkyllithium addition. When the reaction was repeated in THF, a mixture of compounds was obtained including 7,12-dimethoxy-3-methyl-5H-benzo[j]phenanthridin-6-one 287b, 7-(2-aminoethylamino)-12-methoxy-3-methyl-5H-benzo[j]phenanthridin-6-one 331 and 7-(2-aminoethylamino)-12-methoxy-5-methoxymethyl-3-methyl-5H-benzo[j]phenanthridin-6-one 332. Strangely, when MOM-protected lactam 301b was heated in neat ethylenediamine, various products were formed, amongst which quinone $\mathbf{3 3 3}$ which could be isolated in 30% yield from the mixture. It was then attempted to convert lactam $\mathbf{3 0 1 b}$ into the corresponding chloropyridine with POCl_{3} as 2chloropyridine derivatives are known to react regioselectively with amines. A chloropyridine could also serve as a point of attachment for a coupling reaction. ${ }^{199}$ However, only deprotection product 287b was observed when the reaction was performed in boiling chloroform and a complex mixture was retrieved when the reaction was performed neat. ${ }^{200}$ An alternative would be the use of $\mathrm{PCl}_{3} .{ }^{201}$

333 30\%

Next, 7,12-dimethoxy-3-methyl-5H-benzo[j]phenanthridin-6-one 287b was converted in the corresponding alkoxypyridines 334 using trialkyloxonium tetrafluoroborate salts ${ }^{202}$ in boiling chloroform in moderate yield. When the thus obtained trimethoxybenzophenanthridine 334a was reacted with ethylenediamine, no reaction was observed either in batch or the microwave or a complex mixture was retrieved when NaH was used. When lactam 287b was reacted in the microwave in a mixture of ethylenediamine and MeOH or $\mathrm{DMSO},{ }^{203}$ complex mixtures were retrieved as well. Other authors have reported similar issues in pursuing this alkylamino substitution of a lactam and its

3.5.3 Alternative entries towards the benzo[j]phenanthridinedione scaffold

Recently, a synthesis of the angucyclinone skeleton by means of a $\mathrm{B}(\mathrm{OAc})_{3}$ promoted Diels-Alder reaction between juglone 335 and various styrenes in the presence of DDQ was reported. ${ }^{205}$ Attempts to create an aza-analogue of this reaction with methylenephenylamine $\mathbf{3 3 6}^{206}$ as the diene were not successful.

335
3364 equiv.

In another paper, the phenanthridine skeleton was synthesised by means of a rhodium(III)-catalysed oxidative CH coupling of N -methoxybenzamides with arylboronic acids. ${ }^{207}$ However, no formation of 5,7,12-trimethoxy-5H-benzo[j]phenanthridin-6-one 338 was observed when the reaction was performed with N-methoxynaphthalenecarboxamide 337, $\mathrm{PhB}(\mathrm{OH})_{2}, \mathrm{Ag}_{2} \mathrm{O}$ and $2 \mathrm{~mol} \%$ of $\left\{\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right\}_{2}\left(\mathrm{Cp}^{*}=\mathrm{Me}_{5} \mathrm{C}_{5}\right)$.

3.5.4 Synthesis of $\mathbf{1 , 2 , 3 , 4}$-tetrahydrobenzo $[j]$ phenanthridine-7,12-diones 19

Next, the synthesis of tetrahydrobenzophenanthridinediones 19 was envisaged via an enamine addition strategy. Pyranonaphthoquinones $\mathbf{3 4 1}$ can be synthesised by means of the addition of a pyrrolidine enamine 340a to 2-(hydroxymethyl)-1,4-naphthoquinone $\mathbf{3 3 9}$ followed by aerobic oxidation. ${ }^{208}$ Thus, it was attempted to convert pyranonaphthoquinone $\mathbf{3 4 1}^{208}$ into the corresponding 2-aza-anthraquinone 19a using ammonium acetate. However, no satisfying reaction conditions could be found using either microwave or batch conditions. Interestingly, when pyranonaphthoquinone $\mathbf{3 4 1}$ was boiled in acetic acid, aromatisation of the D-ring occurred leading to benzo[c]pyranonaphthoquinone 28 (Table 11). Formation of this compound is believed to proceed via sequential keto-enol tautomerisation towards the hydroquinone and aerobic oxidation towards the quinone. This type of oxidative aromatisation reactions are known to hamper the synthesis of 1,2-dihydrobenz $[g]$ isoquinoline-5,10-diones. ${ }^{209}$

Table 11. Attempted reaction conditions for the conversion of pyranonaphthoquinone 341 into 2-azaanthraquinone 19a.

Entry	Reagents	Time	T/Power	Reaction mode	Result	Yield (\%)
1	$5 \mathrm{~m} / \mathrm{v} \% \mathrm{NH}_{4} \mathrm{OAc}$ in MeOH	120 min	$115^{\circ} \mathrm{C}$	microwave	$\mathbf{1 9 a}$	20
2	$5 \mathrm{~m} / \mathrm{v} \% \mathrm{NH}_{4} \mathrm{OAc}$ in MeOH	10 min	140 W	microwave	$\mathbf{1 9 a}$	16
3	$10 \mathrm{~m} / \mathrm{v} \% \mathrm{NH}_{4} \mathrm{OAc}$ in HOAc	4 h	Δ	batch	$\mathbf{2 8}$	30

Therefore, and alternative procedure was deployed in which the enamine adduct is converted in a onepot protocol to the corresponding 2-aza-anthraquinone $\mathbf{1 9}$. ${ }^{210}$ Thus, the synthesis of tetrahydrobenzophenanthridinediones 19 was envisaged starting from the addition of Stork enamines $\mathbf{3 4 0}$ to 2-(1,3-dioxolan-2-yl)-1,4-naphthoquinone $\mathbf{1 1}^{109}$ and 2-acetyl-1,4-naphthoquinone $\mathbf{3 4 5}$ followed ammonia-mediated conversion of the enamine adduct and aerobic oxidation towards the corresponding 2-aza-anthraquinones 19. ${ }^{210}$ Even though a precedent of this methodology exists in the literature ${ }^{210}$ (Table 12, entry 3), this could not be reproduced in good yield even upon several replications. Therefore, several enamines and conditions for the ammonia-mediated ring opening-ring closure sequence were investigated but no satisfying conditions were found. Best results were obtained using ten equivalents of $7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH as the nitrogen source (Table 12, entry 4).

Table 12. Attempted reaction conditions for the conversion of naphthoquinones 11 and 327 in 2-azaanthraquinones 19.

Entry	X	n	R^{1}	R^{2}	R^{3}	m	N-source	T	t	Result
1	CH_{2}	1	1,3-Dioxolan-2-yl	H	H	10	$\mathrm{NH}_{3, \text { aq }} \quad$ in MeOH	$\begin{array}{ll} \hline 0^{\circ} \mathrm{C} & \text { to } \\ \text { r.t. } \end{array}$	15 h	19a 12\%
2	CH_{2}	1	1,3-Dioxolan- $2-\mathrm{yl}$	H	H	10	7 M NH 3 in MeOH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19a 43\%
3	CH_{2}	1	Acetyl	H	Me	10	$\mathrm{NH}_{3, \mathrm{aq}} \quad$ in MeOH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19a 5\%
4	CH_{2}	1	Acetyl	H	Me	10	$7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19f 15\%
5	CH_{2}	1	Acetyl	$t-\mathrm{Bu}$	Me	1.5	$7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19h trace
6	O	2	Acetyl	$t-\mathrm{Bu}$	Me	1.5	$7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19h trace
7	O	2	Acetyl	$t-\mathrm{Bu}$	Me	10	$\mathrm{NH}_{4} \mathrm{OAc}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19h trace
8	CH_{2}	2	Acetyl	$t-\mathrm{Bu}$	Me	1.5	$7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH	$0^{\circ} \mathrm{C}$	30 min	19h trace
9	CH_{2}	2	Acetyl	$t-\mathrm{Bu}$	Me	1.5	$\mathrm{NH}_{4} \mathrm{OAc}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & \text { r.t. } \end{aligned}$	15 h	19h trace
10	CH_{2}	2	Acetyl	t-Bu	Me	1	$\mathrm{NH}_{4} \mathrm{OAc}$	$0^{\circ} \mathrm{C}$	Up to 1 h	No reaction
11	CH_{2}	2	Acetyl	t-Bu	Me	2	$\mathrm{NH}_{4} \mathrm{OAc}$	$0^{\circ} \mathrm{C}$	30 min	19h trace
12	CH_{2}	2	Acetyl	$t-\mathrm{Bu}$	Me	3	$\mathrm{NH}_{4} \mathrm{OAc}$	$0^{\circ} \mathrm{C}$	$\mathrm{Up} \text { to }$ $1 \mathrm{~h}$	19h trace
13	O	2	Acetyl	$t-\mathrm{Bu}$	Me	2	7 M NH 3 in MeOH	$0^{\circ} \mathrm{C}$	30 min	19h trace

Using these conditions, a set of D-ring substituted derivatives $\mathbf{1 9}$, bearing either a methyl or no substituent of no substituent at C-6 were synthesised in low yields. When these compounds were tested against Mycobacterium tuberculosis, no significant activity was observed. However, it was found that compounds 19a-e, with no substitution at C-6 were more active than the corresponding methyl-substituted derivatives $\mathbf{1 9 f} \mathbf{- j}$. Therefore, the synthesis of 2-aza-anthraquinones with an aliphatic A-ring and no substitution at C-6 was envisaged.

3.5.5 Synthesis of 8,11-bridged $1,2,3,4,8,9,10,11$-octahydrobenzo $[j]-$ phenanthridine-7,12-diones 22

The synthesis of methano-, ethano- and epoxy-bridged octahydrobenzo[$[j$ phenanthridinediones $\mathbf{2 2}$ was envisaged using the abovementioned methodology. The starting dioxolanylnaphthoquinones 350a and 350b were synthesised starting from 5,8 -dimethoxy-1,4-dihydronaphthalenes $\mathbf{3 4 6}{ }^{211}$, which were hydrogenated over palladium on carbon and subsequently subjected to a Rieche formylation ${ }^{212}$ using dichloromethyl methyl ether and titanium(IV) chloride. These aldehydes 348 were then reacted with ethylene glycol followed by oxidative demethylation with cerium(IV) ammonium nitrate (CAN) to afford 6-(1,3-dioxolan-2-yl)-1,2,3,4-tetrahydronaphthalene-5,8-diones 350a and 350b. As these compounds only had a very limited stability, they had to be used immediately in the next step. An additional more stable dioxanyl derivative $\mathbf{3 5 0} \mathbf{c}$ was prepared in a similar way. Attempts to formylate 1,2,3,4-tetrahydro-1,4-epoxynaphthalene $\mathbf{3 4 7} \mathbf{c}$ gave complex mixtures. Attempts to acetylate this compound using acetyl chloride and AlCl_{3} failed as well, indicating that the epoxy-bridge is to labile for this kind of transformations. Therefore, 2-(5,8-dimethoxy-1,4-dihydro-1,4-epoxynaphthalen-6-yl)-1,3-dioxolane 351 was prepared by means of a Diels-Alder reaction with furan and the benzyn derived from 2-(3-bromo-2,5-dimethoxyphenyl)-1,3-dioxolane 181b. Hydrogenation of the isolated double bound followed by oxidative demethylation with CAN yielded the desired quinone 350d in 81% yield.

$$
\begin{aligned}
& \text { 350a } X=\mathrm{CH}_{2}, \mathrm{n}=160 \% \\
& \text { 350b } X=\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{n}=183 \% \\
& \text { 350c } X=\mathrm{CH}_{2}, \mathrm{n}=242 \% \\
& \text { 350d } X=O, \mathrm{n}=181 \%
\end{aligned}
$$

349a $X=\mathrm{CH}_{2}, \mathrm{n}=182 \%$
349b $X=\mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{n}=189 \%$
349c $X=\mathrm{CH}_{2}, \mathrm{n}=2$ quant.

$$
\left\{\begin{array}{l}
3 \text { equiv. CAN } \\
\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1: 1 \\
\text { r.t., } 3 \mathrm{~min}
\end{array}\right.
$$

No reaction was observed when enamine 340c was added to 6-(1,3-dioxolan-2-yl)-1,2,3,4-tetrahydro-1,4-methanonaphthalene-5,8-dione 350a under the abovementioned conditions (Table 13, entries 1 and 2). Upon the addition of $10 \mathrm{~mol} \%$ of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, the desired octahydrobenzo $[j]$ phenanthridinedione 22a was formed in 48% yield (Table 13, entry 3). Use of larger amounts of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or alternative nitrogen sources did not improve the yield (Table 13, entries 4 and 5). When the reaction was performed in toluene with various amounts of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, no reaction was observed due to precipitation of the enamine adduct 352a (Table 13, entry 6). Also the use of oxidative conditions did not yield any favourable results. The use of CAN led to a complex mixture and both $\mathrm{Ag}_{2} \mathrm{O}$ and MnO_{2} were not able to oxidise the enamine adduct (Table 13, entries 7-9). When the reaction was performed with the more stable dioxanylnaphthoquinone 350c, enamine adduct $\mathbf{3 5 2} \mathbf{c}$ was formed in 70% yield (Table 13, entry 10). This adduct proved to be very stable and the desired octahydrobenzophenanthridinedione 22a could not be formed as this intermediate either did not react or decomposed (Table 13, entries 11-14). Upon the use of 6-(1,3-dioxan-2-yl)-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-5,8-dione 350b, enamine adduct 352b was formed in 34% yield (Table 13, entry 15). This intermediate did not convert
to the desired 2-aza-anthraquinone $\mathbf{2 2 b}$ upon the use of NH_{3} in MeOH , possibly due to the additional sterical hindrance of the ethano bridge (Table 13, entry 16). Upon treatment with ammonium acetate in HOAc, the desired octahydrobenzophenanthridinedione 22b was formed in 33\% yield (Table 13, entry 17).

Table 13. Attempted reaction conditions for the conversion of 6-(1,3-dioxan-2-yl)-1,2,3,4-tetrahydronaphthalene-5,8-diones $\mathbf{3 5 0}$ in the corresponding 2-aza-anthraquinones 22.

Entry	n	X	1	2	Result
1	1	CH_{2}	THF, $0^{\circ} \mathrm{C}, 5 \mathrm{~min}$	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to r.t., 2 h	No reaction
2	1	CH_{2}	THF, $0^{\circ} \mathrm{C}$ to r.t., on	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH , THF, $0^{\circ} \mathrm{C}$ to r.t., 2 h	No reaction
3	1	CH_{2}	$10 \mathrm{~mol} \% \quad \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, THF, $0^{\circ} \mathrm{C}$ to r.t., 3 h	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, \mathrm{THF}$, r.t., o.n.	22a 48\%
4	1	CH_{2}	1,1 equiv. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, THF, $0^{\circ} \mathrm{C}$ to r.t., 3 h	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, \mathrm{THF}$, r.t., o.n.	22a 28%
5	1	CH_{2}	$10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF},$ $0^{\circ} \mathrm{C}$ to r.t., 3 h	10 equiv. $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{HOAc}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$	22a 23%
6	1	CH_{2}	0 , 10 or $100 \mathrm{~mol} \%$ $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{PhMe}, 0^{\circ} \mathrm{C}$ to r.t., 3 h	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, \mathrm{PhMe}$, r.t., o.n.	352c (not isolated)
7	1	CH_{2}	2.1 equiv. CAN, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	-	Complex mixture
8	1	CH_{2}	4 equiv. $\mathrm{MnO}_{2}, 5$ equiv. MgSO_{4}, THF, $0^{\circ} \mathrm{C}$ to r.t., 2 h	-	352c (not isolated)
9	1	CH_{2}	2.1 equiv. $\mathrm{Ag}_{2} \mathrm{O}, 5$ equiv. MgSO_{4}, THF, $0^{\circ} \mathrm{C}$ to r.t., 2 h	-	352c (not isolated)
10	2	CH_{2}	$10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF}$, $0^{\circ} \mathrm{C}$ to r.t., 3 h	-	352c 70\%
11	2	CH_{2}	$10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF}$, $0^{\circ} \mathrm{C}$ to r.t., 3 h	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in $\mathrm{MeOH}, \mathrm{THF}$, r.t., 2 h to	No reaction towards 22a
12	2	CH_{2}	$10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF}$,	o.n. 10 equiv. $\mathrm{NH}_{4} \mathrm{OAc}$ in	No reaction towards

			$0^{\circ} \mathrm{C}$ to r.t., 3 h	$\mathrm{MeOH}, \Delta, 2 \mathrm{~h}$ to on	22a
13	2	CH_{2}	$10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF},$ $0^{\circ} \mathrm{C} \text { to r.t., } 3 \mathrm{~h}$	10 equiv. $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{HOAc}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$ to o.n.	No reaction towards 22a
14	2	CH_{2}	$\begin{aligned} & 10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF}, \\ & 0^{\circ} \mathrm{C} \text { to r.t., } 3 \mathrm{~h} \end{aligned}$	10 equiv. $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{HOAc}, 100^{\circ} \mathrm{C}$ (pressure vial)	Slow decomposition of intermediate 352c
15	1	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	$\begin{aligned} & 10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF}, \\ & 0^{\circ} \mathrm{C} \text { to r.t., } 3 \mathrm{~h} \end{aligned}$	-	22b (34\%)
16	1	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	$\begin{aligned} & 10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{THF}, \\ & 0^{\circ} \mathrm{C} \text { to r.t., } 3 \mathrm{~h} \end{aligned}$	10 equiv. $7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH , r.t., o.n.	No reaction towards 22b
17	1	$\mathrm{CH}_{2} \mathrm{CH}_{2}$	$10 \mathrm{~mol} \% \quad \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, THF, $0^{\circ} \mathrm{C}$ to r.t., 3 h	10 equiv. $\mathrm{NH}_{4} \mathrm{OAc}$ in HOAc, $60^{\circ} \mathrm{C}, 1 \mathrm{~h}$	22b (33\%)

The reaction mechanism of the abovementioned reaction is illustrated below. Initial attack of Stork enamine $\mathbf{3 4 0}$ on quinone $\mathbf{3 5 0}$ leads to iminium species $\mathbf{3 5 3}$, which is trapped intramoleculary leading to the formation of adduct 352. Conversion of hemiaminal function of $\mathbf{3 5 2}$ towards hemiaminal 354 leads to ring opening and subsequent ring closure by intramolecular attack of the thus formed imine on the acetal function. Expulsion of the glycol followed by aerobic oxidation yields the desired octahydrobenzophenanthridinediones 22.

Using the abovementioned reaction conditions, one additional O-bridged tert-butyl substituted derivative 22c was synthesised. The second step was performed with NH_{3} in MeOH as the acetic acid conditions led to ring opening of the epoxy-bridge. Starting from ethyl-4-pyrrolidin-1-ylcyclohex-3enecarboxylate 358, two ester substituted derivatives $\mathbf{2 2 d}$ and 22e were synthesised. The reaction with 6-(1,3-dioxolan-2-yl)-1,2,3,4-tetrahydro-1,4-epoxynaphthalene-5,8-dione 350d resulted in a complex mixture. Next, substitution of a carbon by nitrogen was envisaged. When the enamine addition was performed with 1-methyl-4-pyrrolidin-1-yl-1,2,3,6-tetrahydropyridine 359a, a complex reaction mixture was obtained for both quinones 350a and 350b. Upon treatment of quinone 350a with 1-tert-butoxycarbonyl-4-pyrrolidin-1-yl-1,2,3,6-tetrahydropyridine 359b, 2-tert-butoxycarbonyl-1,2,3,4,8,9,10,11-octahydro-2-aza-8,11-methanobenzo[j]phenanthridine-7,12-dione 22g was isolated in 17% yield. Even though promising antimycobacterial activity accompanied with a relative low cytotoxicity and no genotoxicity was observed for 2-aza-anthraquinones 22, no further derivatisation of the obtained compounds was attempted due to the low yields of the addition reactions.

$$
\begin{aligned}
& \text { 350a } X=\mathrm{CH}_{2} \\
& \text { 350b } X=\mathrm{CH}_{2} \mathrm{CH}_{2} \\
& \text { 350d } X=\mathrm{O}
\end{aligned}
$$

All octahydrobenzophenanthridines $\mathbf{2 2}$ showed good activity against Mycobacterium tuberculosis. For instance 2-tert-butyl-1,2,3,4,8,9,10,11-octahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 22a has a MIC_{50} of $0.14 \mu \mathrm{~g} / \mathrm{mL}$, accompanied with a cytotoxicity $\left(\mathrm{IC}_{50}\right)$ of $33.3 \mu \mathrm{~g} / \mathrm{mL}$, which results in a selectivity index of 237.9 .

3.5.6 Synthesis of 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthri-dine-7,12-diones 365

Having in hand an efficient methodology to synthesise 7,12-dimethoxy-5-methoxymethyl-5 H -benzo[j]phenanthridin-6-ones 301 (see section 3.5.2), it was applied to the synthesis of $8,9,10,11-$ tetrahydro-8,11-methanobenzo[$[j$ phenanthridine-7,12-diones 365. These reactions were the subject of a master thesis. ${ }^{213}$ The starting carboxylic acid $\mathbf{3 6 0}$ was prepared by means of an iron-catalysed oxidation of 5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene-6-carboxaldehyde 348a. Next, four lactams $\mathbf{3 6 3}$ were synthesised using the methodology described above and were subsequently reduced with LiAlH_{4} followed by treatment with HCl to convert the intermediate hemi-aminals into the corresponding pyridines 364.These compounds $\mathbf{3 6 4}$ were then oxidatively demethylated towards 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones 365, which were tested against Mycobacterium tuberculosis. It was found that especially phenanthridine-7,12-dione 365a possessed good antimycobacterial activity with a MIC_{50} lower than $0.1 \mu \mathrm{~g} / \mathrm{mL}$. In contrast to the 8,11 -bridged $1,2,3,4,8,9,10,11$-octahydrobenzo[j]phenanthridine-7,12-diones 22, which are highly active but have a low yielding synthesis (see section 3.5.5), 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 365a is easy to synthesise and possesses a good activity. Therefore, this compound 365a was synthesised on a gram scale in order further biological testing towards pharmacokinetics and the potential target of these molecules.

360 76\%
$\uparrow 0,1$ equiv.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
2) 1 equiv.

361a $R^{1}=R^{2}=R^{3}=H 80 \%$
361b $R^{1}=\mathrm{Me}, R^{2}=H, R^{3}=\mathrm{Me} 70 \%$
361c $R^{1}=R^{2}=H, R^{3}=\mathrm{Me} 72 \%$
361d $R^{1}=H, R^{2}=M e, R^{3}=H 77 \%$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., o.n.

348a

363a $R^{1}=R^{2}=R^{3}=H 90 \%$
363b $R^{1}=M e, R^{2}=H, R^{3}=M e 57 \%$
363c $R^{1}=R^{2}=H, R^{3}=M e 87 \%$
363d $R^{1}=H, R^{2}=M e, R^{3}=H 88 \%$
2.2 equiv. NaH
1.5 equiv. MOMCI or 1.5 equiv. MOMBr THF, r.t., o.n.

1) 3 equiv. LiAlH_{4} $\mathrm{THF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$
2) $\mathrm{HCl}(2 \mathrm{M})$ THF, r.t., 1 h

364a $R^{1}=R^{2}=R^{3}=H 59 \%$
Ref. 213
364b $R^{1}=M e, R^{2}=H, R^{3}=M e 56 \%$
364c $R^{1}=R^{2}=H, R^{3}=M e 49 \%$
364d $R^{1}=H, R^{2}=M e, R^{3}=H 13 \%$

365a $R^{1}=R^{2}=R^{3}=H 89 \%$
365b $R^{1}=M e, R^{2}=H, R^{3}=M e 100 \%$
365c $R^{1}=R^{2}=H, R^{3}=M e 99 \%$
365d $R^{1}=H, R^{2}=M e, R^{3}=H 60 \%$

3.5.7 Alternative entries towards the tetra/octahydrobenzophenanthridinedione scaffold

As stated above, the enamine strategy towards the tetra/octahydrobenzophenanthridinedione scaffold is problematic. The problems with this reaction are summarized in the following scheme. The main problem is not the enamine addition but the formed adduct: as in this adduct the iminium ion is
trapped by a naphthalenic OH , a stable adduct 352a is formed, which hardly further converts to the desired 2-aza-anthraquinone 22. This result is in contrast with the enamine reaction with hydroxymethylnaphthoquinone $\mathbf{3 3 9}$, in which the hydroxymethyl group traps the iminium ion, thus avoiding the hydroquinone chromophore and allowing aerobic oxidation towards the quinone. Adduct 352a even does not oxidise towards cyclohexenylquinone $\mathbf{3 6 7}$ when an external oxidant such as MnO_{2} or $\mathrm{Ag}_{2} \mathrm{O}$ is added. Even though the dioxolanyl function can be relatively easily hydrolysed twards aldehyde 368, the hydrolysis of the hemi-aminal appears to be much harder and there seems to be no equilibration between hemiacetal 369 and its corresponding hydroquinone 370 as this compound would be readily converted in the desired 2 -aza-anthraquinone $\mathbf{2 2 a}$ in the presence of ammonium acetate and air.

A potential alternative to make the enamine addition work would be to introduce a halogen on the quinone moiety. Initial enamine addition would then be followed by elimination of the halogen atom thus restoring the quinone chromophore and avoiding the formation of adduct 352a. The resulting cyclohexenylquinone 367 should be readily convertible into the desired octahydrobenzophenanthridine 22c.

Some alternative entries towards the octahydrobenzophenanthridine skeleton were briefly investigated. One of the major problems in quinone chemistry is that quinones are notoriously difficult substrates to add carbon nucleophiles onto due to potential aromatisation. One of the best ways to do so is the addition of pyridinium ylids. Therefore, reaction of pyridinium salt 376 with quinone $\mathbf{3 7 5}$ towards cyclohexylquinone 374 would make a valuable alternative. However, even though one procedure exists to make the pyridinium salt of 2-bromo- α-tetralone by stirring it in pyridine for two weeks, ${ }^{214}$ this is problematic for cyclohexanone derivatives due to the presence of two enolisable positions. Exploratory experiments using this procedure or a Ortholeva-King reaction ${ }^{215}$ towards pyridinium salts 376 only gave complex mixtures. Alternatively, octahydrobenzo[j]phenanthridinediones 22 could be synthesised by means of a Heck reaction of 2-bromocyclohex-1-enyl naphthalene-6-carboxylate 379 followed by conversion of lactone 378 in lactam 377, reduction towards the pyridine and oxidative demethylation towards the targeted benzophenanthridines 22.

In a test experiment in which the corresponding acid chloride of 5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene-6-carboxylic acid $\mathbf{3 6 0}$ was reacted with lithium 2-bromocyclohex-1-enolate 380', which was preformed from 2-bromocyclohexanone 380 and 1.1 equiv. of LiHMDS, the wrong isomer 379' was obtained in low yield. Apparently, the 0.1 excess of LiHMDS led to isomerisation of the double bound.

Alternatively, 2-acetylnaphthoquinone 345 was added to oxime 381 a but no reaction was observed even after the addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and refluxing (Table 14, entry 1). Similarly, cyclohexanone 381b was reacted with 2-acetyl-1,4-naphthoquinone 345 in the presence of ammonium acetate under microwave irradiation but only trace amounts of 2-aza-anthraquinone $\mathbf{1 9 f}$ could be isolated (entry 2). When an oxidant was added, a complex mixture was immediately obtained (entry 3). When the imine was preformed starting from the hydroquinone followed by oxidation with MnO_{2}, a complex mixture was retrieved as well.

Table 14. Attempted reaction conditions for the formation of tetrahydrobenzo[j]phenanthridinedione $19 f$.

Entry	X	n	Reagents	Conditions	Result
1	NOMe	1	0 to $10 \mathrm{~mol} \% \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\begin{aligned} & \text { THF, r.t. to } \Delta, 4 \mathrm{~h} \\ & \text { to } 2 \mathrm{~d} \end{aligned}$	No reaction
2	O	3	5\% (m/v) $\mathrm{NH}_{4} \mathrm{OAc}$	$\mathrm{MeOH}, \mu \mathrm{W}, 6 \mathrm{~min}$	19 f trace
3	O	3	$5 \%(\mathrm{~m} / \mathrm{v}) \mathrm{NH}_{4} \mathrm{OAc}, 5$ equiv. $\mathrm{MnO}_{2} 5$ equiv. MgSO_{4}	$\begin{aligned} & \mathrm{MeOH}, 0^{\circ} \mathrm{C} \text { to r.t., } \\ & 24 \mathrm{~h} \end{aligned}$	Complex reaction mixture

Another alternative would be the conversion of the quinone into a quinone monoketal to mask the quinone moiety and thus prevent cyclisation after addition of the enamine. However these compounds were found to be extremely unstable and therefore not suitable starting materials.

3.5.8 Attempted further derivatisation of the octahydrobenzo[j]phenanthridine scaffold

Instead of hydrogenating the C-2,C-3 double bound of 1,4-dihydro-5,8-dimethoxynaphthalene 346a, it could be used as a point of further functionalisation e.g. to attach a polar side chain or to form bifunctional molecules such as $\mathbf{3 8 3}$ and $\mathbf{3 8 4}$. Therefore, the possibility of hydrocyanating this double bound was investigated towards 2-cyanonaphthalene 382. This could be done by organometalcatalysed addition of HCN or by hydroboration followed by cleavage with KCN and $\mathrm{Pb}(\mathrm{OAc})_{4}{ }^{216}$

384

Even though the double bound is readily hydrogenated due to the strain liberation of the fivemembered ring, all attempts to hydrocyanate 364a towards nitrile 382 using acetone cyanohydrin (ACH) under $\mathrm{Pd}(0)$ - or $\mathrm{Ni}(0)$-catalysis ${ }^{217}$ failed and so did attempts to cyanocarboxylate towards ester 385 with methylcyanoformate under $\operatorname{Pd}(0)$ catalysis or hydroborate with $9-\mathrm{BBN}$ or $\mathrm{BH}_{3} \cdot \mathrm{THF} .{ }^{218}$ Hydroformylation would be a good alternative for these reactions.

As octahydrobenzophenanthridinedione 22a is potentially a mixture of four diastereoisomers (two are observed in ${ }^{1} \mathrm{H}$ NMR but as the yields are very low, it cannot be excluded that more isomers are formed), it would be interesting to separate them. Two exploratory reactions using (S)-ptoluenesulfinamide 386 as the chiral derivatisation agent towards quinone imine 387 were performed unsuccessfully.

3.5.9 Synthesis of dialkyltetrahydrobenzo $[g]$ pyrimido $[4,5-c]$ isoquinolinetetraones 20

In order to further explore the tetrahydrobenzo $[j]$ phenanthridinedione skeleton towards a structureactivity relationship, dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones $\mathbf{2 0}$ were synthesised. The synthesis of these 2-aza-anthraquinones $\mathbf{2 0}$ was effectuated by means of an oxidative
addition 219 of 6-amino-1,3-dialkyluracils $\mathbf{3 8 9}^{220}$ onto 1,4-dihydroxy-5,6,7,8-tetrahydronaphthalene-2carboxaldehydes $\mathbf{3 8 8}$. The synthesis of the latter ones proceeded via boron(III) bromide mediated demethylation of the corresponding 5,8-dimethoxy-1,2,3,4-tetrahydronaphthalene-6-carboxaldehydes 348a and 348b. The synthesis of a third derivative, bearing a 1,4 -epoxy-bridge failed due to ring opening. 6-Amino-1,3-dialkyluracils 389 were synthesised from triphosgene, a primary amine and cyanoacetic acid following literature protocols. ${ }^{220}$ All demethylation conditions ${ }^{221}$ attempted on 5,8-dihydroxy-6-formyl-1,2,3,4-1,4-epoxytetrahydronaphthalene 348c failed to perform this transformation. In general, the yields of the oxidative addition were lower for the short chained derivatives and higher for the longer chains. No significant differences in yields were observed between the methano- and the ethano-bridged series (Table 15). In case of 6-aminouracil 389a, no reaction was observed even after 24 h of reaction. Dialkyltetrahydrobenzo[g]pyrimido[4,5c]isoquinolinetetraones 20 were only moderate active against Mycobacterium tuberculosis with MIC_{50} 's around 1-2 $\mu \mathrm{g} / \mathrm{mL}$ but showed only modest cytotoxicity with IC_{50} 's around $15-20 \mu \mathrm{~g} / \mathrm{mL}$.

Table 15. Isolated yields for the synthesis of dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones 20.

R	X				
	CH_{2}	$\mathrm{CH}_{2} \mathrm{CH}_{2}$			
	Compound	Yield (\%)	Compound	Yield (\%)	
H	$\mathbf{2 0 a}$	-	$\mathbf{2 0 1}$	-	
Me	$\mathbf{2 0 b}$	54	$\mathbf{2 0 m}$	48	
Et	$\mathbf{2 0 c}$	86	$\mathbf{2 0 n}$	89	
n-Pr	$\mathbf{2 0 d}$	85	$\mathbf{2 0 0}$	83	
i-Pr	$\mathbf{2 0}$	33	$\mathbf{2 0 p}$	48	
n-Bu	$\mathbf{2 0 f}$	57	$\mathbf{2 0 q}$	90	
i-Bu	$\mathbf{2 0 g}$	67	$\mathbf{2 0 r}$	89	
n-Pentyl	$\mathbf{2 0 h}$	71	$\mathbf{2 0 s}$	64	
i-Pentyl	$\mathbf{2 0 i}$	93	$\mathbf{2 0 t}$	90	
n-Hexyl	$\mathbf{2 0 j}$	93	$\mathbf{2 0 u}$	90	
n-Heptyl	$\mathbf{2 0 k}$	88	$\mathbf{2 0 v}$	78	

Next, the synthesis of alkyl and ethoxycarbonyl substituted derivatives was envisaged, mimicking the substitution pattern of lead compound 22a. As an ester functionality in the D-ring gave a good antimycobacterial activity combined with a good therapeutic index, an ester substituted derivative was envisaged as well. Enaminones 392 and 395 were prepared from the corresponding diketones $391{ }^{222}$ and $\mathbf{3 9 4}{ }^{223}$ and ammonium acetate. They were obtained as inseparable mixtures of both regioisomers. It was not possible to determine the isomeric ration by means of LC, GC or NMR.

When enaminones 392 were reacted with 1,4-dihydroxynaphthalene-2-carboxaldehyde 396 using MnO_{2} as the oxidant, no reaction was observed. When the reaction was repeated with $\mathrm{Ag}_{2} \mathrm{O}$, a complex mixture was obtained for both 1,4-dihydroxynaphthalene-2-carboxaldehyde 396 and 5,8-dihydroxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene-6-carboxaldehyde 388a. Oxidative addition of enaminones $\mathbf{3 9 5}$ to dihydroxynaphthalene $\mathbf{3 8 8}$ a under the conditions mentioned above yielded a mixture regioisomers 397 , which were separated by means of preparative HPLC. It was not possible to unambiguously assign the regioisomers based on 2D-NMR techniques. As the activity of compounds 397 was only moderate and no differences were observed between both regioisomers, no further derivatives were synthesised.

It should be noted that this methodology could present an alternative entry into the octahydrobenzophenanthridine core upon reduction of the C-1 carbonyl. Of course, this would only be true for symmetric diketones given the regioselectivity issue discussed above.

3.5.10 Conclusion and discussion

Benzo[j]phenanthridinediones $\mathbf{1 8}$ were identified as promising antimycobacterial leads during previous research at our research department. Starting from this lead scaffold, a wide variety of derivatives were synthesised in order to find new leads and to establish a structure-activity relation. Initially, a new and efficient synthesis of this basic scaffold was developed, which uses a intramolecular Heck reaction as the key transformation. Even though this synthetic route was designed to further decorate the benzo[j]phenanthridine scaffold at C-6 via the lactam function, no efficient conditions were found to do so. A major obstacle is the adjacent methoxy substituent, which does not only introduces sterical hindrance but also terns the structure more electron-rich. During this experiments, it was found that alkyllithium reagent are able to add in a 1,4 fashion across MOMprotected benzo $[j]$ phenanthridines 301. Having established this synthesis, it was applied on the synthesis of 8,9,10,11-tetrahydro-8,11-methanobenzo $[j]$ phenanthridine-7,12-diones $\mathbf{3 6 5}$.

In a second part, 1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-diones $\mathbf{1 9}$ were synthesised by means of the reaction of a Stork enamine $\mathbf{3 4 0}$ with naphthoquinone $\mathbf{1 1}$ or $\mathbf{3 4 5}$ followed by ammonia mediated ring closure. As these compounds had little antimycobacterial activity, 1,2,3,4,8,9,10,11-octahydro-benzo[j]phenanthridine-7,12-diones $\mathbf{2 2}$ were synthesised by means of the same methodology. Much of these compounds showed promising antimycobacterial activity accompanied by a low cytotoxicity. The enamine methodology is not an efficient way of synthesising these compounds as the yields are in general low and there is an urgent need for an efficient synthesis of these compounds.

In a third part, 20 dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones $\mathbf{2 0}$ were synthesised by means of an oxidative addition methodology. Even though their cytotoxicity is low, their antimycobacterial activity is only moderate.

It is interesting to note that both 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12diones 365 and 1,2,3,4,8,9,10,11-octahydrobenzo[j]phenanthridine-7,12-diones 22 display good antimycobacterial activity as compared to $1,2,3,4$-tetrahydrobenzo[j]phenanthridine-7,12-diones $\mathbf{1 9}$. This is an indication that modification of the A-ring can boost activity while the D-ring appears to be less important.

3.6 Synthesis of analogues of the bioactive natural products cleistopholine 23 and sampangine 24

Cleistopholine $\mathbf{2 3}$ and sampangine $\mathbf{2 4}$ are two strongly related polycyclic aromatic alkaloids isolated from different plants belonging to the Annonaceae family with a wide range of interesting biological activities. ${ }^{19}$ Cleistopholine $\mathbf{2 3}$ is a tricyclic 1-aza-anthraquinone alkaloid isolated from the root bark of Cleistopholis patens. ${ }^{224 \mathrm{a}}$ Sampangine $\mathbf{2 4}$ is a tetracyclic naphthyridine alkaloid isolated from the stem bark of Cananga odoranta. ${ }^{224 b}$ Cleistopholine $\mathbf{2 3}$ showed fungitoxic activity against Candida albicans and Cryptococcus neoformans, which are opportunistic fungi in AIDS patients. ${ }^{19 e}$ In addition to exhibiting a powerful activity against Mycobacterium intracellulare with a minimum inhibitory concentration ($\mathrm{MIC}=0.78 \mu \mathrm{~g} / \mathrm{ml}$) which is lower than the MIC for current anti-TB drugs as rifampicin 33 (MIC $=0.5-0.9 \mu \mathrm{~g} / \mathrm{ml}$) and streptomycin (MIC $=2-8 \mu \mathrm{~g} / \mathrm{ml}$), ${ }^{225}$ sampangine 24 is known to possess strong antifungal activity. ${ }^{19 \mathrm{~d}}$ Synthetic analogues $\mathbf{3 9 8}, \mathbf{3 9 9}$ and 400a showed strong activity against M. intracellulare. Ascididemin 400b, a metabolite from the marine tunicate Didemnum sp. is very active against the rapidly growing M. aurum A+ strain. ${ }^{225}$ In the literature, a straightforward synthesis of sampangine $\mathbf{2 4}$ starting from cleistopholine $\mathbf{2 3}$ has been reported. ${ }^{226}$

[^0]

400a Z = CH
MIC $=0.39 \mu \mathrm{~g} / \mathrm{ml}$
400b Ascididemin: $\mathrm{Z}=\mathrm{N}$ MIC $=0.25 \mu \mathrm{~g} / \mathrm{ml}$

Since it is postulated that 2-aza-anthraquinones are potentially more bioactive than their corresponding 1-aza-analogues, a short and efficient synthesis of regioisomeric analogues of cleistopholine 23 and sampangine 24 was performed. Even though numerous analogues have been synthesised with the nitrogen atom at the 1-position, ${ }^{19 d, 227}$ these analogues with the nitrogen atom at the 2-position have not been reported yet in the literature.

Initially, the synthesis of an unsubstituted aza-analogue of sampangine 24 was envisaged, starting from (E)-4-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10-dione 402, which was previously prepared at our research department. ${ }^{228}$ This enamine 402 was reacted with an excess of ammonium chloride in boiling acetic acid as described in the synthesis of sampangine $24 .{ }^{226}$ However, a complex reaction mixture was obtained. After testing several reaction conditions, (E)-4-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10-dione 402 was converted in excellent yield towards unsubstituted sampangine analogue 403, i.e. $7 H$-naphtho[3,2,1-i,j]-2,6-naphthiridin-6-one, by heating with ammonium acetate in methanol.

Next, the synthesis of substituted sampangine analogues 26 was envisaged starting from 3-substituted1 -methylbenzo $[g]$ isoquinoline-5,10-diones 25 . The latter were prepared by applying a microwave protocol previously developed at our research department for the synthesis of 1hydroxybenzo[g]isoquinoline-5,10-diones. ${ }^{229}$ This reaction involved the Michael addition of the appropriate pyridinium ylids across the enone moiety followed by elimination of pyridine to generate
the intermediate 3-acylmethylquinones which underwent cyclisation with ammonia to provide 2-azaanthraquinones 25. Thus, 2-acetyl-1,4-naphthoquinone 345 and different pyridinium salts 151 were irradiated for 6 minutes in a $5 \mathrm{~m} / \mathrm{v} \%$ solution of ammonium acetate in methanol forming 1-methylbenzo[g]isoquinoline-5,10-diones $\mathbf{2 5}$ in 38-52\% yield. Subsequently, these 2-azaanthraquinones 25 were reacted with an excess of N, N-dimethylformamide dimethyl acetal (DMFDMA) in DMF at $125^{\circ} \mathrm{C}$ for 15 hours to yield 3-substituted1-[2-(dimethylamino)-vinyl]benzo[g]isoquinoline-5,10-diones 404 in good to excellent yields with the exception of 3-isopropyl-1-methyl-2-aza-anthraquinone $\mathbf{2 5 f}$ which was not accessible due to the formation of complex reaction mixture. Boiling under reflux of 1-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10-diones 404 in a $5 \mathrm{~m} / \mathrm{v} \%$ solution of $\mathrm{NH}_{4} \mathrm{OAc}$ in methanol afforded 5 -substituted- 7 H -naphtho[3,2,1-de]naphthyridine-7-ones 26 in 64-95\% yield. As 3-substituted 1-[2-(dimethylamino)-vinyl]benzo[g]isoquinoline-5,10-diones 404 showed promising antimycobacterial activities, it was attempted to synthesise the corresponding 3 -substituted 1-[2-(dimethylamino)-ethyl]benzo[g]isoquinoline-5,10-diones. However, hydrogenation of the dimethylaminovinyl group gave complex mixtures and attempts to perform Mannich type reactions starting from 1-methylbenzo[g]isoquinoline-5,10-diones $\mathbf{2 5}$ gave no reaction in all cases. ${ }^{230}$

During spectroscopic analysis of 1-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10-diones 404, an interesting phenomenon was observed. In ${ }^{13} \mathrm{C}$ NMR, the signals of the dimethylamino group were not
observed at 75 MHz and $25^{\circ} \mathrm{C}$ in none of the derivatives due to coalescence. When the system was driven to fast exchange ($75 \mathrm{MHz}, 50^{\circ} \mathrm{C}$), a broad peak of low intensity was observed. No higher temperature could be applied due to decomposition of compounds 404. When the system was driven to slow exchange and subjected to a higher field ($125 \mathrm{MHz},-50^{\circ} \mathrm{C}$), a clear resolution of both methyl peaks was observed as exemplified by 2,5-dimethoxyphenyldimethylaminovinylbenzoisoquinolinedione $\mathbf{4 0 4 d}$ and tert-butyldimethylaminovinylbenzoisoquinolinedione $\mathbf{4 0 4 g}$.

Figure 1. ${ }^{13} \mathrm{C}$ NMR spectra of 2,5-dimethoxyphenyldimethylaminovinylbenzoisoquinolinedione 404d at $50^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ and $-50^{\circ} \mathrm{C}$.

Figure 2. ${ }^{13} \mathrm{C}$ NMR spectra of tert-butyldimethylaminovinylbenzoisoquinolinedione $\mathbf{4 0 4 g}$ at $50^{\circ} \mathrm{C}$, $25^{\circ} \mathrm{C}$ and $-50^{\circ} \mathrm{C}$.

In ${ }^{1} \mathrm{H}$ NMR, a clear split-up of the methyl signal is observed as well. The low temperature spectra were recorded at the Laboratory for NMR and Structure Analysis of the Department of Organic Chemistry, Ghent University (Prof. José Martins).

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectra of 2,5-dimethoxyphenyldimethylaminovinylbenzoisoquinolinedione 404d at $25^{\circ} \mathrm{C}$ and $-50^{\circ} \mathrm{C}$.

Figure 4. ${ }^{1} \mathrm{H}$ NMR spectra of tert-butyldimethylaminovinylbenzoisoquinolinedione $\mathbf{4 0 4 g}$ at $25^{\circ} \mathrm{C}$ and $-50^{\circ} \mathrm{C}$.

Attempts to expand this methodology towards the synthesis of bridged cleistopholine analogues 408 failed for unknown reasons. A Fries rearrangement was performed on 5,8-diacetoxy-1,2,3,4-tetrahydro-1,4-methano-naphthalene 405 resulting in the corresponding 6 -acetyl-1,2,3,4-tetrahydro-1,4-methano-5,8-dihydroxynaphthalenene 406 in low $\left(\mathrm{PhNO}_{2}\right)$ to moderate yield $\left(\mathrm{AlCl}_{3} / \mathrm{NaCl} \mathrm{smelt}\right)$. This hydroquinone 406 was oxidised with MnO_{2} towards quinone 407 , which was reacted with pyridinium salt 151 h under both batch and microwave Kröhnke conditions but in both cases a complex mixture was retrieved.

3.6.1 Conclusion

One unsubstituted and various substituted analogues of the natural products cleistopholine $\mathbf{2 3}$ and sampangine 24 were synthesised using pyridinium ylid and enamine chemistry. Interestingly, the intermediate enamines 371 were found to be very active with MIC $_{50}$'s around one micromolar and cytotoxicities around $20-40 \mu \mathrm{M}$ and no genotoxicity (vitotox and comet assay). ${ }^{231}$ Some reports on analogous compounds containing a 2 -(dimethylamino)vinyl substituent suggested that their activity could be attributed to in vivo hydrolysis of the dimethylaminovinyl substituent to the aldehyde. ${ }^{232}$ These finding pose an incentive to synthesise further derivatives of these enamines. Initial attempts to do so were unsuccessful.

3.7 Palladium(II)-catalysed synthesis of $2 H, 3 ' H$-spiro[benzofuran-3,2'-naphthoquinones] 29: novel spirocyclisation reaction of quinones.

Our research group has been involved substantially in the synthesis of bioactive heterocyclic quinones and related natural products. ${ }^{102,104 a, 233}$ During a study of tetracyclic benzopyranonaphthoquinone 28, its synthesis was envisaged by means of a palladium(II)-catalysed intramolecular oxidative coupling. ${ }^{234}$ Thus, 2-phenoxymethyl-1,4-naphthoquinone $\mathbf{2 7 a}$ was reacted with one equivalent of palladium(II) acetate in boiling acetic acid for 14 hours, yielding a single compound. Surprisingly, the obtained compound contained two aliphatic CH_{2} 's and had the same mass as 2-phenoxymethyl-1,4naphthoquinone 27a. Moreover, a trisubstituted olefinic carbon was present at $58 \mathrm{ppm}\left({ }^{13} \mathrm{C}-\mathrm{NMR}\right.$, CDCl_{3}), indicative of an aliphatic trisubstituted olefinic centre next to an electron withdrawing group
or atom. Thus, the molecular skeleton of spirocyclisation product $2 H, 3^{\prime} H$-spiro[benzofuran- $3,2^{\prime}$ -naphthalene]-1', 4'-dione 29a, which was isolated in 38\% yield, was proposed.

In the present study, this surprising reaction was thoroughly investigated. To the best of our knowledge, the $2 H, 3^{\prime} H$-spiro[benzofuran-3,2'-naphthoquinone] structural motif concerns a novel heterocyclic skeleton. Even though several methods to synthesise structurally similar spiroheterocyclic compounds exist in the literature, the oxygen atom is always directly connected to the spirocyclic carbon. ${ }^{235}$

3.7.1 Synthesis of the starting 2-aryloxymethyl-1,4-naphthoquinones 27

The starting 2-aryloxymethyl-1,4-naphthoquinones 27 were synthesised by means of a radical aryloxymethylation of naphthoquinone 3 using phenoxyacetic acids 204 in water with ammonium persulfate as a radical initiator and a catalytic amount of AgNO_{3} as a radical transfer agent. ${ }^{236}$ In order to assure full solubility of the starting phenoxyacetic acids $\mathbf{2 0 4}$, acetonitrile had to be added as a cosolvent. Thus, 2-aryloxymethyl-1,4-naphthoquinones 27a-j were synthesised in 46-73\% yield. In case of naphthalen-2-yloxyacetic acid, naphthalen-1-yloxyacetic acid, 2,3-dimethylphenoxyacetic acid and 2-phenoxypropionic acid 409, a complex mixture was retrieved. Phenoxyacetic acids 204 were either commercially available or synthesised from chloroacetic acid and the appropriate phenol.

It was attempted to apply this radical alkylation reaction on the synthesis of 2-phenylaminomethyl-1,4naphthoquinone 412. An initial attempt with anilinoacetic acid 410a led to a complex mixture. When N-acetylanilinoacetic acid 410b was deployed, overalkylation occurred, as the monoalkylated product was soluble in the reaction medium.

Table 16. Attempted radical alkylation of 1,4-naphthoquinone 3 with anilinoacetic acids 410.
R

3.7.2 Investigation and optimisation of the reaction conditions

From a mechanistic point of view, it must be noted that contrary to the oxidative coupling of quinones with arenes, the spirocyclisation product $\mathbf{2 9 a}$ is no oxidation product and, as a consequence, there should be no need for a reduction of the palladium catalyst.

Initially, it was investigated whether or not the spirocyclisation could be a Friedel-Crafts type reaction by reacting a myriad of hard and soft metal salts with 2-phenoxymethyl-1,4-naphthoquinone 27a in glacial acetic acid. None of the tested metal salts, i.e. $\mathrm{LiCl}, \mathrm{MgBr}_{2}, \mathrm{TiCl}_{4},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}, \mathrm{FeCl}_{3}$, $\mathrm{AgNO}_{3}, \mathrm{AlCl}_{3}, \mathrm{NiCl}_{3}, \mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \mathrm{SnCl}_{4}$ and $\mathrm{Cu}(\mathrm{OTf})_{2}$, yielded the desired spiroquinone 29a (Table 17). Strong acids, such as $\mathrm{CF}_{3} \mathrm{COOH}, p-\mathrm{TsOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$ or TfOH did not effectuate the desired conversion either. However, in some cases (entries 3, 5, 7 and 10) the rearranged 2-(4-hydroxybenzyl)-1,4-naphthoquinone 413a was formed in a low to good yield by means of a Claisen type rearrangement. Interestingly, only the para-substituted product could be isolated without any trace of the ortho-substituted compound. Even though some examples of Claisen rearrangements of allyloxybenzene derivatives are known in literature, ${ }^{237}$ none of them is uniquely para-selective. When titanium(IV) chloride was deployed, 2-chloromethyl-1,4-naphthoquinone 414 was found to be the major reaction product.

Table 17. Reaction of metal salts with 2-phenoxymethyl-1,4-naphthoquinone 27a in acetic acid. The reaction conditions were gradually increased in strength until conversion or a complex reaction mixture was obtained. When no conversion was observed after two days of boiling under reflux, the reaction was stopped.

Entry	$\mathrm{M}_{\mathrm{n}} \mathrm{X}_{\mathrm{m}}$	Reaction conditions	Result	Entry	$\mathrm{M}_{\mathrm{n}} \mathrm{X}_{\mathrm{m}}$	Reaction conditions	Result
1	LiCl	$\Delta, 15 \mathrm{~h}$	Complex reaction mixture	6	AgNO_{3}	$\Delta, 15 \mathrm{~h}$	No conversion
2	MgBr_{2}	Δ, 15 h	Complex reaction mixture	7	AlCl_{3}	$\Delta, 5 \mathrm{~h}$	413a 12\%
3	TiCl_{4}	r.t., 6 h	$\begin{aligned} & \text { 413a } 14 \% \text { + } \\ & 414 \text { 68\% } \end{aligned}$	8	$\mathrm{NiCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	$\Delta, 2 \mathrm{~d}$	No conversion
4	CAN	$\Delta, 15 \mathrm{~h}$	Complex reaction mixture	9	$\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	$\Delta, 2 \mathrm{~d}$	No conversion
5	FeCl_{3}	$\Delta, 5 \mathrm{~h}$	413a 12%	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	SnCl_{4} $\mathrm{Cu}(\mathrm{OTf})_{2}$	$\begin{aligned} & \text { r.t., } 15 \mathrm{~h} \\ & \Delta, 1 \mathrm{~h} \end{aligned}$	413a 80\% Complex reaction mixture

As quinones oxidise $\operatorname{Pd}(0)$ to $\operatorname{Pd}(\mathrm{II})$, palladium-catalysed reactions in quinone chemistry are limited to $\operatorname{Pd}($ II $)$-catalysis. ${ }^{238}$ Therefore, it was attempted to optimise the conversion following the reaction conditions reported by Stolz et al. ${ }^{239}$, i.e. $40 \mathrm{~mol} \%$ of ethyl nicotinate and $10 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ in tert-amyl alcohol/AcOH 4:1. Disappointingly, no conversion of $\mathbf{2 7 a}$ was observed (Table 18, entry 1). It appeared that no matter which ligand was used, the palladium complex only remained stable in pure acetic acid and decomposed in all other solvents or combinations thereof (tert-amyl alcohol/AcOH 4:1, DMF, DMA or pinacolone). Together with the fact that addition of one equivalent of NaOAc leads to a complex mixture (entry 2), it can be concluded that a protic acid should play a crucial role in the reaction mechanism. It is clear that the more electron poor the ligand, the faster the initial reaction. However, most reactions end prematurely due to decomposition of the palladium complex (entries 58) and a compromise has to be made between catalyst stability and reactivity. Only 3,5dichloropyridine (entry 4) lead to full conversion but the reaction was very sluggish and took 12 days to attain completion. When ligands were introduced bearing 2 coordinating nitrogen atoms such as 2,2'-bipyridines or phenanthrolines, little (entry 9) or no conversion (entries 10-13) towards spiroquinone 29a was observed. Also the conditions recently reported by Li et al., ${ }^{240}$ in which 20
$\mathrm{mol} \%$ of N-acetyl glycine is used as the ligand and hexafluoroisopropanol as the solvent, were tested but no significant conversion was observed even when the solvent was changed to acetic acid.

Table 18. Ligand screening for the spirocyclisation reaction using $40 \mathrm{~mol} \%$ pyridine ligand in acetic acid.

Entry	PyrL	$\begin{aligned} & \mathrm{p} K_{\mathrm{a}} \\ & \left(\mathrm{PyrLH}^{+}\right)^{241} \end{aligned}$	$\begin{aligned} & \mathrm{PyrlH}^{+} \\ & (\%)^{*} \end{aligned}$	t	Result**
1	ethyl nicotinate	3.35	88,7	20 h	No conversion to 29a
2	ethyl nicotinate +1 equiv. NaOAc	3.35	88,7	20 h	Complex reaction mixture
3	pyridine-3-carbonitrile	1.39	24,1	23 h	No reaction
4	3,5-dichloropyridine	0.90	14,5	12 d	29a (53\%)
5	5-bromo-2-chloropyridine	-0.61	2,7	20 h	29\% conversion to 29a
6	2,5-dichloropyridine	-0.79	2,2	7 h	26\% conversion to 29a
7	2,6-dibromopyridine	-2.22	0,4	18 h	15\% conversion to 29a
8	2-chloro-3-nitropyridine	-2.35	0,4	23 h	$<10 \%$ conversion to 29a
9	2,2'-bipyridinyl	4.34, 0.70	98,6	15 h	$<10 \%$ conversion to 29a
10	4,4'-dibromo-2,2'-bipyridinyl	2.20, -0.44	49,7	15 h	No conversion to 29a
11	2,2'-bipyridinyl-3,3'dicarboxylic acid	1.40, -1.24	24,3	15 h	No conversion to 29a
12	1,10-phenanthroline-5,6-dione	1.45, -1.17	25,5	15 h	No conversion to 29a
13	5-chloro-1,10-phenanthroline	3.91, -0.48	96,3	15 h	No conversion to 29a

* Calculated at $25^{\circ} \mathrm{C}$ assuming that $[\mathrm{AcOH}] \gg\left[\mathrm{AcO}^{-}\right]$, for the dibasic species only $\mathrm{p} K_{\mathrm{a} 1}$ was taken into account.
** All reactions were monitored by LC-MS and stopped when no further conversion was observed.

When the amount of ligand was varied between 10 and $40 \mathrm{~mol} \%$, the reaction time could be reduced to seven days using 15 or $30 \mathrm{~mol} \%$ of ligand (Table 19, entries 2 and 5) without lowering the yield. For further experiments, it was decided to work with $15 \mathrm{~mol} \%$ of ligand, which corresponds with a calculated 23% protonation at $25^{\circ} \mathrm{C}$. When 5 to $15 \mathrm{~mol} \%$ of trifluoroacetic acid (TFA) were added, the reaction time could be reduced to four days. When $5 \mathrm{~mol} \%$ of TFA was used, compound $\mathbf{2 9 a}$, was obtained in 62% yield (entry 7), while more TFA led to lower yields (entries 8 and 9). The addition of stronger acids (p-toluenesulfonic acid, methanesulfonic acid or trifluoromethanesulfonic acid) led to significant decomposition of the palladium complex and no full conversion was observed after four
days. Replacement of TFA by the higher boiling heptafluorobutyric acid (HFBA) did not result in an increased yield (entry 10).

Table 19. Fine-tuning of the catalytic cycle for the spirocyclisation reaction towards spironaphthoquinone 29a.

Entry	n	m	HA	$\mathrm{t}(\mathrm{d})$	Yield (\%)	Entry	n	m	HA	$\mathrm{t}(\mathrm{d})$	Yield (\%)
1	10	-	-	7	38	6	40	-	-	12	53
2	15	-	-	7	53	7	$\mathbf{1 5}$	$\mathbf{5}$	TFA	$\mathbf{4}$	$\mathbf{6 2}$
3	20	-	-	9	30	8	15	10	TFA	4	42
4	25	-	-	8	38	9	15	15	TFA	4	35
5	30	-	-	7	52	10	15	5	HFBA	4	49
HFBA $=\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{COOH}$											

3.7.3 Synthesis of further derivatives and proposed reaction mechanism

The yield of the spirocyclisation reaction was strongly dependent on the substitution pattern of the aryloxy group of the starting 2-(aryloxymethyl)-1,4-naphthoquinones 27 . While meta- and parasubstituted aryloxy groups gave spiroquinones 29 in good yields, little (27b) or no (27e) conversion was observed in the case of ortho-substituted aryloxy groups. Replacement of acetic acid by hexafluoroisopropanol did not give any reaction either. Apart from the fact that only one reactive position is available for cyclisation, there is no satisfying explanation so far for this observation. In case of meta-substituted compounds, regioisomers were formed in a ratio of about 5:1. Interestingly, in case of naphthoquinone $\mathbf{2 7 f}$, the reaction was finished after only 15 h . This is attributed to the electron donating properties combined with the sterically favoured position of the methoxy group. Solubility might also play a key role as 2-aryloxymethyl-1,4-naphthoquinones have a low to very low solubility in acetic acid and solubilisation often only occurs at $90-100^{\circ} \mathrm{C}$. For instance $2-(2,4-$ dichlorophenoxymethyl)-1,4-naphthoquinone fails to react under the presented conditions as it does not dissolve in boiling acetic acid. When tetrachloroethene is added as a cosolvent to obtain full dissolution, no reaction is observed. This highlight the importance to perform the reaction in pure acetic acid. Other apparent differences in yield based on the electronic nature of the substituents were not observed.

27

29a $X=H 62 \%$
$\mathbf{2 9 g}$ X $=5$-OMe 59\%
29b $X=7-\mathrm{Me} 21 \%$
29h $X=5-t-B u 71 \%$
29i $X=5-F 53 \%$
29j $X=5-\mathrm{Cl} 69 \%$

27c $X=M e$ 27f $X=O M e$
-

$X=\mathrm{Me}: 4 \mathrm{~d}$
$\mathrm{X}=\mathrm{OMe}: 15 \mathrm{~h}$

29ca $X=$ Me 51\%
29fa $X=$ OMe 61\%

29cb $X=$ Me 11\%
29fb $X=$ OMe 13\%

Based on the abovementioned observations, a reaction mechanism is proposed. Initial coordination of the palladium catalyst with the naphthoquinone moiety, which behaves as a π-acid ligand, increases the electron deficiency of the palladium centre. ${ }^{242}$ Arene palladation of naphthoquinone-Pd(II)complex 415 leads to organopalladium intermediate 416. This intermediate 416 will undergo an intramolecular Michael addition leading to palladium enolate 417a. ${ }^{238 c, 243,244}$ Acid-mediated regeneration of the palladium complex followed by tautomerisation finally leads to spiroquinone 27. It is believed that the addition of TFA accelerates the hydrolysis of palladium enolate $\mathbf{4 1 7 b}$, thus giving rise to shorter reaction times. It should be noted that the reaction is a cyclo-isomerisation and does not need a co-oxidant as most other palladium(II) catalysed reactions. ${ }^{238,245}$

3.7.4 Alternative substrates for the spirocyclisation reaction

3.7.4.1 2-aryloxymethyl-1,4-benzoquinones 207 and 2-(2-phenoxyethyl)-1,4-naphthoquinone 421

Application of the optimised spirocyclisation conditions to 2-aryloxymethyl-1,4-benzoquinones 207 lead to complex reaction mixtures. $2 H, 3^{\prime} H$-Spiro[benzofuran- $3,2^{\prime}$ '-benzoquinones] 419 could only be synthesised using a full equivalent of palladium(II) acetate in boiling acetic acid in low yields. This is attributed to the high reactivity of the benzoquinone moiety, which also explains the lower yields of the radical alkylation reaction as compared to 2-aryloxymethyl-1,4-naphthoquinones 27 . The spirocyclisation reaction of 2-(2-phenoxyethyl)-1,4-naphthoquinone 421 was found to be significantly slower than the one of phenoxymethyl-1,4-naphthoquinone 27a and was stopped after five days. From this reaction, 3 ' H-spiro[chroman-3,2'-naphthalene]-1',4'-dione 422 was isolated in 38% yield, together with 22% of starting material 421.

4

422 38\%

3.7.4.2 Attempted alternative syntheses towards 2-(2-phenoxyethyl)-1,4-naphthoquinone 421

The synthesis of phenoxyethyl-1,4-naphthoquinone 421 was previously described at our research department ${ }^{15}$ but is low yielding as the intermediate radical is not stabilised. Alternatives were sought to find a one- or two-step synthesis with an acceptable yield. Both organocuprate addition across 2-bromo-1,4-naphthoquinone and various Suzuki-coupling reaction conditions were investigated.
When lithium-iodine exchange ${ }^{246}$ was performed on 2-iodoethyl phenyl ether 423a, the corresponding alkyllithium readily decomposed by the formation of phenol and ethylene, making the formation of organocuprates or borates in this way impossible.

By means of $\mathrm{Cu}(\mathrm{I})$ catalysis, 4,4,5,5-tetramethyl-2-(2-phenoxyethyl)-1,3,2-dioxaborolane 426 was prepared starting from 2-bromoethyl phenyl ether 423b. ${ }^{247}$ Using the same procedure, it was not possible to prepare boronic acid 427.

However, under standard Suzuki coupling conditions, both decomposition of boronic ester 426 and addition of water onto 2-bromo-1,4-naphthoquinone 156 a were observed (Table 20, entries 1 and 2). Therefore, reactions should be conducted at room temperature in the presence of a minimal amount of $\mathrm{H}_{2} \mathrm{O}$. An initial attempt at room temperature using tricyclohexylphosphine did not yield any product (entry 3). Also the reaction between 1,4-naphthoquinone-2-boronic acid $\mathbf{4 2 8}^{\mathbf{2 4 8}}$ and 2-bromoethyl phenyl ether 423b did not give any result (entries 4-6).

Table 20. Attempted reaction conditions for the conversion of quinones 156a and 428 into phenoxyethoxynaphthoquinone 421.

Entry	R	Reagents	Conditions	Result
1	Br	```1.25 equiv. BpinCH \(\mathrm{CH}_{2} \mathrm{OPh}\) 3.5 equiv. \(\mathrm{K}_{2} \mathrm{CO}_{3}\) \(5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}\) \(10 \mathrm{~mol} \% \mathrm{PPh}_{3}\)```	$\mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O} 20: 1,110^{\circ} \mathrm{C}, 3 \mathrm{~h}$	No reaction
2	Br	$\begin{aligned} & 1.25 \text { equiv. } \mathrm{BpinCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3.5 \text { equiv. } \mathrm{K}_{3} \mathrm{PO}_{4} \\ & 5 \mathrm{~mol} \%{\mathrm{Pd}(\mathrm{OAc})_{2}}^{10 \mathrm{~mol} \% \mathrm{PPh}_{3}} \end{aligned}$	$\mathrm{PhMe} / \mathrm{H}_{2} \mathrm{O} 20: 1,110^{\circ} \mathrm{C}, 3 \mathrm{~h}$	No reaction
3	Br	$\begin{aligned} & 1.25 \text { equiv. } \mathrm{BpinCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 1.3 \text { equiv. } \mathrm{K}_{3} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 4 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 8 \mathrm{~mol} \% \mathrm{PCy}_{3} \end{aligned}$	THF, r.t., up to 4 d	No reaction
4	$\mathrm{B}(\mathrm{OH})_{2}$	$\begin{aligned} & 0.66 \text { equiv. } \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3 \text { equiv. } \mathrm{KO} t-\mathrm{Bu} \\ & 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 10 \mathrm{~mol} \% \mathrm{PCy} \end{aligned}$	1,4-dioxane, r.t., 24 h	No reaction
5	$\mathrm{B}(\mathrm{OH})_{2}$	$\begin{aligned} & \text { 0.66 equiv. } \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3 \text { equiv. } \mathrm{KOt}-\mathrm{Bu} \\ & 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 10 \mathrm{~mol} \% \mathrm{PCy} \end{aligned}$	t-AmylOH, r.t., 24 h	No reaction
6	$\mathrm{B}(\mathrm{OH})_{2}$	$\begin{aligned} & 0.66 \text { equiv. } \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3 \text { equiv. } \mathrm{KO} t-\mathrm{Bu} \\ & 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 10 \mathrm{~mol} \% \mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4} \end{aligned}$	t-AmylOH, r.t., 24 h	No reaction

Alternatively, no reaction was observed upon $\mathrm{Pd}(0)$ - or $\mathrm{Cu}(\mathrm{I})$-catalysed reaction of 1,4-dimethoxynaphthalene-2-boronic acid 429a with 2-bromoethyl phenyl ether 423b using room temperature Suzuki reaction protocols (Table 21, entries 1-4). ${ }^{249}$ Also ortholithiation of 1,4 dimethoxynaphthalene $\mathbf{4 2 9 b}$ was attempted. As direct reaction of the corresponding aryllithium with 2-bromoethyl phenyl ether 423b would result in various side reactions such as lithium-halogen exchange and elimination, the use of the corresponding cuprates or zincates was envisaged. Unfortunately, ortholithiation followed by $\mathrm{Li}-\mathrm{Cu}$ or $\mathrm{Li}-\mathrm{Zn}^{250}$ exchange and reaction with 2-bromoethyl phenyl ether 423b was unsuccessful (entries 5-6) and only elimination products could be retrieved. In case of a chain extension with 1,2-ethylene sulfate (1,3,2-dioxathiolane-2,2-dioxide) as a C-2 building block, ${ }^{251}$ a trace amount of the desired product could be observed in both cases (entries 7-8).

Table 21. Attempted conversion of naphthalenes 429 in phenoxy- or hydroxyethylnaphthalenes 430.

Entry	R ${ }^{1}$	Reagents	Conditions	R^{2}	result
1	$\mathrm{B}(\mathrm{OH})_{2}$	$\begin{aligned} & 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 10 \mathrm{~mol} \% \mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4} \\ & 0.66 \text { or } 3 \text { equiv. } \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3 \text { equiv. } \mathrm{KO} t \text { - } \mathrm{Bu} \end{aligned}$	1,4-dioxane, r.t., o.n.	Ph	No reaction
2	$\mathrm{B}(\mathrm{OH})_{2}$	$\begin{aligned} & 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 10 \mathrm{~mol} \% \mathrm{PCy} \\ & 0.66 \text { equiv. } \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3 \text { equiv. } \mathrm{KO} t-\mathrm{Bu} \end{aligned}$	t-AmylOH, r.t., 24 h	Ph	No reaction
3	$\mathrm{B}(\mathrm{OH})_{2}$	$\begin{aligned} & 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \\ & 10 \mathrm{~mol}_{2} \mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4} \\ & 0.66 \mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh} \\ & 3 \text { equiv. } \mathrm{KO} t-\mathrm{Bu} \end{aligned}$	t-AmylOH, r.t., 24 h	Ph	No reaction
4	$\mathrm{B}(\mathrm{OH})_{2}$	$10 \mathrm{~mol} \% \mathrm{CuI}$ $13 \mathrm{~mol} \% \mathrm{PPh}_{3}$ 1 equiv. $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh}$ 2 equiv. LiOMe	DMF, r.t., o.n.	Ph	No reaction
5	H	1) 1.5 equiv. n - BuLi 2) 2 equiv. CuX 3) 2 equiv. $\mathrm{XCH}_{2} \mathrm{CH}_{2} \mathrm{OPh}$ $\mathrm{X}=\mathrm{Br}, \mathrm{I}$	$0^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{THF}$ $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{THF}$ $-78^{\circ} \mathrm{C}$ to r.t., o.n., THF	Ph	No reaction
6	H	1) 1.5 equiv. $n-\mathrm{BuLi}$ 2) 1.05 equiv. ZnCl_{2} 3) 1 equiv. $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{OPh}$	$0^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{THF}$ $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, \mathrm{THF}$ $-78^{\circ} \mathrm{C}$ to r.t., o.n., THF	Ph	No reaction
7	H	1) 1.5 equiv. $n-\mathrm{BuLi}$ 2) 1.2 equiv. ethylene sulfate 3) $\mathrm{H}_{2} \mathrm{SO}_{4}(3.4 \mathrm{M})$	$\begin{aligned} & 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{THF} \\ & -78^{\circ} \mathrm{C} \text { to r.t., } 1 \mathrm{~h}, \mathrm{THF} \\ & \Delta, 2 \mathrm{~d} \end{aligned}$	OH	trace
8	H	1) 1.5 equiv. $n-\mathrm{BuLi}$ 2) 1.2 equiv. ethylene sulfate 3) 2 equiv. PhOH	$\begin{aligned} & 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, \mathrm{THF} \\ & -78^{\circ} \mathrm{C} \text { to r.t., } 1 \mathrm{~h}, \mathrm{THF} \\ & \mathrm{PhMe}, \Delta, 2 \mathrm{~d} \end{aligned}$	Ph	trace

3.7.4.3 2-Anilinomethylnaphthoquinones

and 2-methyl-3-phenoxymethyl-1,4naphthoquinone 433
N-Mesyl-, N-acetyl- and N-benzyl-protected anilinomethylnaphthoquinones 432 were prepared via oxidative demethylation of anilinomethyldimethoxynaphthalenes 431. These compounds 431 were prepared by means of a reductive amination of naphthaldehyde 279 with aniline followed by N protection with an acyl chloride or mesyl chloride. 2-Methyl-3-phenoxymethyl-1,4-naphthoquinone 433 was prepared using the radical alkylation conditions as described above. None of these substrate
gave rise to a spirocyclisation reaction neither under the catalytical conditions nor using a full equivalent of $\mathrm{Pd}(\mathrm{OAc})_{2}$.

3.7.4.4 Non-quinoid substrate: 2-phenoxymethylchromen-4-one 436

Further alternative substrates for the spirocyclisation reaction were evaluated. Starting from ethyl phenoxyacetate 434 and 2-methoxyacetophenone 435, 2-phenoxymethylchromen-4-one 436 was synthesised in two steps following a literature protocol. ${ }^{264}$ Attempts to make the corresponding N analogue 438 by means of a condensation reaction of para-anisidine and β-ketoester 437^{252} resulted in a complex mixture.

3.7.4.5 2-phenoxynaphthoquinone 439

When 2-phenoxynaphthoquinone ${ }^{253} 439$ was subjected to the spirocyclisation conditions, a small amount of benzo[b]naphtho[2,3-d]furan-6,11-dione 440 was formed. Even though this compound is known in the literature, the synthesis is a long multistep sequence having a low overall yield. ${ }^{254}$ It was attempted to raise the amount of product formed by adding a co-oxidant. When 1,4benzoquinone 2 was used as a co-oxidant, a complex mixture was obtained, while using $\mathrm{Cu}(\mathrm{OAc})_{2}$, a 3:1 mixture of starting material/product was obtained and this did not change even upon refluxing for 12 days (

Table 22, entry 1). Systematically raising the amount of catalyst (and thus ligand and additive) resulted in full conversion and isolation of benzo[b]naphtho[2,3-d]furan-6,11-dione 440 in 67% yield upon the use of $40 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ (entry 4).

Table 22. Conversion of 2-phenoxynaphthoquinone 439 in benzo[b]naphtho[2,3-d]furan-6,11-dione 440 by increasing the reagent loading.

Entry	n	Result	Entry	n	Result
1	10	$\mathbf{4 3 9} / \mathbf{4 4 0} 3: 1$, isolated yield $\mathbf{4 4 0}<10 \%$	3	30	$\mathbf{4 3 9} / \mathbf{4 4 0} 3: 1$
2	20	$\mathbf{4 3 9} / \mathbf{4 4 0} 3: 1$	4	40	$\mathbf{4 3 9}, 67 \%$ isolated yield

Control experiments were performed to check whether all reagents are necessary. From Table 23, it can be deduced that $\mathrm{Cu}(\mathrm{OAc})_{2}$ is not an adequate co-oxidant as addition of this reagent only results in a 5% increase of the conversion. Also no significant change in conversion was observed upon omission of the pyridine ligand.

Table 23. Control experiments for the palladium mediated conversion of 2-phenoxynaphthoquinone 439 in benzo[b]naphtho[2,3- d]furan-6,11-dione 440.

Entry	Reagents	Conversion 1	Entry	Reagents	Conversion 1
1	$40 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$	23%	4	$40 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ 2 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	
2	$60 \mathrm{~mol} \% \mathrm{DCP}$	0	5	40 mol\% $\mathrm{Pd}(\mathrm{OAc})_{2}, 60 \mathrm{~mol} \% \mathrm{DCP}$ 2 equiv. $\mathrm{Cu}(\mathrm{OAc})_{2}$	24%

$3 \quad 40 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2} \quad 19 \%$
$60 \mathrm{~mol} \% \mathrm{DCP}$
${ }^{1}$ Monitored by ${ }^{1} \mathrm{H}$ NMR

In order to find better conditions, pyridine ligands were screened as described above but none could match the initial 3,5-dichloropyridine (Table 24).

Table 24. Ligand screening for the conversion of 2-phenoxynaphthoquinone 439 in benzo[b]naphtho[2,3-d]furan-6,11-dione 440.

Entry	Pyr-L	Result	Entry	Pyr-L	Result
1	Ethyl nicotinate	No reaction	4	Pyridine	No reaction
2	3-Cyanopyridine	Trace	5	Ethyl isonicotinate	Trace
3	5-Bromo-2-fluoropyridine	Trace	6	2-Acetylpyridine	Trace

Next to alternative ligands, alternative co-oxidants were evaluated. Apart from the traditional metal derived oxidants (Table 25, entries $1,3,5$), also pyridine- N-oxides ${ }^{255}$ (entries 2 and 4) were evaluated. None of them yielded favourable results.

Table 25. Screening for alternative co-oxidants for the conversion of 2-phenoxynaphthoquinone 439 in benzo[b]naphtho[2,3- d]furan-6,11-dione 440

Entry	n	Pyr-L	m	Oxidant	Result
1	15	Pyridine-2,6-dicarboxylic acid	2	$\mathrm{Cu}(\mathrm{OAc})_{2}$	Trace
2	-	-	2,15	$\mathrm{Pyridine-} N$-oxide	No reaction, Pd mirror
3	15	3,5-dichloropyridine	4	MnO_{2}	21% conversion
4	15	3,5-dichloropyridine	2	DCP- N-oxide	22% conversion
5	15	3,5-dichloropyridine	2	CAN	Trace

3.7.5 Unexpected Claisen-type rearrangement of 2-aryloxymethyl-1,4quinones 27 and 207a

During the reaction optimisation it was found that when 2-phenoxymethyl-1,4-naphthoquinone 27a was stirred overnight at room temperature in pure TFA, 2-(4-hydroxybenzyl)-1,4-naphthoquinone 413a was formed in 74% yield as the sole reaction product. All attempts to execute this Claisen type rearrangement on aryloxymethylnaphthoquinones 27 bearing a meta- and para-substituted aryloxy group gave complex mixtures. Aryloxymethylnaphthoquinones $\mathbf{2 7 b}$ and 27 e bearing an orthosubstituted aryloxy group did react via this Claisen rearrangement pathway to provide the corresponding phenols 413b and 413c but in case of 2-(2-methoxyphenoxymethyl)-1,4naphthoquinone 27 e the yield was low due to formation of several side products. For 3-methyl-2-phenoxymethyl-1,4-naphthoquinone 433, the Claisen rearrangement did occur but only after three days and resulted in the formation of 2-(4-hydroxybenzyl)-3-methyl-1,4-naphthoquinone 413d in 60\% yield. Claisen rearrangement of 2-phenoxymethyl-1,4-benzoquinone 207a afforded 2-(4-hydroxybenzyl)-1,4-benzoquinone 441a in 64% yield. No reaction was observed upon treatment of N -mesyl-, N-acyl- or N-benzoyl-2-phenylaminomethyl-1,4-naphthoquinones 432 or 2-phenoxymethylchromen-4-one 436 with TFA.

$$
\begin{aligned}
& \text { 27a } R=H, X=H \\
& \text { 27b } R=H, X=M e
\end{aligned}
$$

$$
\text { 413a } R=H, X=H, t=15 h 74 \%
$$

$$
\text { 413b } R=H, X=M e, t=15 \mathrm{~h} 73 \%
$$

$$
\text { 413c } R=H, X=O M e, t=15 h 42 \%
$$

$$
\text { 413d } R=M e, X=H, t=3 d 60 \%
$$

3.7.6 Conclusion and discussion

A new spiroheterocyclic molecular skeleton was synthesized starting from 2-aryloxymethyl-1,4naphthoquinones 27 and 2-(2-phenoxyethyl)-1,4-naphthoquinone 421 using palladium(II)-catalysis. Under optimal conditions, $10 \mathrm{~mol} \%$ of palladium(II) acetate, $15 \mathrm{~mol} \%$ of 3,5-dichloropyridine and 5 $\mathrm{mol} \%$ of trifluoroacetic acid in acetic acid at $110^{\circ} \mathrm{C}$ were used. Good yields were obtained for metaand para- substituted aryloxymethyl-1,4-naphthoquinones 27. Alternative substrates were evaluated for this novel reaction. Where 2-(2-phenoxyethyl)-1,4-naphthoquinone 421 cyclised under the presented conditions, 2-aryloxymethyl-1,4-benzoquinones 207 only cyclised using a full equivalent of palladium(II) acetate. No reaction was observed for 2-anilinomethylnaphthoquinones 432, 2-methyl-3-phenoxymethyl-1,4-naphthoquinone 433 or 2-phenoxymethylchromen-4-one 436. When 2phenoxynaphthoquinone 439 was subjected to the spirocyclisation conditions, a small amount of benzo[b]naphtho[2,3-d]furan-6,11-dione 440 was formed. This reaction could not be optimised.

From a mechanistic point of view, it is interesting to note that the reaction of 2-(3-methoxyphenoxymethyl)-1,4-naphthoquinone $\mathbf{2 7 f}$ is more than six times faster than the other 2-aryloxy-1,4-naphthoquinones 27 . This might be an indication that some mechanistic details are still poorly understood and that there are still alternative substrates that would be a better match for this reaction.

Unsubstituted or ortho-substituted 2-aryloxymethyl-1,4-quinones 27, 207a, 433 were found to rearrange towards the corresponding 2-(4-hydroxyaryl)-1,4-quinones 413 and 441a upon treatment with trifluoroacetic acid.

4 Perspectives

During this doctoral research, very divergent topics from the realm of quinone chemistry were discussed, of which many are work in progress.

The catalytic version of the pyridinium ylid chemistry developed in this thesis provides a valuable tool for the quinone chemist. It should allow the synthesis of the Mansouramycins $\mathbf{1 6}$ starting from building block 442, which is readily accessible starting from 4-methoxysalicaldehyde.

The methyllithium or LDA mediated ring-closure of 2-allyl-6-tert-butyldimethylsilanyloxy)- N, N dimethylbenzamides towards 8 -dimethylamino-1-naphtholes provides a new entry into this class of compounds. The scope of this reaction should be further explored. For instance, it would be interesting to investigate the reactivity of 2-allyl-6-tert-butyldimethylsilanyloxy- N -alkylbenzamides 443 .

Amongst the results discussed, especially octahydrobenzo[j]phenanthridinediones $\mathbf{2 2}$ deserve further attention from biochemists and synthetic chemists. Even though these compounds $\mathbf{2 2}$ display highly promising antimycobacterial activities, the synthesis currently presented is low yielding, whereas a high yielding synthesis is a prerequisite to obtain sufficient amounts of material to further explore biological properties such as mode of action and pharmacokinetics. A more efficient synthesis of octahydrobenzo[$j]$ phenanthridinediones $\mathbf{2 2}$ will very likely involve enamine chemistry, for instance by reaction of a hydroxymethyl-1,4-naphthoquinone with an enamine. Enamines are favoured reagents as they are readily accessible, react regioselectively with the quinone chromophore and allow for easy derivatisation of the lead structure. Furthermore, the 8,11-bridge in the A-ring seems to play an important role in boosting activity while cytotoxicity is reduced. In order to investigate this, the synthesis of non-bridged octahydrobenzo[j]phenanthridinedione derivatives should be performed. Apart from varying the substituents, it would also be interesting to synthesise derivatives with an expanded or reduced D-ring 444 in order to identify the prerequisite elements for activity and thus the pharmacophore. It is also very important to note that only pharmacodynamics were under investigation while pharmacokinetics are of course equally important. Quinones are highly lipophilic and notoriously insoluble compounds. It will therefore be necessary to add a polar carrier to the molecule and for instance the synthesis of quinone-lysine conjugates would be an interesting future goal.

The palladium(II) catalysed spirocyclisation of 2-aryloxymethyl-1,4-naphthoquinones leads to the synthesis of a spiroheterocyclic skeleton which was previously unknown in the literature. In order to explore the full scope of this reaction, further substrates should be evaluated that would be a better match for this reaction. For instance 3-aryloxymethyl-2-cyclopentenone or 3-aryloxymethyl-2cyclohexenones 445 would be interesting substrates for further investigation.

442

443

444

445

5 Experimental section

5.1 General experimental methods

Column chromatography was carried out using a glass column with silica gel (Aldrich, particle size 0.0350.070 mm , pore diameter ca. 6 nm). Preparative TLC was performed on uniplate ${ }^{\mathrm{TM}}$ silica plates (F_{254}, $20 \times 20 \mathrm{~cm}$, coating 2 mm). Automated flash chromatography was performed on a Reveleris ${ }^{\circledR}$ X2 Flash Chromatography System. Solvent systems were determined via initial TLC analysis on silica gel (Merck, Kieselgel $60 \mathrm{~F}_{254}$, precoated 0.25 mm). Compounds were revealed by UV light or KMnO_{4} oxidation. ${ }^{1} \mathrm{H}$ NMR (300 MHz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and ${ }^{19}$ F NMR (282 MHz) spectra were recorded with a Jeol JNMEX 300 NMR spectrometer. Peak assignments were performed with the aid of the DEPT, 2D COSY, HSQC, HMBC techniques. The NMR samples were prepared with commercially available deuterated solvents with $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR $), \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left({ }^{11} \mathrm{~B} \mathrm{NMR}\right)$ or $\mathrm{CFCl}_{3}\left({ }^{19} \mathrm{~F} \mathrm{NMR}\right)$ as an internal standard. Low resolution mass spectra were recorded using an Agilent 1100 series VS (ESI, 4000 V) mass spectrometer via a direct inlet or via LC-MS coupling [Phenomenex luna column; 250x3 mm length, $5 \mu \mathrm{~m}$ particle size, 100 A pore size with $5 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ in $\mathrm{H}_{2} \mathrm{O}$ and acetonitrile as eluents]. High resolution mass spectra were recorded on a Finnigan MAT 95 XPAPI-GC-Trap tandem mass spectrometer or a tandem spectrometer Agilent 6220 TOF-LC/MS. Infrared spectra were recorded with a Perkin Elmer BX FT-IR spectrometer. Melting points were recorded on a Buchi Melting point B-540 apparatus or a Wagner \& Munz Hot bench, Kofler system and are uncorrected. Microwave reactions were performed in a CEM Discover ${ }^{\circledR}$ microwave. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, DMF, EtOAc, tert-AmylOH and $\mathrm{CH}_{3} \mathrm{CN}$ were distilled over CaH , PhMe , $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from sodium benzophenone ketyl and methanol was dried by distillation over magnesium/iodine. All reagent were used without further purification and all glassware was ovendried prior to use. All alkyllithium reagents used were titrated prior to use with N-benzylbenzamide in anhydrous THF. ${ }^{256}$ Reaction progress was monitored by means of LC-MS of GC-FID.

5.2 Catalytic addition of pyridinium ylids

5.2.1 Synthesis of 1-(2-hydroxyethoxy)pyranonaphthoquinones $\mathbf{1 3}$

Pyridine ($0.174 \mathrm{mmol}, 19 \mu \mathrm{~L}, 0.2$ equiv.) was added dropwise to a solution of 2-(1,3-dioxolan-2-yl)-1,4-naphthoquinone $\mathbf{1 1}(0.2 \mathrm{~g}, 0.873 \mathrm{mmol})$, the desired halomethylketone $\mathbf{1 2}$ ($0.873 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($1.31 \mathrm{mmol}, 129 \mathrm{mg}, 1.5$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(3.5 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 22 h and subsequently heated at $60^{\circ} \mathrm{C}$ for 22 h , shielded from light by means of aluminium foil. It was then poured in brine $(8 \mathrm{ml})$ and the aqueous phase was extracted with chloroform ($3 \times 4 \mathrm{ml}$). Evaporation of the solvent in vacuo yielded the product which was further
purified by means of column chromatography on silica gel (petroleum ether/ethyl acetate). For chloromethylketones $\mathbf{1 2 h}$ and $\mathbf{1 2 j}$, KI was added ($0.087 \mathrm{mmol}, 14.4 \mathrm{mg}, 0.1$ equiv.) and the reaction mixture was heated for two days at $60^{\circ} \mathrm{C}$. 1-Bromo-3-methyl-2-butanone 12i was not commercially available and was prepared according to a literature procedure. ${ }^{257}$ Most compounds have been described during previous research, ${ }^{258}$ with the exception of the following compounds:

3-(4-Bromophenyl)-1-(2-hydroxyethoxy)-1H-benzo[g]isochromene-5,10-dione 13c

32%, mp $187.5^{\circ} \mathrm{C}$, red crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.09\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.67-3.81(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.99-4.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 4.10-4.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 6.68(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1), 6.89(1 \mathrm{H}, \mathrm{s}$, CH-4), $7.59\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.71\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.71-7.83(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.10-8.18\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 62.20\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.85\left(\mathrm{CH}_{2} \mathrm{O}\right), 93.31(\mathrm{CH}-$ 4), $95.25(\mathrm{CH}-1), 122.26\left(\mathrm{C}_{\text {quat }}\right), 125.68\left(\mathrm{C}_{\text {quat }}\right), 126.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.64\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $131.82\left(\mathrm{C}_{\text {quat }}\right), 132.02\left(\mathrm{C}_{\text {quat }}\right), 132.15\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 132.69\left(\mathrm{C}_{\text {quat }}\right), 133.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.49\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.90$ $\left(\mathrm{C}_{\text {quat }}\right), 157.97\left(\mathrm{C}_{\text {quat }}\right), 182.81(2 \mathrm{xC}=\mathrm{O})$. IR (ATR): v $3472(\mathrm{OH}), 1673(\mathrm{C}=\mathrm{O}), 1649,1543,1484,1270$ (C-O), $1306 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 425 / 427\left([\mathrm{M}-\mathrm{H}]^{-}, 100 / 98\right)$.

3-(2,5-Dimethoxyphenyl)-1-(2-hydroxyethoxy)-1H-benzo[g]isochromene-5,10-dione 13f

$52 \%(\mathrm{LC}), \operatorname{mp} 152.2^{\circ} \mathrm{C}$, dark red crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.15\left(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O} \underline{H}\right), 3.80$ $\left(2 \mathrm{H}+3 \mathrm{H}, \mathrm{m}+\mathrm{s}, \mathrm{CH}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{O}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 3.95-4.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 4.10-4.17(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1), 6.93(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}-3 '), 6.98(\mathrm{dd}, J=9.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, \mathrm{CH}-$ $4 ’$), $7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.41\left(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}-6\right.$ '), $7.70-7.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.12-8.16(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 55.91\left(\mathrm{CH}_{3} \mathrm{O}\right), 56.23\left(\mathrm{CH}_{3} \mathrm{O}\right), 62.27\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.72\left(\mathrm{CH}_{2} \mathrm{O}\right), 94.81$ ($\mathrm{CH}-1$), $98.47(\mathrm{CH}-4), 112.76(\mathrm{CH}-3 '), 114.02(\mathrm{CH}-6 '), 117.18\left(\mathrm{CH}-4{ }^{\prime}\right), 121.78\left(\mathrm{C}_{\text {quat }}\right), 122.58\left(\mathrm{C}_{\text {quat }}\right)$, $126.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.78\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.03\left(\mathrm{C}_{\text {quat }}\right), 132.81\left(\mathrm{C}_{\text {quat }}\right), 133.59\left(\mathrm{CH}_{\text {Ar }}\right), 134.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.32$ $\left(\mathrm{C}_{\text {quat }}\right), 152.92\left(\mathrm{C}_{\text {quat }}\right), 153.45\left(\mathrm{C}_{\text {quat }}\right), 156.11\left(\mathrm{C}_{\text {quat }}\right), 182.92(\mathrm{C}=\mathrm{O}), 183.18(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 3423$ $(\mathrm{OH}), 1670(\mathrm{C}=\mathrm{O}), 1643,1531,1497,1298 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) \mathrm{m} / \mathrm{z}(\%): 407\left([\mathrm{M}-\mathrm{H}]^{-}, 100\right)$.

1-(2-Hydroxyethoxy)-3-(4-methylphenyl)-1H-benzo[g]isochromene-5,10-dione 13g

$57 \%(\mathrm{LC}), \mathrm{mp} 153.5^{\circ} \mathrm{C}$, red crystals. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.10(1 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.68-3.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.99-4.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 4.10-4.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 6.71$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1), 6.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.27\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.71-7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.77$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.10-8.18\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.64\left(\mathrm{CH}_{3}\right), 62.20$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.67\left(\mathrm{CH}_{2} \mathrm{O}\right), 92.37(\mathrm{CH}-4), 95.21(\mathrm{CH}-1), 121.45\left(\mathrm{C}_{\text {quat }}\right), 126.26\left(3 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.78\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $129.64\left(2 \mathrm{xCH}_{\text {Ar }}\right), 130.34\left(\mathrm{C}_{\text {quat }}\right), 131.88\left(\mathrm{C}_{\text {quat }}\right), 132.78\left(\mathrm{C}_{\text {quat }}\right), 133.53\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.30$ $\left(\mathrm{C}_{\text {quat }}\right), 141.76\left(\mathrm{C}_{\text {quat }}\right), 182.69(\mathrm{C}=\mathrm{O}), 183.03(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}): v 3447(\mathrm{OH}), 1674,1646,1540,1507$, $1270 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{+}\right) m / z(\%): 301\left(\left[\mathrm{M}-\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right]^{+}, 100\right)$.

1-(2-Hydroxyethoxy)-3-methyl-1H-benzo[g]isochromene-5,10-dione 13h

$70 \%(\mathrm{LC}), \mathrm{mp} 108.6^{\circ} \mathrm{C}$, brown crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, 3.68-3.83 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.93-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1), 6.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4)$, 7.68-7.77 (2H, m, CH-7 \& CH-8), 8.07-8.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6 \& \mathrm{CH}-9$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.05$ $\left(\mathrm{CH}_{3}\right), 62.13\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.65\left(\mathrm{CH}_{2} \mathrm{O}\right), 94.10(\mathrm{CH}-4), 95.04(\mathrm{CH}-1), 120.83\left(\mathrm{C}_{\text {quat }}\right), 126.16(\mathrm{CH}-6$ or CH-9), 126.62 (CH-6 or CH-9), $131.69\left(\mathrm{C}_{\text {quat }}\right), 132.48\left(\mathrm{C}_{\text {quat }}\right), 133.52(\mathrm{CH}-7$ or $\mathrm{CH}-8), 134.22(\mathrm{CH}-7$ or CH-8), $136.90\left(\mathrm{C}_{\text {quat }}\right), 162.60\left(\mathrm{C}_{\text {quat }}\right) ; 182.91(\mathrm{C}=\mathrm{O}), 182.96(\mathrm{C}=\mathrm{O})$. IR (ATR): v3461(OH), 1671, $1656,1556 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 309\left([\mathrm{M}+\mathrm{Na}]^{+}, 100\right)$.

1-(2-Hydroxyethoxy)-3-isopropyl-1H-benzo[g]isochromene-5,10-dione 13i

$31 \%, \operatorname{mp} 89.6^{\circ} \mathrm{C}$, brown crystals. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.24\left(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.67(1 \mathrm{H}$, septet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{C} \underline{(}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.92-3.99(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 4.02-4.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{O}\right), 6.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 6.53(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1), 7.70-7.89(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.10-8.14\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 19.96\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 20.21\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $33.71\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 62.17\left(\mathrm{CH}_{2} \mathrm{O}\right), 70.61\left(\mathrm{CH}_{2} \mathrm{O}\right), 91.40(\mathrm{CH}-4), 94.82(\mathrm{CH}-1), 121.22\left(\mathrm{C}_{\text {quat }}\right), 126.20$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.69\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.82\left(\mathrm{C}_{\text {quat }}\right), 132.55\left(\mathrm{C}_{\text {quat }}\right), 133.56\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.26\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.13\left(\mathrm{C}_{\text {quat }}\right)$, $170.65\left(\mathrm{C}_{\text {quat }}\right), 183.01(\mathrm{C}=\mathrm{O}), 183.15(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 3542(\mathrm{OH}), 1669(\mathrm{C}=\mathrm{O}), 1652,1582,1560$, 1297 (C-O) cm^{-1}. MS (ES') $\mathrm{m} / \mathrm{z}(\%): 313$ ([M-H] $\left.{ }^{-}, 100\right)$.

2-(1,3-Dioxolan-2-yl)-3-(1-isobutyryl-4-methyl-3-oxo-pent-1-enyl)-1,4-naphthoquinone 155i

This compound was isolated as a side product from the reaction that leads to compound $\mathbf{1 3 i}$.
10%, orange crystals, mp $132.8^{\circ} \mathrm{C}$. Mixture of E / Z isomers, only major isomer resolved. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.05\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.09\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 1.13(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.75\left(1 \mathrm{H}\right.$, septet, $\left.J=6.6 \mathrm{~Hz}, \mathrm{C} \underline{(}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.94\left(1 \mathrm{H}\right.$, septet, $\left.J=6.6 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.76-3.90$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.10\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right), 7.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-2\right.$ '), $7.73-7.82\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 8.09-8.18 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 17.52\left(\mathrm{CH}_{3}\right), 17.77\left(\mathrm{CH}_{3}\right), 18.62\left(\mathrm{CH}_{3}\right), 19.34\left(\mathrm{CH}_{3}\right)$, $37.31\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.94\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 64.43\left(\mathrm{OCH}_{2}\right), 64.40\left(\mathrm{OCH}_{2}\right), 98.14\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right), 126.64$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.97\left(\mathrm{CH}-2^{\prime}\right), 132.09\left(\mathrm{C}_{\text {quat }}\right), 132.25\left(\mathrm{C}_{\mathrm{quat}}\right), 134.06\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.20\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $138.43\left(\mathrm{C}_{\text {quat }}\right), 144.06\left(\mathrm{C}_{\text {quat }}\right), 146.96\left(\mathrm{C}_{\text {quat }}\right), 182.88(\mathrm{C}=\mathrm{O}), 183.59(\mathrm{C}=\mathrm{O}), 201.44(\mathrm{C}=\mathrm{O}), 203.37$ ($\mathrm{C}=\mathrm{O}$). IR (ATR): v 1667, 1657, 1284, 1079, 965, 731, $720 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 397\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100).

5.2.2 Synthesis of acetonylated 1,4-naphthoquinones 157

Pyridine ($2 \mathrm{mmol}, 0.16 \mathrm{~mL}, 0.2$ equiv.) was added dropwise to a solution of 2-bromo-1,4naphthoquinone 156a or menadione 156b (10 mmol), the desired halomethylketone $\mathbf{1 2}$ ($10 \mathrm{mmol}, 1.0$
equiv.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(15 \mathrm{mmol}, 1.6 \mathrm{~g}, 1.5\right.$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}(30 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 22 h and subsequently heated at $60^{\circ} \mathrm{C}$ for 22 h . The acetonitrile was evaporated, the residue was redissolved in EtOAc $(30 \mathrm{~mL})$ and water $(30 \mathrm{~mL})$ and the organic phase was separated. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{ml}$). Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded the crude product which was further purified by means of column chromatography on silica gel (petroleum ether/ethyl acetate). From the reaction of 2-bromo-1,4-naphthoquinone 156a with bromomethyl isopropyl ketone 12i, 6-isobutyrylbenzo[f]pyrido[2,1a]isoindole-7,12-dione 158a was isolated as a side product in 10% yield.

2-Methyl-3-[2-isopropyl-2-oxo-ethyl]-1,4-naphthoquinone 157b

77%, yellow needles, mp $75.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.22\left(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.13(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.84\left(1 \mathrm{H}\right.$, septet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.66-7.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.02-$ $8.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.08-8.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.26\left(\mathrm{CH}_{3}\right), 18.45\left(2 \mathrm{xCH}_{3}\right), 38.74$ $\left(\mathrm{CH}_{2}\right), 41.42\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 126.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.83\left(\mathrm{C}_{\text {quat }}\right), 132.20\left(\mathrm{C}_{\text {quat }}\right), 133.53\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $133.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.03\left(\mathrm{C}_{\text {quat }}\right), 145.77\left(\mathrm{C}_{\text {quat }}\right), 184.11(\mathrm{C}=\mathrm{O}), 184.71(\mathrm{C}=\mathrm{O}), 209.43(\mathrm{C}=\mathrm{O})$. IR (ATR$):$ v 1702; 1656, 1291, 1044, $706 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 257\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

2-Bromo-3-[2-isopropyl-2-oxo-ethyl]-1,4-naphthoquinone 157c

65%, yellow needles, mp $84.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.24\left(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.82(1 \mathrm{H}$, septet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.73-7.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.07-8.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 8.15-8.21 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.42\left(2 \mathrm{XCH}_{3}\right), 41.63\left(\mathrm{CH}_{2}\right), 43.29\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 127.31$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.74\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.28\left(\mathrm{C}_{\text {quat }}\right), 131.33\left(\mathrm{C}_{\mathrm{quat}}\right), 134.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.13\left(\mathrm{C}_{\text {quat }}\right)$, $146.29\left(\mathrm{C}_{\text {quat }}\right), 177.44(\mathrm{C}=\mathrm{O}), 181.33(\mathrm{C}=\mathrm{O}), 207.95(\mathrm{C}=\mathrm{O})$. IR (ATR): v 1698, 1676, 1658, 1271, 1044, 781, $705 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 321 / 323$ ([M+H] $\left.{ }^{+}, 100 / 97\right)$.

2-Bromo-3-[2-(4-chlorophenyl)-2-oxo-ethyl]-1,4-naphthoquinone 157 d

67%, orange solid, mp $155^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.75-7.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.00\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.10-8.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.19-$ $8.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 41.80\left(\mathrm{CH}_{2}\right), 127.39\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.25$ $\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.83\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.33\left(\mathrm{C}_{\text {quat }}\right), 131.34\left(\mathrm{C}_{\text {quat }}\right), 134.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.60$ $\left(\mathrm{C}_{\text {quat }}\right), 140.34\left(\mathrm{C}_{\text {quat }}\right), 141.65\left(\mathrm{C}_{\text {quat }}\right), 146.16\left(\mathrm{C}_{\text {quat }}\right), 177.38(\mathrm{C}=\mathrm{O}), 181.30(\mathrm{C}=\mathrm{O}), 192.68(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v 1671, 1660, 1588, 1313, 1274, 1210, 990, $812 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 387 / 385\left([\mathrm{M}-\mathrm{H}]^{-}\right.$, 100/57).

6-Isobutyrylbenzo[f]pyrido[2,1-a]isoindole-7,12-dione 158a

10%, orange needles, mp $186.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.24\left(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.96(1 \mathrm{H}$, septet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.18\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,6.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.41(1 \mathrm{H}, \mathrm{ddd}, J=1.1,6.9,9.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.73\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.75\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.16-8.27(3 \mathrm{H}, \mathrm{m}$, $\left.3 \mathrm{xCH}_{\mathrm{Ar}}\right), 9.83\left(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 19.16\left(2 \mathrm{xCH}_{3}\right), 40.06\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $114.91\left(\mathrm{C}_{\text {quat }}\right), 117.94\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.16\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.57\left(\mathrm{C}_{\text {quat }}\right), 126.32\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.12$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.82\left(\mathrm{C}_{\text {quat }}\right), 133.97\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.19\left(\mathrm{C}_{\text {quat }}\right), 134.37\left(\mathrm{C}_{\text {quat }}\right)$, $139.38\left(\mathrm{C}_{\text {quat }}\right), 175.00(\mathrm{C}=\mathrm{O}), 182.19(\mathrm{C}=\mathrm{O}), 204.97(\mathrm{C}=\mathrm{O})$. . IR (ATR): v 1665, 1490, 1226, 1044, 935, 753, $709 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 318\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

5.2.3 Synthesis of isoindolodiones 163,165 and 167

A flask was loaded with 2-bromo-1,4-naphthoquinone 156 ($1 \mathrm{~g}, 4.22 \mathrm{mmol}$), 2-bromoacetophenone 12a $(840 \mathrm{mg}, 4.22 \mathrm{mmol})$, the appropriate N-heterocyclic base $(4.22 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(671 \mathrm{mg}, 6.33$ $\mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{ml})$. The mixture was allowed to stir open to the air for 2.5 days at $60^{\circ} \mathrm{C}$. Next, the solvent was evaporated in vacuo and the residue redissolved in EtOAc (10 mL) and water (10 mL) and the organic phase was separated and washed with water $(2 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of flash chromatography.

6-Benzoylbenzo[f]pyrido[2,1-a]isoindole-7,12-dione 163

$80 \%,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.20\left(1 \mathrm{H}, \mathrm{dt}, 1.1,7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37-7.48\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.57-7.61(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.66\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.73\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.89-7.97(3 \mathrm{H}, \mathrm{m}$, $\left.3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.01\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.4, \mathrm{CH}_{\mathrm{Ar}}\right), 8.26\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.4, \mathrm{CH}_{\mathrm{Ar}}\right), 9.81(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, $\mathrm{CH}_{\mathrm{Ar}}$). Spectral data in accordance with the literature data. ${ }^{110}$

13-Benzoylbenzo[5,6]isoindolo[2,1-a]quinoline-7,12-dione 165

$70 \%,{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.40-7.56\left(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.61-7.83\left(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.32\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.50\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$. Spectral data in accordance with the literature data. ${ }^{110}$

7-Benzoylbenzo[5,6]isoindolo[2,1-b]isoquinoline-8,13-dione 167

$44 \%,{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.40-7.56\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.63-7.79\left(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.82(1 \mathrm{H}, \mathrm{dd}, J=$ $\left.1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.08-8.13\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.32\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7, \mathrm{CH}_{\mathrm{Ar}}\right), 8.50(1 \mathrm{H}, \mathrm{d}, J=9.4$ $\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}$). Spectral data in accordance with the literature data. ${ }^{110}$

5.2.4 Methyl 1-(naphthalene-1,4-dione-2-carbonyloxy)-4-hydroxy-3-methoxynaphthalene-2carboxylate 170

To a stirred solution of 2-methoxycarbonyl-1,4-naphthoquinone ${ }^{259} \mathbf{1 5 6 c}(400 \mathrm{mg}, 1.84 \mathrm{mmol})$ in acetonitrile (20 mL) was added pyridine ($30 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 0.2$ equiv.) using a syringe. The reaction mixture was allowed to stir for 40 min and subsequently evaporated in vacuo. The residue was redissolved in EtOAc $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, and the organic phase was separated and washed with brine ($2 \times 10 \mathrm{~mL}$). The organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of flash chromatography to yield dimer $\mathbf{1 7 0}(100 \mathrm{mg})$ as an orange solid.

Note: as the starting 2-methoxycarbonyl-1,4-naphthoquinone $\mathbf{1 5 6 c}$ is only moderately soluble in $\mathrm{CH}_{3} \mathrm{CN}$, the reaction length is strongly dependent on the concentration. It is possible to perform the reaction more concentrated but then the reaction will be significantly longer.

Quantitative yield, brown solid, mp $119^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92(3 \mathrm{H}$, s, $\left.\mathrm{OCH}_{3}\right), 7.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3 '), 7.63\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.69-7.83\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.03$ $\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.11-8.17\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.44\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 11.91(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 52.59\left(\mathrm{OCH}_{3}\right), 52.82\left(\mathrm{OCH}_{3}\right), 104.20\left(\mathrm{C}_{\text {quat }}\right), 111.28(\mathrm{CH}-3), 121.86$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.65\left(\mathrm{C}_{\mathrm{quat}}\right), 126.81\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.04\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.12\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.06\left(\mathrm{C}_{\text {quat }}\right)$, $130.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.81\left(\mathrm{C}_{\text {quat }}\right), 131.22\left(\mathrm{C}_{\text {quat }}\right), 134.69\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.96\left(\mathrm{CH}_{\mathrm{Ar}}\right), 143.99\left(\mathrm{C}_{\text {quat }}\right), 154.17$ $\left(\mathrm{C}_{\text {quat }}\right), 158.75\left(2 \mathrm{xC}_{\text {quat }}\right), 162.69(\mathrm{C}=\mathrm{O}), 170.74(\mathrm{C}=\mathrm{O}), 179.65(\mathrm{C}=\mathrm{O}), 181.99(\mathrm{C}=\mathrm{O})$. IR (ATR):v 3074, 2969, 1661, 1346, 1235, 958, 765, $728 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 433\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

5.3 Attempted synthesis of ascomycone A, B and 1-hydroxydehydroherbarin 15

5.3.1 Synthesis of 2-bromo-6-(1,3-dioxolan-2-yl)-4-methoxybenzenes 181

A solution of 3-bromo-2-hydroxy-5-methoxybenzaldehyde 183a or 3-bromo-2,5dimethoxybenzaldehyde ${ }^{119} \mathbf{1 8 3 b}$ (20 mmol), ethylene glycol ($4.5 \mathrm{~mL}, 80 \mathrm{mmol}, 4$ equiv.) and p $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 38 \mathrm{mg})$ in $\mathrm{PhMe}(40 \mathrm{~mL})$ was equipped with a Dean-Stark apparatus and boiled under reflux for 4 hours. Next, the reaction mixture was allowed to cool to room temperature, diluted with EtOAc (40 mL), washed with aqueous saturated $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine $(3 \mathrm{x} 40 \mathrm{~mL})$. Drying over MgSO_{4} and evaporation of the solvent yielded pure 2-bromo-6-(1,3-dioxolan-2-yl)-1,4dimethoxybenzene 181a or 2-bromo-6-(1,3-dioxolan-2-yl)-4-methoxyphenol 181b. Both compounds had only a limited stability, so (HR)MS recording was not possible.

2-Bromo-6-(1,3-dioxolan-2-yl)-4-methoxyphenol 181a

93%, yellow crystals, mp $56.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, 4.08-4.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $5.95\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.85(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}-5), 7.05(1 \mathrm{H}, \mathrm{d}, J=$ $2.8 \mathrm{~Hz}, \mathrm{CH}-3)$, OH not observed. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.01\left(\mathrm{OCH}_{3}\right), 65.13\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 102.27$ $\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 111.01\left(\mathrm{C}_{\text {quat }}\right), 112.81\left(\mathrm{CH}_{\text {Ar }}\right), 118.98\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.68\left(\mathrm{C}_{\text {quat }}\right), 145.61\left(\mathrm{C}_{\text {quat }}\right), 153.16$ $\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $3306(\mathrm{OH}), 1495\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1477,1230,1122,1040,853,778 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}+) \mathrm{m} / \mathrm{z}$ (\%): 433/434 ([M+H $\left.]^{+}, 100 / 97\right)$. Due to fragmentation of the dioxolanyl ring, no HRMS could be recorded.

2-Bromo-6-(1,3-dioxolan-2-yl)-1,4-dimethoxybenzene 181b

95%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01-4.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.06-4.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 7.03(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{CH}-5), 7.10(1 \mathrm{H}$, d, $J=2.9 \mathrm{~Hz}, \mathrm{CH}-3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.86\left(\mathrm{OCH}_{3}\right), 62.34\left(\mathrm{OCH}_{3}\right), 65.43\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 99.39$ $\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 115.59\left(\mathrm{CH}_{\text {Ar }}\right), 117.58\left(\mathrm{C}_{\text {quat }}\right), 119.61\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.32\left(\mathrm{C}_{\text {quat }}\right), 149.55\left(\mathrm{C}_{\text {quat }}\right), 156.22$ $\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 2940, 2888, 1475, 1426, 1219, 1130, 1046, $995,733 \mathrm{~cm}^{-1}$. Due to fragmentation of the dioxolanyl ring, no (HR)MS could be recorded.

5.3.2 2-Bromo-6-(1,3-dioxolan-2-yl)-1,4-benzoquinone 180

2-Bromo-6-(1,3-dioxolan-2-yl)-4-methoxyphenol 181a (1 g, 3.64 mmol) was dissolved in a $2: 1$ mixture of acetonitrile/water (15 mL). To this solution, a solution of PIFA ($3.13 \mathrm{~g}, 6.26 \mathrm{mmol}, 2$ equiv.) in a $2: 1$ mixture of acetonitrile/water (30 mL) was added dropwise at room temperature. The reaction was allowed to stir for 30 min at room temperature and quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(30$ $\mathrm{mL})$. The mixture was extracted with $\mathrm{EtOAc}(50 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and brine (40 mL). The organic phase was dried over MgSO_{4} and evaporated in vacuo. The crude was recrystallised from EtOH overnight at $-20^{\circ} \mathrm{C}$ to obtain 2-bromo-6-(1,3-dioxolan-2-yl)-1,4-benzoquinone 180 as yellow needles in 53\% yield.
53%, yellow crystals, mp $122^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.05\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.93(1 \mathrm{H}$, $\left.\mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.92(1 \mathrm{H}, \mathrm{dd}, J=1.1,2.8 \mathrm{~Hz}, \mathrm{CH}-5), 7.30(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}-3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 65.69\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 98.28\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 132.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 143.18$ $\left(\mathrm{C}_{\text {quat }}\right), 178.72\left(\mathrm{C}_{\text {quat }}\right), 185.03(2 \mathrm{xC}=\mathrm{O})$. IR (ATR): v 1798, 1590, 1388, 1275, 1178, 1070, $767 \mathrm{~cm}^{-1}$. Due to fragmentation of the dioxolanyl ring, no (HR)MS could be recorded.

5.3.3 Formylation of 6,8-dimethoxynaphth-1-ol 178

Oxalyl chloride ($68 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added dropwise to DMF ($39 \mathrm{mg}, 0.54 \mathrm{mmol}$) at $10^{\circ} \mathrm{C}$. The solution was allowed to stir for 15 min without cooling. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added and $6,8-$ dimethoxynaphth-1-ol $178(100 \mathrm{mg}, 0.49 \mathrm{mmol})$ was added dropwise in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{mmol})$. The reaction mixture was allowed to stir at room temperature an followed up by means of TLC. After

1 h 45 , the reaction was quenched by the addition of $\mathrm{NaOAc}(201 \mathrm{mg}, 2.45 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and allowed to stir for an additional 30 min . The reaction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and washed with brine $(2 \times 5 \mathrm{~mL})$. Drying of the organic phase over MgSO_{4}, evaporation of the solvent in vacuo and separation of the regioisomers by means of preparative TLC (petroleum ether/ethyl acetate), yielded 8-hydroxy-1,3-dimethoxynaphthalene-2-carboxaldehyde 184a 1-hydroxy-6,8-dimethoxy-naphthalene-2-carboxaldehyde $\mathbf{1 8 4 b}$ as pale white solids.

8-Hydroxy-1,3-dimethoxynaphthalene-2-carboxaldehyde 184a

40%, pale white solid, $\mathrm{mp} 153^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.36$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 6.82(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-7), $7.48(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-6), 8.81(1 \mathrm{H}$, dd, $J=8.3,1.1 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-7), 8.97(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.43$ $\left(\mathrm{OCH}_{3}\right), 56.52\left(\mathrm{OCH}_{3}\right), 91.21\left(\mathrm{CH}_{\text {Ar }}\right), 110.12\left(\mathrm{C}_{\text {quat }}\right), 110.42\left(\mathrm{CH}_{\mathrm{Ar}}\right), 111.25\left(\mathrm{C}_{\text {quat }}\right), 116.14\left(\mathrm{CH}_{\text {Ar }}\right)$, $131.82\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.80\left(\mathrm{C}_{\text {quat }}\right), 154.87\left(\mathrm{C}_{\text {quat }}\right), 163.20\left(\mathrm{C}_{\text {quat }}\right), 165.74\left(\mathrm{C}_{\text {quat }}\right), 190.02(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3390,1648,1597,1415,1208,1219,811,715 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 233\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4}\right]^{+}: 233.0814$, found 233.0809.

1-Hydroxy-6,8-dimethoxynaphthalene-2-carboxaldehyde 184b

25%, pale white solid, mp $101{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.51$ $\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.69\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.14\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.57(1 \mathrm{H}, \mathrm{d}$, $\left.J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 11.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 55.66\left(\mathrm{OCH}_{3}\right)$, $56.47\left(\mathrm{OCH}_{3}\right), 98.72\left(\mathrm{CH}_{\text {Ar }}\right), 100.12\left(\mathrm{CH}_{\text {Ar }}\right), 110.61\left(\mathrm{C}_{\text {quat }}\right), 115.68\left(\mathrm{C}_{\text {quat }}\right), 118.64\left(2 \mathrm{xCH}_{\text {Ar }}\right), 126.72$ $\left(\mathrm{C}_{\text {quat }}\right), 141.67\left(\mathrm{C}_{\text {quat }}\right), 161.45\left(\mathrm{C}_{\text {quat }}\right), 162.66\left(\mathrm{C}_{\text {quat }}\right), 191.85(\mathrm{C}=\mathrm{O})$. IR (ATR): v 3323, 2981, 1652, 1621, 1600, 1381, 1368, $799 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 233\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4}\right]^{+}: 233.0814$, found 233.0817.

5.3.4 3-Cyano-3-(6-methyl-2-oxo-2H-pyran-4-yl)phthalide 192

A solution of 3-cyanophthalide 191a ($570 \mathrm{mg}, 2.64 \mathrm{mmol}$) in THF (10 mL) was cooled to $-90^{\circ} \mathrm{C}$ and LiOt - Bu ($2.91 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 1.1 equiv.) was added dropwise. The mixture was allowed to stir for 15 minutes and subsequently 4-bromo-6-methyl-pyran-2-one 190 a ($499 \mathrm{mg}, 2.64 \mathrm{mmol}, 1$ equiv.) in THF (5 mL) was added dropwise. After 40 min , the reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and was allowed to warm to room temperature. The reaction mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The organic phase was washed with brine $(2 \mathrm{x} 10 \mathrm{~mL})$ and dried over MgSO_{4}. Evaporation of the solvent in vacuo yielded pure 3-cyano-3-(6-methyl-2-oxo-2 H -pyran-4-yl)-phthalide 192 ($543 \mathrm{mg}, 2.03 \mathrm{mmol}, 77 \%$).
77%, pale white solid, $\mathrm{mp} 143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-5^{\prime}\right), 6.54$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3 '), 7.65(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-4$ or $\mathrm{CH}-7), 7.80(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-5 \mathrm{or} \mathrm{CH}-6)$,
$7.91\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-5\right.$ or CH-6), $8.06(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-4$ or $\mathrm{CH}-7) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.44\left(\mathrm{CH}_{3}\right), 76.98(\mathrm{C}-3), 99.24\left(\mathrm{CH}-5{ }^{\prime}\right), 110.35\left(\mathrm{CH}-3^{\prime}\right), 113.88(\mathrm{C} \equiv \mathrm{N}), 123.01(\mathrm{CH}-4$ or CH-7), $123.74\left(\mathrm{C}_{\text {quat }}\right), 127.28(\mathrm{CH}-4$ or $\mathrm{CH}-7), 132.54$ and $136.58(\mathrm{CH}-5$ and $\mathrm{CH}-6), 144.03\left(\mathrm{C}_{\text {quat }}\right)$, $150.02\left(\mathrm{C}_{\text {quat }}\right), 161.03\left(\mathrm{C}_{\text {quat }}\right), 165.03(\mathrm{C}=\mathrm{O}), 166.32(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 1785,1746,1239,954,749$, $686 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 268\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{NO}_{3}\right]^{+}: 268.0610$, found 268.0606 .

5.4 Attempted synthesis of mansouramycins A-D 16

5.4.1 5,6-Dibromo-2-(4-bromophenoxymethyl)cyclohex-2-ene-1,4-dione 208

Bromine ($52 \mu \mathrm{~L}, 1$ equiv.) was added dropwise to a solution of phenoxymethylbenzoquinone 207 a ($200 \mathrm{mg}, 1 \mathrm{mmol}$) and $\mathrm{NaOAc}(82 \mathrm{mg}, 1.6 \mathrm{mmol})$ in glacial acetic acid (6 mL). After 50 min , the reaction mixture was evaporated in vacuo, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and washed with water (2 x $10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of column chromatography to yield 5,6-dibromo-2-(4-bromophenoxymethyl)cyclohex-2-ene-1,4-dione 208.
50%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.81\left(1 \mathrm{H}, \mathrm{dd}, J=2.2,17.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.81(1 \mathrm{H}, \mathrm{dd}, J=2.8$, $1.7 \mathrm{~Hz}, \mathrm{CH}-5), 4.86(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}-6), 4.97\left(1 \mathrm{H}, \mathrm{dd}, J=2.2,17.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}} \mathrm{O}\right), 6.83(2 \mathrm{H}, \mathrm{td}$, $\left.J=2.8,8.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,2.2 \mathrm{~Hz}, \mathrm{CH}-3), 7.42\left(2 \mathrm{H}, \mathrm{td}, J=2.8,8.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 45.17(\mathrm{CH}-5), 45.42(\mathrm{CH}-6), 63.63\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.42\left(\mathrm{C}_{\mathrm{quat}}\right), 116.52\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $131.67(\mathrm{CH}-3), 132.72\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 144.20\left(\mathrm{C}_{\text {quat }}\right), 156.55\left(\mathrm{C}_{\text {quat }}\right), 186.98(\mathrm{C}=\mathrm{O}), 187.20(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v $1690(\mathrm{C}=\mathrm{O}), 1681(\mathrm{C}=\mathrm{O}), 1486,1236,1165,1000,818 \mathrm{~cm}^{-1} . \mathrm{MS}$: no ionisation observed.

5.4.2 Synthesis of 5,8-dimethoxy-3-methylisoquinoline 210a via a Pomeranz-Fritsch sequence
 Methyl 2-(2,5-dimethoxybenzylamino)propionate 213

A solution of methyl alaninate HCl salt $212 \mathrm{a}(6.98 \mathrm{~g}, 50 \mathrm{mmol})$ and $\mathrm{KOH}(2.8 \mathrm{~g}, 50 \mathrm{mmol})$ in MeOH $(500 \mathrm{~mL})$ was boiled under reflux until full dissolution occurred. The solution was cooled to room temperature and 2,5-dimethoxybenzaldehyde 211 ($8.56 \mathrm{~g}, 51.5 \mathrm{mmol}, 1.03$ equiv.) was added. The reaction mixture was allowed to stir for 1 hour and subsequently NaBH_{4} was added $(1.89 \mathrm{~g}, 50 \mathrm{mmol}$, 1 equiv.) and stirring was continued for 30 min . Next, the reaction mixture was evaporated in vacuo and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and EtOAc $(100 \mathrm{~mL})$. The organic phase was extracted with aqueous $\mathrm{HCl}(2 \mathrm{M}, 3 \times 50 \mathrm{~mL})$ and discarded. The aqueous extract was neutralised using solid NaOH and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and evaporated in vacuo to yield pure amine 213 as a yellow oil.
69%, yellow oil. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right): \delta 1.32\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.39(1 \mathrm{H}, \mathrm{q}$, $J=6.6 \mathrm{~Hz}, \mathrm{CH}-2), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.69\left(1 \mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.66$ $\left(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.76-6.84(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3$ 'and CH-4'), $6.87(1 \mathrm{H}, \mathrm{d}$, $\left.J=2.2 \mathrm{~Hz}, \mathrm{CH}-6{ }^{\prime}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 19.96\left(\mathrm{CH}_{3}\right), 47.08\left(\mathrm{NCH}_{2}\right), 51.57\left(\mathrm{COOCH}_{3}\right), 55.56$ $\left(\mathrm{OCH}_{3}\right), 55.69\left(\mathrm{OCH}_{3}\right), 55.85(\mathrm{CH}-2), 111.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.74\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.86\left(\mathrm{C}_{\text {quat }}\right)$, $151.71\left(\mathrm{C}_{\text {quat }}\right), 153.39\left(\mathrm{C}_{\text {quat }}\right), 175.91(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}): v 2906,2833,1732,1497,1214,1064,1047$ $\mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 349\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right)$.

Methyl 2-[bis(2,5-dimethoxybenzyl)amino]propionate 215

A solution of 2-bromomethyl-1,4-dimethoxybenzene $214(1.65 \mathrm{~g}, 7.14 \mathrm{mmol})$, methyl alaninate HCl salt 212a ($1 \mathrm{~g}, 7.16 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.52 \mathrm{~g}, 14.32 \mathrm{mmol}, 2$ equiv.) in anhydrous THF $(20 \mathrm{~mL})$ was boiled under reflux for two days. The solution was cooled to room temperature and partitioned between $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The organic phase was extracted with aqueous $\mathrm{HCl}(2 \mathrm{M}, 3 \times 10 \mathrm{~mL})$ and discarded. The aqueous extract was neutralised using solid NaOH and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic phase was dried over MgSO_{4} and evaporated in vacuo to yield pure methyl 2-[bis(2,5-dimethoxybenzyl)amino]propionate 215 as a yellow oil.
36%, yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.35\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.61(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}-2)$, $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right), 4.663 .74\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right), 3.82(4 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}$, $\left.2 \mathrm{xNCH}_{2}\right), 6.69-6.75\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}-3\right.$ 'and $2 \mathrm{xCH}-4$ '), $7.22\left(2 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{xCH}-6{ }^{\prime}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.84\left(\mathrm{CH}_{3}\right), 48.84\left(2 \mathrm{xNCH}_{2}\right), 51.33\left(\mathrm{COOCH}_{3}\right), 55.62\left(2 \mathrm{xOCH}_{3}\right), 55.91\left(2 \mathrm{xOCH}_{3}\right), 57.42$ $(\mathrm{CH}-2), 111.21\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 111.97\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 115.41\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.62\left(2 \mathrm{xC}_{\text {quat }}\right), 151.99\left(2 \mathrm{xC}_{\text {quat }}\right)$, $153.72\left(2 \mathrm{xC}_{\text {quat }}\right), 174.74(\mathrm{C}=\mathrm{O}) . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 404\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

Methyl 2-(2,5-dimethoxybenzylamino)propionate 213 ($3 \mathrm{~g}, 11.84 \mathrm{mmol}$) was dissolved in pyridine (20 mL) and cooled to $0^{\circ} \mathrm{C}$. Next, mesyl chloride or tosyl chloride ($15.4 \mathrm{mmol}, 1.3$ equiv.) was added. The reaction mixture was allowed to warm to room temperature and stirred overnight. Afterwards, the mixture was poured in ice water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The organic phases were washed with aqueous $\mathrm{HCl}(2 \mathrm{M}, 2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and evaporated in vacuo to yield pure sulfonamides 216a and 216b.

Methyl 2-[(2,5-dimethoxybenzyl)methanesulfonylamino]propionate 216a

76%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 1.41\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.70(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 4.61(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}-$ 2), 6.76-6.77 (2H, m, CH-3'and CH-4'), $7.13\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6\right.$ '). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.71\left(\mathrm{CH}_{3}\right), 40.10$ $\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 44.33\left(\mathrm{NCH}_{2}\right), 52.41\left(\mathrm{COOCH}_{3}\right), 55.74\left(\mathrm{OCH}_{3}\right), 55.80\left(\mathrm{OCH}_{3}\right), 56.36(\mathrm{CH}-2), 111.05$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.30\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.53\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.58\left(\mathrm{C}_{\text {quat }}\right), 150.98\left(\mathrm{C}_{\text {quat }}\right), 153.67\left(\mathrm{C}_{\text {quat }}\right), 172.29(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$
(ATR): $v 2949,1740,1499,1329,1218,1145,1042,766 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 348\left(\left[\mathrm{M}^{+} \mathrm{NH}_{4}\right]^{+}\right.$, 100).

Methyl 2-[(2,5-dimethoxybenzyl)-(toluene-4-sulfonyl)amino]propionate 216b

79%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.32\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.45(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}-2)$, $6.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3^{\prime}\right.$ and $\left.\mathrm{CH}-4^{\prime}\right), 7.08(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6 '), 7.28(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.04\left(\mathrm{CH}_{3}\right), 21.51\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 43.57\left(\mathrm{NCH}_{2}\right), 51.95\left(\mathrm{COOCH}_{3}\right), 55.42(\mathrm{CH}-2)$, $55.65\left(2 \mathrm{xOCH}_{3}\right), 110.99\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.33\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.58\left(\mathrm{C}_{\text {quat }}\right), 127.51\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $129.45\left(2 \mathrm{xCH}_{\text {Ar }}\right), 137.19\left(\mathrm{C}_{\text {quat }}\right), 143.36\left(\mathrm{C}_{\text {quat }}\right), 150.87\left(\mathrm{C}_{\text {quat }}\right), 153.58\left(\mathrm{C}_{\text {quat }}\right), 171.70(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2949, 1741, 1498, 1339, 1217, 1154, 1044, $658 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 151$ ([M$\left.\left.\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4} \mathrm{~S}\right]^{+}, 100\right), 430\left([\mathrm{M}+\mathrm{Na}]^{+}, 17\right)$.

2-[(2,5-Dimethoxybenzyl)methanesulfonylamino]propan-1-ol

LiAlH_{4} pellets $(1.75 \mathrm{~g}, 46.17 \mathrm{mmol}, 1.5$ equiv.) were added to a solution of methyl-2-[(2,5dimethoxybenzyl)methanesulfonylamino]propionate $216 \mathrm{a}\left(200 \mathrm{mg}, 30.78 \mathrm{mmol}\right.$) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched with a saturated solution of potassium sodium tartrate $(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$. The organic phases were dried over MgSO_{4}, evaporated in vacuo and purified by means of flash chromatography to yield pure 2-[(2,5-dimethoxybenzyl)methanesulfonylamino]-propan-1-ol as a pale white solid.
74%, pale white solid, $\mathrm{mp} 71^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.18\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.20-2.28(1 \mathrm{H}, \mathrm{m}$, $\mathrm{OH}), 2.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.44-3.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04-$ $4.14(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2), 4.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 6.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3\right.$ 'and $\mathrm{CH}-4$ '), $7.16\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6\right.$ '). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 15.43\left(\mathrm{CH}_{3}\right), 40.61\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 42.00\left(\mathrm{NCH}_{2}\right), 55.75\left(\mathrm{OCH}_{3}\right), 56.00\left(\mathrm{OCH}_{3}\right), 56.55$ $(\mathrm{CH}-2), 64.08\left(\mathrm{OCH}_{2}\right), 111.66\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.74\left(\mathrm{C}_{\text {quat }}\right), 150.91\left(\mathrm{C}_{\text {quat }}\right)$, $153.79\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 3362, 1498, 1323, 1471, 1323, 1218, 1140, $1036 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$: 361 ([M-H+OAc] $\left.{ }^{-}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{7} \mathrm{~S}^{+}: 362.1274\right.$, found 362.1284.

2-[(2,5-Dimethoxybenzyl)methanesulfonylamino]propanal 217

To a solution of $(\mathrm{COCl})_{2}(2.9 \mathrm{~mL}, 22.9 \mathrm{mmol}, 1.5$ equiv. $)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(160 \mathrm{~mL})$ was added dropwise a solution of DMSO ($4.9 \mathrm{~mL}, 45.8 \mathrm{mmol}, 3$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 30 min , 2-[(2,5-dimethoxybenzyl)methanesulfonylamino]propan-1-ol ($6.95 \mathrm{~g}, 22.9 \mathrm{mmol}$) was added in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and the reaction was stirred for 1 h at $-78^{\circ} \mathrm{C}$. The reaction temperature was raised to $-60^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(12.8 \mathrm{~mL}, 91.6 \mathrm{mmol}, 4$ equiv.) was added dropwise. The reaction was then allowed to warm to room temperature and stirred for an additional 30 minutes. Next,
the reaction mixture was poured in water $(250 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 80 \mathrm{~mL})$. The combined organic fractions were washed with water (3 x 80 mL) and brine (1 x 80 mL). Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded pure aldehyde 217 as pale white crystals.
95%, pale white crystals, mp $70.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.41\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.96(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.75\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right), 4.10(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}-2), 4.40\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=15.4 \mathrm{~Hz}\right.$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.44\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{AB}}=15.4 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}\right), 6.754-6.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3^{\prime}\right.$ and CH-4'$), 7.04(1 \mathrm{H}, \mathrm{d}$, $\left.J=2.8 \mathrm{~Hz}, \mathrm{CH}-6{ }^{\prime}\right), 9.42(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.38\left(\mathrm{CH}_{3}\right), 41.08\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 44.74$ $\left(\mathrm{NCH}_{2}\right), 55.71\left(\mathrm{OCH}_{3}\right), 55.83\left(\mathrm{OCH}_{3}\right), 62.59(\mathrm{CH}-2), 111.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.49\left(\mathrm{CH}_{\text {Ar }}\right)$, $124.93\left(\mathrm{C}_{\text {quat }}\right), 151.48\left(\mathrm{C}_{\text {quat }}\right), 153.79\left(\mathrm{C}_{\text {quat }}\right), 199.32(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 3008,2838,1725,1500$, 1324, 1223, 1139, 970, $715 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 319\left(\left[\mathrm{M}+\mathrm{HH}_{4}\right]^{+}, 100\right)$.

2-Methanesulfonyl-5,8-dimethoxy-3-methyl-1,2,3,4-tetrahydroisoquinolin-4-ol 218

2-[(2,5-Dimethoxybenzyl)methanesulfonylamino]propanal 217 ($800 \mathrm{mg}, 2.65 \mathrm{mmol}$) was dissolved in 1,4-dioxane (12 mL) and aqueous $\mathrm{HCl}(6 \mathrm{M}, 2 \mathrm{~mL})$ and boiled under reflux during 1 h . The mixture was allowed to warm to room temperature, neutralised with aqueous saturated NaHCO_{3} and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic fractions were dried over MgSO_{4} and evaporation of the solvent followed by flash chromatography yielded pure 2-methanesulfonyl-5,8-dimethoxy-3-methyl-1,2,3,4-tetrahydroisoquinolin-4-ol 218 as white needles.
85%, pale white needles, mp $167.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.21\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.06(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30\left(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right), 4.56(1 \mathrm{H}, \mathrm{dq}$, $J=1.7,6.6 \mathrm{~Hz}, \mathrm{CH}-3), 4.66\left(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right), 5.25(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-4), 6.76-6.84$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ or $\mathrm{CH}-7$), OH not observed. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 17.48\left(\mathrm{CH}_{3}\right), 38.53\left(\mathrm{CH}_{2}-1\right), 39.91$ $\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 54.59(\mathrm{CH}-4), 54.89(\mathrm{CH}-3), 55.62\left(\mathrm{OCH}_{3}\right), 56.15\left(\mathrm{OCH}_{3}\right), 109.33\left(\mathrm{CH}_{\mathrm{Ar}}\right), 110.40\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $121.38\left(\mathrm{C}_{\text {quat }}\right), 121.51\left(\mathrm{C}_{\text {quat }}\right), 149.52\left(\mathrm{C}_{\text {quat }}\right), 151.36\left(\mathrm{C}_{\text {quat }}\right) . \operatorname{IR}(\mathrm{ATR}): v 2977,1487,1474,1318,1262$, 1159, 1127, 1071, 1038, 963, $795 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 284$ ([M-OH] $\left.{ }^{+}, 100\right) . \mathrm{HRMS}^{\left(E S^{+}\right) ~ c a l c d .}$ for $\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} \mathrm{~S}\right]^{+}: 284.0957$, found 284.0957.

5,8-Dimethoxy-3-methylisoquinoline 210a

$\mathrm{ClSO}_{3} \mathrm{H} \quad\left(1.55 \mathrm{~mL}, 23.3 \mathrm{mmol}, 10\right.$ equiv.) was cooled to $-20^{\circ} \mathrm{C}$ and $2-[(2,5-$ dimethoxybenzyl)methanesulfonylamino]propanal $217(670 \mathrm{mg}, 2.33 \mathrm{mmol})$ was added. The reaction mixture was stirred for 5 minutes at this temperature and subsequently for 15 min at room temperature. Then, the reaction mixture was neutralised with aqueous $\mathrm{NaOH}(2 \mathrm{~N})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic fractions were dried over MgSO_{4}, evaporated in vacuo and purified by means of flash chromatography to yield pure 5,8-dimethoxy-3-methyl isoquinoline 210a ($210 \mathrm{mg}, 1.03 \mathrm{mmol}, 44 \%$).
44%, yellow gum, mp $61^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $6.85(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.79(1 \mathrm{H}, \mathrm{s}$, CH-4), $9.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.53\left(\mathrm{CH}_{3}\right), 55.75\left(\mathrm{OCH}_{3}\right), 55.89\left(\mathrm{OCH}_{3}\right), 103.33$ and $107.60(\mathrm{CH}-6$ and $\mathrm{CH}-7), 112.78(\mathrm{CH}-4), 119.47\left(\mathrm{C}_{\text {quat }}\right), 130.13\left(\mathrm{C}_{\text {quat }}\right), 146.84(\mathrm{CH}-1), 147.99$ $\left(\mathrm{C}_{\text {quat }}\right), 150.40\left(\mathrm{C}_{\text {quat }}\right), 152.32\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 1629, 1582, 1424, 1328, 1258, $1096 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(\mathrm{ES}^{+}\right)}$ $m / z(\%): 204\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}\right]^{+}: 204.1025$, found 204.1019.

3-Methylisoquinoline-5,8-dione 220

To a solution of 5,8-dimethoxy-3-methylisoquinoline 210 a ($210 \mathrm{mg}, 1.03 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added a solution of CAN ($1.42 \mathrm{~g}, 2.58 \mathrm{mmol}, 2.5$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ in one portion. The reaction mixture was allowed to stir for 60 sec and poured in a $1: 1 \mathrm{mix}$ ure $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The $\mathrm{H}_{2} \mathrm{O}$ phase was discarded and the organic phase was washed with water $(5 \mathrm{~mL})$.The organic phase was dried over MgSO_{4} and evaporated in vacuo to yield the crude quinone, which was recrystallised from EtOH to yield pure 5,8-dimethoxy-3-methylisoquinoline ($140 \mathrm{mg}, 0.81 \mathrm{mmol}, 79 \%$) as a yellow solid.
79%, yellow solid, mp $113.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.01(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{CH}-$ 6 or CH-7), $7.05(1 \mathrm{H}, \mathrm{d}, J=10.3 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-7), 7.73(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 9.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.48\left(\mathrm{CH}_{3}\right), 117.93(\mathrm{CH}-4), 122.74\left(\mathrm{C}_{\text {quat }}\right), 137.04\left(\mathrm{C}_{\text {quat }}\right), 138.46$ and $139.18(\mathrm{CH}-6$ and CH-7), $148.51(\mathrm{CH}-1), 166.07\left(\mathrm{C}_{\text {quat }}\right), 184.37(\mathrm{C}=\mathrm{O}), 184.75(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 1664,1582$, 1591, 1314, 1048, $861 \mathrm{~cm}^{-1}$. MS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 174\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{2}\right]^{+}: 174.0555$, found 174.0550.

5.5 Attempted synthesis of 3-hydroxymollugin 228

Methyl 3-(3-methyl-2-oxobutyl)-1,4-naphthoquinone-2-carboxylate 226

A solution of 2-(methoxycarbonyl)naphthoquinone $\mathbf{1 5 6 c}(1.36 \mathrm{~g}, 6.3 \mathrm{mmol})$ and 1isobutyrylpyridiniumbromide $229 \mathrm{i}(1.53 \mathrm{~g}, 2.31 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(20 \mathrm{~mL})$ was cooled to $-50^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.876 \mathrm{~mL}, 2.31 \mathrm{mmol}\right.$, 1 equiv.) was added dropwise. After 1 h at $-50^{\circ} \mathrm{C}$, the reaction was quenched by the addition of aqueous $\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{~mL})$ and extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, evaporated in vacuo and purified by means of column chromatography (petroleum ether/ethyl acetate 4/1) to yield methyl 3-(3-methyl-2-oxobutyl)-1,4-naphthoquinone-2-carboxylate 226 as a brown solid.
74%, brown solid, mp $56.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.20(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{xCH} 3), 2.77(1 \mathrm{H}$, septet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.73-7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.05-$ $8.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 18.27\left(2 \mathrm{XCH}_{3}\right), 39.11\left(\mathrm{CH}_{2}\right), 41.48\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.96$ $\left(\mathrm{CO}_{2} \underline{\mathrm{CH}}_{3}\right), 126.60\left(\mathrm{CH}_{\text {Ar }}\right), 126.84\left(\mathrm{CH}_{\text {Ar }}\right), 131.36\left(\mathrm{C}_{\text {quat }}\right), 131.47\left(\mathrm{C}_{\text {quat }}\right), 134.25\left(\mathrm{CH}_{\text {Ar }}\right), 134.42\left(\mathrm{CH}_{\text {Ar }}\right)$,
$140.48\left(\mathrm{C}_{\text {quat }}\right), 142.52\left(\mathrm{C}_{\text {quat }}\right), 164.80\left(\mathrm{C}_{\text {quat }}\right), 181.30(\mathrm{C}=\mathrm{O}), 183.79(\mathrm{C}=\mathrm{O}), 208.42(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v$ $1726,1668,1287,1240,1043,714 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 300\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

Methyl 5-hydroxy-8-isopropyl-10-phenyl-8,11a-epoxy-8,11a-dihydro-9,11-dioxa-10-bora-cyclohepta[a]naphthalene-6-carboxylate 231

A solution of methyl-3-(3-methyl-2-oxobutyl)-1,4-naphthoquinone-2-carboxylate 226 ($100 \mathrm{mg}, 0.33$ $\mathrm{mmol})$ and $\mathrm{PhB}(\mathrm{OH})_{2}(40 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{PhMe}(3 \mathrm{~mL})$ was boiled under reflux for 3 h . The reaction mixture was evaporated in vacuo and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic phase was separated, dried over MgSO_{4}, evaporated in vacuo and purified by means of preparative TLC (petroleum ether/ethyl acetate 98/2) to yield boronic acid ester $231(126 \mathrm{mg}, 0.312$ mmol, 94\%).
94%, pale yellow crystals, $163.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.16\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.41$ $\left(1 \mathrm{H}\right.$, septet, $\left.J=6.6 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-7), 7.33-7.38(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.43-7.48\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.57(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-13$ or $\mathrm{CH}-14), 7.65(1 \mathrm{H}, \mathrm{dt}, J=$ $1.1,7.2 \mathrm{~Hz}, \mathrm{CH}-13$ or $\mathrm{CH}-14), 7.85(2 \mathrm{H}, \mathrm{dd}, J=1.1,7.2 \mathrm{~Hz}, \mathrm{CH}-12$ and $\mathrm{CH}-15), 8.04(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.41\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 11.99(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 16.16\left(\mathrm{CH}_{3}\right), 16.19$ $\left(\mathrm{CH}_{3}\right), 34.84\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.62\left(\mathrm{OCH}_{3}\right), 84.70(\mathrm{CH}-7), 102.17\left(\mathrm{C}_{\text {quat }}\right), 114.34\left(\mathrm{C}_{\text {quat }}\right), 120.35\left(\mathrm{C}_{\text {quat }}\right)$, $122.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.37\left(\mathrm{C}_{\text {quat }}\right), 124.69\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.75\left(\mathrm{C}_{\text {quat }}\right), 127.39\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.88\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.71$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.96\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.30\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 147.84\left(\mathrm{C}_{\text {quat }}\right), 157.16\left(2 \mathrm{xC}_{\text {quat }}\right), 171.29(\mathrm{C}=\mathrm{O}) .{ }^{11} \mathrm{~B}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31.07\left(1 \mathrm{H}, \mathrm{s}, \mathrm{ArB}(\mathrm{OR})_{2}\right)$. IR (ATR): v 2976, 1661, 1440, 1335, 1233, 767, $699 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left.\left(\mathrm{ES}^{+}\right) m / z(\%): 301(\mathrm{M}-\mathrm{PhBO}+\mathrm{H}]^{+}\right), 405\left([\mathrm{M}+\mathrm{H}]^{+}, 30\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BO}_{6}\right]^{+}$: 405.1510, found 405.1504 .

Methyl 5,9b-dihydroxy-2-isopropyl-2-methoxy-2,9b-dihydronaphtho[1,2-b]furan-4-carboxylate or 232a methyl 2,5-dihydroxy-2-isopropyl-9b-methoxy-2,9b-dihydro-naphtho[1,2-b]furan-4carboxylate 232b

Methyl $9 b$-hydroxy-2-isopropyl-5-oxo-5,9b-dihydronaphtho[1,2-b]furan-4-carboxylate 230 was heated in MeOH and allowed to stand overnight upon which crystallisation occurred. Filtration yielded the title compound as white crystals.
23% from 2-(methoxycarbonyl)naphthoquinone 156c, pale white crystals, mp $142.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.08\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.17(1 \mathrm{H}$, septet, $J=6.6 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 4.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.56$ $(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-7$ or $\mathrm{CH}-8), 7.63(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-7$ or $\mathrm{CH}-8), 8.00(1 \mathrm{H}, \mathrm{d}, J=$ $7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-9), 8.38(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-9), 11.93(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.47\left(\mathrm{CH}_{3}\right), 16.53\left(\mathrm{CH}_{3}\right), 35.43\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.67\left(\mathrm{OCH}_{3}\right), 60.10\left(\underline{\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 83.39(\mathrm{CH}-}\right.$
3), $102.08\left(\mathrm{C}_{\text {quat }}\right), 110.92(\mathrm{C}-2), 112.81\left(\mathrm{C}_{\text {quat }}\right), 122.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.31\left(\mathrm{C}_{\text {quat }}\right), 124.58\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.64$ $\left(\mathrm{C}_{\text {quat }}\right), 127.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 147.67\left(\mathrm{C}_{\text {quat }}\right), 156.83\left(\mathrm{C}_{\text {quat }}\right), 171.20(\mathrm{C}=\mathrm{O})$. IR (ATR): v 3396, $1658,1644,1434,1238,1227,768 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 301\left([\mathrm{M}-\mathrm{OMe}]^{+}, 100\right)$.

5.6 Unexpected aminonaphthol synthesis

6',8'-Dimethoxyspiro[1,3-dioxolane-2,1'-naphthalen]-4'-one 235

A solution of 6,8-dimethoxynaphthalen-1-ol $178(800 \mathrm{mg}, 3.9 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added dropwise to a solution of PIFA ($3.7 \mathrm{~g}, 8.58 \mathrm{mmol}, 2.2$ equiv.) in anhydrous ethylene glycol $(25 \mathrm{~mL})$ and anhydrous $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ over a 2 h period. The reaction was quenched with a saturated aqueous NaHCO_{3} solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. Drying over MgSO_{4} and evaporation of the solvent in vacuo followed by purification by means of column chromatography (petroleum ether/ethyl acetate $1: 1$) yielded 6',8'-dimethoxyspiro[1,3-dioxolane-2,1'-naphthalen]-4'-one $235(552 \mathrm{mg}, 54 \%)$ as a white solid.
54%, pale white powder, mp $178.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.22-4.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), 4.30-4.37 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $6.22(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CH}-3$ '), $6.52(1 \mathrm{H}, \mathrm{d}, J$ $\left.=2.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.66(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{CH}-2 '), 6.72\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 55.62\left(\mathrm{OCH}_{3}\right), 56.37\left(\mathrm{OCH}_{3}\right), 65.78\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 99.59\left(\mathrm{CH}-2{ }^{\prime}\right), 100.46\left(\mathrm{C}_{\text {quat }}\right), 103.85(\mathrm{CH}-3$ ' $)$, $114.17\left(\mathrm{C}_{\text {quat }}\right), 131.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.58\left(\mathrm{CH}_{\mathrm{Ar}}\right), 145.41\left(\mathrm{C}_{\text {quat }}\right), 162.11\left(\mathrm{C}_{\text {quat }}\right), 164.28\left(\mathrm{C}_{\text {quat }}\right), 182.68$ $(\mathrm{C}=\mathrm{O})$. IR (ATR): v 1665, 1596, 1573, 1321, 1215, 1161, 1047, 1025, $950 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%):$ $263\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{5}\right]^{+}: 263.0920$, found 263.0926.

5.6.1 General procedures for the synthesis of $\boldsymbol{N}, \boldsymbol{N}$-dialkylbenzamides

N, N-Dimethylbenzamides 251 and $\mathbf{2 5 4}{ }^{\mathbf{2 6 0}}$

The appropriate benzoic acid derivative (72.4 mmol) was added to $\mathrm{SOCl}_{2}(53 \mathrm{~mL}, 724 \mathrm{mmol}, 10$ equiv.) and boiled under reflux for 2.5 h . Next, the solvent was evaporated in vacuo, the residue redissolved in a small portion of benzene and evaporated again. The residue was taken up in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and added dropwise to a solution of $\mathrm{Me}_{2} \mathrm{NH}_{4} \mathrm{Cl}(8.86 \mathrm{~g}, 109 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}\left(40.4 \mathrm{~mL}, 290 \mathrm{mmol}, 4\right.$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir overnight at room temperature. The reaction mixture was diluted with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic phase was washed with $\mathrm{HCl}(1 \mathrm{M}, 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed in vacuo to yield pure N, N-dimethylbenzamides.

The same procedure was applied to the synthesis of N-(2-hydroxybenzoyl)pyrrolidine 259a and N-(2hydroxybenzoyl)morpholine 259b using 1.5 equiv. of pyrrolidine or morpholine and 3 equiv. of $\mathrm{Et}_{3} \mathrm{~N}$.

N, N-Diethylbenzamides $250{ }^{163}$

The appropriate benzoic acid derivative (72.4 mmol) was added to $\mathrm{SOCl}_{2}(53 \mathrm{~mL}, 724 \mathrm{mmol}, 10$ equiv.) and boiled under reflux for 2.5 h . Next, the solvent was evaporated in vacuo, the residue redissolved in a small portion of benzene and evaporated again. The residue was taken up in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and added dropwise to a solution of diethylamine $(22.5 \mathrm{~mL}, 217 \mathrm{mmol}, 3$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir overnight at room temperature. The excess diethylamine and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were removed in vacuo and the residue taken up in neat $\mathrm{Et}_{2} \mathrm{NH}(20 \mathrm{~mL})$ and boiled under reflux for 18 h . Excess $\mathrm{Et}_{2} \mathrm{NH}$ was removed in vacuo and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$. The organic phase was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}$, $100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed in vacuo to yield pure $\mathrm{N}, \mathrm{N}-$ diethylbenzamides.

5.6.2 General procedure for TBDMS or TIPS protection ${ }^{164}$

To a solution of the appropriate benzamide (30 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100mL) under a nitrogen atmosphere was added DMAP ($73 \mathrm{mg}, 0.60 \mathrm{mmol}, 0.02$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(5.4 \mathrm{~mL}, 39.0 \mathrm{mmol}, 1.3$ equiv.) and TBDMSCl or TIPSCl ($33.0 \mathrm{mmol}, 1.1$ equiv.). The reaction was stirred at ambient temperature for $12 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous MgSO_{4} and concentrated. Flash chromatography (petroleum ether/ethyl acetate) yielded the appropriate silanoxybenzamides.

2-(tert-Butyldimethylsilanyloxy)-4-methoxy- N, N-dimethylbenzamide 242

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.17\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xCH}_{3}\right), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.04(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.33(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{CH}-3), 6.54(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-5)$, $7.18(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}-6)$. Spectral data in accordance with the literature. ${ }^{260}$

6-(tert-Butyldimethylsilanyloxy)-N,N-diethylbenzamide 252a

93%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.97(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.11(1 \mathrm{H}, \mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.24\left(1 \mathrm{H}, \mathrm{dq}, J=14.3,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}} \mathrm{N}\right), 3.45\left(1 \mathrm{H}, \mathrm{dq}, J=13.5,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{N}\right), 3.64$ $\left(1 \mathrm{H}, \mathrm{dq}, J=13.5,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \underline{\mathrm{H}}_{\mathrm{D}} \mathrm{N}\right), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.97\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 7.18-7.25 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-5.01\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.60\left(\mathrm{CH}_{3} \mathrm{Si}\right), 12.73\left(\mathrm{CH}_{3}\right), 13.60$ $\left(\mathrm{CH}_{3}\right), 17.58\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.16\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 38.65\left(\mathrm{CH}_{2} \mathrm{~N}\right), 42.30\left(\mathrm{CH}_{2} \mathrm{~N}\right), 118.78\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.86$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.27\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.32\left(\mathrm{C}_{\text {quat }}\right), 150.55\left(\mathrm{C}_{\text {quat }}\right), 168.34(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}): v 2956$ $(\mathrm{CH}), 2931(\mathrm{CH}), 1635,1249,915,758 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 308\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{Si}\right]^{+}: 308.2046$, found 308.2041.

N, N-Diethyl-2-tri-iso-propylsilanyloxybenzamide 252b

93%, colourless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08(9 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$, $\left.3 \mathrm{xCHCH}_{3}\right), 1.10\left(9 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{xCHCH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}$, septet, $J=$ $\left.7.7 \mathrm{~Hz}, 3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.12\left(1 \mathrm{H}, \mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.25(1 \mathrm{H}, \mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}} \mathrm{N}\right), 3.49\left(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{N}\right), 3.58\left(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \underline{H}_{\mathrm{D}} \mathrm{N}\right), 6.83$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.94\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.16-7.23\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.45\left(3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.68\left(\mathrm{CH}_{3}\right), 13.65\left(\mathrm{CH}_{3}\right), 17.51\left(3 \mathrm{xCH}(\underline{\mathrm{CH}})_{3}\right)_{2}, 38.75\left(\mathrm{CH}_{2} \mathrm{~N}\right), 42.44$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 118.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.90\left(\mathrm{C}_{\text {quat }}\right), 129.36\left(\mathrm{CH}_{\mathrm{Ar}}\right), 151.00\left(\mathrm{C}_{\text {quat }}\right)$, 168.43 (C=O). IR (ATR): v 2966 (CH), 2943 (CH), 2867 (CH), 1636, 1273, 917, 754, $678 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 350\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

6-(tert-Butyldimethylsilanyloxy)- N, N-dimethylbenzamide 252c

89%, white solid, mp $68.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.97(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.81\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.99(1 \mathrm{H}, \mathrm{dt}, J=$ $\left.1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.22-7.28\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-4.97\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.51\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $17.61\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.20\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.27\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.72\left(\mathrm{CH}_{3} \mathrm{~N}\right), 119.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.36\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.87\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.92\left(\mathrm{C}_{\text {quat }}\right), 129.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 150.81\left(\mathrm{C}_{\text {quat }}\right), 169.14(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 2941(\mathrm{CH})$, $2865(\mathrm{CH}), 1628,1479,1280,1257,908,882 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 280\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si}^{+}\right.$: 280.1733, found 280.1735.

N, N-Dimethyl-2-tri-iso-propylsilanyloxybenzamide 252d

84%, white crystals, mp $\left.66.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.07(9 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{xCHCH})_{3}\right), 1.10(9 \mathrm{H}, \mathrm{d}$, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{xCHCH} \underline{H}_{3}\right), 1.29\left(3 \mathrm{H}\right.$, septet, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.08(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 6.83\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.96\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.19-7.25\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.48\left(3 \mathrm{x} \underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.64\left(3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.29\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.80\left(\mathrm{CH}_{3} \mathrm{~N}\right), 118.31$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.79\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.58\left(\mathrm{C}_{\text {quat }}\right), 129.59\left(\mathrm{CH}_{\mathrm{Ar}}\right), 151.21\left(\mathrm{C}_{\text {quat }}\right), 169.26(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v 2941 (CH), $2864(\mathrm{CH}), 1628,1280,1257,882 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 322\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}^{+}\right]^{\prime}: 322.2202$, found 322.2212.

2-(tert-Butyldimethylsilanyloxy)-3, N, N-trimethylbenzamide 252e

36%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.93\left(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.13-7.18$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.10\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.66\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.74\left(\mathrm{CH}_{3}\right), 18.45\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $26.04\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.84\left(\mathrm{CH}_{3} \mathrm{~N}\right), 38.13\left(\mathrm{CH}_{3} \mathrm{~N}\right), 122.08\left(\mathrm{CH}_{\text {Ar }}\right), 126.70\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.16\left(\mathrm{C}_{\text {quat }}\right), 129.50$ $\left(\mathrm{C}_{\text {quat }}\right), 132.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 149.32\left(\mathrm{C}_{\text {quat }}\right), 170.05(\mathrm{C}=\mathrm{O})$. IR (ATR) : v $2930(\mathrm{CH}), 2858(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O})$, 1460, 1262, 1224, 909, $759 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 294\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}^{+}{ }^{+}: 294.1889\right.$, found 294.1886.

N-[2-(tert-Butyldimethylsilanyloxy)benzoyl]pyrrolidine 260a

88%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.20\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xCH}_{3} \mathrm{Si}\right), 0.97\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.82-1.97(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.29\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 3.61\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $6.99\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.01-7.30\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-4.56\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.22$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.00\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.57\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.75\left(\mathrm{CH}_{2}\right), 46.93\left(\mathrm{CH}_{2}\right), 66.61\left(\mathrm{NCH}_{2}\right), 66.79\left(\mathrm{NCH}_{2}\right)$, $119.50\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.11\left(\mathrm{C}_{\text {quat }}\right), 128.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 151.21\left(\mathrm{C}_{\text {quat }}\right), 168.08$ ($\mathrm{C}=\mathrm{O}$). IR (ATR): $v 2930(\mathrm{CH}), 1634,1453,1251,750 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 306\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

N-[2-(tert-Butyldimethylsilanyloxy)benzoyl]morpholine 260b

69%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.98(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.21-3.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.44-3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.65-3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.82(1 \mathrm{H}, \mathrm{td}, J=$ $\left.3.9,12.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.06\left(1 \mathrm{H}, \mathrm{td}, J=3.9,12.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.82\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.00$ $\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.24-7.29\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-4.56\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.22$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.00\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.57\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.75\left(\mathrm{CH}_{2}\right), 46.93\left(\mathrm{CH}_{2}\right), 66.61\left(\mathrm{NCH}_{2}\right), 66.79\left(\mathrm{NCH}_{2}\right)$, $119.50\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.11\left(\mathrm{C}_{\text {quat }}\right), 128.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 151.21\left(\mathrm{C}_{\text {quat }}\right), 168.08$ $(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2929(\mathrm{CH}), 2857,1637,1459,1252,756 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 206\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100).

1-(tert-Butyldimethylsilanyloxy)- N, N-dimethylnaphthalene-2-carboxamide 263a

62% over 2 steps, pink crystals, mp $75^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.16(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 1.12\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.42(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-3$ or CH-4), 7.48-7.53 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}$), $7.55(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-3$ or CH-4), $7.80-7.83(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 8.14-8.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-4.13\left(2 \mathrm{xCH}_{3} \mathrm{Si}\right), 18.22\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.84$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.67\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.87\left(\mathrm{CH}_{3} \mathrm{~N}\right), 122.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.98\left(\mathrm{C}_{\text {quat }}\right), 123.06\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.27\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.58(\mathrm{CHAr}), 127.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.04(2 \mathrm{xC} \mathrm{quat})$, $146.80\left(\mathrm{C}_{\text {quat }}\right), 169.68(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2928(\mathrm{CH}), 2857(\mathrm{CH}), 1629(\mathrm{C}=\mathrm{O}), 1386,1113,826,763 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 330$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

3-(tert-Butyldimethylsilanyloxy)- N, N-dimethylnaphthalene-2-carboxamide 263b

48% over 2 steps, pale white solid, mp $77^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.31(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 1.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.36(1 \mathrm{H}$, $\mathrm{dt}, J=1.4,7.8 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.45(1 \mathrm{H}, \mathrm{dt}, J=1.4,7.8 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.69(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}, \mathrm{CH}-5$ or CH-8), $7.77(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 7.77(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ -4.94 ($\left.\mathrm{CH}_{3} \mathrm{Si}\right),-4.34\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.74\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.31\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.41\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.86\left(\mathrm{CH}_{3} \mathrm{~N}\right), 113.94$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.64\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.61\left(\mathrm{C}_{\mathrm{quat}}\right)$,
$130.63\left(\mathrm{C}_{\text {quat }}\right), 134.28\left(\mathrm{C}_{\text {quat }}\right), 149.09\left(\mathrm{C}_{\text {quat }}\right), 168.94(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}):$ v $2927(\mathrm{CH}), 2857(\mathrm{CH}), 1630$ $(\mathrm{C}=\mathrm{O}), 1451,1259,1178,931,751 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 330\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

2-(tert-Butyldimethylsilanyloxy)- N, N-dimethylnaphthalene-1-carboxamide 263c

65% over 2 steps, pale white solid, mp $135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.28(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Si}\right), 1.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.05(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}-$ 3), $7.35(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-7), 7.45(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), 7.67 $(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8), $7.73(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}-4), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.19\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.78\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.15\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.68\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.65$ $\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.87\left(\mathrm{CH}_{3} \mathrm{~N}\right), 120.40\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.84\left(\mathrm{C}_{\mathrm{quat}}\right), 124.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.24\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.02\left(\mathrm{CH}_{\text {Ar }}\right), 129.29\left(\mathrm{C}_{\text {quat }}\right), 130.05\left(\mathrm{CH}_{\text {Ar }}\right), 131.41\left(\mathrm{C}_{\text {quat }}\right), 148.86\left(\mathrm{C}_{\text {quat }}\right), 168.75(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR})$: $v 2958(\mathrm{CH}), 2929(\mathrm{CH}), 1634(\mathrm{C}=\mathrm{O}), 1465,1244,830,786 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 330\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Si}^{+}: 330.1889\right.$, found 330.1891 .

5.6.3 General procedure for TBDPS protection ${ }^{165}$

DIPEA ($2.79 \mathrm{~mL}, 16 \mathrm{mmol}$) and tert-butyldiphenylsilyl chloride $(4.16 \mathrm{~mL}, 16 \mathrm{mmol})$ were added to a solution of the appropriate benzamide (14.5 mmol) in dichloromethane (40 mL) under a N_{2} atmosphere. The reaction mixture was stirred for 20 h at room temperature. Afterwards, $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and the solvent removed in vacuo. The residue was purified by flash column chromatography (petroleum ether/ethyl acetate).

2-(tert-Butyldiphenylsilanyloxy)-N,N-diethylbenzamide 255a

95%, colourless crystals, mp $90-92^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.26\left(1 \mathrm{H}, \mathrm{dq}, J=14.4,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.39(1 \mathrm{H}, \mathrm{dq}, J=$ $\left.14.4,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}} \mathrm{N}\right), 3.55\left(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{N}\right), 3.72(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{C}} \underline{H}_{\mathrm{D}} \mathrm{N}\right), 6.39-6.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.83-6.92\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.17-7.21\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.48$ $\left(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.70-7.77\left(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.43\left(\mathrm{CH}_{3}\right), 14.27\left(\mathrm{CH}_{3}\right), 19.43$ $\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.29\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.34\left(\mathrm{CH}_{2} \mathrm{~N}\right), 43.02\left(\mathrm{CH}_{2} \mathrm{~N}\right), 119.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.44$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.53\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.85\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 127.93\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.01\left(\mathrm{C}_{\text {quat }}\right), 129.18\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.30$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.00\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.39\left(\mathrm{C}_{\mathrm{quat}}\right), 133.01\left(\mathrm{C}_{\text {quat }}\right), 134.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.26\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.64\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $150.92\left(\mathrm{C}_{\text {quat }}\right), 169.15(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2931(\mathrm{CH}), 1635,1427,1112,921,700 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $432\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{2} \mathrm{Si}\right]^{+}: 432.2359$, found 432.2363.

2-(tert-Butyldiphenylsilanyloxy)-4-methoxy-N,N-dimethylbenzamide 255b

64%, white crystals, mp 105.2. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.16$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.97(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-3), 6.46(1 \mathrm{H}, \mathrm{dd}, J=2.2,8.3 \mathrm{~Hz}, \mathrm{CH}-$ 5), $7.18(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}),, 7.39\left(6 \mathrm{H}, \mathrm{br} \mathrm{s}, 6 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.72\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $19.48\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.41\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.84\left(\mathrm{CH}_{2} \mathrm{~N}\right), 38.47\left(\mathrm{CH}_{2} \mathrm{~N}\right), 54.96\left(\mathrm{OCH}_{3}\right), 105.08\left(\mathrm{CH}_{\text {Ar }}\right)$, $107.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.21\left(\mathrm{C}_{\text {quat }}\right), 127.96\left(6 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.63\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.14\left(4 \mathrm{xCH}_{\mathrm{Ar}}\right), 135.48\left(2 \mathrm{xC} \mathrm{q}_{\text {quat }}\right)$, $152.25\left(\mathrm{C}_{\text {quat }}\right), 160.54\left(\mathrm{C}_{\text {quat }}\right), 169.75(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2933(\mathrm{CH}), 1624,1605,1204,1111,986$, $700 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 434$ ([M+H] $\left.{ }^{+}, 100\right)$.

5.6.4 General procedure for the preparation of 2 -allyl-6-silanyloxy- $\boldsymbol{N}, \boldsymbol{N}$-dialkylbenzamide derivatives

A solution of the appropriate 2-silanyloxy- N, N-dialkylbenzamide (12.9 mmol) in anhydrous THF (35 mL) was cooled to $-78^{\circ} \mathrm{C}$ and freshly titrated t - BuLi in hexanes ($16.96 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and subsequently $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}(5.30 \mathrm{~g}, 25.8$ mmol, 2 equiv.) was added and the mixture was allowed to warm to $-10^{\circ} \mathrm{C}$ and stirred for 40 min . Next, the mixture was cooled to $-78^{\circ} \mathrm{C}$ and allyl bromide ($2.33 \mathrm{~mL}, 25.8 \mathrm{mmol}, 2$ equiv.) was added dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The salts were filtered off over Celite ${ }^{\circledR}$ and the filtrate was extracted with EtOAc (100 mL) and washed with $\mathrm{H}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$). Drying over MgSO_{4} and evaporation of the solvent in vacuo followed by flash chromatography gave the corresponding 2-allyl-6-silanyloxy- N, N-dialkylbenzamide derivatives.

2-Allyl-6-(tert-butyldimethylsilanyloxy)-4-methoxy- N, N-dimethylbenzamide 243

66%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.27-3.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1\right.$ '), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.02-5.08$ $\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}-3^{\prime}\right), 5.83-5.89\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2{ }^{\prime}\right), 6.22(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-5), 6.39(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, CH-3). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.80\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.24\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.78\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.37\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right), 34.16$ $\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 37.66\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 54.97\left(\mathrm{OCH}_{3}\right), 102.92(\mathrm{CH}-5), 107.47(\mathrm{CH}-3), 115.77\left(=\mathrm{CH}_{2}-3{ }^{\prime}\right), 121.54$ $\left(\mathrm{C}_{\text {quat }}\right), 136.38\left(\mathrm{CH}-2^{\prime}\right), 139.30\left(\mathrm{C}_{\text {quat }}\right), 152.29\left(\mathrm{C}_{\text {quat }}\right), 160.20\left(\mathrm{C}_{\text {quat }}\right), 168.74(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2954, $2929,1602,1332,1154,834,779 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(\mathrm{ES}^{+}\right)} \mathrm{m} / \mathrm{z}(\%): 350\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{Si}^{+}\right]^{-} 350.2152$, found 350.2158 .

2-Allyl-6-(tert-butyldimethylsilanyloxy)- N, N-diethylbenzamide 253a

88%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.96(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.13\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.21-3.32 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-1^{\prime}\right), 3.32\left(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{N}\right), 3.76(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{C}} \underline{\mathrm{H}}_{\mathrm{D}} \mathrm{N}\right), 5.04-5.12\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}-3^{\prime}\right), 5.86-6.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2{ }^{\prime}\right), 6.67(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5)$, $6.83(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-3), 7.13(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.56\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, -
$3.93\left(\mathrm{CH}_{3} \mathrm{Si}\right), 12.94\left(\mathrm{CH}_{3}\right)$, $14.01\left(\mathrm{CH}_{3}\right)$, $18.18\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $25.69\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 37.23\left(\mathrm{CH}_{2}-1\right.$ ' $), 38.97$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 43.11\left(\mathrm{CH}_{2} \mathrm{~N}\right), 116.31\left(=\mathrm{CH}_{2}-3 '\right), 116.70(\mathrm{CH}-5), 121.99(\mathrm{CH}-3), 128.93(\mathrm{CH}-4), 129.21$ $\left(\mathrm{C}_{\text {quat }}\right), 136.64(\mathrm{CH}-2 '), 138.26\left(\mathrm{C}_{\text {quat }}\right), 151.42\left(\mathrm{C}_{\text {quat }}\right), 168.13(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2956(\mathrm{CH}), 2931$ $(\mathrm{CH}), 1635,1249,915,758 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 348\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

6-Allyl- N, N-diethyl-2-tri-iso-propylsilanyloxybenzamide 253b

91%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08(9 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, $\left.3 \mathrm{xCHCH}_{3}\right), 1.10\left(9 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{xCHCH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.28(3 \mathrm{H}$, septet, $J=$ $\left.7.7 \mathrm{~Hz}, 3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.13\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{N}\right), 3.14\left(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}} \mathrm{N}\right), 3.21-$ $3.39\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{N}\right.$ and $\left.\mathrm{CH}_{2}-1^{\prime}\right), 3.84\left(1 \mathrm{H}, \mathrm{dq}, J=13.8,7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{C}} \underline{H}_{\mathrm{D}} \mathrm{N}\right), 5.04-5.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ 3'), 5.87-6.00 (1H, m, CH-2'), $6.69(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5), 6.81(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-3), 7.11$ $(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.85\left(3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 12.97\left(\mathrm{CH}_{3}\right), 13.92\left(\mathrm{CH}_{3}\right), 17.97$ $\left(3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}, 37.08\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 38.91\left(\mathrm{CH}_{2} \mathrm{~N}\right), 40.05\left(\mathrm{CH}_{2} \mathrm{~N}\right), 116.19\left(=\mathrm{CH}_{2}-3\right.\right.$ ' and $\left.\mathrm{CH}-5\right), 121.50$ (CH-3), 128.71 (CH-4), 136.55 (CH-2’), $138.08\left(\mathrm{C}_{\text {quat }}\right)$, $151.62\left(\mathrm{C}_{\text {quat }}\right), 167.99(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): v 2942 (CH), 2943 (CH), 2867 (CH), 1635, 1461, 1278, 1023, $682 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 390\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NO}_{2} \mathrm{Si}^{+}: 390.2828\right.$, found 390.2839.

2-Allyl-6-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamide 253 c

65%, colourless oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.96(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.29\left(1 \mathrm{H}, \mathrm{dd}, J=6.9,15.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1{ }^{\prime}\right), 3.39$ $\left(1 \mathrm{H}, \mathrm{dd}, J=6.9,15.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1^{\prime}\right), 4.99-5.08\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}-3^{\prime}\right), 5.82-5.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2^{\prime}\right), 6.66$ $(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-5), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-3), 7.14(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.56\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.99\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.03\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.57\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.36\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.58$ $\left(\mathrm{CH}_{2}-1\right.$ ' $), 37.87\left(\mathrm{CH}_{3} \mathrm{~N}\right), 115.88\left(=\mathrm{CH}_{2}-3 '\right), 116.49(\mathrm{CH}-5), 122.41(\mathrm{CH}-3), 128.86\left(\mathrm{C}_{\text {quat }}\right), 129.25$ (CH-4), 136.77 (CH-2'), $138.60\left(\mathrm{C}_{\text {quat }}\right), 151.44\left(\mathrm{C}_{\text {quat }}\right), 168.94(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2930(\mathrm{CH}), 1620$ $(\mathrm{C}=\mathrm{O}), 1600,1252,781 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 320\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $\left.{ }^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{Si}\right]^{+}: 320.2046$, found 320.2053 .

6-Allyl- N, N-dimethyl-2-tri-iso-propylsilanyloxybenzamide 253d

98%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.89\left(9 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{xCHCH} \underline{H}_{3}\right), 0.91(9 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$, $\left.3 \mathrm{xCHCH}_{3}\right), 1.10\left(3 \mathrm{H}\right.$, septet, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.10$ $\left(1 \mathrm{H}, \mathrm{ddd}, J=1.7,6.7,15.3, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1^{\prime}\right), 3.19\left(1 \mathrm{H}, \mathrm{dd}, J=6.7,15.3, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}-1{ }^{\prime}\right), 4.79-4.90(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}-3^{\prime}\right), 5.63-5.77(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 '), 6.50(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-5), 6.61(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-3)$, $6.93(1 \mathrm{H}, \mathrm{dt}, J=1.7,8.0 \mathrm{~Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 12.67\left(3 \mathrm{x} \underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 17.83\left(3 \mathrm{xCH}(\underline{\mathrm{CH}})_{3}\right)$, $34.04\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.39\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 37.66\left(\mathrm{CH}_{2} \mathrm{~N}\right), 115.62\left(=\mathrm{CH}_{2}-3\right)$, $115.77(\mathrm{CH}-5), 121.74(\mathrm{CH}-3)$,
$128.25\left(\mathrm{C}_{\text {quat }}\right), 128.89(\mathrm{CH}-4), 136.52\left(\mathrm{CH}-2^{\prime}\right), 138.22\left(\mathrm{C}_{\text {quat }}\right), 151.49\left(\mathrm{C}_{\text {quat }}\right), 168.66(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR})$: $v 2943(\mathrm{CH}), 2866(\mathrm{CH}), 1639(\mathrm{C}=\mathrm{O}), 1461,1277,1026,682 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 362\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{2} \mathrm{Si}^{+}: 362.2515\right.$, found 362.2514 .

2-Allyl-6-(tert-butyldiphenylsilanyloxy)-4-methoxy- N, N-dimethylbenzamide 256b

29%, pale white crystals, mp $97^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right)$, $3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J=7.2,15.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right.$ '), $3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.39(1 \mathrm{H}, \mathrm{dd}, J=$ $7.2,15.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1$ '), 5.02-5.10 (2H, m, $\left.=\mathrm{CH}_{2}-3^{\prime}\right), 5.81(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-5), 5.82-5.96(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}-2$ '), $6.31(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-3), 7.32-7.47\left(6 \mathrm{H}, \mathrm{m}, 6 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.68-7.75\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.52\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.38\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.55\left(\mathrm{NCH}_{3}\right), 37.78\left(\mathrm{CH}_{2}-1\right.$ '), $38.21\left(\mathrm{NCH}_{3}\right)$, $54.96\left(\mathrm{OCH}_{3}\right), 102.81(\mathrm{CH}-5), 108.20(\mathrm{CH}-3), 116.15\left(\mathrm{CH}_{2}-3 '\right), 121.01\left(\mathrm{C}_{\text {quat }}\right), 127.96\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $128.00\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.14\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.62\left(\mathrm{C}_{\text {quat }}\right), 133.03\left(\mathrm{C}_{\text {quat }}\right), 135.36\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 135.74\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 136.55 (=CH-2'), $139.22\left(\mathrm{C}_{\text {quat }}\right), 152.26\left(\mathrm{C}_{\text {quat }}\right), 159.84\left(\mathrm{C}_{\text {quat }}\right), 169.12(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2932, 1626, 1601, 1156, $701 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 474\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{Si}^{+}\right.$: 474.2465 , found 474.2478 .

N-[2-Allyl-6-(tert-butyldimethylsilanyloxy)benzoyl]pyrrolidine 261a

83%, yellowish oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.95(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.74-1.95 (4H, m, $\left.2 \mathrm{xCH}_{2}\right), 3.01-3.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right.$ '), 3.25-3.34 (2H, m, NCH2$), 3.41-$ $3.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}-1\right.$ '), 3.57-3.62 ($2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{NCH}_{2}$), 4.98-5.09 (2H, m, $\left.\mathrm{CH}_{2}-3^{\prime}\right), 5.81-5.95$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2$ '), $6.67(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-5), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-3), 7.14(1 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.89\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.20\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.71\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.45\left(\mathrm{CH}_{2}\right), 25.33$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.60\left(\mathrm{CH}_{2}\right), 37.40\left(\mathrm{CH}_{2}-1\right.$ ' $), 45.05\left(\mathrm{NCH}_{2}\right), 48.84\left(\mathrm{NCH}_{2}\right), 115.48\left(\mathrm{CH}_{2}-3{ }^{\prime}\right), 116.51(\mathrm{CH}-$ 5), $122.17(\mathrm{CH}-3), 129.01(\mathrm{CH}-4), 129.80\left(\mathrm{C}_{\text {quat }}\right), 136.51\left(\mathrm{CH}-2\right.$ '), $137.90\left(\mathrm{C}_{\text {quat }}\right), 151.00\left(\mathrm{C}_{\text {quat }}\right)$, 166.91 (C=O). IR (ATR): v $2929(\mathrm{CH}), 1630,1460,1420,1252,837 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 346$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}^{+}\right.$: 346.2202, found 346.2209.

N-[2-Allyl-6-(tert-butyldimethylsilanyloxy)benzoyl]morpholine 261b

53%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.98\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 3.14-3.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.34-3.38 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.46-3.59 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 3.62-3.70 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 3.78-3.85 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1{ }^{\prime}$), 3.96-4.03 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}-1^{\prime}$), 5.02-5.08 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-3$ '), 5.84-5.98 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2 '), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-5), 6.85(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-3), 7.16(1 \mathrm{H}, \mathrm{t}, J=8.0$ $\mathrm{Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.46\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.96\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.15\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.75\left(\mathrm{C}(\underline{\mathrm{CH}})_{3}\right)$, $37.39\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 41.52\left(\mathrm{CH}_{2}\right), 46.61\left(\mathrm{CH}_{2}\right), 66.72\left(\mathrm{CH}_{2}\right), 66.85\left(\mathrm{CH}_{2}\right), 116.28\left(\mathrm{CH}_{2}-3{ }^{\prime}\right), 116.82(\mathrm{CH}-5)$, $122.63(\mathrm{CH}-3), 127.83\left(\mathrm{C}_{\text {quat }}\right), 129.50(\mathrm{CH}-4), 136.71(\mathrm{CH}-2$) $), 138.61\left(\mathrm{C}_{\text {quat }}\right), 151.65\left(\mathrm{C}_{\text {quat }}\right), 167.53$
$(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2857(\mathrm{CH}), 1638,1460,1426,1276,836 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 362\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100).

3-Allyl-1-(tert-butyldimethylsilanyloxy)-N,N-dimethylnaphthalene-2-carboxamide 264a

18%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $2.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J=5.5,15.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1^{\prime}\right), 3.65(1 \mathrm{H}, \mathrm{dd}, J=$ 8.0, $\left.15.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}-1^{\prime}\right)$, 5.03-5.10 ($2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}-3$ '), 5.86-5.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2$ '), $7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4)$, $7.42(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.8 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-7), 7.47(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.8 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.75(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 8.06(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-3.41$ $\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.24\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.71\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.24\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.59\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.94\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 38.15$ $\left(\mathrm{CH}_{3} \mathrm{~N}\right), 116.06\left(=\mathrm{CH}_{2}-3 '\right), 122.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.27\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.34\left(\mathrm{C}_{\text {quat }}\right), 124.87\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.46$ $\left(\mathrm{C}_{\text {quat }}\right), 126.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.75\left(\mathrm{C}_{\text {quat }}\right), 135.84\left(\mathrm{C}_{\text {quat }}\right), 136.92(\mathrm{CH}-2$ ' $), 147.27\left(\mathrm{C}_{\text {quat }}\right)$, 168.89 (C=O). IR (ATR): v 2929 (CH), $1630(\mathrm{C}=\mathrm{O}), 1384,829 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ES ${ }^{+}$) m/z (\%): 370 $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}^{+}\right.$: 370.2202 , found 370.2210.

1-Allyl-3-(tert-butyldimethylsilanyloxy)- N, N-dimethylnaphthalene-2-carboxamide 264b

71%, yellow solid, $\mathrm{mp} 92^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.99(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.80\left(2 \mathrm{H} \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right.$ '), 4.98-5.04(2H, $\left.\mathrm{m},=\mathrm{CH}_{2}-3^{\prime}\right), 5.94-6.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2^{\prime}\right), 7.05(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.37(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.44(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-7), 7.68(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8), 7.97 $(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.59\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.97\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.06$ $\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.60\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.23\left(\mathrm{CH}_{3} \mathrm{~N}\right), 34.42\left(\mathrm{CH}_{3} \mathrm{~N}\right), 38.00\left(\mathrm{CH}_{2}-1\right.$ '), $112.40(\mathrm{CH}-4), 115.99$ $\left(=\mathrm{CH}_{2}-3 '\right), 124.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.35\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.87\left(\mathrm{C}_{\text {quat }}\right), 130.74\left(\mathrm{C}_{\text {quat }}\right)$, $134.26\left(\mathrm{C}_{\text {quat }}\right), 134.67\left(\mathrm{C}_{\text {quat }}\right), 136.17(\mathrm{CH}-2 ’), 149.29\left(\mathrm{C}_{\text {quat }}\right), 169.06(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2929(\mathrm{CH})$, $1624(\mathrm{C}=\mathrm{O}), 1392,840 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 370\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NO}_{2} \mathrm{Si}^{+}\right.$: 370.2202 , found 370.2210 .

8-Allyl-2-(tert-butyldimethylsilanyloxy)-N,N-dimethylnaphthalene-1-carboxamide 264c

65%, gummy yellow solid, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right)$, $1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.37-2.54\left(2 \mathrm{H}, \mathrm{dd}, J=5.5,15.3 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right.$ '), $2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 2.77(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{~N}\right), 5.18-5.32\left(2 \mathrm{H}, \mathrm{m},=\mathrm{CH}_{2}-3^{\prime}\right), 5.95-6.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2^{\prime}\right), 7.11\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.28-$ $7.47\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.65-7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-3.05\left(2 \mathrm{xCH}_{3} \mathrm{Si}\right), 17.05$ $\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.72\left(\mathrm{CH}_{3} \mathrm{~N}\right), 27.02\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.97\left(\mathrm{CH}_{3} \mathrm{~N}\right), 40.47\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 116.95\left(=\mathrm{CH}_{2}-3{ }^{\prime}\right), 116.95$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 118.98\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.52\left(\mathrm{C}_{\text {quat }}\right), 128.00\left(\mathrm{C}_{\text {quat }}\right), 128.08\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.73\left(\mathrm{C}_{\text {quat }}\right), 137.93\left(\mathrm{CH}-2\right.$ '), $152.97\left(\mathrm{C}_{\text {quat }}\right), 170.43(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 2926,2854$, 1573, 1249, 819, $747 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 370\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

5.6.5 2-But-2-enyl-6-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamide 266

A solution of 2-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamide $\mathbf{2 5 2 c}$ (3.58 mmol) in anhydrous THF (15 mL) was cooled to $-78^{\circ} \mathrm{C}$ and freshly titrated t - BuLi in hexanes $(7.17 \mathrm{mmol}, 2$ equiv.) was added dropwise. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and subsequently $\mathrm{MgBr}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}(1.01 \mathrm{~g}, 3.94 \mathrm{mmol}, 1.1$ equiv.) was added and the mixture was allowed to warm to room temperature and stirred for 1 h . Next, the Grignard was added dropwise to a solution of crotyl bromide ($0.48 \mathrm{~mL}, 3.94 \mathrm{mmol}, 1.1$ equiv.) and $\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70 \mathrm{mg}, 0.11 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ in THF $(10 \mathrm{~mL})$ at room temperature and stirred for 20 h . The salts were filtered off over Celite ${ }^{\circledR}$ and the filtrate was extracted with EtOAc (20 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{x} 10 \mathrm{~mL})$. Drying over MgSO_{4} and evaporation of the solvent in vacuo followed by flash chromatography gave 2-but-2-enyl-6-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamide 266 ($223 \mathrm{mg}, 0.84 \mathrm{mmol}, 23 \%$) together with 10% of starting material 252c.
23%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.96(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.64-1.68\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}-4{ }^{\prime}\right), 2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{~N}\right), 3.17-3.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ $\left.1^{\prime}\right), 5.46-5.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2{ }^{\prime}\right.$ and $\left.\mathrm{CH}-3^{\prime}\right), 6.65(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5), 6.82(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-$ 3), $7.13(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-4.66\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.13\left(\mathrm{CH}_{3} \mathrm{Si}\right), 17.90\left(\mathrm{CH}_{3}-4{ }^{\prime}\right)$, $25.71\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.46\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.24\left(\mathrm{CH}_{2}-1{ }^{\prime}\right), 36.36\left(\mathrm{CH}_{3} \mathrm{~N}\right), 37.69\left(\mathrm{CH}_{3} \mathrm{~N}\right), 116.15(\mathrm{CH}-5)$, $122.22(\mathrm{CH}-3), 126.32(\mathrm{CH}-4), 129.09$ and $129.13\left(\mathrm{CH}-2\right.$ ' and $\mathrm{CH}-3$ '), $139.29\left(\mathrm{C}_{\text {quat }}\right), 151.24\left(\mathrm{C}_{\text {quat }}\right)$, $168.88(\mathrm{C}=\mathrm{O})$ one trisubstituted olefinic carbon is not observed. IR (ATR): v $2930(\mathrm{CH}), 1620(\mathrm{C}=\mathrm{O})$, $1600,1252,781 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 334$ ([M+H] $\left.]^{+}, 100\right)$.

5.6.6 Organolithium mediated ring-closure

A solution of the appropriate allylsilanoxybenzamide (2.86 mmol) in THF (20 mL) was cooled to $-78^{\circ} \mathrm{C}$ and freshly prepared LDA or titrated $\mathrm{MeLi}(5.72 \mathrm{mmol}, 2.2 \mathrm{mmol})$ was added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 8 h . The reaction was quenched with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with EtOAc (30 mL). Drying over MgSO_{4} and evaporation in vacuo of the solvent followed by flash chromatography (petroleum ether/ethyl acetate) yielded the corresponding aminonaphthol.

8-Dimethylamino-3-methoxynaphthalen-1-ol 246

90% (base $=\mathrm{MeLi})$, pale white solid, mp $87^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.88(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 6.54(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-2), 6.65(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-3), 7.19(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.0$ $\mathrm{Hz}, \mathrm{CH}-7), 7.34(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-6), 7.54(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.0 \mathrm{~Hz}, \mathrm{CH}-5)$, OH not observed. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 45.88\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 54.88\left(\mathrm{OCH}_{3}\right), 97.09(\mathrm{CH}-2), 101.32(\mathrm{CH}-4), 114.38(\mathrm{CH}-7)$, $114.72\left(\mathrm{C}_{\text {quat }}\right), 125.39(\mathrm{CH}-5), 126.09(\mathrm{CH}-6), 136.89\left(\mathrm{C}_{\text {quat }}\right), 149.81\left(\mathrm{C}_{\text {quat }}\right), 157.97\left(\mathrm{C}_{\text {quat }}\right), 158.98$
(C $\mathrm{C}_{\text {quat }}$). IR (ATR): v 3089, 2988, 2855, 1619, 1581, 1330, 1157, 1148, $1017 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(E S^{+}\right) ~ m / z(\%): ~}$ $218\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 218.1181$, found 218.1176.

8-Dimethylaminonaphthalen-1-ol 257

57% (base $=\mathrm{LDA})$, pale white solid, $\mathrm{mp} 57^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.84\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 6.85(1 \mathrm{H}$, $\left.\mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.28\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.34\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.36(1 \mathrm{H}, \mathrm{t}, J=$ $\left.7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.66\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, OH not observed. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 46.42\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 110.00\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 118.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 119.01\left(\mathrm{C}_{\mathrm{quat}}\right)$, $125.67\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.71\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.34\left(\mathrm{C}_{\text {quat }}\right), 150.03\left(\mathrm{C}_{\text {quat }}\right), 156.87\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 3050, 2951, 1279, 1016, 825, $761 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 188\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}\right]^{+}: 188.1075$, found 188.1077.

8-Dimethylaminophenanthren-9-ol 265b

$37 \%($ base $=\mathrm{MeLi})$, yellow solid, $\mathrm{mp} 133^{\circ} \mathrm{C}($ decomp $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.88\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $7.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-10), 7.42\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.58(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.64(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.52\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.60(1 \mathrm{H}$, $\left.\mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, OH not observed. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 46.55\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 107.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.90$ $\left(\mathrm{C}_{\text {quat }}\right), 119.13\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.40\left(\mathrm{C}_{\text {quat }}\right), 121.90\left(\mathrm{CH}_{\text {Ar }}\right), 122.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.41\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.63\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.74\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.39\left(\mathrm{C}_{\text {quat }}\right), 134.17\left(\mathrm{C}_{\text {quat }}\right), 150.08\left(\mathrm{C}_{\text {quat }}\right), 154.39\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 3053, 2857, 1627, 1442, 1324, 1110, $758 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 238\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}\right]^{+}: 238.1232$, found 238.1234.

2-Carbamoyl-3,5-dimethoxybenzoic acid 272

A solution of N, N-diethyl-2,4-dimethoxybenzamide $237(3 \mathrm{~g}, 12.64 \mathrm{mmol})$ in anhydrous THF (35 mL) was cooled to $-78^{\circ} \mathrm{C}$ and freshly titrated t-BuLi in hexanes ($16.96 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was stirred for 30 min and subsequently dry CO_{2} gas was bubbled through the solution at $-78^{\circ} \mathrm{C}$. After 5 min the reaction was allowed to warm to room temperature and acidified with $\mathrm{HCl}(2 \mathrm{M})$ to $\mathrm{pH}=1$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and the precipitate was filtered of. Recrystallisation from $\mathrm{H}_{2} \mathrm{O}$, yielded pure 2-carbamoyl-3,5-dimethoxybenzoic acid $272(3.13 \mathrm{~g}, 11.12$ $\mathrm{mmol}, 88 \%$) as a pale white solid.
88%, pale white solid, mp $163.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 0.92\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.99\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.20\left(1 \mathrm{H}, \mathrm{dq}, J=13.6,7.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.55(1 \mathrm{H}$, dq, $\left.J=13.6,7.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.81(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 6.96\left(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, OH not observed. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 12.45\left(\mathrm{CH}_{3}\right), 13.81$ $\left(\mathrm{CH}_{3}\right), 38.36\left(\mathrm{NCH}_{2}\right), 42.56\left(\mathrm{NCH}_{2}\right), 55.03\left(\mathrm{OCH}_{3}\right), 56.44\left(\mathrm{OCH}_{3}\right), 102.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 106.41\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $121.53\left(\mathrm{C}_{\text {quat }}\right), 130.41\left(\mathrm{C}_{\text {quat }}\right), 157.10\left(\mathrm{C}_{\text {quat }}\right), 160.24\left(\mathrm{C}_{\text {quat }}\right), 166.58(\mathrm{C}=\mathrm{O}), 167.36(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v$
$2978,1712,1593,1459,1315,1213,1056 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 280\left([\mathrm{M}-\mathrm{H}]^{-}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{5}\right]^{+}: 282.1342$, found 282.1342.

5.7 Attempted synthesis of C-4 fluorinated pyranonaphthoquinones 275

5.7.1 1,4-Dimethoxy-2-hydroxymethyl-3-arylethynylnaphthalenes 277

A pressure vial was loaded with 3-bromo-1,4-dimethoxy-2-hydroxymethylnaphthalene $\mathbf{2 8 0}$ (1g, 3.4 $\mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(24 \mathrm{mg}, 0.034 \mathrm{mmol}, 1 \mathrm{~mol} \%), \mathrm{CuI}(6.4 \mathrm{mg}, 0.034 \mathrm{mmol}, 1 \mathrm{~mol} \%), i-\mathrm{Pr}_{2} \mathrm{NH}(1.9$ $\mathrm{ml}, 13.6 \mathrm{mmol}, 4$ equiv.) and anhydrous, degassed DMF (10 mL). The mixture was purged with N_{2} and allowed to stir for 5 min . Then, a solution of the appropriate arylacetylene ($4.08 \mathrm{mmol}, 1.2$ equiv.) in anhydrous degassed DMF (2 mL) was added dropwise under a N_{2} atmosphere. The pressure vial was sealed and heated overnight at $160^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite ${ }^{\circledR}$, dissolved in EtOAc $(50 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. Drying over MgSO_{4} and evaporation of the solvent in vacuo followed by flash chromatography (petroleum ether/ethyl acetate) yielded the corresponding 1,4-dimethoxy-2-hydroxymethyl-3-arylethynylnaphthalenes 277a and 277b.

1,4-Dimethoxy-2-hydroxymethyl-3-phenylethynylnaphthalene 277a

77%, pale white crystals, mp $70.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.09\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 7.37-7.41\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.54-7.64\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.08-$ $8.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.14-8.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 59.05\left(\mathrm{CH}_{2}\right), 62.11\left(\mathrm{OCH}_{3}\right), 63.57$ $\left(\mathrm{OCH}_{3}\right), 83.86\left(\equiv \mathrm{C}_{\text {quat }}\right), 98.60\left(\equiv \mathrm{C}_{\text {quat }}\right), 112.22\left(\mathrm{C}_{\text {quat }}\right), 122.78\left(\mathrm{CH}_{\text {Ar }}\right), 122.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.06\left(\mathrm{C}_{\text {quat }}\right)$, $127.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.59\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.64\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.78\left(\mathrm{C}_{\text {quat }}\right), 128.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.01\left(\mathrm{C}_{\text {quat }}\right), 129.97$ $\left(\mathrm{C}_{\text {quat }}\right), 131.62\left(2 \mathrm{xCH}_{\text {Ar }}\right), 150.72\left(\mathrm{C}_{\text {quat }}\right), 155.67\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 3435, 1351, 1046, 995, 759, 691 $\mathrm{cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 301\left([\mathrm{M}-\mathrm{OH}]^{+}, 100\right), 319\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right)$.

1,4-Dimethoxy-2-hydroxymethyl-3-(4-methylphenyl)ethynylnaphthalene 277b

69%, yellow crystals, mp $94.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.63(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{OH})$, $4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.09\left(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 7.20(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.50\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.54-7.59\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.08-8.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.15-$ $8.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.52\left(\mathrm{CH}_{3}\right), 58.81\left(\mathrm{CH}_{2}\right), 62.81\left(\mathrm{OCH}_{3}\right), 63.39\left(\mathrm{OCH}_{3}\right)$, $83.21\left(\equiv \mathrm{C}_{\text {quat }}\right), 98.73\left(\equiv \mathrm{C}_{\text {quat }}\right), 112.37\left(\mathrm{C}_{\text {quat }}\right), 119.88\left(\mathrm{C}_{\text {quat }}\right), 122.61\left(\mathrm{CH}_{\text {Ar }}\right), 122.69\left(\mathrm{CH}_{\text {Ar }}\right), 126.80$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.30\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.64\left(\mathrm{C}_{\text {quat }}\right), 128.77\left(\mathrm{C}_{\text {quat }}\right), 129.24\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.88\left(\mathrm{C}_{\text {quat }}\right), 131.36$ $\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 138.89\left(\mathrm{C}_{\text {quat }}\right), 150.57\left(\mathrm{C}_{\text {quat }}\right), 155.32\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $3505,1350,1039,820,772 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{+}\right) m / z(\%): 315\left(\left[\mathrm{M}^{\left.\left.-\mathrm{OH}^{-}\right]^{+}, 100\right), 333\left([\mathrm{M}+\mathrm{H}]^{+}, 5\right) \text {. } . ~ . ~}\right.\right.$

5.8 New entries towards the benzo[j]phenanthridinedione scaffold

2-m-Tolylaminocarbonyl-3-m-tolylamino-1,4-naphthoquinone

A solution of 1,4-dihydroxynaphthalene-2-carboxylic acid ($2 \mathrm{~g}, 9.8 \mathrm{mmol}$), meta-toluidine 291 (1.05 $\mathrm{g}, 9.8 \mathrm{mmol}, 1$ equiv.) and DCC ($2.02 \mathrm{~g}, 9.8 \mathrm{mmol}, 1$ equiv.) in anhydrous 1,4 -dioxane was stirred overnight under a nitrogen atmosphere. Then, $\mathrm{MnO}_{2}\left(5.11 \mathrm{~g}, 58.8 \mathrm{mmol}, 6\right.$ equiv.) and MgSO_{4} (11.80 $\mathrm{g}, 98 \mathrm{mmol}, 10$ equiv.) were added and the mixture was stirred for 30 min . The solids were filtered off and the filtrate was evaporated in vacuo to yield a mixture that consisted mainly of 2-m-tolylaminocarbonyl-3-m-tolylamino-1,4-naphthoquinone was obtained, which was further purified by means of flash chromatography.

Red solid, mp $186^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.91-6.97(3 \mathrm{H}, \mathrm{m}$, $\left.3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.11\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.23-7.29\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.50\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.51\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.65\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.80\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.89(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.22\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 12.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 13.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.49\left(\mathrm{CH}_{3}\right), 21.66\left(\mathrm{CH}_{3}\right), 103.63\left(\mathrm{C}_{\mathrm{quat}}\right), 118.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.59\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.88\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.04\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.35\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.04$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.30\left(\mathrm{C}_{\mathrm{quat}}\right), 132.87\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.61\left(\mathrm{C}_{\mathrm{quat}}\right), 135.27\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.02\left(\mathrm{C}_{\mathrm{quat}}\right), 138.92\left(\mathrm{C}_{\text {quat }}\right)$, $139.30\left(\mathrm{C}_{\text {quat }}\right), 139.85\left(\mathrm{C}_{\text {quat }}\right), 154.84\left(\mathrm{C}_{\text {quat }}\right), 167.62(\mathrm{NC}=\mathrm{O}), 181.55(\mathrm{C}=\mathrm{O}), 182.34(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR})$: $v 3026(\mathrm{NH}), 1690,1528,1288,780 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 395\left([\mathrm{M}-\mathrm{H}]^{-}, 15\right) . \mathrm{HRMS}^{2}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 397.1552$, found 397.1546.

5.8.1 1,4-Dimethoxynaphthalene-2-carboxylic acid 293

To a solution of methyl-1,4-dimethoxynaphthalene-2-carboxylate $290(50 \mathrm{~g}, 203 \mathrm{mmol})$ in 1,4dioxane (160 mL) was added a solution of $\mathrm{KOH}\left(3.41 \mathrm{~g}, 609 \mathrm{mmol}, 3\right.$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(320 \mathrm{~mL})$ and stirred overnight. Then EtOAc (100 mL) was added and the mixture was extracted with aqueous saturated $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL})$. The aqueous phase was acidified using concentrated HCl to $\mathrm{pH}=1$ and cooled to $0^{\circ} \mathrm{C}$. The thus formed precipitation was filtered of and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. Further freeze drying yielded 1,4-dimethoxynaphthalene-2-carboxylic acid 293 ($43.8 \mathrm{~g}, 189 \mathrm{mmol}$, 93%) as a white solid.
93%, white solid, mp $172.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.36(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}-3), 7.62-7.68\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.08-8.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.29-8.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 11.41(1 \mathrm{H}$, br s, OH). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 56.00\left(\mathrm{OCH}_{3}\right), 64.30\left(\mathrm{OCH}_{3}\right), 103.34(\mathrm{CH}-3), 117.59\left(\mathrm{C}_{\text {quat }}\right), 122.90$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.98\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.65\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.60\left(\mathrm{C}_{\text {quat }}\right), 151.47\left(\mathrm{C}_{\text {quat }}\right), 152.43\left(\mathrm{C}_{\text {quat }}\right)$, $167.15(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): $v 2923(\mathrm{OH}), 1689,1672$, $1595,1367,1112,1091,60,736 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 233\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4}\right]^{+}: 233.0814$, found 233.0813.

N-meta-Tolyl-1,4-dimethoxynaphthalene-2-carboxamide 292

A microwave vial was loaded with methyl-1,4-dimethoxynaphthalene-2-carboxylate 290 (250 mg , 1.01 mmol), meta-toluidine $291(109 \mathrm{mg}, 1.01 \mathrm{mmol}, 1$ equiv.) and $\mathrm{KO} t-\mathrm{Bu}(113 \mathrm{mg}, 1.01 \mathrm{mmol}, 1$ equiv.). The vial was flushed with nitrogen and irradiated in the microwave during 10 min at 100 W . The resulting mixture was partitioned between EtOAc $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of flash chromatography to yield N-meta-tolyl-1,4-dimethoxynaphthalene-2-carboxamide 292 ($140 \mathrm{mg}, 0.43 \mathrm{mmol}, 43 \%$)
43%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.98$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.28\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52-7.63(4 \mathrm{H}, \mathrm{m}$, $\left.4 \mathrm{XCH}_{\mathrm{Ar}}\right), 8.11-8.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.25-8.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 21.69\left(\mathrm{CH}_{3}\right), 55.94\left(\mathrm{OCH}_{3}\right), 63.49\left(\mathrm{OCH}_{3}\right), 130.51(\mathrm{CH}-3), 117.21\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.99$ $\left(\mathrm{C}_{\text {quat }}\right), 122.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.81\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.39\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.26\left(\mathrm{C}_{\text {quat }}\right)$, $128.72\left(\mathrm{C}_{\text {quat }}\right), 129.07\left(\mathrm{CH}_{\text {Ar }}\right), 138.52\left(\mathrm{C}_{\text {quat }}\right), 139.16\left(\mathrm{C}_{\text {quat }}\right), 148.94\left(\mathrm{C}_{\text {quat }}\right), 152.42\left(\mathrm{C}_{\text {quat }}\right), 163.65$ (C=O). IR (ATR): v 2931 (CH), 1635, 1427, 1112, 921, $700 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 322\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100).

2-meta-Tolylaminocarbonyl-1,4-naphthoquinone 286a

To a solution of N-meta-tolyl-1,4-dimethoxynaphthalene-2-carboxamide $292(140 \mathrm{mg}, 0.44 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added a solution of $\mathrm{CAN}\left(717 \mathrm{mg}, 1.31 \mathrm{mmol}, 2.5\right.$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ in one portion. The reaction mixture was allowed to stir for 30 sec and poured in a $1: 1 \mathrm{mixture} \mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$. The $\mathrm{H}_{2} \mathrm{O}$ phase was discarded and the organic phase was washed with water $(5 \mathrm{~mL})$.The organic phase was dried over MgSO_{4} and evaporated in vacuo to yield the crude quinone, which was recrystallised from EtOH to yield pure 2-meta-tolylaminocarbonyl-1,4-naphthoquinone 286a (60 mg , $0.21 \mathrm{mmol}, 47 \%$) as a yellow solid.
47%, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.00\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.27(1 \mathrm{H}, \mathrm{t}$, $J=7.7 \mathrm{~Hz}, \mathrm{CH}-5 '), 7.54\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-2 '), 7.80-7.88\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $8.01(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 8.10-8.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.17-8.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.65\left(\mathrm{CH}_{3}\right), 117.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.38\left(\mathrm{CH}-2{ }^{\prime}\right), 126.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.60$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.10\left(\mathrm{CH}-5{ }^{\prime}\right), 132.22\left(\mathrm{C}_{\text {quat }}\right), 134.75\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.06\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $136.66\left(\mathrm{C}_{\text {quat }}\right), 137.55\left(\mathrm{C}_{\text {quat }}\right), 148.94\left(\mathrm{C}_{\text {quat }}\right), 139.24\left(\mathrm{C}_{\text {quat }}\right), 142.55(\mathrm{CH}-3), 159.17(\mathrm{NC}=\mathrm{O}), 184.85$ $(\mathrm{C}=\mathrm{O}), 186.74(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2931(\mathrm{CH}), 1635,1427,1112,921,700 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%):$ $292\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

5.8.2 General procedure for the preparation of \boldsymbol{N}-2-bromophenyl-1,4-dialkoxynaphthalene-2carboxamides 296 and 323

The appropriate 1,4-dialkoxynaphthalene-2-carboxylic acid 293 or $\mathbf{3 2 2}$ (21.53 mmol) was dissolved in SOCl_{2} ($15.5 \mathrm{~mL}, 215.3 \mathrm{mmol}, 10$ equiv.) and refluxed for 2.5 h under a nitrogen atmosphere. The reaction mixture was evaporated in vacuo and redissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and added dropwise to a solution of the appropriate 2-bromoaniline (21.53 mmol , 1 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.95 \mathrm{~g}$, 43.06 mmol, 2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. Next, the salts were filtered off and the filtrate was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(2 \mathrm{M}, 2 \mathrm{x} 50 \mathrm{~mL})$. Drying over MgSO_{4}, evaporation of the solvent in vacuo and recrystallisation from EtOH or flash chromatography yielded pure N-2-bromophenyl-1,4-dialkoxynaphthalene-2-carboxamides 296 and 323.

N-2-Bromophenyl-1,4-dimethoxynaphthalene-2-carboxamide 296a

75%, yellow powder, mp $142^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.02\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right), 6.95(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.35\left(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.52-7.58\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.07-8.14$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.21-8.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.74\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.75(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 55.79\left(\mathrm{OCH}_{3}\right), 63.82\left(\mathrm{OCH}_{3}\right), 103.27(\mathrm{CH}-3), 113.25\left(\mathrm{C}_{\text {quat }}\right), 121.38\left(\mathrm{C}_{\text {quat }}\right)$, $122.08\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.64\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.21\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.26$ $\left(\mathrm{C}_{\text {quat }}\right), 128.31\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.77\left(\mathrm{C}_{\text {quat }}\right), 132.52\left(\mathrm{CH}_{\mathrm{Ar}}\right), 137.03\left(\mathrm{C}_{\text {quat }}\right), 149.26\left(\mathrm{C}_{\text {quat }}\right), 152.16\left(\mathrm{C}_{\text {quat }}\right)$, $163.72(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3292(\mathrm{NH}), 2969,1665,1532,1372,1106,755 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%):$ 386/388 ([M+H] $\left.{ }^{+}, 100 / 97\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{17}{ }^{81} \mathrm{BrNO}_{3}\right]^{+}: 386.0392$, found 386.0398.

N-(2-Bromo-5-methylphenyl)-1,4-dimethoxynaphthalene-2-carboxamide 296b

54%, pale white solid, mp $166.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.03\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right)$, $6.78(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-4 '), 7.43(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-3 '), 7.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.53-7.69(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.11-8.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.23-8.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6$ ' $), 10.71(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.48\left(\mathrm{CH}_{3}\right), 55.80\left(\mathrm{OCH}_{3}\right), 63.85\left(\mathrm{OCH}_{3}\right), 103.25(\mathrm{CH}-3), 110.03\left(\mathrm{C}_{\text {quat }}\right)$, $121.42\left(\mathrm{C}_{\text {quat }}\right), 122.66\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.75\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.95\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.24\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.65$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.11\left(\mathrm{C}_{\text {quat }}\right), 128.80\left(\mathrm{C}_{\text {quat }}\right), 132.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.61\left(\mathrm{C}_{\text {quat }}\right), 138.51\left(\mathrm{C}_{\text {quat }}\right), 149.29\left(\mathrm{C}_{\text {quat }}\right)$, $152.19\left(\mathrm{C}_{\text {quat }}\right), 163.81(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3291(\mathrm{NH}), 1671(\mathrm{C}=\mathrm{O}), 1587,1539,1410,1370,1107 \mathrm{~cm}^{-}$ ${ }^{1}$. MS $\left(\mathrm{ES}^{+}\right) m / z(\%): 400 / 402\left([\mathrm{M}+\mathrm{H}]^{+}, 100 / 97\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{19}{ }^{81} \mathrm{BrNO}_{3}\right]^{+}: 400.0548$, found 400.0552 .

N-(2-Bromo-4-methylphenyl)-1,4-dimethoxynaphthalene-2-carboxamide 296c

88%, pale white solid, mp $144.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.07\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right)$, $7.19\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-5^{\prime}\right), 7.44(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}-3 '), 7.53(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.58-7.65$ (2H,
$\left.\mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.16-8.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.27-8.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.59(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}-6 '), 10.70$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 20.53\left(\mathrm{CH}_{3}\right), 55.78\left(\mathrm{OCH}_{3}\right), 63.80\left(\mathrm{OCH}_{3}\right), 103.31(\mathrm{CH}-3)$, $113.16\left(\mathrm{C}_{\text {quat }}\right), 121.45\left(\mathrm{C}_{\text {quat }}\right), 121.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.63\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.56$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.09\left(\mathrm{C}_{\text {quat }}\right), 128.72\left(\mathrm{C}_{\text {quat }}\right), 128.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.43\left(\mathrm{C}_{\text {quat }}\right), 134.95\left(\mathrm{C}_{\text {quat }}\right)$, $149.19\left(\mathrm{C}_{\text {quat }}\right), 152.14\left(\mathrm{C}_{\text {quat }}\right), 163.61(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3314(\mathrm{NH}), 1665,1519,1370,1296,1104$, $991 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 400 / 402\left([\mathrm{M}+\mathrm{H}]^{+}, 100 / 97\right)$.

N-(2-Bromo-4,6-dimethylphenyl)-1,4-dimethoxynaphthalene-2-carboxamide 296d

99%, pale white solid, mp $138.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.03$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.03(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-5 '), 7.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3$ '), $7.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.56-$ $7.62\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09-8.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.26-8.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.42\left(\mathrm{CH}_{3}\right), 20.71\left(\mathrm{CH}_{3}\right), 55.83\left(\mathrm{OCH}_{3}\right), 64.04\left(\mathrm{OCH}_{3}\right), 103.63(\mathrm{CH}-3), 120.90$ $\left(\mathrm{C}_{\text {quat }}\right), 122.22\left(\mathrm{C}_{\text {quat }}\right), 122.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.83\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.50\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.09\left(\mathrm{C}_{\text {quat }}\right)$, $128.78\left(\mathrm{C}_{\text {quat }}\right), 130.74\left(\mathrm{CH}_{\text {Ar }}\right), 130.83\left(\mathrm{CH}_{\text {Ar }}\right), 131.82\left(\mathrm{C}_{\text {quat }}\right), 137.84\left(\mathrm{C}_{\text {quat }}\right), 138.51\left(\mathrm{C}_{\text {quat }}\right), 149.64$ $\left(\mathrm{C}_{\text {quat }}\right), 152.13\left(\mathrm{C}_{\text {quat }}\right), 164.02(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3339(\mathrm{NH}), 1656,1591,1489,1368,1220,1104$, $765 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 414 / 416\left([\mathrm{M}+\mathrm{H}]^{+}, 100 / 97\right)$.

N-2-Bromophenyl-1,4-di-iso-propoxynaphthalene-2-carboxamide 323

82%, orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.41\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.46\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.86\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{C} \underline{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.00$ $\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.55-7.62(3 \mathrm{H}, \mathrm{m}$, $\left.3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.11-8.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.30-8.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.75\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.34$ $(1 \mathrm{H}$, br s, NH $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.95\left(\mathrm{CH}\left(\underline{\mathrm{CH}_{3}}\right)_{2}\right), 22.00\left(\mathrm{CH}\left(\underline{\mathrm{CH}_{3}}\right)_{2}\right), 70.34\left(\underline{\mathrm{C}} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.21$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 105.16(\mathrm{CH}-3), 112.73\left(\mathrm{C}_{\text {quat }}\right), 121.57\left(\mathrm{CH}_{\text {Ar }}\right), 122.78\left(\mathrm{CH}_{\text {Ar }}\right), 123.24\left(\mathrm{CH}_{\text {Ar }}\right)$, $123.61\left(\mathrm{C}_{\text {quat }}\right), 124.66\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.66\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.13\left(\mathrm{C}_{\text {quat }}\right), 129.44$ $\left(\mathrm{C}_{\text {quat }}\right), 132.42\left(\mathrm{CH}_{\text {Ar }}\right), 136.58\left(\mathrm{C}_{\text {quat }}\right), 145.84\left(\mathrm{C}_{\text {quat }}\right), 149.91\left(\mathrm{C}_{\text {quat }}\right), 164.72(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 3312$, 2976, 1672, 1525, 1380, 1101, 1087, $751 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 442 / 444\left([\mathrm{M}+\mathrm{H}]^{+}, 60 / 58\right)$.

5.8.3 General procedure for the preparation of \boldsymbol{N}-2-bromophenyl- \boldsymbol{N}-methoxymethyl-1,4-dialkoxynaphthalene-2-carboxamides 300 or 324

A solution of the appropriate N-2-bromophenyl-1,4-dialkoxynaphthalene-2-carboxamide 296 or 323 (6.4 mmol) in anhydrous THF (30 ml) was cooled to $0^{\circ} \mathrm{C}$ and under a N_{2} atmosphere, washed NaH ($563 \mathrm{mg}, 14.08 \mathrm{mmol}, 1.5 \mathrm{mmol}$) was added. After the addition, the reaction mixture was allowed to stir for 30 min and subsequently $\mathrm{MOMCl}(0.73 \mathrm{~mL}, 9.6 \mathrm{mmol}, 1.5$ equiv.) was added dropwise. The reaction mixture was warmed to $30^{\circ} \mathrm{C}$ and stirred for 16 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(40$ mL) and extracted with EtOAc $(2 \mathrm{x} 40 \mathrm{~mL})$. The organic phases were dried over MgSO_{4}, evaporated in
vacuo and purified by means of flash chromatography (petroleum ether/ethyl acetate) to yield pure N -2-bromophenyl- N-methoxymethyl-1,4-dialkoxynaphthalene-2-carboxamides $\mathbf{3 0 0}$ or $\mathbf{3 2 4}$.

N -2-Bromophenyl- N -methoxymethyl-1,4-dimethoxynaphthalene-2-carboxamide 300a

62%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.05$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.68\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.91\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 6.69(1 \mathrm{H}, \mathrm{s}$, CH-3), $6.93\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.02\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38-7.51(4 \mathrm{H}, \mathrm{m}$, $\left.4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.95\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.09\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$. Minor rotamer $\delta 3.66(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.77\left(1 \mathrm{H}, \mathrm{d}, J=10.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.94(1 \mathrm{H}, \mathrm{d}, J=$ $\left.10.2 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.28-7.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38-7.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.54-7.64$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.73-7.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.14(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 8.29(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$. Major/minor $=5 / 1 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 55.62\left(\mathrm{OCH}_{3}\right), 56.98\left(\mathrm{OCH}_{3}\right), 63.63\left(\mathrm{OCH}_{3}\right)$, $77.56\left(\mathrm{NCH}_{2}\right), 100.78(\mathrm{CH}-3), 122.12\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.66\left(\mathrm{C}_{\text {quat }}\right), 126.14\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.75$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.81\left(\mathrm{C}_{\text {quat }}\right), 127.24\left(\mathrm{C}_{\text {quat }}\right), 127.91\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.99\left(\mathrm{C}_{\text {quat }}\right), 129.71\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.99\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $132.84\left(\mathrm{CH}_{\text {Ar }}\right), 139.42\left(\mathrm{C}_{\text {quat }}\right), 145.50\left(\mathrm{C}_{\text {quat }}\right), 151.38\left(\mathrm{C}_{\text {quat }}\right), 170.30(\mathrm{C}=\mathrm{O})$. Minor rotamer $\delta 55.83$ $\left(\mathrm{OCH}_{3}\right), 56.98\left(\mathrm{OCH}_{3}\right), 63.91\left(\mathrm{OCH}_{3}\right), 82.32\left(\mathrm{NCH}_{2}\right), 102.29(\mathrm{CH}-3), 122.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.60\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $124.23\left(\mathrm{C}_{\text {quat }}\right), 125.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.81\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.24\left(\mathrm{C}_{\text {quat }}\right), 127.99\left(\mathrm{CH}_{\text {Ar }}\right), 128.45\left(\mathrm{C}_{\text {quat }}\right), 129.71$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.99\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.84\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.63\left(\mathrm{C}_{\text {quat }}\right), 139.22\left(\mathrm{C}_{\text {quat }}\right), 146.25\left(\mathrm{C}_{\text {quat }}\right), 152.08\left(\mathrm{C}_{\text {quat }}\right)$, $170.30(\mathrm{C}=\mathrm{O})$. IR (ATR): v 3350, 2937, 2838, 2570, 1669, 1612, 1516, 1251, 1180, $1029 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 215\left(\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNO}\right]^{+}, 100\right), 430 / 432\left([\mathrm{M}+\mathrm{H}]^{+}, 10 / 9.7\right)$.
N-(2-Bromo-5-methylphenyl)- N-methoxymethyl-1,4-dimethoxynaphthalene-2-carboxamide 300b
70%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.89(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 6.71\left(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.3 \mathrm{~Hz}, \mathrm{CH}-4{ }^{\prime}\right), 7.20\left(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-6{ }^{\prime}\right)$, $7.26(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-3 '), 7.42(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-7), 7.48(1 \mathrm{H}, \mathrm{dt}, J=1.7$, $7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.97(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 8.09(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}$, $\mathrm{CH}-5$ or $\mathrm{CH}-8)$. Minor rotamer $\delta 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 6.88(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-$ 3), $7.08(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.3 \mathrm{~Hz}, \mathrm{CH}-3 '), 7.30(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-6 '), 7.56(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.7$ $\mathrm{Hz}, \mathrm{CH}-6$ or CH-7), $7.60(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}),, 7.61(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $8.14(1 \mathrm{H}$, dd, $J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8), $8.29(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8). Major/minor $=4 / 1$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 20.29\left(\mathrm{CH}_{3}\right), 55.39\left(\mathrm{OCH}_{3}\right), 56.81\left(\mathrm{OCH}_{3}\right), 63.42\left(\mathrm{OCH}_{3}\right), 77.38$ $\left(\mathrm{NCH}_{2}\right), 100.58(\mathrm{CH}-3), 118.92\left(\mathrm{C}_{\text {quat }}\right), 121.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.77\left(\mathrm{C}_{\text {quat }}\right), 125.91\left(\mathrm{CH}_{\text {Ar }}\right)$, $126.57\left(\mathrm{CH}_{\text {Ar }}\right), 127.06\left(\mathrm{C}_{\text {quat }}\right), 127.87\left(\mathrm{C}_{\text {quat }}\right), 130.45\left(\mathrm{CH}_{\text {Ar }}\right), 132.16\left(\mathrm{CH}_{\text {Ar }}\right), 132.37\left(\mathrm{CH}_{\text {Ar }}\right), 137.88$ $\left(\mathrm{C}_{\text {quat }}\right), 138.92\left(\mathrm{C}_{\text {quat }}\right), 145.45\left(\mathrm{C}_{\text {quat }}\right), 151.15\left(\mathrm{C}_{\text {quat }}\right), 170.10(\mathrm{C}=\mathrm{O})$. Minor rotamer $20.74\left(\mathrm{CH}_{3}\right), 55.60$
$\left(\mathrm{OCH}_{3}\right), 55.94\left(\mathrm{OCH}_{3}\right), 63.69\left(\mathrm{OCH}_{3}\right), 82.21\left(\mathrm{NCH}_{2}\right), 102.08(\mathrm{CH}-3), 118.92\left(\mathrm{C}_{\text {quat }}\right), 122.43\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $124.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.77\left(\mathrm{C}_{\text {quat }}\right), 125.91\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.06\left(\mathrm{C}_{\text {quat }}\right), 128.31\left(\mathrm{C}_{\text {quat }}\right), 130.45$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.16\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.39\left(\mathrm{C}_{\text {quat }}\right), 138.72\left(\mathrm{C}_{\text {quat }}\right), 146.07\left(\mathrm{C}_{\text {quat }}\right), 151.87\left(\mathrm{C}_{\text {quat }}\right)$, $170.10(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2935(\mathrm{CH}), 1664(\mathrm{C}=\mathrm{O}), 1460,1366,1102,1061,770,730 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 215\left(\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNO}\right]^{+}, 100\right), 444 / 446\left([\mathrm{M}+\mathrm{H}]^{+}, 15 / 14\right)$.

N-(2-Bromo-4-methylphenyl)- N-methoxymethyl-1,4-dimethoxynaphthalene-2-carboxamide 300c

37%, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.91(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.71(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.16(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3 '), 7.28\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.31-7.44(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.47-7.58\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.95(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$. Minor rotamer δ $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.74(1 \mathrm{H}, \mathrm{d}, J=9.9$ $\left.\mathrm{Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.06\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3{ }^{\prime}\right), 7.24-7.58$ $\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.12(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 8.26(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$. Major/minor $=5 / 1 .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 20.32\left(\mathrm{CH}_{3}\right), 55.43\left(\mathrm{OCH}_{3}\right), 56.75\left(\mathrm{OCH}_{3}\right), 63.40\left(\mathrm{OCH}_{3}\right), 77.51\left(\mathrm{NCH}_{2}\right)$, $100.69(\mathrm{CH}-3), 121.99\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.86\left(\mathrm{C}_{\text {quat }}\right), 125.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.57$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.62\left(\mathrm{C}_{\text {quat }}\right), 127.06\left(\mathrm{C}_{\text {quat }}\right), 127.85\left(\mathrm{C}_{\text {quat }}\right), 128.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.55\left(\mathrm{C}_{\text {quat }}\right)$, $139.90\left(\mathrm{C}_{\text {quat }}\right), 145.27\left(\mathrm{C}_{\text {quat }}\right), 151.19\left(\mathrm{C}_{\text {quat }}\right), 170.33(\mathrm{C}=\mathrm{O})$. Minor rotamer not resolved. IR (ATR): v $2930(\mathrm{CH}), 1667(\mathrm{C}=\mathrm{O}), 1595,1459,1367,1290,1104,1083,1044,770 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 215$ $\left(\left[\mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrNO}\right]^{+}, 100\right), 430 / 432\left([\mathrm{M}+\mathrm{H}]^{+}, 10 / 9.7\right)$.

N-(2-Bromo-4,6-dimethylphenyl)- N-methoxymethyl-1,4-dimethoxynaphthalene-2-carboxamide 300d

73%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major rotamer $\delta 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.06$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.77(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.10\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.43(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.49(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $8.02(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8), $8.13(1 \mathrm{H}, \mathrm{dd}$, $J=8.3 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8). Minor rotamer $\delta 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.98\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.88(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 6.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.72\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.18\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.54(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.59(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $8.09(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or CH-8), $8.28(1 \mathrm{H}, \mathrm{dd}$, $J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8)$. Major/minor $=6 / 5 .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: rotamers not distinguishable, all peaks given $\delta 18.90\left(\mathrm{CH}_{3}\right)$, $18.94\left(\mathrm{CH}_{3}\right)$, $20.51\left(\mathrm{CH}_{3}\right), 20.76\left(\mathrm{CH}_{3}\right)$, $55.72\left(\mathrm{OCH}_{3}\right)$, $55.92\left(\mathrm{OCH}_{3}\right)$, $56.97\left(\mathrm{OCH}_{3}\right), 58.17\left(\mathrm{OCH}_{3}\right), 63.78\left(\mathrm{OCH}_{3}\right), 64.17\left(\mathrm{OCH}_{3}\right), 80.24\left(\mathrm{NCH}_{2}\right), 83.53\left(\mathrm{NCH}_{2}\right), 102.03$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 102.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.41\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.67\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.05\left(\mathrm{C}_{\text {quat }}\right), 124.98\left(\mathrm{C}_{\text {quat }}\right)$, $125.62\left(\mathrm{C}_{\text {quat }}\right), 126.26\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.52\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.63\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.35\left(\mathrm{C}_{\text {quat }}\right), 128.78$
$\left(\mathrm{C}_{\text {quat }}\right), 128.72\left(\mathrm{C}_{\text {quat }}\right), 131.18\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.68\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.08\left(\mathrm{C}_{\text {quat }}\right), 137.18\left(\mathrm{C}_{\text {quat }}\right)$, $139.36\left(\mathrm{C}_{\text {quat }}\right), 139.59\left(\mathrm{C}_{\text {quat }}\right), 139.73\left(\mathrm{C}_{\text {quat }}\right), 140.93\left(\mathrm{C}_{\text {quat }}\right), 146.49\left(\mathrm{C}_{\text {quat }}\right), 147.51\left(\mathrm{C}_{\text {quat }}\right), 150.89$ $\left(\mathrm{C}_{\text {quat }}\right), 152.11\left(\mathrm{C}_{\text {quat }}\right), 169.29(\mathrm{C}=\mathrm{O}), 169.96(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}):$ v $2935(\mathrm{CH}), 1664(\mathrm{C}=\mathrm{O}), 1595,1460$, 1366, 1102, 1061, 770, $730 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 458 / 460\left([\mathrm{M}+\mathrm{H}]^{+}, 100 / 97\right) . \mathrm{HRMS}^{\left(E S^{+}\right)}$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrNO}_{4}\right]^{+}: 458.0967$, found 488.0952 .

N-2-Bromophenyl- N-methoxymethyl-1,4-di-iso-propoxynaphthalene-2-carboxamide 324

44%, pale white solid, $\mathrm{mp} 100^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{\mathrm{A}}\left(\mathrm{CH}_{3}\right)_{\mathrm{B}}\right)$, $1.31\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{\mathrm{A}}\left(\mathrm{CH}_{3}\right)_{\mathrm{B}}\right), 1.41\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.62\left(2 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, 2 \mathrm{xC} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.69\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.83(1 \mathrm{H}, \mathrm{d}, J=10.5$ $\left.\mathrm{Hz}, \mathrm{NCH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 6.89(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.03(1 \mathrm{H}, \mathrm{dt}, J=1.7$, $7.7 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-7), $7.34(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 7.37-7.42\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $7.54(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 7.91-7.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.08-8.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.89\left(\mathrm{CH}_{3}\right), 22.26\left(\mathrm{CH}_{3}\right), 22.71\left(\mathrm{CH}_{3}\right), 22.79\left(\mathrm{CH}_{3}\right), 57.11\left(\mathrm{OCH}_{3}\right), 70.46$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.53\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 78.17\left(\mathrm{NCH}_{2}\right), 103.94(\mathrm{CH}-3), 122.26\left(\mathrm{CH}_{\text {Ar }}\right), 122.60\left(\mathrm{C}_{\text {quat }}\right), 122.92$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.67\left(2 \mathrm{xC}_{\text {quat }}\right), 125.94\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.47\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.62\left(\mathrm{C}_{\text {quat }}\right), 129.47\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.68$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 139.44\left(\mathrm{C}_{\text {quat }}\right), 142.55\left(\mathrm{C}_{\text {quat }}\right), 149.00\left(\mathrm{C}_{\text {quat }}\right), 170.69(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2976, $1665,1380,1372,1104,1080,751,729 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 486 / 488\left([\mathrm{M}+\mathrm{H}]^{+}, 7 / 7\right)$.

5.8.4 General procedure for the preparation of 7,12-dialkoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-ones 301 or 325

A Schlenk tube was loaded with the appropriate N-2-bromophenyl- N-methoxymethyl-1,4-dialkoxynaphthalene-2-carboxamide $\mathbf{3 0 1}$ or $\mathbf{3 2 4}(1 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(13.5 \mathrm{mg}, 0.06 \mathrm{mmol}, 6 \mathrm{~mol} \%$), $\mathrm{PPh}_{3}(47.2 \mathrm{mg}, 0.18 \mathrm{mmol}, 18 \mathrm{~mol} \%)$, oven-dried $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2 \mathrm{mmol}, 2$ equiv.) and anhydrous, degassed $\mathrm{PhMe}(15 \mathrm{~mL})$. The Schlenk tube was evacuated and back-filled with Ar three times and placed in an oil bath preheated to $100^{\circ} \mathrm{C}$. After 18 h , the reaction mixture was filtered over a pad of Celite ${ }^{\circledR}$ and washed with EtOAc. The filtrate was evaporated in vacuo and purified by means of flash chromatography (petroleum ether/ethyl acetate) to yield pure 7,12-dialkoxy-5-methoxymethyl-5 H -benzo[j]phenanthridin-6-ones 301 or 325.

7,12-Dimethoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-one 301a

96%, pale white needles mp $101.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.30\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.47\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.57\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.60\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.70\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.31(1 \mathrm{H}$, $\left.\mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.44\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.22\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.84\left(\mathrm{OCH}_{3}\right), 60.93\left(\mathrm{OCH}_{3}\right), 63.34\left(\mathrm{OCH}_{3}\right), 74.30\left(\mathrm{NCH}_{2}\right), 115.19\left(\mathrm{C}_{\text {quat }}\right), 115.49\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $118.89\left(\mathrm{C}_{\text {quat }}\right), 122.15\left(\mathrm{C}_{\text {quat }}\right), 122.66\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.95\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.16$
$\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.99\left(\mathrm{C}_{\text {quat }}\right), 129.18\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.85\left(\mathrm{C}_{\text {quat }}\right), 136.78\left(\mathrm{C}_{\text {quat }}\right), 149.42\left(\mathrm{C}_{\text {quat }}\right)$, $156.97\left(\mathrm{C}_{\text {quat }}\right), 160.95(\mathrm{C}=\mathrm{O})$. IR (ATR): v $1649(\mathrm{C}=\mathrm{O}), 1451,1357,1063,750 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}{ }^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $350\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{4}\right]^{+}: 350.1392$, found 350.1394.

7,12-Dimethoxy-5-methoxymethyl-3-methyl-5H-benzo[j]phenanthridin-6-one 301b

72%, pale white solid, mp $124.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.77\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 7.14\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.37$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.58-7.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or 10$), 7.68-7.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or 10$), 8.30(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, CH-8 or 11$), 8.44(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or 11$), 9.11\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 21.75\left(\mathrm{CH}_{3}\right), 56.76\left(\mathrm{OCH}_{3}\right), 60.64\left(\mathrm{OCH}_{3}\right), 63.16\left(\mathrm{OCH}_{3}\right), 74.12\left(\mathrm{NCH}_{2}\right), 114.96\left(\mathrm{C}_{\text {quat }}\right), 115.65$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.14\left(\mathrm{C}_{\text {quat }}\right), 122.22\left(\mathrm{C}_{\text {quat }}\right), 122.41\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.58\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.91\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.57\left(\mathrm{C}_{\text {quat }}\right), 128.96\left(\mathrm{CH}_{\text {Ar }}\right), 131.70\left(\mathrm{C}_{\text {quat }}\right), 136.69\left(\mathrm{C}_{\text {quat }}\right), 139.44\left(\mathrm{C}_{\text {quat }}\right), 148.89$ $\left(\mathrm{C}_{\text {quat }}\right), 156.78\left(\mathrm{C}_{\text {quat }}\right), 160.97(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2925(\mathrm{CH}), 1656(\mathrm{C}=\mathrm{O}), 1613,1353,1259,1088$, 1066, $964 \mathrm{~cm}^{-1}$. MS (ES^{+}) m/z (\%): $364\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES^{+}) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}$: 364.1549 , found 364.1542 .

7,12-Dimethoxy-5-methoxymethyl-2-methyl-5H-benzo[j]phenanthridin-6-one 301c

78%, pale white solid, mp $113.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.75\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 7.28(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.8 \mathrm{~Hz}, \mathrm{CH}-3), 7.46$ $(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}-4), 7.58-7.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or 10$), 7.67-7.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or 10$), 8.31(1 \mathrm{H}, \mathrm{d}$, $J=8.8 \mathrm{~Hz}, \mathrm{CH}-8$ or 11$), 8.44(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}-8$ or 11$), 9.05(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.23\left(\mathrm{CH}_{3}\right), 56.65\left(\mathrm{OCH}_{3}\right), 60.70\left(\mathrm{OCH}_{3}\right), 63.20\left(\mathrm{OCH}_{3}\right), 74.12\left(\mathrm{NCH}_{2}\right), 115.24$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 118.63\left(\mathrm{C}_{\text {quat }}\right), 122.11\left(\mathrm{C}_{\text {quat }}\right), 122.49\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.78\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.22\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.83\left(\mathrm{C}_{\text {quat }}\right), 129.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.00\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.73\left(\mathrm{C}_{\text {quat }}\right), 132.40\left(\mathrm{C}_{\text {quat }}\right), 134.46\left(\mathrm{C}_{\text {quat }}\right), 149.21$ $\left(\mathrm{C}_{\text {quat }}\right), 156.84\left(\mathrm{C}_{\text {quat }}\right), 160.75(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon not observed. IR (ATR): v 2932 $(\mathrm{CH}), 1659(\mathrm{C}=\mathrm{O}), 1450,1354,1263,1062,1034,766 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 364\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}: 364.1549$, found 364.1539.

7,12-Dimethoxy-5-methoxymethyl-2,4-dimethyl-5H-benzo[j]phenanthridin-6-one 301d

58%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.09(1 \mathrm{H}, \mathrm{d}, J=1.1, \mathrm{~Hz}, \mathrm{CH}-3), 7.55-7.61$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or $\mathrm{CH}-10$), $7.66-7.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or $\mathrm{CH}-10), 8.29(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or CH11), $8.45(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 8.66(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $20.95\left(\mathrm{CH}_{3}\right), 21.45\left(\mathrm{CH}_{3}\right), 56.52\left(\mathrm{OCH}_{3}\right), 61.24\left(\mathrm{OCH}_{3}\right), 63.46\left(\mathrm{OCH}_{3}\right), 78.84\left(\mathrm{NCH}_{2}\right), 113.91\left(\mathrm{C}_{\text {quat }}\right)$, $121.77\left(\mathrm{C}_{\text {quat }}\right), 122.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.24\left(\mathrm{C}_{\text {quat }}\right), 124.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.21\left(\mathrm{CH}_{\text {Ar }}\right), 126.63\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.38$ $\left(\mathrm{C}_{\text {quat }}\right), 128.48\left(\mathrm{C}_{\text {quat }}\right), 129.01\left(\mathrm{CH}_{\text {Ar }}\right), 131.82\left(\mathrm{C}_{\text {quat }}\right), 133.21\left(\mathrm{C}_{\text {quat }}\right), 133.42\left(\mathrm{C}_{\text {quat }}\right), 133.70\left(\mathrm{CH}_{\text {Ar }}\right)$,
$148.14\left(\mathrm{C}_{\text {quat }}\right), 157.27\left(\mathrm{C}_{\text {quat }}\right), 163.84(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}):$ v $2930(\mathrm{CH}), 1655(\mathrm{C}=\mathrm{O}), 1450,1348,1092$, 1062, $765 \mathrm{~cm}^{-1}$. $\mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 378\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES^{+}) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}$: 378.1705 , found 378.1704 .

7,12-Di-iso-propoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-one 325

96%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.23\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.37\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.73(1 \mathrm{H}$, septet, $J=6.1 \mathrm{~Hz}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.74\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 7.21-7.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.39-7.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.51-7.56(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.60-7.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.33\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.49\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $9.11\left(1 \mathrm{H}\right.$, dd, $\left.J=1.7,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.39\left(\mathrm{CH}(\underline{\mathrm{CH}})_{2}\right), 22.70\left(\mathrm{CH}\left(\underline{\mathrm{CH}_{3}}\right)_{2}\right)$, $56.62\left(\mathrm{OCH}_{3}\right), 74.20\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 76.17\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 78.99\left(\mathrm{NCH}_{2}\right), 114.34\left(\mathrm{C}_{\text {quat }}\right), 115.39\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $119.94\left(\mathrm{C}_{\text {quat }}\right), 122.41\left(\mathrm{C}_{\text {quat }}\right), 122.60\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.22$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.61\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.92\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.34\left(\mathrm{C}_{\text {quat }}\right), 133.22\left(\mathrm{C}_{\text {quat }}\right), 136.28\left(\mathrm{C}_{\text {quat }}\right), 146.02\left(\mathrm{C}_{\text {quat }}\right)$, $154.46\left(\mathrm{C}_{\text {quat }}\right), 161.46(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2973, 1660, 1252, 1101, 1060, $752 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $406\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}\right]^{+}: 406.2018$, found 406.2007.

5.8.5 General procedure for the preparation of 7,12-dimethoxy-5H-benzo[j]phenanthridin-6ones 287

A solution of the appropriate 7,12-dimethoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-one 301 $(0.31 \mathrm{mmol})$ in 1,4-dioxane $(2 \mathrm{~mL})$ and aqueous $\mathrm{HCl}(6 \mathrm{M}, 2 \mathrm{~mL})$ was heated to $50^{\circ} \mathrm{C}$ and stirred overnight. It was then extracted with EtOAc $(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of column chromatography $\left(\mathrm{CHCl}_{3}\right)$ to yield pure 7,12-dimethoxy-5 H -benzo[j]phenanthridin-6-ones 287.

7,12-Dimethoxy-5H-benzo[j]phenanthridin-6-one 287a

84%, pink needles, mp 260.0. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.31(2 \mathrm{H}$, $\left.\mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.47\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.66\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.75$ $\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.35\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.49\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.21$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 10.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 61.02\left(\mathrm{OCH}_{3}\right), 63.71\left(\mathrm{OCH}_{3}\right)$, $115.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.90\left(\mathrm{C}_{\text {quat }}\right), 118.02\left(\mathrm{C}_{\text {quat }}\right), 122.78\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.10\left(\mathrm{C}_{\text {quat }}\right), 124.35\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.04$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.35\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.90\left(\mathrm{C}_{\mathrm{quat}}\right), 129.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.24\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.27\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.74\left(\mathrm{C}_{\text {quat }}\right)$, $135.90\left(\mathrm{C}_{\text {quat }}\right), 150.14\left(\mathrm{C}_{\text {quat }}\right), 152.65\left(\mathrm{C}_{\text {quat }}\right), 161.82(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 2924,1666,1593,1354$, 1262, 1067, 999, 838, $750 \mathrm{~cm}^{-1}$. MS (ES^{+}) $m / z(\%): 306\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(E S^{+}\right)$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}: 306.1130$, found 306.1130.

7,12-Dimethoxy-3-methyl-5H-benzo[j]phenanthridin-6-one 287b

67%, yellow solid, mp $273.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 7.10-7.13\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.61-7.66(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or $\mathrm{CH}-10), 7.70-7.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or CH-10), $8.33\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.47\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.07\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $10.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.49\left(\mathrm{CH}_{3}\right), 60.91\left(\mathrm{OCH}_{3}\right), 63.60\left(\mathrm{OCH}_{3}\right), 115.45\left(\mathrm{C}_{\text {quat }}\right)$, $115.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.67\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.27\left(\mathrm{C}_{\text {quat }}\right), 124.35\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.81\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.28$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.64\left(\mathrm{C}_{\text {quat }}\right), 129.16\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.73\left(\mathrm{C}_{\text {quat }}\right), 135.91\left(\mathrm{C}_{\text {quat }}\right), 139.67\left(\mathrm{C}_{\text {quat }}\right), 149.73\left(\mathrm{C}_{\text {quat }}\right)$, $156.60\left(\mathrm{C}_{\text {quat }}\right), 161.70(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon not observed. IR (ATR): v 2916, 1657, 1444, 1352, 1260, 1067, 999, 771, $762 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 320\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{3}\right]^{+}: 320.1287$, found 320.1286.

5.8.6 N-2-Bromophenyl-N-tert-butoxycarbonyl-1,4-dimethoxynaphthalene-2-carboxamide 306

A solution of N -2-bromophenyl-1,4-dimethoxynaphthalene-2-carboxamide 296 a ($1 \mathrm{~g}, 2.59 \mathrm{mmol}$), DMAP ($32 \mathrm{mg}, 0.26 \mathrm{mmol}, 0.1$ equiv.) and $\mathrm{Boc}_{2} \mathrm{O}(735 \mathrm{mg}, 3.37 \mathrm{mmol}, 1.3$ equiv.) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was stirred at room temperature for 1 h . The reaction mixture was evaporated in vacuo, redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with brine. Drying over MgSO_{4}, evaporation of the solvent in vacuo and flash chromatography gave pure N-2-bromophenyl-N-tert-butoxycarbonyl-1,4-dimethoxynaphthalene-2-carboxamide $306(1.05 \mathrm{~g}, 2.16 \mathrm{mmol}, 83 \%)$ as white crystals.
83%, white crystals, mp $157.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.12\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.05$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.22\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.38(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.43\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.50-7.59\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.67(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.0 \mathrm{~Hz}$, $\mathrm{CH}_{\mathrm{Ar}}$), 8.09-8.15 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.23-8.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 27.28\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $55.77\left(\mathrm{OCH}_{3}\right), 63.68\left(\mathrm{OCH}_{3}\right), 83.62\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 102.20(\mathrm{CH}-3), 122.49\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.54\left(\mathrm{CH}_{\text {Ar }}\right), 123.61$ $\left(\mathrm{C}_{\text {quat }}\right), 125.68\left(\mathrm{C}_{\text {quat }}\right), 126.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.48\left(\mathrm{C}_{\text {quat }}\right), 128.23\left(\mathrm{C}_{\text {quat }}\right), 128.43\left(\mathrm{CH}_{\text {Ar }}\right)$, $129.82\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.42\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.27\left(\mathrm{CH}_{\mathrm{Ar}}\right), 138.03\left(\mathrm{C}_{\text {quat }}\right), 147.15\left(\mathrm{C}_{\text {quat }}\right), 151.44\left(\mathrm{C}_{\text {quat }}\right), 151.71$ ($\mathrm{C}_{\text {quat }}$), 169.35 (C=O). IR (ATR): v 2970, 1731 ($\mathrm{C}=\mathrm{O}$), 1671 ($\mathrm{C}=\mathrm{O}$), 1474, 1370, 1238, 1153, 1071, $750,744 \mathrm{~cm}^{-1}$. MS (ES^{+}) m / z (\%): 387/388 ([M-Boc+H] ${ }^{+}$, 100/97). MS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{17}{ }^{81} \mathrm{BrNO}_{3}\right]^{+}: 386.0392$, found 386.0387 .

5.8.7 Organolithium addition to 7,12-dialkoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6ones 301 or 325

To a solution of the appropriate 7,12-dialkoxy-6-methylbenzo[j]phenanthridine $\mathbf{3 0 1}$ or $\mathbf{3 2 5}$ (1.25 mmol) in anhydrous THF (8 mL) was added freshly titrated organolithium ($1.75 \mathrm{mmol}, 1.4$ equiv. in $\mathrm{Et}_{2} \mathrm{O}$ or hexanes) at $-78^{\circ} \mathrm{C}(\mathrm{MeLi})$ or $-100^{\circ} \mathrm{C}(n-\mathrm{HexLi})$. The reaction mixture was allowed to stir for $15 \mathrm{~min}(\mathrm{MeLi})$ or $30 \mathrm{~min}(n-\mathrm{HexLi})$, quenched with a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). Purification by means of flash chromatography yielded the corresponding 1,2adducts 299a, $\mathbf{3 1 8}$ and 328, 1,4-adducts 311, 317 and $\mathbf{3 2 6}$ and double adducts $\mathbf{3 1 6}$ and $\mathbf{3 2 7}$.

7,12-Dimethoxy-6-methylbenzo[j]phenanthridine 299a

42%, yellow needles, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.52-7.67\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.01\left(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.32(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.37\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.42\left(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $28.76\left(\mathrm{CH}_{3}\right), 60.93\left(\mathrm{OCH}_{3}\right), 64.09\left(\mathrm{OCH}_{3}\right), 118.34\left(\mathrm{C}_{\text {quat }}\right), 121.82\left(\mathrm{C}_{\text {quat }}\right), 122.32\left(\mathrm{C}_{\text {quat }}\right), 122.81$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.35\left(\mathrm{C}_{\text {quat }}\right), 127.90\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.52\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.77\left(\mathrm{C}_{\text {quat }}\right), 143.03\left(\mathrm{C}_{\text {quat }}\right), 150.37\left(\mathrm{C}_{\text {quat }}\right), 152.58\left(\mathrm{C}_{\text {quat }}\right), 158.46$ ($\mathrm{C}=\mathrm{O}$). IR (ATR): v 1448, 1377, 1358, 1066, 989, $756 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 304\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}: 304.1338$, found 304.1326.

12-Methoxy-5-methoxymethyl-7-methyl-5H-benzo[j]phenanthridin-6-one 311

19%, brown prisms, mp $108.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.87$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 7.29\left(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.47(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.55-7.72\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.38\left(2 \mathrm{H}, \mathrm{dd}, J=1.7,8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 9.21(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.3$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 18.04\left(\mathrm{CH}_{3}\right), 56.79\left(\mathrm{OCH}_{3}\right), 61.08\left(\mathrm{OCH}_{3}\right), 74.66\left(\mathrm{NCH}_{2}\right), 115.37$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 119.30\left(\mathrm{C}_{\text {quat }}\right), 121.85\left(\mathrm{C}_{\text {quat }}\right), 123.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.94\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.96\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.22\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.06\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.34\left(\mathrm{C}_{\text {quat }}\right), 133.68\left(\mathrm{C}_{\text {quat }}\right), 136.67\left(\mathrm{C}_{\text {quat }}\right), 137.73$ $\left(\mathrm{C}_{\text {quat }}\right), 151.77\left(\mathrm{C}_{\text {quat }}\right), 163.76(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon not observed. IR (ATR): v 2929, 1653, 1649, 1259, 1078, 1057, $751 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(E S^{+}\right) ~ m / z}(\%): 302$ ([M-OMe] $\left.{ }^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 302.1181$, found 302.1181.

6-n-Hexyl-7,12-dimethoxybenzo[j]phenanthridine 318a

9\%, yellow viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.25-1.37(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2}\right), 1.43-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.74-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.54-3.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-6-\mathrm{CH}_{2}\right), 3.96(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.57-7.74(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ to $\mathrm{CH}-11), 8.03\left(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $8.43\left(2 \mathrm{H}, \mathrm{dt}, J=1.7,7.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 9.45\left(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $14.21\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right), 22.76\left(\mathrm{CH}_{2}\right), 29.61\left(\mathrm{CH}_{2}\right), 29.92\left(\mathrm{CH}_{2}\right), 31.92\left(\mathrm{CH}_{2}\right), 41.17\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 61.14\left(\mathrm{OCH}_{3}\right)$, $64.38\left(\mathrm{OCH}_{3}\right), 117.34\left(\mathrm{C}_{\text {quat }}\right), 122.28\left(\mathrm{C}_{\text {quat }}\right), 122.46\left(\mathrm{C}_{\text {quat }}\right), 122.93\left(\mathrm{CH}_{\text {Ar }}\right), 123.70\left(\mathrm{CH}_{\text {Ar }}\right), 126.60$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.04\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.53\left(\mathrm{C}_{\text {quat }}\right), 127.94\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.60\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.07\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $129.83\left(\mathrm{C}_{\text {quat }}\right), 143.12\left(\mathrm{C}_{\text {quat }}\right), 150.58\left(\mathrm{C}_{\text {quat }}\right), 152.37\left(\mathrm{C}_{\text {quat }}\right), 162.39\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 2952, 2926, 1729, 1281, 1269, $757 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 374\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{2}\right]^{+}: 374.2120$, found 374.2118.

7-n-Hexyl-12-methoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-one 317a

9%, pale white solid, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.30-1.47$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.58-1.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.77-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.71-3.88(2 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{C}-6-\mathrm{CH}_{2}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.74\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 7.25-7.31\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.42-7.48(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.51-7.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.60-7.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.33-8.40\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 9.20(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.33\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.99\left(\mathrm{CH}_{2}\right), 30.41\left(\mathrm{CH}_{2}\right), 30.55\left(\mathrm{CH}_{2}\right)$, $31.75\left(\mathrm{CH}_{2}\right), 31.95\left(\mathrm{CH}_{2}\right), 56.62\left(\mathrm{OCH}_{3}\right), 56.90\left(\mathrm{OCH}_{3}\right), 74.64\left(\mathrm{NCH}_{2}\right), 104.12\left(\mathrm{C}_{\text {quat }}\right), 115.45\left(\mathrm{CH}_{\text {Ar }}\right)$, $122.78\left(\mathrm{C}_{\text {quat }}\right), 123.15\left(2 \mathrm{xCH}_{\text {Ar }}\right), 126.00\left(\mathrm{CH}_{\text {Ar }}\right), 127.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.07\left(\mathrm{C}_{\text {quat }}\right), 130.69$ $\left(\mathrm{C}_{\text {quat }}\right), 133.10\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.49\left(\mathrm{C}_{\text {quat }}\right), 142.81\left(\mathrm{C}_{\text {quat }}\right), 151.90\left(\mathrm{C}_{\text {quat }}\right), 153.53\left(\mathrm{C}_{\text {quat }}\right)$, $163.26(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2952, 2925, 2855, 1729, 1283, 1263, $756 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 372$ ([M-OMe] ${ }^{+}, 100$).

6,7-Di-n-hexyl-12-methoxybenzo[j]phenanthridine 316a

58%, yellow gum, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.83-0.90\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2}\right), 1.25-1.38(8 \mathrm{H}, \mathrm{m}$, $\left.4 \mathrm{xCH}_{2}\right), 1.38-1.53\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.73-1.90\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.32-3.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.60-3.65$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.51-7.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.60-7.71\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{XCH}_{\mathrm{Ar}}\right), 7.95(1 \mathrm{H}, \mathrm{dd}$, $\left.J=1.7,8.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.32-8.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.47-8.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.34(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.13\left(2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 22.71\left(2 \mathrm{xCH}_{2}\right), 29.65\left(\mathrm{CH}_{2}\right), 29.98\left(\mathrm{CH}_{2}\right), 30.16$ $\left(\mathrm{CH}_{2}\right), 31.63\left(\mathrm{CH}_{2}\right), 31.71\left(\mathrm{CH}_{2}\right), 31.86\left(\mathrm{CH}_{2}\right), 32.74\left(\mathrm{CH}_{2}\right), 41.54\left(\mathrm{CH}_{2}\right), 61.34\left(\mathrm{OCH}_{3}\right), 121.61$ $\left(\mathrm{C}_{\text {quat }}\right), 122.46\left(\mathrm{C}_{\text {quat }}\right), 123.10\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.90\left(\mathrm{C}_{\text {quat }}\right), 125.47\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.57\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.67\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.93\left(\mathrm{CH}_{\text {Ar }}\right), 128.06\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.31\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.64\left(\mathrm{C}_{\text {quat }}\right), 132.45\left(\mathrm{C}_{\text {quat }}\right), 135.04$ $\left(\mathrm{C}_{\text {quat }}\right), 142.26\left(\mathrm{C}_{\text {quat }}\right), 152.29\left(\mathrm{C}_{\text {quat }}\right), 163.42(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2952, 2924, 1458, 1270, 751, 726 cm^{-1}. $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 460\left(\left[\mathrm{M}+\mathrm{O}_{2}+\mathrm{H}\right]^{+}, 100\right)$.

6-n-Hexyl-7,12-dimethoxy-3-methylbenzo[j]phenanthridine 318b

12%, yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.28-1.38\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right)$, 1.42-1.84 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.73-1.84 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{C}-6-\mathrm{CH}_{2}\right)$, $3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.44(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.8 \mathrm{~Hz}, \mathrm{CH}-2), 7.61-7.74(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and CH-10), $7.84(1 \mathrm{H}, \mathrm{d}, J=1.7, \mathrm{CH}-4), 8.39-8.44(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and $\mathrm{CH}-11), 9.33(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.26\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.43\left(\mathrm{CH}_{2}\right), 22.79\left(\mathrm{CH}_{3}\right), 29.65\left(\mathrm{CH}_{2}\right), 29.97\left(\mathrm{CH}_{2}\right)$, $31.97\left(\mathrm{CH}_{2}\right), 41.19\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 61.05\left(\mathrm{OCH}_{3}\right), 64.38\left(\mathrm{OCH}_{3}\right), 117.31\left(\mathrm{C}_{\text {quat }}\right), 119.91\left(\mathrm{C}_{\text {quat }}\right), 122.48$ $\left(\mathrm{C}_{\text {quat }}\right), 122.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.40\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.27\left(\mathrm{C}_{\text {quat }}\right), 127.90\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.40\left(\mathrm{CH}_{\text {Ar }}\right), 129.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.83\left(\mathrm{C}_{\text {quat }}\right), 138.75\left(\mathrm{C}_{\text {quat }}\right), 143.24\left(\mathrm{C}_{\text {quat }}\right), 150.23\left(\mathrm{C}_{\text {quat }}\right), 152.42$ $\left(\mathrm{C}_{\text {quat }}\right), 162.43\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 2952, 2925, 2855, 1729, 1283, 1263, $756 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%)$: $388\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{2}\right]^{+}: 388.2277$, found 388.2283.

7-n-Hexyl-12-methoxy-5-methoxymethyl-3-methyl-5H-benzo[j]phenanthridin-6-one 317b

30%, yellow solid, $\mathrm{mp}<50{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.31-1.47(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.59-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.77-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$,
3.66-3.82 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-6-\mathrm{CH}_{2}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.74\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH}_{2}\right), 7.10(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.8 \mathrm{~Hz}$, CH-2), $7.33(1 \mathrm{H}, \mathrm{d}, J=1.1, \mathrm{CH}-4), 7.57-7.68(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and $\mathrm{CH}-10), 8.32-8.38(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and CH-11), $9.07(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}-1) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.32\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.90\left(\mathrm{CH}_{2}\right), 22.96$ $\left(\mathrm{CH}_{3}\right), 30.38\left(\mathrm{CH}_{2}\right), 30.51\left(\mathrm{CH}_{2}\right), 31.72\left(\mathrm{CH}_{2}\right), 31.98\left(\mathrm{CH}_{2}\right), 56.62\left(\mathrm{OCH}_{3}\right), 60.88\left(\mathrm{OCH}_{3}\right), 74.55$ $\left(\mathrm{NCH}_{2}\right), 115.54\left(\mathrm{CH}_{\text {Ar }}\right), 116.60\left(\mathrm{C}_{\text {quat }}\right), 122.14\left(\mathrm{C}_{\text {quat }}\right), 123.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.94\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.63\left(\mathrm{C}_{\text {quat }}\right), 132.81\left(\mathrm{C}_{\text {quat }}\right), 136.74\left(\mathrm{C}_{\text {quat }}\right), 139.28$ $\left(\mathrm{C}_{\text {quat }}\right), 142.38\left(\mathrm{C}_{\text {quat }}\right), 150.23\left(\mathrm{C}_{\text {quat }}\right), 151.45\left(\mathrm{C}_{\text {quat }}\right), 163.36(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 2954,2926,1652$, 1614, 1455, 1273, 1087, $763 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 450\left(\left[\mathrm{M}+\mathrm{O}_{2}+\mathrm{H}\right]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{NO}_{5}\right]^{+}: 450.2281$, found 450.2285 .

6,7-Di-n-hexyl-12-methoxy-3-methylbenzo[j]phenanthridine 316b

43%, yellow gummy solid, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.78-0.99\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2}\right), 1.31-1.43$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.43-1.48\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{2}\right), 1.79-1.88\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.34-3.38$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.59-3.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.38(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-1), 7.60-7.67$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and $\mathrm{CH}-10$), $7.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 8.32(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 8.46(1 \mathrm{H}, \mathrm{d}$, $J=7.7 \mathrm{~Hz}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 9.24(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}-2) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.16$ $\left(2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 21.43\left(\mathrm{CH}_{3}\right), 22.76\left(2 \mathrm{xCH}_{2}\right), 29.71\left(\mathrm{CH}_{2}\right), 30.03\left(\mathrm{CH}_{2}\right), 30.27\left(\mathrm{CH}_{2}\right), 31.66\left(\mathrm{CH}_{2}\right), 31.77$ $\left(\mathrm{CH}_{2}\right), 31.90\left(\mathrm{CH}_{2}\right), 32.81\left(\mathrm{CH}_{2}\right), 41.56\left(\mathrm{CH}_{2}\right), 61.26\left(\mathrm{OCH}_{3}\right), 119.94\left(\mathrm{C}_{\text {quat }}\right), 121.86\left(\mathrm{C}_{\text {quat }}\right), 123.05$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.92\left(\mathrm{C}_{\text {quat }}\right), 125.54\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.35\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.58\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.02\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.06\left(\mathrm{CH}_{\text {Ar }}\right), 128.67\left(\mathrm{C}_{\text {quat }}\right), 132.23\left(\mathrm{C}_{\text {quat }}\right), 135.13\left(\mathrm{C}_{\text {quat }}\right), 138.44\left(\mathrm{C}_{\text {quat }}\right), 142.34\left(\mathrm{C}_{\text {quat }}\right), 152.00$ $\left(\mathrm{C}_{\text {quat }}\right), 163.59(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2952, 2922, 2850, 1458, 1262, $750 \mathrm{~cm}^{-1}$. MS m/z (\%): 474 $\left(\left[\mathrm{M}+\mathrm{O}_{2}+\mathrm{H}\right]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{3}\right]^{+}: 474.3008$, found 474.3017.

7-n-Hexyl-12-iso-propoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-one 326

30%, pale white solid, mp 105.2. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.25(6 \mathrm{H}, \mathrm{d}, J$ $\left.=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35-1.47\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.59-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.78-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.65-3.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}-6-\mathrm{CH}_{2}\right), 4.37\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.73(2 \mathrm{H}$, br s, $\left.\mathrm{NCH}_{2}\right), 7.21\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.42\left(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.52(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.57-7.65\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.28-8.33\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.41-8.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.14(1 \mathrm{H}, \mathrm{d}, J=$ $\left.7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.32\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.58\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.96\left(\mathrm{CH}_{2}\right), 30.39\left(2 \mathrm{xCH}_{2}\right)$, $31.77\left(\mathrm{CH}_{2}\right), 32.01\left(\mathrm{CH}_{2}\right), 56.62\left(\mathrm{OCH}_{3}\right), 74.67\left(\mathrm{NCH}_{2}\right), 76.53\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 115.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 119.96$ $\left(\mathrm{C}_{\text {quat }}\right), 122.11\left(\mathrm{C}_{\text {quat }}\right), 122.38\left(\mathrm{C}_{\text {quat }}\right), 122.58\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.00\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.83\left(\mathrm{CH}_{\text {Ar }}\right)$, $127.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.32\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.87\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.29\left(\mathrm{C}_{\text {quat }}\right), 132.83\left(\mathrm{C}_{\text {quat }}\right), 136.37\left(\mathrm{C}_{\text {quat }}\right), 141.67$ $\left(\mathrm{C}_{\text {quat }}\right), 149.09\left(\mathrm{C}_{\text {quat }}\right), 163.47(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): ~ v 2960,2925,1662,1370,1330,1081,761 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 432\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{3}\right]^{+}: 432.2538$, found 432.2530.
17%, yellow viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.77-0.93\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3} \mathrm{CH}_{2}\right), 1.17-1.41(8 \mathrm{H}, \mathrm{m}$, $\left.4 \mathrm{xCH}_{2}\right), 1.28\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.48-1.60\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.75-1.86\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right)$, 3.30-3.36 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.55-3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.52\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.43-7.50$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.55-7.65\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.90\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.26-8.30(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 8.51-8.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.29\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.18$ $\left(2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 22.64\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.76\left(2 \mathrm{xCH}_{2}\right), 29.61\left(\mathrm{CH}_{2}\right), 30.10\left(\mathrm{CH}_{2}\right), 30.26\left(\mathrm{CH}_{2}\right), 31.55\left(\mathrm{CH}_{2}\right)$, $31.78\left(\mathrm{CH}_{2}\right)$, $31.90\left(\mathrm{CH}_{2}\right)$, $32.71\left(\mathrm{CH}_{2}\right)$, $41.36\left(\mathrm{CH}_{2}\right), 76.50\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 122.08\left(\mathrm{C}_{\text {quat }}\right), 123.12\left(\mathrm{C}_{\text {quat }}\right)$, $124.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.64\left(\mathrm{C}_{\text {quat }}\right), 125.33\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.51\left(3 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.58\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.23$ $\left(\mathrm{CH}_{\text {Ar }}\right), 130.35\left(\mathrm{C}_{\text {quat }}\right), 132.28\left(\mathrm{C}_{\text {quat }}\right), 134.28\left(\mathrm{C}_{\text {quat }}\right), 141.80\left(\mathrm{C}_{\text {quat }}\right), 149.24\left(\mathrm{C}_{\text {quat }}\right), 163.99(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v 2955, 2926, 2855, 1458, 1272, 1109, 934, $751 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 488\left(\left[\mathrm{M}+\mathrm{O}_{2}+\mathrm{H}\right]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{NO}_{3}\right]^{+}: 488.3165$, found 488.3170 .

5.8.8 Oxidative demethylation of MeLi adducts 299a and 311

To a solution of MeLi adduct 299a or $311(0.44 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added a solution of CAN ($717 \mathrm{mg}, 1.31 \mathrm{mmol}, 2.5$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ in one portion. The reaction mixture was allowed to stir for two min and poured in a $1: 1$ mixture $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The $\mathrm{H}_{2} \mathrm{O}$ phase was discarded and the organic phase was washed with aqueous $\mathrm{NaOH}(2 \mathrm{M}, 5 \mathrm{~mL})$. The organic phase was dried over MgSO_{4} and evaporated in vacuo to yield the crude oxidation products which were further purified by means of preparative TLC.

6-Methylbenzo[j]phenanthridine-7,12-dione 313

83%, bright yellow solid, mp $153.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.68-7.74(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.79-7.81\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.07\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.20-8.23\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $9.38\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 27.94\left(\mathrm{CH}_{3}\right), 122.19\left(\mathrm{C}_{\text {quat }}\right), 124.95\left(\mathrm{C}_{\text {quat }}\right)$, $126.70\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.14\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.19\left(\mathrm{C}_{\text {quat }}\right), 133.71$ $\left(\mathrm{C}_{\text {quat }}\right), 134.05\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.48\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.64\left(\mathrm{C}_{\text {quat }}\right), 150.49\left(\mathrm{C}_{\text {quat }}\right), 158.89\left(\mathrm{C}_{\text {quat }}\right), 184.97(\mathrm{C}=\mathrm{O})$, 186.91 (C=O). IR (ATR): v 1667 (C=O), 1590, 1326, 1274, 1025, $762 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 274$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{2}\right]^{+}: 274.0868$, found 274.0869.

7-Hydroxy-5-methoxymethyl-7-methyl-5,7-dihydrobenzo[j]phenanthridine-6,12-dione 314

55%, yellow solid, mp $117.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.81(1 \mathrm{H}$, $\left.\mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 5.92\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.36-7.42(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.48-7.54\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.58-7.76\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.00\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.11$ $\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 9.05\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 34.15$ $\left(\mathrm{CH}_{3}\right), 57.20\left(\mathrm{OCH}_{3}\right), 70.17(\mathrm{C}-7), 74.08\left(\mathrm{NCH}_{2}\right), 115.50\left(\mathrm{CH}_{\mathrm{Ar}}\right), 117.16\left(\mathrm{C}_{\text {quat }}\right), 124.29\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.47\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.74\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.14\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.00\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.25\left(\mathrm{C}_{\text {quat }}\right), 131.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.20$
$\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.95\left(\mathrm{C}_{\text {quat }}\right), 138.26\left(\mathrm{C}_{\text {quat }}\right), 138.42\left(\mathrm{C}_{\text {quat }}\right), 147.36\left(\mathrm{C}_{\text {quat }}\right), 162.95(\mathrm{NC}=\mathrm{O}), 185.52(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3404(\mathrm{OH}), 2967(\mathrm{CH}), 1664(\mathrm{C}=\mathrm{O}), 1636(\mathrm{C}=\mathrm{O}), 1352,1185,1129,1085,1056,760 \mathrm{~cm}^{-1}$. MS $\left(\mathrm{ES}^{+}\right) m / z(\%): 318\left([\mathrm{M}-\mathrm{OH}]^{+}, 100\right), 336\left([\mathrm{M}+\mathrm{H}]^{+}, 60\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}$: 318.1130, found 318.1118 .

5.8.9 7,12-Dimethoxy-6-formylbenzo[j]phenanthridine 312

A solution of 7,12-dimethoxy-6-methylbenzo[j]phenanthridine 313a ($100 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{Se}_{2} \mathrm{O}$ ($73 \mathrm{mg}, 0.66 \mathrm{mmol}$, 2 equiv.) in 1,4-dioxane (5 mL) was boiled under reflux for 1 h . The reaction mixture was filtered over a pad of Celite ${ }^{\circledR}$ and evaporated in vacuo, redissolved in EtOAc (10 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. Purification by means of preparative TLC yielded pure aldehyde 312 $(50 \mathrm{mg}, 0.16 \mathrm{mmol}, 48 \%)$ as a yellow oil.
48%, yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.68-7.80(4 \mathrm{H}, \mathrm{m}$, $\left.4 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.23-8.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.36\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.49\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 9.45-9.51 (1H, m, CH ${ }_{\mathrm{Ar}}$), $10.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) . \mathrm{MS} m / z(\%): 318\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

5.8.10 Methyl 1-hydroxy-4-iso-propoxynaphthalene-2-carboxylate 320

A solution of methyl 1,4-dihydroxynaphthalene-2-carboxylate $319(1 \mathrm{~g}, 4.58 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.8 \mathrm{~g}$, $27.50 \mathrm{mmol}, 6$ equiv.) and 2-bromopropane ($2.6 \mathrm{~mL}, 27.50 \mathrm{mmol}, 6$ equiv.) in anhydrous acetone (20 mL) was boiled under reflux for 20 h . The solids were filtered off and the filtrate was evaporated in vacuo. The thus obtained residue was recrystallised from EtOH to yield methyl 1-hydroxy-4-iso-propoxynaphthalene-2-carboxylate $320(0.95 \mathrm{~g}, 4.49 \mathrm{mmol}, 80 \%)$ as yellow needles.
80%, yellow needles, mp 55.0-56.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.43\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.99$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.66\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.52-7.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ or CH-7), $7.59-7.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ or $\mathrm{CH}-7), 8.20(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.4 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 8.38(1 \mathrm{H}$, dd, $J=1.1,8.4 \mathrm{~Hz}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 11.61(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 22.18\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 52.29$ $\left(\mathrm{OCH}_{3}\right), 71.07\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 104.08(\mathrm{CH}-3), 104.49\left(\mathrm{C}_{\mathrm{quat}}\right), 122.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.79\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.70$ $\left(\mathrm{C}_{\text {quat }}\right), 126.26\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.21\left(\mathrm{C}_{\text {quat }}\right), 145.74\left(\mathrm{C}_{\text {quat }}\right), 155.49\left(\mathrm{C}_{\text {quat }}\right), 171.38(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v 2878, 1659, 1599, 1437, 1332, 1233, 1084, $766 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 259$ ([M-H] $\left.{ }^{-}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}\right]^{+}: 261.1127$, found 261.1120.

5.8.11 1,4-Di-iso-propoxynaphthalene-2-carboxylic acid 322

A solution of 1,4-dihydroxynaphthalene-2-carboxylic acid $321(1 \mathrm{~g}, 4.9 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.38 \mathrm{~g}, 24.5$ mmol, 5 equiv.) and 2-bromopropane ($3.2 \mathrm{~mL}, 33.8 \mathrm{mmol}, 7$ equiv.) in anhydrous DMF (10 mL) was heated at $60^{\circ} \mathrm{C}$ during 48 h . After cooling to room temperature, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were evaporated in vacuo and redissolved in 1,4-dioxane (5 mL) to which was added a solution of $\mathrm{KOH}(823 \mathrm{mg}, 14.7$
mmol, 3 equiv.) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and stirred overnight. The mixture was acidified to $\mathrm{pH}=1$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded pure 1,4-di-iso-propoxynaphthalene-2-carboxylic acid 322 ($1.13 \mathrm{~g}, 3.90 \mathrm{mmol}, 80 \%$) as an amber solid.
80%, amber solid, $\operatorname{mp} 95.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.46\left(12 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.70(1 \mathrm{H}$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.85\left(1 \mathrm{H}\right.$, septet, $\left.J=6.1 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.56-7.65$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and $\mathrm{CH}-7$), $7.99-8.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ or $\mathrm{CH}-8), 8.31-8.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ or CH-8), 11.66 $(1 \mathrm{H}$, br s, OH$) .{ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right): \delta 21.71\left(\mathrm{CH}(\underline{\mathrm{CH}})_{3}\right), 21.77\left(\mathrm{CH}(\underline{\mathrm{CH}})_{3}\right)_{2}\right), 70.41\left(\underline{\mathrm{C}} \mathrm{H}\left(\mathrm{CH}_{3}\right)_{2}\right), 79.92$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 104.95(\mathrm{CH}-3), 118.83\left(\mathrm{C}_{\text {quat }}\right), 122.86\left(\mathrm{CH}_{\text {Ar }}\right), 122.95\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.76$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.26\left(\mathrm{C}_{\text {quat }}\right), 130.03\left(\mathrm{C}_{\text {quat }}\right), 147.62\left(\mathrm{C}_{\text {quat }}\right), 149.94\left(\mathrm{C}_{\text {quat }}\right), 167.29(\mathrm{C}=\mathrm{O})$. IR (ATR): v 3074, 2975, 1736, 1677, 1401, 1380, 1103, 1085, 932, $\left.764 \mathrm{~cm}^{-1} . \mathrm{MS}^{(\mathrm{ES}}\right) \mathrm{m} / z(\%): 287\left([\mathrm{M}-\mathrm{H}]^{-}, 100\right)$.

5.8.12 Triflation of 7,12-dimethoxy-5H-benzo[j]phenanthridin-6-ones 287

A solution of the appropriate 7,12-dimethoxy-5H-benzo[j]phenanthridin-6-one 287 (0.31 mmol) and DMAP ($30.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.8$ equiv.) in pyridine (5 mL) was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{Tf}_{2} \mathrm{O}(0.13 \mathrm{~mL}$, 0.78 mmol, 2.5 equiv.) was added dropwise under a N_{2} atmosphere. The reaction mixture was stirred for 24 h and quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Drying over MgSO_{4}, evaporation of the solvent in vacuo followed by preparative TLC (petroleum ether/ethyl acetate) yielded pure 7,12-dimethoxybenzo[j]phenanthridin-6-yl trifluoromethanesulfonates $\mathbf{3 2 9}$.

7,12-Dimethoxy-3-methylbenzo[j]phenanthridin-6-yl trifluoromethanesulfonate 329b

46%, red oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.24-$ $7.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.48(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.3 \mathrm{~Hz}, \mathrm{CH}-3), 7.61-7.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.35-8.40(1 \mathrm{H}, \mathrm{m}$, CH-8 or CH-11), 8.50-8.65 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ or $\mathrm{CH}-11$), $9.28(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.36\left(\mathrm{CH}_{3}\right), 61.27\left(\mathrm{OCH}_{3}\right), 64.73\left(\mathrm{OCH}_{3}\right), 110.81\left(\mathrm{C}_{\text {quat }}\right), 121.41\left(\mathrm{C}_{\text {quat }}\right), 123.06\left(\mathrm{CH}_{\text {Ar }}\right)$, $123.51\left(\mathrm{q}, J_{\mathrm{CF}}=68.8 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 124.08\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.24\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.33\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.84\left(\mathrm{C}_{\text {quat }}\right), 129.21$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.29\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.32\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.04\left(\mathrm{C}_{\text {quat }}\right), 139.79\left(\mathrm{C}_{\text {quat }}\right), 140.32\left(\mathrm{C}_{\text {quat }}\right), 150.51\left(\mathrm{C}_{\text {quat }}\right)$, $151.52\left(\mathrm{C}_{\text {quat }}\right), 2$ trisubstituted olefinic carbons not observed. ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-72.83-72.21$. IR (ATR): v 2920, 1635, 1277, 1205, 1135, $1028 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(E S^{+}\right)} \mathrm{m} / \mathrm{z}(\%): 452\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}^{+}\right.$: 452.0780 , found 452.0780 .

7,12-Dimethoxy-2,4-dimethylbenzo[j]phenanthridin-6-yl trifluoromethanesulfonate 329d

19%, orange crystals, mp $126.4^{\circ} \mathrm{C}-127.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.59\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.43(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.66-7.80(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and $\mathrm{CH}-10)$, 8.41-8.46 (2H, m, CH-8 and CH-11), $9.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.22\left(\mathrm{CH}_{3}\right), 22.45$ $\left(\mathrm{CH}_{3}\right), 61.20\left(\mathrm{OCH}_{3}\right), 64.70\left(\mathrm{OCH}_{3}\right), 111.09\left(\mathrm{C}_{\text {quat }}\right), 123.13\left(\mathrm{CH}_{\text {Ar }}\right), 123.96\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 124.32\left(\mathrm{C}_{\text {quat }}\right)$,
$125.19\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.36\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.99\left(\mathrm{C}_{\text {quat }}\right), 129.13\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.92\left(\mathrm{C}_{\text {quat }}\right), 131.34\left(\mathrm{q}, J_{\mathrm{CF}}=68.8 \mathrm{~Hz}\right.$, $\left.\mathrm{CF}_{3}\right), 131.85\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.87\left(\mathrm{C}_{\text {quat }}\right), 137.06\left(\mathrm{C}_{\text {quat }}\right), 138.43\left(\mathrm{C}_{\text {quat }}\right), 148.55\left(\mathrm{C}_{\text {quat }}\right), 150.87\left(\mathrm{C}_{\text {quat }}\right), 151.23$ ($\mathrm{C}_{\text {quat }}$). IR (ATR): v $1413,1362,1214,1196,1133,908 \mathrm{~cm}^{-1} .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-72.86-72.71 . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 466\left([\mathrm{M}+\mathrm{H}]^{+}, 35\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}\right]^{+}$: 466.0936, found 466.0935.

2,4-Dimethylbenzo[j]phenanthridine-7,12-dione 18d

A solution of 7,12-dimethoxy-2,4-dimethylbenzo[j]phenanthridin-6-yl trifluoromethanesulfonate 329d $(25 \mathrm{mg}, 0.054 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.2 \mathrm{mg}, 0.01 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 40$ $\mathrm{mol} \%$) in anhydrous DMF (0.5 mL) under a nitrogen atmosphere was heated for 10 min at $60^{\circ} \mathrm{C}$. Then $\mathrm{Et}_{3} \mathrm{SiH}(30 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 3$ equiv.) was added dropwise and the reaction mixture was stirred for 5 h at $60^{\circ} \mathrm{C}$ and subsequently diluted with $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. The organic solution was washed with water, a saturated NaHCO_{3} solution, brine, dried over MgSO_{4}, and evaporated in vacuo. The residue was purified by preparative TLC (petroleum ether/ethyl acetate $1 / 1$) to yield 7,12-dimethoxy-2,4dimethylbenzo[j]phenanthridine ($14 \mathrm{mg}, 0.044 \mathrm{mmol}, 82 \%$) as a yellow solid. This compound was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and a solution of CAN ($28 \mathrm{mg}, 0.11 \mathrm{mmol}, 2.5$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added in one portion. The reaction was allowed to stir for 1 h at room temperature and subsequently partitioned between $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aqueous phase was discarded and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated in vacuo to quantitatively yield 2,4-dimethylbenzo[j]phenanthridine-7,12-dione 18d as a bright yellow solid.
82%, bright yellow solid, mp $205^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.50$ (1H, s, CH-3), 7.81-7.83 (2H, m, CH-9 and CH-10), 8.24-8.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and $\mathrm{CH}-11$), $9.12(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}-1), 9.68(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.65\left(\mathrm{CH}_{3}\right), 22.42\left(\mathrm{CH}_{3}\right), 122.93\left(\mathrm{C}_{\text {quat }}\right), 124.25$ $\left(\mathrm{C}_{\text {quat }}\right), 124.87(\mathrm{CH}-1), 126.54$ and $127.36(\mathrm{CH}-8$ and $\mathrm{CH}-11), 132.03\left(\mathrm{C}_{\text {quat }}\right), 133.13\left(\mathrm{C}_{\text {quat }}\right), 134.35$ and $134.60(\mathrm{CH}-9$ and $\mathrm{CH}-10), 134.72(\mathrm{CH}-3), 137.64\left(\mathrm{C}_{\text {quat }}\right), 140.75\left(\mathrm{C}_{\text {quat }}\right), 146.11(\mathrm{CH}-6), 149.99$ $\left(\mathrm{C}_{\text {quat }}\right), 183.64(2 \mathrm{xC}=\mathrm{O})$, one trisubstituted olefinic carbon not observed. IR (ATR): v 2620, 1665, 1273, $717 \mathrm{~cm}^{-1}$. MS (ES^{+}) m/z (\%): $288\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}$: 288.1025 , found 288.1029 .

5.8.13 7-Ethoxy-12-methoxy-5-methoxymethyl-3-methyl-5H-benzo[j]phenanthridin-6-one 330

A solution of 7,12-dimethoxy-5-methoxymethyl-3-methyl-5H-benzo[j]phenanthridin-6-one 301b (113 $\mathrm{mg}, 0.33 \mathrm{mmol}$), ethylenediamine ($75 \mathrm{mg}, 1.24 \mathrm{mmol}, 4$ equiv.) and washed $\mathrm{NaH}(30 \mathrm{mg}, 1.24 \mathrm{mmol}$, 4 equiv.) in $\mathrm{EtOH}(5 \mathrm{~mL})$ was boiled under reflux for 6 h . The solvent was evaporated in vacuo and the residue redissolved in EtOAc $(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated in vacuo and recrystallised from EtOH to yield 7-ethoxy-12-methoxy-

5-methoxymethyl-3-methyl-5H-benzo[j]phenanthridin-6-one 330 ($93 \mathrm{mg}, 0.26 \mathrm{mmol}, 79 \%$) as yellow needles.
79%, yellow needles, mp $129-130^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.59\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.46(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.26\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.75(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NCH}_{2}\right), 7.13\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.56-7.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or 10$), 7.69-$ $7.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ or 10$), 8.29(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or 11$), 8.45(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or 11$)$, $9.10\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.00\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.90\left(\mathrm{CH}_{3}\right), 56.81\left(\mathrm{OCH}_{3}\right)$, $60.81\left(\mathrm{OCH}_{3}\right), 71.98\left(\mathrm{OCH}_{2}\right), 74.18\left(\mathrm{NCH}_{2}\right), 115.03\left(\mathrm{C}_{\text {quat }}\right), 115.77\left(\mathrm{CH}_{\text {Ar }}\right), 116.35\left(\mathrm{C}_{\text {quat }}\right), 122.34$ $\left(\mathrm{C}_{\text {quat }}\right), 122.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.34\left(\mathrm{CH}_{\text {Ar }}\right), 124.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.61\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.05\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.10\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $131.77\left(\mathrm{C}_{\text {quat }}\right), 136.80\left(\mathrm{C}_{\text {quat }}\right), 139.55\left(2 \mathrm{xC}_{\text {quat }}\right), 148.80\left(\mathrm{C}_{\text {quat }}\right), 156.05\left(\mathrm{C}_{\text {quat }}\right), 161.20(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 2923,1667,1352,1082,1062,763 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 378\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}^{2}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{4}\right]^{+}: 378.1705$, found 378.1712 .

5.8.14 Synthesis of 6-alkoxy-7,12-dimethoxy-3-methylbenzo[j]phenanthridines 334

To a solution of 7,12-dimethoxy-3-methyl-5H-benzo[j]phenanthridin-6-one 287b (100 mg, 0.31 mmol) in anhydrous $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added the appropriate trialkyloxonium tetrafluoroborate (0.34 mmol, 1.1 equiv.) under a N_{2} atmosphere. The solution was boiled under reflux for 3 h , quenched with a saturated aqueous NaHCO_{3} solution $(5 \mathrm{~mL})$ and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of preparative TLC to yield 6-alkoxy-7,12-dimethoxy-3-methylbenzo[j]phenanthridines 334 as oils that crystallised slowly.

6,7,12-Trimethoxy-3-methylbenzo[j]phenanthridine 334a

58%, pale white solid, mp $110.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.06$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.30(1 \mathrm{H}, \mathrm{dd}, J=1.7,8.3 \mathrm{~Hz}, \mathrm{CH}-3), 7.57-7.71(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and CH-10), $7.64(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 8.37(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 8.43(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or CH-11), $9.24(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.40\left(\mathrm{CH}_{3}\right), 54.04\left(\mathrm{OCH}_{3}\right), 60.90$ $\left(\mathrm{OCH}_{3}\right), 63.97\left(\mathrm{OCH}_{3}\right), 112.11\left(\mathrm{C}_{\text {quat }}\right), 119.10\left(\mathrm{C}_{\text {quat }}\right), 122.64\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.91\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.02\left(\mathrm{C}_{\text {quat }}\right)$, $126.38\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.21\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.02\left(\mathrm{C}_{\text {quat }}\right), 128.16\left(\mathrm{CH}_{\text {Ar }}\right), 130.13\left(\mathrm{C}_{\text {quat }}\right), 138.93$ $\left(\mathrm{C}_{\text {quat }}\right), 142.80\left(\mathrm{C}_{\text {quat }}\right), 149.84\left(\mathrm{C}_{\text {quat }}\right), 152.11\left(\mathrm{C}_{\text {quat }}\right), 159.01\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 2940, 1596, 1374, 1358, 1220, 1065, 754, $740 \mathrm{~cm}^{-1}$. MS (ES^{+}) m/z (\%): $334\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{3}\right]^{+}: 334.1443$, found 334.1446 .

6-Ethoxy-7,12-dimethoxy-3-methylbenzo[j]phenanthridine 334b

53%, pale white solid, mp $101.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.62\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.52(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.73\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 7.29(1 \mathrm{H}, \mathrm{dd}, J=$ $1.7,8.3 \mathrm{~Hz}, \mathrm{CH}-3)$, $7.57-7.69(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-4, \mathrm{CH}-9$ and $\mathrm{CH}-10), 8.36(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or CH-
11), $8.43(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 9.23(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}-1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $14.70\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 21.39\left(\mathrm{CH}_{3}\right), 60.88\left(\mathrm{OCH}_{3}\right), 62.30\left(\mathrm{OCH}_{2}\right), 63.91\left(\mathrm{OCH}_{3}\right), 112.34\left(\mathrm{C}_{\text {quat }}\right), 119.01$ $\left(\mathrm{C}_{\text {quat }}\right), 122.63\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.09\left(\mathrm{C}_{\text {quat }}\right), 126.29\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 127.16\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.19\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.09\left(\mathrm{C}_{\text {quat }}\right), 138.86\left(2 \mathrm{xC}_{\text {quat }}\right), 142.95\left(\mathrm{C}_{\text {quat }}\right), 149.82\left(\mathrm{C}_{\text {quat }}\right), 152.11\left(\mathrm{C}_{\text {quat }}\right), 158.65$ $\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 2978, 2930, 1594, 1356, 1065, $740 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 348\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{3}\right]^{+}: 348.1600$, found 348.1601.

5.8.15 5-Methoxymethyl-3-methyl-5H-benzo[j]phenanthridine-6,7,12-trione 333

A solution of 7,12-dimethoxy-5-methoxymethyl-3-methyl-5 H -benzo[j]phenanthridin-6-one 301b (100 $\mathrm{mg}, 0.31 \mathrm{mmol})$ in ethylenediamine $(1 \mathrm{~mL})$ was heated under microwave irradiation at $140^{\circ} \mathrm{C}$ for 30 min. the reaction mixture was diluted with EtOAc $(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic phase was dried over MgSO_{4}, evaporated in vacuo and purified by means of preparative TLC to yield 5-methoxymethyl-3-methyl-5 H -benzo[j]phenanthridine-6,7,12-trione 333 ($31 \mathrm{mg}, 0.093$ $\mathrm{mmol}, 30 \%$) as a bright red solid.
30%, red solid, mp $168-169^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.82(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{2}\right), 7.23\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.44(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 7.77(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.2 \mathrm{~Hz}, \mathrm{CH}-9$ or CH-10), $7.68-7.81(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.2 \mathrm{~Hz}, \mathrm{CH}-9$ or $\mathrm{CH}-10), 8.12(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.2 \mathrm{~Hz}, \mathrm{CH}-8$ or CH-11), $8.20(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.2 \mathrm{~Hz}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 8.88\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.52\left(\mathrm{CH}_{3}\right), 57.51\left(\mathrm{OCH}_{3}\right), 74.12\left(\mathrm{NCH}_{2}\right), 113.53\left(\mathrm{C}_{\text {quat }}\right), 115.68\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.44\left(\mathrm{C}_{\text {quat }}\right)$, $125.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.40\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.27\left(\mathrm{C}_{\text {quat }}\right), 133.56\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.67$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.03\left(\mathrm{C}_{\text {quat }}\right), 142.13\left(\mathrm{C}_{\text {quat }}\right), 145.61\left(\mathrm{C}_{\text {quat }}\right), 159.04(\mathrm{NC}=\mathrm{O}), 181.64(\mathrm{C}=\mathrm{O}), 186.85(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon not observed. IR (ATR): v $2981(\mathrm{CH}), 1686(\mathrm{C}=\mathrm{O}), 1677,1522$, 1278, 1084, 950, $751 \mathrm{~cm}^{-1}$. MS m/z (\%): $334\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NO}_{4}\right]^{+}$: 334.1079 , found 334.1085 .

5.8.16 N-Methoxy-1,4-dimethoxynaphthalene-2-carboxamide 337

1,4-Dimethoxynaphthalene-2-carboxylic acid $293(5 \mathrm{~g}, 21.5 \mathrm{mmol})$ was added to $\mathrm{SOCl}_{2}(15.5 \mathrm{~mL}, 215$ mmol, 10 equiv.) and boiled under reflux for 2.5 h . The reaction mixture was evaporated in vacuo and redissolved in EtOAc $(50 \mathrm{~mL}) . \mathrm{MeONH}_{2} \cdot \mathrm{HCl}(2.16 \mathrm{~g}, 25.6 \mathrm{mmol}, 1.2$ equiv.) was added to a biphasic mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}\left(5.95 \mathrm{~g}, 43 \mathrm{mmol}, 2\right.$ equiv.) in a $2: 1$ mixture of EtOAc $(125 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(62.5$ mL). The resulting solution was cooled to $0^{\circ} \mathrm{C}$ followed by dropwise addition of the acid chloride. The reaction was allowed to stir at r.t. for 16 h. Afterwards the phases were extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The combined organic phases were dried over MgSO_{4}, filtered and evaporated in vacuo to give the desired product 337 without any further purification ($5.4 \mathrm{~g}, 20.6 \mathrm{mmol}, 96 \%$).
96%, brown solid, $95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.05(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 7.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.56-7.64\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.05-8.11\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.26-8.29(1 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{\mathrm{Ar}}\right), 10.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.42\left(\mathrm{OCH}_{3}\right), 62.79\left(\mathrm{OCH}_{3}\right), 64.06\left(\mathrm{OCH}_{3}\right)$, $102.54(\mathrm{CH}-3), 119.45\left(\mathrm{C}_{\text {quat }}\right), 122.31\left(2 \mathrm{xCH}_{\text {Ar }}\right), 126.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.10\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.54\left(\mathrm{C}_{\text {quat }}\right), 128.06$ $\left(\mathrm{C}_{\text {quat }}\right), 148.32\left(\mathrm{C}_{\text {quat }}\right), 151.88\left(\mathrm{C}_{\text {quat }}\right), 164.07(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 3186(\mathrm{NH}), 1644(\mathrm{C}=\mathrm{O}), 1369,1092$, $767 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 262\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}\right]^{+}: 262.1079$, found 262.1072 .

5.9 Synthesis of 1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-diones 19

A stirred solution of dioxolanylnaphthoquinone $11(1.5 \mathrm{mmol})$ or acetylnaphthoquinone 345 (1.5 mmol) in anhydrous THF (10 mL) under a nitrogen atmosphere was cooled to $0^{\circ} \mathrm{C}$. Freshly distilled enamine $340(1.65 \mathrm{mmol})$ was added dropwise in 2 mL of anhydrous THF. Then, $7 \mathrm{M} \mathrm{NH}_{3}$ in MeOH ($1.4 \mathrm{~mL}, 10$ equiv.) was added dropwise and the reaction was allowed to warm to room temperature and stirred open to the air overnight. After careful evaporation of the solvents, the reaction mixture was redissolved in EtOAc (15 mL) an washed with brine (2 x 10 mL). Drying over MgSO_{4} and evaporation of the solvent in vacuo gave a crude mixture which was purified by means of preparative TLC (hexane/ethyl acetate) and subsequent recrystallisation from EtOH to yield the desired 1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-diones 19.

1,2,3,4-Tetrahydrobenzo[j]phenanthridine-7,12-dione 19a

43%, yellow needles, mp $149.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.86-2.00\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.14(2 \mathrm{H}, \mathrm{t}, J=6.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 3.42\left(2 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.79-7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10$), 8.21-8.29(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and 11), $9.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.98\left(\mathrm{CH}_{2}\right), 22.68\left(\mathrm{CH}_{2}\right), 28.21\left(\mathrm{CH}_{2}\right), 34.73\left(\mathrm{CH}_{2}\right)$, $125.13\left(\mathrm{C}_{\text {quat }}\right), 126.58$ and $127.33(\mathrm{CH}-8$ and 11$), 132.41\left(\mathrm{C}_{\text {quat }}\right), 133.19\left(\mathrm{C}_{\text {quat }}\right), 134.28$ and 134.45 (CH-9 and 10), $133.91\left(\mathrm{C}_{\text {quat }}\right), 135.42\left(\mathrm{C}_{\text {quat }}\right), 146.86(\mathrm{CH}-6), 166.33\left(\mathrm{C}_{\text {quat }}\right), 183.20(\mathrm{C}=\mathrm{O}), 185.47$ $(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2941(\mathrm{CH}), 2867(\mathrm{CH}), 1674(\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{O}), 1557\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1297,1288,712$ $\mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 264\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

2-Methyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19b

28%, yellow crystals, mp $125.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.50-1.64$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.84-1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.00-2.09(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.88(1 \mathrm{H}, \mathrm{dd}, J=10.7,19.0 \mathrm{~Hz}, \mathrm{CH})$, 3.06-3.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.66(1 \mathrm{H}, \mathrm{ddd}, J=1.7,4.8,19.1 \mathrm{~Hz}, \mathrm{CH}), 7.79-7.85(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10), 8.21-8.30 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8\right.$ and 11), $9.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.94\left(\mathrm{CH}_{3}\right), 28.96\left(\mathrm{CH}_{2}\right)$, $30.06\left(\mathrm{CH}_{2}\right), 34.39\left(\mathrm{CH}_{2}\right), 36.53(\mathrm{CH}), 125.13\left(\mathrm{C}_{\text {quat }}\right), 126.63$ and $127.33(\mathrm{CH}-8$ and 11$), 132.48$ $\left(\mathrm{C}_{\text {quat }}\right), 132.75\left(\mathrm{C}_{\text {quat }}\right), 134.31$ and $134.49(\mathrm{CH}-9$ and 10$), 135.42\left(\mathrm{C}_{\text {quat }}\right), 146.93(\mathrm{CH}-3), 166.16\left(\mathrm{C}_{\text {quat }}\right)$, $183.24(\mathrm{C}=\mathrm{O}), 185.59(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2948(\mathrm{CH}), 2873(\mathrm{CH}), 1672(\mathrm{C}=\mathrm{O}), 1557\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1288$, $716 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 278\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

2-tert-Butyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19c

38%, amber crystals, mp $194.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45-1.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 2.11-2.19 (1H, m, CH), 2.92-3.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.25(1 \mathrm{H}, \mathrm{dd}, J=3.2,19.1 \mathrm{~Hz}, \mathrm{CH}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=$ $3.2,19.1 \mathrm{~Hz}, \mathrm{CH}), 7.79-7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10$), 8.21-8.29(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and 11$), 9.34(1 \mathrm{H}, \mathrm{CH}-$ 6). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 23.35\left(\mathrm{CH}_{2}\right), 27.40\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.98\left(\mathrm{CH}_{2}\right), 32.71\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.54\left(\mathrm{CH}_{2}\right)$, $44.44(\mathrm{CH}-2), 125.18\left(\mathrm{C}_{\text {quat }}\right), 126.63$ and $127.35(\mathrm{CH}-8$ and 11$), 132.46\left(\mathrm{C}_{\text {quat }}\right), 133.61\left(\mathrm{C}_{\text {quat }}\right), 134.28$ and $134.49(\mathrm{CH}-9$ and 10$), 134.55\left(\mathrm{C}_{\text {quat }}\right), 146.87(\mathrm{CH}-6), 158.22\left(\mathrm{C}_{\text {quat }}\right), 166.43\left(\mathrm{C}_{\text {quat }}\right), 183.27(\mathrm{C}=\mathrm{O})$, $185.58(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2948(\mathrm{CH}), 2868(\mathrm{CH}), 1675(\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{O}), 1595\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1298,709$ $\mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 320\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

3-Methyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19d

24%, yellow solid, $\mathrm{mp} 168^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.15\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.36-1.50(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 1.94-2.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.71(1 \mathrm{H}, \mathrm{dd}, J=10.3,18.4 \mathrm{~Hz}), 3.17-3.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.58-3.66$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.79-7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10$), 8.20-8.28(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and 11$), 9.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.57\left(\mathrm{CH}_{3}\right), 27.86\left(\mathrm{CH}_{2}\right), 28.18\left(\mathrm{CH}_{2}\right), 30.82\left(\mathrm{CH}_{2}\right), 43.00(\mathrm{CH}), 125.24\left(\mathrm{C}_{\text {quat }}\right)$, 126.66 and $127.39(\mathrm{CH}-8$ and 11$), 132.51\left(\mathrm{C}_{\text {quat }}\right), 132.95\left(\mathrm{C}_{\text {quat }}\right), 132.75\left(\mathrm{C}_{\text {quat }}\right), 134.34$ and 134.51 (CH-9 and 10), $135.41\left(\mathrm{C}_{\text {quat }}\right), 147.09(\mathrm{CH}-6), 166.26\left(\mathrm{C}_{\text {quat }}\right), 183.35(\mathrm{C}=\mathrm{O}), 185.62(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR})$: $v 2952(\mathrm{CH}), 2925(\mathrm{CH}), 1672(\mathrm{C}=\mathrm{O}), 1559\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1299,1277,710 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 278$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 278.1181$, found 278.1181.

4-Methyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19e

16%, yellow solid, mp $123^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.44\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.67-2.13(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.19(1 \mathrm{H}$, sextet, $J=6.6 \mathrm{~Hz}, \mathrm{CH}-4), 3.35(1 \mathrm{H}, \mathrm{td}, J=6.6,19.3 \mathrm{~Hz}, \mathrm{CH}), 3.46(1 \mathrm{H}, \mathrm{td}, J=$ $6.6,19.3 \mathrm{~Hz}, \mathrm{CH}), 7.79-7.84(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10$), 8.21-8.29(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and 11$), 9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-$ 6). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.84\left(\mathrm{CH}_{2}\right), 21.57\left(\mathrm{CH}_{3}\right), 28.70\left(\mathrm{CH}_{2}\right), 29.94\left(\mathrm{CH}_{2}\right), 37.57(\mathrm{CH}-4), 124.92$ $\left(\mathrm{C}_{\text {quat }}\right), 126.52$ and $127.32(\mathrm{CH}-8$ and 11$), 132.41\left(\mathrm{C}_{\text {quat }}\right), 132.95\left(\mathrm{C}_{\text {quat }}\right), 134.29$ and $134.41(\mathrm{CH}-9$ and $10), 134.55\left(\mathrm{C}_{\text {quat }}\right), 135.45\left(\mathrm{C}_{\text {quat }}\right), 146.86(\mathrm{CH}-6), 170.17\left(\mathrm{C}_{\text {quat }}\right), 183.26(\mathrm{C}=\mathrm{O}), 185.52(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v $2944(\mathrm{CH}), 2874(\mathrm{CH}), 1672(\mathrm{C}=\mathrm{O}), 1588\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1559\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1298,1281,720 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 278\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

6-Methyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione $19 f$

15%, orange needles, mp $180.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.83-1.98(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}), 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.06\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.34\left(2 \mathrm{H}, \mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.74-7.83(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10), 8.14$8.22\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8\right.$ and 11). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.13\left(\mathrm{CH}_{2}\right), 22.99\left(\mathrm{CH}_{2}\right), 26.81\left(\mathrm{CH}_{2}\right), 28.41$ $\left(\mathrm{CH}_{2}\right), 34.73\left(\mathrm{CH}_{3}\right), 123.97\left(\mathrm{C}_{\text {quat }}\right), 126.66(\mathrm{CH}-8$ and 11$), 131.51\left(\mathrm{C}_{\text {quat }}\right), 133.73\left(\mathrm{C}_{\text {quat }}\right), 133.79(\mathrm{CH}-9$ or 10$), 133.94\left(\mathrm{C}_{\text {quat }}\right), 134.23(\mathrm{CH}-9$ or 10$), 135.42\left(\mathrm{C}_{\text {quat }}\right), 158.17\left(\mathrm{C}_{\text {quat }}\right), 164.45\left(\mathrm{C}_{\text {quat }}\right), 185.03(\mathrm{C}=\mathrm{O})$,
$186.46(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2942(\mathrm{CH}), 2868(\mathrm{CH}), 1670(\mathrm{C}=\mathrm{O}), 1589\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1537\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1288$, 722, $713 \mathrm{~cm}^{-1}$. MS $\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 278\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES^{+}) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}$: 278.1181, found 278.0819.

2,6-Dimethyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19g

23%, orange crystals, mp $164.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.18\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.48-1.61$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.79-1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.97-2.06(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=11.0,18.7 \mathrm{~Hz}, \mathrm{CH})$, $3.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.04-3.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.50(1 \mathrm{H}, \mathrm{ddd}, J=1.7,4.5,18.7 \mathrm{~Hz}, \mathrm{CH}), 7.72-7.81(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}-9$ and 10), 8.12-8.20 (2H, m, CH-8 and 11). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.97\left(\mathrm{CH}_{3}\right), 26.81\left(\mathrm{CH}_{3}\right)$, $29.20(\mathrm{CH}), 30.16\left(\mathrm{CH}_{2}\right), 34.39\left(\mathrm{CH}_{2}\right), 36.76\left(\mathrm{CH}_{2}\right), 123.88\left(\mathrm{C}_{\text {quat }}\right), 126.64(\mathrm{CH}-8$ and 11$), 131.01$ $\left(\mathrm{C}_{\text {quat }}\right), 133.71\left(\mathrm{C}_{\text {quat }}\right), 133.80(\mathrm{CH}-9$ or 10$), 133.91\left(\mathrm{C}_{\text {quat }}\right), 134.23(\mathrm{CH}-9$ or 10$), 137.71\left(\mathrm{C}_{\text {quat }}\right), 158.22$ $\left(\mathrm{C}_{\text {quat }}\right), 164.23\left(\mathrm{C}_{\text {quat }}\right), 184.97(\mathrm{C}=\mathrm{O}), 188.48(\mathrm{C}=\mathrm{O})$. IR (ATR) : v $2933(\mathrm{CH}), 2869(\mathrm{CH}), 1667(\mathrm{C}=\mathrm{O})$, $1590\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1289,724 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 292\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

3,6-Dimethyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19i

36%, yellow needles, mp $168^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.14\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.33-1.47$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.95-2.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65(1 \mathrm{H}, \mathrm{dd}, J=10.5,18.2 \mathrm{~Hz}), 3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.10-3.30$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.46-3.55(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.73-7.82(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-9$ and 10$), 8.12-8.24(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and 11). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.58\left(\mathrm{CH}_{3}\right), 26.79\left(\mathrm{CH}_{3}\right), 27.95\left(\mathrm{CH}_{2}\right), 28.23\left(\mathrm{CH}_{2}\right), 31.05\left(\mathrm{CH}_{2}\right), 43.02$ $(\mathrm{CH}), 123.88\left(\mathrm{C}_{\text {quat }}\right), 126.61$ and $126.64(\mathrm{CH}-8$ and 11$), 130.92\left(\mathrm{C}_{\text {quat }}\right), 133.64\left(\mathrm{C}_{\text {quat }}\right), 133.74(\mathrm{CH}-9$ or $10), 133.83\left(\mathrm{C}_{\text {quat }}\right), 134.19(\mathrm{CH}-9$ or 10$), 137.48\left(\mathrm{C}_{\text {quat }}\right), 158.31\left(\mathrm{C}_{\text {quat }}\right), 164.28\left(\mathrm{C}_{\text {quat }}\right), 184.86(\mathrm{C}=\mathrm{O})$, $186.30(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2948(\mathrm{CH}), 2928(\mathrm{CH}), 1667(\mathrm{C}=\mathrm{O}), 1591\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1294,1264,724 \mathrm{~cm}^{-1}$. MS (ES^{+}) m/z (\%): $292\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}: 292.1338$, found 292.0978.

4,6-Dimethyl-1,2,3,4-tetrahydrobenzo[j]phenanthridine-7,12-dione 19j

18%, orange needles, mp $161.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.42\left(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.64-1.81$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.87-1.99(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.02-2.11(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.11(1 \mathrm{H}$, sextet, $J=$ 6.6 Hz, CH-4), $3.25(1 \mathrm{H}, \mathrm{td}, J=6.6,19.3 \mathrm{~Hz}, \mathrm{CH}), 3.35(1 \mathrm{H}, \mathrm{td}, J=6.6,19.3 \mathrm{~Hz}, \mathrm{CH}), 7.71-7.80(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}-9$ and 10), 8.11-8.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$ and 11), $9.41(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.19$ $\left(\mathrm{CH}_{3}\right), 21.66\left(\mathrm{CH}_{2}\right), 26.90\left(\mathrm{CH}_{3}\right), 28.91\left(\mathrm{CH}_{2}\right), 30.10\left(\mathrm{CH}_{2}\right), 37.49(\mathrm{CH}-4), 123.71\left(\mathrm{C}_{\text {quat }}\right), 126.58$ and $126.64(\mathrm{CH}-8$ and 11$), 131.12\left(\mathrm{C}_{\text {quat }}\right), 132.95\left(\mathrm{C}_{\text {quat }}\right), 133.73(\mathrm{CH}-9$ or 10$), 134.00\left(\mathrm{C}_{\text {quat }}\right), 134.14(\mathrm{CH}-$ 9 or 10$), 137.76\left(\mathrm{C}_{\text {quat }}\right), 158.11\left(\mathrm{C}_{\text {quat }}\right), 168.25\left(\mathrm{C}_{\text {quat }}\right), 185.09(\mathrm{C}=\mathrm{O}), 185.52(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2981 $(\mathrm{CH}), 2935(\mathrm{CH}), 1666(\mathrm{C}=\mathrm{O}), 1590\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1280,725 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 292\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES') calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{-}: 290.1181$, found 290.1336.

5.10 Synthesis of octahydrobenzophenanthridinediones 22

5.10.1 Synthesis of 6-(1,3-dioxolan-2-yl)-1,2,3,4-tetrahydronaphthalene-5,8-diones 350a, 350b and 6-(1,3-dioxan-2-yl)-1,2,3,4-tetrahydronaphthalene-5,8-dione 350c

To a Parr bottle were added 1,4-dihydro-5,8-dimethoxynaphthalene $\mathbf{3 4 6 a}$ or $\mathbf{3 4 6} \mathbf{b}^{211}$ (35 mmol), Pd / C $(1 \mathrm{~m} / \mathrm{m} \%)$, EtOH $(25 \mathrm{~mL})$ and EtOAc $(125 \mathrm{~mL})$. The reaction was stirred for 3 h at room temperature under a hydrogen atmosphere of 5 bar. Next, the reaction mixture was filtered over a pad of Celite ${ }^{\circledR}$ and evaporated in vacuo to afford pure 1,2,3,4-tetrahydro-5,8-dimethoxynaphthalene 347a or 347b. These compounds 347 (30 mmol) were dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$ and under a nitrogen atmosphere, $\mathrm{TiCl}_{4}(33 \mathrm{mmol}, 3.62 \mathrm{~mL})$ was slowly added dropwise. Next, $\mathrm{Cl}_{2} \mathrm{CHOMe}(33 \mathrm{mmol}, 2.99 \mathrm{~mL}$) was slowly added dropwise. When the addition was complete, the reaction was stirred for 3 hours at $0^{\circ} \mathrm{C}$ and cautiously quenched with ice-cold water (50 mL). The reaction mixture was washed with brine $(2 \times 50 \mathrm{~mL})$, dried over MgSO_{4} and evaporated in vacuo. Purification by means of column chromatography yielded 5,8-dimethoxy-1,2,3,4-tetrahydronaphthalene-6-carboxaldehydes $\mathbf{3 4 8}$ a and $\mathbf{3 4 8 b}$ as pale white solids.

5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene-6-carboxaldehyde 348a

96%, pale white solid, mp $89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.18-1.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.52-1.55(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.73-1.78\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.91-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.63(1 \mathrm{H}$, br d$, J=1.1 \mathrm{~Hz}, \mathrm{CH}-1$ or CH4), $3.69(1 \mathrm{H}, \mathrm{brd}, J=1.1 \mathrm{~Hz}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.13(1 \mathrm{H}, \mathrm{s}$, CH-5), $10.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 25.97\left(\mathrm{CH}_{2}\right), 26.73\left(\mathrm{CH}_{2}\right), 40.23(\mathrm{CH}), 41.19(\mathrm{CH})$, $49.02\left(\mathrm{CH}_{2}\right), 55.78\left(\mathrm{OCH}_{3}\right), 62.81\left(\mathrm{OCH}_{3}\right), 106.96\left(\mathrm{CH}_{\text {Ar }}\right), 126.87\left(\mathrm{C}_{\text {quat }}\right), 140.93\left(\mathrm{C}_{\text {quat }}\right), 145.80$ $\left(\mathrm{C}_{\text {quat }}\right), 149.58\left(\mathrm{C}_{\text {quat }}\right), 151.93\left(\mathrm{C}_{\text {quat }}\right), 189.81(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2949(\mathrm{CH}), 2868(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O})$, $1589,1475,1387,1309,1212,1021 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 233\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}\right]^{+}: 233.1178$, found 233.1179.

5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-6-carboxaldehyde 348b

97%, pale white solid, $\mathrm{mp} 85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28-1.41(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}), 1.75-1.86(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2}\right), 3.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}), 3.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.19(1 \mathrm{H}, \mathrm{s}$, CH-5), $10.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.20\left(2 \mathrm{xCH}_{2}\right), 25.46\left(2 \mathrm{xCH}_{2}\right), 26.59(\mathrm{CH}), 27.17$ $(\mathrm{CH}), 55.66\left(\mathrm{OCH}_{3}\right), 64.55\left(\mathrm{OCH}_{3}\right), 105.13\left(\mathrm{CH}_{\text {Ar }}\right), 126.41\left(\mathrm{C}_{\text {quat }}\right), 138.69\left(\mathrm{C}_{\text {quat }}\right), 142.03\left(\mathrm{C}_{\text {quat }}\right)$, $150.93\left(\mathrm{C}_{\text {quat }}\right), 153.13\left(\mathrm{C}_{\text {quat }}\right), 189.70(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}): ~ v 2943(\mathrm{CHO}), 2863(\mathrm{CH}), 1675\left(\mathrm{CH}_{\text {ar }}\right), 1391$, $1114 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 247\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3}\right]^{+}: 247.1334$, found 247.1338 .

A solution of 5,8-dimethoxy-1,2,3,4-tetrahydronaphthalene-6-carboxaldehydes 348a or 348b, ethylene glycol or propylene glycol (80 mmol) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 38 \mathrm{mg})$ in $\mathrm{PhMe}(40 \mathrm{~mL})$ was
equipped with a Dean-Stark piece and boiled under reflux for 4 hours. Next, the reaction mixture was allowed to cool to room temperature, diluted with EtOAc (40 mL), washed with aqueous saturated $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and brine (3 x 40 mL). Drying over MgSO_{4} and evaporation of the solvent yielded pure 2-(5,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-6-yl)-1,3-dioxolanes 349a or 349b, 2-(5,8-dimethoxy-1,2,3,4-tetrahydronaphthalen-6-yl)-1,3-dioxane 349c. Dioxolanes 349a and 349b had only a limited stability so no (HR)MS could be recorded.

2-(5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)-1,3-dioxolane 349a

82%, pale white solid, mp $106.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.14-1.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.48(1 \mathrm{H}, \mathrm{d}, J=8.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.70\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}\right), 1.84-1.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.57(1 \mathrm{H}$, br s, CH-1 or CH4), $3.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01-4.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, 4.10-4.21 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.05\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.84\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 26.42\left(\mathrm{CH}_{2}\right)$, $26.90\left(\mathrm{CH}_{2}\right), 39.84(\mathrm{CH}), 41.19(\mathrm{CH}), 49.14\left(\mathrm{CH}_{2}\right), 55.92\left(\mathrm{OCH}_{3}\right), 62.15\left(\mathrm{OCH}_{3}\right), 65.37\left(\mathrm{OCH}_{2}\right)$, $65.40\left(\mathrm{OCH}_{2}\right), 99.88\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 106.93\left(\mathrm{CH}_{\text {Ar }}\right), 127.45\left(\mathrm{C}_{\text {quat }}\right), 138.45\left(\mathrm{C}_{\text {quat }}\right), 140.77\left(\mathrm{C}_{\text {quat }}\right)$, $146.71\left(\mathrm{C}_{\text {quat }}\right), 149.22\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $2951(\mathrm{CH}), 2868(\mathrm{CH}), 1489,1458,1387,1218,1110$, $1054,1021 \mathrm{~cm}^{-1}$.

2-(5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-ethanonaphthalen-6-yl)-1,3-dioxolane 349b

89%, pale white crystals, mp $113^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.26-1.38\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.69-1.81(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.36-3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.45-3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 4.03-4.11 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.13-4.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.11\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.92\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.61\left(2 \mathrm{xCH}_{2}\right), 25.74\left(2 \mathrm{xCH}_{2}\right), 26.10(\mathrm{CH}), 27.46(\mathrm{CH}), 55.88\left(\mathrm{OCH}_{3}\right), 63.28$ $\left(\mathrm{OCH}_{3}\right), 65.42\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 99.92\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 105.62\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.09\left(\mathrm{C}_{\text {quat }}\right), 134.86\left(\mathrm{C}_{\text {quat }}\right)$, $137.97\left(\mathrm{C}_{\text {quat }}\right), 147.88\left(\mathrm{C}_{\text {quat }}\right), 154.54\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $2939(\mathrm{CH}), 1487,1383,1217,1114 \mathrm{~cm}^{-1}$.

2-(5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalen-6-yl)-1,3-dioxane 349c

Quantitative yield, yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.11-1.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.46(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.43\left(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.68\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 1.84-1.94(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.18-2.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{B}}\right), 3.56(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02\left(2 \mathrm{H}, \mathrm{dd}, J=11.8,11.6,2 \mathrm{xCH}_{\mathrm{AX}} \mathrm{H}_{\mathrm{EQ}} \mathrm{O}\right), 4.02(2 \mathrm{H}, \mathrm{dd}, J=4.1$, 11.6, $\left.2 \mathrm{xCH}_{\mathrm{AX}} \underline{\mathrm{H}}_{\mathrm{EQ}} \mathrm{O}\right), 5.79\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right), 6.91\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $25.68\left(\mathrm{CH}_{2}\right), 26.17\left(\mathrm{CH}_{2}\right), 26.65\left(\mathrm{CH}_{2}\right), 39.57(\mathrm{CH}), 40.87(\mathrm{CH}), 48.82\left(\mathrm{CH}_{2}\right), 55.54\left(\mathrm{OCH}_{3}\right), 61.85$ $\left(\mathrm{OCH}_{3}\right), 67.37\left(2 \mathrm{xOCH}_{2}\right), 97.45\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right), 106.70\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.83\left(\mathrm{C}_{\text {quat }}\right), 137.59\left(\mathrm{C}_{\text {quat }}\right)$, $140.26\left(\mathrm{C}_{\text {quat }}\right), 145.06\left(\mathrm{C}_{\text {quat }}\right), 149.15\left(\mathrm{C}_{\text {quat }}\right)$. IR $(\mathrm{ATR}): v 2954(\mathrm{CH}), 2867(\mathrm{CH}), 1388,1220,1111$, $1096 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 291\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4}\right]^{+}$: 291.1596, found 291.1595.

2-(5,8-Dimethoxy-1,4-dihydro-1,4-epoxynaphthalen-6-yl)-1,3-dioxolane 351

A solution of freshly prepared LDA (2 equiv., 17.5 mmol) in anhydrous THF (10 ml) was cooled to $78^{\circ} \mathrm{C}$ and furan $(10 \mathrm{~mL})$ was added dropwise. Next, 2-(3-bromo-2,5-dimethoxyphenyl)-1,3-dioxolane $\mathbf{1 8 1 b}(2.5 \mathrm{~g}, 8.65 \mathrm{mmol})$ dissolved in 2.5 mL THF was slowly added dropwise. The reaction mixture was allowed to stir for 1 h at $-78^{\circ} \mathrm{C}$ and quenched with $10 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The reaction mixture was diluted with 20 mL of EtOAc and washed twice with brine (10 mL). Drying over MgSO_{4}, evaporation of the solvent in vacuo followed by recrystallisation from $\mathrm{Et}_{2} \mathrm{O}$ gave pure 2-(5,8-dimethoxy-1,4-dihydro-1,4-epoxynaphthalen-6-yl)-1,3-dioxolane 351.
89%, pale white solid, mp $131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.98-$ $4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.08-4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 5.90(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-1$ or 8$), 6.05$ $\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.02(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-1$ or 8$), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-5), 7.03(1 \mathrm{H}, \mathrm{dd}, J=1.7,5.5 \mathrm{~Hz}$, CH-9 or CH-10), $7.03(1 \mathrm{H}, \mathrm{dd}, J=1.7,5.5 \mathrm{~Hz}, \mathrm{CH}-9$ or $\mathrm{CH}-10) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.14\left(\mathrm{OCH}_{3}\right)$, $61.46\left(\mathrm{OCH}_{3}\right), 65.17\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 79.76$ and $81.30(\mathrm{CH}-1$ and $\mathrm{CH}-8), 99.39\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 109.54$ (CH-5), $128.20\left(\mathrm{C}_{\text {quat }}\right), 138.03\left(\mathrm{C}_{\text {quat }}\right), 139.09\left(\mathrm{C}_{\text {quat }}\right), 142.29$ and $142.97(\mathrm{CH}-9$ and $\mathrm{CH}-10), 146.66$ $\left(\mathrm{C}_{\text {quat }}\right), 148.36\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $2897(\mathrm{CH}), 1478,1392,1222,1055 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 277$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5}\right]^{+}: 277.1076$, found 277.1072.

2-(5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-6-yl)-1,3-dioxolane 349d

2-(5,8-Dimethoxy-1,2,3,4-tetrahydro-1,4-epoxynaphthalen-6-yl)-1,3-dioxolane 349d was prepared using the same procedure as 5,8-dimethoxy-1,2,3,4-tetrahydronaphthalenes 347.
99%, white crystals, mp $81-82.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.35-1.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.99-2.13(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 3.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01-4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.08-4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $5.56(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{CH}-1$ or 8$), 5.66(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{CH}-1$ or 4$), 6.04\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.93(1 \mathrm{H}$, s, CH-7). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.09\left(\mathrm{CH}_{2}\right), 26.71\left(\mathrm{CH}_{2}\right), 55.97\left(\mathrm{OCH}_{3}\right), 61.40\left(\mathrm{OCH}_{3}\right), 65.34$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 76.47$ and $77.72(\mathrm{CH}-1$ and $\mathrm{CH}-8), 99.45\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 108.89(\mathrm{CH}-5), 128.60\left(\mathrm{C}_{\text {quat }}\right)$, $136.02\left(\mathrm{C}_{\text {quat }}\right), 136.92\left(\mathrm{C}_{\text {quat }}\right), 145.16\left(\mathrm{C}_{\text {quat }}\right), 147.47\left(\mathrm{C}_{\text {quat }}\right) . \operatorname{IR}(\mathrm{ATR}): v 2954(\mathrm{CH}), 1482,1394,1069$ $\mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%) 279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5}\right]^{+}: 279.1233$, found 279.1231.

To a stirred solution of dioxolanes $\mathbf{3 4 9 a}, \mathbf{3 4 9 b}$ or $\mathbf{3 4 9 d}$ or dioxane $\mathbf{3 4 9} \mathbf{c}(1.81 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10$ mL) was added a solution of CAN ($5.43 \mathrm{mmol}, 2.98 \mathrm{~g}$) in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ in one portion at room temperature. After 3 minutes, the reaction mixture was diluted with EtOAc (20 ml) and washed twice with brine $(10 \mathrm{~mL})$. Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded the crude quinones $\mathbf{3 5 0}$ which were used as such. All dioxolanylnaphthoquinones $\mathbf{3 5 0}$ were unstable and had to
be used directly in the next step. 6-(1,3-Dioxan-2-yl)-1,2,3,4-tetrahydro-1,4-methanonaphthalene-5,8dione $\mathbf{3 5 0}$ c was purified by means of preparative TLC.

6-(1,3-Dioxolan-2-yl)-1,2,3,4-tetrahydro-1,4-methanonaphthalene-5,8-dione 350a

60%, orange solid, mp $68.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.05-1.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.32-1.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $1.54-1.59(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.81-1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.39(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.42(1 \mathrm{H}, \mathrm{d}$, $J=1.4 \mathrm{~Hz}, \mathrm{CH}-1$ or CH-4), 3.93-3.98 ($4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $5.79\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-7)$. ${ }^{13}{ }^{3}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.88\left(\mathrm{CH}_{2}\right), 24.93\left(\mathrm{CH}_{2}\right), 40.47(\mathrm{CH}), 40.53(\mathrm{CH}), 47.83\left(\mathrm{CH}_{2}\right), 65.31\left(\mathrm{OCH}_{2}\right)$, $65.45\left(\mathrm{OCH}_{2}\right), 98.00\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 131.64\left(\mathrm{CH}_{\text {Ar }}\right), 142.26\left(\mathrm{C}_{\text {quat }}\right), 151.67\left(\mathrm{C}_{\text {quat }}\right), 151.93\left(\mathrm{C}_{\text {quat }}\right)$, $183.46(\mathrm{C}=\mathrm{O})$, $184.65(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2953(\mathrm{CH}), 2878(\mathrm{CH}), 1645(\mathrm{C}=\mathrm{O}), 1337,1088,943 \mathrm{~cm}^{-1}$.

6-1,3-Dioxolan-2-yl-1,2,3,4-tetrahydro-1,4-ethanonaphthalene-5,8-dione 350b

83%, red oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.29\left(4 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{xCH}_{2}\right), 1.73(4 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{xCH}_{2}$), $3.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 4.05\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 5.93(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.80\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.79\left(4 \mathrm{xCH}_{2}\right), 26.00(2 \mathrm{xCH}), 65.06$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 97.75\left(\underline{\mathrm{CH}}\left(\mathrm{OCH}_{2}\right)_{2}\right), 131.08\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.82\left(\mathrm{C}_{\text {quat }}\right), 147.70\left(\mathrm{C}_{\text {quat }}\right), 147.90\left(\mathrm{C}_{\text {quat }}\right)$, 182.91 (C=O), 184.10 (C=O). IR (ATR): v 2949 (CH), 2868 (CH), 1648 (C=O), $751 \mathrm{~cm}^{-1}$.

6-1,3-Dioxan-2-yl-1,2,3,4-tetrahydro-1,4-methanonaphthalene-5,8-dione 350c

42%, orange solid, mp $101^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.15\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.39(1 \mathrm{H}, \mathrm{d}, J=9.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.43\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.62\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.90(2 \mathrm{H}, \mathrm{d}, J$ $\left.=8.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.09-2.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.47(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ and $\mathrm{CH}-4), 3.96(2 \mathrm{H}, \mathrm{dd}, J=$ $\left.13.4,10.5,2 \mathrm{xCH}_{\mathrm{Ax}} \mathrm{H}_{\mathrm{EQ}} \mathrm{O}\right), 4.20\left(2 \mathrm{H}, \mathrm{d}, J=10.5,2 \mathrm{xCH}_{\mathrm{Ax}} \underline{\mathrm{H}}_{\mathrm{EQ}} \mathrm{O}\right), 5.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right.$), $6.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-7) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 24.90\left(\mathrm{CH}_{2}\right), 24.96\left(\mathrm{CH}_{2}\right), 25.64\left(\mathrm{CH}_{2}\right), 40.49(\mathrm{CH}-1$ or $\mathrm{CH}-$ 4), $40.59(\mathrm{CH}-1$ or $\mathrm{CH}-4), 47.75\left(\mathrm{CH}_{2}-9\right), 67.42\left(\mathrm{OCH}_{2}\right), 67.49\left(\mathrm{OCH}_{2}\right), 94.64\left(\mathrm{CH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)\right)$, $132.70\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.51\left(\mathrm{C}_{\text {quat }}\right), 151.44\left(\mathrm{C}_{\text {quat }}\right), 151.53\left(\mathrm{C}_{\text {quat }}\right), 182.63(\mathrm{C}=\mathrm{O}), 184.66(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v$ $2955(\mathrm{CH}), 1645(\mathrm{C}=\mathrm{O}), 1097(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 261\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}\right]^{+}: 261.1127$, found 261.1121.

6-1,3-Dioxolan-2-yl-1,2,3,4-tetrahydro-1,4-epoxynaphthalene-5,8-dione 350d

81%, red solid, $\mathrm{mp} 79^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02-2.12(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 4.04\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.46(2 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}, \mathrm{CH}-1$ and $\mathrm{CH}-4), 5.87\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 6.73$ (1H, s, CH-5). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 23.77\left(\mathrm{CH}_{2}\right), 23.83\left(\mathrm{CH}_{2}\right), 64.93\left(\mathrm{OCH}_{2}\right), 65.11\left(\mathrm{OCH}_{2}\right), 76.27$ and $76.34(\mathrm{CH}-1$ and $\mathrm{CH}-4), 97.38\left(\mathrm{CH}\left(\mathrm{OCH}_{2}\right)_{2}\right), 131.30\left(\mathrm{CH}_{\mathrm{Ar}}\right), 142.26\left(\mathrm{C}_{\text {quat }}\right), 149.78\left(\mathrm{C}_{\text {quat }}\right), 150.00$ ($\mathrm{C}_{\text {quat }}$), $181.90(\mathrm{C}=\mathrm{O}), 182.92(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2980(\mathrm{CH}), 2885(\mathrm{CH}), 1655(\mathrm{C}=\mathrm{O}), 1305,1286$, $875 \mathrm{~cm}^{-1}$.

5.10.2 Synthesis of octahydrobenzophenanthridinediones 22a-22g

Method A

A stirred solution of dioxolanylnaphthoquinones $\mathbf{3 5 0}(1.5 \mathrm{mmol})$ in anhydrous THF (10 mL) under a nitrogen atmosphere was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added dropwise ($19 \mu \mathrm{~L}, 0.1$ equiv.). Next, freshly distilled enamine $\mathbf{3 4 0} \mathbf{c}, \mathbf{3 5 8}$, or $\mathbf{3 5 9 b}(1.65 \mathrm{mmol})$ was added dropwise in anhydrous THF (2 mL). The reaction mixture was allowed to warm to room temperature and stirred for 3 hours. Then, $\mathrm{NH}_{3} 7 \mathrm{M}$ in $\mathrm{MeOH}(1.4 \mathrm{~mL}, 10$ equiv.) was added dropwise and the reaction was allowed to stir open to the air for 15 h . After careful evaporation of the solvents, the reaction mixture was redissolved in EtOAc $(15 \mathrm{~mL})$ an washed with brine $(2 \times 10 \mathrm{~mL})$. Drying over MgSO_{4} and evaporation of the solvent in vacuo gave a crude mixture which was purified by means of preparative TLC (hexane/ethyl acetate). Recrystallisation from EtOH yielded the desired 1,2,3,4-octahydrobenzo[j]phenanthridine-7,12-diones 22.

Method B

After the enamine addition, the reaction mixture was evaporated in vacuo and subsequently redissolved in 10 mL of HOAc . After the addition of $\mathrm{NH}_{4} \mathrm{OAc}(15 \mathrm{mmol}, 1.16 \mathrm{~g})$ the reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 hour open to the air. Next, the reaction mixture was evaporated in vacuo, redissolved in 15 mL of EtOAc, washed with an aqueous saturated NaHCO_{3} solution (2 x 10 mL) and brine $(10 \mathrm{~mL})$. Further purification proceeded as in method A.

2-tert-Butyl-1,2,3,4,8,9,10,11-octahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 22a
48%, yellow solid, mp $140.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22-1.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.38-1.49 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and CH$), 1.66-1.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.95-2.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.08-2.13(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.75(1 \mathrm{H}, \mathrm{dd}, J=11.0,18.7 \mathrm{~Hz}, \mathrm{CH}), 2.91-3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.15-3.22(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.61(2 \mathrm{H}$, $\mathrm{s}, 2 \mathrm{xCH}), 3.73(1 \mathrm{H}, \mathrm{d}, J=18.7 \mathrm{~Hz}), 9.06(1 \mathrm{H}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: major isomer $\delta 23.28\left(\mathrm{CH}_{2}\right)$, $25.20\left(\mathrm{CH}_{2}\right), 25.26\left(\mathrm{CH}_{2}\right), 27.31\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.04\left(\mathrm{CH}_{2}\right), 32.70\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.51\left(\mathrm{CH}_{2}\right), 40.81(\mathrm{CH})$, $41.19(\mathrm{CH}), 44.33\left(\mathrm{CH}_{2}\right), 47.72(\mathrm{CH}-2), 124.80\left(\mathrm{C}_{\text {quat }}\right), 133.09\left(\mathrm{C}_{\text {quat }}\right), 134.75\left(\mathrm{C}_{\text {quat }}\right), 145.33(\mathrm{CH}-6)$, $152.43\left(\mathrm{C}_{\text {quat }}\right), 155.33\left(\mathrm{C}_{\text {quat }}\right), 182.05(\mathrm{C}=\mathrm{O}), 184.89(\mathrm{C}=\mathrm{O})$. Minor isomer $\delta 23.51\left(\mathrm{CH}_{2}\right), 25.26\left(\mathrm{CH}_{2}\right)$, $25.46\left(\mathrm{CH}_{2}\right), 27.31\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.71\left(\mathrm{CH}_{2}\right), 32.64\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.34\left(\mathrm{CH}_{2}\right), 40.91(\mathrm{CH}), 41.45(\mathrm{CH})$, $44.33\left(\mathrm{CH}_{2}\right), 46.93(\mathrm{CH}-2), 124.86\left(\mathrm{C}_{\text {quat }}\right), 133.02\left(\mathrm{C}_{\text {quat }}\right), 135.32\left(\mathrm{C}_{\text {quat }}\right), 145.33(\mathrm{CH}-6), 152.51\left(\mathrm{C}_{\text {quat }}\right)$, $155.41\left(\mathrm{C}_{\text {quat }}\right), 182.16(\mathrm{C}=\mathrm{O}), 185.07(\mathrm{C}=\mathrm{O})$. Major/minor 3.7/1. IR (ATR): v $2954(\mathrm{CH}), 2872(\mathrm{CH})$, $1656(\mathrm{C}=\mathrm{O}), 1321 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 336\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{2}\right]^{+}$: 336.1964, found 336.1957.

2-tert-Butyl-1,2,3,4,8,9,10,11-octahydro-8,11-ethanobenzo[j]phenanthridine-7,12-dione 22b
33%, yellow solid, mp $154.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.23-1.34(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2}\right), 1.40-1.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.73-1.85\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 2.09-2.16(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=$ $11.0,18.6 \mathrm{~Hz}, \mathrm{CH}), 2.96-3.08(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.16-3.24(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.51(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{xCH}), 3.60(1 \mathrm{H}, \mathrm{dd}$, $J=18.6,3.6 \mathrm{~Hz}), 9.14(1 \mathrm{H}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 23.46\left(\mathrm{CH}_{2}\right), 25.20\left(\mathrm{CH}_{2}\right), 25.25\left(\mathrm{CH}_{2}\right)$, $25.40\left(\mathrm{CH}_{2}\right), 25.48\left(\mathrm{CH}_{2}\right), 26.52(\mathrm{CH}-8$ or $\mathrm{CH}-11), 26.87(\mathrm{CH}-8$ or $\mathrm{CH}-11), 27.39\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.65$ $\left(\mathrm{CH}_{2}\right), 32.72\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.52\left(\mathrm{CH}_{2}\right), 44.47(\mathrm{CH}-2), 124.34\left(\mathrm{C}_{\text {quat }}\right), 133.10\left(\mathrm{C}_{\text {quat }}\right), 134.61\left(\mathrm{C}_{\text {quat }}\right)$, $145.71(\mathrm{CH}-6), 149.18\left(\mathrm{C}_{\text {quat }}\right), 151.84\left(\mathrm{C}_{\text {quat }}\right), 181.96(\mathrm{C}=\mathrm{O}), 184.45(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2944(\mathrm{CH})$, $2867(\mathrm{CH}), 1660(\mathrm{C}=\mathrm{O}), 1618\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1566\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1297 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 350\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2}\right]^{+}: 350.2120$, found 350.2119 .

2-tert-Butyl-1,2,3,4,8,9,10,11-octahydro-8,11-epoxybenzo[j]phenanthridine-7,12-dione 22c

14%, yellow solid, mp $128.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major isomer $\delta 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.37-1.51$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 2.06-2.17\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and CH$), 2.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=19.1,10.9, \mathrm{CH}), 3.02-3.08(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 3.16-3.19(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.72(1 \mathrm{H}, \mathrm{dd}, J=3.9,17.6 \mathrm{~Hz}, \mathrm{CH}), 5.57(2 \mathrm{H}, \mathrm{dd}, J=4.4,11.0, \mathrm{CH}-8$ and CH-10), $9.08(1 \mathrm{H}, \mathrm{CH}-6)$. Minor isomer $\delta 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.37-1.51\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 2.06-$ $2.17\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and CH$), 2.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=19.1,10.9, \mathrm{CH}), 2.96-3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.23-3.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}), 3.40(1 \mathrm{H}, \mathrm{dd}, J=3.9,17.6 \mathrm{~Hz}, \mathrm{CH}), 5.57(2 \mathrm{H}, \mathrm{dd}, J=4.4,11.0, \mathrm{CH}-8$ and $\mathrm{CH}-10), 9.07(1 \mathrm{H}$, CH-6). Major/minor 3/1. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: major isomer $\delta 23.19\left(\mathrm{CH}_{2}\right)$, $24.47\left(\mathrm{CH}_{2}\right), 24.61\left(\mathrm{CH}_{2}\right)$, $27.31\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.94\left(\mathrm{CH}_{2}\right), 32.73\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.54\left(\mathrm{CH}_{2}\right), 35.54(2 \mathrm{xCH}), 44.27(\mathrm{CH}-2), 124.76$ $\left(\mathrm{C}_{\text {quat }}\right), 133.61\left(\mathrm{C}_{\text {quat }}\right), 145.48(\mathrm{CH}-6), 150.66\left(\mathrm{C}_{\text {quat }}\right), 153.51\left(\mathrm{C}_{\text {quat }}\right), 167.19\left(\mathrm{C}_{\text {quat }}\right), 182.92(\mathrm{C}=\mathrm{O})$, $183.87(\mathrm{C}=\mathrm{O})$. Minor isomer $\delta 23.46\left(\mathrm{CH}_{2}\right)$, $24.55\left(\mathrm{CH}_{2}\right), 24.76\left(\mathrm{CH}_{2}\right), 27.31\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.17\left(\mathrm{CH}_{2}\right)$, $32.65\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.37(2 \mathrm{xCH}), 42.76(\mathrm{CH}-2), 125.06\left(\mathrm{C}_{\text {quat }}\right), 134.54\left(\mathrm{C}_{\text {quat }}\right), 145.48(\mathrm{CH}-6), 158.00$ $\left(\mathrm{C}_{\text {quat }}\right), 159.44\left(\mathrm{C}_{\text {quat }}\right), 167.07\left(\mathrm{C}_{\text {quat }}\right), 180.92(\mathrm{C}=\mathrm{O}), 183.87(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2958(\mathrm{CH}), 2869$ $(\mathrm{CH}), 1661(\mathrm{C}=\mathrm{O}), 1561\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1320 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 338\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}\right]^{+}: 338.1756$, found 338.1755 .

2-ethoxycarbonyl-1,2,3,4,8,9,10,11-octahydro-8,11-methanobenzo[j]phenanthridine-7,12-dione 22d

18%, light brown solid, mp $61.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: Isomer I $\delta 1.10-1.14\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.18(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.37\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.58-1.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 1.85-1.90(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.95-1.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}}\right), 2.07-2.13\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}}\right), 2.61-2.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2), 2.91-3.00$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.29\left(1 \mathrm{H}, \mathrm{dd}, J=8.8,19.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{F}}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J=5.0,19.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{E}} \underline{\mathrm{H}}_{\mathrm{F}}\right), 3.52$ $(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{xCH}), 4.09\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.93(1 \mathrm{H}, \mathrm{CH}-6)$. Isomer II $\delta 1.13-1.72(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.40\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.60-1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, 1.90-1.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.98-2.07 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}}\right), 2.13-2.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \underline{H}_{\mathrm{D}}\right), 2.72-2.81(1 \mathrm{H}, \mathrm{m}$, CH-2), 3.00-3.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $3.33\left(1 \mathrm{H}, \mathrm{dd}, J=10.7,19.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{F}}\right), 3.52(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{xCH}), 3.62$
($\left.1 \mathrm{H}, \mathrm{dd}, J=5.8,19.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{E}} \underline{\mathrm{H}}_{\mathrm{F}}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 8.93(1 \mathrm{H}, \mathrm{CH}-6)$. Isomer I/II 1/1. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: isomer I $\delta 14.26\left(\mathrm{CH}_{3}\right), 24.27\left(\mathrm{CH}_{2}\right), 25.16\left(\mathrm{CH}_{2}\right), 25.25\left(\mathrm{CH}_{2}\right), 29.27\left(\mathrm{CH}_{2}\right)$, $32.46\left(\mathrm{CH}_{2}\right), 38.82(\mathrm{CH}-2), 40.79(\mathrm{CH}), 41.25(\mathrm{CH}), 47.10\left(\mathrm{CH}_{2}\right), 124.93\left(\mathrm{C}_{\text {quat }}\right), 130.31\left(\mathrm{C}_{\text {quat }}\right)$, $134.98\left(\mathrm{C}_{\text {quat }}\right), 145.53(\mathrm{CH}-6), 152.49\left(\mathrm{C}_{\text {quat }}\right), 155.33\left(\mathrm{C}_{\text {quat }}\right), 164.42\left(\mathrm{C}_{\text {quat }}\right), 174.54(\mathrm{C}=\mathrm{O}), 181.71$ $(\mathrm{C}=\mathrm{O}), 184.37(\mathrm{C}=\mathrm{O})$. Isomer II $\delta 14.26\left(\mathrm{CH}_{3}\right), 24.55\left(\mathrm{CH}_{2}\right)$, $25.16\left(\mathrm{CH}_{2}\right), 25.30\left(\mathrm{CH}_{2}\right), 29.92\left(\mathrm{CH}_{2}\right)$, $32.91\left(\mathrm{CH}_{2}\right), 39.34(\mathrm{CH}-2), 40.84(\mathrm{CH}), 41.33(\mathrm{CH}), 47.37\left(\mathrm{CH}_{2}\right), 124.93\left(\mathrm{C}_{\text {quat }}\right), 130.37\left(\mathrm{C}_{\text {quat }}\right)$, $135.20\left(\mathrm{C}_{\text {quat }}\right), 145.61(\mathrm{CH}-6), 152.55\left(\mathrm{C}_{\text {quat }}\right), 155.36\left(\mathrm{C}_{\text {quat }}\right), 164.42\left(\mathrm{C}_{\text {quat }}\right), 174.59(\mathrm{C}=\mathrm{O}), 181.72$ $(\mathrm{C}=\mathrm{O}), 184.43(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2956(\mathrm{CH}), 2875(\mathrm{CH}), 1728(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{O}), 1566\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $1179 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 352\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right]^{+}: 352.1549$, found 352.1527 .

2-ethoxycarbonyl-1,2,3,4,8,9,10,11-octahydro-8,11-ethanobenzo[j]phenanthridine-7,12-dione 22e

10%, light brown solid, mp 118-120 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.30\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.35$ $\left(4 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{2}\right), 1.79\left(4 \mathrm{H}, \mathrm{m}\right.$, br d$\left., ~ J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{2}\right), 2.02-2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.22-$ $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.77-2.87(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.04-3.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.45(1 \mathrm{H}, \mathrm{dd}, J=18.6,8.1 \mathrm{~Hz}$, $\mathrm{CH}), 3.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right), 3.70(1 \mathrm{H}, \mathrm{dd}, J=18.6,5.5 \mathrm{~Hz}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 9.17$ $(1 \mathrm{H}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.35\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 24.56\left(\mathrm{CH}_{2}\right), 25.22\left(\mathrm{CH}_{2}\right), 25.25\left(\mathrm{CH}_{2}\right), 25.29$ $\left(2 \mathrm{xCH}_{2}\right), 25.34\left(\mathrm{CH}_{2}\right), 26.53$ and $27.06(\mathrm{CH}-8$ and $\mathrm{CH}-11), 29.89\left(\mathrm{CH}_{2}\right), 32.91\left(\mathrm{CH}_{2}\right), 39.29(\mathrm{CH}-2)$, $124.48\left(\mathrm{C}_{\text {quat }}\right), 130.37\left(\mathrm{C}_{\text {quat }}\right), 134.64\left(\mathrm{C}_{\text {quat }}\right), 146.11(\mathrm{CH}-6), 149.29\left(\mathrm{C}_{\text {quat }}\right), 151.87\left(\mathrm{C}_{\text {quat }}\right), 164.34$ $\left(\mathrm{C}_{\text {quat }}\right), 174.69(\mathrm{C}=\mathrm{O}), 181.68(\mathrm{C}=\mathrm{O}), 184.02(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2980(\mathrm{CH}), 1725(\mathrm{C}=\mathrm{O}), 1654$ $(\mathrm{C}=\mathrm{O}), 1301,1240,1180 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 366\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4}\right]^{+}: 366.1705$, found 366.1692 .

2-tert-Butoxycarbonyl-1,2,3,4,8,9,10,11-octahydro-2-aza-8,11-methanobenzo[j]phenanthridine-

7,12-dione 22g

17%, orange solid, mp $98^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.23-1.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.02$ $\left(10 \mathrm{H}, \mathrm{s}+\mathrm{m}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$ and $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.69-1.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \underline{H}_{\mathrm{B}}\right), 2.00\left(2 \mathrm{H}, \mathrm{dd}, J=2.5,6.9, \mathrm{CH}_{2}\right), 3.15$ $\left(2 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}-4\right), 3.63(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ and $\mathrm{CH}-11), 3.73\left(1 \mathrm{H}, \mathrm{dt}, J=12.9,6.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-3\right)$, $3.87\left(1 \mathrm{H}, \mathrm{dt}, J=12.9,6.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-3\right), 9.15(1 \mathrm{H}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.23\left(\mathrm{CH}_{2}\right), 25.28$
 $\left(\mathrm{CH}_{2}-13\right), 80.52\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 124.86\left(\mathrm{C}_{\text {quat }}\right), 124.86\left(\mathrm{C}_{\text {quat }}\right), 129.19\left(\mathrm{C}_{\text {quat }}\right), 134.11\left(\mathrm{C}_{\text {quat }}\right), 146.25(\mathrm{CH}-6)$, $152.98\left(\mathrm{C}_{\text {quat }}\right), 154.66\left(\mathrm{C}_{\text {quat }}\right), 155.21\left(\mathrm{C}_{\text {quat }}\right), 162.84(\mathrm{C}=\mathrm{O}), 181.58(2 \mathrm{xC}=\mathrm{O})$. IR (ATR): v $2980(\mathrm{CH})$, $1697(\mathrm{C}=\mathrm{O}), 1659(\mathrm{C}=\mathrm{O}), 1160,1150, \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 381\left([\mathrm{M}+\mathrm{H}]^{+}, 70\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$: 381.1814 , found 381.1806.

5.10.3 Synthesis of enamine adduct 352c

A stirred solution of dioxolanylnaphthoquinone $\mathbf{3 5 0} \mathbf{c}(1.5 \mathrm{mmol})$ in anhydrous THF (10 mL) under a nitrogen atmosphere was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was added dropwise ($19 \mu \mathrm{~L}, 0.1$ equiv.). Next, freshly distilled enamine 340c (1.65 mmol) was added dropwise in 2 mL of anhydrous THF. The reaction mixture was allowed to warm to room temperature and stirred for 3 hours. After careful evaporation of the solvents, the reaction mixture was redissolved in EtOAc (15 mL) an washed with brine ($2 \times 10 \mathrm{~mL}$). Drying over MgSO_{4}, evaporation of the solvent in vacuo and purification by means of preparative TLC (hexane/ethyl acetate) gave enamine adduct 352c as a white solid in 70% yield.

8-tert-Butyl-6-(1,3-dioxan-2-yl)-10a-pyrrolidin-1-yl-1,2,3,4,6b,7,8,9,10,10a-decahydro-1,4-methanobenzo[b]naphtho[2,1-d]furan-5-ol 352c

70%, white solid, mp $180.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.09-1.31(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}-8$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}, \mathrm{C}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}}, 2 \mathrm{xCH}_{2}\right), 1.40-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{E}} \mathrm{H}_{\mathrm{F}}, \mathrm{C}_{\mathrm{G}} \mathrm{H}_{\mathrm{H}}\right), 1.56-1.71\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \underline{H}_{\mathrm{D}}, \mathrm{CH}_{\mathrm{E}} \underline{\mathrm{H}}_{\mathrm{F}}\right.$, $\left.\mathrm{CH}_{2}\right), 1.82-1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.96-2.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.05-2.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.22-2.30(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{G}} \mathrm{H}_{\mathrm{H}}\right), 2.53-2.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.74-2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.12-3.21(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6 \mathrm{~b}), 3.43(1 \mathrm{H}, \mathrm{br}$ s, CH-1 or CH-4), 3.57 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-1$ or CH-4), $3.90-4.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.26-4.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, $5.62\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C} \underline{\mathrm{H}}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}\right), 7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.48\left(\mathrm{CH}_{2}\right), 23.83\left(2 \mathrm{xCH}_{2}\right)$, $25.78\left(\mathrm{CH}_{2}\right), 26.27\left(\mathrm{CH}_{2}\right), 26.79\left(\mathrm{CH}_{2}\right), 27.16\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 31.63\left(\mathrm{CH}_{2}\right), 32.41\left(\mathrm{CH}_{2}\right), 32.91\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right) \text {, }}^{\text {, }}\right.$ 39.85 and $40.29(\mathrm{CH}-1$ and $\mathrm{CH}-4), 43.06(\mathrm{CH}-8), 45.52\left(2 \mathrm{xCH}_{2}\right), 46.56(\mathrm{CH}-6 b), 49.43\left(\mathrm{CH}_{2}\right), 67.45$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.97\left(\mathrm{CH}_{2} \mathrm{O}\right), 102.04\left(\underline{\mathrm{CH}}\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}\right), 103.15(\mathrm{Cl0a}), 112.29\left(\mathrm{C}_{\text {quat }}\right), 115.04\left(\mathrm{C}_{\text {quat }}\right), 127.68\right.$ $\left(\mathrm{C}_{\text {quat }}\right), 128.51\left(\mathrm{C}_{\text {quat }}\right), 129.54\left(\mathrm{C}_{\text {quat }}\right), 132.77\left(\mathrm{C}_{\text {quat }}\right), 134.95\left(\mathrm{C}_{\text {quat }}\right), 142.19\left(\mathrm{C}_{\text {quat }}\right), 145.16\left(\mathrm{C}_{\text {quat }}\right) . \mathrm{IR}$ (ATR): v $3420(\mathrm{OH}), 2957(\mathrm{CH}), 2866(\mathrm{CH}), 1090(\mathrm{C}-\mathrm{O}), 746 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 468\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{NO}_{4}\right]^{+}: 468.3114$, found 468.3113 .

5.10.46-Bromo-4-tert-butylcyclohex-1-enyl-5,8-dimethoxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene-6-carboxylate 379'

1,4-Dimethoxy-5,6,7,8-tetrahydro-5,8-methanonaphthalene-2-carboxylic acid $\mathbf{3 6 0}(253 \mathrm{mg}, 1.02$ mmol) was added to SOCl_{2} ($0.74 \mathrm{~mL}, 10.2 \mathrm{mmol}, 10$ equiv.) and boiled under reflux for 2.5 h . The reaction mixture was evaporated in vacuo and redissolved in anhydrous THF (5 mL). A solution of 2bromocyclohexanone $\mathbf{3 8 0}(1.02 \mathrm{mmol}, 181 \mathrm{mg})$ in anhydrous THF (5 mL) was cooled to $-78^{\circ} \mathrm{C}$ and LiHMDS (1.12 mL 1 M in THF, $1.12 \mathrm{mmol}, 1.1$ equiv.) was added dropwise. The reaction mixture was allowed to stir for 15 min at that temperature and subsequently the acid chloride was added dropwise. The temperature was allowed to warm to $0^{\circ} \mathrm{C}$ and the reaction was stirred for an additional 30 min . Then $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\operatorname{EtOAc}(10 \mathrm{~mL})$ was added and the mixture was extracted with aqueous $\mathrm{HCl}(2 \mathrm{~N}, 10 \mathrm{~mL})$ and aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic phase was dried
$\left(\mathrm{MgSO}_{4}\right)$, evaporated in vacuo and purified by means of column chromatography to yield the title compound $\mathbf{3 7 9}{ }^{\prime}$, as a colourless oil ($120 \mathrm{mg}, 0.27 \mathrm{mmol}, 26 \%$).
26%, colourless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ mixture of major and minor isomer, minor not resolved 0.94 $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.16-1.28\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{N}} \mathrm{H}_{\mathrm{X}}\right), 1.50-1.54\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{N}} \mathrm{H}_{\mathrm{X}}\right), 1.71-1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, 1.92-2.01 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}$), 2.18-2.38 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}$), $3.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{CH}-1$ or $\mathrm{CH}-4), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.03-2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.73-5.76(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 7.24(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-7) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.68\left(\mathrm{CH}_{2}\right), 26.12\left(\mathrm{CH}_{2}\right), 26.71\left(\mathrm{CH}_{2}\right), 27.34$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.74\left(\underline{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.07\left(\mathrm{CH}_{2}\right), 38.38\left(\mathrm{CH}_{2}\right), 40.35$ and $40.88(\mathrm{CH}-1$ and $\mathrm{CH}-4), 48.99$ and $49.11(\mathrm{CH}-t-\mathrm{Bu}$ and $\mathrm{CH}-\mathrm{Br})$, $55.97\left(\mathrm{OCH}_{3}\right), 62.43\left(\mathrm{OCH}_{3}\right), 112.11\left(\mathrm{CH}-2^{\prime}\right), 112.31\left(\mathrm{C}_{\text {quat }}\right), 120.05$ (CH-7), $120.81\left(\mathrm{C}_{\text {quat }}\right), 143.00\left(\mathrm{C}_{\text {quat }}\right), 143.21\left(\mathrm{C}_{\text {quat }}\right), 146.94\left(\mathrm{C}_{\text {quat }}\right), 149.01\left(\mathrm{C}_{\text {quat }}\right), 164.77(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v 2957, 1736, 1481, 1317, 1224, 1158, $1022 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 231\left(\left[\mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrO}\right]^{+}\right.$, 100), $463 / 465\left([\mathrm{M}+\mathrm{H}]^{+}, 45 / 40\right)$.

5.11 Synthesis of dialkyltetrahydrobenzo[g]pyrimido[4,5-c]isoquinolinetetraones 20

5.11.1 Synthesis of 6-amino-1,3-dialkyluracils 389

6-Aminouracil 389a and 6-amino-1,3-dimethyluracil 389b are commercially available. All other 6-amino-1,3-dialkyluracils 389 were synthesised from triphosgene, a primary amine and cyanoacetic acid following literature protocols. ${ }^{220}$ The following 6 -amino-1,3-dialkyluracils were not reported previously in the literature:

6-Amino-1,3-di-n-pentyluracil 389h

71%, white solid, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.87\left(3 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.24-1.36\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{2}\right), 1.53-1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.66-1.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, 3.81-3.90 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xNCH}_{2}$), $4.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-5), 5.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): ~} \delta 13.92\left(\mathrm{CH}_{3}\right)$, $13.98\left(\mathrm{CH}_{3}\right), 22.35\left(\mathrm{CH}_{2}\right), 22.44\left(\mathrm{CH}_{2}\right), 27.71\left(\mathrm{CH}_{2}\right), 27.77\left(\mathrm{CH}_{2}\right), 28.82\left(\mathrm{CH}_{2}\right), 29.13\left(\mathrm{CH}_{2}\right), 41.14$ $\left(\mathrm{NCH}_{2}\right), 42.76\left(\mathrm{NCH}_{2}\right), 77.47(\mathrm{CH}-5), 151.58\left(\mathrm{C}_{\text {quat }}\right), 154.32\left(\mathrm{C}_{\text {quat }}\right), 163.26\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v 3347 (NH), 3204 (NH), 2956 (CH), 2931 (CH), 1607 (C=O), $\left.1492 \mathrm{~cm}^{-1} . \mathrm{MS}_{(\mathrm{ES}}{ }^{+}\right) \mathrm{m} / \mathrm{z}(\%): 268$ ($[\mathrm{M}+\mathrm{H}]^{+}$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: 268.2025$, found 268.2027.

6-Amino-1,3-di-iso-pentyluracil 389i

64%, white solid, mp $142-143^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.94\left(6 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 0.98(6 \mathrm{H}, \mathrm{d}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}$), 1.44-1.73 ($6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}, 2 \mathrm{xCH}$), $3.84-3.92\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xNCH}_{2}\right), 4.69-4.81(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NH}_{2}\right), 4.97(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-5) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.52\left(\mathrm{CH}_{3}\right), 22.64\left(\mathrm{CH}_{3}\right), 26.41(\mathrm{CH}), 26.49(\mathrm{CH})$, $36.76\left(\mathrm{CH}_{2}\right), 36.93\left(\mathrm{CH}_{2}\right), 39.95\left(\mathrm{NCH}_{2}\right), 41.51\left(\mathrm{NCH}_{2}\right), 77.57(\mathrm{CH}-5), 151.55\left(\mathrm{C}_{\text {quat }}\right), 154.03\left(\mathrm{C}_{\text {quat }}\right)$,
163.29 (C quat). IR (ATR): v $3351(\mathrm{NH}), 3216(\mathrm{NH}), 2957(\mathrm{CH}), 1608(\mathrm{C}=\mathrm{O}), 1583,1495 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 268\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: 268.2025$, found 268.2021.

6-Amino-1,3-di-n-heptyluracil 389k

Quantitative yield, white solid, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.82-0.91\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.17-1.38$ $\left(16 \mathrm{H}, \mathrm{m}, 8 \mathrm{xCH}_{2}\right), 1.53-1.71\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xNCH}_{2} \mathrm{CH}_{2}\right), 3.81-3.90\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xNCH}_{2}\right), 4.99(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-5)$, $5.28\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.13\left(\mathrm{CH}_{3}\right), 14.16\left(\mathrm{CH}_{3}\right), 22.64\left(\mathrm{CH}_{2}\right), 22.70\left(\mathrm{CH}_{2}\right), 26.97$ $\left(\mathrm{CH}_{2}\right), 27.08\left(\mathrm{CH}_{2}\right), 28.10\left(\mathrm{CH}_{2}\right), 28.26\left(\mathrm{CH}_{2}\right), 29.03\left(\mathrm{CH}_{2}\right), 29.17\left(\mathrm{CH}_{2}\right), 41.34\left(\mathrm{NCH}_{2}\right), 42.87$ $\left(\mathrm{NCH}_{2}\right), 78.03(\mathrm{CH}-5), 151.61\left(\mathrm{C}_{\text {quat }}\right), 153.79\left(\mathrm{C}_{\text {quat }}\right), 163.38\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $3347(\mathrm{NH}), 2923$ $(\mathrm{CH}), 1698(\mathrm{C}=\mathrm{O}), 1511,1411 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 324\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}^{\left(E S^{+}\right)}$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: 324.2651$, found 324.2648 .

5.11.2 Synthesis of amino-iso-propylcyclohexenones 395

A pressure vial was loaded with 4-iso-propylcyclohexane-1,3-dione 394^{223} ($1.17 \mathrm{~g}, 7.59 \mathrm{mmol}$), ammonium acetate ($585 \mathrm{mg}, 7.59 \mathrm{mmol}$) and toluene $(6 \mathrm{~mL})$. The vial was sealed and the reaction was heated at $110^{\circ} \mathrm{C}$ for 1 hour. After cooling, the solvent was evaporated in vacuo to yield crude amino-iso-propylcyclohexenones 395, which were recrystallised from EtOH as colourless prisms. Attempts to separate both regioisomers by means of column chromatography were unsuccessful.

Quantitative yield, colourless prisms, $\mathrm{mp}<50^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.83\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.74-1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.91-2.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.31-2.50(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ and $\left.\mathrm{CH}_{2}\right), 4.92\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 5.23(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-2) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.53\left(\mathrm{CH}_{3}\right), 20.94\left(\mathrm{CH}_{3}\right)$, $21.80\left(\mathrm{CH}_{2}\right), 26.48\left(\mathrm{CH}_{2}\right), 27.87(\mathrm{CH}), 50.07(\mathrm{CH}), 100.02(\mathrm{CH}-2), 166.36\left(\mathrm{C}_{\text {quat }}-\mathrm{NH}_{2}\right), 199.70(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3354(\mathrm{NH}), 3157(\mathrm{NH}), 2954(\mathrm{CH}), 1538,1531,1207,1189 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 154$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}\right]^{+}: 154.1232$, found 154.1232.

5.11.3 Synthesis of 1,4-dihydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxaldehydes 388

A solution of 1,4-dimethoxy-5,6,7,8-tetrahydronaphthalene-2-carboxaldehyde 348a or 348b (20 $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ under a nitrogen atmosphere was cooled to $-60^{\circ} \mathrm{C}$. Next, BBr_{3} $(120 \mathrm{mmol}, 11.6 \mathrm{~mL})$ was added dropwise and the reaction was allowed to room temperature. After 2.5 h , the reaction was cautiously quenched with water $(80 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 50 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, evaporated in vacuo and purified by means of column chromatography (petroleum ether/ethyl acetate $4 / 1$) to yield the desired 1,4-dihydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxaldehydes $\mathbf{3 8 8}$ a or 388b.

1,4-dihydroxy-5,6,7,8-tetrahydro-5,8-methanonaphthalene-2-carboxaldehyde 388a

81%, yellow solid, mp $140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.20-1.24\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{x}} \mathrm{H}_{\mathrm{n}}\right), 1.55-1.58(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{s}} \underline{\mathrm{H}}_{\mathrm{a}}\right), 1.73-1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{\underline{s}} \mathrm{H}_{\mathrm{a}}\right), 1.93-1.98\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}\right), 3.56(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}$, CH-1 or CH-4), $3.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, \mathrm{CH}-1$ or CH-4), $4.60-4.62(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 6.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-7)$, $9.73(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.92$ and $26.01\left(\mathrm{CH}_{2}-2\right.$ and $\left.\mathrm{CH}_{2}-3\right)$, 39.54 and $40.58(\mathrm{CH}-1$ and $\mathrm{CH}-4), 49.13\left(\mathrm{CH}_{2}-9\right), 117.68(\mathrm{CH}-7), 119.56\left(\mathrm{C}_{\text {quat }}\right), 136.52\left(\mathrm{C}_{\text {quat }}\right)$, $142.69\left(\mathrm{C}_{\text {quat }}\right), 146.03\left(\mathrm{C}_{\text {quat }}\right), 149.45\left(\mathrm{C}_{\text {quat }}\right), 196.11(\mathrm{C}=\mathrm{O})$. IR (ATR): v3331(OH),2960(CH),1629, $1477\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1309,1243 \mathrm{~cm}^{-1}$. $\mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 205\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $\left.{ }^{+}\right)$calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}\right]^{+}: 205.0865$, found 205.0861.

1,4-dihydroxy-5,6,7,8-tetrahydro-5,8-ethanonaphthalene-2-carboxaldehyde 388b

61%, green solid, mp $181^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.29-1.41\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.75-1.87(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2}\right), 3.39(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.58(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 4.79(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-$ 7), $9.76(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 10.80(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.17\left(2 \mathrm{xCH}_{2}\right), 25.39\left(2 \mathrm{xCH}_{2}\right), 25.86$ and $27.69(\mathrm{CH}-1$ and $\mathrm{CH}-4), 115.28(\mathrm{CH}-7), 117.99\left(\mathrm{C}_{\text {quat }}\right), 133.25\left(\mathrm{C}_{\text {quat }}\right), 142.31\left(\mathrm{C}_{\text {quat }}\right), 143.41$ $\left(\mathrm{C}_{\text {quat }}\right), 150.81\left(\mathrm{C}_{\text {quat }}\right), 196.20(\mathrm{C}=\mathrm{O})$. IR (ATR): v3309(OH), $2980(\mathrm{CH}), 1626,1328,1188,670 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{+}\right) m / z(\%): 219\left([M+H]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 219.1021$, found 219.1015.

5.11.4 Synthesis of 2,4-dialkyl-8,9,10,11-tetrahydrobenzo $[g]$ pyrimido $[4,5-c]$ isoquinoline-1,3,7,12(2H,4H)-tetraones 20

To a stirred solution of 1,4-dihydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxaldehyde 388a or 388b (0.5 mmol), a 6-amino-1,3-dialkyluracil 389 (0.5 mmol) and $\mathrm{MgSO}_{4}(2.5 \mathrm{mmol}, 302 \mathrm{mg}$) in anhydrous dichloromethane (5 mL) was added freshly prepared $\mathrm{Ag}_{2} \mathrm{O}(2 \mathrm{mmol}, 464 \mathrm{mg})$. The reaction was allowed to stir at room temperature for 2 hours and subsequently filtered over a pad of Celite ${ }^{\circledR}$ and evaporated in vacuo. The residue was purified by means of preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to yield pure 2,4-dialkyl-8,9,10,11-tetrahydrobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraones 20.

2,4-dimethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20b

54%, yellow needles, $\mathrm{mp} 227^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.25\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{x}} \underline{\mathrm{H}}_{\mathrm{n}}\right), 1.48(1 \mathrm{H}$, dd, $\left.J=1.1,9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{s}} \underline{\mathrm{H}}_{\mathrm{a}}\right), 1.71\left(1 \mathrm{H}, \mathrm{d}, 9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{s}} \mathrm{H}_{\mathrm{a}}\right), 2.02\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}\right), 3.48(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCH}_{3}\right), 3.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.68\left(1 \mathrm{H}\right.$, br s, CH-8 or CH-11), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 9.22$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 25.61$ and $25.89\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 29.17\left(\mathrm{NCH}_{3}\right), 30.59$ $\left(\mathrm{NCH}_{3}\right), 41.26$ and $42.87(\mathrm{CH}-8$ and $\mathrm{CH}-11), 45.98\left(\mathrm{CH}_{2}-13\right), 106.93\left(\mathrm{C}_{\text {quat }}\right), 123.93\left(\mathrm{C}_{\text {quat }}\right), 144.71$ $\left(\mathrm{C}_{\text {quat }}\right), 150.87\left(\mathrm{C}_{\text {quat }}\right), 152.23(\mathrm{CH}-6), 152.63\left(\mathrm{C}_{\text {quat }}\right), 154.52\left(\mathrm{C}_{\text {quat }}\right), 157.33(\mathrm{NC}=\mathrm{O}), 158.54(\mathrm{NC}=\mathrm{O})$, $179.21(\mathrm{C}=\mathrm{O}), 181.44(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2978(\mathrm{CH}), 1720(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1658(\mathrm{C}=\mathrm{O}), 1574$
$\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1546,1316,1287(\mathrm{C}-\mathrm{N}), 1273(\mathrm{C}-\mathrm{N}), 742 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 338\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 338.1141$, found 338.1148.

2,4-diethyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido [4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20c

86%, yellow needles, mp $97-98^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.18\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{x}} \underline{H}_{n}\right), 1.23-1.28$ $\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.41\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{s}} \underline{\mathrm{H}}_{\mathrm{a}}\right), 1.64\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\underline{s}} \mathrm{H}_{\mathrm{a}}\right), 1.95(2 \mathrm{H}, \mathrm{d}, J=9.1$ $\left.\mathrm{Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}\right), 3.56(1 \mathrm{H}$, br s, CH-8 or CH-11), $3.62(1 \mathrm{H}$, br s, $\mathrm{CH}-8$ or CH-11), 3.99-4.17 (2 H , m, $\left.\mathrm{NCH}_{2}\right), 4.30-4.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 9.19(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 12.90\left(\mathrm{CH}_{3}\right), 13.20\left(\mathrm{CH}_{3}\right)$, 25.58 and $25.86\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 37.85\left(\mathrm{NCH}_{2}\right), 38.88\left(\mathrm{NCH}_{2}\right), 41.20$ and $42.81(\mathrm{CH}-8$ and $\mathrm{CH}-$ $11), 45.89\left(\mathrm{CH}_{2}-13\right), 107.21\left(\mathrm{C}_{\text {quat }}\right), 123.85\left(\mathrm{C}_{\text {quat }}\right), 144.92\left(\mathrm{C}_{\text {quat }}\right), 149.90\left(\mathrm{C}_{\text {quat }}\right), 152.31(\mathrm{CH}-6)$, $152.55\left(\mathrm{C}_{\text {quat }}\right), 154.04\left(\mathrm{C}_{\text {quat }}\right), 157.24(\mathrm{NC}=\mathrm{O}), 158.25(\mathrm{NC}=\mathrm{O}), 179.24(\mathrm{C}=\mathrm{O}), 181.66(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2982(\mathrm{CH}), 1715(\mathrm{C}=\mathrm{O}), 1663(\mathrm{C}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{O}), 1574\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1545\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1316,1289$ $(\mathrm{C}-\mathrm{N}), 1270(\mathrm{C}-\mathrm{N}), 740 \mathrm{~cm}^{-1}$. MS (ES^{+}) m/z (\%): $366\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 366.1454$, found 366.1459.

2,4-Di-n-propyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20d

85%, yellow crystals, mp $125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.90(6 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{xCH} 3), 1.16(2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{x}} \underline{H}_{n}\right), 1.39\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{CH}_{5} \underline{H}_{\mathrm{a}}\right), 1.61-1.70\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathbf{s}} \mathrm{H}_{\mathrm{a}}\right.$ and $\left.2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 1.93$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{\underline{x}}} \mathrm{H}_{\mathrm{n}}\right), 3.53(1 \mathrm{H}, \mathrm{br}$ s, CH-8 or CH-11), $3.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-8$ or CH-11), 3.87$4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.17-4.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 9.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.13\left(\mathrm{CH}_{3}\right)$, $11.29\left(\mathrm{CH}_{3}\right), 20.96\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.14\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.52$ and $25.80\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 41.16$ and $42.73(\mathrm{CH}-8$ and $\mathrm{CH}-11), 44.04\left(\mathrm{NCH}_{2}\right), 44.93\left(\mathrm{NCH}_{2}\right), 45.86\left(\mathrm{CH}_{2}-13\right), 107.01\left(\mathrm{C}_{\text {quat }}\right), 123.79\left(\mathrm{C}_{\text {quat }}\right)$, $144.83\left(\mathrm{C}_{\text {quat }}\right), 150.26\left(\mathrm{C}_{\text {quat }}\right), 152.16(\mathrm{CH}-6), 152.49\left(\mathrm{C}_{\text {quat }}\right), 154.17\left(\mathrm{C}_{\text {quat }}\right), 157.13(\mathrm{NC}=\mathrm{O}), 158.36$ $(\mathrm{NC}=\mathrm{O}), 179.15(\mathrm{C}=\mathrm{O}), 181.59(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2964(\mathrm{CH}), 2877(\mathrm{CH}), 1720(\mathrm{C}=\mathrm{O}), 1660(\mathrm{C}=\mathrm{O})$, $1575\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1547\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1315,1285(\mathrm{C}-\mathrm{N}), 1273(\mathrm{C}-\mathrm{N}), 752,740 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 394$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 394.1767$, found 394.1779.

2,4-Di-iso-propyl-8,9,10,11-tetrahydro-8,11-methanobenzo $[g]$ pyrimido $[4,5-c]$ isoquinoline-1,3,7,12(2H,4H)-tetraone 20e

33%, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.19\left(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{x}} \underline{\mathrm{H}}_{\mathrm{n}}\right), 1.43(1 \mathrm{H}, \mathrm{d}, J=9.1$ $\left.\mathrm{Hz}, \mathrm{CH}_{s} \underline{H}_{\mathrm{a}}\right), 1.51-1.56\left(12 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{3}\right), 1.66\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{s}} \mathrm{H}_{\mathrm{a}}\right), 1.97(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{\underline{2}} \mathrm{H}_{\mathrm{n}}\right), 3.59(1 \mathrm{H}$, br s, CH-8 or CH-11), $3.66(1 \mathrm{H}, \mathrm{br}$ s, CH-8 or CH-11), $5.14(1 \mathrm{H}$, septet, $J=6.8$ $\mathrm{Hz}, \mathrm{NCH}), 5.70(1 \mathrm{H}$, septet, $J=6.8 \mathrm{~Hz}, \mathrm{NCH}), 9.16(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 18.81\left(\mathrm{CH}_{3}\right)$, $19.66\left(\mathrm{CH}_{3}\right), 19.82\left(\mathrm{CH}_{3}\right), 20.03\left(\mathrm{CH}_{3}\right), 25.54$ and $25.83\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 41.18$ and $42.70(\mathrm{CH}-8$
and CH-11), $45.93\left(\mathrm{CH}_{2}-13\right), 47.76(\mathrm{NCH}), 48.48(\mathrm{NCH}), 108.24\left(\mathrm{C}_{\text {quat }}\right), 123.53\left(\mathrm{C}_{\text {quat }}\right), 144.34\left(\mathrm{C}_{\text {quat }}\right)$, $149.89\left(\mathrm{C}_{\text {quat }}\right), 151.34(\mathrm{CH}-6), 152.68\left(\mathrm{C}_{\text {quat }}\right), 154.30\left(\mathrm{C}_{\text {quat }}\right), 157.00(\mathrm{NC}=\mathrm{O}), 159.31(\mathrm{NC}=\mathrm{O}), 179.38$ $(\mathrm{C}=\mathrm{O}), 181.74(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 2971(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1657,1575\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1548\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1285$ (C-N), $1273(\mathrm{C}-\mathrm{N}), 756,740 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 394\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 394.1767$, found 394.1774 .

2,4-Di-n-butyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c $]$ isoquinoline-1,3,7,12(2H,4H)-tetraone $20 f$

57%, amber viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 1.21(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{x} \underline{\mathrm{H}}_{n}\right), 1.35-1.45\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{s} \underline{\mathrm{H}}_{a}\right), 1.61-1.71\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{s} \underline{\mathrm{H}}_{a}\right), 1.97$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}\right), 3.59(1 \mathrm{H}, \mathrm{br}$ s, CH-8 or CH-11), $3.66(1 \mathrm{H}$, br s, CH-8 or CH-11), 3.96$4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.26-4.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 9.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.86$ $\left(2 \mathrm{xCH}_{3}\right), 20.12\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 20.32\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.64$ and $25.92\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 29.78\left(\mathrm{CH}_{2}\right), 30.04$ $\left(\mathrm{CH}_{2}\right), 41.26(\mathrm{CH}-8$ or $\mathrm{CH}-11), 42.56\left(\mathrm{NCH}_{2}\right), 42.85(\mathrm{CH}-8$ or $\mathrm{CH}-11), 43.46\left(\mathrm{NCH}_{2}\right), 45.97\left(\mathrm{CH}_{2}-\right.$ $13), 107.15\left(\mathrm{C}_{\text {quat }}\right), 123.91\left(\mathrm{C}_{\text {quat }}\right), 145.00\left(\mathrm{C}_{\text {quat }}\right), 150.37\left(\mathrm{C}_{\text {quat }}\right), 152.35(\mathrm{CH}-6), 152.64\left(\mathrm{C}_{\text {quat }}\right), 154.28$ $\left(\mathrm{C}_{\text {quat }}\right), 157.30(\mathrm{NC}=\mathrm{O}), 158.51(\mathrm{NC}=\mathrm{O}), 179.35(\mathrm{C}=\mathrm{O}), 181.82(\mathrm{C}=\mathrm{O})$. IR (ATR): v2959 (CH), 2874 $(\mathrm{CH}), 1720(\mathrm{C}=\mathrm{O}), 1668(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1575\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1547\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1285(\mathrm{C}-\mathrm{N}), 1273(\mathrm{C}-\mathrm{N})$, $755,740 \mathrm{~cm}^{-1}$. MS $\left(\mathrm{ES}^{+}\right) m / z(\%): 422\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS ($\mathrm{ES}{ }^{+}$) calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}$: 422.2080 , found 422.2085 .

2,4-Di-iso-butyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20 g

67%, yellow viscous oil, mp $135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.88-0.95(12 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH} 3), 1.19(2 \mathrm{H}, \mathrm{d}, J=$ $\left.9.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{x}} \underline{H}_{\mathrm{n}}\right), 1.42\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{s} \underline{H}_{\mathrm{a}}\right), 1.65\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{s}} \underline{H}_{\mathrm{a}}\right), 1.96(2 \mathrm{H}, \mathrm{d}, J=$ $\left.9.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}\right), 2.10-2.25\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, CH-8 or CH-11), 3.83-3.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 4.15-4.27 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 9.18(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.98\left(2 \mathrm{XCH}_{3}\right), 20.13\left(\mathrm{CH}_{3}\right), 20.24\left(\mathrm{CH}_{3}\right), 25.63$ and $25.89\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 27.28$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.34\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.25$ and $42.82(\mathrm{CH}-8$ and $\mathrm{CH}-11), 45.97\left(\mathrm{CH}_{2}-13\right), 49.28\left(\mathrm{NCH}_{2}\right)$, $50.00\left(\mathrm{NCH}_{2}\right), 107.01\left(\mathrm{C}_{\text {quat }}\right), 123.93\left(\mathrm{C}_{\text {quat }}\right), 144.96\left(\mathrm{C}_{\text {quat }}\right), 151.01\left(\mathrm{C}_{\text {quat }}\right), 152.17(\mathrm{CH}-6), 152.64$ $\left(\mathrm{C}_{\text {quat }}\right), 154.58\left(\mathrm{C}_{\text {quat }}\right), 157.24(\mathrm{NC}=\mathrm{O}), 158.78(\mathrm{NC}=\mathrm{O}), 179.32(\mathrm{C}=\mathrm{O}), 181.79(\mathrm{C}=\mathrm{O})$. IR (ATR$): v$ $2959(\mathrm{CH}), 2874(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1575\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1548\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1286(\mathrm{C}-\mathrm{N}), 1272(\mathrm{C}-$ $\mathrm{N}), 753,740 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 422\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}$: 422.2080 , found 422.2083 .

2,4-Di-n-pentyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20h
71%, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.81-0.89\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.18(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{x} \underline{H}_{n}\right), 1.27-1.36\left(8 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{2}\right), 1.41\left(1 \mathrm{H}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{s} \underline{H}_{\mathrm{a}}\right), 1.63-1.69\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right.$ and $\left.\mathrm{CH}_{\mathrm{s}} \underline{H}_{\mathrm{a}}\right), 1.95\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}\right), 3.56(1 \mathrm{H}$, br s, CH-8 or CH-11), $3.62(1 \mathrm{H}$, br s, CH-8 or $\mathrm{CH}-11)$, 3.92-4.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 4.22-4.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $9.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 14.00\left(2 \mathrm{xCH}_{3}\right), 22.36\left(4 \mathrm{xCH}_{2}\right), 25.58$ and $25.84\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 28.87\left(\mathrm{CH}_{2}\right), 29.06\left(\mathrm{CH}_{2}\right)$, $41.20(\mathrm{CH}-8$ or $\mathrm{CH}-11), 42.68\left(\mathrm{NCH}_{2}\right), 42.79(\mathrm{CH}-8$ or $\mathrm{CH}-11), 43.54\left(\mathrm{NCH}_{2}\right), 45.91\left(\mathrm{CH}_{2}-13\right)$, $107.08\left(\mathrm{C}_{\text {quat }}\right), 123.82\left(\mathrm{C}_{\text {quat }}\right), 144.90\left(\mathrm{C}_{\text {quat }}\right), 150.26\left(\mathrm{C}_{\text {quat }}\right), 152.25(\mathrm{CH}-6), 152.54\left(\mathrm{C}_{\text {quat }}\right), 154.20$ $\left(\mathrm{C}_{\text {quat }}\right), 157.21(\mathrm{NC}=\mathrm{O}), 158.40(\mathrm{NC}=\mathrm{O}), 179.24(\mathrm{C}=\mathrm{O}), 181.70(\mathrm{C}=\mathrm{O})$. IR (ATR$): v 2956(\mathrm{CH}), 2631$ $(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1668(\mathrm{C}=\mathrm{O}), 1578\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1547\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1285(\mathrm{C}-\mathrm{N}), 1272(\mathrm{C}-\mathrm{N}), 754,740 \mathrm{~cm}^{-1}$. MS (ES^{+}) $m / z(\%): 450\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 450.2393$, found 450.2398 .

2,4-Di-iso-pentyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone $20 i$

93%, yellow crystals, mp $146-147^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.91-0.94\left(12 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{3}\right), 1.17(2 \mathrm{H}, \mathrm{d}, J$ $\left.=9.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{x} \mathrm{H}_{\mathrm{n}}\right), 1.40\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{s} \mathrm{H}_{\mathrm{a}}\right), 1.46-1.57\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.58-1.67(3 \mathrm{H}$, $2 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\left.\mathrm{CH}_{\mathrm{s}} \mathrm{H}_{\mathrm{a}}\right), 1.94\left(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{2}} \mathrm{H}_{\mathrm{n}}\right), 3.54(1 \mathrm{H}$, br s, CH-8 or CH-11), 3.62 (1H, br s, CH-8 or CH-11), 3.94-34.09 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 4.23-4.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $9.16(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.41\left(\mathrm{CH}_{3}\right), 22.50\left(3 \mathrm{xCH}_{3}\right), 25.54$ and $25.81\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 26.24$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.38\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 36.21\left(\mathrm{CH}_{2}\right), 36.52\left(\mathrm{CH}_{2}\right), 41.16(\mathrm{CH}-8$ or $\mathrm{CH}-11), 41.31\left(\mathrm{NCH}_{2}\right)$, $42.23(\mathrm{CH}-8$ or $\mathrm{CH}-11), 42.76\left(\mathrm{NCH}_{2}\right), 45.85\left(\mathrm{CH}_{2}-13\right), 107.06\left(\mathrm{C}_{\text {quat }}\right), 123.76\left(\mathrm{C}_{\text {quat }}\right), 144.81\left(\mathrm{C}_{\text {quat }}\right)$, $150.11\left(\mathrm{C}_{\text {quat }}\right), 152.22(\mathrm{CH}-6), 152.51\left(\mathrm{C}_{\text {quat }}\right), 154.10\left(\mathrm{C}_{\text {quat }}\right), 157.15(\mathrm{NC}=\mathrm{O}), 158.28(\mathrm{NC}=\mathrm{O}), 179.17$ $(\mathrm{C}=\mathrm{O}), 181.64(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2956(\mathrm{CH}), 2931(\mathrm{CH}), 2872(\mathrm{CH}), 1717(\mathrm{C}=\mathrm{O}), 1656(\mathrm{C}=\mathrm{O})$, $1670(\mathrm{C}=\mathrm{O}), 1576\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1548\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1317(\mathrm{C}-\mathrm{N}), 1286(\mathrm{C}-\mathrm{N}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 450$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 450.2393$, found 450.2397.

2,4-Di-n-hexyl-8,9,10,11-tetrahydro-8,11-methanobenzo $[g]$ pyrimido $[4,5-c]$ isoquinoline-

1,3,7,12(2H,4H)-tetraone $20 j$

93%, amber viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.82-0.91\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.21(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{x} \underline{H}_{n}\right), 1.26-1.39\left(12 \mathrm{H}, \mathrm{m}, 6 \mathrm{xCH}_{2}\right), 1.43\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{s} \underline{H}_{\mathrm{a}}\right), 1.61-1.72\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right.$ and $\left.\mathrm{CH}_{\mathrm{s}} \underline{H}_{\mathrm{a}}\right), 1.97\left(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{xCH}_{\underline{2}} \mathrm{H}_{\mathrm{n}}\right), 3.59(1 \mathrm{H}, \mathrm{br}$ s, CH-8 or CH-11), $3.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11)$, 3.95-4.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 4.25-4.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $9.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 14.12\left(2 \mathrm{xCH}_{3}\right), 22.64\left(2 \mathrm{xCH}_{2}\right), 25.66$ and $25.94\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 26.52\left(\mathrm{CH}_{2}\right), 29.71\left(\mathrm{CH}_{2}\right)$, $27.68\left(\mathrm{CH}_{2}\right), 27.91\left(\mathrm{CH}_{2}\right), 31.54\left(2 \mathrm{xCH}_{2}\right), 41.28(\mathrm{CH}-8$ or $\mathrm{CH}-11), 42.84\left(\mathrm{NCH}_{2}\right), 42.87(\mathrm{CH}-8$ or $\mathrm{CH}-11), 43.68\left(\mathrm{NCH}_{2}\right), 46.00\left(\mathrm{CH}_{2}-13\right), 107.18\left(\mathrm{C}_{\text {quat }}\right), 123.91\left(\mathrm{C}_{\text {quat }}\right), 145.01\left(\mathrm{C}_{\text {quat }}\right), 150.36\left(\mathrm{C}_{\text {quat }}\right)$, $152.37(\mathrm{CH}-6), 152.65\left(\mathrm{C}_{\text {quat }}\right), 154.29\left(\mathrm{C}_{\text {quat }}\right), 157.32(\mathrm{NC}=\mathrm{O}), 158.51(\mathrm{NC}=\mathrm{O}), 179.38(\mathrm{C}=\mathrm{O}), 181.82$
$(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2956(\mathrm{CH}), 2928(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1669(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1576\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $1285(\mathrm{C}-\mathrm{N}), 1273(\mathrm{C}-\mathrm{N}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 478\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES^{+}) calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 478.2706$, found 478.2714 .

2,4-Di-n-heptyl-8,9,10,11-tetrahydro-8,11-methanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20k

88%, yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.76-0.85\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.11-1.35\left(22 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{x}} \mathrm{H}_{\underline{n}}\right.$, $\left.10 \mathrm{xCH}_{2}\right), 1.38\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{s} \mathrm{H}_{\mathrm{a}}\right), 1.55-1.69\left(5 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right.$ and $\left.\mathrm{CH}_{\mathrm{s}} \mathrm{H}_{\mathrm{a}}\right), 1.94(2 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{xCH}_{\underline{x}} \mathrm{H}_{\mathrm{n}}$), $3.54(1 \mathrm{H}$, br s, CH-8 or CH-11), $3.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-8$ or CH-11), 3.91-4.07 (2H, m, $\left.\mathrm{NCH}_{2}\right), 4.21-4.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 9.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.06\left(2 \mathrm{xCH}_{3}\right), 22.56$ $\left(2 \mathrm{XCH}_{2}\right), 25.55$ and $25.81\left(\mathrm{CH}_{2}-9\right.$ and $\left.\mathrm{CH}_{2}-10\right), 26.71\left(\mathrm{CH}_{2}\right), 26.91\left(\mathrm{CH}_{2}\right), 27.62\left(\mathrm{CH}_{2}\right), 27.84\left(\mathrm{CH}_{2}\right)$, $28.93\left(2 \mathrm{xCH}_{2}\right), 31.71\left(2 \mathrm{xCH}_{2}\right), 41.17(\mathrm{CH}-8$ or $\mathrm{CH}-11), 42.70\left(\mathrm{NCH}_{2}\right), 42.76(\mathrm{CH}-8$ or $\mathrm{CH}-11), 43.54$ $\left(\mathrm{NCH}_{2}\right), 45.86\left(\mathrm{CH}_{2}-13\right), 107.05\left(\mathrm{C}_{\text {quat }}\right), 123.77\left(\mathrm{C}_{\text {quat }}\right), 144.86\left(\mathrm{C}_{\text {quat }}\right), 150.22\left(\mathrm{C}_{\text {quat }}\right), 152.19(\mathrm{CH}-6)$, $152.49\left(\mathrm{C}_{\text {quat }}\right), 154.17\left(\mathrm{C}_{\text {quat }}\right), 157.16(\mathrm{NC}=\mathrm{O}), 158.32(\mathrm{NC}=\mathrm{O}), 179.17(\mathrm{C}=\mathrm{O}), 181.62(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2955(\mathrm{CH}), 2926(\mathrm{CH}), 2856(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1658(\mathrm{C}=\mathrm{O}), 1576\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $1285(\mathrm{C}-\mathrm{N}), 1273(\mathrm{C}-\mathrm{N}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 506\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS ($\mathrm{ES}{ }^{+}$) calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 506.3019$, found 506.3015.

2,4-Dimethyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-

1,3,7,12(2H,4H)-tetraone 20m

48%, yellow needles, $\mathrm{mp} 266^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.34-1.47\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.75-1.87(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2}\right), 3.50\left(5 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right.$ and $\mathrm{CH}-8$ and $\left.\mathrm{CH}-11\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 9.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 25.28\left(2 \mathrm{xCH}_{2}\right), 25.35\left(2 \mathrm{xCH}_{2}\right), 26.75$ and $28.44(\mathrm{CH}-8$ and $\mathrm{CH}-11), 29.15\left(\mathrm{NCH}_{3}\right), 30.54$ $\left(\mathrm{NCH}_{3}\right), 106.63\left(\mathrm{C}_{\text {quat }}\right), 123.26\left(\mathrm{C}_{\text {quat }}\right), 144.07\left(\mathrm{C}_{\text {quat }}\right), 148.94\left(\mathrm{C}_{\text {quat }}\right), 150.88\left(\mathrm{C}_{\text {quat }}\right), 152.77(\mathrm{CH}-6)$, $153.95\left(\mathrm{C}_{\text {quat }}\right), 154.28(\mathrm{NC}=\mathrm{O}), 158.59(\mathrm{NC}=\mathrm{O}), 178.91(\mathrm{C}=\mathrm{O}), 180.85(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 2952$ $(\mathrm{CH}), 1717(\mathrm{C}=\mathrm{O}), 1688(\mathrm{C}=\mathrm{O}), 1668(\mathrm{C}=\mathrm{O}), 1652(\mathrm{C}=\mathrm{O}), 1573\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1486,1292(\mathrm{C}-\mathrm{N}), 1274(\mathrm{C}-$ $\mathrm{N}), 838 \mathrm{~cm}^{-1}$. MS $\left(\mathrm{ES}^{+}\right) m / z(\%): 352\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}$: 352.1297 , found 352.1303 .

2,4-Diethyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-

1,3,7,12(2H,4H)-tetraone 20n

89%, yellow needles, $\mathrm{mp} 192^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28-1.33\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.34-1.41(4 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{2}\right), 1.75-1.83\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 4.13$ $\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.45\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $12.89\left(\mathrm{CH}_{3}\right), 13.21\left(\mathrm{CH}_{3}\right), 25.28\left(2 \mathrm{xCH}_{2}\right), 25.34\left(2 \mathrm{xCH}_{2}\right), 26.72$ and $28.43(\mathrm{CH}-8$ and $\mathrm{CH}-11), 37.84$ $\left(\mathrm{NCH}_{2}\right), 38.84\left(\mathrm{NCH}_{2}\right), 106.89\left(\mathrm{C}_{\text {quat }}\right), 123.17\left(\mathrm{C}_{\text {quat }}\right), 144.27\left(\mathrm{C}_{\text {quat }}\right), 148.82\left(\mathrm{C}_{\text {quat }}\right), 149.89\left(\mathrm{C}_{\text {quat }}\right)$,
152.76 (CH-6), $153.84\left(\mathrm{C}_{\text {quat }}\right), 153.93(\mathrm{NC}=\mathrm{O}), 158.27(\mathrm{NC}=\mathrm{O}), 178.91(\mathrm{C}=\mathrm{O}), 180.02(\mathrm{C}=\mathrm{O}) . \mathrm{IR}$ (ATR): v2956 (CH), $2938(\mathrm{CH}), 1719(\mathrm{C}=\mathrm{O}), 1682(\mathrm{C}=\mathrm{O}), 1667(\mathrm{C}=\mathrm{O}), 1574\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1552,1291(\mathrm{C}-$ $\mathrm{N}), 753 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 380\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}$: 380.1610 , found 380.1614 .

2,4-Di-n-propyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 200

83%, yellow crystals, $\mathrm{mp} 153{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.98\left(6 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 1.31-1.45(4 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.64-1.81\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}, 2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 3.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 4.03\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.34\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.18\left(\mathrm{CH}_{3}\right), 11.34\left(\mathrm{CH}_{3}\right), 20.99\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.21\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.28\left(2 \mathrm{xCH}_{2}\right), 25.33$ $\left(2 \mathrm{xCH}_{2}\right), 26.72$ and $28.41(\mathrm{CH}-8$ and $\mathrm{CH}-11), 44.12\left(\mathrm{NCH}_{2}\right), 44.95\left(\mathrm{NCH}_{2}\right), 106.77\left(\mathrm{C}_{\text {quat }}\right), 123.17$ $\left(\mathrm{C}_{\text {quat }}\right), 144.24\left(\mathrm{C}_{\text {quat }}\right), 148.85\left(\mathrm{C}_{\text {quat }}\right), 150.33\left(\mathrm{C}_{\text {quat }}\right), 152.71(\mathrm{CH}-6), 153.81\left(\mathrm{C}_{\text {quat }}\right), 154.12(\mathrm{NC}=\mathrm{O})$, $158.47(\mathrm{NC}=\mathrm{O}), 178.91(\mathrm{C}=\mathrm{O}), 180.06(\mathrm{C}=\mathrm{O})$. IR (ATR): v2960(CH), $2871(\mathrm{CH}), 1720(\mathrm{C}=\mathrm{O}), 1668$ $(\mathrm{C}=\mathrm{O}), 1656(\mathrm{C}=\mathrm{O}), 1578\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1288(\mathrm{C}-\mathrm{N}), 751,741 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 408\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 408.1923$, found 408.1928.

2,4-Di-iso-propyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-

1,3,7,12(2H,4H)-tetraone 20p

48%, yellow crystals, $\mathrm{mp} 89^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.31-1.43\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.55(6 \mathrm{H}, \mathrm{d}, J=6.8$ $\left.\mathrm{Hz}, 2 \mathrm{xCH}_{3}\right), 1.57\left(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 1.74-1.85\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8 \mathrm{or} \mathrm{CH}-$ 11), $3.50(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 5.16(1 \mathrm{H}$, septet, $J=6.8 \mathrm{~Hz}, \mathrm{NCH}), 5.72(1 \mathrm{H}$, septet, $J=6.8 \mathrm{~Hz}$, $\mathrm{NCH}), 9.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.42\left(2 \mathrm{xCH}_{3}\right), 19.76\left(2 \mathrm{xCH}_{3}\right), 25.28\left(2 \mathrm{xCH}_{2}\right), 25.33$ $\left(2 \mathrm{xCH}_{2}\right), 26.72$ and $28.32(\mathrm{CH}-8$ and $\mathrm{CH}-11), 47.73(\mathrm{NCH}), 48.43(\mathrm{NCH}), 107.91\left(\mathrm{C}_{\text {quat }}\right), 122.85$ $\left(\mathrm{C}_{\text {quat }}\right), 143.61\left(\mathrm{C}_{\text {quat }}\right), 148.97\left(\mathrm{C}_{\text {quat }}\right), 149.89\left(\mathrm{C}_{\text {quat }}\right), 151.78(\mathrm{CH}-6), 153.62\left(\mathrm{C}_{\text {quat }}\right), 154.18(\mathrm{NC}=\mathrm{O})$, $159.35(\mathrm{NC}=\mathrm{O}), 179.06(\mathrm{C}=\mathrm{O}), 181.05(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2947(\mathrm{CH}), 1722(\mathrm{C}=\mathrm{O}), 1667(\mathrm{C}=\mathrm{O})$, $1659(\mathrm{C}=\mathrm{O}), 1578\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1287(\mathrm{C}-\mathrm{N}), 753,740 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 408\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 408.1923$, found 408.1927.

2,4-Di-n-butyl-8,9,10,11-tetrahydro-8,11-ethanobenzo $[g]$ pyrimido $[4,5-c]$ isoquinoline-

$\mathbf{1 , 3 , 7 , 1 2 (2 H , 4 H})$-tetraone $\mathbf{2 0 q}$

90%, yellow viscous oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.30-1.45\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}, 2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 1.66\left(4 \mathrm{H}\right.$, pentet, $\left.J=7.4 \mathrm{~Hz}, 2 \mathrm{xNCH}_{2} \mathrm{CH}_{2}\right), 1.74-1.82$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.44(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 4.04(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}\right), 4.35\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.86\left(2 \mathrm{xCH}_{3}\right)$, $20.12\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right), 21.32\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right), 25.35\left(2 \mathrm{XCH}_{2}\right), 25.42\left(2 \mathrm{xCH}_{2}\right), 26.80$ and $28.50(\mathrm{CH}-8$ and $\mathrm{CH}-$
11), $29.78\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 30.04\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 42.59\left(\mathrm{NCH}_{2}\right), 43.43\left(\mathrm{NCH}_{2}\right), 106.87\left(\mathrm{C}_{\text {quat }}\right), 123.23$ $\left(\mathrm{C}_{\text {quat }}\right), 144.34\left(\mathrm{C}_{\text {quat }}\right), 148.92\left(\mathrm{C}_{\text {quat }}\right), 150.37\left(\mathrm{C}_{\text {quat }}\right), 152.83(\mathrm{CH}-6), 153.93\left(\mathrm{C}_{\text {quat }}\right), 154.19(\mathrm{NC}=\mathrm{O})$, $158.52(\mathrm{NC}=\mathrm{O}), 179.03(\mathrm{C}=\mathrm{O}), 181.17(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2958(\mathrm{CH}), 2870(\mathrm{CH}), 1720(\mathrm{C}=\mathrm{O}), 1668$ $(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1578\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1289(\mathrm{C}-\mathrm{N}), 753,734 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 436\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 436.2236$, found 436.2243.

2,4-Di-iso-butyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20 r

89%, yellow crystals, mp $71^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.91(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{xCH} 3), 0.94(6 \mathrm{H}, \mathrm{d}, J=$ $\left.7.2 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 1.29-1.41\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.76-1.78\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 2.19(2 \mathrm{H}$, nonuplet, $J=7.1 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.45(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.92(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}\right), 4.23\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.26(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 20.00\left(2 \mathrm{xCH}_{3}\right)$, $20.19\left(2 \mathrm{xCH}_{3}\right), 25.35\left(2 \mathrm{xCH}_{2}\right), 25.40\left(2 \mathrm{xCH}_{2}\right), 26.79(\mathrm{CH}-8$ or $\mathrm{CH}-11), 27.28\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.37$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.45(\mathrm{CH}-8$ or $\mathrm{CH}-11), 49.31\left(\mathrm{NCH}_{2}\right), 49.94\left(\mathrm{NCH}_{2}\right), 106.75\left(\mathrm{C}_{\text {quat }}\right), 123.27\left(\mathrm{C}_{\text {quat }}\right)$, $144.31\left(\mathrm{C}_{\text {quat }}\right), 148.95\left(\mathrm{C}_{\text {quat }}\right), 151.04\left(\mathrm{C}_{\text {quat }}\right), 152.66(\mathrm{CH}-6), 153.85\left(\mathrm{C}_{\text {quat }}\right), 154.49(\mathrm{NC}=\mathrm{O}), 158.83$ $(\mathrm{NC}=\mathrm{O}), 179.01(\mathrm{C}=\mathrm{O}), 181.15(\mathrm{C}=\mathrm{O})$. IR (ATR): v2958(CH), $2871(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1676(\mathrm{C}=\mathrm{O})$, $1657(\mathrm{C}=\mathrm{O}), 1579\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1290(\mathrm{C}-\mathrm{N}), 752,734 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 436\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ (ES^{+}) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 436.2236$, found 436.2240 .

2,4-Di-n-pentyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline$\mathbf{1 , 3 , 7 , 1 2 (2 H , 4 H)}$-tetraone 20s

64%, amber viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.84-0.92\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.30-1.45\left(12 \mathrm{H}, \mathrm{m}, 6 \mathrm{xCH}_{2}\right)$, 1.62-1.73 (4H, m, $\left.2 \mathrm{xNCH}_{2} \mathrm{CH}_{2}\right), 1.77-1.80\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.46(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or CH-11), $3.49(1 \mathrm{H}, \mathrm{s}$, CH-8 or CH-11), $4.04\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.35\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.28(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.07\left(2 \mathrm{xCH}_{3}\right), 22.44\left(2 \mathrm{XCH}_{2} \mathrm{CH}_{3}\right), 25.37\left(2 \mathrm{xCH}_{2}\right), 25.44\left(2 \mathrm{xCH}_{2}\right), 26.80(\mathrm{CH}-8$ or CH-11), $27.38\left(\mathrm{CH}_{2}\right), 27.64\left(\mathrm{CH}_{2}\right), 28.50(\mathrm{CH}-8$ or $\mathrm{CH}-11), 28.94\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 29.16\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$, $42.81\left(\mathrm{NCH}_{2}\right), 43.60\left(\mathrm{NCH}_{2}\right), 106.89\left(\mathrm{C}_{\text {quat }}\right), 123.24\left(\mathrm{C}_{\text {quat }}\right), 144.35\left(\mathrm{C}_{\text {quat }}\right), 148.93\left(\mathrm{C}_{\text {quat }}\right), 150.37$ $\left(\mathrm{C}_{\text {quat }}\right), 152.84(\mathrm{CH}-6), 153.93\left(\mathrm{C}_{\text {quat }}\right), 154.19(\mathrm{NC}=\mathrm{O}), 158.54(\mathrm{NC}=\mathrm{O}), 179.04(\mathrm{C}=\mathrm{O}), 181.18(\mathrm{C}=\mathrm{O})$. IR (ATR): v2956(CH), $2870(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1669(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1578\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1289(\mathrm{C}-\mathrm{N})$, $754 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 464\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 464.2549$, found 464.2552 .

2,4-Di-iso-pentyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20t

90%, yellow crystals, mp $132-133^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.94\left(6 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 0.96(6 \mathrm{H}$, $\left.\mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{xCH}_{3}\right), 1.29-1.42\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 1.51-1.58\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xNCH}_{2} \mathrm{CH}_{2}\right), 1.61-1.70(2 \mathrm{H}, \mathrm{m}$,
$\left.2 \mathrm{xCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.76-1.78\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.44(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.47(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11)$, $4.04\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.36\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.27(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ $\delta 22.53\left(4 \mathrm{xCH}_{3}\right), 25.34\left(2 \mathrm{xCH}_{3}\right), 25.39\left(2 \mathrm{xCH}_{2}\right), 26.33\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.50\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.78$ and $28.47(\mathrm{CH}-8$ and $\mathrm{CH}-11), 36.27\left(\mathrm{CH}_{2}\right), 36.61\left(\mathrm{CH}_{2}\right) 41.46\left(\mathrm{NCH}_{2}\right), 42.30\left(\mathrm{NCH}_{2}\right), 106.87\left(\mathrm{C}_{\text {quat }}\right)$, $123.19\left(\mathrm{C}_{\text {quat }}\right), 144.25\left(\mathrm{C}_{\text {quat }}\right), 148.89\left(\mathrm{C}_{\text {quat }}\right), 150.22\left(\mathrm{C}_{\text {quat }}\right), 152.81(\mathrm{CH}-6), 153.88\left(\mathrm{C}_{\text {quat }}\right), 154.10$ $(\mathrm{NC}=\mathrm{O}), 158.42(\mathrm{NC}=\mathrm{O}), 178.98(\mathrm{C}=\mathrm{O}), 181.11(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2956(\mathrm{CH}), 2870(\mathrm{CH}), 1720$ $(\mathrm{C}=\mathrm{O}), 1668(\mathrm{C}=\mathrm{O}), 1579\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1290(\mathrm{C}-\mathrm{N}), 753 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 464\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 464.2549$, found 464.2551.

2,4-Di-n-hexyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-

1,3,7,12(2H,4H)-tetraone 20u

90\%, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.79-0.88\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.19-1.42\left(16 \mathrm{H}, \mathrm{m}, 8 \mathrm{xCH}_{2}\right)$, 1.60-1.71 (4H, m, $\left.2 \mathrm{xNCH}_{2} \mathrm{CH}_{2}\right), 1.75-1.82\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.43(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8$ or $\mathrm{CH}-11), 3.46(1 \mathrm{H}, \mathrm{s}$, CH-8 or CH-11), $4.01\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.33\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 9.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6)$. ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 14.04\left(2 \mathrm{xCH}_{3}\right), 22.56\left(2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 25.29\left(2 \mathrm{xCH}_{2}\right), 25.36\left(2 \mathrm{xCH}_{2}\right), 26.44\left(\mathrm{CH}_{2}\right)$, $26.64\left(\mathrm{CH}_{2}\right), 26.73(\mathrm{CH}-8$ or $\mathrm{CH}-11), 27.60\left(\mathrm{CH}_{2}\right), 27.84\left(\mathrm{CH}_{2}\right), 28.42(\mathrm{CH}-8$ or $\mathrm{CH}-11), 31.46$ $\left(2 \mathrm{xCH}_{2}\right), 42.76\left(\mathrm{NCH}_{2}\right), 43.56\left(\mathrm{NCH}_{2}\right), 106.81\left(\mathrm{C}_{\text {quat }}\right), 123.16\left(\mathrm{C}_{\text {quat }}\right), 144.25\left(\mathrm{C}_{\text {quat }}\right), 148.83\left(\mathrm{C}_{\text {quat }}\right)$, $150.28\left(\mathrm{C}_{\text {quat }}\right), 152.72(\mathrm{CH}-6), 153.84\left(\mathrm{C}_{\text {quat }}\right), 154.11(\mathrm{NC}=\mathrm{O}), 158.42(\mathrm{NC}=\mathrm{O}), 178.92(\mathrm{C}=\mathrm{O}), 181.06$ ($\mathrm{C}=\mathrm{O}$). IR (ATR): v $2955(\mathrm{CH}), 2928(\mathrm{CH}), 2868(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O}), 1670(\mathrm{C}=\mathrm{O}), 1657(\mathrm{C}=\mathrm{O}), 1578$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1289(\mathrm{C}-\mathrm{N}), 754 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 492\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 492.2862$, found 492.2869.

2,4-Di-n-heptyl-8,9,10,11-tetrahydro-8,11-ethanobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraone 20v

78%, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 0.78-0.88\left(6 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{3}\right), 1.20-1.27\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{2}\right)$, 1.28-1.41 (10H, m, $\left.5 \mathrm{xCH}_{2}\right), 1.60-1.70\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xNCH}_{2} \mathrm{CH}_{2}\right), 1.73-1.81\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2}\right), 3.43(1 \mathrm{H}, \mathrm{s}$, CH-8 or CH-11), $3.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-8\right.$ or CH-11), $4.01\left(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.33(2 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2}\right), 9.25(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 14.10\left(2 \mathrm{xCH}_{3}\right)$, $22.61\left(2 \mathrm{xCH}_{2} \mathrm{CH}_{3}\right), 25.32\left(2 \mathrm{xCH}_{2}\right)$, $25.37\left(2 \mathrm{xCH}_{2}\right), 26.76\left(2 \mathrm{xCH}_{2}\right), 26.97(\mathrm{CH}-8$ or $\mathrm{CH}-11), 27.69\left(\mathrm{CH}_{2}\right), 27.92\left(\mathrm{CH}_{2}\right), 28.45(\mathrm{CH}-8$ or CH-11), $28.99\left(2 \mathrm{xCH}_{2}\right), 31.77\left(2 \mathrm{xCH}_{2}\right), 42.81\left(\mathrm{NCH}_{2}\right), 43.57\left(\mathrm{NCH}_{2}\right), 106.83\left(\mathrm{C}_{\text {quat }}\right), 123.18\left(\mathrm{C}_{\text {quat }}\right)$, $144.28\left(\mathrm{C}_{\text {quat }}\right), 148.84\left(\mathrm{C}_{\text {quat }}\right), 150.29\left(\mathrm{C}_{\text {quat }}\right), 152.75(\mathrm{CH}-6), 153.85\left(\mathrm{C}_{\text {quat }}\right), 154.14(\mathrm{NC}=\mathrm{O}), 158.45$ $(\mathrm{NC}=\mathrm{O}), 178.95(\mathrm{C}=\mathrm{O}), 181.09(\mathrm{C}=\mathrm{O})$. IR (ATR): v $2955(\mathrm{CH}), 2926(\mathrm{CH}), 2857(\mathrm{CH}), 1721(\mathrm{C}=\mathrm{O})$, $1670(\mathrm{C}=\mathrm{O}), 1579\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1289(\mathrm{C}-\mathrm{N}), 754 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 520\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{4}\right]^{+}: 520.3175$, found 520.3180 .

5.11.5 Synthesis
 of 3,4,8,9,10,11-hexahydro-2H-8,11-methano-
 benzo[j]phenanthridine-1,7,12-triones 397

To a stirred solution of 1,4-dihydroxy-5,6,7,8-tetrahydro-5,8-methanonaphthalene-2-carboxaldehyde 388a (204 mg, 1 mmol), amino-iso-propylcyclohexenones 395 ($153 \mathrm{mg}, 1 \mathrm{mmol}$) and MgSO_{4} (5 $\mathrm{mmol}, 604 \mathrm{mg}$) in anhydrous dichloromethane $(10 \mathrm{~mL})$ was added freshly prepared $\mathrm{Ag}_{2} \mathrm{O}(4 \mathrm{mmol}$, $927 \mathrm{mg})$. The reaction was allowed to stir at room temperature for 4 hours and subsequently filtered over a pad of Celite ${ }^{\circledR}$ and evaporated in vacuo. The residue was purified by means of column chromatography (petroleum ether/ethyl acetate) followed by preparative HPLC $\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right)$ to yield 3,4,8,9,10,11-hexahydro-2H-8,11-methanobenzo[j]phenanthridine-1,7,12-triones 397a and 397b.

Regioisomer 397a

40%, yellow solid, $\mathrm{mp} 63^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.10\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.22(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.50(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}), 1.70(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}), 1.93-2.13$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right), 2.20-2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.50-2.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.01(1 \mathrm{H}, \mathrm{ddd}, J=17.6,9.1$, $5.0 \mathrm{~Hz}, \mathrm{CH}), 3.23(1 \mathrm{H}, \mathrm{ddd}, J=17.6,6.6,5.0 \mathrm{~Hz}, \mathrm{CH}), 3.64(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}-8$ and $\mathrm{CH}-11), 9.22(1 \mathrm{H}, \mathrm{s}$, CH-6). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.35\left(\mathrm{CH}_{3}\right), 20.99\left(\mathrm{CH}_{3}\right), 23.58\left(\mathrm{CH}_{2}\right), 25.37\left(\mathrm{CH}_{2}\right), 25.68\left(\mathrm{CH}_{2}\right), 29.17$ $\left(\mathrm{CH}_{2}\right), 31.37(\mathrm{CH}), 41.14$ and $42.18(\mathrm{CH}-8$ and $\mathrm{CH}-11), 46.32\left(\mathrm{CH}_{2}-13\right), 55.63(\mathrm{CH}), 126.51\left(\mathrm{C}_{\text {quat }}\right)$, $128.91\left(\mathrm{C}_{\text {quat }}\right), 140.16\left(\mathrm{C}_{\text {quat }}\right), 149.81(\mathrm{CH}-6), 152.98\left(\mathrm{C}_{\text {quat }}\right), 156.14\left(\mathrm{C}_{\text {quat }}\right), 168.37\left(\mathrm{C}_{\text {quat }}\right), 180.56$ ($\mathrm{C}=\mathrm{O}$), 181.69 (C=O), $201.66(\mathrm{C}=\mathrm{O})$. IR (ATR): v2958, 2874, 1697, 1657, 1567, 1318, 1273, $739 \mathrm{~cm}^{-}$ ${ }^{1}$. MS $\left(\mathrm{ES}^{+}\right) m / z(\%): 336\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \operatorname{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}\right]^{+}: 336.1600$, found 336.1596.

Regioisomer 397b

13%, yellow solid, $\mathrm{mp} 95^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.03\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.15(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 1.22-1.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.45-1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.69-1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.68-2.01(3 \mathrm{H}, \mathrm{m}$, CH and $\left.\mathrm{CH}_{2}\right), 2.00-2.31(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.34-2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.66-2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 3.15(1 \mathrm{H}$, ddd, $J=18.3,10.6,6.1 \mathrm{~Hz}, \mathrm{CH}), 3.28(1 \mathrm{H}, \mathrm{ddd}, J=17.6,3.5,5.0 \mathrm{~Hz}, \mathrm{CH}), 3.63(2 \mathrm{H}, \mathrm{br}$ s, CH-8 and CH11), $9.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.13\left(\mathrm{CH}_{3}\right), 21.28\left(\mathrm{CH}_{3}\right), 25.03\left(\mathrm{CH}_{2}\right), 25.29\left(\mathrm{CH}_{2}\right)$, $25.49\left(\mathrm{CH}_{2}\right), 27.60\left(\mathrm{CH}_{2}\right), 32.52(\mathrm{CH}), 41.10$ and $41.92(\mathrm{CH}-8$ and $\mathrm{CH}-11), 47.30\left(\mathrm{CH}_{2}-13\right), 55.34$ $(\mathrm{CH}), 126.02\left(\mathrm{C}_{\text {quat }}\right), 127.25\left(\mathrm{C}_{\text {quat }}\right), 139.44\left(\mathrm{C}_{\text {quat }}\right), 149.87(\mathrm{CH}-6), 153.26\left(\mathrm{C}_{\text {quat }}\right), 155.94\left(\mathrm{C}_{\text {quat }}\right)$, $167.96\left(\mathrm{C}_{\text {quat }}\right), 180.66(\mathrm{C}=\mathrm{O}), 181.30(\mathrm{C}=\mathrm{O}), 201.69(\mathrm{C}=\mathrm{O})$. IR (ATR): v 2961, 2874, 1703, 1657, 1569, 1323, $1291 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{+}\right) m / z(\%): 336\left([M+H]^{+}, 100\right)$. HRMS (ES $\left.{ }^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}\right]^{+}$: 336.1600 , found 336.1596 .

5.12 Synthesis of analogues of the bioactive natural products sampangine 24 and cleistopholine 23

5.12.1 Synthesis of $\mathbf{7 H}$-naphtho[3,2,1-i,j]-2,6-naphthiridin-6-one 403

(E)-4-[2-(Dimethylamino)vinyl]benzo[g]isoquinoline-5,10-dione 402 ($133 \mathrm{mg}, 0.48 \mathrm{mmol}$) was mixed with 10 ml of a $5 \mathrm{~m} / \mathrm{v} \%$ solution of ammonium acetate in anhydrous methanol under a nitrogen atmosphere and boiled under reflux for three hours. Then the solvent was evaporated in vacuo. The residue was dissolved in dichloromethane $(15 \mathrm{ml})$ and washed with a saturated sodium bicarbonate solution (25 ml) and brine (25 ml). The organic layer was dried over magnesium sulfate and concentrated in vacuo. The resulting residue was purified by column chromatography (petroleum ether/ ethyl acetate) to afford $7 H$-naphtho[3,2,1-i,j]-2,6-naphthiridin-6-one 403 ($80 \mathrm{mg}, 91 \%$).
91%, yellow solid, mp $201.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.68(1 \mathrm{H}, \mathrm{td}, J=7.7$ and $1.1 \mathrm{~Hz}, \mathrm{H}-8), 7.82(2 \mathrm{H}$, s and $\operatorname{td}, J=7.7$ and $1.1 \mathrm{~Hz}, \mathrm{H}-5$ and $\mathrm{H}-9), 8,25(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$ and $\mathrm{H}-9), 8.39(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and 1.1 $\mathrm{Hz}, \mathrm{H}-7), 8.78(1 \mathrm{H}, \mathrm{dd}, J=7.7$ and $1.1 \mathrm{~Hz}, \mathrm{H}-10), 8.91(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{H}-2), 9.56(2 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J}=$ 6.1 Hz H-1 and H-3). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 119.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.22\left(\mathrm{C}_{\text {quat }}\right), 124.58\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.24\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.70\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.06\left(\mathrm{C}_{\text {quat }}\right), 131.24\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.35\left(\mathrm{C}_{\text {quat }}\right), 134.55\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.86\left(\mathrm{C}_{\text {quat }}\right), 145.90$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 146.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 149.27\left(\mathrm{C}_{\text {quat }}\right), 157.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 183.29(\mathrm{C}=\mathrm{O})$. IR (ATR): $v_{\max } 1666,1655,1591$, $1289 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 233\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 233.0715$, found 233.0711 .

5.12.2 Synthesis of 3-substituted-1-methylbenzo[g]isoquinoline-5,10-diones 25

2-Acetyl-1,4-naphthoquinone $\mathbf{3 4 5}(0.35 \mathrm{~g}, 1.75 \mathrm{mmol})$ and pyridinium salts $\mathbf{1 5 1}^{261}(1.83 \mathrm{mmol})$ were added to a previously prepared $5 \mathrm{~m} / \mathrm{v} \%$ solution of ammonium acetate in anhydrous methanol (6 ml). The sealed reaction vessel was heated for 6 min . at $90^{\circ} \mathrm{C}$ in a CEM Discover ${ }^{\circledR}$ microwave apparatus (ramp time $5 \mathrm{~min}, \mathrm{p}_{\max } 10.0 \mathrm{psi}$). Subsequently, the reaction mixture was cooled in ice water and filtered. The solid was washed with 20 ml of cold methanol and redissolved in chloroform. This solution was filtered over Celite ${ }^{\circledR}$ and evaporated in vacuo to yield 3-aryl-1methylbenz $[g]$ isoquinoline-5,10-diones 25. 3-Alkyl-1-methylbenz $[g]$ isoquinoline-5,10-diones $\mathbf{2 5 f}$ and $\mathbf{2 5 g}$ did not precipitate upon cooling and were extracted with ethyl acetate (10 ml) and brine ($2 \times 10 \mathrm{ml}$) and subsequently purified by means of column chromatography.

3-(2,5-Dimethoxyphenyl)-1-methylbenzo[g]isoquinoline-5,10-dione 25d

52%, orange solid, $\mathrm{mp} 213.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right): \delta 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 6.98(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}-3 '), 7.02\left(1 \mathrm{H}, \mathrm{dd}, J=1.1,8.3 \mathrm{~Hz}, \mathrm{CH}-4{ }^{\prime}\right), 7.61(1 \mathrm{H}, \mathrm{dd}, J$ $=2.2,1.1 \mathrm{~Hz}, \mathrm{CH}-6 '), 7.80(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.5 \mathrm{~Hz}, \mathrm{CH}-7$ or $\mathrm{CH}-8), 7.86(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.5 \mathrm{~Hz}, \mathrm{CH}-$ 7 or CH-8), $8.29(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.5 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-9), $8.32(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.5 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-
9), $8.67(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.82\left(\mathrm{CH}_{3}\right), 55.97\left(\mathrm{OCH}_{3}\right), 56.36\left(\mathrm{OCH}_{3}\right), 113.05(\mathrm{CH}-$ 4), $116.00\left(\mathrm{CH}_{\mathrm{Ar}}\right), 117.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 119.59\left(\mathrm{CH}_{\mathrm{Ar}}\right) 122.78\left(\mathrm{C}_{\mathrm{quat}}\right), 126.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.02$ $\left(\mathrm{C}_{\text {quat }}\right), 132.72\left(\mathrm{C}_{\text {quat }}\right), 133.85\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.58\left(\mathrm{C}_{\text {quat }}\right), 134.96\left(\mathrm{CH}_{\text {Ar }}\right), 140.20\left(\mathrm{C}_{\text {quat }}\right), 152.34\left(\mathrm{C}_{\text {quat }}\right)$, $153.99\left(\mathrm{C}_{\text {quat }}\right), 159.61\left(\mathrm{C}_{\text {quat }}\right), 161.55\left(\mathrm{C}_{\text {quat }}\right), 183.61(\mathrm{C}=\mathrm{O}), 183.99(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v_{\max } 1677,1660$, 1571, 1282, $1261 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{+}\right) m / z(\%): 360\left([M+H]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{4}\right]^{+}$: 360.1236 , found 360.1220 .

1-Methyl-3-isopropylbenzo[g]isoquinoline-5,10-dione 25f

40%, yellow solid, mp $137.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.38\left(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.09(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 3.21(1 \mathrm{H}$, septet, $J=6.8 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.6 \mathrm{~Hz}, \mathrm{CH}-7$ or $\mathrm{CH}-8), 7.85(1 \mathrm{H}, \mathrm{dt}, J=1.7$, $7.6 \mathrm{~Hz}, \mathrm{CH}-7$ or CH-8), $7.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-4), 8.27(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.6 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-9), $8.30(1 \mathrm{H}$, dd, $J=1.7,7.6 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-9) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.25\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.56\left(\mathrm{CH}_{3}\right), 37.10$ $\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right)_{2}\right), 114.57(\mathrm{CH}-4), 122.60\left(\mathrm{C}_{\text {quat }}\right), 126.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.32\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.41\left(\mathrm{C}_{\text {quat }}\right), 133.67$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.71\left(\mathrm{C}_{\text {quat }}\right), 134.84\left(\mathrm{CH}_{\text {Ar }}\right), 140.57\left(\mathrm{C}_{\text {quat }}\right), 161.44\left(\mathrm{C}_{\text {quat }}\right), 172.60\left(\mathrm{C}_{\text {quat }}\right), 183.35(\mathrm{C}=\mathrm{O})$, 183.67 (C=O). IR (ATR): $v_{\max } 2928,1676,1666,1573,1336,1279,715 \mathrm{~cm} .{ }^{-1} \mathrm{MS}(\mathrm{ES}) \mathrm{m} / z(\%): 266$ ([M-H] $\left.{ }^{-}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 266.1181$, found 266.1175.

1-Methyl-3-tert-butylbenzo[g]isoquinoline-5,10-dione 25g

38%, orange solid, $\mathrm{mp} 90.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.77$ $(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.4 \mathrm{~Hz}, \mathrm{CH}-7$ or CH-8), $7.83(1 \mathrm{H}, \mathrm{dt}, J=1.7,7.4 \mathrm{~Hz}, \mathrm{CH}-7$ or CH-8), $8.03(1 \mathrm{H}, \mathrm{s}$, CH-4), $8.25(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.4 \mathrm{~Hz}, \mathrm{CH}-6$ or $\mathrm{CH}-9), 8.28(1 \mathrm{H}, \mathrm{dd}, J=1.7,7.4 \mathrm{~Hz}, \mathrm{CH}-6$ or CH-9). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 26.77\left(\mathrm{CH}_{3}\right), 29.90\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 38.55\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 113.29(\mathrm{CH}-4), 122.23\left(\mathrm{C}_{\text {quat }}\right)$, $126.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.39\left(\mathrm{CH}_{\text {Ar }}\right), 132.64\left(\mathrm{C}_{\text {quat }}\right), 133.76\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.46\left(\mathrm{C}_{\text {quat }}\right), 134.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 140.54$ $\left(\mathrm{C}_{\text {quat }}\right), 160.95\left(\mathrm{C}_{\text {quat }}\right), 174.69\left(\mathrm{C}_{\text {quat }}\right), 183.82(\mathrm{C}=\mathrm{O}), 184.04(\mathrm{C}=\mathrm{O})$. IR (ATR): $v_{\max } 2958,2925,1676$, $1575,1276,711 \mathrm{~cm} .{ }^{-1} \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 280\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}\right]^{+}$: 280.1338 , found 280.1340 .

5.12.3 Synthesis of 3-substituted-1-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10-diones 404

To a solution of 3-substituted-1-methylbenzo $[g]$ isoquinoline-5, 10-diones $25(0.55 \mathrm{mmol})$ in anhydrous DMF (5 ml), DMF-DMA ($0.73 \mathrm{~mL}, 5.5 \mathrm{mmol}$, 10 equiv.) was added under a nitrogen atmosphere and the reaction mixture was heated for 15 hours in an oil bath at $125^{\circ} \mathrm{C}$. Next, the reaction mixture was poured in 30 ml of water, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phase was washed three times with brine, dried over MgSO_{4}, evaporated and concentrated under high vacuum to remove residual traces of DMF, thus affording 3-substitited-1-[2-(dimethylamino)vinyl]benzo[g]isoquinoline-5,10-diones 404 in high purity. Due to coalescence of the 2-(dimethylamino)vinyl system, the
dimethylamino group is not visible in ${ }^{13} \mathrm{C}$ NMR at $25^{\circ} \mathrm{C}$. In order to view this peak, ${ }^{13} \mathrm{C}$ spectra were recorded at $50^{\circ} \mathrm{C}\left(\mathrm{CDCl}_{3}\right)$.

3-(4-Fluorophenyl)-1-[2-(dimethylamino)viny]lbenzo[g]isoquinoline-5,10-dione 404b

Quantitative yield, deep blue solid, mp $224.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.11\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.18(2 \mathrm{H}$, $\mathrm{dd}, J_{\mathrm{HF}}=8.5, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}$ and $\left.\mathrm{H}-5^{\prime}\right), 7.21\left(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.70(1 \mathrm{H}, \mathrm{t}, J$ $=7.7 \mathrm{~Hz}, \mathrm{H}-7$ or $\mathrm{H}-8), 7.80(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-7$ or $\mathrm{H}-8), 7.94(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 8.16\left(2 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HF}}=5.5\right.$, $J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime}$ and H-6'), $8.21(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-6$ or H-9), $8.29(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-6$ or H9), $8.35\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 40.24\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 95.31(=\mathrm{CH})$, $109.48(\mathrm{CH}-4), 115.16\left(\mathrm{C}_{\mathrm{quat}}\right), 115.73\left(2 \mathrm{xCH}_{\mathrm{Ar}}, J_{\mathrm{CF}}=21.9 \mathrm{~Hz}\right), 126.86\left(2 \mathrm{xCH}_{\mathrm{Ar}}, J_{\mathrm{CF}}=56.5 \mathrm{~Hz}\right)$, $129.39\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.50\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.35\left(\mathrm{C}_{\mathrm{quat}}\right), 132.83\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.92\left(\mathrm{C}_{\mathrm{quat}}, J_{\mathrm{CF}}=2.3\right.$ $\mathrm{Hz}), 135.41\left(\mathrm{C}_{\text {quat }}\right), 141.94\left(\mathrm{C}_{\text {quat }}\right), 151.03(=\mathrm{CH}), 158.92\left(\mathrm{C}_{\text {quat }}\right), 160.08\left(\mathrm{C}_{\text {quat }}\right), 164.26\left(\mathrm{C}_{\text {quat }}, J_{\mathrm{CF}}=\right.$ $250.4 \mathrm{~Hz}), 183.38(\mathrm{C}=\mathrm{O}), 184.26(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-111.55\left(1 \mathrm{~F}, \mathrm{~s}, \mathrm{C}_{\text {quat }}-\mathrm{F}\right)$. IR (ATR): $v_{\max } 2925,1668,1599,1537,1506,1361 \mathrm{~cm} .^{-1} \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 373\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 373.1352$, found 373.1353.

1-[2-(Dimethylamino)vinyl]-3-(2,5-dimethoxyphenyl)benzo[g]isoquinoline-5,10-dione 404d

87%, dark blue solid, mp $193.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.01\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.90(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-3 '$ and CH-4'), $7.13(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}$, $\left.\mathrm{C} \underline{H}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.84(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-6 '), 7.64(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-7$ or H-8), 7.73 $(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-7$ or H-8), $8.11(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 8.15(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-6$ or H-9), $8.22(1 \mathrm{H}$, $\mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-6$ or $\mathrm{H}-9), 8.24\left(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 41.07$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 55.85\left(\mathrm{OCH}_{3}\right), 56.33\left(\mathrm{OCH}_{3}\right), 95.31(=\mathrm{CH}), 112.90(\mathrm{CH}-4), 112.90\left(\mathrm{CH}_{\text {Ar }}\right), 114.84\left(\mathrm{C}_{\text {quat }}\right)$, $115.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.41\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.32\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.13\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.24\left(\mathrm{C}_{\text {quat }}\right), 132.49$ $\left(\mathrm{C}_{\text {quat }}\right), 132.69\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.49\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.41\left(\mathrm{C}_{\text {quat }}\right), 140.7 \mathrm{~s} 0\left(\mathrm{C}_{\text {quat }}\right), 150.77(=\mathrm{CH}), 152.46\left(\mathrm{C}_{\text {quat }}\right)$, $153.68\left(\mathrm{C}_{\text {quat }}\right), 159.19\left(\mathrm{C}_{\text {quat }}\right), 159.73\left(\mathrm{C}_{\text {quat }}\right), 183.49(\mathrm{C}=\mathrm{O}), 184.45(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v_{\max } 1669,1604$, 1554, 1215, 1100, 715. MS (ES $\left.{ }^{+}\right) m / z(\%): 415\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$: 415.1658 , found 415.1663 .

1-[2-(Dimethylamino)vinyl]-3-tert-butylbenzo[g]isoquinoline-5,10-dione 404g

88%, dark blue solid, mp $189.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.08\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $7.16\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{C} \underline{H}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right), 7.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.66(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{or} \mathrm{H}-$ 8), $7.76(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.6 \mathrm{~Hz}, \mathrm{H}-7$ or H-8), $8.17(1 \mathrm{H}, \mathrm{dd}, J=1.3,7.6 \mathrm{~Hz}, \mathrm{H}-6$ or H-9), $8.26(1 \mathrm{H}, \mathrm{dd}$, $J=1.3,7.6 \mathrm{~Hz}, \mathrm{H}-6$ or $\mathrm{H}-9), 8.29\left(1 \mathrm{H}, \mathrm{d}, J=12.4 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 29.81$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.81\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.16\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 95.53(=\mathrm{CH}), 109.30(\mathrm{CH}-4), 114.23\left(\mathrm{C}_{\text {quat }}\right), 126.31$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.06\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.41\left(\mathrm{C}_{\text {quat }}\right), 132.61\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.45\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.27\left(\mathrm{C}_{\text {quat }}\right), 141.19\left(\mathrm{C}_{\text {quat }}\right)$,
$150.84(=\mathrm{CH}), 160.00\left(\mathrm{C}_{\text {quat }}\right), 173.46\left(\mathrm{C}_{\text {quat }}\right), 183.35(\mathrm{C}=\mathrm{O}), 184.52(\mathrm{C}=\mathrm{O})$. IR (ATR): $v_{\max } 1660,1608$, $1566,1307,1245,1096,715 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 335\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(E S^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 335.1760$, found 335.1763 .

5.12.4 Synthesis of 5-substituted-7H-naphtho[3,2,1-de]naphthyridine-7-ones 26

3-Substituted 1-[2-(dimethylamino)vinyl]-benzo[g]isoquinoline-5,10-diones 404 (0.45 mmol) were mixed with 10 ml of a $5 \mathrm{~m} / \mathrm{v} \%$ solution of ammonium acetate in anhydrous methanol and boiled under reflux for three hours. After completion of the reaction, the solvent was evaporated and the residue was redissolved in dichloromethane $(15 \mathrm{ml})$. Then, the reaction mixture was washed with saturated sodium bicarbonate solution (25 ml) and brine $(25 \mathrm{ml})$. The organic layer was dried over magnesium sulfate and concentrated in vacuo. The resulting residue was purified by column chromatography using dichloromethane as eluent to afford 5-substituted 7H-naphtho[3,2,1-de]naphthyridine-7-ones 26. Due to their high insolubility, no ${ }^{13} \mathrm{C}-\mathrm{NMR}$ could be recorded for compounds $\mathbf{2 6 b}$ and $\mathbf{2 6 c}$. Recording was attempted with up to 10.000 scans and a relaxation delay of 3 sec . in CDCl_{3}, acetone- d_{6}, DMSO$\mathrm{d}_{6}, \mathrm{CS}_{2}$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$.

5-(3-Methoxyphenyl)-7H-naphtho[3,2,1-de]naphthyridine-7-one 26a

73%, yellow solid, mp $214.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-$ 3^{\prime} and H-5'), $7.66(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.6 \mathrm{~Hz}, \mathrm{H}-9$ or H-10), $7.82(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.6 \mathrm{~Hz}, \mathrm{H}-9 \mathrm{or} \mathrm{H}-10)$, $7.94\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-8\right.$ or H-11), $8.28\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and H-6'), $8.38(1 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}, \mathrm{H}-3), 8.72(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6), 8.83(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-11), 8.89(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.56\left(\mathrm{OCH}_{3}\right) 114.57\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 116.37\left(\mathrm{C}_{\mathrm{quat}}\right), 118.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.41$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.92\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.56\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.57\left(\mathrm{C}_{\mathrm{quat}}\right), 130.66\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.84\left(\mathrm{C}_{\mathrm{quat}}\right), 135.04\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $136.45\left(\mathrm{C}_{\text {quat }}\right), 147.91\left(\mathrm{CH}_{\text {Ar }}\right), 149.58\left(\mathrm{C}_{\text {quat }}\right), 150.92\left(\mathrm{C}_{\text {quat }}\right), 161.99\left(\mathrm{C}_{\text {quat }}\right), 162.14\left(\mathrm{C}_{\text {quat }}\right), 183.52$ $(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v_{\max } 1668,1590,1381,1255,1174,708 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 339\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 339.1134$, found 339.1133 .

5-(4-Fluorophenyl)-7H-naphtho[3,2,1-de] naphthyridine-7-one 26b

64%, yellow solid, mp $250.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6} : $\delta 7.50\left(2 \mathrm{H}, \mathrm{dd}, J_{H H}=9.0, J_{H F}=9.1, \mathrm{H}-3\right.$ ' and $\left.\mathrm{H}-5^{\prime}\right), 7.83(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 8.01(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-9$ or H-10), 8.12 $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-3), 8.34(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-11), 8.49-8.56\left(2 \mathrm{H}, \mathrm{dd}, J_{H H}=9.0, J_{H F}\right.$ $=5.5, \mathrm{H}-2^{\prime}$ and H-6'), $8.80(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 8.83(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-11), 9.03(1 \mathrm{H}, \mathrm{d}, J=$ $7.2 \mathrm{~Hz}, \mathrm{H}-2)$. Due to the high insolubility of this compound, no ${ }^{13} \mathrm{C}$ NMR could be recorded. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-109.95\left(1 \mathrm{~F}, \mathrm{~s}, \mathrm{C}_{\text {quat }}-\mathrm{F}\right)$. IR (ATR): $v_{\max } 1667,1591,1340,1226,759 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $327\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. No satisfactory HRMS could be obtained.

5-(4-Chlorophenyl)-7H-naphtho[3,2,1-de]naphthyridine-7-one 26c

64%, yellow solid, mp 279.2-280.9 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.57\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right)$, $7.69(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 7.88(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 8.05(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}$, $\mathrm{H}-3), 8.28\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime}\right.$ and H-6'), $8.41(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-8$ or H-11$), 8.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 6), $8.87(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-11), 8.96(1 \mathrm{H}, \mathrm{d}, 5.5 \mathrm{~Hz}, \mathrm{H}-2)$. Due to the high insolubility of this compound, no ${ }^{13} \mathrm{C}$ NMR could be recorded. IR (ATR): $v_{\max }$ 1668, 1590, 1446, 1380, 1367, 1338, 1280, 1231, 1091, 1012, 836, 758, $704 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 343\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}\right]^{+}: 343.0560$, found 343.0626 .

5-(2,5-Dimethoxyphenyl)-7H-naphtho[3,2,1-de]naphthyridine-7-one 26d

95%, yellow solid, mp $225.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 7.00$ $(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3 '), 7.03\left(1 \mathrm{H}, \mathrm{dd}, J=2.8,8.1 \mathrm{~Hz}, \mathrm{H}-4{ }^{\prime}\right), 7.53(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H}-6$ '), 7.64 $(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 7.83(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 7.99(1 \mathrm{H}, \mathrm{d}, J=5.5$ $\mathrm{Hz}, \mathrm{H}-3), 8.36(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-11), 8.85(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.7 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{or} \mathrm{H}-11)$, $8.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 8.90(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-3) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 56.00\left(\mathrm{OCH}_{3}\right), 56.35\left(\mathrm{OCH}_{3}\right)$, $113.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.12\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.55\left(\mathrm{C}_{\text {quat }}\right), 117.67\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.73\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.39$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.58\left(\mathrm{C}_{\text {quat }}\right), 130.72\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.02\left(\mathrm{C}_{\text {quat }}\right), 133.82\left(\mathrm{C}_{\text {quat }}\right), 134.98\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $136.43\left(\mathrm{C}_{\text {quat }}\right), 147.62\left(\mathrm{CH}_{\text {Ar }}\right), 149.74\left(\mathrm{C}_{\text {quat }}\right), 150.77\left(\mathrm{C}_{\text {quat }}\right), 152.06\left(\mathrm{C}_{\text {quat }}\right), 154.12\left(\mathrm{C}_{\text {quat }}\right), 162.65$ $\left(\mathrm{C}_{\text {quat }}\right), 183.67(\mathrm{C}=\mathrm{O})$. IR (ATR): $v_{\max } 1664,1593,1499,1416,1226,1035 \mathrm{~cm}^{-1} . \mathrm{MS}: m / z(\%) 369$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 369.1239$, found 369.1244.

5-(3-Methylphenyl)-7H-naphtho[3,2,1-de]naphthyridine-7-one 26e

91%, yellow solid, mp $229.3-230.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$, $\mathrm{H}-3{ }^{\prime}$ and H-5'), $7.66(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 7.82(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-9$ or H-10), $7.99(1 \mathrm{H}$, $\mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}-3), 8.21\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right.$ and H-6'), $8.40(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-8 \mathrm{or} \mathrm{H}-11)$, $8.76(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-6), 8.85(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-8$ or $\mathrm{H}-11), 8.92(1 \mathrm{H}, \mathrm{d}, 5.8 \mathrm{~Hz}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 21.58\left(\mathrm{CH}_{3}\right) 116.59\left(\mathrm{C}_{\text {quat }}\right), 118.41(\mathrm{CH}), 122.23(\mathrm{CH}), 125.44(\mathrm{CH}), 127.92(2 \mathrm{xCH}), 129.97$ $(2 \mathrm{xCH}), 130.73(\mathrm{CH}), 131.90\left(\mathrm{C}_{\text {quat }}\right), 135.09(\mathrm{CH}), 135.16(\mathrm{CH}), 135.31\left(\mathrm{C}_{\text {quat }}\right), 136.46\left(\mathrm{C}_{\text {quat }}\right), 141.48$ $\left(\mathrm{C}_{\text {quat }}\right), 147.94(\mathrm{CH}), 149.73\left(\mathrm{C}_{\text {quat }}\right), 150.93\left(\mathrm{C}_{\text {quat }}\right), 162.58\left(\mathrm{C}_{\text {quat }}\right), 183.52(\mathrm{C}=\mathrm{O})$. IR (ATR): $v_{\max } 1665$, 1591, 1442, 1377, 1365, 1339, 1285, 1234, 1073, 817, 760, $706 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 323$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}\right]^{+}: 323.1106$, found 323.1176.

5-tert-Butyl-7H-naphtho[3,2,1-de]naphthyridine-7-one 26g

72%, yellow solid, mp $168.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.54\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 7.61(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.6$ $\mathrm{Hz}, \mathrm{H}-9$ or H-10), $7.81(1 \mathrm{H}, \mathrm{dt}, J=1.1,7.6 \mathrm{~Hz}, \mathrm{H}-9$ or $\mathrm{H}-10), 7.91(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}-3), 8.35(1 \mathrm{H}$, dd, $J=1.1,7.6 \mathrm{~Hz}, \mathrm{H}-8$ or H-11), $8.43(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-6), 8.81(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.6 \mathrm{~Hz}, \mathrm{H}-8$ or H-11), 8.88 $\left.(1 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz}, \mathrm{H}-3) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 30.00\left(\mathrm{C}(\underline{\mathrm{CH}})_{3}\right)_{3}\right), 39.42\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 116.11\left(\mathrm{C}_{\text {quat }}\right)$,
$118.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.18\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.79\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.58\left(\mathrm{C}_{\text {quat }}\right), 130.54\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.82$ $\left(\mathrm{C}_{\text {quat }}\right), 133.82\left(\mathrm{C}_{\text {quat }}\right), 134.52\left(\mathrm{C}_{\text {quat }}\right), 134.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.29\left(\mathrm{C}_{\text {quat }}\right), 147.48\left(\mathrm{CH}_{\mathrm{Ar}}\right), 149.38\left(\mathrm{C}_{\text {quat }}\right)$, $149.99\left(\mathrm{C}_{\text {quat }}\right), 175.84\left(\mathrm{C}_{\text {quat }}\right), 183.58(\mathrm{C}=\mathrm{O})$. IR (ATR): $v_{\max } 1729,1661,1592,1270,1227,705 \mathrm{~cm}^{-1}$. MS (ES^{+}) m/z (\%): $289\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES^{+}) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\right]^{+}$: 289.1341, found 289.1339.

5.12.5 6-Acetyl-1,2,3,4-tetrahydro-1,4-methano-5,8-naphthoquinone 407

6-Acetyl-5,8-dihydroxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene 406

Under a N_{2} atmosphere, $\mathrm{AlCl}_{3}(1.77 \mathrm{~g}, 13.26 \mathrm{mmol}, 6.9$ equiv.) and $\mathrm{NaCl}(344 \mathrm{mg}, 5.89 \mathrm{mmol}, 3.1$ equiv.) were molten at $140^{\circ} \mathrm{C}$. Then the temperature was raised to $195^{\circ} \mathrm{C}$ and 5,8 -diacetoxy- $1,2,3,4-$ tetrahydro-1,4-methanonaphthalene $405(500 \mathrm{mg}, 1.9 \mathrm{mmol})$ was added. The mixture was stirred for 9 min and quenched with aqueous $\mathrm{HCl}(2 \mathrm{M}, 20 \mathrm{~mL})$, the solids were filtered of and washed with $\mathrm{H}_{2} \mathrm{O}$. The solids were then redissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$ and conc. $\mathrm{HCl}(12 \mathrm{M}, 0.2 \mathrm{~mL})$ and stirred for 4 h at room temperature. Next, the mixture was poured in icewater and the solids were filtered off and further purified by means of column chromatography to yield 6-acetyl-5,8-dihydroxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene 406 ($200 \mathrm{mg}, 0.91 \mathrm{mmol}, 48 \%$) as a yellow solid.
48%, yellow solid, mp $155.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 1.20\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{N}} \mathrm{H}_{\mathrm{X}}\right), 1.53(1 \mathrm{H}$, $\left.\mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{S}}\right), 1.73\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{S}}\right), 1.93\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{N}} \mathrm{H}_{\mathrm{X}}\right), 2.54$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.54(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 3.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ or $\mathrm{CH}-4), 4.99(1 \mathrm{H}, \mathrm{br}$ s, OH$), 7.01(1 \mathrm{H}$, s, CH-7), $11.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 26.01\left(\mathrm{CH}_{2}\right), 26.15\left(\mathrm{CH}_{2}\right), 26.96\left(\mathrm{CH}_{3}\right), 39.74$ and $40.61(\mathrm{CH}-1$ and $\mathrm{CH}-4), 49.17(\mathrm{CH}-9), 114.70(\mathrm{CH}-7), 118.42\left(\mathrm{C}_{\text {quat }}\right), 136.80\left(\mathrm{C}_{\text {quat }}\right), 141.45\left(\mathrm{C}_{\text {quat }}\right)$, $144.77\left(\mathrm{C}_{\text {quat }}\right), 150.46\left(\mathrm{C}_{\text {quat }}\right), 204.24(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 3286,2868,1641,1573,1483,1311,1201$, 740, $728 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 219\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

6-Acetyl-1,2,3,4-tetrahydro-1,4-methano-5,8-naphthoquinone 407

A solution of 6-acetyl-5,8-dihydroxy-1,2,3,4-tetrahydro-1,4-methanonaphthalene $406(100 \mathrm{mg}, 0.46$ mmol), MgSO_{4} ($552 \mathrm{mg}, 4.6 \mathrm{mmol}, 10$ equiv.) and MnO_{2} ($240 \mathrm{mg}, 2.8 \mathrm{mmol}$, equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at room temperature for 30 min . Filtration of the solids and evaporation of the solvent in vacuo (bath temperature $\leq 30^{\circ} \mathrm{C}$) yielded 6-acetyl-1,2,3,4-tetrahydro-1,4-methano-5,8naphthoquinone 407 ($90 \mathrm{mg}, 0.42 \mathrm{mmol}, 90 \%$) as a brown oil.
90%, brown oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.95\left(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{N}} \mathrm{H}_{\mathrm{X}}\right), 1.44(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{S}}\right), 1.68\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{A}} \underline{\mathrm{H}}_{\mathrm{S}}\right), 1.96\left(2 \mathrm{H}\right.$, br d$\left., J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{N}} \underline{H}_{\mathrm{X}}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.51$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}-1$ and $\mathrm{CH}-4), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-7) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 25.03(2 \mathrm{xCH} 2), 30.99\left(\mathrm{CH}_{3}\right), 40.70$ and $40.84(\mathrm{CH}-1$ and $\mathrm{CH}-4), 47.84(\mathrm{CH}-9), 135.74(\mathrm{CH}-7), 142.74\left(\mathrm{C}_{\text {quat }}\right), 151.91\left(2 \mathrm{xC}_{\text {quat }}\right), 182.72$
$(\mathrm{C}=\mathrm{O}), 184.14(\mathrm{C}=\mathrm{O}), 197.76(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 2953,1697,1648,1332,1237 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $217\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$.

5.13 Palladium(II)-catalysed synthesis of $2 \mathrm{H}, \mathbf{3}^{\prime} \mathrm{H}$-spiro[benzofuran-3,2'-naphthoquinones] 29

5.13.1 Synthesis of 2-aryloxymethyl-1,4-naphthoquinones 27 and 433

To a solution of 37.5 mmol of phenoxyacetic acid 204 in distilled water (80 mL) and acetonitrile (80 mL), were successively added 1,4-naphthoquinone $3\left(3.95 \mathrm{~g}, 25 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{AgNO}_{3}(1.27 \mathrm{~g}$, $7.5 \mathrm{mmol}, 0.3$ equiv.). The mixture was heated to $80^{\circ} \mathrm{C}$ until dissolution was complete. The resulting solution was stirred vigorously while a solution of ammonium peroxydisulfate ($8.56 \mathrm{~g}, 37.5 \mathrm{mmol}, 1.5$ equiv.) in distilled water (80 mL) was added dropwise. Throughout the addition, the reaction mixture was maintained at $80^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred for 5 minutes at $80^{\circ} \mathrm{C}$ and was then cooled to $5-10^{\circ} \mathrm{C}$ in an ice-bath. The precipitated solid was collected by suction filtration, washed with cold water (50 mL) and pressed to remove most of the liquid. Inorganic contaminants, usually present in small amounts, were removed by dissolving the solid in boiling acetone $(350 \mathrm{~mL})$ and filtering the hot solution. Concentration of the filtrate in vacuo gave a dark red crude product, which was recrystallised from ethanol. In case of 3-methyl-2-phenoxymethyl-1,4naphthoquinone 433, 2-methyl-1,4-naphthoquinone 156 b was used as a starting material.

2-Phenoxymethyl-1,4-naphthoquinone 27a

62%, Yellow needles, $\mathrm{mp} 163^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{262} 163-164^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.05(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.98-7.02\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.17(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}, \mathrm{CH}-3), 7.29-7.34\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.72-$ $7.78(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and $\mathrm{CH}-7), 8.07-8.13(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and $\mathrm{CH}-8) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 63.54$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.76\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 121.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.44$ and $126.47(\mathrm{CH}-5$ and $\mathrm{CH}-8), 129.80\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $132.08\left(\mathrm{C}_{\text {quat }}\right), 133.91$ and $134.03(\mathrm{CH}-6$ and $\mathrm{CH}-7), 134.23(\mathrm{CH}-3), 146.25\left(\mathrm{C}_{\text {quat }}\right), 157.85\left(\mathrm{C}_{\text {quat }}\right)$, $184.66(\mathrm{C}=\mathrm{O}), 184.75(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): v 1659 $(\mathrm{C}=\mathrm{O}), 1586,1299,1240(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 265\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{3}\right]^{-}: 263.0708$, found 263.0716.

2-(2-Methylphenoxymethyl)-1,4-naphthoquinone 27b

73%, yellow crystals, mp $160.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.09(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.89-6.95\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.16-7.22\left(3 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right.$ and $\left.\mathrm{CH}-3\right), 7.74-7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 8.09-8.16 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 16.53\left(\mathrm{CH}_{3}\right), 63.49\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.12\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.39$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.96\left(\mathrm{C}_{\text {quat }}\right), 127.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.13\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.00\left(\mathrm{C}_{\text {quat }}\right)$, $132.03\left(\mathrm{C}_{\text {quat }}\right), 133.79(\mathrm{CH}-3), 133.91\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.23\left(\mathrm{CH}_{\text {Ar }}\right), 146.61\left(\mathrm{C}_{\text {quat }}\right), 155.90\left(\mathrm{C}_{\text {quat }}\right), 184.65$
$(\mathrm{C}=\mathrm{O}), 184.80(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 1657(\mathrm{C}=\mathrm{O}), 1588,1296,1245(\mathrm{C}-\mathrm{O}), 748 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 279.1021$, found 279.1008.

2-(3-Methylphenoxymethyl)-1,4-naphthoquinone 27c

89%, yellow solid, mp $166.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.07(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.78-6.84\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.17-7.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right.$ and $\left.\mathrm{CH}-3\right), 7.74-7.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 8.08-8.15 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.61\left(\mathrm{CH}_{3}\right), 63.52\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.63\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.59$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.60\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.47\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.02\left(\mathrm{C}_{\mathrm{quat}}\right), 132.03\left(\mathrm{C}_{\mathrm{quat}}\right)$, $133.87\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 139.93\left(\mathrm{C}_{\text {quat }}\right), 146.39\left(\mathrm{C}_{\text {quat }}\right), 157.90\left(\mathrm{C}_{\text {quat }}\right), 184.71$ $(\mathrm{C}=\mathrm{O}), 184.77(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 1660(\mathrm{C}=\mathrm{O}), 1583,1296(\mathrm{C}-\mathrm{O}), 1250(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}$ (\%): $279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 279.1021$, found 279.1025.

2-(4-Methylphenoxymethyl)-1,4-naphthoquinone 27d

62%, yellow needles, mp $145.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.05(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.89\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.11\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.18(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}$, CH-3), 7.73-7.80 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.07-8.15\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 20.57\left(\mathrm{CH}_{3}\right)$, $63.66\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.58\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.41\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.22\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.98\left(\mathrm{C}_{\text {quat }}\right), 132.06\left(\mathrm{C}_{\text {quat }}\right)$, $133.90\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 134.15\left(\mathrm{C}_{\text {quat }}\right), 146.37\left(\mathrm{C}_{\text {quat }}\right), 155.77\left(\mathrm{C}_{\text {quat }}\right), 184.62(\mathrm{C}=\mathrm{O}), 184.69(\mathrm{C}=\mathrm{O})$. IR (ATR): v 1659 (C=O), 1628, 1509, 1296, 1244 (C-O), $1232(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 279$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 279.1021$, found 279.1015.

2-(2-Methoxyphenoxymethyl)-1,4-naphthoquinone 27e

50%, yellow solid, mp $193^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 5.16(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.87-7.02\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.23(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}, \mathrm{CH}-3), 7.74-7.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.08-$ $8.15\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.97\left(\mathrm{CH}_{3} \mathrm{O}\right), 64.98\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.17\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.18$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.95\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.49\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.04\left(\mathrm{C}_{\mathrm{quat}}\right), 132.07\left(\mathrm{C}_{\text {quat }}\right)$, $133.87(\mathrm{CH}-3), 134.02\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 146.38\left(\mathrm{C}_{\text {quat }}\right), 147.32\left(\mathrm{C}_{\text {quat }}\right), 149.84\left(\mathrm{C}_{\text {quat }}\right), 184.78(2 \mathrm{xC}=\mathrm{O})$. IR (ATR): v 1659 (C=O), 1589, 1505, 1253, $1230(\mathrm{C}-\mathrm{O}), 739 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 295\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}\right]^{+}: 295.0970$, found 295.0964.

2-(3-Methoxyphenoxymethyl)-1,4-naphthoquinone 27f

57%, yellow solid, mp $130.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 5.07(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.55-6.61\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $7.17-7.24\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3\right.$ and $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.74-7.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 8.07-8.15 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\text {Ar }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.40\left(\mathrm{CH}_{3} \mathrm{O}\right), 63.62\left(\mathrm{CH}_{2} \mathrm{O}\right), 101.34\left(\mathrm{CH}_{\text {Ar }}\right), 106.78$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 107.34\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.43\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.23\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.06\left(\mathrm{C}_{\mathrm{quat}}\right), 133.90\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.99\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $134.20\left(\mathrm{CH}_{\text {Ar }}\right), 138.72\left(\mathrm{C}_{\text {quat }}\right), 146.16\left(\mathrm{C}_{\text {quat }}\right), 159.07\left(\mathrm{C}_{\text {quat }}\right), 161.04\left(\mathrm{C}_{\text {quat }}\right), 184.60(\mathrm{C}=\mathrm{O}), 184.72$
($\mathrm{C}=\mathrm{O}$). IR (ATR): v $1657(\mathrm{C}=\mathrm{O}), 1588,1298,1249(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / z(\%): 295\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}\right]^{+}: 295.0970$, found 295.0969.

2-(4-Methoxyphenoxymethyl)-1,4-naphthoquinone $\mathbf{2 7 g}$

46%, yellow crystals, mp $136.1-137.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 5.02(2 \mathrm{H}, \mathrm{d}, J=2.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.82-6.96\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.18(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-3), 7.19-7.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 8.07-8.14 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.80\left(\mathrm{CH}_{3} \mathrm{O}\right), 64.30\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.90\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $115.74\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.09\left(\mathrm{C}_{\text {quat }}\right), 133.90(\mathrm{CH}-3), 134.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.20$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 146.51\left(\mathrm{C}_{\text {quat }}\right), 152.03\left(\mathrm{C}_{\text {quat }}\right), 154.52\left(\mathrm{C}_{\text {quat }}\right), 184.71(\mathrm{C}=\mathrm{O}), 184.80(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): $v 1659,1508,1234 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 295\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES') calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{4}\right]^{-}: 293.0814$, found 293.0822.

2-(4-tert-Butylphenoxymethyl)-1,4-naphthoquinone 27h

66%, yellow solid, mp $139.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.31\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 5.07(2 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.93\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.19(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-3), 7.34(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.74-7.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.07-8.16\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 31.60$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 34.24\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 63.65\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.26\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.43\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.57$ $\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 132.11\left(\mathrm{C}_{\text {quat }}\right), 133.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 144.49\left(\mathrm{C}_{\text {quat }}\right), 146.48\left(\mathrm{C}_{\text {quat }}\right)$, $155.64\left(\mathrm{C}_{\text {quat }}\right), 184.69(\mathrm{C}=\mathrm{O}), 184.77(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): v $1661(\mathrm{C}=\mathrm{O}), 1591,1512,1297,1245(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 321\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}\right]^{+}: 321.1491$, found 321.1479 .

2-(4-Fluorophenoxymethyl)-1,4-naphthoquinone 27i

59%, yellow crystals, mp 158.6-159.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.04\left(2 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.91-$ $7.05\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.17(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.75-7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09-8.13\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 64.26\left(\mathrm{CH}_{2} \mathrm{O}\right), 115.83\left(J_{\mathrm{CF}}=6.9 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 116.20\left(J_{\mathrm{CF}}=23.2 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $126.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 132.06\left(\mathrm{C}_{\text {quat }}\right), 133.96\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.05\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.28(\mathrm{CH}-3), 146.03$ $\left(\mathrm{C}_{\text {quat }}\right), 153.99\left(\mathrm{C}_{\text {quat }}\right), 153.99\left(\mathrm{C}_{\text {quat }}\right) 157.81\left(J_{\mathrm{CF}}=238.8 \mathrm{~Hz}, \mathrm{C}_{\text {quat }}\right), 184.60(\mathrm{C}=\mathrm{O}), 184.71(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR (CDCl_{3}): $\delta-125.03-122.60(1 \mathrm{~F}, \mathrm{~m})$. IR (ATR): $v 1655,1506,1206 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}) \mathrm{m} / \mathrm{z}(\%):$ 281 ([M-H] $\left.{ }^{-}, 70\right)$. HRMS (ES ${ }^{-}$) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{FO}_{3}\right]^{-}: 281.0614$, found 281.0628.

2-(4-Chlorophenoxymethyl)-1,4-naphthoquinone 27j

20%, yellow needles, mp $165.9-166.0^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{263} 167-169.5^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.21(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.84\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.24\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.78-$ $7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.14-8.19\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 63.91\left(\mathrm{CH}_{2} \mathrm{O}\right), 116.05$ $\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.47\left(\mathrm{CH}_{\text {Ar }}\right), 126.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.72\left(\mathrm{C}_{\text {quat }}\right), 129.68\left(2 \mathrm{XCH}_{\text {Ar }}\right), 131.99\left(\mathrm{C}_{\text {quat }}\right), 132.03$ $\left(\mathrm{C}_{\text {quat }}\right), 133.97\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.06\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.31(\mathrm{CH}-3), 145.77\left(\mathrm{C}_{\text {quat }}\right), 156.45\left(\mathrm{C}_{\text {quat }}\right), 184.55(\mathrm{C}=\mathrm{O})$,
$184.65(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 1655,1596,1221 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 299\left([\mathrm{M}+\mathrm{H}]^{+}, 93\right) . \mathrm{HRMS}\left(\mathrm{ES}^{-}\right.$) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClO}_{3}\right]^{-}: 297.0319$, found 297.0314.

3-Methyl-2-phenoxymethyl-1,4-naphthoquinone 433

70%, yellow crystals, mp $110.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.13\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.96-$ $7.00\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.23-7.34\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.67-7.77\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09-8.17(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 13.25\left(\mathrm{CH}_{3}\right), 60.73\left(\mathrm{OCH}_{2}\right), 114.83\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 121.47\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.52$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.67\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.67\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.93\left(\mathrm{C}_{\text {quat }}\right), 132.19\left(\mathrm{C}_{\text {quat }}\right), 133.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.90\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $140.11\left(\mathrm{C}_{\text {quat }}\right), 148.37\left(\mathrm{C}_{\text {quat }}\right), 158.49\left(\mathrm{C}_{\text {quat }}\right), 183.72(\mathrm{C}=\mathrm{O}), 185.30(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 1664,1589$, $1294 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}, 25\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{3}\right]^{-}: 277.0865$, found 277.0873.

5.13.2 Synthesis of $2^{\prime} \mathbf{H}, 3 H$-spiro[benzofuran-3,2'-naphthoquinones] 29

To a 10 mL vial were added 3,5-dichloropyridine ($0.15 \mathrm{mmol}, 22 \mathrm{mg}$), trifluoroacetic acid (0.05 $\mathrm{mmol}, 6 \mathrm{mg}$), palladium(II) acetate ($0.10 \mathrm{mmol}, 22 \mathrm{mg}$), 2-aryloxymethyl-1,4-naphthoquinones 27 (1 $\mathrm{mmol})$ and acetic acid $(4 \mathrm{~mL})$. The flask was sealed and stirred at $110^{\circ} \mathrm{C}$ for 4 days. The reaction mixture was then diluted with chloroform $(10 \mathrm{~mL})$, filtered over a pad of Celite ${ }^{\circledR}$, washed with water $(10 \mathrm{~mL})$ and aqueous saturated sodium hydrogen carbonate $(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated in vacuo. Flash chromatography on silica gel with ethyl acetate : hexane (1:9) yielded 2'H,3H-spiro[benzofuran-3,2'-naphthoquinones] 29. Upon (LC-)MS analysis most spiroquinones were found to give very poor mass spectrometric ionisations. Regioisomeric spironaphthoquinones 29c and $29 f$ were further separated by means of preparative HPLC.

$\mathbf{2 H}, \mathbf{3}^{\prime} \mathbf{H}$-Spiro[benzofuran-3,2'-naphthalene]-1',4'-dione 29a

62%, yellow crystals, mp $88.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.30\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.32$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.31\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=8.8 \mathrm{~Hz}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.43\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=8.8 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right), 6.64-6.73\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.86\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.17(1 \mathrm{H}, \mathrm{dt}, J=1.6$ and 7.2 Hz , $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.78-7.87\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.12-8.22\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.76\left(\mathrm{CH}_{2}-\right.$ $\mathrm{C}=\mathrm{O}), 58.41\left(\mathrm{C}_{\text {spiro }}\right), 77.62\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.98\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.82\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.80\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.50\left(\mathrm{C}_{\text {quat }}\right), 128.48\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.61\left(\mathrm{C}_{\text {quat }}\right), 134.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.61$ $\left(\mathrm{C}_{\text {quat }}\right), 159.93\left(\mathrm{C}_{\text {quat }}\right), 193.85(\mathrm{C}=\mathrm{O}), 193.98(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 1694,1590 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) \mathrm{m} / \mathrm{z}(\%)$: 263 ([M-H] $\left.{ }^{-}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{3}\right]^{+}: 265.0865$, found 265.0856.

2H,3'H-Spiro[7-methylbenzofuran-3,2'-naphthalene]-1',4'-dione 29b

21%, yellow solid, mp $160.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.28\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.30\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.42(1 \mathrm{H}$, $\left.\mathrm{d}, J_{a b}=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right), 6.46(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-6), 6.59(1 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5), 6.97(1 \mathrm{H}, \mathrm{d}$,
$J=7.7 \mathrm{~Hz}, \mathrm{CH}-4)$, 7.76-7.85 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09-8.19\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $15.25\left(\mathrm{CH}_{3}\right), 48.79\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.70\left(\mathrm{C}_{\text {spiro }}\right), 76.73\left(\mathrm{CH}_{2} \mathrm{O}\right), 120.86(\mathrm{CH}-5), 121.16(\mathrm{CH}-6), 121.24$ $\left(\mathrm{C}_{\text {quat }}\right), 126.73\left(\mathrm{CH}_{\text {Ar }}\right), 128.43\left(\mathrm{CH}_{\text {Ar }}\right), 131.41(\mathrm{CH}-4), 134.66\left(\mathrm{C}_{\text {quat }}\right), 134.80\left(\mathrm{CH}_{\text {Ar }}\right), 134.87\left(\mathrm{CH}_{\text {Ar }}\right)$, $135.62\left(\mathrm{C}_{\text {quat }}\right), 158.32\left(\mathrm{C}_{\text {quat }}\right), 193.95(\mathrm{C}=\mathrm{O}), 194.14(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): v 1689 (C=O), 1592, $1247(\mathrm{C}-\mathrm{O}), 753 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 279.1021$, found 279.1005.

$2 H, 3{ }^{\prime} H$-Spiro[6-methylbenzofuran-3, 2^{\prime}-naphthalene]-1',4'-dione 29ca

51%, yellow solid, mp $108.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 4.29$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.42\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{O}\right), 6.50\left(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.68(1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right)$, 7.76-7.89 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.10-8.20\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 21.57\left(\mathrm{CH}_{3}\right)$, $48.78\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.15\left(\mathrm{C}_{\text {spiro }}\right), 77.77\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.54\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.74\left(\mathrm{CH}_{\text {Ar }}\right), 123.38\left(\mathrm{CH}_{\text {Ar }}\right), 124.66$ $\left(\mathrm{C}_{\text {quat }}\right), 126.75\left(\mathrm{CH}_{\text {Ar }}\right), 128.43\left(\mathrm{CH}_{\text {Ar }}\right), 134.66\left(\mathrm{C}_{\text {quat }}\right), 134.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.87\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.60\left(\mathrm{C}_{\text {quat }}\right)$, $140.83\left(\mathrm{C}_{\text {quat }}\right), 160.17\left(\mathrm{C}_{\text {quat }}\right), 194.01(\mathrm{C}=\mathrm{O}), 194.07(\mathrm{C}=\mathrm{O})$. IR (ATR): v $1687(\mathrm{C}=\mathrm{O}), 1591,1253(\mathrm{C}-$ O), $1245(\mathrm{C}-\mathrm{O}), 759 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}$: 279.1021, found 279.1012 .

$2 H, 3 ' H$-Spiro[4-methylbenzofuran- $3,2^{\prime}$-naphthalene]- $\mathbf{1}^{\prime}, \mathbf{4}^{\prime}$-dione 29 cb

11%, white solid. mp $179.5^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.23\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.53\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.43\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 4.48(1 \mathrm{H}$, $\left.\mathrm{d}, J_{a b}=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 6.74\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.78\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.17(1 \mathrm{H}, \mathrm{t}, J$ $\left.=7.7 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.80-7.85\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09-8.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.18-8.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 19.46\left(\mathrm{CH}_{3}\right), 47.49\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 60.03\left(\mathrm{C}_{\text {spiro }}\right), 79.68\left(\mathrm{CH}_{2} \mathrm{O}\right), 108.07\left(\mathrm{CH}_{\text {ar }}\right), 123.70$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.40\left(\mathrm{C}_{\text {quat }}\right), 126.96\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.83\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.98\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $135.27\left(\mathrm{C}_{\text {quat }}\right), 135.45\left(\mathrm{C}_{\text {quat }}\right), 160.29\left(\mathrm{C}_{\text {quat }}\right), 194.42(\mathrm{C}=\mathrm{O}), 195.41(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): $v 1691(\mathrm{C}=\mathrm{O}), 1682(\mathrm{C}=\mathrm{O}), 1591,1463,1288(\mathrm{C}-\mathrm{O}), 985 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}^{+}\right) m / z(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 279.1021$, found 279.1011.

$\mathbf{2 H}, \mathbf{3}^{\prime} \mathbf{H}$-Spiro[5-methylbenzofuran-3,2'-naphthalene]-1',4'-dione 29d

68%, bright orange solid, mp $108.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.28\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.31\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.28\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.36$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right), 6.44(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-4), 6.75(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}-7), 6.95$ $(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $1.7 \mathrm{~Hz}, \mathrm{CH}-6), 7.78-7.88\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.12-8.20\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 20.84\left(\mathrm{CH}_{3}\right), 48.70\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.44\left(\mathrm{C}_{\text {spiro }}\right), 77.91\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.11$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.75\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.62\left(\mathrm{C}_{\text {quat }}\right), 128.41\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.35\left(\mathrm{C}_{\text {quat }}\right), 130.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.58\left(\mathrm{C}_{\text {quat }}\right)$, $134.84\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.59\left(\mathrm{C}_{\text {quat }}\right), 157.91\left(\mathrm{C}_{\text {quat }}\right), 194.01(\mathrm{C}=\mathrm{O}), 194.17(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR})$:
$v 1692(\mathrm{C}=\mathrm{O}), 1591,1490,1246(\mathrm{C}-\mathrm{O}), 759 \mathrm{~cm}^{-1} . \mathrm{MS}^{2}\left(\mathrm{ES}^{+}\right) m / z(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}: 279.1021$, found 279.1016.

$\mathbf{2 H}, \mathbf{3} \mathbf{' H}$-Spiro[6-methoxybenzofuran-3,2'-naphthalene]-1',4'-dione 29fa

61%, yellow solid, mp $129^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.30$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.44\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{O}\right), 6.23(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 2.2 Hz , CH-5), $6.42(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-7), 6.50(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{CH}-4), 7.77-7.87\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, 8.11-8.20 $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.82\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 55.59\left(\mathrm{OCH}_{3}\right), 57.77\left(\mathrm{C}_{\text {spiro }}\right)$, $78.27\left(\mathrm{CH}_{2} \mathrm{O}\right), 97.10\left(\mathrm{CH}_{\mathrm{Ar}}\right), 106.92\left(\mathrm{CH}_{\mathrm{Ar}}\right), 119.60\left(\mathrm{C}_{\mathrm{quat}}\right), 124.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.75\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.43$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.64\left(\mathrm{C}_{\text {quat }}\right), 134.78\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.56\left(\mathrm{C}_{\text {quat }}\right), 161.41\left(\mathrm{C}_{\text {quat }}\right), 161.91\left(\mathrm{C}_{\text {quat }}\right)$, $193.99(\mathrm{C}=\mathrm{O}), 194.04(\mathrm{C}=\mathrm{O})$. IR (ATR): v $1687(\mathrm{C}=\mathrm{O}), 1595,1498$, $1281(\mathrm{C}-\mathrm{O}), 1147(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$. MS (ES^{+}) m/z (\%): $295\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES^{+}) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}\right]^{+}$: 295.0970, found 295.0969.

$\mathbf{2 H}, \mathbf{3}^{\prime} \mathbf{H}$-Spiro[4-methoxybenzofuran-3,2'-naphthalene]-1',4'-dione 29fb

13%, pale white solid, mp $156.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.17\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right)$, $3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.58\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.35\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right)$, $5.00\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.1 \mathrm{~Hz}, \mathrm{CH}_{a} \mathrm{H}_{b} \mathrm{O}\right), 6.36\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.52\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right)$, $7.16\left(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.72-7.82\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.10-8.15\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 47.33\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.84\left(\mathrm{OCH}_{3}\right), 58.13\left(\mathrm{C}_{\text {spiro }}\right), 79.95\left(\mathrm{CH}_{2} \mathrm{O}\right), 103.77\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.47$ $\left(\mathrm{C}_{\text {quat }}\right), 126.05\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.08\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.44\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.05\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.38\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 134.44\left(\mathrm{C}_{\mathrm{quat}}\right)$, $136.31\left(\mathrm{C}_{\text {quat }}\right), 156.54\left(\mathrm{C}_{\text {quat }}\right), 161.59\left(\mathrm{C}_{\text {quat }}\right), 194.13(\mathrm{C}=\mathrm{O}), 195.20(\mathrm{C}=\mathrm{O})$. IR $(\mathrm{ATR}): v 1687(\mathrm{C}=\mathrm{O})$, 1594, 1464, 1248 (C-O), 1093 (C-O), $753 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 295$ ([M+H] $\left.{ }^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}\right]^{+}:$295.0970, found 295.0964.

2H,3'H-Spiro[5-methoxybenzofuran-3,2'-naphthalene]-1',4'-dione 29g

59%, orange crystals, mp $133.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.28\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.32$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.29\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.34$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right), 6.23(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}-4), 6.69(1 \mathrm{H}, \mathrm{dd}, J=2.8 \mathrm{~Hz}$ and 8.8 Hz , CH-6), $6.77(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}-7), 7.77-7.86\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.08-8.20\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.59\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 55.98\left(\mathrm{OCH}_{3}\right), 58.79\left(\mathrm{C}_{\text {spiro }}\right), 78.01\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.57(\mathrm{CH}-4)$, $110.79(\mathrm{CH}-7), 114.70(\mathrm{CH}-6), 126.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.41\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.61\left(\mathrm{C}_{\text {quat }}\right), 134.82\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.86$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.53\left(\mathrm{C}_{\text {quat }}\right), 154.05\left(\mathrm{C}_{\text {quat }}\right), 154.16\left(\mathrm{C}_{\text {quat }}\right), 193.67(\mathrm{C}=\mathrm{O}), 194.01(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): $v 1686,1483 \mathrm{~cm}^{-1}$. MS (ES $\left.{ }^{-}\right) m / z(\%): 293\left([\mathrm{M}-\mathrm{H}]^{-}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}\right]^{+}: 295.0970$, found 295.0964.

$\mathbf{2 H}, \mathbf{3}^{\prime} \mathbf{H}$-Spiro[5-tert-butylbenzofuran-3,2'-naphthalene]-1',4'-dione 29h

71%, orange solid, mp $145.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.06\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 3.29\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.33\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.30\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=9.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.38(1 \mathrm{H}$, $\left.\mathrm{d}, J_{a b}=9.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}} \mathrm{O}\right), 6.64(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CH}-4), 6.77(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{CH}-7), 7.18(1 \mathrm{H}$, $\mathrm{dd}, J=2.28 .5 \mathrm{~Hz}, \mathrm{CH}-6), 7.77-7.88\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.09-8.14\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.19-8.22(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31.46\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 34.26\left(\left(\mathrm{CH}_{3}\right)_{3} \underline{\mathrm{C}}\right), 48.64\left(\underline{\mathrm{CH}}_{2}-\mathrm{C}=\mathrm{O}\right), 58.67\left(\mathrm{C}_{\text {spiro }}\right), 77.71$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.08\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.60\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.52\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.04\left(\mathrm{C}_{\text {quat }}\right), 127.21\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.37\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $134.80\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 135.68\left(\mathrm{C}_{\text {quat }}\right), 144.00\left(\mathrm{C}_{\text {quat }}\right), 157.73\left(\mathrm{C}_{\text {quat }}\right), 193.98(\mathrm{C}=\mathrm{O}), 194.16(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): v 1690 (C=O), 1497 (C-O), 1263 (C-O), 1342, $820 \mathrm{~cm}^{-1}$. $\mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 338\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{3}\right]^{+}$: 338.1756 , found 338.1749 .

$\mathbf{2 H}, 3^{\prime} \mathbf{H}$-Spiro[5-fluorobenzofuran-3,2'-naphthalene]-1', $\mathbf{4}^{\prime}$ 'dione 29 i

53%, yellow crystals, mp $154.6-155.1^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.29\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\right.$ $\mathrm{C}=\mathrm{O}), 3.32\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.34\left(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.38(1 \mathrm{H}, \mathrm{d}, J=$ $\left.8.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right), 6.37\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HF}}=2.8 \mathrm{~Hz}, J_{\mathrm{HF}}=8.3 \mathrm{~Hz}, \mathrm{CH}-4\right), 6.77\left(1 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, J_{\mathrm{HF}}=\right.$ $4.4 \mathrm{~Hz}, \mathrm{CH}-7), 6.86\left(1 \mathrm{H}, \mathrm{ddd}, J_{\mathrm{HH}}=2.8 \mathrm{~Hz}\right.$ and $\left.8.8 \mathrm{~Hz}, J_{\mathrm{HF}}=8.3 \mathrm{~Hz}, \mathrm{CH}-6\right), 7.79-7.89(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{XCH}_{\mathrm{Ar}}\right), 8.09-8.22\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.55\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.68\left(\mathrm{C}_{\text {spiro }}\right), 78.83$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.02\left(J_{\mathrm{CF}}=19.6 \mathrm{~Hz}, \mathrm{CH}-4\right), 111.25\left(J_{\mathrm{CF}}=3.5 \mathrm{~Hz}, \mathrm{CH}-7\right), 116.73\left(J_{\mathrm{CF}}=24.2 \mathrm{~Hz}, \mathrm{CH}-6\right)$, $126.95\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.48\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.60\left(\mathrm{C}_{\text {quat }}\right), 134.37\left(\mathrm{C}_{\text {quat }}\right), 135.12\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 135.39\left(\mathrm{C}_{\text {quat }}\right), 155.97$ $\left(\mathrm{C}_{\text {quat }}\right), 157.22\left(J_{\mathrm{CF}}=238.8 \mathrm{~Hz}, \mathrm{C}_{\text {quat }}\right), 193.35(\mathrm{C}=\mathrm{O}), 195.59(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right):-122.20-$ 122.58 (1F, m). IR (ATR): v 1686, $1482 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 281$ ([M-H] $\left.{ }^{-}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{-}\right)$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{FO}_{3}\right]^{-}: 281.0614$, found 281.0612

$\mathbf{2 H , 3} \mathbf{3}^{\mathbf{H}} \mathbf{H}$-Spiro[5-chlorobenzofuran-3,2'-naphthalene]-1',4'-dione 29j

69%, brown oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.29\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.31\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.2\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.36\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{b} \mathrm{O}\right), 6.61(1 \mathrm{H}, \mathrm{d}, J$ $\left.=2.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.74-6.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.07-7.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.78-7.89\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.11-$ $8.19\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.50\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.46\left(\mathrm{C}_{\text {spiro }}\right), 78.44\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.91$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 116.76\left(\mathrm{C}_{\text {quat }}\right), 123.89\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.65\left(\mathrm{C}_{\text {quat }}\right), 127.01\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.54\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.53\left(\mathrm{C}_{\text {quat }}\right)$, $130.31\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $135.22\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 135.35\left(\mathrm{C}_{\text {quat }}\right), 158.68\left(\mathrm{C}_{\text {quat }}\right), 193.46(\mathrm{C}=\mathrm{O}), 193.58(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 1693,1474 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 297$ ([M-H] $\left.{ }^{-}, 100\right)$. HRMS (ES ${ }^{-}$) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{ClO}_{3}\right]^{-}$: 297.0319, found 297.0314.

5.13.3 Synthesis of 2-aryloxymethyl-1,4-benzoquinones 207

To 125 mL of distilled water, the appropriate phenoxyacetic acid $204(50 \mathrm{mmol})$, 1,4-benzoquinone 2 $(5.40 \mathrm{~g}, 50 \mathrm{mmol})$ and $\mathrm{AgNO}_{3}(1 \mathrm{~g}, 6 \mathrm{mmol}, 0.12$ equiv.) were added successively. The mixture was then heated to $60-65^{\circ} \mathrm{C}$ until dissolution was complete. The resulting solution was stirred vigorously
while a solution of ammonium peroxydisulfate ($13.7 \mathrm{~g}, 60 \mathrm{mmol}, 1.2$ equiv.) in distilled water (25 mL) was added at a rate of 0.5 mL per minute for the first 40 minutes and then at a rate of 0.25 mL per minute for the last 20 minutes. Throughout the addition, the reaction mixture was maintained at 60$65^{\circ} \mathrm{C}$. After the addition was complete, the mixture was stirred for 5 minutes at $65^{\circ} \mathrm{C}$ and was then cooled to $5-10^{\circ} \mathrm{C}$ using an ice-bath. The precipitated solid was collected by suction filtration, washed with 50 mL of cold water and pressed to remove most of the liquid. Inorganic contaminants, usually present in small amounts, were removed by dissolving the solid in 350 mL of boiling acetone and filtering the hot solution. Concentration of the filtrate in vacuo gave a dark red crude product, which was recrystallised from ethanol. For the aryloxymethyl-1,4-benzoquinone derivatives 207b-d full dissolution of the starting materials did not occur at $65^{\circ} \mathrm{C}$ and small amounts of acetonitrile were added until full dissolution occurred.

2-Phenoxymethyl-1,4-benzoquinone 207a

$61 \%, \operatorname{mp} 138^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{236} 137-138^{\circ} \mathrm{C}\right),{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.92\left(2 \mathrm{H}, \mathrm{d}, \mathrm{OCH}_{2}, J=1.7 \mathrm{~Hz}\right), 6.74-6.85$ $(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}), 6.94-7.03(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{x}=\mathrm{CH}), 7.28-7.36(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}=\mathrm{CH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 63.13$ $\left(\mathrm{OCH}_{2}\right), 114.72(2 \mathrm{x}=\mathrm{CH}), 121.85(=\mathrm{CH}), 129.80(2 \mathrm{x}=\mathrm{CH}), 131.88(=\mathrm{CH}), 136.52(=\mathrm{CH}), 136.81$ $(=\mathrm{CH}), 144.22\left(\mathrm{C}_{\text {quat }}\right), 157.76\left(\mathrm{C}_{\text {quat }}\right), 186.86(\mathrm{C}=\mathrm{O}), 187.29(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 1651(\mathrm{C}=\mathrm{O}), 1600$, 1496, $1247(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$. $\operatorname{MS}\left(\mathrm{ES}^{-}\right) \mathrm{m} / \mathrm{z}(\%): 213$ ([M-H] $\left.{ }^{-}, 35\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{3}\right]^{-}$: 213.0552, found 213.0561 .

2-(4-Methoxyphenoxymethyl)-1,4-benzoquinone 207b

35%, red powder, mp $146.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.87\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{O}, J=1.7\right.$ $\mathrm{Hz})$, 6.78-6.98 $\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3,5,6\right.$ and $\left.4 \mathrm{xCH}_{\mathrm{Ar}}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 55.78\left(\mathrm{OCH}_{3}\right), 63.91\left(\mathrm{OCH}_{2}\right)$, $114.90\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 115.74\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.82(=\mathrm{CH}), 136.49(=\mathrm{CH}), 136.77(=\mathrm{CH}), 144.43\left(\mathrm{C}_{\text {quat }}\right)$, $151.94\left(\mathrm{C}_{\text {quat }}\right), 154.58\left(\mathrm{C}_{\text {quat }}\right), 186.88(\mathrm{C}=\mathrm{O}), 187.30(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 1646,1231 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(\mathrm{ES}^{-}\right)}$ $m / z(\%): 244$ ([M] $\left.{ }^{-}, 100\right)$. HRMS (ES ${ }^{-}$) calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{O}_{4}\right]^{-}: 243.0657$, found 243.0664.

2-(4-Fluorophenoxymethyl)-1,4-benzoquinone 207c

34%, brown needles, mp $158.9^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.91\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2} \mathrm{O}, J=1.7 \mathrm{~Hz}\right), 6.74-7.23$ $\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3,5,6\right.$ and $\left.4 \mathrm{xCH}_{\mathrm{Ar}}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 63.85\left(\mathrm{OCH}_{2}\right), 115.83\left(2 \mathrm{xCH}_{\mathrm{Ar}}, J_{\mathrm{CF}}=8.1 \mathrm{~Hz}\right)$, $116.21\left(2 \mathrm{xCH}_{\mathrm{Ar}}, J_{\mathrm{CF}}=23.1 \mathrm{~Hz}\right), 131.86(=\mathrm{CH}), 136.49(=\mathrm{CH}), 136.83(=\mathrm{CH}), 144.00\left(\mathrm{C}_{\text {quat }}\right), 153.91$ $\left(\mathrm{C}_{\text {quat }}\right), 157.85\left(\mathrm{C}_{\text {quat }}, J_{\mathrm{CF}}=240.0 \mathrm{~Hz}\right), 186.75(\mathrm{C}=\mathrm{O}), 187.21(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta-122.37-$ 122.46 (1F, m). IR (ATR): v 1649, 1506, $1219 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) m / z(\%): 231$ ([M-H] $\left.{ }^{-}, 100\right)$. HRMS (ES^{-}) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{FO}_{3}\right]^{-}: 231.0458$, found 231.0467.

2-(4-Chlorophenoxymethyl)-1,4-benzoquinone 207d
52%, yellow needles, mp $155.8^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.89\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{2} \mathrm{O}, J=1.1\right.$ and 2.5 Hz$)$, 6.77-6.95 and 7.25-7.30 $\left(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}-3,5,6\right.$ and $\left.4 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 63.48\left(\mathrm{OCH}_{2}\right), 116.02$ $\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.81\left(\mathrm{C}_{\text {quat }}\right), 129.70\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.86(=\mathrm{CH}), 136.48(=\mathrm{CH}), 136.83(=\mathrm{CH}), 143.73$ $\left(\mathrm{C}_{\text {quat }}\right), 156.37\left(\mathrm{C}_{\text {quat }}\right), 186.68(\mathrm{C}=\mathrm{O}), 187.12(\mathrm{C}=\mathrm{O})$. IR (ATR): v 1648, 1626, 1491, $1249 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ES') m/z (\%): 247 and 249 ([M-H] ${ }^{-}, 100$ and 32). HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{O}_{3}\right]^{-}: 247.0162$, found 247.0172.

5.13.4 Synthesis of $\mathbf{2}^{\prime} \mathbf{H} \mathbf{H}, \mathbf{3 H}$-spiro[benzofuran-3,2'-benzoquinones] 419

A solution of 2-aryloxymethyl-1,4-benzoquinones $207(1.5 \mathrm{mmol})$ and palladium(II) acetate (1.5 $\mathrm{mmol}, 0.37 \mathrm{~g})$ in acetic acid (30 mL) was heated under reflux for 14 h . The reaction mixture was poured in water and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with water and with a saturated solution of sodium hydrogen carbonate, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated in vacuo. Flash chromatography on silica gel or preparative TLC with ethyl acetate / hexane (1:4) yielded $2^{\prime} H, 3 H$-spiro[benzofuran- $3,2^{\prime}$-benzoquinones] 419. Upon (LC)-MS analysis most spiroquinones were found to give very poor mass spectrometric ionisations.

$\mathbf{2 H}, 3^{\prime}{ }^{\mathbf{H}}$-Spiro[benzofuran-3,2'-benzene]-1',4'-dione 419a

7%, pale white crystals, mp $114.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.09\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right)$, $3.14\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.21\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.24(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{a}} \underline{H}_{b} \mathrm{O}\right), 6.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.94(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}=\mathrm{CH}), 7.00-7.05\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.18-7.88(1 \mathrm{H}, \mathrm{m}$ $\left.\mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.24\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.01\left(\mathrm{C}_{\text {spiro }}\right), 77.46\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.12\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.07$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.54\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.04\left(\mathrm{C}_{\text {quat }}\right), 130.55\left(\mathrm{CH}_{\mathrm{Ar}}\right), 141.19(=\mathrm{CH}), 141.73(=\mathrm{CH}), 159.82\left(\mathrm{C}_{\text {quat }}\right)$, $194.94(\mathrm{C}=\mathrm{O}), 195.55(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 1682,1478 \mathrm{~cm}^{-1}$. MS no ionisation observed. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{3}\right]^{+}: 215.0708$, found 215.0704.

$2 H, 3 ' H$-Spiro[5-methoxybenzofuran- $3,2^{\prime}$-benzene]-1',4'-dione 419b

12%, yellow crystals, mp $129.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.08\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.15$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.20\left(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.19(1 \mathrm{H}$, $\left.\mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 6.57-6.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.73-6.80\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.95(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x}=\mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.09\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 56.15\left(\mathrm{OCH}_{3}\right), 58.41\left(\mathrm{C}_{\text {spiro }}\right), 77.86\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.11\left(\mathrm{CH}_{\text {ar }}\right)$, $111.07\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.15\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.91\left(\mathrm{C}_{\text {quat }}\right), 141.24(=\mathrm{CH}), 141.73(=\mathrm{CH}), 153.88\left(\mathrm{C}_{\text {quat }}\right), 154.28$ $\left(\mathrm{C}_{\text {quat }}\right), 195.03(\mathrm{C}=\mathrm{O}), 195.43(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 1678,1482,1470 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}) m / z(\%): 243([\mathrm{M}-$ $\mathrm{H}^{-}, 100$). HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}\right]^{-}: 244.0741$, found 244.0717.

$2 \mathrm{H}, 3$ ' H -Spiro[5-fluorobenzofuran-3,2'-benzene]-1',4'-dione 419c

20%, yellow viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.10\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.15(1 \mathrm{H}, \mathrm{d}$, $\left.J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.26\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.22\left(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right)$,
6.71-6.95 $\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.96(2 \mathrm{H}, \mathrm{s}, 2 \mathrm{x}=\mathrm{CH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.07\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.32$ $\left(\mathrm{C}_{\text {spiro }}\right), 78.20\left(\mathrm{CH}_{2} \mathrm{O}\right), 110.81\left(J_{\mathrm{CF}}=25.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 111.46\left(J_{\mathrm{CF}}=8.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 117.03\left(J_{\mathrm{CF}}=24.2\right.$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 128.02\left(J_{\mathrm{CF}}=8.1 \mathrm{~Hz}, \mathrm{C}_{\text {quat }}\right), 141.07(=\mathrm{CH}), 141.85(=\mathrm{CH}), 150.92\left(\mathrm{C}_{\text {quat }}\right), 157.29\left(J_{\mathrm{CF}}=\right.$ $\left.238.8 \mathrm{~Hz}, \mathrm{C}_{\text {quat }}\right), 194.56(\mathrm{C}=\mathrm{O}), 195.03(\mathrm{C}=\mathrm{O}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right):-122.82--122.89(1 \mathrm{~F}, \mathrm{~m})$. IR (ATR): $v 1684,1482 \mathrm{~cm}^{-1}$. MS (ES $) m / z(\%): 231\left(\mathrm{M}-\mathrm{H}^{+}, 100\right)$. HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{FO}_{3}\right]^{+}$: 233.0609, found 233.0614 .

$2 H, 3 ' H$-Spiro[5-chlorobenzofuran-3,2'-benzene]-1',4'-dione 419d

19%, yellow crystals, mp $129.7^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.09\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.15$ $\left(1 \mathrm{H}, \mathrm{d}, J_{a b}=16.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \underline{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.23\left(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}\right), 5.23(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{a}} \underline{\mathrm{H}}_{\mathrm{b}} \mathrm{O}\right), 6.79\left(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right), 6.96\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \mathrm{x}=\mathrm{CH}\right.$ and $\left.\mathrm{CH}_{\mathrm{Ar}}\right), 7.17(1 \mathrm{H}, \mathrm{dd}, J=2.2$ and $\left.8.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.03\left(\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 58.04\left(\mathrm{C}_{\text {spiro }}\right), 78.18\left(\mathrm{CH}_{2} \mathrm{O}\right), 112.09\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $123.70\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.79\left(\mathrm{C}_{\text {quat }}\right), 125.79\left(\mathrm{C}_{\text {quat }}\right), 130.55\left(\mathrm{CH}_{\text {Ar }}\right), 141.04(=\mathrm{CH}), 141.91(=\mathrm{CH}), 158.54$ $\left(\mathrm{C}_{\text {quat }}\right), 194.39(\mathrm{C}=\mathrm{O}), 194.92(\mathrm{C}=\mathrm{O})$. IR (ATR): v 1686, $1474 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{-}\right) \mathrm{m} / z(\%): 247 / 249([\mathrm{M}-$ $\mathrm{H}^{-}, 100 / 35$). HRMS (ES^{-}) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{ClO}_{3}\right]^{-}: 247.0168$, found 247.0161.

5.13.5 Synthesis of 3'H-spiro[chroman-3,2'-naphthalene]-1',4'-dione 422

To a 10 mL vial were added 3,5-dichloropyridine $(0.15 \mathrm{mmol}, 22 \mathrm{mg})$, trifluoroacetic acid (0.05 $\mathrm{mmol}, 6 \mathrm{mg}$), palladium(II) acetate ($0.10 \mathrm{mmol}, 22 \mathrm{mg}$), 2-(2-phenoxyethyl)-1,4-naphthoquinone 421 $(1.0 \mathrm{mmol}, 278 \mathrm{mg})$ and acetic acid $(4 \mathrm{~mL})$. The vial was sealed with a septum and stirred at $110^{\circ} \mathrm{C}$ for 4 days. The reaction mixture was then diluted with chloroform, washed water $(10 \mathrm{~mL})$ and saturated sodium hydrogen carbonate $(2 \mathrm{x} 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated in vacuo. Flash chromatography on silica gel with ethyl acetate/hexane (1:9) yielded 3'H-spiro[chroman-3,2'-naphthalene]-1', 4'-dione 422.
36%, white needles, mp 94.2-94.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.12(1 \mathrm{H}$, ddd, $J=14.2,7.6$ and 5.0 Hz , $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{O}\right), 2.30\left(1 \mathrm{H}\right.$, ddd, $J=14.2,5.3$ and $\left.3.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}} \mathrm{CH}_{2} \mathrm{O}\right), 3.13(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 3.64\left(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}-\mathrm{C}=\mathrm{O}\right), 4.11-4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.88-6.94(2 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.04-7.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.17-7.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.78-7.81\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.05-8.15$ $\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 33.10\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 49.34\left(\mathrm{C}_{\text {spiro }}\right), 51.25\left(\underline{\left.\mathrm{CH}_{2}-\mathrm{C}=\mathrm{O}\right), 61.81}\right.$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 117.84\left(\mathrm{CH}_{\text {Ar }}\right), 120.91\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.28\left(\mathrm{C}_{\text {quat }}\right), 126.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.34\left(\mathrm{CH}_{\text {Ar }}\right)$, $129.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.33\left(\mathrm{C}_{\text {quat }}\right), 134.43\left(\mathrm{CH}_{\text {Ar }}\right), 134.82\left(\mathrm{CH}_{\mathrm{Ar}}\right), 154.91\left(\mathrm{C}_{\text {quat }}\right), 195.18(\mathrm{C}=\mathrm{O}), 198.33$ $(\mathrm{C}=\mathrm{O})$, one trisubstituted olefinic carbon is not observed. IR (ATR): $v 1691,1595,1492 \mathrm{~cm}^{-1}$. MS $\left(\mathrm{ES}^{+}\right) m / z(\%): 278\left([\mathrm{M}+\mathrm{H}]^{+}, 3\right), 86(39), 84(64), 49(100)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}\right]^{+}$: 279.1021, found 279.1014.

5.13.6 Synthesis of 2-(4-hydroxybenzyl)-1,4-quinones 413 and 441a

A solution of 2-phenoxymethyl-1,4-quinones (1.5 mmol) in trifluoroacetic acid (6 mL) was stirred for 15 h (for 2-phenoxymethyl-1,4-quinones 27a, 27b, 27e and 207a) or three days (for 3-methyl-2-phenoxymethyl-1,4-naphthoquinone 433) at room temperature. Subsequently, trifluoroacetic acid was evaporated in vacuo and the residue was dissolved in chloroform (20 mL). This solution was washed with water, saturated aqueous NaHCO_{3} and brine ($3 \times 10 \mathrm{~mL}$). Drying over MgSO_{4} and evaporation of the solvent in vacuo gave the crude product, which was purified further by means of column chromatography on silica gel (petroleum ether/ethyl acetate). 2-(4-Hydroxybenzyl)-1,4-benzoquinone 441a was found to be prone to polymerisation.

2-(4-Hydroxybenzyl)-1,4-naphthoquinone 413a

74%, brown crystals, mp $159.6-160.2^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.08(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{ArOH}), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 6.80\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.11\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.70-$ $7.76\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.02-8.13\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 35.02\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 115.80$ $\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.20\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.75\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.84\left(\mathrm{C}_{\mathrm{quat}}\right), 130.77\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 132.19\left(\mathrm{C}_{\text {quat }}\right), 132.29$ $\left(\mathrm{C}_{\text {quat }}\right), 133.83\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.56(\mathrm{CH}-3), 151.30\left(\mathrm{C}_{\text {quat }}\right), 154.64\left(\mathrm{C}_{\text {quat }}\right), 185.23(\mathrm{C}=\mathrm{O})$, $185.38(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 3395,1650,1510 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 265\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ (ES ${ }^{-}$) calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{O}_{3}\right]$: 263.0708, found 263.0704.

2-(4-Hydroxy-3-methylbenzyl)-1,4-naphthoquinone 413b

73%, green solid, mp $151.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.10(1 \mathrm{H}$, br s, ArOH), $6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{CH}-5$ ' or CH-6'), $6.94(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}$, CH-5' or -6'), $6.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-2^{\prime}\right), 7.71-7.74(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and CH-7), 8.02-8.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and 8). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 15.90\left(\mathrm{CH}_{3}\right), 35.00\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 115.34(\mathrm{CH}-5$ ' or $\mathrm{CH}-6$ ' $), 124.41\left(\mathrm{C}_{\text {quat }}\right), 126.20$ and $126.77(\mathrm{CH}-5$ and $\mathrm{CH}-8), 128.09\left(\mathrm{CH}-5{ }^{\prime}\right.$ or $\left.\mathrm{CH}-6^{\prime}\right), 128.61\left(\mathrm{C}_{\text {quat }}\right), 132.11\left(\mathrm{CH}-2^{\prime}\right), 132.17\left(\mathrm{C}_{\text {quat }}\right)$, $132.31\left(\mathrm{C}_{\text {quat }}\right) 133.85$ and $133.88(\mathrm{CH}-6$ and $\mathrm{CH}-7), 135.56(\mathrm{CH}-3), 151.51\left(\mathrm{C}_{\text {quat }}\right), 153.00\left(\mathrm{C}_{\text {quat }}\right)$, $185.30(\mathrm{C}=\mathrm{O}), 185.55(\mathrm{C}=\mathrm{O})$. IR (ATR): v $3380(\mathrm{OH}), 1652(\mathrm{C}=\mathrm{O}), 1595,1336,1267 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right)$ $m / z(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{3}\right]^{+}: 277.0865$, found 277.0862.

2-(4-Hydroxy-3-methoxybenzyl)-1,4-naphthoquinone 413c

42%, yellow crystals, mp $169.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.55$ $(1 \mathrm{H}, \mathrm{br}$ s, ArOH$), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 6.74-6.75\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.88(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}-5$ ' or 6^{\prime}), 7.72-7.75 (2H, m, CH-6 and CH-7), 8.03-8.13 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and -8). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 35.54$ $\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 56.01\left(\mathrm{OCH}_{3}\right), 111.92\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.75\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.20$ and $126.75(\mathrm{CH}-5$ and CH-8), $128.44\left(\mathrm{C}_{\text {quat }}\right), 132.19\left(\mathrm{C}_{\text {quat }}\right), 132.28\left(\mathrm{C}_{\text {quat }}\right) 133.82$ and $133.88(\mathrm{CH}-6$ and $\mathrm{CH}-7), 135.56(\mathrm{CH}-$ 3), $144.71\left(\mathrm{C}_{\text {quat }}\right), 146.80\left(\mathrm{C}_{\text {quat }}\right), 151.27\left(\mathrm{C}_{\text {quat }}\right), 185.26(\mathrm{C}=\mathrm{O}), 185.36(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 3355(\mathrm{OH})$,

1652, 1590, 1517, 1274, $1234 \mathrm{~cm}^{-1} . \operatorname{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 295\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for [$\left.\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{4}\right]^{-}: 293.0814$, found 293.0809.

2-(4-Hydroxybenzyl)-3-methyl-1,4-naphthoquinone 413d

60%, orange crystals, $\mathrm{mp} 50.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 5.43$ $(1 \mathrm{H}, \mathrm{br}$ s, ArOH$), 6.73\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.09\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.66-7.72(2 \mathrm{H}$, $\left.\mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 8.04-8.10\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.34\left(\mathrm{CH}_{3}\right), 31.66\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 115.62$ $\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 126.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.55\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.86\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.03\left(\mathrm{C}_{\text {quat }}\right), 132.11\left(\mathrm{C}_{\text {quat }}\right), 132.17$ $\left(\mathrm{C}_{\text {quat }}\right), 133.61\left(\mathrm{CH}_{\text {Ar }}\right), 133.64\left(\mathrm{CH}_{\text {Ar }}\right), 144.25\left(\mathrm{C}_{\text {quat }}\right), 145.74\left(\mathrm{C}_{\text {quat }}\right), 154.35\left(\mathrm{C}_{\text {quat }}\right), 184.95(\mathrm{C}=\mathrm{O})$, $185.67(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 3481,1653,1514 \mathrm{~cm}^{-1} . \mathrm{MS}^{\left(\mathrm{ES}^{+}\right)} \mathrm{m} / \mathrm{z}(\%): 279\left([\mathrm{M}+\mathrm{H}]^{+}, 65\right) . \mathrm{HRMS}\left(\mathrm{ES}^{-}\right.$) calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{3}\right]^{-}: 277.0870$, found 277.0825 .

2-(4-Hydroxybenzyl)-1,4-benzoquinone 441a

64%, red viscous oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.66\left(2 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}\right), 6.06(1 \mathrm{H}, \mathrm{br}$ s, ArOH$)$, $6.37(1 \mathrm{H}, \mathrm{dd}, J=1.6$ and $3.9 \mathrm{~Hz}, \mathrm{CH}-3), 6.72-6.79(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and CH-6), $6.80(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}$, $\left.2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.04\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 34.50\left(\mathrm{CH}_{2} \mathrm{Ar}\right), 115.88\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $128.15\left(\mathrm{C}_{\text {quat }}\right), 130.69\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 133.19(=\mathrm{CH}), 136.46(=\mathrm{CH}), 136.86(=\mathrm{CH}), 149.29\left(\mathrm{C}_{\text {quat }}\right), 154.87$ $\left(\mathrm{C}_{\text {quat }}\right), 187.58(\mathrm{C}=\mathrm{O}), 188.20(\mathrm{C}=\mathrm{O})$. IR (ATR): $v 3372,1651,1513 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{ES}) m / z(\%): 213([\mathrm{M}-$ $\left.\mathrm{H}]^{-}, 100\right)$. Due to the instability of this compound, no HRMS or elementary analysis could be performed.

5.13.7 Synthesis of N-protected 2-phenylaminomethyl-1,4-naphthoquinones 432

1,4-dimethoxynapthalene-2-carboxaldehyde $279(1 \mathrm{~g}, 4.62 \mathrm{mmol})$ and aniline ($426 \mathrm{mg}, 4.62 \mathrm{mmol}, 1$ equiv.) were dissolved in anhydrous methanol $(10 \mathrm{~mL})$ and stirred at room temperature for 1 h in a dry flask fitted with a CaCl_{2} tube. Next, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(175 \mathrm{mg}, 4.62$ mmol, 1 equiv.) was added portionwise and the reaction mixture was allowed to warm to room temperature. After 30 minutes, the solvent was evaporated in vacuo and the residue dissolved in EtOAc (10 mL) which was washed with brine (2 x 10 mL). Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded $1.26 \mathrm{~g}(94 \%)$ of pure 1,4-dimethoxy-2-phenylaminomethylnapthalene as a yellow oil which solidified upon standing.

1,4-Dimethoxy-2-phenylaminomethylnapthalene

94%, orange solid, mp $96.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.94\left(6 \mathrm{H}, \mathrm{s}, 2 \mathrm{xOCH}_{3}\right), 4.51\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.71-$ $6.76\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.20\left(2 \mathrm{H}, \mathrm{td}, J=2.2\right.$ and $\left.6.9 \mathrm{~Hz}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.45-7.58(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}-6$ and 7$), 8.07(1 \mathrm{H}, \mathrm{dd}, J=1.1$ and $8.3 \mathrm{~Hz}, \mathrm{CH}-5$ or 8$), 8.23(1 \mathrm{H}, \mathrm{dd}, J=1.1$ and $8.3 \mathrm{~Hz}, \mathrm{CH}-5$
or 8). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 43.48\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.81\left(\mathrm{OCH}_{3}\right), 62.61\left(\mathrm{OCH}_{3}\right), 104.35(\mathrm{CH}-3), 113.22$ $\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 117.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.03\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.64\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.60\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.32\left(\mathrm{C}_{\text {quat }}\right), 126.92$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.35\left(\mathrm{C}_{\text {quat }}\right), 128.84\left(\mathrm{C}_{\text {quat }}\right), 129.50\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 147.38\left(\mathrm{C}_{\text {quat }}\right), 148.66\left(\mathrm{C}_{\text {quat }}\right), 152.39\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): v $3377(\mathrm{NH}), 1600\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1505,1374,1091(\mathrm{C}-\mathrm{N}), 752 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 294$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}\right]^{+}: 294.1494$, found 294.1484.

1,4-dimethoxy-2-phenylaminomethylnapthalene ($635 \mathrm{mg}, 2.16 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 1.1$ equiv.) were dissolved in 4 mL of anhydrous dichloromethane. The mixture was cooled to $0^{\circ} \mathrm{C}$ and acetyl chloride or benzoyl chloride (1.1 equiv.) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. Next, $\mathrm{Et}_{3} \mathrm{NHCl}$ was filtered off and the filtrate was extracted once with brine (5 mL). Purification by column chromatography on silica gel (petroleum ether/ethyl acetate) gave the corresponding N-protected 1,4-dimethoxy-2-phenylaminomethylnapthalenes 431a and 431b.

N-Acetyl-1,4-dimethoxy-2-phenylaminomethylnapthalene 431a

62%, yellow crystals, mp $80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.94\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 3.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.97$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.18\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.0 .1-7.06\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.20-7.33(3 \mathrm{H}, \mathrm{m}$, $3 \mathrm{XCH}_{\mathrm{Ar}}$), 7.43-7.52 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and 7), $7.88-7.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ or 8$), 8.19-8.23(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ or 8$)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.91\left(\mathrm{CH}_{3} \mathrm{CO}\right), 46.65\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.78\left(\mathrm{OCH}_{3}\right), 62.23\left(\mathrm{OCH}_{3}\right), 104.55(\mathrm{CH}-3)$, $122.11\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.46\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.60\left(\mathrm{C}_{\text {quat }}\right), 126.35\left(\mathrm{C}_{\text {quat }}\right), 126.41\left(\mathrm{C}_{\text {quat }}\right), 126.64$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.14\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.37\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.65\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 142.89\left(\mathrm{C}_{\text {quat }}\right), 147.76\left(\mathrm{C}_{\text {quat }}\right), 152.13$ $\left(\mathrm{C}_{\text {quat }}\right), 170.95(\mathrm{C}=\mathrm{O}) . \mathrm{IR}(\mathrm{ATR}): v 1645(\mathrm{C}=\mathrm{O}), 1631,1594\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1494,1369,1228(\mathrm{C}-\mathrm{N}), 670$ $\mathrm{cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 336\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}\right]^{+}: 336.1600$, found 336.1593.

N-Benzoyl-1,4-dimethoxy-2-phenylaminomethylnapthalene 431b

51%, white solid, mp $143.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.43(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.91-7.06\left(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.12-7.22\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.36-7.50\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.96$ $(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or 8$), 8.22(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}-5$ or 8$) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 47.86$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.80\left(\mathrm{OCH}_{3}\right), 62.39\left(\mathrm{OCH}_{3}\right), 104.05(\mathrm{CH}-3), 122.14\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.59\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.86\left(\mathrm{C}_{\text {quat }}\right), 126.35\left(\mathrm{C}_{\text {quat }}\right), 126.76\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.96\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.91\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 127.97\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $128.54\left(\mathrm{C}_{\text {quat }}\right), 128.73\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.10\left(2 \mathrm{XCH}_{\mathrm{Ar}}\right), 129.79\left(\mathrm{CH}_{\mathrm{Ar}}\right), 136.32\left(\mathrm{C}_{\text {quat }}\right), 143.53\left(\mathrm{C}_{\text {quat }}\right), 147.59$ $\left(\mathrm{C}_{\text {quat }}\right), 152.31\left(\mathrm{C}_{\text {quat }}\right), 171.30(\mathrm{C}=\mathrm{O})$. IR (ATR): v $1637(\mathrm{C}=\mathrm{O}), 1594,1366,1090(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1} . \mathrm{MS}$ $\left(\mathrm{ES}{ }^{+}\right) \mathrm{m} / \mathrm{z}(\%): 398\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{NO}_{3}\right]^{+}: 398.1756$, found 398.1757.

1,4-dimethoxy-2-phenylaminomethylnapthalene was dissolved in 10 mL of pyridine, cooled to $0^{\circ} \mathrm{C}$ and mesyl chloride ($0.35 \mathrm{~mL}, 5.67 \mathrm{mmol}, 1.3$ equiv.) was added dropwise. The reaction was then allowed to warm to room temperature and stirred for one hour. Next, the reaction mixture was poured
in icewater (20 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic fractions where washed with aqueous $\mathrm{HCl}(2 \mathrm{~N}, 3 \times 10 \mathrm{~mL})$ and brine (10 mL). Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded 1.36 g (84%) of pure 1,4-dimethoxy- N-mesyl-2phenylaminomethylnapthalene 431c.

1,4-Dimethoxy- N -mesyl-2-phenylaminomethylnapthalene 431c

84%, pale white solid, mp $131.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.04\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.93$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 6.85(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}-3), 7.18-7.34\left(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.42-7.52(2 \mathrm{H}, \mathrm{m}$, $\left.5 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.42-7.52(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and 7$), 7.92-7.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ or 8$), 8.16-8.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ or 8$)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 37.78\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 48.99\left(\mathrm{CH}_{2} \mathrm{~N}\right), 55.81\left(\mathrm{OCH}_{3}\right), 62.72\left(\mathrm{OCH}_{3}\right), 104.35(\mathrm{CH}-3)$, $122.09\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.57\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.14\left(\mathrm{C}_{\text {quat }}\right), 125.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.52\left(\mathrm{C}_{\text {quat }}\right), 126.80\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.28$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.34\left(\mathrm{C}_{\text {quat }}\right), 128.86\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.48\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 139.29\left(\mathrm{C}_{\text {quat }}\right), 147.76\left(\mathrm{C}_{\text {quat }}\right), 152.11\left(\mathrm{C}_{\text {quat }}\right)$. IR (ATR): $1597\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1338(\mathrm{~S}=\mathrm{O}), 1154(\mathrm{~S}=\mathrm{O}), 771 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 201\left([\mathrm{M}-\mathrm{PhNMs}]^{+}\right.$, 100). HRMS (ES ${ }^{+}$) calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}\right]^{+}: 201.0916$, found 201.0915.

To a stirred solution of a N-protected 1,4-dimethoxy-2-phenylaminomethylnapthalene 431 (2 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ was added a solution of cerium ammonium nitrate ($2.74 \mathrm{~g}, 5 \mathrm{mmol}, 2.5$ equiv.) in water $(8 \mathrm{~mL})$. The reaction was stirred for 10 minutes at room temperature. Next, the reaction mixture was poured out in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed two times with brine. Drying over MgSO_{4} and evaporation of the solvent in vacuo yielded pure N-protected-2-phenylaminomethyl-1,4naphthoquinones 432.

N-Acetyl-2-phenylaminomethyl-1,4-naphthoquinone 432a

90%, amber solid, mp $164.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.00\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.89(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.92(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-3), 7.24-7.51\left(5 \mathrm{H}, \mathrm{m}, 5 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.70-7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and 7$)$, 8.03-8.10 $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and 8$) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.59\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right), 48.61\left(\mathrm{CH}_{2} \mathrm{~N}\right), 126.22\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.43\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.61\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right)$, $128.37\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.03\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.96\left(\mathrm{C}_{\text {quat }}\right), 132.05\left(\mathrm{C}_{\text {quat }}\right)$, $133.88\left(\mathrm{CH}_{\mathrm{Ar}}\right), 133.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 143.07\left(\mathrm{C}_{\text {quat }}\right), 145.76\left(\mathrm{C}_{\text {quat }}\right), 171.12(\mathrm{NC}=\mathrm{O}), 184.74$ $(2 \mathrm{xC}=\mathrm{O})$. IR (ATR): v $1658(\mathrm{C}=\mathrm{O}), 1299,782 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 306\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}$ $\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}: 306.1130$, found 306.1123.

N-Benzoyl-2-phenylaminomethyl-1,4-naphthoquinone 432b

Quantitative yield, yellow solid, mp $180.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.04\left(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $6.90(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-3), 6.99-7.22\left(9 \mathrm{H}, \mathrm{m}, 9 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.27-7.30\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.59-7.65(2 \mathrm{H}$, m, CH-6 and 7), 7.92-8.01 (2H, m, CH-5 and 8). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 49.40\left(\mathrm{CH}_{2} \mathrm{~N}\right), 126.32\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.52\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.07\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.02\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.07\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 129.48\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 130.37\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $132.06\left(\mathrm{C}_{\text {quat }}\right), 132.14\left(\mathrm{C}_{\text {quat }}\right), 133.91\left(\mathrm{CH}_{\text {Ar }}\right), 133.96\left(\mathrm{CH}_{\text {Ar }}\right), 134.08\left(\mathrm{CH}_{\text {Ar }}\right), 143.95\left(\mathrm{C}_{\text {quat }}\right), 143.58$
$\left(\mathrm{C}_{\text {quat }}\right), 145.88\left(\mathrm{C}_{\text {quat }}\right), 170.69(\mathrm{NC}=\mathrm{O}), 184.75(\mathrm{C}=\mathrm{O}), 184.88(\mathrm{C}=\mathrm{O}) . \operatorname{IR}(\mathrm{ATR}): v 1644(\mathrm{C}=\mathrm{O}), 1632$ $(\mathrm{C}=\mathrm{O}), 1365,1299,700 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) \mathrm{m} / \mathrm{z}(\%): 368\left(\mathrm{M}+\mathrm{H}^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}_{3}\right]^{+}: 368.1287$, found 368.1289.

N-Mesyl-2-phenylaminomethyl-1,4-naphthoquinone 432c

66%, yellow solid, mp $220.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.00\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 4.92(2 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 7.14(1 \mathrm{H}, \mathrm{t}, J=1.7 \mathrm{~Hz}, \mathrm{CH}-3), 7.30-7.35\left(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.38-7.47\left(4 \mathrm{H}, \mathrm{m}, 4 \mathrm{xCH}_{\mathrm{Ar}}\right), 7.69-$ $7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-6$ and 7$), 8.01-8.08(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5$ and 8$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 37.28\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right)$, $49.36\left(\mathrm{CH}_{2} \mathrm{~N}\right), 126.47\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.02\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 128.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.94\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 131.96\left(\mathrm{C}_{\text {quat }}\right)$, $132.08\left(\mathrm{C}_{\text {quat }}\right), 133.93\left(\mathrm{CH}_{\mathrm{Ar}}\right), 134.25\left(\mathrm{CH}_{\mathrm{Ar}}\right), 135.51\left(\mathrm{CH}_{\mathrm{Ar}}\right), 139.35\left(\mathrm{C}_{\text {quat }}\right), 145.62\left(\mathrm{C}_{\text {quat }}\right), 184.54$ $(\mathrm{C}=\mathrm{O}), 184.89(\mathrm{C}=\mathrm{O})$. IR (ATR): v $1659(\mathrm{C}=\mathrm{O}), 1595\left(\mathrm{CH}_{\mathrm{Ar}}\right), 1338(\mathrm{~S}=\mathrm{O}), 1306,1160(\mathrm{~S}=\mathrm{O}), 1093$ $(\mathrm{C}-\mathrm{N}), 774 \mathrm{~cm}^{-1}$. MS (ES $) \mathrm{m} / \mathrm{z}(\%): 342\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right)$. HRMS (ES $)$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}\right]^{+}$: 342.0800 , found 342.0802 .

5.13.8 Synthesis of 2-phenoxymethylchromen-4-one 436

2-Phenoxymethylchromen-4-one 436 was synthesised following a literature procedure describing the synthesis of 2-(4-chlorophenoxy)methylchromen-4-one. ${ }^{264}$
56%, white crystals, mp $96.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.98\left(2 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 6.54(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}-3)$, 6.96-7.05 ($3 \mathrm{H}, \mathrm{m}, 3 \mathrm{xCH}_{\mathrm{Ar}}$), 7.29-7.36 ($2 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{\mathrm{Ar}}$), 7.38-7.48 (2H, m, $2 \mathrm{xCH}_{\mathrm{Ar}}$), 7.65-7.68 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{Ar}}\right), 8.19(1 \mathrm{H}, \mathrm{dd}, J=1.4$ and 8.0 Hz$) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 65.74\left(\mathrm{CH}_{2} \mathrm{O}\right), 109.63(\mathrm{CH}-3)$, $114.75\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 118.02\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.00\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 123.97\left(\mathrm{C}_{\text {quat }}\right), 125.28\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.62\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $129.74\left(2 \mathrm{xCH}_{\mathrm{Ar}}\right), 133.86\left(\mathrm{CH}_{\mathrm{Ar}}\right), 156.10\left(\mathrm{C}_{\text {quat }}\right), 157.59\left(\mathrm{C}_{\text {quat }}\right), 163.88\left(\mathrm{C}_{\text {quat }}\right), 177.68(\mathrm{C}=\mathrm{O})$. IR (ATR): v 1647 (C=O), 1466, 1355, 1243 (C-O), 1220 (C-O), $751 \mathrm{~cm}^{-1} . \mathrm{MS}\left(\mathrm{ES}^{+}\right) m / z(\%): 253$ $\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right) . \mathrm{HRMS}\left(\mathrm{ES}^{+}\right)$calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}\right]^{+}: 253.0865$, found 253.0859.

6 Summary

The present doctoral thesis concerns the chemistry of heterocyclic annelated quinones. More specifically, pyranonaphthoquinones, spironaphthoquinones and a wide range of benzophenanthridinedione derivatives were prepared. These benzophenanthridinedione series were synthesised as a part of a screening program against Mycobacterium tuberculosis in cooperation with the Scientific Institute of Public Health (Uccle, Brussels).
(1) Catalytic reaction conditions were developed in order to prepare 1-(2hydroxyethoxy)pyranonaphthoquinones iv starting from 2-(1,3-dioxolan-2-yl)-1,4-naphthoquinone i. Even though these conditions performed equally well as the corresponding stoichiometric version, there is no need to prepare the corresponding pyridinium salts and only a catalytic amount of pyridine is needed.

$$
\mathrm{R}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}, i-\mathrm{Pr}, i-\mathrm{Bu}
$$

It was envisaged to apply this methodology to the synthesis of various natural products such as the pyranonaphthoquinones ascomycone A and $\mathrm{B}, 1$-hydroxydehydroherbarin and the mansouramycins, which are isoquinolinediones. Unfortunately, none could be prepared as it was not possible to synthesise the appropriate starting material for both classes.
(2) An unexpected synthesis of aminonaphtholes was found. This reaction proceeded via a MeLi- or LDA-mediated cyclisation of a 2-allyl-6-tert-butyldimethylsilanyloxy- N, N-dimethylbenzamide derivative viii or xii. The reaction was investigated in depth and various protective group (TBDMS, TIPS, TBDPS) and amide (dimethyl, diethyl, pyrrolidinyl, morpholinyl) combinations were evaluated. It appeared that the reaction only occurred when the amide is a N, N-dimethylamide and the protective group a TBDMS group, as all other combinations resulted in complex mixtures. When these allyl-(tert-butyldimethylsilanyloxy)- N, N-dimethylbenzamides were reacted with MeLi or LDA, various aminonaphtholes ix and one aminophenanthrenol xiii were prepared in 37-90\% yield.

1) 2 equiv. t-BuLi THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$

2) 2 equiv. $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$ THF, $-10^{\circ} \mathrm{C}, 40 \mathrm{~min}$
3) 2 equiv. Br

$$
\begin{aligned}
& \text { viiia } R=H 65 \% \\
& \text { viiib } R=O M e 66 \%
\end{aligned}
$$

ixb $R=$ OMe, base $=$ MeLi 90%

1) 10 equiv. $\mathrm{SOCl}_{2}, \Delta, 2.5 \mathrm{~h}$
2) 1.5 equiv. $\mathrm{Me}_{2} \mathrm{NH} \cdot \mathrm{HCl}$

x
0.02 equiv. DMAP 1.3 equiv. $\mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 6 h

3) 2 equiv. t - BuLi THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$
4) 2 equiv. $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$ THF, $-10^{\circ} \mathrm{C}, 40 \mathrm{~min}$
5) 2 equiv.

THF, $-78^{\circ} \mathrm{C}$ to r.t., on

xiii 37\%
2.2 equiv. MeLi

THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then r.t., o.n.

xii 48\%

It was attempted to synthesise fluorinated pyranonaphthoquinones by means of a gold catalysed 6-endo-dig cyclisation but no favourable results were obtained.
(3) Various benzo[j]phenanthridinedione analogues were prepared as a part of our screening program against Mycobacterium tuberculosis and related mycobacteria such as M. bovis, M. avium subspecies and M. ulcerans. Initially, an alternative synthesis was developed towards the known benzo[j]phenanthridinediones xix that allows more flexibility and could be deployed in the synthesis of our library of antimycobacterial compounds. Thus, amides xvi were prepared in good yields starting from dialkoxynaphthalene carboxylic acids xiv and bromoanilines $\mathbf{x v}$. The amide nitrogen was MOMprotected and subsequent cyclisation by means of a palladium-catalysed intramolecular arylation afforded 7,12-dialkoxy-5-methoxymethyl-5 H-benzo[j]phenanthridin-6-ones xviii. These key intermediates xviii can be converted into the previously prepared benzo[j]phenanthridinediones xix by means of literature procedures. 7,12-Dialkoxy-5-methoxymethyl-5 H -benzo[j]phenanthridin-6-ones
xviii were deprotected by means of HCl and further converted towards alkoxypyridines $\mathbf{x x i}$ and triflates xxii. One triflate was defunctionalised by means of $\operatorname{Pd}(0)$-catalysis and oxidised to 2,4-dimethylbenzo[j]phenanthridine-7,12-dione xixa, which was not prepared previously. Analogous to anticancer drugs such as mitoxantrone and pixantrone, it was attempted to synthesise 6-aminoalkyl-aminobenzo[j]phenanthridine-7,12-diones. However, no adequate conditions could be found when ethylenediamine was reacted with 7,12-dialkoxy-5-methoxymethyl-5H-benzo[j]phenanthridin-6-ones xviii, 7,12-dimethoxy-5H-benzo[j]phenanthridin-6-ones $\mathbf{x x}$ or 6-alkoxy-7,12-dimethoxy-3methylbenzo[j]phenanthridines xxi.

When 7,12-dialkoxy-5-methoxymethyl-5 H -benzo[j]phenanthridin-6-ones xviii were reacted with alkyllithium reagents at low temperature, an interesting reactivity was observed. Instead of giving exclusively the desired 1,2-adducts $\mathbf{x x v}$, a mixture of 1,2-adducts $\mathbf{x x v}$; 1,4-adducts $\mathbf{x x i v}$ and double
addition products $\mathbf{x x i i i}$ was obtained. The proportion of 1,4 -addition and double addition increased as the sterical hindrance of the reactants increased. The MeLi adducts were oxidised with CAN towards quinone xxvii and quinoid compound xxvi. The benzylic methyl of 7,12-dimethoxy-6methylbenzo[j]phenanthridine $\mathbf{x x v}$ was oxidised with SeO_{2} towards aldehyde xxviii, which could serve as an attachment point for further functionalisation.

The abovementioned methodology was applied to the synthesis of 8,9,10,11-tetrahydro-8,11-methano-benzo[j]phenanthridine-7,12-diones xxxiv. Lactam xxxii was prepared as described above, reduced by means of LiAlH_{4} and the resulting hemi-aminal hydrolysed to the corresponding pyridine $\mathbf{x x x i i i}$ with aqueous HCl followed by oxidative demethylation with CAN resulting in the target 8,9,10,11-tetrahydro-8,11-methanobenzo[j]phenanthridine-7,12-diones xxxiv in good yields. This synthesis was the subject of a master thesis. ${ }^{213}$

Next, the synthesis of 1,2,3,4-tetrahydrobenzophenanthridinediones xxxvii was envisaged. These compounds were prepared by means of the addition of enamine xxxvi across 2-(1,3-dioxolan-2-yl)-1,4 naphthoquinones i or 2-acetyl-1,4-naphthoquinone $\mathbf{x x x v}$ followed by ammonia-mediated cyclisation of the intermediate benzonaphthofurans. Despite extensive optimisation, no reaction conditions could be found that gave good yields.

As these 1,2,3,4-tetrahydrobenzophenanthridinediones xxxvii were found to only give moderate activity against Mycobacterium tuberculosis, 8,11-bridged 1,2,3,4,8,9,10,11octahydrobenzophenanthridinediones xlviii were prepared. It was assumed that the introduction of a 8,11-bridge would counter potential intercalation. The starting 5,6,7,8-tetrahydro-2-(1,3-dioxolan-2-
yl)-1,4-naphthoquinones xlii were prepared via a Diels-Alder methodology, with a minor modification for the O-bridged derivatives as they did not tolerate the formylation step.

$\left\{\begin{array}{l}3 \text { equiv. CAN } \\ \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1: 1 \\ \text { r.t., } 3 \text { min }\end{array}\right.$

$\mathrm{X}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{O}$
$\mathrm{Y}=\mathrm{CH}_{2}$, NBoc
$\mathrm{R}=t-\mathrm{Bu}, \mathrm{CO}_{2} \mathrm{Et}$

Again, no optimised reaction conditions could be found despite extensive optimisation. However, various compounds showed a good activity against Mycobacterium tuberculosis and related Mycobacteria accompanied with an acceptable cytotoxicity and no genotoxicity.

A fourth series of benzophenanthridinedione derivatives prepared were dialkyltetrahydrobenzo $[g]$ pyrimido[4,5-c]isoquinolinetetraones $\mathbf{l i}$ and 3,4,8,9,10,11-hexahydro-2H-8,11-methanobenzo[j]phenanthridine-1,7,12-triones liii. They were prepared by means of an oxidative
addition of dialkylaminouracils \mathbf{I} or 3-aminocyclohex-2-enones lii onto 1,4-dihydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxaldehydes xlix. However, their antimycobacterial activity was only modest.

(4) A series of cleistopholine and sampangine analogues were prepared as a part of our program to find new leads against Mycobacterium tuberculosis. The cleistopholine analogues were prepared by means of reaction of pyridinium salts liv with 2-acetyl-1,4-naphthoquinone $\mathbf{x x x v}$ under Kröhnke conditions. The dimethylaminovinyl function was installed by means of reaction with DMF-DMA followed by ring closure with ammonium acetate towards the corresponding sampangin analogues lvii. 1-(2-Dimethylaminovinyl)-benzo[g]isoquinoline-5,10-diones lvi were found to be promising leads against Mycobacteria.

(5) The palladium(II)-catalysed synthesis of $2 H, 3^{\prime} H$-spiro[benzofuran-3, 2^{\prime}-quinones] lxi, was studied. The starting 2-aryloxymethyl-1,4-naphthoquinones lxa, 2-aryloxymethyl-1,4-benzoquinones lxb or 2-phenoxyethyl-1,4-naphthoquinone lxc were prepared by means of a radical alkylation reaction. After optimisation of the reaction conditions, $2 H, 3^{\prime} H$-spiro[benzofuran- $3,2^{\prime}$ '-quinones] lxi were obtained in modest to good yields when reacted with $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 15 \mathrm{~mol} \% 3,5$-dichloropyridine and 5 $\mathrm{mol} \% \mathrm{TFA}$ in acetic acid at $110^{\circ} \mathrm{C}$ for four days. Application of the optimised spirocyclisation conditions to aryloxymethyl-1,4-benzoquinones lxb lead to complex reaction mixtures. $2 H, 3^{\prime} \mathrm{H}$ -Spiro[benzofuran-3,2'-benzoquinones] lxii could only be synthesised using a full equivalent of palladium(II) acetate in boiling acetic acid in low yields. A six-membered ring spiroquinone lxib was synthesised starting from 2-(2-phenoxyethyl)-1,4-naphthoquinone lxc in 38\% yield. As 2-(2-phenoxyethyl)-1,4-naphthoquinone lxc could only be prepared in low yield, attempts were made to find a more efficient synthesis. Unfortunately, none were found. No reaction was observed when substrates structurally related to aryloxymethyl-1,4-naphthoquinones lxa such as 3-methyl-2-phenoxymethyl-1,4-naphthoquinone, N-mesyl-, N-acyl- or N-benzoyl-2-phenylaminomethyl-1,4naphthoquinones or 2-phenoxymethylchromen-4-one were subjected to the optimised spirocyclisation conditions or when the reaction was performed with a full equivalent of palladium(II) acetate. An interesting side reaction that was observed was the rearrangement of 2-aryloxymethyl-1,4-quinones $\mathbf{l x}$ towards the corresponding 2-(4-hydroxybenzyl)-1,4-quinones lxiii when stirred at room temperature in pure TFA. The presented spirocyclisation is a novel transformation leading to a heterocyclic skeleton previously unknown in the literature.

Iviii
$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1: 1,80^{\circ} \mathrm{C}, 1 \mathrm{~h}$
$\mathrm{R}=\mathrm{H}, \mathrm{Me}$
$\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{OMe}, \mathrm{Cl}, \mathrm{F}$

Ixiii 42-74\%
Ixa, b $34-89 \%(n=1)$, $\mathbf{x c} \mathbf{1 1 \%}(\mathrm{n}=2)$

Ixii 7-20\%

Ixia, b 0-71\%

7 Samenvatting

Het voorgestelde doctoraatsonderzoek handelt over de chemie van heterocyclisch geanneleerde chinonen. Meer specifiek, pyranonaftochinonen, spironaftochinonen en een brede waaier aan benzo[j]fenantridinedionderivaten werden bereid. Deze series van benzofenantridinedionanaloga werden bereid als een deel van een screeningsprogramma tegen Mycobacterium tuberculosis in samenwerking met het Wetenschappelijk Instituut voor Volksgezondheid (Ukkel).
(1) Katalytische reactieomstandigheden werden ontwikkeld om 1-(2hydroxyethoxy)pyranonaftochinonen iv te bereiden startende van 2-(1,3-dioxolan-2-yl)-1,4naftochinon i. Hoewel deze reactieomstandigheden gelijkaardige resultaten geven als de overeenkomstige stoichiometrische versie, dient het overeenkomstige pyridiniumzout niet op voorhand bereid te worden en is enkel een katalytische hoeveelheid pyridine nodig.

Het was vooropgesteld om deze methodologie toe te passen op de synthese van verscheidene natuurproducten zoals de pyranonaftochinonen ascomycone A en B, 1-hydroxydehydroherbarin en de mansouramycins, dewelke isochinolinedionen zijn. Helaas kon geen enkel van deze natuurproducten bereid worden, gezien het niet mogelijk was de gepaste startmaterialen te synthetiseren in beide gevallen.
(2) Een onverwachte synthese van aminonaftolen werd ontdekt. Deze reactie geschiedde via MeLi- of LDA-gemedieerde ringsluiting van een 2-allyl-6-tert-butyldimethylsilanyloxy- N, N dimethylbenzamidederivaat viii of xii. De reactie werd grondig onderzocht en verscheidene beschermende groep (TBDMS, TIPS, TBDPS) en amide (dimethyl, diethyl, pyrrolidinyl, morfolinyl) combinaties werden geëvalueerd. Het bleek dat de reactie enkel doorging wanneer het amide een N, N dimethylamide is en de beschermende groep een TBDMS groep, terwijl alle andere combinaties resulteerden in complexe mengsels. Aldus werden aminonaftolen ix en aminofenantrenol xiii gesynthetiseerd in 37-90\% rendement.

1) 2 equiv. t-BuLi THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{u}$

2) 2 equiv. $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$

$$
\text { THF, }-10^{\circ} \mathrm{C}, 40 \mathrm{~min}
$$

3) 2 equiv. Br
ixa $R=H$, base $=\operatorname{LDA} 56 \%$
viiia $R=H 65 \%$
THF, $-78^{\circ} \mathrm{C}$ tot k.t., o.n.
ixa $R=H$, base $=$ MeLi 57%
viiib $\mathrm{R}=\mathrm{OMe} 66 \%$
ixb $R=O M e$, base $=$ MeLi 90%

x

xiii 37\%

$$
\frac{2,2 \text { equiv. MeLi }}{\text { THF, }-78^{\circ} \mathrm{C}, 1 \mathrm{u}}
$$

dan k.t., o.n.

xii 48\%

Er werd gepoogd om gefluoreerde pyranonaftochinonen te synthetiseren waarbij in één stap het gefluoreerde pyraanskelet werd geconstrueerd door middel van een goud-gekatalyseerde 6 -endo-dig ringsluiting, maar geen bevredigende resultaten werden behaald.
(3) Verscheidene benzo[j]fenantridinedion analoga werden bereid als deel van een screeningsprogramma tegen Mycobacterium tuberculosis en aanverwante mycobacteria zoals M. bovis, M. avium ssp. en M. ulcerans. Initieel werd een alternatieve synthese ontwikkeld voor de gekende benzo[j]fenantridinedionen xix die meer flexibiliteit toelaat en toegepast kon worden in de synthese van een bibliotheek van antimycobacteriële verbindingen. Aldus werden amiden xvi bereid startende van dialkoxynaftaleencarbonzuren xiv en 2-broomanilines $\mathbf{x v}$. De amidestikstof werd MOMbeschermd en vervolgens werd het amide gecycliseerd door middel van een palladium-gekatalyseerde intramoleculaire arylering tot 7,12-dialkoxy-5-methoxymethyl-5 H -benzo[j]fenantridin-6-onen xviii. Deze sleutelintermediairen xviii kunnen omgezet worden in de voorheen bereidde
benzo[j]fenantridinedionen $\mathbf{x i x}$ door middel van literatuurprocedures. 7,12-Dialkoxy-5-methoxymethyl-5H-benzo[j]fenantridin-6-onen xviii werden ontschermd door middel van zoutzuur en verder omgezet tot alkoxypyridinen xxi en triflaten $\mathbf{x x i i}$. Triflaat xxiia werd gedefunctionaliseerd door middel van $\operatorname{Pd}(0)$-katalyse en geoxideerd tot 2,4-dimethylbenzo[j]fenantridine-7,12-dion xixa, hetwelke nog nooit eerder bereid was. Analoog aan antikankergeneesmiddelen zoals mitoxantrone en pixantrone, werd gepoogd om 6-aminoalkylaminobenzo[j]fenantridine-7,12-dionen te synthetiseren. Er konden echter geen adequate reactieomstandigheden gevonden worden wanneer ethyleendiamine in reactie gebracht werd met 7,12-dialkoxy-5-methoxymethyl-5H-benzo[j]fenantridin-6-onen xviii, 7,12-dimethoxy-5H-benzo[j]fenantridin-6-onen $\mathbf{x x}$ of 6-alkoxy-7,12-dimethoxy-3-methylbenzo[j]fenantridinen $\mathbf{x x i}$.

1) 10 equiv. SOCl_{2}

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 16 u
xvi $54-99 \%$

xviii 72-96\%
xvii 37-70\%
THF/HCl (6 M) 1:1
$50^{\circ} \mathrm{C}, 15 \mathrm{u}$
$\mathrm{R}^{1}=\mathrm{Me}$

2) $20 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ $40 \mathrm{~mol} \% \mathrm{PPh}_{3}$ 3 equiv. $\mathrm{Et}_{3} \mathrm{SiH}$ DMF, $60^{\circ} \mathrm{C}, 5 \mathrm{u}$
3) 2,5 equiv. CAN $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ 1:1
k.t., 1 u
xx 67-84\%
xxii 19-46\%

xxi 53-58\%

Wanneer alkyllithium reagentia werden toegevoegd aan 7,12-dialkoxy-5-methoxymethyl-5 H -benzo[j]fenantridin-6-onen xvii bij lage temperatuur werd een interessante reactiviteit vastgesteld. In plaats van uitsluitend het verwachte 1,2-adduct $\mathbf{x x v}$ te geven, werd een mengsel van 1,2-adduct $\mathbf{x x v}$, 1,4 -adduct xxiv en dubbele additieproducten xxiii verkregen. Het aandeel van 1,4-additie- en dubbel additieproduct nam toe als de sterische hindering toenam. De MeLi adducten werden geoxideerd met CAN tot chinon xxvii en chinonoide verbinding xxvi. De benzylische methylgroep van 7,12-dimethoxy-6-methylbenzo[j]fenantridine $\mathbf{x x v}$ werd geoxideerd met SeO_{2} tot aldehyde xxviii dat zou kunnen dienen als een aanhechtingspunt voor verdere functionalisering.

xvii
xxiii 43-58\%
$\mathrm{R}^{1}=\mathrm{Me}, i-\mathrm{Pr}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{Me}, \mathrm{R}^{3}=\mathrm{Me}, n$-Hexyl

xxviii 48\%
\downarrow
verdere functionalisering

xxv 2-42\%

$|$| 2,5 equiv. CAN |
| :--- |
| $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1: 1$ |
| k.t., 2 min |
| $R^{1}=R^{3}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$ |

xxvii 83\%

De bovenvermelde methodologie werd toegepast op de synthese van 8,9,10,11-tetrahydro-8,11-methanobenzo[j]fenanthridine-7,12-dionen xxxiv. Lactam xxxii werd gesynthetiseerd zoals hierboven beschreven, gereduceerd door middel van LiAlH_{4} en het resulterend hemi-aminal werd gehydrolyseerd door middel van waterig HCl tot pyridine $\mathbf{x x x i i i}$. Oxidatieve demethylering met CAN resulteerde in de beoogde 8,9,10,11-tetrahydro-8,11-methanobenzo[j]fenanthridine-7,12-dionen \quad xxxiv in goede rendementen. Deze synthese was het onderwerp van een masterthesis. ${ }^{213}$

Vervolgens werd de synthese van 1,2,3,4-tetrahydrobenzofenantridinedionen xxxvii aangevat. Deze verbindingen werden gesynthetiseerd door middel van de additie van enamine xxxvi aan 2-(1,3-dioxolan-2-yl)-1,4-naftochinon \mathbf{i} of 2-acetyl-1,4-naftochinon $\mathbf{x x x v}$ gevolgd door ammoniak gemedieerde ringsluiting van de intermediaire benzonaftofuranen. Ongeacht intensieve optimalisatie, konden geen reactieomstandigheden gevonden worden die goede rendementen gaven.

Gezien deze 1,2,3,4-tetrahydrobenzo[j]fenantridinedionen xxxvii slechts een matige activiteit vertoonden tegen Mycobacterium tuberculosis, werden 8,11-gebrugde 1,2,3,4,8,9,10,11octahydrobenzo[j]fenantridinedionen xlviii bereid. Het werd vooropgesteld dat de introductie van de 8,11-brug potentiele intercalatie zou kunnen tegengaan. De startmaterialen, 5,6,7,8-tetrahydro-2-(1,3-
dioxolan-2-yl)-1,4-naftochinonen xxxlii werden bereid via een Diels-Alder methodologie, met een kleine aanpassing voor de O-gebrugde derivaten gezien deze de formyleringsstap niet tolereerden.

Opnieuw konden geen optimale reactieomstandigheden gevonden worden ongeacht uitgebreide pogingen tot optimalisatie. Desalniettemin vertoonden verscheidene verbindingen een goede activiteit tegen Mycobacterium tuberculosis en aanverwante Mycobacteria vergezeld van een aanvaardbare cytotoxiciteit en geen genotoxiciteit (komeettest en vitotox assay).

Een vierde serie van benzofenantridinedionderivaten waren dialkyltetrahydrobenzo[g]pyrimido[4,5c]isochinolinetetraonen li en 3,4,8,9,10,11-hexahydro-2H-8,11-methanobenzo[j]fenantridine-1,7,12-
trionen liii. Deze werden bereid door middel van een oxidatieve additie van dialkylaminouracilderviaten \mathbf{l} of 3-aminocyclohex-2-enonen lii aan 1,4-dihydroxy-5,6,7,8-tetrahydronaftaleen-2-carboxaldehydes xlix. Hun antimycobacteriële activiteit was echter slechts matig.

xlix I $\mathrm{X}=\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}$ $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, n-\mathrm{Pr}, i-\mathrm{Pr}, n-\mathrm{Bu}, i-\mathrm{Bu}, s-\mathrm{Bu}, n-\mathrm{P}$
li 33-93\%

xlixa

lii
liii 40 + 13\%
(4) Een serie van cleistofoline en sampangine analoga werd bereid als deel van het lopend onderzoeksprogramma om nieuwe leads te vinden met activiteit tegen Mycobacterium tuberculosis. De cleistofoline analoga werden bereid door middel van reactie van pyridiniumzouten liv met 2-acetyl-1,4-naftochinon $\mathbf{x x x v}$ onder Kröhnke omstandigheden. De dimethylaminovinylfunctie werd geïnstalleerd gebruik makend van DMF-DMA gevolgd door ringsluiting met ammoniumacetaat tot de overeenkomstige sampangin analoga lvii. 1-(2-Dimethylaminovinyl)benzo[g]isochinoline-5,10-dionen lvi bleken een veelbelovende antimycobacteriële activiteit te bezitten.

(5) De palladium(II)-gekatalyseerde synthese van $2 H, 3^{\prime} H$-spiro[benzofuraan- $3,2^{\prime}$-chinonen] lxi werd diepgaand bestudeerd. De startmaterialen, 2-aryloxymethyl-1,4-naftochinonen lxa, 2-aryloxymethyl-1,4-benzochinonen lxb of 2-phenoxyethyl-1,4-naftochinon lxc werden bereid door middel van een radicale alkyleringsreactie. Na optimalisatie van de reactieomstandigheden werden $2 H, 3^{\prime} H$-spiro[benzofuraan-3, 2'-naftochinonen] lxi bekomen in matig tot goed rendement wanneer ze in reactie gebracht werden met $10 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 15 \mathrm{~mol} \% 3,5$-dichloorpyridine en $5 \mathrm{~mol} \% \mathrm{TFA}$ in azijnzuur bij $110^{\circ} \mathrm{C}$ gedurende vier dagen. De geoptimaliseerde reactieomstandigheden faalden voor aryloxymethyl-1,4-benzochinonen lxb. 2H,3' H-Spiro[benzofuraan-3,2'-benzochinonen] lxii konden enkel gesynthetiseerd worden door middel van reactie met een volledig equivalent palladium(II) acetaat in kokend azijnzuur in lage rendementen. $3^{\prime} H$-Spiro[chromaan-3, 2^{\prime}-naftaleen]-1', 4^{\prime}-dion lxib werd bereid startende van 2-(2-phenoxyethyl)-1,4-naftochinon lxc in 38% rendement. Geen reactie werd geobserveerd wanneer substraten structureel verwant aan de aryloxymethyl-1,4-naftochinonen lxa zoals 3-methyl-2-fenoxymethyl-1,4-naftochinon, N-mesyl-, N-acyl- of N-benzoyl-2-fenylaminomethyl-1,4-naftochinonen of 2-fenoxymethylchromeen-4-on werden onderworpen aan de geoptimaliseerd spirocyclisatiereactieomstandigheden of reactie met een volledig equivalent palladium(II) acetaat. Een interessante zijreactie was de omlegging van 2-aryloxymethyl-1,4-chinonen lx naar de overeenkomstige 2-(4-hydroxybenzyl)-1,4-chinonen lxiii wanneer ze bij kamertemperatuur in puur trifluorazijnzuur geroerd werden. De gepresenteerde spirocyclisatie is een nieuwe transformatie en leidt tot een heterocyclisch skelet, voorheen ongekend in de literatuur.

Iviii

$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 1: 1,80^{\circ} \mathrm{C}, 1$ u
Ixa, b $34-89 \%(n=1)$, Ixc $11 \%(n=2)$
$\mathrm{R}=\mathrm{H}, \mathrm{Me}$
$\mathrm{X}=\mathrm{H}, \mathrm{Me}, \mathrm{OMe}, \mathrm{CI}, F$

Ixiii 42-74\%

Ixii 7-20\%

Ixia, b 0-71\%

8 References

1 Lautemann, E. Ann. Chem. Pharm., 1863, 125, 9.

4 Luo, S-H.; Liu, Y.; Niu, J. H.; Jing, S-X.; Zhao, X.; Schneider, B.; Gershenzon, J.; Li, S-H. Org. Lett., 2012, 16, 4146-4149.
(a) Zhanga, G.; Hagera, A.; Moosa, M.; Irmera, A.; Bargoub, R.; Chatterjeeb, M. Eur. J. Med. Chem., 2011, 46, 5778-5789. (b) Carr, G.; Derbyshire, E. R.; Caldera, E.; Currie, C. R.; Clardy, J. J. Nat. Prod., 2012, 75, 1806-1809. (c) Ding, Z-G.; Zhao, J-Y.; Li, M-G.; Huang, R.; Li, Qi-M.; Cui, X-L.; Zhu, H-J.; Wen, M-L. J. Nat. Prod., 2012, 75, 1994-1998. (d) Olaoluwa, O. O.; Aiyelaagbe, O. O.; Reid, I. D. Tetrahedron, 2013, in press. (e) Menna, M.; Aiello, A.; D'Aniello, F.; Imperatore, C.; Luciano, P.; Vitalone, R.; Irace, C.; Santamaria, R. Eur. J. Org. Chem., 2013, 16, 3241-3246. (f) Cheng, Y-B.; Jensen, P. R.; Fenical, W. Eur. J. Org. Chem., 2013, 18, 3751-3757. (g) Wang, X.; Shaaban, K. A.; Elshahawi, S. I.; Ponomareva, L. V.; Sunkara, M.; Zhang, Y.; Copley, G. C.; Hower, J. C.; Morris, A. J.; Kharel, M. K.; Thorson, J. S. J. Nat. Prod. 2013, 76, 1441-1447.

9 Brubaker, C. E.; Kissler, H.; Wang, L-J.; Kaufman, D. B.; Messersmith, P. B. Biomaterials, 2010, 31, 420-427.

11 Roy, P. K., Singh, M., Tewari, P. Composition of Henna Powder, Quality Parameters and Changing Trends in its Usage. Henna, Cultivation, Improvement and Trade, 2005, 39-40. Jodhpur, India, Central Arid Zone Research Institute.

Hage, R., Lienke, A. Angew. Chem. Int. Ed., 2005, 42, 206-222.
(a) Hari, L.; De Buyck, L. F.; De Pooter, H. L. Phytochemistry, 1991, 30, 1726-1727. (b) De Kimpe, N.; Van Puyvelde, L.; Schripsema, J.; Erkelens, J.; Verpoorte, R. Magn. Res. Chem., 1993, 31, 329-330.

Medicinal Plants of East-Africa; Kowaro, J. O., Ed; East African Literature Bureau: Dar Es Salaam, 1976, 190.

Kesteleyn, B. 'Synthesis of pyranonaphthoquinones and related naturally occurring heteroanthraquinones', PhD thesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, 1999.

Claesens, S. 'Development of new methods for the synthesis of annulated quinones and quinoid compounds' PhD thesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, 2007.

Jacobs, J. 'New entries to pyranonaphthoquinone and 2-azaanthraquinone antibiotics', PhD thesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University 2009.

Cappoen, D.; Jacobs, J. Nguyen Van, T.; Claessens, S.; Diels, G. Anthonissen, R. Einarsdottir, T. Fauville, M.; Verschaeve, L. Huygen, K; De Kimpe, N. Eur. J. Med. Chem., 2012, 48, 57-68.
(a) Orabi, K.Y.; Li, E.; Clark, A.M.; Hufford, C.D. J. Nat. Prod., 1999, 62, 988-992. (b) Muhammad, I.; Dunbar, D.C.; Takamatsu, S.; Walker, L.A.; Clark, A.M. J. Nat. Prod., 2001, 64, 559-562. (c) Lago, J.H.G.; Chaves, M.H.; Ayres, M.C.C.; Agripino, D.G.; Young, M.C.M. Planta Med., 2007, 73, 292 -295. (d) Peterson, J.R.; Zjawiony, J.K.; Liu, S.; Hufford, C.D.; Clark, A.M.; Rogers, R.D. J. Med. Chem., 1992, 35, 4069-4077.
(a) Huang, C.; Liu, B. Chem. Commun., 2010, 46, 5280-5282. (b) Takenaga, N.; Uchiyama, T.; Kato, D.; Fujioka, H.; Dohi, T.; Kita, Y. Heterocycles, 2011, 82, 1327-1336.

WHO Global tuberculosis report 2012.
Dover, L. G.; Coxon, G. D. J. Med. Chem., 2011, 54, 6157-6165.
Diacon, A. H.; Pym, A.; Grobusch, M.; Patientia, R.; Rustomjee, R.; Page-Shipp, L.; Pistorius, C.; Krause, R.. Bogoshi, M.; Churchyardn, G.; Venter, A.; Allen, J.; Palomino, J. C.; De Marez, T.; van Heeswijk, R. P.; Lounis, N.; Meyvisch, P.; Verbeeck, J.; Parys, W.; de Beule, K.; Andries, K.; Mc Neeley, D. F. N. Engl. J. Med., 2009, 360, 2397-2405.

For reviews on atovaquone, see: (a) Haile, L.G.; Flaherty, J. F. Ann. Pharmacother., 1993 27, 1488-94. (b) Baggish, A. L.; Hill, D. R. Antimicrob.Agents Chem., 2002, 46, 1163-1173

Hughes, W.; Leoung, G.; Kramer, F.; Bozette, S. A.; Safrin, S.; Frame, P.; Clumeck, N.; Masur, H.; Lancaster, D.; Chan, C.; Lavell, J.; Rosenstock, J.; Falloon, J.; Feinber, J.; Lafon, S.; Rogers, M.; Sattler, F. N. Engl. J. Med., 1993, 328, 1521-1527.
(a) Kovacs, J. \& the NIAID Clinical Centre Intramural AIDS Program Lancet, 1992, 340, 637-638. (b) Katlama, C.; Mouthon, B.; Gourdon, D.; Lapierre, D.; Rousseau, F. AIDS, 1996, 10, 1107-1112. (c) Torres, R. A.; Weinberg, W.; Stansell, J.; Leoung, G.; Kovacs, J.; Rogers, M.; Scott, J. Clin. Infect Dis., 1997, 24, 422-429.
(a) Hudson, A. T.; Randal, A. W. Eur. Pat. Appl., 123238, 14 Apr 1984. (b) Hudson, A. T. PCT Int. Appl., 9104021, 26 Oct 1989.

Kumar, A.; Dike, S. Y.; Mathur, P.; Nellithanath, B. T.; Sharma, B.; Kore, S. .; Buchude, V. S. PCT Int. Appl., 2009007991, 15 Jan 2009.
(a) McHardy, N.; Wekesa, L. S.; Hudson, A.T.; Randall, A. W. Res Vet Sci., 1985, 39, 29-33. (b)

Muraguri, G.R.; Kiara, H. K.; McHardy, N. Vet. Parasitol., 1999, 87, 25-37.
Hudson, A. T.; Randall, A. W. Eur. Pat. Appl., 77551, 27 Apr 1983.
(a) Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Pharmacol Rev., 2004, 56, 185-229.
(b) Peng, X;. Chen, B.; Lim, C. C.; Sawyer, D. B. Mol. Interv., 2005, 5, 163-71.

Momparler, R. L.; Karon, M.; Siegel, S. E.; Avila, F. Cancer Res., 1976, 36, 2891-2895.
(a) Tan, C.; Tasaka, H.; Yu, K-P.; Murphy, L.; Karnofsky, D. Cancer, 1967, 20, 333-53. (b) Di Marco, A.; Gaetani, M.; Scarpinato, B. Cancer Chemother. Rep., 1969, 53, 33-7.

Lown, J. W. Pharmacol. Therapeut., 1993, 60, 185-214.
(a) Hortobágyi, G. N. Drugs, 1997, 54, 1-7. (b) Gewirtz, D. A. Biochem. Pharmacol., 1999, 57, 727 -741.

Broadhurst, M. J.; Hassall, C. H.; Thomas, G. J. Tetrahedron, 1984, 40, 4649-4656.
Niraula, N. P.; Kim, S-H.; Sohng, J. K.; Kim, E-S. Appl Microbiol Biotechnol, 2010, 87, 1187-1194.
Weiss, R. B. Semin. Oncol., 1992, 19, 670-86.
Farquhar, D.; Cherif, A.; Bakina, E.; Nelson, J. A. J. Med. Chem., 1998, 41, 965-972.
Adams, N.; Blake, C.; Broadhurst, M. J.; Bushnell, D. J.; Hassall, C. H.; Hartmann, H. R. Keech, E.; Stratton, A. R.; Thomas, G. J. J. Med. Chem., 1990, 33, 2380-2384.
(a) Marshall, V. P.; Reisender, E. A.; Reineke, L. M.; Johnson, J. H.; Wiley, P. F. Biochemistry, 1976, 15, 4139-4145. (b) Johdo, O.; Yoshioka, T.; Naganawa, H.; Takeuchi, T.; Yoshimoto, A. J. Antibiot., 1996, 49, 669-675.
Onrust, S. V.; Lamb, H. M. Drugs Aging, 1999, 15, 69-75.
Altreuter, T. H.; Clark, D. S.; Michels, P. C.; Rich, J. O.; Meckler, H.; Dordick, J. S. PCT Int. Appl., 2003057896, 17 Jul 2003.
Zabudkin, A. F.; Matvienko, V.; Itkin, A. M.; Matveev, A. U.S. Pat. Appl. Publ., US 20070142309 A1 $20070621,2007$.

Bjelogrlic S. K.; Radic, J.; Radulovic, S.; Jokanovic, M.; Jovic, V. Exp. Biol. Med. 2007, 232, 1414 - 1424 .

Murdock, K. C.; Child, R. G.; Fabio, P. F.; Angier, R. B. J. Med. Chem., 1979, 22, 1024-30.
Kapuscinski, J.; Darzynkiewicz, Z. Proc. Natl. Acad. Sci. USA, 1986, 83, 6302-6306.
Scott, L. J.; Figgitt, D. P. CNS Drugs, 2004, 18, 379-396.
Durr, F. E.; Murdock, K. C. U.S.Pat Apl, 4197249, 08 Apr 1980.
Stefanska, B.; Dzieduszycka, M.; Martelli, S.; Tarasiuk, J.; Bontemps-Gracz , M.; Borowski, E. J. Med. Chem., 1993, 36, 38-41.
(a) Fry, D. W.; Boritzki, T. J.; Besserer, J. A.; Jackson, R. C. Biochem. Pharmacol., 1985, 34, 3499 -3508. (b) Judson, I. R. Semin. Oncol., 1992, 19, 687-694.

Showalter, H. D. H.; Johnson, J. L.; Hoftiezer, J. M.; Turner, W. R.; Werbel, L. M.; Leopold, W. R.; Shillis, J. L.; Jackson, R. C.; Elslager, E. F. J. Med. Chem., 1987, 30, 121-131.

Beylin, V. G.; Goel, O. P.; Showalter, H. D. H. U.S. Pat. 4672129, 06 Jun 1987.
Showalter, H. D. H.; Arbor, A.; Johnson, J. L.; Leslie, M. Y.; Werbel, E. F. U. S. Pat. Apl. 4556654, 03

Dec 1985.

Gogas, H.; Mansi, J. L. Cancer Treat. Rev., 1996, 21, 541-52.
Albain, K. S.; Liu P. Y.; Hantel, A.; Poplin, E. A.; O'Toole, R. V; Wade, J. L. $3^{\text {rd }}$; Maddox, A. M.; Alberts, D. S.; Gynecol. Oncol., 1995, 57, 407-11.
(a) Spinelli, S.; Didomenico, R. PCT Int. Appl., 9526189, 05 Oct 1995. (b) Krapcho, A. P.; Petry, M.
E.; Getahun, Z.; Landi, J. J. Jr.; Stallman, J.; Polsenberg, J. F.; Gallagher, C. E.; Maresch, M. J.; Hacker, M. P. J. Med. Chem., 1994, 370, 828-37.
(a) El-Helw, L.M.; Hancock, B.W. Future Oncol., 2009, 5, 445-53. (b) Papadatos-Pastos, D.; Pettengell,
R. Expert Rev. Hematol., 2013, 6, 25-33.
http://www.celltherapeutics.com/pixantrone
http://www.evapharma.com/products/Diacerein-Cap/
Fidelix, T.S.; Soares, B.; Trevisani V., F. M. Diacerein for osteoarthritis. Cochrane Database of Systematic Reviews, 2006, 1. Art. No.: CD005117.
Mao, Y.; Varoglu, M.; Sherman, D. H. J. Bacteriol., 1999, 181, 2199-2208.
(a) Webb, J. S.; Cosulich, D. B.; Mowat, J. H.; Patrick, J. B.; Broschard, R. W.; Meyer, W. E.;

Williams, R. P.; Wolf, C. F.; Fulmor, W.; Pidacks, C. J. Am. Chem. Soc., 1962, 84, 3185-3187. (b)
Webb, J. S.; Cosulich, D. B.; Mowat, J. H.; Patrick, J. B.; Broschard, R. W.; Meyer, W. E.; Williams, R. P.; Wolf, C. F.; Fulmor, W.; Pidacks, C. J. Am. Chem. Soc., 1962, 84, 3187-3188.

Bradner, W. T. Cancer Treat. Rev., 2001, 27, 35-50.
(a) Hornemann, Y.; Kehrer, J. P.; Nunez, C. S.; Ranieri, R. L. J. Am. Chem. Soc., 1974, 96, 320-322.
(b) Anderson, G. M.; Kibby, J. J.; Rickards, R. W.; Rotschild, J. M. J. Chem. Soc., Chem. Commun., 1980, 24, 1277-1278. (c) Varoglu, M.; Mao, Y.; Sherman, D. H. J. Am. Chem. Soc. 2001, 123, 6712 -6713.
Kennedy, K. A.; Rockwell, S.; Sartorelli, A. C. Cancer Res., 1980, 40, 2356-2360.
(a) Hornemann, U.; Ho, Y-K.; Mackey Jr., J. K.; Srivastava, S. C. J. Am. Chem. Soc., 1976, 98, 7069 -7074. (b) Keyes, S. R.; Fracasso, P. M.; Heimbrook, D. C.; Rockwell, S.; Sligar, S. G.; Sartorelli, A. C. Cancer Res., 1984, 44, 5638-5643.

Andrez, J-C. Beilstein J. Org. Chem., 2009, 5, No. 33.
Floss, H. G.; Yu, T-W. Chem. Rev., 2005, 105, 621-635.
(a) DeBoer, C.; Meulman, P.A.; Wnuk, R.J.; Peterson, D.H. J. Antibiot., 1970, 23, 442-447.

Schulte, T. W.; Neckers, L. M. Cancer Chemother. Pharmacol., 1998, 42, 273-279.
Pacey, S.; Gore, M;; Chao, D.; Banerji, U.; Larkin, J.; Sarker, S.; Owen, K.; Asad, Y.; Raynaud, F.; Walton, M.; Judson, I.; Workman, P.; Eisen, T. Invest. New Drugs, 2012, 30, 341-349.

Hong, D. S.; Banerji, U.; Tavana, B.; George, G. C.; Aaron, J.; Kurzrock, R. Cancer Treat. Rev., 2013, 39, 375-387.

Pacey, S.; Wilson, R.H.; Walton, M.; Eatock, M. M.; Hardcastle, A.; Zetterlund, A.; Arkenau, H. T.; Moreno-Farre, J.; Banerji, U.; Roels, B.; Peachey, H.; Aherne, W.; de Bono, J. S.; Raynaud, F.; Workman, P.; Judson, I. Clin Cancer Res., 2011, 15, 1561-70.
Lancet J. E.; Gojo, I.; Burton, M.; Quinn, M.; Tighe, S. M.; Kersey, K.; Zhong, Z.; Albitar, M. X.; Bhalla, K.; Hannah, A. L.; Baer, M. R. Leukemia, 2010, 24, 699-705.

Lee, D.; Lee, K.; Cai, X. F.; Dat, N. T.; Boovanahalli, S. K.; Lee, M.; Shin, J. C.; Kim, W.; Jeong, J. K.; Lee, J. S.; Lee, C-H.; Lee, J-H.; Hong, Y-S.; Lee, J. J. ChemBioChem., 2006, 7, 246-248.
Kilm, W.; Lee, D.; Hong, S. S.; Na, Z.; Shin, J. C.; Roh, S. H.; Wu, C-Z.; Choi, O.; Lee, K.; Shen, Y -M.; Paik, S-G.; Lee, J. J.; Hong, Y-S. ChemBioChem., 2009, 10, 1243-1251.
Wehrli, W.; Staehelin, M. Bacteriol. Rev., 1971, 35, 290-309.
Floss H. G.. Yu T. W. Chem Rev., 2005, 105, 621-632.
Prelog, V. Pure Appl. Chem., 1963, 7, 551-564.
Campbell, E. A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Cell, 2001, 104, 901-12.
Rivkin, A.; Gim, S. Clin. Ther. 33, 2011, 812-827.
Temple, M. E.; Nahata, M. C. Ann. Pharmacother., 1999, 33, 1203-1210.
(a) Sanfilippo, A.; Della Bruna, C.; Marsili, L.; Morvillo, E.; Pasqualucci, C. R.; Schioppacasi, G.; Ungheri, D. J. Antibiot., 1980, 33, 1193-1198.
Guidelines for treatment of tuberculosis, fourth edition, WHO, 2010, ISBN: 9789241547833.
Maggi, N.; Pasqualucci, C. R.; Ballotta, R.; Sensi, P. Chemother., 1966, 11, 285-292.
Maggi, N.; Gallo, G. G.; Sensi, P. Farmaco-Ed. Sci., 1967, 22, 316-322.
Maggi, N.; Arioli, V.; Sensi, P. J. Med. Chem., 1965, 8, 790-793.
Dampier, M. F.; Chen, C-W.; Whitlock Jr., H. W. J. Am. Chem. Soc., 1976, 98, 7064-7069.
Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Keifer, P. A.; Wilson, G. R.; Perun, T. J., Jr.; Sakai, R.; Thompson, A. G.; Sthroh, J. G.; Shield, L. S.; Seigler, D. S.; Li, L. H.; Martin, D. G.;
Grimmelikhuijzen, C. J. P.; Gäde, G. J. J. Nat. Prod., 1990, 53, 771.
Hartley, J. A.; Hochhauser, D. Curr. Opin. Pharmacol., 2012, 12, 398-402.
[No authors listed] Drugs R. D., 2006, 7, 317-328.
D' Incalci, M.; Galmarini, C. M. Mol. Cancer Ther., 2010, 9, 2157-2163.
Cuevas, C.; Perez, M.; Martin ,M. J.; Chicharro, J. L.; Fernandez-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de La Calle, F.; García, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Org. Lett., 2000, 2, 2545-8.
Piel, J. Curr. Med. Chem., 2006, 13, 39-50.
Fishbach, M. A.; Walsh, C. T. Chem. Rev., 2006, 106, 3468-3496.
Sherman, D. H.; Ehrlich, G. D.; Janto, B.; Williams, R. M.; Rath, C. M. PCT Int. Appl., WO 2011130719 A2, 02 Nov 2011.
(a) Pospiech, A.; Cluzel, B.; Bietenhader, J.; Schupp, T. Microbiology, 1995, 141, 1793-1803. (b) Velasco, A.; Acebo, P.; Gomez, A.; Schleissner, C.; Rodríguez, P.; Aparicio, T.; Conde, S.; Muñoz, R.; de la Calle, F.; Garcia, J. L.; Sánchez-Puelles, J. M. Mol. Microbiol., 2005, 56, 144-154. (c) Li, L.;

Deng, W.; Song, J.; Ding, W.; Zhao, Q. F.; Peng, C.; Song, W. W.; Tang, G. L.; Liu, W. J. Bacteriol., 2008, 190, 251-263.

Rath, C. M.; Janto, B.; Earl, J.; Ahmed, A.; Hu, F. Z.; Hiller, L.; Dahlgren, M.; Kreft, R.; Yu, F.; Wolff, J. J.; Kweon, H. K.; Christiansen, M. A.; Håkansson, K.; Williams, R. M.; Ehrlich, G. D.; Sherman, D. H. ACS Chem Biol., 2011, 6, 1244-1256.
(a) Johnson, A.W. Ylid Chemistry, Department of Chemistry, University of Saskatchewan, Regina, Saskatchewan, Canada, Academic Press, New York, 1966, pp. 388. (b) Kröhnke, F. Synthesis, 1976, 124.
(a) Kesteleyn, B.; Van Puyvelde, L.; De Kimpe, N. J. Org. Chem., 1999, 64, 438-440. (b) Jacobs, J.; Claessens, S.; De Mol, E.; El Hady, S.; Minguillon, C.; Alvarez, M.; De Kimpe, N. Tetrahedron, 2010, 66, 5158-5160.
(a) King, L.C.; Ostrum, G. K. J. Org. Chem., 1964, 29, 3459-3461. (b) Aldersley, M.F.; Dean, F.M.; Hamzah, A.S. Tetrahedron Lett., 1986, 27, 255-258.
(a) Kesteleyn, B.; Nguyen Van, T.; De Kimpe, N. Tetrahedron, 1999, 55, 2091-2102. (b) Nguyen Van, T.; Verniest, G.; Claessens, S.; De Kimpe N. Tetrahedron, 2005, 61, 2295-2300. (c) Jacobs, J.; Claessens, S.; Mbala, B. M.; Huygen, K.; De Kimpe, N. Tetrahedron, 2009, 65, 1193-1199
(a) Zhao, S.; Neves, M.G.P.M.S.; Tome, A.C.; Silva, A.M.S.; Cavaleiro, J.A.S. Tetrahedron Lett., 2005, 46, 5487-5490. (b) Liu, Y.; Hu, H.-Y.; Liu, Q.-J.; Hu, H.-W.; Xu, J.-H. Tetrahedron, 2007, 63, 20242033.

Claes, P. 'Nieuwe toetredingen tot heterocyclisch geanneleerde Chinonen', Master thesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, 2008-2009.

Del Villar, I. S.; Gradillas, A.; Domínguez, G.; Pérez-Castells, J. Tetrahedron Lett., 2010, 51, 3095 -3098.

Yadav, L.D.S.; Garima, R.K. Synlett, 2009, 19, 3123-3126.
Claes, P.; Jacobs, J.; Claessens, S.; De Kimpe, N. Tetrahedron, 2010, 66, 7088-7096.
Wang, B-X.; He, T.; Hu, H-W. Huaxue Xuebao, 2003, 61, 889-892, 2003.
Hu, H.; Shi, K.; Hou, R.; Zhang, Z.; Zhu, Y.; Zhou, J. Synthesis, 2010, 23, 4007-4014.
(a) Adib, M.; Mohamadi, A.; Sheikhi, E.; Ansari, S.; Bijanzadeh, H. R. Synlett, 2010, 11, 1606-1608 (b) Proença, M. F.; Costa, M. Tetrahedron, 2010, 66, 4542-4550. (c) Lee, H. S.; Lee, S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett., 2011, 52, 5039-5042. (d) Naskar, S.; Banerjee, M.; Hazra, A.; Mondal, S.; Maity, A.; Paira, R.; Sahu, K. B.; Saha, P.; Banerjee, S.; Mondal, N. B. Tetrahedron Lett., 2011, 52, 1527-1531.

Mattsson, S.; Dahlström, M.; Karlsson, S. Tetrahedron Lett., 2007, 48, 2497-2499.
Paranagama, P. A.; Wijeratne, E. M. K.; Burns, A. M.; Marron, M. T.; Gunatilaka, M. K.; Arnold, A. E.; Gunatilaka, A. A. L. J. Nat. Prod., 2007, 70, 1700-1705.

Opatz, T.; Kolshorn, H.; Eckhard, T.; Anke, H. J. Nat. Prod., 2008, 71, 1973-1976.
(a) Wang, L.; Dong, J. Y.; Song, H. C.; Shen, K. Z.; Wang, L. M.; Sun, R.; Wang, C. R.; Gao, Y. X.; Li, G. H.; Li, L.; Zhang, K. Q.; Planta Med., 2009, 75, 1339-1343. (b) Singh, S. B.; Cordingley, M. G.; Ball, R. G.; Smith, J. L.; Dombrowski, A. W.; Goetz, M. A.; Tetrahedron Lett., 1991, 32, 5279.
(a) Sperry, J.; Yuen, T. Y.; Brimble, M. A.; Synthesis, 2009, 2561-2569. (b) Sperry, J.; Brimble, M. A.; Synlett, 2008, 1910-1912. (c) Brimble, M. A.; Houghton, S. I.; Woodgate, P. D.; Tetrahedron, 2007, 63, 880-887. (d) Bulbule, V. J.; Koranne, P. S.; Deshpandeb, V. H.; Borate, H. B.; Tetrahedron, 2007, 63, 166-170. (e) Sawant, R. T.; Waghmode, S. B.; Tetrahedron, 2009, 65, 1599-1602. (f) Donner, C. D.; Gill, M.; Tetrahedron Lett., 1999, 40, 3921-3924.

Bringmann, G.; Zhang, G;; Hager, A.; Moos, M.; Irmer, A.; Bargou, R.; Chatterjee, M. Eur. J. Med. Chem., 2001, 46, 5778-5789.

McGarrigle, E. M.; Murphy, D. M.; Gilheany, D. G. Tetrahedron-Asymmetr., 2004, 15, 1343-1354.
Tomatsu, A.; Takemura S.; Hashimoto, K.; Nakata, M. Synlett, 1999, 9, 1474-1476.
Nguyen Van, T.; Verniest, G.; Claessens, S.; De Kimpe, N. Tetrahedron, 2005, 61, 2295-2300.
Sibi, M. P.; Dankwardt, J. W.; Snieckus, V. J. Org. Chem., 1986, 51, 271-273.
Mikhaleva, A. I.; Ivanov, A. V.; Skital'tseva, E. V.; Ushakov, I. A.; Vasil'tsov, A. M.;. Trofimov, B. A. Synthesis, 2009, 4, 587-590.

Sörgel, S.; Azap, C.; Reißig, H-U. Eur. J. Org. Chem., 2006, 4405-4418.
(a) Mal, D.; Pahari, P. Chem. Rev., 2007, 107, 1892-1918. (b) Rathwell, K.; Brimble, M. A. Synthesis, 2007, 5, 643-662.

Fairlamb, I. J. S.; Marrison, L. R.; Dickinson, J. M.; Lua, F-J.; Schmidt, J. P. Bioorg. Med. Chem., 2004, 12, 4285-4299.

Wadsworth, A. D.; Sperry, J. Brimble, M. A. Synthesis, 2010, 15, 2604-2608.
Wang, W.; Li, T.; Milburn, R.; Yates, J.; Hinnant, E.; Luzzio, M. J.; Noble, S. A.; Attardo, G. Bioorg. Med. Chem. Lett., 1998, 8, 1579-1 584.

Dong, W-K.; Huang, X.; Xu, D-C.; Lia, X-S.; Xie, J-W. J. Braz. Chem. Soc., 2012, 23, 280-284.
Hawas, U. W.; Shaaban, M.; Shaaban, K. A.; Speitling, M.; Maier, A.; Kelter, G.;Fiebig, H. H.;
Meiners, M.; Helmke, E.; Laatsch, H. J. Nat. Prod., 2009, 72, 2120-2124.
Milanowski, D. J.; Gustafson, K. R.; Kelley, J. A.;McMahon, J. B. J. Nat. Prod., 2004, 67, 7 0-73.
Alagille, D.; Baldwina, R. M.; Tamagnan, G. D. Tetrahedron Lett., 2004, 45, 6179-6181.
Nguyen Van, T.; Verniest, G.; Claessens, S. De Kimpe, N. Tetrahedron, 2005, 61, 2295-2300.
(a) Mal, D.; Ray, S. Eur. J. Org. Chem. 2008, 17, 3014-3020. (b) Wipf, P.; Kim, Y.; Jahn, H. Synthesis, 1995, 12, 1549-1561.
(a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Sugita, K. J. Am. Chem. Soc., 2001, 124, 2212-2220.
(b) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Sugita, K. J. Am. Chem. Soc., 2001, 124, 2221-2232.

Tandon, V. K.; Maurya, H. K. Tetrahedron. Lett., 2009, 50, 5896-5902.
Ott, R.; Pinter, E.; Kajtna, P. Monatsh. Chem., 1979, 110, 51-62.
Bittner, S.; Lempert, D. Synthesis, 1994, 9, 917-919.
(a) Hartwig, J. F.; Kawatsura, M.; Hauck, S. I.; Shaughnessy, K. H.; Alcazar-Roman, L. M. J. Org. Chem., 1999, 64, 5575-5580. (b) Qin, L.; Cui, H.; Zou, D.; Li, J.; Wua, Y.; Zhu, Z.; Wub, Y. Tetrahedron Lett., 2010, 51, 4445-4448.

Xu, H.; Wolf, C. Chem. Commun., 2009, 13, 1715-1717.
(a) Jiang, B.; Huang, Z-G. Synthesis, 2005, 13, 2198-2204. (b) Zhao, J-L.; Liu, L.; Zhang, H-B. Wu, Y-C.; Wang, D.; Chen, Y-J. Synlett, 2006, 1, 96-100. (c) Sakai, N.; Asano, J.; Shimano, Y.;

Konakahara, T. Tetrahedron, 2008, 64, 9208-9215. (d) Kang, Q.; Zhao, Z-A.; You, S-L. Tetrahedron, 2009, 65 1603-1607.

Zhou, Y.; Zhao, M.; Wub, Y.; Li, C.; Wub, J.; Zheng, M.; Peng, L.; Peng, S. Bioorg. Med. Chem., 2010, 18, 2165-2172.
Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shibuya, S. Heterocycles, 1987, 26, 2805-2809.
(a) Kubo, A.; Nakahara, S. Inaba, K.; Kithara, Y. Chem. Pharm. Bull., 1986, 34, 4056-4068. (b) Bracca, A. B. J.; Kaufman, T. S. Eur. J. Org. Chem., 2007, 31, 5284-5293.

Kido, K.; Watanabe, Y. Chem. Pharm. Bull., 1987, 35, 4964-4966.
Beerlink, J. 'Totalsynthese der Mansouramycine AE aus Streptomyces sp. und Rhodiumkatalysierte 1,2 -Additionen an cyclische Enone', $P h D$ thesis, Institute for Organic and Biomolecular Chemistry, Göttingen University, 2008.

Suzuki, H.; Sakai, N.; Iwahara, R.; Fujiwaka, T. Satoh, M.; Kakehi, A.; Konakahara, T. J. Org. Chem., 2007, 72, 5878-5881.
(a) Todorovic, N. Awuah, E.; Albu, S.; Ozimok, C.; Capretta, A. Org. Lett., 2011, 13, 6180-6183. (b) Yang, F.; Zhang, J.; Wu, Y. Tetrahedron, 2011, 67, 2969-2973. (c) Villuendas, P.; Urriolabeitia, E. P. J. Org. Chem., 2013, 78, 5254-5263.

Kirchmeyer, S.; Mertens, A.; Arvanaghi, M.; Olah G. A. Synthesis, 1983, 6, 498-500.
Ahlbrecht, H.; Raab, W. Synthesis, 1980, 4, 320-322.
Itokawa, H.; Ibraheim, Z. Z.; Qiao, Y. F.; Takeya, K. Chem. Pharm. Bull., 1993, 41, 1869-72.
El-Hady, S.; Bukuru, J.; Kesteleyn, B.; Van Puyvelde, L.; Nguyen, V. T.; De Kimpe, N. J. Nat. Prod., 2002, 65, 1377-1379.

Sastry, M. N. V.; Claessens, S.; Habonimana, P.; De Kimpe, N. J. Org. Chem., 2010, 75, 2274-2280.
Habonimana, P.; Claessens, S.; De Kimpe, N. Synlett, 2006, 15, 2472-2475.
Lumb, J-P.; Trauner, D. J. Am. Chem. Soc., 2005, 127, 2870-2871.
Stipanovic, R. D.; Zhang, J.; Bruton, B. D.; Wheeler, M. H. J. Agric. Food Chem., 2004, 52, 4109-4112.
(a) Spreitzer, H.; Holzer, W.; Pushmann, C.; Pichler, A.; Kogard, A.; Tschetschkowitsch, K.; Heinze, T.; Bauer, S.; Shabaz, N. Heterocycles, 1997, 45, 1989-1997. (b) Spreitzer, H.; Pichler, A.; Holzer, W.; Kratzel, M.; Slanz, R.; Koulouri, A.; Krenn, P.; Parrer, U.; Szieber, P. Heterocycles, 1998, 54, 111-121. Adogla, E. A.; Janser, R. F. J.; Fairbanks, S. S.; Vortolomei, C. M.; Meka, R. K.; Janser, I. Tetrahedron Lett., 2012, 53, 11-14.
Sibi, M. P.; Miah, M. A. J.; Snieckus, V. J. Org. Chem., 1984, 49, 737-742.
Lalic, G.; Corey, E. J. Org. Lett., 2007, 9, 4921-4923.
Shanab, K.; Pongprom, N.; Wulz, E.; Holzer, W. Spreitzer, H.; Schmidt, P.; Aicher, B.; Müller, G. Günther, E. Bioorg. Med. Chem. Lett., 2007, 17, 6091-6095.
Haggiage, E.; Coyle, E. E.; Joyce, K.; Oelgemöller, M. Green Chem., 2009, 11, 318-321.
Ripper, J.; Janssen, C.; Jenkins, I.; Le, P. V.; Quin, R. WO2005061484A1, 7 Jul 2005.
Clayden, J.; Stimson, C. C.; Helliwell, M.; Keenan, M. Synlett, 2006, 6, 873-876.
Hartmann, C. E.; Groß, P. J.; Niegerb, M.; Bräsea, S. Org. Biomol. Chem., 2009, 7, 5059-5062.
Minato, A.; Tamao, K.; Hayashi, T.; Suzuki, K.; Kumada, M. Tetrahedron Lett., 1981, 22, 5319-5322.
(a) Markwalder, J. A.; Mutlib, D. D. C. A.; Cordova, B. C.; Klabe, R. M.; Seitz, S. P. Bioorg. Med. Chem. Lett., 2011, 11, 619-622. (b) Couladouros, E. A.; Strongilos, A. T.; Papageorgiou, V. P.; Plyta, Z. F. Chem. Eur. J., 2002, 8, 1795-1803. (c) Nicolaou, K. C.; Xu, H.; Wartmann, M. Angew. Chem. Int. Ed., 2005, 44, 756-761.
(a) Jones, S. S.; Reese, C. B. J. Chem. Soc. Perkin. Trans. I, 1979, 2762-2764. (c) Mulzer, J.; Schöllhorn, B. Angew. Chem. Int. Ed., 1990, 29, 431-432.
Dos Santos, E. d. A.; Beatriz, A.; Pires de Lima, D.; Marques, M. R.; Leite, C. B. Quim. Nova, 2009, 32, 1856-1859.

Aquino-Binag, C.; Kumar, N.; Pigram, P. Org. Prep. Proced. Int., 1995, 27, 700-703.
De Silva, S. O.; Reed, J. N.; Billedeau, R. J.; Wang, X.; Norris, D. J.; Snieckus, V. Tetrahedron, 1992, 48, 4863-4869.
Van Hende, E. 'Synthesis of fluorinated azaheterocyclic compounds', PhD thesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University 2009.

Schuler, M.; Silva, F.; Bobbio, C.; Tessier, A.; Gouverneur, V. Angew. Chem. Int. Ed., 2008, 47, 7927 -7930

Mancuso, R.; Mehta, S.; Gabriele, B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org. Chem., 2010, 75, 897-901.
Nguyen Van, T.; Kesteleyn, B.; De Kimpe, N. Tetrahedron, 2002, 58, 121-127.
Kelley, M. R.; Borch, R. F.; Nyland, R. L. WO2009042544A1, 2 Apr. 2009.
Hotter, G. S.; Collins, D. M. Vet. Microbiol., 2012, 151, 91-98.
(a) Cortez-Escalante, J. J.; Santos, A. M.; Garnica, G. C.; Sarmento, A. L.; Castro, C.N.;Romero, G.A. Rev. Soc. Bras. Med. Trop. 2012, 45, 407-409. (b) Chiodini, R.J.; Chamberlin, W.M.; Sarosiek, J.; McCallum, R.W. Crit. Rev. Microbiol. 2012, 38, 52-93.

Einarsdottir, T.; Huygen, K. Hum. Vaccin. 2012, 7, 1198-1203.
Luo, X.; Pedro, L.; Milic, V.; Mulhovo, S.; Duarte, A.; Duarte, N.; Ferreira, M-J. U. Planta Med., 2012, 78, 148-153.

Rickards, R. W.; Rothschild, J. M.; Willis, A. C.; de Chazal, N. M.; Kirk, J.; Kirk, K.; Saliba, K. J.; Smith, G. D. Tetrahedron, 1999, 55, 13513.
Bernardo, P. H.; Fitriyano, W.; Chai, C. L. L. Synlett, 2007, 12, 1935-1939. (b) Matsumoto, K.; Choshi, T.; Hourai, M.; Zamami, Y.; Sasaki, K.; Abe, T.; Ishikura, M.; Hatae, N.; Iwamura, T.; Tohyama, S.; Nobuhiro, J.; Hibino, S. Bioorg. Med. Chem. Lett., 2012, 22, 4762-4764.

Müller, P.; Venakis, T.; Uegster, C. H. Helv. Chim. Acta, 1979, 62, 2833-2840.
Sirisha, K.; Bikshapathi, D.; Achaiah, G.; Reddy, V. M. Eur. J. Med. Chem., 2011, 46, 1564-157.
Pardo, M.; Joos, K.; Schäfer, W. Liebigs Ann. Chem., 1979, 503-521.
(a) Harayama, T.; Akiyama, T.; Kawano, K. Chem. Pharm. Bull., 1996, 44, 1634-1636. (b) Harayama, T.; Akamatsu, H.; Okamura, K.; Miyagoe, T.; Akiyama, T.; Abe, H.; Takeuchi, Y. J. Chem. Soc., Perkin Trans. 1, 2001, 5, 523-528. (c) Bernardo, P. H.; Khanijou, J. K..; Lam, T. H.; Tong, j. C.; Chai, C. L. L. Tetrahedron Lett. 2011, 52, 92-94.

Bernardo, P. H.; Khanijou, J. K.; Lam, T. H.; Tong, J. C.; Chai, C. L. L. Tetrahedron Lett., 2011, 52, 92-94.

Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc., 2005, 127, 13754-13755.
García-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc., 2006, 128, 1066-1067.

Iino, T.; Asai, M.; Ohno, A.; Inamura, S.; Ishikawa, M.; Ohtake, N. WO2010024110A1, 4 Mar 2010.
Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, N. Org. Lett., 2008, 10, 1759-1762.
(a) Kawanaka, Y.; Kobayashi, K.; Kusuda, S.; Tatsumi, T.; Murota, M.; Nishiyama, T.; Hisaichi, K.; Fujii, A.; Hirai, K.; Naka, M.; Komeno, M.; Nakai, H.; Toda, M. Eur. J. Med. Chem., 2003, 38, 277 -288. (b) Szostak, M.; Yao, L.; Aubé, J. J. Am. Chem. Soc., 2010, 132, 2078-2084.

Orito, K.; Miyazawa, M.; Kanbayashi, R.; Tatsuzawa, T.; Tokuda, M.; Suginome, H. J. Org. Chem., 2000, 65, 7495-7500.

Pasturel, J. Y.; Solladie, G.; Maignan, J. Fr. Demande, FR 2833259 A1 20030613, 2003.
Guillier, F.; Nivoliers, F.; Godart, A.; Marsais, F.; Quéguiner, C.; Siddiqui, M. A.; Snieckus, V. J. Org. Chem., 1995, 60, 292-296.
(a) Hendrickson, J. B.; Bergeron, R. Tet. Lett., 1973, 46, 4607-4610. (b) Rudyanto, M.; Yuichiro T., Morita, H.; Honda, T. Org. Lett., 2008, 10, 1921-1922.
(a) Xiao, K-J.; Luo, J-M.; Ye, K-Y.; Wang, Y.; Huang, P-Q. Angew. Chem. Int. Ed., 2010, 49, 3037 -3040. (b) Xiao, K-J.; Wang, Y.; Ye, K-Y.; Huang, P-Q. Chem. Eur. J., 2010, 16, 12792 - 12796. (c) Xiao, K-J.; Wang, A-E.; Huang, P-Q. Angew. Chem. Int. Ed., 2012, 51, 8314 -8317.

Krapcho, P. A. Eur. Pat. Appl., EP 503537 A1 19920916, 1992.
(a) Cheng, D.; Han, D.; Gao, W.; Jiang, J.; Pan, S.; Wan, Y.; Jin, Q. PCT Int. Appl., 2008014291, 31 Jan 2008. (b) Baroni, M.; Bono, F.; Delbary-Gossart, S.; Vercesi, V. PCT Int. Appl., 2011080445, 07 Jul 2011.
(a) Bredereck, H.; Bredereck, K. Chem. Ber., 1961, 94, 2278-2295. (b) Kelley, C.; Zhang, Y.; Parhi, A.; Kaul, M.; Pilch, D. S.; LaVoie, E. J. Bioorg. Med. Chem., 2012, 20, 7012-7029.
Verniest, G.; Wang, X.; De Kimpe, N.; Padwa, A. J. Org. Chem., 2010, 75 424-433.
O'Connor, S. J.; Newcom, J. S.; Ralbovsky, J. L.; Gustafson, G. R.; Beckett, R. P.; Luo, R. X. PCT Int. Appl., 2010068520, 17 Jun 2010.
Sun, G.; Slassi, M.; Isaac, M.; Quach, T.; Xin, T.; He, Z. PCT Int. Appl., 2008009125, 24 Jan 2008.
Croisy-Delcey, M.; Carrez, D.; Bisagni, E. Eur. J. Med. Chem., 1988, 23, 101-103.
Hsu, D-S.; Huang, J-Y. J. Org. Chem., 2012, 77, 2659-2666.
Yongzhi, L.; Binke, N.; Mingjiu, L.; Lieping, W.; Zongying, L.; Chao, X.; Cheng X.; Yuemei, W.; Kangyun, L.; Qiaonan, S.; Jianping, Z. Faming Zhuanli Shenqing, 101863859, 20 Oct 2010. Karthikeyan, J.; Haridharan, R.; Cheng, C-H. Angew. Chem. Int. Ed., 2012, 51, 12343 -12347.
(a) Kobayashi, K.; Uchida, M.; Uneda, T.; Tanmatsu, M.; Morikawa, O.; Konishi, H. Tetrahedron Lett., 1998, 7725-7728. (b) Kobayashi, K.; Uchida, M.; Uneda, T.; Yoneda, K.; Tanmatsu, M.; Morikawa, O.; Konishi, H. J. Chem. Soc., Perkin Trans 1, 2001, 2977-2982.
(a) Jacobs, J.; Kesteleyn, B.; De Kimpe, N. Tetrahedron, 2008, 64, 4985-4992. (b) (b) Jacobs, J.; Kesteleyn, B.; Mbala, B. M.; Diels, G.; De Kimpe, N. Tetrahedron, 2008, 64, 6364-6371.
Kobayashi, K.; Takanohashi, A.; Watanabe, T.; Morikawa, O.; Konishi, H. Tetrahedron Lett., 2000, 7657-7660.

Schmid, G. H.; Rabai, J. Synthesis, 1998, 332-33.
Nyland II, R. L.; Luo, M.; Kelley, M. R.; Borch, R. F. J. Med. Chem., 2010, 53, 1200-1210.
Holvoet, F. 'Synthese van nieuwe 8,9,10,11-tetrahydrobenzo[j]fenantridine derivaten', Masterthesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University 2013.

Enzensperger, C.; Lehmann, J. J. Med. Chem., 2006, 49, 6408-6411.
(a) Ortoleva, G. Gazz. Chim. Ital., 1899, 29, 503. (b) King, L. C. J. Am. Chem. Soc., 1944, 66, 894-895.
(a) Masuda, Y.; Hoshi, M.; Yamada, T.; Arase, A. Chem. Commun., 1984, 398-399. (b) Burden, P. M.; Allan, R. D.; Hambley, T.; Johnston, G. A. R. J. Chem. Soc., Perkin Trans 1, 1998, 3163-3169.
(a) RajianBabu, T. V. (B.); Casalnuovo, A. L. Pure Appl. Chem., 1994, 66, 1535-1542. (b) Yan, M.; Xu, Q-Y.; Chan, A. S. C. Tetrahedron-Asymmetr., 2000, 11, 845-849. (c) Falk, A.; Göderz, A-L.; Schmalz, H-G. Angew. Chem. Int. Ed., 2013, 52, 1576 -1580.
(a) Brown, H. C.; Joshi, N. N.; Pyun, C.; Singaram, B. J. Am. Chem. Soc., 1989, 111, 1754-1758. (b) Clay, J. M.; Vedejs, E. J. Am. Chem. Soc., 2005, 127, 5766-5767.
(a) Valderrama, J. A.; Araya-Maturana, R.; Gonzáles, F.; Tapia, R.; Fariña, F.; Paredes, M. C. J. Chem. Soc. Perkin Trans 1, 1991, 555-559. (b) Valderrama, Jaime A.; González, M. Florencia; Colonelli, Pamela; Vásquez, David Synlett, 2006, 17, 2777-2780. (c) Valderrama, J. A.; Colonelli, P.; Vásquez, D.; Florencia González, M.; Rodríguez, J. A.; Theoduloz, C. Bioorg. Med. Chem., 2008, 16, 10172 -10181. (d) Iribarra, J.; Vásquez, D.; Theoduloz, C.; Benites, J.; Ríos, D.; Valderrama, J. Molecules, 2012, 17, 11616-11629.
(a) Du, H.; Zhao, B.; Shi, Y. Org. Synth., 2009, 86, 315-324. (b) Matsievitch, R.; Tworowski, D. PCT Int. Appl., 2007110868, 04 Oct 2007.
(a) Nayak, M. K.; Chakraborti, A. K. Tetrahedron Lett., 1997, 38, 8749-8752 (b) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J. Org. Chem., 2002, 67, 6406-6414. (c) Mazzini, F.; Galli, F.; Salvadori, P. Eur. J. Org. Chem., 2006, 24, 5588-5593.

Sparrow, K.; Barker, D.; Brimble, M. A. Tetrahedron, 2012, 68, 1017-1028.
Pralay, D.; Dharminder, S.; Bikram, S. PCT Int. Appl., 2011117881, 29 Sep 2011.
(a) Waterman, P.G.; Muhammad, I. Phytochemistry 1985, 24, 523-527. (b) Rao, J.U.M.; Giri, G.S.; Hanumaiah, T.; Rao, K.V.J. J. Nat. Prod., 1986, 49, 346-347.
Okunade, A.L.; Elvin-Lewis, M.P.R., Lewis, W.H. Phytochemistry, 2004, 65, 1017-1032.
Bracher, F. Liebigs Ann. Chem., 1989, 87-88.
Yin, H.; Kong, F.; Wang, S.; Yao, Z-J Tetrahedron Lett., 2012, 53, 7078-7082.
Mbala, B. M. 'Synthesis of quinoid natural products and their analogues', PhD thesis, Department of Sustainable Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, 2011.
Jacobs, J.; Claessens, S.; Mbala, B. M.; Huygen, K. H.; De Kimpe, N. Tetrahedron, 2009, 65, 1193 -1199.

Finkelstein, J.; Linder, S. M. J. Am. Chem. Soc., 1951, 73, 302-304.
Claes, P.; Cappoen, D.; Mbala, B. M.; Jacobs, J.; Mertens B.; Mathys, V.; Verschaeve, L.; Huygen, K.; De Kimpe, N. Eur. J. Med. Chem. 2013, 67, 98-110.

Copp, B. R.; Christiansen, H. C.; Lindsaya, B. G.; Franzblaub, S. G. Bioorg. Med. Chem. Lett. 2005, 15, 4097-4099
(a) Kesteleyn, B.; Van Puyvelde, L.; De Kimpe N. J. Org. Chem., 1999, 64, 1173-1179. (b) Kesteleyn, B.; De Kimpe N. J. Org. Chem., 2000, 65, 635-639. (c) Kesteleyn, B.; De Kimpe N. J. Org. Chem., 2000, 65, 640-644. (d) Nguyen Van, T.; De Kimpe, N. Tetrahedron, 2003, 59, 5941-5946. (e) Claessens, S.; Jacobs, J.; Van Aeken, S.; Abbaspour Tehrani, K.; De Kimpe, N. J. Org. Chem., 2008, 73, 7555-7559.
(a) Itahara, T. J. Org. Chem., 1985, 50, 5546-5550. (b) Singh, P. K.; Rohtagi, B. K.; Khanna, R. N. Synth. Commun., 1992, 22, 987-993. (c) Yogo, M.; Ito, C. Furukawa, H. Chem. Pharm. Bull., 1991, 39, 328-334.
(a) Huang, C.; Liu, B. Chem. Commun., 2010, 46, 5280-5282. (b) Takenaga, N.; Uchiyama, T.; Kato, D.; Fujioka, H.; Dohi, T.; Kita, Y. Heterocycles, 2011, 82, 1327-1336.

Jacobsen, N.; De Franco, R. J.; Benson, R. E. Org. Synth., 1977, 56, 68-71.
(a) Goto, M.; Hayashi, T.; Goda, K.; Okada, Y. Nippon Kagaku Kaishi, 1986, 8, 1096-1101. (b) Kuntz, E.; Amgoune, A.; Lucas, C.; Godard, G. J. Mol. Cat. A. Chem., 2006, 244, 124-138. (c) Pincock, A. L.; Pincock, J. A.; Stefanova, R. J. Am. Chem. Soc., 2002, 124, 9768-9778.
(a) Rao, M. L. N.; Giri, S. RSC Advances, 2012, 2, 12739-12750. (b) Moon, Y.; Hong, S. Chem. Commun., 2012, 48, 7191-7193. (c) Zhao, Y.; Zhang, Y.; Wang, J.; Li, H.; Wu, L.; Liu, Z. Synlett, 2010, 15, 2352-2356. (c) Molina, M. T.; Navarro, C.; Moreno, A.; Csákÿ, A. G. Org. Lett., 2009, 11, 4938-4941. (d) Knölker, H.-J.; Reddy, K. R. Heterocycles, 2003, 60, 1049-1052.
(a) Ferreira, E. M.; Stolz, B. M. J. Am. Chem. Soc., 2003, 125, 9578-9578. (b) Zhang, H.; Ferreira, E. M.; Stolz, B. M. Angew. Chem. Int. Ed., 2004, 43, 6144-6148.

Li, G.; Leow, D.; Wan, L.; Yu, J-Q. Angew. Chem. Int. Ed., 2013, 52, 1245-1247.
(a) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution; Butterworths: London, 1965, 141-183. (b) Rogne, O. J. Chem. Soc., Perkin Trans. 2, 1972, 489-492. (c) Ramsey, B. G.; Walker, F. A. J. Am. Chem. Soc., 1974, 96, 3314-3316. When no pKa reference could be found, a value was calculated using MarvinSketch 6.0.
(a) Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc., 2010, 132, 11978-11987. (b) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc., 2007, 129, 11904-11905. (c) Albéniz, A. C.; Espinet, P.; Martín-Ruiz, B. Chem. Eur. J., 2001, 7, 2481-2489. (d) Bäckvall, J.-E.; Byström, S. E.; Nordberg, R. E. J. Org. Chem., 1984, 49, 4619-4631.
(a) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc., 2001, 123, 5816-5817. (b) Albéniz, C. A.; Catalina, M. M.; Espinet, P.; Redón, R. Organometallics, 1999, 18, 5571.

Lyons, T. W.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc., 2011, 133, 4455-4464.
(a) Izawa, Y.; Zheng, Z.; Stahl, S. S. Angew. Chem. Int. Ed., 2013, 52, 3672-3675. (b) Jana, R.; Pathak, T. P.; Jensen, K. H.; Sigman, M. S. Org. Lett., 2012, 14, 4074-4077. (c) Zheng, C.; Wang, D.; Stahl, S. S. J. Am. Chem. Soc., 2012, 134, 16496-16499. (d) Pathak, T. P.; Gligorich, K. M.; Welm, B. E.; Sigman, M. S. J. Am. Chem. Soc., 2010, 132, 7870-7871. (e) Andappan, M. M. S.; Nilsson, P.; Larhed, M. Chem. Commun., 2004, 2, 218-219.

Bailey, W. F.; Punzalan, E. R. J. Org. Chem., 1990, 55, 5404-5406.

Yang, C-T.; Zhang, Z-Q.; Tajuddin, H.; Wu, C-C.; Liang, J.; Liu, J-H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T. B.; Liu, L. Angew. Chem. Int. Ed., 2012, 51, 528-532.

Veguillas, M.; Redondo, M. C.; García, I.; Ribagorda, M.; Carreño, M. C. Chem. Eur. J., 2010, 16, 3707-3719.
(a) Netherton, M. R;; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc., 2001, 123, 10099-10100. (b) Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc., 2002, 124, 13662-13663. (c) Sato, B.; Fu, G. C. J. Am. Chem. Soc., 2007, 129, 9602-9603.

Kim, J. G.; Walsh, P. J. Angew. Chem. Int. Ed., 2006, 45, 4175-4178.
Schläger, T.; Oberdorf, C.; Tewes, B.; Wünsch, B. Synthesis, 2008, 11, 1788-1792.
(a) Solodukhin, S. Y.; Peregudov, A. S.; Vorontsov, E. V.; Chkanikov, N. D. Molecules, 2004, 9, 164 -169. (b) Nadaraj, V.; Selvi, S. T. Indian J. Chem., 2007, 46B, 1203-1207.
Bolognesi, M. L.; Lizzi, F.; Perozzo, R.; Brunc, R.; Cavalli, A. Bioorg. Med. Chem. Lett., 2008, 18, 2272-2276.

Martínez, A.; Fernándeze, M.; Estévez, J. C.; Estévez, R. J.; Castedo, L. Tetrahedron, 2005, 61, 1353 -1362.
(a) Copéret, C.; Adolfsson, H.; Chiang, J. P.; Yudin, A. K.; Sharpless, K. B. Tetrahedron Lett., 1998, 39, 761-764. (b) Copéret, C;; Adolfsson, H.; Tinh-Alfredo, V. K.; Yudin, A. K.; Sharpless, K. B. J. Org. Chem., 1998, 63, 1740-1741.

Burchat, A. F.; Chong, M. J.; Nielsen, N. J. Organometal. Chem., 1997, 542, 281-238.
Gaudry, M.; Marquet, A. Org. Synth., Coll. Vol. 6, 1988, 55, 193.
Claes, P.; Jacobs, J.; Claessens, S.; De Kimpe, N. Tetrahedron, 2010, 66, 7088-7096.
Barker, D.; Brimble, M. A.; Do, P.; Turner, P. Tetrahedron, 2003, 59, 2441-2449.
Nicolaou, K. C.; Lim, Y. W.; Piper, J. L.; Papageorgiou, C. D. J. Am. Chem. Soc., 2007, 129, 4001 -4013.

Jacobs, J.; Van Hende, E.; Claessens, S.; De Kimpe, N. Curr. Org. Chem., 2011, 15, 1340-1362.
Jacobsen, N.; Torssell,K. Liebigs Ann. Chem., 1972, 763, 135-147.
Aldersly, M. F.; Chishti, S. H.; Dean, F. M.; Douglas, M. F.; Ennis, D. S. J. Chem. Soc. Perkin Trans. 1, 1990, 8, 2163-2174.

Guryar, M. K.; Bagavant, G. Curr. Sci. India, 1978, 47, 683-4.

Curriculum Vitae

Pieter Claes

1 Personal data

Address
Gsm
E-mail
Date of birth

Rijkeklarenstraat 20, 9050 Gentbrugge
+32 497320829
pieterclaes01@yahoo.com
June 1, 1986

2 Education

September 2004 - June 2009 Master in bioscience engineering: chemistry and bioprocess technology (great distinction), Ghent University.

July 2008 - June 2009 Master thesis: 'Nieuwe toetredingen tot pyranonaftochinonen en 2-azaantrachinonen.' Promoter: Prof. Dr. ir. Norbert De Kimpe.

February 2008 - July 2008 Erasmus: Ingénieur chimiste, option Chimie Organique Fine, Ecole Nationale Supérieure de Chimie de Montpellier, France.

3 Experience

August 2009 -September 2013 Doctoral research: 'Synthesis of heterocyclic annulated quinones and quinoid compounds’. Ghent University. Promoter: Prof. Dr. ir. Norbert De Kimpe.

2011-2013 Tutoring of a master thesis and a PhD student.
Januari 2012 General Information cycle: overall picture of the international cooperation, Belgian Technical Cooperation (BTC), Brussels.

June 2008 - July 2008 Internship at the Institut Européen des Membranes (IEM), Montpellier.
August - September 2008 Internship at Belgomilk Kallo.

4 Scientific activities

Courses and passive conference participations

3-4 December $200913^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting, Spa, Belgium.
January 2010 - April 2010 Course 'Medicinal Chemistry Course and Introduction to the European Patent System', Dr. Lieven Meerpoel, Head of Medicinal Chemistry, Oncology (Janssen Research \& Development) and Prof. Wim De Borggraeve (KUL), Leuven, Belgium.

2-3 December $201014^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting, Spa, Belgium.
12-14 September 2011 Summer school 'Homogeneous catalysis and Fine Chemicals', Antwerp University, Belgium.

6-7 December $201216^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting, Spa, Belgium.

Poster presentations

11-16 July 2010 Claes, P.; Jacobs, J.; Claessens, S.; De Kimpe, N. 'Short synthesis of functionalized pentalongin derivatives using pyridinium ylid chemistry', $12^{\text {th }}$ Belgium Organic Synthesis Symposium, Namur, Belgium.

1-2 December 2011 Claes, P.; Jacobs, J.; Kesteleyn, B.; Nguyen Van, T.; De Kimpe, N. 'Palladium catalysed synthesis of $2^{\prime} H, 3 H$-spiro[benzofuran- $3,2^{\prime}$-quinones]', $15^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting, Spa, Belgium.

20-22 February 2012 Claes, P.; Mbala, B. M.; Jacobs, J.; Cappoen, D.; Huygen, K.; Verschaeve, L.; Nguyen Van, T.; De Kimpe, N. 'Synthesis and biological evaluation of benzo[j]phenantridine-7,12diones as anti-tuberculosis agents', $2^{\text {nd }}$ International Conference on Pharmaceutics \& Novel Drug Delivery Systems, San Francisco, U.S.

15-20 July 2012 Claes, P.; Cappoen, D.; Jacobs, J.; Huygen, K. Verschaeve, L.; Nguyen Van, T.; De Kimpe, N. 'Synthesis and biological evaluation of new 2-azaanthraquinone derivatives as antituberculosis agents', $13^{\text {th }}$ Belgium Organic Synthesis Symposium, Namur, Belgium.

Peer-reviewed SCI-papers

Claes, P.; Jacobs, J.; Claessens, S.; De Kimpe, N. 'Short synthesis of functionalized pentalongin derivatives using pyridinium ylid chemistry', Tetrahedron, 2010, 66, 7088-7096. (IF 2012 2.80)

Mbala, B. M.; Jacobs, J.; Claes, P.; Mudogo, V.; De Kimpe, N. 'Investigation towards an efficient synthesis of benzo[g]isoquinoline-1,5,10(2H)-triones', Tetrahedron, 2011, 67, 8747-8756. (IF 2012 2.80)

Nguyen Van, T.; Claes, P.; De Kimpe, N. 'Synthesis of functionalized diketopiperazines as cyclotryprostatin and tryprostatin analogues', Synlett, 2013, 24, 1006-1010. (IF 2012 2.66)

Claes, P.; Cappoen, D.; Mbala, B. M. Jacobs, J.; Mertens, B.; Mathys, V.; Verschaeve, L.; Huygen, K.; De Kimpe, N. 'Synthesis and anti-mycobacterial activity of analogues of the bio-active natural products sampangine and cleistopholine' Eur. J. Med. Chem., 2013, 67, 98-110. (IF 2012 3.50)

Claes, P.; Jacobs, J.; Kesteleyn, B.; Nguyen Van, T.; De Kimpe, N. 'Palladium(II)-catalyzed synthesis of $2 \mathrm{H}, 3^{\prime} \mathrm{H}$-spiro[benzofuran-3,2'-naphthoquinones]' J. Org. Chem., 2013, 78, 8330-8339. (IF 2012 4.56)

Nguyen Van, T.; Claes, P.; De Kimpe, N. 'Synthesis of hexahydropyrazino[1,2-b]isoquinolines as simplified saframycin analogues', Synlett, accepted for publication. (IF 2012 2.66)

Submitted papers

Claes, P.; Cappoen, D.; Uythethofken, C.; Jacobs, J.; Mertens, B.; Mathys, V.; Verschaeve, L.; Huygen, K.; De Kimpe, N. '2,4-dialkyl-8,9,10,11-tetrahydrobenzo[g]pyrimido[4,5-c]isoquinoline-1,3,7,12(2H,4H)-tetraones as new leads against Mycobacterium tuberculosis.' Submitted to Eur. J. Med. Chem. (IF 2012 3.50)

[^0]:
 $23 R=M e$ Cleistopholine MIC $=12.5 \mu \mathrm{~g} / \mathrm{ml}$
 398 R = Et MIC $=12.5 \mu \mathrm{~g} / \mathrm{ml}$

 24 Sampangine: $R^{1}=R^{2}=R^{3}=H, M I C=0.78$ $\mu \mathrm{g} / \mathrm{ml}$
 399a $R^{1}=R^{3}, R^{2}=B r, M I C=3.12 \mu \mathrm{~g} / \mathrm{ml}$
 399b $R^{1}=O E t, R^{2}=B r, R^{3}=\mathrm{Br}, \mathrm{MIC}=25 \mu \mathrm{~g} / \mathrm{ml}$
 399c $R^{1}=R^{3}, R^{2}=C I, M I C=3.12 \mu \mathrm{~g} / \mathrm{ml}$
 399d $R^{1}=R^{3}, R^{2}=\mathrm{OCH}_{3}, \mathrm{MIC}=3.12 \mu \mathrm{~g} / \mathrm{ml}$
 399d $R^{1}=R^{2}, R^{3}=\mathrm{OCH}_{3}, \mathrm{MIC}=1.56 \mu \mathrm{~g} / \mathrm{ml}$
 399e $R^{1}=R^{2}, R^{3}=C H_{3}, \mathrm{MIC}=0.39 \mu \mathrm{~g} / \mathrm{ml}$

