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Abstract. The existence of distributional chaos and distributional irregular vectors has been re-

cently considered in the study of linear dynamics of operators and C0-semigroups. In this paper we
extend some previous results on both notions to sequences of operators, C0-semigroups, C-regularized

semigroups, and α-times integrated semigroups on Fréchet spaces. We also add a study of rescaled

distributionally chaotic C0-semigroups. Some examples are provided to illustrate all these results.

1. Introduction

Among the different topological notions that describe the dynamics of linear operators, in the
last years the one of distributional chaos has been widely studied. Schweizer and Smı́tal introduced
distributional chaos for interval maps in [52]. Its goal was to extend the definition of chaos in the sense
of Li and Yorke in order that it was equivalent to positive topological entropy. Distributional chaos
was firstly considered in the setting of linear operators when studying a quantum harmonic oscillator
[29, 51]. Later, a systematic study of distributional chaos for backward shifts operators was initiated
in [47], providing later an example of a backward shift operator with a full scrambled set in [48].

The extension of distributional chaos to C0-semigroups was done in [9], where it was studied for the
translation C0-semigroup on weighted spaces of integrable functions, and in [1], where some sufficient
criteria in terms of the infinitesimal generator were provided. This has permitted to find distributional
chaos in phenomena described by drift-diffusion equations with inward streaming [28], such as the ones
modeled by an Ornstein-Uhlenbeck operator [20], or by forward and backward control processes [8],
see also [6].

Devaney chaos can appear in linear spaces provided that there exists a vector with dense orbit
(hypercyclicity) and a dense set of periodic points. Devaney and distributional chaos are closely
tied for C0-semigroups: If chaos in the sense of Devaney is obtained as an application of the Desch-
Schappacher-Webb criterion [28] to the infinitesimal generator of the C0-semigroup, then distributional
chaos can be also obtained, see [12, Cor. 31] and [7, Rem. 3.8].

On the one hand, the question whether all the non-trivial operators of a C0-semigroup inherit its
dynamical behaviour has been considered in linear dynamics with different success: for hypercyclicity,
frequent hypercyclicity, and distributional chaos the answer is affirmative [1, 22], however it is negative
in the case of Devaney chaos [10].

In this line, it was studied in [24] if a C0-semigroup holds the Hypercyclicity Criterion, then this
dynamics is inherited by arbitrary sequences of its operators. Such analysis was inspired by the
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extension of this criterion to the case of a hypercyclic sequence of commuting operators with dense
range [19], see also [13, 15]. However, some results for distributionally chaotic sequences of operators
have not been stated yet.

On the other hand, Devaney chaos was considered for unbounded differentiation operators in [18]
and for C0-semigroups of unbounded operators in [26]. We will complement this results with the study
od the notion of distributional chaos not only for C0-semigroups, but also for integrated senigroups
of linear operators.

In this paper we consider the study of distributional chaos on Fréchet spaces. We extend some
previous results in [1, 17] to the case when dealing with operators between two different Fréchet
spaces (Section 2). We also present the extensions of some results to the case of C0-semigroups
between Fréchet spaces and we show some results related to rescaled distributionally chaotic C0-
semigroups defined on Fréchet spaces (Section 3). Later on, the study of distributional chaos for
α-times integrated C-semigroups (Section 4). Along all the paper we present some examples that
illustrate the results.

2. Preliminaries

2.1. Notation. In this section we present some definitions and preliminary results that will be needed
to follow further discussions in the paper. Unless it was explicitly mentioned, we will assume that X is
an infinite-dimensional separable Fréchet space over the field K ∈ {R,C} and we denote its topological
dual by X∗.

The topology of X will be induced by the fundamental system (pn)n∈N of increasing seminorms
that yields the translation invariant metric d : X ×X → R+

0 defined by

(1) d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, for all x, y ∈ X,

This metric satisfies the following properties:

(2) d(x+ u, y + v) ≤ d(x, y) + d(u, v), x, y, u, v ∈ X,

(3) d(cx, cy) ≤ (|c|+ 1)d(x, y), c ∈ K, x, y ∈ X,

and

(4) d(αx, βx) ≥ |α− β|
1 + |α− β|

d(0, x), x ∈ X, α, β ∈ K.

Given an arbitrary ε > 0 we define the ball of center 0 and radius ε as Bd(0, ε) := {x ∈ X : d(x, 0) <
ε}. In the case that (X, ‖ · ‖) is a Banach space, then we will assume that the distance between two
elements x, y ∈ X is given by d(x, y) := ‖x−y‖. By L(X) we denote the space of all continuous linear
mappings from X into X. Let B be a fundamental family of bounded subsets of X. For every n ∈ N,
B ∈ B let us define the continuous seminorm pn,B(T ) := supx∈B pn(Tx) on L(X). Then the system
of continuous seminorms (pn,B)(n,B)∈N×B induces the Hausdorff locally convex topology on L(X).

2.2. Distributional chaos for single operators. A sequence of operators (Tk)k∈N ⊆ L(X) is said
to be universal if there exists some x ∈ X such that {Tkx : k ≥ 0} is dense in X. When Tk := T k for
some T ∈ L(X) and for all k ∈ N, we say that T is hypercyclic. In this case, the set {T k(x) : k ≥ 0}
is known as the orbit of the element x by the operator T . The connections between both notions
have been extensively reported on [36]. An element x ∈ X is a periodic point for the operator T if
there exists n0 ∈ N such that Tn0x = x. An operator T is called Devaney chaotic if it is hypercyclic
and the set of periodic points is dense in X. For further information on linear dynamics we refer the
reader to [11, 37], see also [16]. Another dynamical properties related to C0-semigroups are frequent
hypercyclicity, topological transitivity and mixing ( for more details see [37]).
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Distributional chaos requires a quite complicated statistical dependence between orbits of a given
set, since they have to be proximal but not asymptotic. For this purpose, we recall that the upper
density of a set Γ ⊆ N is defined by

(5) dens(Γ) := lim sup
n→+∞

card(Γ ∩ {0, 1, . . . , n− 1})
n

,

where card denotes the usual cardinality of a subset Γ ⊆ N.
An operator T on X is said to be distributionally chaotic if there exist an uncountable set S ⊆ X

and σ > 0 such that for each ε > 0 and for each pair x, y ∈ S of distinct points we have that

(6) dens({n ∈ N : d(Tnx, Tny) ≥ σ}) = 1 and

(7) dens({n ∈ N : d(Tnx, Tny) < ε}) = 1,

see for instance [9, 17, 47]. If, moreover, we can choose S to be dense in X, then T is said to be
densely distributionally chaotic. The question whether T is distributionally chaotic or not is closely
connected with the existence of distributionally irregular vectors, i.e., those elements x ∈ X such that
for each σ > 0 we have that

(8) dens({n ∈ N : d(Tnx, 0) > σ}) = 1, and

(9) dens({n ∈ N : d(Tnx, 0) < σ}) = 1,

see more details in [12, 17].

2.3. Distributional chaos for C0-semigroups. We recall that (T (t))t≥0, with T (t) ∈ L(X) for
each t ≥ 0, is a C0-semigroup if T (0) = I, T (t+s) = T (t)T (s) and lims→t T (s)x = T (t)x for all x ∈ X
and t ≥ 0. Given an arbitrary C0-semigroup (T (t))t≥0 on X, it can be shown that

(10) Ax := lim
t→0

T (t)x− x
t

exists on a dense subspace of X. The set of these x is the domain of A, that it is denoted by
D(A). Then A, or rather (A,D(A)), is called the infinitesimal generator of the semigroup (T (t))t≥0.
Moreover T (t)(D(A)) ⊂ D(A) with AT (t)x = T (t)Ax, for every t ≥ 0 and x ∈ D(A). Another
important property is provided by the point spectral mapping theorem for C0-semigroups. If X is a
complex Fréchet space then, for every x ∈ X and λ ∈ C,

(11) Ax = λx⇒ T (t)x = eλtx

for every t ≥ 0. Further information on C0-semigroups can be found in [32, 54] on Banach spaces and
in [27, 41] on locally convex spaces.

We recall that a C0-semigroup (T (t))t≥0 on X is said to be hypercyclic if there exists x ∈ X such
that the set {T (t)x : t ≥ 0} is dense in X. An element x ∈ X is a periodic point for the semigroup
if there exists t > 0 such that T (t)x = x. A C0-semigroup (T (t))t≥0 is called chaotic (in the sense of
Devaney) if it is hypercyclic and the set of periodic points is dense in X, further information in [37,
Section 7.2].

In many situations we can obtain the infinitesimal generator of a C0-semigroup although we do
not have the explicit representation of its operators. The classical Desch-Schappacher-Webb criterion
permits to state Devaney chaos (and hypercyclicity) of a C0-semigroup in terms of the abundance of
eigenvectors of its infinitesimal generator. [28, The. 3.1]. See also [5, 30, 20, 37].

Theorem 2.1. Let X be a complex separable Fréchet space and let (T (t))t≥0 be a C0-semigroup on
X with generator A. Assume that there exists an open connected subset U and weakly holomorphic
functions fj : U → X, j ∈ J , such that
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(i) U
⋂
iR 6= ∅,

(ii) fj(λ) ∈ ker(λI −A) for every λ ∈ U ; j ∈ J ,
(iii) for any x∗ ∈ X∗, if 〈fj(λ), x∗〉 = 0 for all λ ∈ U, j ∈ J implies x∗ = 0,

then the C0-semigroup (T (t))t≥0 is Devaney chaotic (and hypercyclic).

Distributional chaos always appears whenever this theorem can be applied, see for instance [7, 12].
Distributionally chaotic C0-semigroups on Banach spaces has been found in [1, 9].

We extend this definition to the setting of Fréchet spaces. For this purpose, the upper density of a
set D ⊆ R+

0 is defined by

(12) Dens(D) := lim sup
t→+∞

µ(D ∩ [0, t])

t
,

where µ(·) denotes the Lebesgue’s measure on R+
0 . A C0-semigroup (T (t))t≥0 on X, where X is a

infinite-dimensional separable Fréchet space, is said to be distributionally chaotic if there exist an
uncountable set S ⊆ X and σ > 0 such that for each ε > 0 and for each pair x, y ∈ S of distinct
points we have that

(13) Dens({s ≥ 0 : d(T (s)x, T (s)y) ≥ σ}) = 1 and

(14) Dens({s ≥ 0 : d(T (s)x, T (s)y) < ε}) = 1.

Moreover, if we can choose S to be dense in X, then (T (t))t≥0 is said to be densely distributionally
chaotic.

The question whether a C0-semigroup (T (t))t≥0 is distributionally chaotic or not is closely connected
with the existence of distributionally irregular vectors [1, Th. 3.4], i.e., those elements x ∈ X such
that for each σ > 0 we have that

(15) Dens({s ≥ 0 : d(T (s)x, 0) > σ}) = 1 and

(16) Dens({s ≥ 0 : d(T (s)x, 0) < σ}) = 1,

Remark 2.2. The definitions of distributional chaos and distributionally irregular vectors can also
be considered for strongly continuous families of operators (T (t))t≥0 ⊂ L(X), i.e. the ones satisfying
limt→0+ Ttx = T0x for every x ∈ X. In case that (T (t))t≥0 ⊂ L(X,Y ), with Y a Fréchet space,
the conditions in (13)–(16) should be written in terms of dY , the translation invariant distance on Y
induced by the fundamental system (pYn )n∈N of increasing seminorms on Y , as it is indicated in (1).

3. Distributional chaos for sequences of operators

Throughout this section we will always assume that Y is another separable Fréchet space over the
field K ∈ {R,C}. By L(X,Y ) we denote the space of all continuous linear operators from X into
Y . The main purpose of this section is to inquire into the basic distributionally chaotic properties
of a sequence (Tk)k∈N of linear mappings between the Fréchet spaces X and Y . We start with the
following definition:

Definition 3.1. Let (Tk)k∈N be a sequence of linear (not necessarily continuous) operators Tk :

D(Tk)→ Y , k ∈ N, and let X̃ be a closed linear subspace of X. We say that the sequence (Tk)k∈N is

X̃-distributionally chaotic if there exist an uncountable set S ⊆
⋂∞
k=1D(Tk)∩ X̃ and σ > 0 such that

for each ε > 0 and for each pair x, y ∈ S of distinct points we have that

(17) dens
({
k ∈ N : dY

(
Tkx, Tky

)
≥ σ

})
= 1 and
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(18) dens
({
k ∈ N : dY

(
Tkx, Tky

)
< ε
})

= 1.

The set S is said to be a σX̃ -scrambled set (σ-scrambled set in the case that X̃ = X) for the

sequence of operators (Tk)k∈N. If S can be chosen to be dense in X̃, then the sequence (Tk)k∈N is said

to be densely X̃-distributionally chaotic. In the case that X̃ = X, we say that the sequence (Tk)k∈N
is distributionally chaotic.

Remark 3.2. In particular, a linear operator T : D(T )→ Y is said to be (densely) X̃-distributionally

chaotic if the sequence of its powers (T k)k∈N is X̃-distributionally chaotic; in the case that X̃ = X
then the operator T is said to be distributionally chaotic.

Remark 3.3. Conditions (17) and (18) can be rephrased in terms of the family of continuous semi-
norms (pYn )n∈N. More precisely, condition (17) can be replaced by:

If 0 < σ < 1 and there exists some n0 ∈ N and σ′ > σ/(1− σ) such that

(19) dens({k ∈ N : pYn0
(Tkx− Tky) ≥ σ′}) = 1.

On the other hand, we can exchange Condition (18) by the following formulation:

There exists some n0 ∈ N such that for every n ≥ n0 we have

(20) dens({k ∈ N : pYn (Tkx− Tky) < ε}) = 1.

Of course, it is interesting to know the minimal linear subspace X̃ for which the sequence (Tk)k∈N is

X̃-distributionally chaotic, because it is then
˜̃
X-distributionally chaotic for any other linear subspace˜̃

X of X such that X̃ ⊆ ˜̃
X. Some of the following definitions have been introduced for linear and

continuous operators from one space onto itself, see [17, Def. 14].

Definition 3.4. Let X̃ be a closed linear subspace of X, x ∈ ∩∞k=1D(Tk) and m ∈ N. Let (Tk)k∈N be
a sequence of linear (not necessarily continuous) operators Tk : D(Tk)→ Y , k ∈ N. We say that:

1. the orbit of x under (Tk)k∈N, the set {x} ∪ {Tkx : k ∈ N}, is distributionally near to 0 if there
exists Ax ⊆ N such that dens(Ax) = 1 and lim

k∈Ax,k→∞
Tkx = 0;

2. the orbit of x under (Tk)k∈N is distributionally m-unbounded if there exists B ⊆ N such that
dens(B) = 1 and lim

k∈B,k→∞
pYm(Tkx) =∞;

3. the orbit of x under (Tk)k∈N is said to be distributionally unbounded if there exists q ∈ N such
that this orbit is distributionally q-unbounded;

4. x is a X̃-distributionally irregular vector for the sequence (Tk)k∈N (distributionally irregular

vector for the sequence (Tk)k∈N, in the case that X̃ = X) if x ∈
⋂∞
k=1D(Tk)∩ X̃ and the orbit

of x under (Tk)k∈N is both distributionally near to 0 and distributionally unbounded.

Suppose that X ′ ⊆ X̃ is a linear manifold. We say that

1. X ′ is an X̃-distributionally irregular manifold for the sequence (Tk)k∈N if any element x ∈
(X ′ ∩

⋂∞
k=1D(Tk)) \ {0} is X̃-distributionally irregular vector for the sequence (Tk)k∈N.

2. X ′ is a uniformly X̃-distributionally irregular manifold for the sequence (Tk)k∈N if there exists
m ∈ N such that the orbit of each vector x ∈ (X ′ ∩

⋂∞
k=1D(Tk)) \ {0} under (Tk)k∈N is both

distributionally m-unbounded and distributionally near to 0.

3. and if X ′ is dense in X̃, then we say that X ′ is a dense X̃-distributionally irregular manifold.

Remark 3.5. In the same way as in Remark 3.2, it is clear that we have all these notions for a
linear operator T : D(T )→ Y and a vector x ∈ D∞(T ) := ∩∞k=1D(T k) if we consider the sequence of
operators (T k)k∈N. Isnpired by Definition 3.1, we can also define a distributionally irregular manifold

and an uniformly distributionally irregular manifold in the case that X̃ = X.
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Note that if x ∈ X̃ ∩
⋂∞
k=1D(Tk) is a X̃-distributionally irregular vector for the sequence (Tk)k∈N,

then X ′ = span{x} is a uniformly X̃-distributionally irregular manifold for this same sequence
(Tk)k∈N.

In some way, the next lemma enables us to reduce our further study to the case in which X̃ = X.
The straightforward proof is left to the reader.

Lemma 3.6. Let (Tk)k∈N be a sequence of operator of L(X) and let X̃ be a closed linear subspace of

X. If D(Tk) := D(Tk) ∩ X̃, let us define the linear operators Tk : D(Tk) → Y by and Tkx := Tkx,
x ∈ D(Tk), for every k ∈ N.

1. The sequence (Tk)k∈N is X̃-distributionally chaotic if, and only if, the sequence (Tk)k∈N is
distributionally chaotic.

2. A vector x is an X̃-distributionally irregular vector for the sequence (Tk)k∈N if, and only if,
the vector x is a distributionally irregular vector for the sequence (Tk)k∈N.

3. A linear manifold X ′ is a (uniformly) X̃-distributionally irregular manifold for the sequence
(Tk)k∈N if, and only if, the manifold X ′ is a (uniformly) distributionally irregular manifold for
the sequence (Tk)k∈N.

Observe that there exist some important cases in which the sequence of linear mappings (Tk|X̃)k∈N,

acting between the spaces X̃ and Y = X̃, is distributionally chaotic; see e.g. the proof of implication (i)

⇒ (ii) of [17, Th. 12]. There, the set X̃ is taken as the closure of X0 := {x ∈ X : lim
n∈A,n→∞

Tnx = 0},

with T a linear and continuous operator satisfying the Distributional Chaos Criterion (DCC), e.g. [17,
Sec. 2]. The next theorem includes the corresponding version of the (DCC) for sequences of operators
between Fréchet spaces.

Theorem 3.7. Let (Tk)k∈N be a sequence in L(X,Y ) and let X0 be a dense linear subspace of X.

1. Distributional Chaos Criterion (DCC): If the following conditions hold:
(a) for every x ∈ X0 there exists Ax ⊆ N with dens(Ax) = 1 and limk∈Ax,k→∞ Tkx = 0.
(b) there exists a zero sequence (yk)k ⊂ X, ε > 0 and a strictly increasing sequence (Nk)k∈N

in N such that for every k ∈ N we have

(21)
card({1 ≤ j ≤ Nk : dY

(
Tjyk, 0

)
> ε})

Nk
≥ 1− 1

k
,

then there exists a distributionally irregular vector for the sequence (Tk)k∈N.

2. If the following conditions hold:
(a) limk→∞ Tkx = 0, for every x ∈ X0,
(b) there exists x ∈ X such that its orbit under (Tk)k∈N is distributionally unbounded,

then there exists a dense uniformly distributionally irregular manifold for (Tk)k∈N.

In particular, in both cases the sequence (Tk)k∈N is distributionally chaotic.

Proof. We will only outline the most relevant details of the proof. If Y is a Fréchet space, the assertion
3.7.1 can be simply proved by replacing the powers of the operator T by the corresponding operators
Tk, k ∈ N, throughout the proofs of [17, Prop. 7 and 9].

A careful inspection of the proof of [17, Th. 15] shows that the assertion 3.7.2 holds provided that
X and Y were Fréchet spaces and pYm(Tix) ≤ pi+m(x), for every x ∈ X, i,m ∈ N. We point out that
we can always construct a fundamental system (p′n(·))n∈N of increasing seminorms on the space X,
inducing the same topology, so that this condition holds, i.e. pYm(Tix) ≤ p′i+m(x), for x ∈ X, and

i,m ∈ N. Therefore, we only have to replace the powers of the operator, T k, appearing in the proof
of [17, Th. 15], by the corresponding operators Tk, k ∈ N. In such a way, we may conclude that the
assertion [17, Th. 15] holds provided that X and Y were Fréchet spaces. �
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We present three examples of operators that generate C0-semigroups which been already considered
in the theory of linear dynamics.

Example 3.8. [28, Ex. 4.2] Let a, b, c > 0, c < b2

2a < 1, and

(22) Λ :=

{
λ ∈ C :

∣∣∣∣∣λ−
(
c− b2

4a

)∣∣∣∣∣ ≤ b2

4a
, =λ 6= 0 if <λ ≤ c− b2

4a

}
.

Consider the operator −A : D(A) → L2(R+
0 ) defined by −Au := auxx + bux + cu, with D(−A) :=

{f ∈ W 2,2(R+
0 ) : f(0) = 0}, being W 2,2(R+

0 ) a Sobolev space. Let P (z) =
∑n
j=0 ajz

j be a non-
constant complex polynomial such that an > 0 and

(23) P (−Λ) ∩
{
z ∈ C : |z| = 1

}
6= ∅.

Then −P (A) generates an analytic C0-semigroup of angle π/2, P (−Λ) ⊆ σp(P (A)) and P (A) is
a linear and continuous operator [34] that is densely distributionally chaotic applying Theorem 3.7.2
and Remark 3.5.

Example 3.9. [20, 49] Suppose c > b/2 > 0, Ω := {λ ∈ C : <λ < c−b/2} and Acu := u′′+2bxu′+cu is
the bounded perturbation of the one-dimensional Ornstein-Uhlenbeck operator defined from D(Ac) :=

{u ∈ L2(R) ∩ W 2,2
loc (R) : Acu ∈ L2(R)} on L2(R). Denote by F and F−1 the Fourier transform on the

real line and its inverse transform, respectively. Then Ac generates a C0-semigroup with Ω ⊆ σp(Ac).
Moreover, for any open connected subset Ω′ ⊆ Ω which admits a cluster point in Ω, one has that

the set E = span{gi(λ) : λ ∈ Ω′, i = 1, 2}, where g1 : Ω → X and g2 : Ω → X are defined by

g1(λ) := F−1(e−
ξ2

2b ξ|ξ|−(2+λ−c
b ))(·) and g2(λ) := F−1(e−

ξ2

2b |ξ|−(1+λ−c
b ))(·) for every λ ∈ Ω, is dense

in L2(R). In the same way as in the previous example, the operator Ac is densely distributionally
chaotic. Besides, this property also holds for the multi-dimensional Ornstein-Uhlenbeck operators
considered in [20, Sec. 4].

Example 3.10. [31] Suppose r > 0, σ > 0, ν = σ/
√

2, γ = r/µ− µ, s > 1, sν > 1 and τ ≥ 0. Set

(24) Y s,τ :=

{
u ∈ C((0,∞)) : lim

x→0

u(x)

1 + x−τ
= lim
x→∞

u(x)

1 + xs
= 0

}
.

endowed with the norm

(25) ‖u‖s,τ := sup
x>0

∣∣∣∣∣ u(x)(
1 + x−τ

)(
1 + xs

) ∣∣∣∣∣, for every u ∈ Y s,τ ,

becomes a separable Banach space. Let Dµ := νxd/dx, with maximal domain in Y s,τ , and let the
Black-Scholes operator B be defined by B := D2

ν+γDµ−r. The operator B generates a Devaney chaotic
C0-semigroup, see [31, Th. 2.6]. Moreover, by [31, Lem. 3.3], the proof of [31, Lem. 3.5] ( especially
the Figure 1 in the abovementioned paper, in the Ox′y′ coordinate system, with x′ = x/ν and y′ = y/ν)
and the previous consideration, it readily follows that the operator B is densely distributionally chaotic.

By [26, Th. 2.3] and the proof of [2, Th. 2.1], it is not difficult to see that the operators considered
in the previous example are also chaotic (in the sense of [26, Def. 2.1]). It is quite questionable
whether there exists a linear (possibly unbounded) operator T that is both Devaney chaotic and not
distributionally chaotic; cf. also [17, Prob. 37]. Motivated by the research of Bès et al [18], where the
chaotic behaviour of the abstract Laplace operator ∆ has been analyzed, we propose the following
problem:
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Problem 3.11. Suppose 1 ≤ p < ∞, ∅ 6= Ω ⊆ Rn is an open (possibly unbounded) set, and the
operator ∆ acts on Lp(Ω) with maximal distributional domain and without any boundary conditions.
Is it true that ∆ is densely distributionally chaotic?

Suppose now that T : D(T ) ⊆ X → X is a linear mapping, C ∈ L(X) is an injective operator with
range R(C), satisfying

(26) R(C) ⊆ D∞(T ) and TnC ∈ L(X) for all n ∈ N.
We also recall that the C-resolvent set of A, denoted by ρC(A), is defined by

(27) ρC(A) := {λ ∈ C : λ−A is injective and (λ−A)−1C ∈ L(X)}.
The conditions in (26) imply that for every n ∈ N the mapping Tn : R(C) → X defined by

Tn(Cx) := TnCx, with x ∈ X, is an element of the space L([R(C)], X). By Theorem 3.7, we
immediately obtain the following result.

Corollary 3.12. Let T and C be linear operators satisfying condition (26) and let X0 be a dense
linear subspace of X.

1. If the following conditions hold:
(a) for every x ∈ X0 there exists Ax ⊆ N with dens(Ax) = 1 and limk∈Ax,k→∞ T kC(x) = 0.
(b) there exists a zero sequence (zk)k ⊂ X, ε > 0 and a strictly increasing sequence (Nk)k∈N

in N such that for every k ∈ N we have

(28)
card({1 ≤ j ≤ Nk : dY

(
T jCzk, 0

)
> ε})

Nk
≥ 1− 1

k
,

then there exists a distributionally irregular vector x ∈ R(C) for the operator T . In particular, T
is distributionally chaotic and a σ-scrambled set S of T can be chosen to be a linear submanifold
of R(C).

2. If the following conditions hold:
(a) limk→∞ T kCx = 0, for every x ∈ X0,
(b) there exist x ∈ X, m ∈ N and a set B ⊆ N such that

(29) dens(B) = 1, and lim
k∈B,k→∞

pm(T kCx) =∞,

then there exists a uniformly distributionally irregular manifold W for the operator T . In
particular T is distributionally chaotic. Furthermore, if R(C) is dense in X, then W can be
chosen to be dense in X and T is densely distributionally chaotic.

This previous result can be used in order to get that some differential operators that are known to
generate certain C0-semigroups are in fact distributionally chaotic. We state the following result in
this line.

Theorem 3.13. Suppose that K = C, C ∈ L(X), and (A,D(A)) is a closed linear operator such that
and D(A) is dense in X. Let z0 ∈ C \ {0}, β ≥ −1, m ∈ (0, 1), 0 < ε < d ≤ 1, γ > −1, and consider
the following regions in the complex plane:

(30) Pβ,ε,m := {ξ + iη : ξ ≥ ε, η ∈ R, |η| ≤ m(1 + ξ)−β}
and also

(31) Pz0,β,ε,m := ei arg(z0)
(
|z0|+ (Pβ,ε,m ∪Bd)

)
,

where Bd is the open disk of center 0 and radius d, such that

(i) Pz0,β,ε,m ⊆ ρC(A).
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(ii) The family {(1 + |λ|)−γ(λ−A)−1C : λ ∈ Pz0,β,ε,m} is equicontinuous, and
(iii) for every fixed x ∈ E the mapping λ 7→ (λ−A)−1Cx, with λ ∈ Pz0,β,ε,m, is continuous.

In addition, if there exist a dense subset X0 of X such that limk→∞Akx = 0 for all x ∈ X0, and
λ ∈ σp(A) with |λ| > 1, then the operator µAn is densely distributionally chaotic on A for all n ∈ N
and |µ| = 1.

Proof. Let us denote the set ∂Pz0,β,ε,m by Γ(z0, β, ε,m), or simply Γ if there is no confusion. This is
a continuous piecewise smooth curve that can be defined as Γ = ∪3

i=1Γi, where:

• Γ1 = {ei arg(z0)(|z0|+ ξ + iη) : ξ ≥ ε, η = −m(1 + ξ)−β},
• Γ2 = {ei arg(z0)(|z0|+ ξ + iη) : ξ2 + η2 = d2, ξ ≤ ε}, and
• Γ3 = {ei arg(z0)(|z0|+ ξ + iη) : ξ ≥ ε, η = m(1 + ξ)−β}.

are curves in the complex plane. We can give an orientation to Γ such that the imaginary part of λ
decreases along e−i arg(z0)Γ1. Figure 1 illustrates an example of such a region.

1 2 3 4

-2

-1

1

2

Figure 1. The set P1,−1,1/4,1/2.

Let us define Σδ := {λ ∈ C : λ 6= 0, | arg(λ)| < δ} for δ ∈ (0, π]. Let b ∈ (0, 1/2) be fixed and we
set δb := arctan(cosπb) and A0 := e−i arg(z0)A− |z0|. Now we define

(32) Cb(z)x :=
1

2πi

∫
Γ

e−z(−λ)b(λ−A0)−1Cxdλ, x ∈ X.

for every z ∈ Σδb . The operator Cb(z) ∈ L(X) is injective and has dense range in X for any z ∈ Σδb
(see e.g. the proofs of [44, Th. 3.15 and 3.16]). Furthermore, Cb(z)A ⊆ ACb(z), z ∈ Σδb and the
condition (26) holds with T and C replaced respectively by A and Cb(z), for all z ∈ Σδb .

Densely distributionally chaotic operators are rotationally invariant, therefore it suffices to show
that the operator An is densely distributionally chaotic. On the one hand, since λn ∈ σp(An), then
there exists x ∈ X \ {0} such that Anx = λnx, n ∈ N. On the other hand, Cb(z) is injective, therefore
Cb(z)x 6= 0 and there exists m ∈ N such that pm(Cb(z)x) 6= 0.

Since Cb(z) commutes with A, we have

lim
k→∞

pm(AnkCb(z)x) = lim
k→∞

λnkpm(Cb(z)x) = +∞.



10 CONEJERO, KOSTIĆ, MIANA, AND MURILLO-ARCILA

One can similarly prove that the condition 3.12.2(a) is satisfied and then the hypothesis of Corollary
3.12.2 hold, so that A is distributionally chaotic. In particular, there exists a uniformly distributionally
irregular manifold W for the operator A. �

4. Distributional chaos for C0-semigroups

The dynamical notions presented in Definitions 3.1 and 3.4 can also be stated to C0-semigroups
with slightly modifications. We omit the details here. In the following statements we deepen into
(densely) distributionally chaotic properties of C0-semigroups. The following continuous version of
Corollary 3.12(ii) will be essentially used in our further analysis of distributionally chaotic semigroups
and α-times integrated semigroups.

Theorem 4.1. Suppose that X0 is a dense linear subspace of X, (T (t))t≥0 ⊆ L(X,Y ) is a strongly
continuous operator family, satisfying:

(a) limt→∞ T (t)x = 0, for every x ∈ X0,
(b) there exist x ∈ X, m ∈ N and a set Bx ⊆ R+ such that Dens(Bx) = 1 and

(33) lim
t∈Bx,t→∞

pm(T (t)x) =∞,

then (T (t))t≥0 is a distributionally chaotic strongly continuous operator family.

Proof. The proof is very similar to those of [17, Th. 15] and Corollary 3.12.2. The family (T (t))t≥0 ⊆
L(X,Y ) is locally equicontinuous because it is strongly continuous and X is barrelled ([41, Prop.
1.1]). Hence, for every l, n ∈ N, there exist cl,n > 0 and al,n ∈ N such that pYl (T (t)x) ≤ cl,npal,n(x),
for every x ∈ X and t ∈ [0, n]. Let us suppose that

(34) pYk (T (t)x) ≤ pk+dte(x), x ∈ X, t ≥ 0, k ∈ N.
This can be assumed if we introduce the following fundamental system of increasing seminorms

p′n(·), n ∈ N, on X:

(35)

p′1(x) ≡ p1(x), x ∈ X,
p′2(x) ≡ p′1(x) + c1,1pa1,1(x) + p2(x), x ∈ X,
. . .

p′n+1(x) ≡ p′n(x) + c1,npa1,n(x) + · · ·+ cn,1pan,1(x) + pn+1(x), x ∈ X,
. . .

Without loss of generality, we may assume m = 1. Then one can find a sequence (xk)k∈N in X0 such
that pk(xk) ≤ 1, k ∈ N, and a strictly increasing sequence of positive real numbers (tk)k∈N tending to
infinity such that:

(36)
Dens({1 ≤ s ≤ tk : p1(T (s)xk) > k2k})

tk
≥ 1− 1

k2

and

(37)
Dens({1 ≤ s ≤ tk : pk(T (s)xl) < k−1})

tk
≥ 1− 1

k2
, l = 1, . . . , k − 1.

Let (rk)k∈N be a strictly increasing sequence in N satisfying:

(38) rj+1 ≥ 1 + rj + dtrj+1e, for every j ∈ N.
Repeating literally the argumentation used in the remaining part of the proof of [17, Th. 15], we

obtain the existence of a dense subspace S of X such that, for every x ∈ S, there exist two sets
Ax, Bx ⊆ [0,∞) such that Dens(Ax) = Dens(Bx) = 1, and



DISTRIBUTIONALLY CHAOTIC OPERATORS 11

(39) lim
t→∞,t∈Ax

T (t)x = 0 and lim
t→∞,t∈Bx

p1(T (t)x) =∞,

Then the conclusion yields as in the discrete case.
�

The next result is a characterization of distributionally chaotic C0-semigroup on Fréchet spaces
from several results already known to hold in the Banach case.

Theorem 4.2. Let (T (t))t≥0 be a C0-semigroup on X. The following are equivalent:

1. (T (t))t≥0 is distributionally chaotic.
2. T (t0) is distributionally chaotic for every t0 > 0.
3. T (t0) is distributionally chaotic for some t0 > 0.
4. T (t0) satisfies the (DCC) for single operators for every t0 > 0, i.e., there exist two sequences

(xk)k∈N, (yk)k∈N ⊆ X, ε > 0, a strictly increasing sequence (Nk)k∈N ⊆ N, and a subset A ⊆ N
with dens(A) = 1 such that:
(a) lim

n∈A,n→∞
T (t0)nxk = 0, for every k ∈ N.

(b) (yk)k∈N ⊆ span{xl : l ∈ N}, limk→∞ yk = 0 and

(40)
card({1 ≤ j ≤ Nk : d(T jyk, 0) > ε})

Nk
≥ 1− 1

k
, for every k ∈ N.

5. T (t0) satisfies the (DCC) for single operators for every t0 > 0.
6. (T (t))t≥0 satisfies the (DCC) for semigroups, i.e., there exist two sequences (xk)k∈N, (yk)k∈N ⊆
X, ε > 0, a strictly increasing sequence (ρk) ⊆ R+, and a set D ⊆ R+ with Dens(D) = 1 such
that:
(a) lim

s∈D,s→∞
T (s)xk = 0, k ∈ N.

(b) yk ∈ span{xl : l ∈ N}, limk→∞ yk = 0 and

(41)
m({s ∈ [0, ρk] : d(T (s)yk, 0) > ε})

ρk
≥ 1− 1

k
, for every k ∈ N.

7. T (t0) has a distributionally irregular vector for every t0 > 0.
8. T (t0) has a distributionally irregular vector for some t0 > 0.
9. (T (t))t≥0 has a distributionally irregular vector.

Proof. Using the fact that (T (t))t≥0 is locally equicontinuous, the proofs of Lemma 2.4, Theorem 3.1,
Proposition 1, Proposition 3, Remark 2 and Theorem 3.4 in [1] can be slightly modified replacing
norms by seminorms, and obtaining the corresponding results for C0-semigroups defined on Fréchet
spaces.

In ([17, Th. 12]); it is proved that statements 2, 4, and 7 are equivalent, and also 3, 5, and 8.
Extending the results proved in [1] to Fréchet spaces as mentioned above, we have that 1, 2, 5, 6 and
9 are equivalent, too. More specifically, the equivalence between 1, 6, and 9 is proved in Theorem 3.4
of [1] and the other equivalences are contained in Proposition 1 of [1].

�

We wish to observe that Theorem 4.2, in combination with [17, Th. 16] and the proof of [21, Th. 5],
implies that the assertion of [7, Th. 3.7] continues to hold in the setting of separable Fréchet spaces.

Theorem 4.3. Let (T (t))t≥0 be a C0-semigroup in L(X) with infinitesimal generator (A,D(A)). If
the following conditions hold:

1. there is a dense subset X0 ⊆ X with limt→∞ T (t)x = 0, for each x ∈ X0, and
2. there is some λ ∈ σp(A) with <(λ) > 0,
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then (T (t))t≥0 has a dense distributionally irregular manifold. In particular, (T (t))t≥0 is distribution-
ally chaotic.

In the case that K = R, condition (2) should be restated by assuming that the corresponding
eigenvalue λ ∈ σp(A) satisfies λ > 0.

Example 4.4. Let us consider the translation semigroup (T (t))t≥0 on the space Cm([0,∞),K), where
m ∈ N0 ∪ {∞}. Since the point spectrum of the generator d/dx of this semigroup equals to K, then
(T (t))t≥0 is densely distributionally chaotic.

Throughout the rest of this section we provide a spectral criterion that implies the existence of
rescaled distributionally chaotic C0-semigroups. In particular, given a C0-semigroup with infinitesimal
generator A acting on a complex Fréchet space X, we provide a spectral criterion that implies that for
each operator B in the commutant of A there exists m ∈ C such that the rescaled semigroup emteBt is
distributionally chaotic. Chaotic properties of some rescaled C0-semigroups have been studied before
in [20]. Operators with hypercyclic commutant have been widely studied. Since the seminal paper
[33], different questions related to this problem have been considered, see for example [14, 38, 50].
The next result is inspired in a similar one stated for single operators [35, Th. 2.1]. Although both
proofs run parallel, we include the proof of the next result for the sake of completeness.

Theorem 4.5. Let (T (t))t≥0 be a C0-semigroup on a complex space X with infinitesimal generator
A ∈ L(X). Suppose that the spectrum of A contains a non-empty connected open bounded set U ⊂ C
such that the following conditions hold:

(a) Every λ ∈ U is a simple eigenvalue of A.
(b) span{ker(A− λI) : λ ∈ U} is dense in X.
(c) There exists a holomorphic function x̂ : U → X defined as x̂(λ) = xλ for every λ ∈ U , such

that 0 6= xλ ∈ ker(A− λI).

Then for all B in the commutant of A there exists m ∈ C such that the rescaled C0-semigroup
(e(mI+B)t)t≥0 is distributionally chaotic.

Proof. First let us see that given a non-empty open subset V ⊂ U , the set span{ker(A− λI) : λ ∈ V }
remains dense in X. Otherwise, there exists x∗ 6= 0 such that x∗ ∈ X∗ such that x∗(x̂(λ)) = 0 for all
λ ∈ V . By the analyticity condition (c) we have that x∗(x̂(λ)) = 0 for all λ ∈ U , and by (a) and (b)
we have x∗ = 0, a contradiction. Let B ∈ L(X) be in the commutant of A with B 6= µI. For each
λ ∈ U we have Axλ = λxλ, hence ABxλ = λBxλ. By condition (a) we have Bxλ = b(λ)xλ for some
complex number b(λ). In this way we can define b : U → C such that λ → b(λ). This function b is
non constant since B 6= µI.

Let us see that b : U → C is holomorphic. For each 0 6= y∗ ∈ X∗ our function b satisfies

(42) b(λ) =
y∗(B(xλ))

y∗(xλ)
.

Thus it is holomorphic on U \ Z, where Z = {λ : y∗(xλ) = 0} is a discrete subset of U . But for
λ0 ∈ Z we can take u∗ ∈ X∗ such that u∗(xλ0) 6= 0. This implies that b(λ) is holomorphic on λ0,
hence b(λ) is holomorphic on U . Since b(λ) is non-constant, b(U) is an open subset of the complex
plane. Then for some m ∈ C, the set m+ b(U) intersects the imaginary axis iR. We will use Theorem
2.1 in order to prove that e(mI+B)t is distributionally chaotic. It is sufficient to check that the subsets:

(43) span{ker(mI +B − λI) : <(λ) < 0} and span{ker(mI +B − λI) : <(λ) > 0}
are dense in X. It is clear that

(44) span{ker(A− λI) : λ ∈ (b−1{µ : <(µ) < 0} −m)} ⊂ span{ker(mI +B)− λI) : <(λ) < 0}.
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Indeed, let xλ ∈ ker(A−λI), with λ ∈ (b−1{µ : <(µ) < 0}−m), then (mI+B)xλ = (m+b(λ))xλ, so
we have that xλ ∈ {ker(mI +B−λI),<(λ) < 0}. By the considerations at the beginning of the proof
we know that span{ker(A− λI) : λ ∈ (b−1{µ : <(µ) < 0}−m)} is dense in X and a similar argument
is valid for the other set. We get that the semigroup (e(mI+B)t)t≥0 is distributionally chaotic. �

Remark 4.6. In the case that the simplicity of the eigenvalues in U fails, the same conclusions hold
for operators in the commutant of A such that {ker(A− λI) : λ ∈ U} ⊂ {ker(B − µI) : µ ∈ C}.

Now we show other three examples that illustrate Theorem 4.5.

Example 4.7. Let Bw be a bilateral weighted forward shift defined by Bw(en) = wnen+1 where
{en : n ∈ Z} is the natural orthonormal basis of `p(Z), 1 ≤ p <∞ and (wn) is a bounded sequence of
strictly positive numbers. In [35], it is proved that if r+

3 (Bw) < r+
2 (Bw), where

(45) r+
3 := lim sup

n→∞
(w0 . . . wn−1)

1
n

(46) r+
2 := lim inf

n→∞
(w−1 . . . w−n)

1
n ,

then Bw satisfies the hypothesis of Theorem 4.5. Therefore, for every operator A in the commutant of
Bw there exists m, such that the rescaled C0-semigroup (e(mI+A)t)t≥0 is Devaney and distributionally
chaotic.

Example 4.8. Let Bw be a unilateral weighted backward shift on the complex Hilbert space of sequences
`2. Take its natural orthonormal basis {en : n ∈ N} and a bounded sequence of strictly positive numbers
(wn)n, and define the weigthed backward shift operator as B(en) = wn−1en−1, if n ≥ 2, and Be1 = 0.

In [35], it is proved that if r2(Bw) > 0, where

(47) r2(Bw) := lim inf
n→∞

(w1 . . . wn)
1
n ,

the hypothesys of Bw satisfies the hypothesis of Theorem 4.5. Then for every operator A in the
commutant of Bw there exists m, such that the rescaled C0-semigroup (e(mI+A)t)t≥0 is Devaney and
distributionally chaotic.

Example 4.9. Let us consider the following infinite system of ODE’s associated with a linear kinetic
model, see for instance [3, 4, 23]

(48)


∂fn
∂t = −αnfn + βnfn+1, n ≥ 1,

fn(0) = an, n ≥ 1

where (αn)n and (βn)n are bounded positive sequences and (an)n ∈ `1 is a real sequence. Consider
the operator A ∈ L(`1) defined as

(49) Af = (−αnfn + βnfn+1)n for every f = (fn)n ∈ `1
The operator A generates a C0- semigroup (T (t))t≥0 which is solution of 48. It is shown in [37],

that if

(50) α := sup
n≥1

αn < lim inf
n→∞

βn := β,

then the generator A satisfies (b) and (c) of theorem 4.5. Let us take α/2 < r < β/2. In order to
prove (b) and (c) let us consider the open disk of radius r centered at −α/2, namely U ⊂ C, that
intersects the imaginary axis. Given f = (fn)n ∈ `1 such that Af = λf, λ ∈ U, we get that

(51) fn = γf1 with γn =

n−1∏
k=1

λ+ αk
βk

, for every n ≥ 2, and γ1 = 1.
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It is clear that if there exists g = (gn)n ∈ `1 such that Ag = λg, then there exists µ ∈ C such
that f = µg, and then all the eigenvalues in U are simple. As a result, for every operator B in the
commutant of A there exists m, such that the rescaled C0-semigroup (e(mI+B)t)t≥0 is Devaney and
distributionally chaotic.

Let us calculate explicitly some element B in the commutant of A. If B is of the form

(52) B =



a1 b1 0
c2 a2 b2 0

0 c3 a3 b3
. . .

0 c4 a4
. . .

. . .
. . .

. . .


.

As AB = BA, solving the system of equations we get that:

(53)

bi := b1
βi
β1
, for every i ≥ 1

ai+1 = ai − b1
β1

(αi+1 − αi), for every i ≥ 2

ci := 0, for every i ≥ 2.

As a result, we obtain that for all semigroups whose generator B verifies (53), there exists a rescaled
semigroup of it which is Devaney and distributionally chaotic.

5. Distributional chaos for α-times integrated C-semigroups

First of all, we will introduce the definition of α-times integrated C-semigroups, see for instance
[46] and [53, Def. 3.1].

Definition 5.1. Let α ≥ 0, and let A be a closed linear operator on X. If there exists a strongly
continuous operator family (Sα(t))t≥0 ⊆ L(X) such that:

1. Sα(t)A ⊆ ASα(t), for every t ≥ 0,
2. Sα(t)C = CSα(t), for every t ≥ 0,
3. for all x ∈ X and t ≥ 0 we have

(54)

∫ t

0

Sα(s)x ds ∈ D(A)

and

(55) A

t∫
0

Sα(s)x ds = Sα(t)x− tα

Γ(α+ 1)
Cx,

then it is said that (Sα(t))t≥0 is an α-times integrated C-semigroup with subgenerator A.
Furthermore, it is said that (Sα(t))t≥0 is an exponentially equicontinuous α-times integrated C-

semigroup with subgenerator A if, in addition, there exists ω ∈ R such that

1’ the family {e−ωtSα(t) : t ≥ 0} is equicontinuous,
2’ (ω,∞) ⊂ ρC(A) and
3’

(56) (λ−A)−1Cx = λα
∫ ∞

0

e−λtSα(t)xdt, for every x ∈ X.
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If α = 0, then (S0(t))t≥0 is said to be a C-regularized semigroup with subgenerator A. Moreover,
if α ≥ 0 and (Sα(t))t≥0 is an α-times integrated C-semigroup with subgenerator A, then (Sα(t))t≥0

is a locally equicontinuous family, i.e. for every κ > 0 and n ∈ N there exist m ∈ N and c > 0 such
that pn(Sα(t)x) ≤ cpm(x), for every t ∈ [0, κ], and x ∈ X.

The integral generator Â of (Sα(t))t≥0 is a closed linear operator that is an extension of any
subgenerator of (Sα(t))t≥0. The graph of an integral generator of (Sα(t))t≥0 is defined as

(57) graph(Â) :=

{
(x, y) ∈ X ×X : Sα(t)x− tα

Γ(α+ 1)
Cx =

∫ t

0

Sα(s)y ds, for every t ≥ 0

}
.

Arguing as in the proofs of [46, Prop. 2.1.6, Prop. 2.1.19], we have that the integral generator Â
of (Sα(t))t≥0 is a maximal element for the inclusion relation on the set of admissible subgenerators of

(Sα(t))t≥0. Furthermore, the following equality holds Â = C−1AC on X.
Denote by Z1(A) the space that consists of those elements x ∈ X for which there exists a unique

continuous mapping u : R+
0 ×X → X satisfying

∫ t
0
u(s, x) ds ∈ D(A) and A

∫ t
0
u(s, x) ds = u(t, x)−x,

for every t ≥ 0, i.e., the unique mild solution of the corresponding Abstract Cauchy Problem (ACP1) :

(58) (ACP1)

{
u′(t) = Au(t), t ≥ 0,

u(0) = x, x ∈ X.

Suppose that A is a subgenerator (the integral generator) of an α-times integrated C-semigroup
(Sα(t))t≥0. There is only one (trivial) mild solution of (58) with x = 0, so that Z1(A) is a linear
subspace of X. Moreover, for every β > α, the operator A is a subgenerator (the integral generator)

of a β-times integrated C-semigroup (Sβ(t))t>0, where Sβ(t)x := 1
Γ(β−α)

∫ t
0
(t− s)β−α−1Sα(s)xds for

every t > 0, x ∈ X. The space Z1(A) consists exactly of those elements x ∈ X for which the mapping
from R+

0 on X defined as t 7→ C−1Sdαe(t)x, is well defined and dαe-times continuously differentiable

on R+
0 ; see e.g [46]. Set

(59) T (t)x :=
ddαe

dtdαe
C−1Sdαe(t)x, for every t ≥ 0, x ∈ Z1(A).

We have T (t)(Z1(A)) ⊆ Z1(A); T (t)C ⊆ CT (t) for every t ≥ 0 and

(60) T (t)T (s)x = T (t+ s)x, for every t, s ≥ 0, x ∈ Z1(A).

We point out that the Fréchet topology on Z1(A) induces the following family of seminorms
(pl,m)l,m∈N, where pl,m(x) := supt∈[0,m] pl(T (t))x), x ∈ X. We also indicate that the solution space

Z1(A) is independent of the choice of (Sα(t))t≥0 in the following sense: If C1 ∈ L(X) is another injec-
tive operator with C1A ⊆ AC1, for every γ ≥ 0, x ∈ X and A is a subgenerator (the integral generator)
of a γ-times integrated C1-semigroup (Sγ(t))t≥0, then the mapping t 7→ C−1Sdαe(t)x, t ≥ 0 is well

defined and dαe-times continuously differentiable on R+
0 if, and only if, the mapping t 7→ C−1

1 Sdγe(t)x,
t ≥ 0 is well defined and dγe-times continuously differentiable on R+

0 .

To sum up, we have that u(t;x) := ddγe

dtdγe
C−1

1 Sdγe(t)x, t ≥ 0 is a unique mild solution of the
corresponding Abstract Cauchy Problem (58). Furthermore, (Sα(t))t≥0 and (Sγ(t))t≥0 share the
same (subspace) distributionally chaotic properties. We state here the corresponding definitions of
distributional chaos for α-times integrated C-semigroups.

Definition 5.2. Let X̃ be a closed linear subspace of X, and let α ≥ 0. An α-times integrated C-

semigroup (Sα(t))t≥0 with a subgenerator A is said to be X̃-distributionally chaotic if there are an
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uncountable set S ⊆ Z1(A) ∩ X̃ and a number σ > 0 such that for every ε > 0 and for every pair
x, y ∈ S of distinct points we have

(61) Dens({s ≥ 0 : d(T (s)x, T (s)y) ≥ σ}) = 1, and Dens({s ≥ 0 : d(T (s)x, T (s)y) < ε}) = 1,

where (T (t))t>0 is defined in (59). If, moreover, S can be chosen to be dense in X̃, then (Sα(t))t≥0

is said to be densely X̃-distributionally chaotic. In the case that X̃ = X, then it is also said that
(Sα(t))t≥0 is (densely) distributionally chaotic.

First, we state some statements concerning distributionally chaotic α-times integrated C-semigroups
by passing to the theory of C0-semigroups.

Suppose that A is the integral generator of an α-times integrated C-semigroup (Sα(t))t≥0 on X,

and X̃ is a closed linear subspace of Z1(A), satisfying T (t)(X ′) ⊆ X̃, where (T (t))t>0 is defined in

(59). Denote by d̃(·, ·) the metric on X̃ inherited by the invariant translation metric d(·, ·) on X.

Arguing as in [43, Sec. 3], we may conclude that (T (t))|X̃)t≥0 is a C0-semigroup on X̃, with

infinitesimal generator A|X̃ . Therefore, as an immediate consequence of Theorem 4.2, we can state

the following version of the (DCC):

Theorem 5.3. Suppose that A is the integral generator of an α-times integrated C-semigroup (Sα(t))t≥0

on X, and X̃ is a closed linear subspace of Z1(A) with the property that T (t)(X̃) ⊆ X̃, for every t ≥ 0.
Then the following are equivalent:

1. (T (t))|X̃)t≥0 is a distributionally chaotic C0-semigroup on X̃.

2. There exist two sequences (xk)k and (yk)k in X̃, ε > 0, a strictly increasing sequence (ρk)k in
R+, and a set D ⊆ R+

0 with Dens(D) = 1 such that:

a) lim
s→∞,s∈D

T (s)xk = 0 in X̃ for every k ∈ N.

b) yk ∈ span{xl : l ∈ N}, lim
k→∞

yk = 0 in X̃, and

(62)
µ({s ∈ [0, ρk] : d̃(T (s)yk, 0

)
> ε})

ρk
≥ 1− 1

k
, k ∈ N.

Now we are able to extend the assertion of [7, Th. 3.7] to α-times integrated C-semigroups.

Theorem 5.4. Suppose that α ≥ 0, t0 > 0 and A in the infinitesimal subgenerator of an α-times
integrated C-semigroup (Sα(t))t≥0 on X. Let n ≥ dαe, [C(D(An))] be separable, and the following
conditions hold:

1. There exists a dense subset X̃0 of [C(D(An))] such that limt→∞ T (t)x = 0, for every x ∈ X̃0.
2. There exist x ∈ C(D(An)) and m ∈ N such that limt→∞ pm(T (t))x) =∞.

Then (Sα(t))t≥0 and the operator T (t0) are distributionally chaotic. If, moreover, R(C) and D(An)
are dense in X, then (Sα(t))t≥0 and T (t0) are densely distributionally chaotic.

Proof. First of all, it should be noted that C(D(An)) ⊆ Z1(A); if x = Cy ∈ C(D(An)), then for every
t ≥ 0,

T (t)x =
dn

dtn
C−1Sn(t)x =

dn

dtn
Sn(t)y = Sn(t)Any +

n−1∑
i=0

gn−i(t)CA
n−1−iy;

for some continuous functions gn−1, 0 ≤ i ≤ n − 1, see [42, Prop. 2.3.3]. Therefore, for every t ≥ 0,
we have that the mapping T (t) : [C(D(An))] → X is linear and continuous. Moreover, the family
(T (t))t≥0 ⊆ L([C(D(An))], X) is strongly continuous. Define Tk := T (kt0) : [C(D(An))] → X for
every k ∈ N. Then (Tk)k∈N ⊆ L([C(D(An))], X) and Tkx = T (t0)kx, for every x ∈ C(D(An)), see
formula (60). As an application of Theorem 3.7.2 it yields that the operator T (t0) is distributionally
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chaotic on C(D(An). If St0 is a corresponding σt0 -scrambled set, R(C) and D(An) are dense in X, then
St0 is dense in [C(D(An))] and X. So that T (t0) is densely distributionally chaotic. Using Theorem
4.1, we can similarly prove the corresponding statements for the α-times integrated C-semigroup
(Sα(t))t≥0. �

Remark 5.5. i) If R(C) and D(A) are dense in X and ρC(A) 6= ∅, then for every λ ∈ ρC(A)
the set ((λ−A)−1C)kC(D(An)) is dense in X for every k ∈ N0.

ii) If λ ∈ σp(A) and Ax = λx for some x ∈ X \ {0}, then x ∈ Z1(A), see for instance [45, Rem.
26.i)]). The corresponding mild solution to (58) is given by T (t)x = eλtx, for every t ≥ 0. In
particular, if λ ∈ K−, then limt→∞ T (t)x = 0 and if λ ∈ K+, then there exists m ∈ N such that
limt→∞ pm(T (t)x) =∞.

iii) We recall that a distributionally chaotic C0-semigroup (T (t))t≥0 on a Fréchet space shares the
corresponding σ-scrambled set with each operator T (t0); see [1, Rem. 1]. It is not clear whether
the above continues to hold for α-times integrated C-semigroups considered in Theorem 5.4.

Now we introduce the following conditions:

H0: There exist a number λ0 ∈ K+ ∩ σp(A) and a nonempty open connected subset Ω of K−
such that Ω ⊆ σp(A). Let f : Ω → X satisfy f(λ) ∈ Ker(A − λ) \ {0}, for λ ∈ Ω; and set
XΩ := span{f(λ) : λ ∈ Ω}.

H1: H0 holds with f(λ0) ∈ XΩ, where we denote by f(λ0) the eigenfunction corresponding to the
eigenvalue λ0.

H2: H0 holds with XΩ = X.

Using the ideas in the proof of Desch-Schappacher-Webb criterion for C0- semigroups, we prove the
following lemma. We leave the details of the proof to an interested reader. Unfortunately, it is still
not clear how can we prove that C(X0) is dense in [C(D(An))] provided that n ≥ 1.

Lemma 5.6. Let K = C, suppose that the condition H0 holds with f : Ω → X being an analytic
function.

1. If the assumption (x∗ ◦ f)(λ) = 0 for all λ ∈ Ω and for some x∗ ∈ X∗, implies x∗ = 0, then
for each subset Ω′ of Ω which admits a cluster point in Ω, we have that span{f(λ) : λ ∈ Ω′} is
dense in X. In particular, XΩ is dense in X, H2 holds and C(XΩ) is dense in [R(C)].

2. In the case that Ω is an open connected subset of C which intersects the imaginary axis then
the equality XΩ = XΩ′ holds for each subset Ω′ of Ω which admits a cluster point in Ω. Hence,
condition H2 holds.

We have already considered distributionally chaotic properties of α-times integrated C-semigroups.
If A subgenerates such a semigroup (Sα(t))t≥0, and λ ∈ ρC(A), then the operator A subgenerates a

((λ − A)−1C)dαe-regularized semigroup, see [46, Prop. 2.3.13] and [46, Cor. 2.1.20]. Therefore, it is
natural to formulate the following consequences of Theorem 5.4 for C-regularized semigroups; observe
only that the space [R(C)] is always separable provided that X is.

Corollary 5.7. Let A be the subgenerator of a C-regularized semigroup (S(t))t≥0 and let t0 > 0.

1. Suppose that the following conditions hold:
(a) there exists a dense subset X0 of X such that limt→∞ S(t)x = 0, x ∈ X0, and
(b) there exist x ∈ X and m ∈ N such that limt→∞ pm(S(t)x) =∞ (limt→∞ ‖S(t)x‖ =∞ in

the case that X is a Banach space).
Then (S(t))t≥0 and the operator C−1S(t0) are distributionally chaotic. If R(C) is dense in X,
then (S(t))t≥0 and C−1S(t0) are densely distributionally chaotic.

2. If condition (H2) is satisfied, then the conclusions of part 1. still holds.

3. Suppose that condition (H1) holds, X̃ := XΩ, and C(X̃) ⊆ X̃. Then the operator A|X̃ subgen-

erates a C|X̃-regularized semigroup (S(t)|X̃)t≥0 on the space X̃. Furthermore, (S(t)|X̃)t≥0 and
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the operator C−1

|X̃
S(t0)|X̃ are distributionally chaotic in the space X̃. If R(C|X̃) is dense in X̃,

then (S(t)|X̃)t≥0 and C−1

|X̃
S(t0)|X̃ are densely distributionally chaotic in the space X̃.

Proof. The assertion 1. is an immediate consequence of Theorem 5.4, while the assertion 2. follows
from Theorem 5.4 and the equality S(t)f(λ) = eλtCf(λ), for every t ≥ 0 and λ ∈ σp(A), see Remark
5.5.2. If the assumptions of part 3. hold, then the previous equality in combination with the inclusion

C(X̃) ⊆ X̃ implies that S(t)(X̃) ⊆ X̃, for t ≥ 0. Then it follows that the operator A|X̃ subgenerates

a C|X̃ -regularized semigroup (S(t)|X̃)t≥0 on X̃, which is separable. Furthermore, the condition (H2)

holds with the operator A|X̃ . Now the assertion 3. simply follows from 2. �

Before going on, we need the following definition which may be found in [44].

Definition 5.8. An entire C-regularized group is an operator family (S(z))z∈C on L(X) that satisfies:

1. S(0) = C
2. S(z + ω)C = S(z)S(ω) for every z, ω ∈ C, and
3. the mapping z 7→ S(z)x, with z ∈ C, is entire for every x ∈ X.

The integral generator (subgenerator) of (S(z))z∈C is said to be the integral generator (subgenera-
tor) of (S(t))t≥0.

The next theorem can be applied to the polynomials of generators of strongly continuous semigroups
considered in [28], [39], and [46, Ex. 3.3.12]. Its formulation is based in the Desch-Schappacher-Webb
criterion, see 2.1. For the sake of clearness we have stated it in full detail, instead of referring to
conditions H0–H2.

Theorem 5.9. Let K = C, t0 > 0, θ ∈ (0, π2 ), n ∈ N such that n(π2 − θ) <
π
2 , an > 0, and ai ∈ C

for 0 ≤ i ≤ n − 1. Let us define p(A) :=
∑n
i=0 aiA

i, and suppose that −A generate an exponentially
equicontinuous, analytic C0-semigroup of angle θ.

1. Assume that there exists a nonempty open connected subset Ω of C that satisfies σp(−A) ⊇ Ω,
p(−Ω) ⊆ C−, and a complex number λ0 ∈ σp(A) such that <(p(λ0)) > 0. Let f : Ω → X be
an analytic mapping satisfying f(λ) ∈ Ker(−A − λ) \ {0}, for λ ∈ Ω. Assume, also, that if
(x∗ ◦f)(λ) = 0, for λ ∈ Ω and some x∗ ∈ X∗, then x∗ = 0. Then there exists an injective
operator C ∈ L(X), with R(C) being dense in X, such that p(A) generates an entire C-
regularized group (S(z))z∈C. Furthermore, (S(t))t≥0 and the operator C−1S(t0) are densely
distributionally chaotic on X.

2. Assume that there exists a nonempty open connected subset Ω of C that satisfies σp(−A) ⊇
Ω, p(−Ω) ⊆ C−, a complex number λ0 ∈ σp(A) such that <(p(λ0)) > 0, and an element
x0 ∈ X \ {0} such that Ax0 = λ0x0. Let f : Ω → X be an analytic mapping satisfying

f(λ) ∈ ker(−A − λ) \ {0} for every λ ∈ Ω. Let XΩ be defined as before, X̃ := XΩ and let

x0 ∈ X̃. Then there exists an injective operator C ∈ L(X), with range dense in X, such that
p(A) generates an entire C-regularized group (S(t))t∈C. Furthermore, C can be chosen so that

C(X̃) ⊆ X̃, R(C|X̃) is dense in the space X̃, and the operator p(A)|X̃ generates an entire

C|X̃-regularized group (S(z)|X̃)z∈C in the space X̃. The semigroup (S(t)|X̃)t≥0 and the operator

C−1

|X̃
S(t0)|X̃ are densely distributionally chaotic.

Proof. Using [44, Th. 3.13], the argumentation given in [25, Sec. XXIV], as well as the fact that
the generators of C0-semigroups on sequentially complete locally convex are always densely defined
(see for example [41, 44] for more details), it readily follows that the operator Ak is densely defined
for all k ∈ N, and the operator −p(A) generates an exponentially equicontinuous, analytic strongly
continuous semigroup of angle π

2 − n(π2 − θ).
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By [44, Th. 3.15], we get that there exists an injective operator C ∈ L(X) such that p(A) generates
an entire C-regularized group (S(z))z∈C with R(C) dense in X. By the proof of [26, Lem. 5.6], we
have that σp(−p(A)) = −p(−σp(−A)) and f(λ) ∈ Ker(−p(A) + p(−λ)), for λ ∈ Ω. Without loss of
generality, we may assume that p′(z) 6= 0, z ∈ −Ω; otherwise, we can replace Ω by Ω \ {γ1, . . . , γn−1},
where γ1, . . . , γn−1 are not necessarily distinct zeros of the polynomial p′(z). Hence, the mapping
λ 7→ p(−λ) for every λ ∈ Ω and its inverse mapping z 7→ −p−1(z) z ∈ p(−Ω), are analytic and open.

Consequently, the set −p(−Ω) is open and connected. Moreover, the mapping z 7→ f(−p−1(−z))
defined for every z ∈ −p(−Ω) is analytic, f(−p−1(−z)) ∈ ker(−p(A)− z) for every z ∈ −p(−Ω), and
if for some x∗ ∈ X∗ we have x∗(f(−p−1(−z))) = 0 for every z ∈ −p(−Ω), then we have x∗ = 0.

Therefore, it is sufficient to prove the assertions 1. and 2. in the case p(z) = z. By the foregoing,
we have that f(−λ) ∈ Z(A) for every λ ∈ −Ω, f(−λ) ∈ Ker(A− λ) for every λ ∈ −Ω, and

(63) S(t)f(λ) = e−λtCf(λ), for evert t ≥ 0, λ ∈ Ω.

The assertion 1. follows now from a simple application of Corollary 5.7.2. In order to prove the

assertion 2. by [45, Rem. 14.ii)] jointly with the proof of [44, Th. 3.15] imply that C(X̃) ⊆ X̃ and

R(C|X̃) is dense in X̃. By (63), we get S(z)f(λ) = e−λzCf(λ) for every z ∈ C, λ ∈ Ω. This implies

that S(z)(X̃) ⊆ X̃ for every z ∈ C and that the operator p(A)|X̃ generates an entire C|X̃ -regularized

group (S(z)|X̃)z∈C on the space X̃. The remaining part of the proof is a consequence of Corollary

5.7.3. �

Remark 5.10. If p(−Ω) ∩ iR 6= ∅, then we have that x0 ∈ X̃ in Theorem 5.9.2, (see also Lemma
5.6.2.)

Remark 5.11. The notions of distributional chaos and distributionally irregular vectors for α-times
integrated C-semigroups have been defined in terms of the unbounded operators G(δt), where G is an
algebra homomorphisms and δt is the Dirac measure concentrated at the point t.

Let DK the space of C∞ functions on R with values on K and compact support. This space is supplied
with the usual inductive limit topology. For obtaining a description of Devaney chaos that involves
the operators G(ϕ), with ϕ ∈ DK, one can proceed as in [26, Th. 4.6] and [46, Th. 3.1.32] and try to
exploit the identity G(δs)x = limk→∞ C−1G(ϕk,s), s ≥ 1, x ∈ Z1(A), where ϕk,s(·) := kϕ(s+ k(· − s))
for some fixed ϕ ∈ DK with supp(ϕ) ⊆ [s − 1, s + 1] and

∫
ϕdµ = 1. For the sake of brevity, we will

not consider this question in more detail here and this will be the topic of a future research.

Nevertheless, we leave as an interesting problem to the reader to transfer the assertions of Corollary
3.12.1 and [17, Th. 19], [46, Th. 3.1.34] to fractionally integrated C-semigroups.

It is quite natural to ask whether some integrated C-semigroups that are already known to be
hypercyclic and/or Devaney chaotic, possess a certain distributionally chaotic behaviour.

Example 5.12. [42, Ex. 3.1.35(i)] and [45, Ex. 38]. Let us consider n ∈ N, K = C (the established
results continue to hold in the case that K = R), a weight function ρ(t) := 1

t2n+1 defined for every

t ∈ R and an integral generator Af := f ′ with domain D(A) := {f ∈ C0,ρ(R) : f ′ ∈ C0,ρ(R)}.
Let us also consider Xn := (C0,ρ(R))n+1 and the n+ 1-linear operator defined as

(64)
An(f1, ···, fn+1) := (Af1+Af2, Af2+Af3, ···, Afn+Afn+1, Afn+1), for every (f1, ···, fn+1) ∈ D(An),

with D(An) := D(A)n+1.
Then ±An generate a polynomially bounded n-times integrated semigroups (Sn,±(t))t≥0, and neither

An nor −An generates a local (n− 1)-times integrated semigroup.
The above implies that ±An generate (1 ∓ A)−n-regularized semigroups (Tn,±(t))t≥0, and neither

An nor −An generates a local (1∓A)−(n−1)-regularized semigroup. Then it can be easily proved that,
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for every t ≥ 0 and ϕ1, · · ·, ϕn+1 ∈ DC,

(65)
(
1∓A)nTn,±(t)

(
ϕ1, · · ·, ϕn+1

)T
=
(
ψ1, · · ·, ψn+1

)T
,

where

(66) ψi(·) =

n+1−i∑
j=0

(±t)j

j!
ϕ

(j)
i+j(· ± t), for every 1 ≤ i ≤ n+ 1.

If 0 ≤ i ≤ n, ϕ ∈ DC and supp(ϕ) ⊆ [a, b], then

ti sup
x∈R
|ϕ(x± t)|ρ(x) ≤ ti sup

x∈[a∓t,b∓t]

1

x2n + 1

≤ ti
(

1

(a− t)2n + 1
+

1

(a+ t)2n + 1
+

1

(b− t)2n + 1
+

1

(b+ t)2n + 1

)
which tends to zero as |t| → ∞.

Set X0 := (DC)n. By (65), we have that lim
t→∞

Tn,±(t)~ϕ = 0, for ~ϕ ∈ X0. Since ρ(·) is an admissible

weight function in the sense of [28], and (65) holds, it readily follows that the operator A generates
the translation C0-group (T (t))t∈R on C0,ρ(R), as well as that the tuple (ϕ, 0, · · ·, 0)T belongs to the
space Z1(±An) for any ϕ ∈ C0,ρ(R), with

(67) T (±t)
(
ϕ) :=

(
ϕ(· ± t), 0, · · ·, 0

)T
, for every t ≥ 0.

Now we can apply [12, Cor. 30] (with X0 = DC and B = N), and [1, Prop. 2], so as to conclude
that for every t0 > 0 the operators T (±t0) have dense distributionally irregular manifolds and that the
C0-semigroups (T (±t))t≥0 are densely distributionally chaotic. For every l ∈ N define T l±(t) := T (t)x,

for every t ≥ 0, x ∈ D(Al). Then it is well known that (T l±(t))t≥0 are C0-semigroups on the space

[D(Al)] and that (1− A)−l : C0,ρ(R)→ D(Al) is a continuous linear homeomorphism satisfying that
T l±(t) ◦ (1−A)−l = (1−A)−l ◦T±(t), for every t ≥ 0 (see e.g. the proof of [40, Lem. 3.2]). Using that
distributional chaos is preserved under conjugaqy and Theorem 4.2, it readily follows that for each
l ∈ N there exists ϕ ∈ D(Al) such that

(68) lim
t→∞

‖T±(t)ϕ‖C0,ρ(R) =∞.

Applying Theorem 5.4, we get that (Sn,±(t))t≥0 and (Tn,±(t))t≥0 are densely distributionally chaotic,
as well as that for each t0 > 0 the operator (1∓A)nTn,±(t0) is densely distributionally chaotic.

Example 5.13. Devaney chaos was already studied for C-regularized semigroups generated by differ-
ential operators with constant coefficients [26] We return to this setting for studying the distributional
chaotic properties of those generators.

Let us consider the weighted space Lpρ(R) with 1 ≤ p < ∞ and ρ an admissible weight function in
the sense of [28]. Let us define

• ω1 := sup{µ ∈ R :
∫∞

0
eµpsρ(s)ds <∞}.

• ω2 := inf{µ ∈ R :
∫ 0

−∞ eµpsρ(s)ds <∞}.
• Vω2,ω1

:= {z ∈ C : ω1 ≤ <(z) ≤ ω2}.
• Q(z) :=

∑N
k=0 akz

k, with ak ∈ C for every 0 ≤ k ≤ N , and aN 6= 0.

• Q(B) :=
∑N
k=0 akB

k, where B is the derivative operator.
• For an arbitrary µ ∈ C, we define hµ(s) := eµs, for every s ∈ R.

Finally let us take t0 > 0 and :

(69) Q(int(Vω2,ω1
)) ∩ iR 6= ∅.
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For every µ ∈ int(Vω2,ω1) we have ±Q(B)hµ = ±Q(µ)hµ. If C := (e−(−z2)N )(B), then we have
that the operator Q(B) is the integral generator of the C-regularized semigroup (WQ(t))t≥0 on Lpρ(R),

with WQ(t)(z) := etQ(z)e−(−z2)N )(B) for every t ≥ 0, z ∈ C.
Furthermore, the sets R(C), X0 := span{hµ : <(Q(µ)) < 0} and X1 := span{hµ : <(Q(µ)) > 0}

are dense in Lpρ(R. By Corollary 5.7.2, we obtain that the C-regularized semigroup (WQ(t))t≥0 and

the operator et0Q(B) are densely distributionally chaotic. If we replace the condition (69) by

(70) Q(int(Vω2,ω1)) ∩ {z ∈ C : |z| = 1} 6= ∅,
then it can be proved, with the help of Corollary 3.12.2, that the unbounded operator Q(B) is densely
distributionally chaotic.
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and Backward Control traffic model. Linear Algebra Appl., 479:202–215, 2015.

[9] X. Barrachina and A. Peris. Distributionally chaotic translation semigroups. J. Difference Equ. Appl., 18(4):751–

761, 2012.
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22 CONEJERO, KOSTIĆ, MIANA, AND MURILLO-ARCILA

[25] R. deLaubenfels. Existence families, functional calculi and evolution equations, volume 1570 of Lecture Notes in

Mathematics. Springer-Verlag, Berlin, 1994.

[26] R. deLaubenfels, H. Emamirad, and K.-G. Grosse-Erdmann. Chaos for semigroups of unbounded operators. Math.
Nachr., 261/262:47–59, 2003.

[27] B. Dembart. On the theory of semigroups of operators on locally convex spaces. J. Functional Analysis, 16:123–160,

1974.
[28] W. Desch, W. Schappacher, and G. F. Webb. Hypercyclic and chaotic semigroups of linear operators. Ergodic

Theory Dynam. Systems, 17(4):793–819, 1997.

[29] J. Duan, X.-C. Fu, P.-D. Liu, and A. Manning. A linear chaotic quantum harmonic oscillator. Appl. Math. Lett.,
12(1):15–19, 1999.

[30] S. El Mourchid. The imaginary point spectrum and hypercyclicity. Semigroup Forum, 73(2):313–316, 2006.

[31] H. Emamirad, G. R. Goldstein, and J. A. Goldstein. Chaotic solution for the Black-Scholes equation. Proc. Amer.
Math. Soc., 140(6):2043–2052, 2012.

[32] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G.

Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

[33] G. Godefroy and J. H. Shapiro. Operators with dense, invariant, cyclic vector manifolds. J. Funct. Anal., 98(2):229–
269, 1991.

[34] J. A. Goldstein. Some remarks on infinitesimal generators of analytic semigroups. Proc. Amer. Math. Soc., 22:91–93,

1969.
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[46] M. Kostić. Abstract Volterra Integro-Differential Equations. Taylor and Francis Group / CRC Press, To appear

2015.
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Departamento Matemáticas e I.U.M.A. Universidad de Zaragoza, Zaragoza, Spain

E-mail address: pjmiana@unizar.es
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Spain

E-mail address: mamuar1@posgrado.upv.es


	1. Introduction
	2. Preliminaries
	2.1. Notation
	2.2. Distributional chaos for single operators
	2.3. Distributional chaos for C0-semigroups

	3. Distributional chaos for sequences of operators
	4. Distributional chaos for C0-semigroups
	5. Distributional chaos for -times integrated C-semigroups
	References

