View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institute of Transport Research:Publications

ATHMoS: Automated Telemetry Health Monitoring
System at GSOC using Outlier Detection and
Supervised Machine Learning
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Miinchener Strafle 20, 82234 Wefiling, Germany

Knowing which telemetry parameters are behaving accordingly and those which are
behaving out of the ordinary is vital information for continued mission success. For a large
amount of different parameters, it is not possible to monitor all of them manually. One of
the simplest methods of monitoring the behavior of telemetry is the Out Of Limit (OOL)
check, which monitors whether a value exceeds its upper or lower limit. A fundamental
problem occurs when a telemetry parameter is showing signs of abnormal behavior; yet,
the values are not extreme enough for the OOL-check to detect the problem. By the
time the OOL threshold is reached, it could be too late for the operators to react. To
solve this problem, the Automated Telemetry Health Monitoring System (ATHMoS) is
in development at the German Space Operation Center (GSOC). At the heart of the
framework is a novel algorithm for statistical outlier detection which makes use of the so-
called Intrinsic Dimensionality (ID) of a data set. Using an ID measure as the core data
mining technique allows us to not only run ATHMoS on a parameter by parameter basis,
but also monitor and flag anomalies for multi-parameter interactions. By aggregating past
telemetry data and employing these techniques, ATHMoS employs a supervised machine
learning approach to construct three databases: Historic Nominal data, Recent Nominal
data and past Anomaly data. Once new telemetry is received, the algorithm makes a
distinction between nominal behaviour and new potentially dangerous behaviour; the latter
of which is then flagged to mission engineers. ATHMoS continually learns to distinguish
between new nominal behavior and true anomaly events throughout the mission lifetime.
To this end, we present an overview of the algorithms ATHMoS uses as well an example
where we successfully detected both previously unknown, and known anomalies for an
ongoing mission at GSOC.

I. Introduction

In recent years, many operations teams, research groups, and space agencies have been looking to further
automate the telemetry checking process as data retrieval, storage, and processing has become more ubiquitous.
The human effort to manually inspect tens of thousands of parameters in detail is simply not an option.
Additionally, a simple automated process such as the Out-Of-Limit (OOL) check, which only verifies if a
certain parameter crosses soft(hard) upper or lower thresholds, is not robust enough to detect the various
types of anomalies that may occur in the telemetry data. Many teams within the last 15 years have taken a
different approach to detect more subtle changes in the data. Here, we focus on a select few to explain some
fundamental concepts that we adapt in our approach.
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One particular system is the Inductive Monitoring System (IMS) developed at NASA-Ames!' which uses
clustering to extract a data model of the nominal telemetry data. For each timestamp, d telemetry parameter
values are combined to create a d-dimensional vector, the collection of which are then ran through a clustering
algorithm to identify nominal “regions” in the vector space where nominal data was usually observed. When
new telemetry data arrives, it is then inserted into the vector space and its distance to the nearest nominal
region is measured. This distance provides a measure of a points “outlierness” relative to the nominal
regions. Since the IMS system was introduced, several evolutions of it have been created such as the Anomaly
Monitoring Inductive Software System (AMISS) which is a collaboration between the Johnson Space Centre
(NASA) and Ames to support the International Space Stations flight operations.?

Other existing anomaly detection systems implemented by NASA include the distance-based Orca,®> Ames
Research Centers support vector machine based Mariana,* and the Jet Propulsion Laboratories hybrid method
Dynamical Invariant Anomaly Detector (DIAD).? For an overview of Orca and IMS and their application to
NASA mission operations see Ref. 6, the references therein, and Ref. 7.

Another such technology was recently developed at the European Space Agency (ESA) by the Advanced
Operations Concepts Office called the Novelty Detection System.® In this approach, telemetry data is first
decomposed into sequential time intervals. For each time interval, a 4-dimensional feature vector is calculated
and compared to a pre-labeled set of nominal data points. This comparison to the nominal data clusters is
done via the density-based Local Outlier Probability (LoOP) algorithm? which assigns a probability to each
new point that novel telemetry behaviour occurred during its respective time interval. As an application of
the technology, the Columbus Control Centre (Col-CC) team at GSOC - DLR has implemented a framework
called Sibyl'® which automatically preprocesses the 4-dimensional feature vectors associated to each time
interval for past data using the Density-Based Spacial Clustering of Applications with Noise (DBSCAN)!!
algorithm. Once the clusters of past data which correspond to nominal data are filtered out, they are then
fed into the Novelty Detection system to compare to the new telemetry data.

ATHMoS is similar to the above systems in the sense that it computes large (dimension greater than 4)
feature vectors from time intervals in the telemetry data, uses DBSCAN to filter nominal training data from
past telemetry data but then creates three Classification Databases; Historic Nominal, Recent Nominal and
Anomalies to compare the new telemetry data to. The comparison is done using a novel algorithm developed
at GSOC named Outlier Probability Via Intrinsic Dimension (OPVID). OPVID has a central dependency
on a statistical quantity known as the Intrinsic Dimension to obtain a probability that the time interval
associated to a distinct feature vector contains a true anomaly. Furthermore, it allows us to analyse multiple
telemetry parameters simultaneously, similar to the IMS and the AMISS systems, without significant loss of
accuracy. To this end, we first must describe the notion of Intrinsic Dimensionality of a data set in order to
define the OPVID algorithm.

II. Outlier Probability Via Intrinsic Dimension
There are many different methods to determine outliers of a data set'?'* and many ways to apply these
techniques to identify anomalies in different types of data (see for example Refs. 15-17 and the references
therein). As outlined in Section I, some of these anomaly detection methods have specifically been tailored to
the space industry to investigate time series telemetry data. In this section, we show that a generalisation of
an outlier detection method introduced in Ref. 18 can be used for such a purpose.

II.A. Intrinsic Dimension of a Data Set

A central concept of data mining and machine learning is that of comparing data. That is, given some data
set, we want to analyse its properties and use this analysis to create a predictive model of how it will change
over time, or simply compare it to other existing data sets to see their similarities. The effectiveness of these
types of predictive and comparison algorithms depend on the nature of the descriptive information gathered
from the data sets. The amount of these features that are distilled from the data can vary greatly and the
cardinality is usually referred to as the dimensionality of the data. As one can imagine, with increasing
dimension, many of the most common outlier detection methods fail to be as effective as they are in lower
dimensional spaces since data is distributed in a sparse manner. This observation is well known as the “curse
of dimensionality” and ways to minimise its effects is currently a highly active field of research (see for
example Refs. 19-21).
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One possible solution to the problem is to make use of the concept of the Intrinsic Dimensionality (ID).
Roughly speaking, the ID of a data set is the number of features (i.e. degrees of freedom) that are needed
to accurately describe the data. There are several approaches to estimating the ID of a data set such as
subspace projection methods?2 24 or fractal/geometric methods,?> 28 however here we are concerned with a
recent ID model called the Continuous Intrinsic Dimensionality.

Suppose we have data points contained in a vector space which is equipped with a distance measure (e.g.
the Euclidean norm). The distances from each point to some fixed query point ¢ will all be positive numbers
and thus a variable which takes on any such distance can be represented as a (continuous) random variable X.
Since X is a (continuous) random variable, we have an associated probability density function fx(z) which
describes the probability that the variable will be a certain value and additionally, the cumulative density
function Fx(z) := P(X< ¢) which describes the probability that X will take a value less than or equal to g.
Using these functions we can define an abstract definition of the continuous ID?%3° as

(1)

Remarkably, if we have clustered data in a d-dimensional subspace of an n-dimensional vector space then
the continuous ID is equal to the dimension of the cluster, d. For this fact as well as others pertaining to
details about the estimation and properties of both ID and continuous ID, we refer the reader to the above
references as well as Refs. 31-34. For the purposes of this paper, it suffices to say that various methods
of estimating the (local/continuous) ID of a data set exist as detailed in Ref. 35 and usually depend on a
k-nearest neighbour parameter to compare local distances of points to one another. We call such a parameter
the context set k and denote it k..

For clarity we provide one particular approximation to make the application of the Eq. (1) more concrete.
Let g be the query point whose ID score we wish to determine. Set k. = 10 such that we want to approximate
the points ID score relative to its 10-nearest-neighbours and let x1, xa, ..., 19 denote the (increasing)
ordered distances from the point ¢ to its 10-nearest-neighbours. The Maximum-Likelihood-Estimator of the
ID score of the point ¢ is given by

mo = (3550 (2)) ’

=1

II.B. Application to Outlier Detection

The insight that the (continuous) ID score of a point ¢ is equal to the dimension of the cluster it belongs to
and increases if the point lies outside a cluster was a central motivation behind the Intrinsic Dimensionality
Outlier Score (IDOS).® In the associated reference, the authors first approximated the infamous Local Outlier
Factor (LOF) outlier score®® in terms of ID and then modified this approximated LOF formula to only be
dependent on the ID score of each data point. This yielded the IDOS score

IDOS(q) := 1D(q) Z( )IDl(p) , (3)
PENK,. (¢

where k, > 1 such that Ny, _(q) is the set of k,-nearest neighbours of the query point ¢ and ID(p) is the ID
Score (see for example the estimator given by Eq. (2)) of the point p. Similar to the LOF score, we say that
a point ¢ is an outlier if IDOS(g) >> 1 and an inlier if IDOS(g) ~ 1. Furthermore, the authors provided a
detailed accuracy comparison and efficiency tests against current state-of-the-art outlier detection methods
LOF, SOD,?” and FastABOD?® where they concluded that IDOS was superior in terms of both accuracy and
efficiency.

For our purposes, the IDOS algorithm is insufficient due to the fact that we want to run such an outlier
detection algorithm for tens of thousands of different data sets and for each data set the notion of an outlier
score “much much greater than 1”7 varies. That is, for one particular telemetry data set, an outlier score for a
query point ¢ may correspond to an outlier if its score is 5, whereas for another telemetry data set, a value of
15 may only indicate that the point is truly an outlier. These differences imply we must have a normalized
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Figure 1. A 7-dimensional data set projected into two different 3-dimensional spaces with a color gradient representing
the ID scores of each point. In the left we see that in one possible 3-dimension projection it appears that there are
no outliers, whereas in the right image we see that projecting to a different basis vector set reveals two outliers. This
illustrates the difficulty of interpreting which points are outliers in higher dimensional vector spaces and how the use
of ID of a point can help circumvent such difficulties.

outlier score such that we will always know whether a point has a high likelihood of being an outlier for any
given data set.

In light of these considerations we propose a new outlier score, the Outlier Probability Via Intrinsic
Dimension (OPVID) score, which serves exactly this purpose. The general outline is as follows and makes
use of a normalization technique used in Ref. 9 to obtain the probability measure.

After determining the ID score of every point in the data set using for example one of the methods
described in Ref. 29 or Ref. 35, we determine the difference between a points own ID score and the average
of its local k,-nearest neighbours ID scores, i.e.

PIDOS(q) i= ID(q) — — - 3. ID(p) (4)

-
PEN, (q)

which we call the Probabilistic Intrinsic Dimension Outlier Score (PIDOS) and will be close to zero for points
which belong to clusters. As a side remark, we note that this this score is not a probability score yet since it
clearly can be negative. Now, using the set of all PIDOS scores we can define the Outlier Probability Via
Intrinsic Dimension score of a query point g as

where A is a scaling factor, PIDOSgrp(g) is the standard deviation of the PIDOS scores of the query points
local k,-nearest neighbours, and erf is the Gaussian error function. We note that the application of the
Gaussian error function assumes that the PIDOS scores are normally distributed around zero, which, for
points which have an ID score close to the average of its neighbours is a just assumption. Therefore, the
OPVID score for a point which belongs to a local cluster and hence has each of its neighbours sharing a close
ID score will be close to zero whereas a point which strays outside of a local cluster will have a score closer to
one.

For an insight into some preliminary benchmarking results that will be published elsewhere, we briefly
describe an example of one of our tests. Given a starting data set where each point is pre-labelled as either
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“inlier” or “outlier”, we run the outlier detection algorithm against it and then obtain a Receiving Operating
Characteristic (ROC) curve which plots the true positive verses false positive rates of detecting outliers. By
computing the area under the curve (AUC) we then obtain a measure of accuracy of the algorithm. Here we
use the Amsterdam Library of Object Images (ALOI) data set3® which is a collection of 110,250 images of
1000 objects where each feature vector that corresponds to a single image is 64-dimensional. Using a subset of
the ALOI data set which consists of 10,000 data points with 100 known outlier points we compared OPVID
with four different k. values (which are used to calculate the ID score of each point) against LoOP and LOF
for a range of k,-nearest neighbour values. Figure 2 provides a preliminary look into the results where it is
seen that OPVID outperforms the two other methods in correct outlier identification.

—AUC_Ke S0~ AUC_KC_100  AUC_ke_200 ~— AUC_ke_300 ~—LoOP ==LOF

085 = W

Figure 2. Accuracy of OPVID for various k. values (green, yellow, orange and red lines) that are used to estimate the
ID score of each point against LoOP (light blue line) and LOF (dark blue line) in a ROC-AUC plot for a sub-sampled
ALOI data set. The higher the curve, the higher accuracy in correctly identifying the known outliers in the data set.

III. Automated Telemetry Health Monitoring System

In this section we explain the basic concepts and notions behind ATHMoS to provide an overview of the
entire system. We first describe our approach to computing a non-trivial feature vector by analysing the raw
time series data as well as its smoothed form which is computed via Fourier transform. We then discuss our
approach to obtaining three so-called Classification Databases; the Historic Nominal, Recent Nominal, and
Anomaly Databases. Once we have these three databases for each telemetry parameter we wish to monitor,
we make use of the OPVID, LoOP and DBSCAN algorithms to compare new test data to them in order to
determine behaviour of the new data. Finally, we finish with an illustrative example where we were able to
detect with high precision a known anomaly from the TET-1 satellite that wasn’t detected by the OOL-check.

ITII.A. Feature Vectors and Summary Statistics

As mentioned in Section II.A, a central aspect of data mining is to identify statistical features for a given
data set that best describe the data. A common approach is to make use of summary statistics. That is, for
a set of observations, one tries to describe the data in terms of a measure of the shape of its distribution,
statistical dispersion, central tendency and bounds. Recalling that the ID score of a data point provides a
measure of the subspace dimension of the cluster it may belong to, it gives us a nice opportunity to create
high dimensional feature vectors made up of several different summary statistics.
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The idea is as follows: for a fixed telemetry parameter e.g. from a LEO mission, we can split the time
series data into 90-minute time intervals (approximate time for one orbit) and compute many summary
statistics after carefully interpolating the data to a fixed data sample rate. Such summary statistics include:
maximum, minimum, average, median, first quartile, third quartile, midrange, median absolute deviation,
standard deviation...etc. From here and henceforth we refer to these statistics as basic summary statistics.
Thus, for each 90-minute time interval of a fixed telemetry parameter we obtain a corresponding feature
vector of the form

V,, = (Max, Min, Avg, Med, Q1, Q3, MidR, ...), (6)

which can then be considered as a point in a vector space and thus allows us to determine areas where these
points cluster together, i.e. clusters of “orbit” data points. Clearly, when a point lies far enough away from
clusters, then the corresponding orbit can be flagged as behaving non-nominally relative to the data available
in the clusters. After a thorough analysis of which summary statistics to choose as elements of our feature
vectors, we determined that noise in the data was having a large effect on these statistics and caused many
false positives to be reported. In order to overcome this limitation for non-discrete-valued telemetry data (i.e.
parameters which do not have step-function behaviour) we first apply a smoothing algorithm to isolate the
noise from the data.

A common technique for smoothing time series data is to apply a discrete Fourier transform to the data,
mapping it into a frequency space which provides an insight into the individual frequencies which the original
signal is composed of (See Fig. 3). Once in the frequency space, we set the amplitudes of high frequencies
to zero, cutting them off, and then apply the inverse Fourier transformation to map it back to its original
domain. The smoothed signal we obtain this way does not contain any of the high frequency noise. The
difficulty lies in finding an optimal cutoff value that is low enough to remove possible noise contained within
high frequencies and high enough to include the inherent frequency of the underlying raw time series data if
there is any. In case no dominant underlying frequency can be detected, a sufficiently high default cutoff
value is used to prevent the resulting smoothed signal to be void of any information contained in the raw
time series data. Details of how to obtain the optimum frequency cutoff value is outside the scope of this
paper. However, a general outline can be seen in Figs. 4, 5 and their captions.
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Figure 3. The first part of the vector representing the Fourier transformation (using a real fft) of the raw telemetry
data from Fig. 5, where Figs. 3a) and 3b) correspond to the raw data in Figs. 5a) and 5b), respectively. For these
two sets of Fourier transformed telemetry data, a peak at a frequency around 0.67 %, which corresponds to one cycle
per orbit (~90-minutes per orbit), is visible. This periodicity becomes obvious when looking at the corresponding raw
telemetry data. However, this peak might not always be sufficient to determine the inherent frequency of a telemetry
parameter and a generalized approach, roughly depicted and described in Fig. 4, is used in the ATHMoS Algorithm.

Let y := (y1, Y2, ..., Yn) be the vector of all data points for a fixed telemetry parameter within a given
90-minute time interval (representing the time period of one LEO orbit) and let y' := (y1,¥5, .. .,y,,) be the
new, smoothed vector after cutting off the higher order frequencies and transforming it back to the original
domain. Defining a relative root-mean-squared (rrms) error as
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rrms(y’) == % z": <M>2 ; (7)

i=0 Ymax — Ymin

allows us to measure the effects of removing each individual higher order frequency. By plotting the rrms-error
against the cutoff value, we can obtain a visualization of the inherent frequency in the original data and those
which we want to consider as noise (see Fig. 4). Once we obtain the optimal cutoff value and smoothen the
data, we arrive at the situation depicted in Fig. 5.
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Figure 4. The rrms-error obtained at varying frequency cutoff values for a sample size of eight orbits. A higher cutoff
value means less frequencies are cut off in the frequency space before applying the inverse fourier transformation to
acquire the new signal. The more frequencies are used to compute the new signal via the inverse Fourier transformation,
the lower the rrms-error (see Eq. (7)) will be since the new signal more closely resembles the original data. We assume
that a significant drop in the rrms-error signifies the inherent frequency or multiples of the inherent frequency. In Fig.
4a), we see no distinct drop in the rrms-error. Here, the maximum of the discrete 2nd derivative, which can be used to
locate the largest drop in the rrms-error, does not represent a significantly large drop and thus, our algorithm computing
the optimal cutoff defaults to a pre-configured default value of 401. In Fig. 4b), a significant sharp drop in the rrms-error
at a cutoff value of nine (which corresponds to one frequency per orbit) is clearly visible and automatically detected
by our algorithm. This frequency represents the periodic nature of the signal within its time interval. Furthermore,
comparing Fig. 4b) with its raw telemetry data visualized in Fig. 5b) allows us to visually verify the optimal cutoff
value of nine. The plot of this raw data shows that it includes eight 90-minute orbits (~12-hours), meaning we want
a resolution of at least eight frequencies in our smoothed vector. Cutting off all frequencies above and including nine
leaves us with a resolution of eight frequencies which is exactly what we want our optimal cutoff value to be.

In addition to removing the noise using the previously outlined method using Fourier transformations and
thereby gaining additional features stabilizing our feature vector, the features derived from the smoothed
signal indirectly contain information about its inherent frequency and allow changes in its frequency to be
detected. Also, by smoothing the original raw telemetry data, a natural step is to investigate the noise that
was filtered out. By taking the difference of the original data for a given time interval y and smoothed data
y’ we obtain a noise vector

YN =1 — Y12 — Y2, U3 — Yss s Un — Yn) (8)

which enables us to detect major changes in the noise of a telemetry parameter.

Finally, for a fixed time interval, we now compute the basic summary statistics over the raw data, smoothed
data and noise data given by y, y’ and yy respectively to obtain one large feature vector composed of these
summary statistics. Once we have computed these feature vectors for each time interval for a given telemetry
parameter, we can begin to compare new feature vectors to them to determine the likelihood that the new
point represents an anomaly in the described time interval.

ITII.B. The ATHMoS Algorithm

There are three main types of machine learning approaches to anomaly detection; supervised, unsupervised
and semi-supervised. In supervised anomaly detection, we have two sets of labelled data; nominal and
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Figure 5. The original raw data (red) plotted against the smoothed data (white) for two different telemetry parameters
over a ~12-hour time interval. The smoothing was acquired by cutting off all frequencies above and including 25 in
the frequency space and applying the inverse Fourier transformation to the resulting frequency vector. We arrived
at the cutoff value of 25 by automatically computing the optimal cutoff value which was nine for both of the plotted
parameters and adding an additional two frequencies per orbit (16 in total) to the optimal cutoff value. Allowing two
extra frequencies per orbit in the frequency space ensures that the resulting smoothed data still includes some of the
details of the raw data and, for parameters which do not have a large amount of noise and behave similar to a sinus
wave, closely follows the raw data as is the case for Fig. 5a).

anomaly sets. When new data is obtained, it is compared to both of the sets and an algorithm decides which
data set each new data point belongs to. In semi-supervised anomaly detection, we are only provided with a
labelled nominal data set and then compare the new test data to this set. In unsupervised anomaly detection
we have no labelling of any initial data at all and simply compare new test data to it. The downside to such
an approach is that there may have been several anomalies that occurred in the past and therefore formed a
cluster in the high dimensional feature space. When we compare the new test data to it, it appears to be
part of said cluster and therefore is not identified as a statistical outlier. As referenced in Section I, a notable
example in the spacecraft operations community which makes use of the semi-supervised approach is the
Novelty Detection System developed at ESA.% Here we take the supervised approach.

III.B.1. Classification Databases

For each new telemetry parameter which will be monitored by ATHMoS, an initial configuration run must
be completed where we compute the Classification Databases; the Historic Nominal, the Recent Nominal,
and the Anomaly Databases. That is, we take unlabelled feature vectors from past data and separate them
into these three categories. This step is accomplished by putting all the data together and determining the
clusters that are present in the data by using the Density-Based Spacial Clustering of Applications with
Noise (DBSCAN) algorithm - one of the most widely used clustering algorithms.!! It is very useful since
unlike other clustering algorithms, it does not require the user to input a set amount of clusters that must be
found within the data set. Through an extensive analysis and corroboration with operations engineers, we
concluded that any clusters that contain less than 5% of the total data set can be separated out and stored
in the Anomaly Database. The remaining data points are kept and stored in the Historic Nominal and the
Recent Nominal Databases. As the name suggests, the Recent Nominal Database contains points which are
more recent relative to the soon to be tested new test data. An example of the automatic cluster detection
output from DBSCAN is given in Fig. 6.

H1.B.2. Comparing New Data to the Classification Databases

When new telemetry data is available, we compute the feature vectors for each predetermined time interval
length as detailed in Section III.A, i.e. 16 time intervals corresponding to 90-minutes each for a 24-hour time
period (for a LEO mission). Once we have obtained this set of new data points, the so-called Test Data, we
compare each individual Test Data point against the Classification Databases. For comparison to the Historic
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Figure 6. Each point corresponds to a 90-minute time interval for a fixed parameter and is a 15-dimensional vector.
In total, this is one years worth of orbits. This figure depicts a two dimensional projection of this high dimensional
data to the standard deviation of the raw data verses the average of the smoothed data and the clusters (seven) that
DBSCAN detected. We assume that any cluster that contains less than 5% of the total number of points represents
outliers. Thus, these are filtered out and only “cluster 1” (dark blue) is used as a starting nominal data set which is
then time-wise separated into Historic and Recent Nominal Databases.

and Recent Nominal Databases, we use the OPVID algorithm described in Section I1.B since (for ongoing
missions) we have a large amount of data contained in them which lends itself to provide an accurate ID
score. This differs from the comparison to the Anomaly Database, where the amount of labelled data is not
high enough to obtain an accurate predication with OPVID so there we make use of the LoOP algorithm and
DBSCAN algorithms to provide us with a labelling of each point as either Nominal or Anomaly with respect
to the data set of known anomalies. At the end of this procedure, we have eight possible different labels of a
test data point, each with varying degrees of certainty of whether it corresponds to a true anomaly event.
We then add points which are considered nominal to the Recent Nominal Database and those which are
anomalies to the Anomaly Database. Separately from this addition, we define High Priority Anomalies (HPA)
as those which have been added to the Anomaly Database and are genuine new anomalous behaviour, and
Low Priority Anomalies (LPA) which are points that follow a trend and may converge to a known anomaly.
These two classes of anomalies are then reported to the subsystem engineers so they can investigate the
HPAs and know to monitor the LPAs in the future. If the subsystem engineers determine that a behaviour
should be labelled differently, their label change is then fed back into the system and dispersed to the correct
Classification Database which creates a higher degree of accuracy in the overall performance and estimation
capabilities of the system. Furthermore, as the system continues to run, the Recent Nominal Database gets
filled with more points and eventually data which lies too far in the past must be transferred to the Historic
Nominal Database. This creates a recursion that allows us to continually compare new Test Data to the
Recent Nominal Database and keep track of recent trends.

III.B.3. Overview of System Architecture and Implementation

The implementation of such a data pipeline provides several architectural challenges. Handling multiple
missions where each satellite has thousands of parameters requires a system architecture which is distributed
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across a cluster of servers such that individual process components can be duplicated and scaled for performance.
The prototype currently being developed is making use of state-of-the-art big data technologies such as
Apache Spark?%:4! for data processing and Apache Cassandra?? 43 for storage. For maximum modularity of
components to facilitate individual deployment and specific multimission configurations, we are implementing
the system using a microservice architecture**4® in the Scala programming language. An overview is provided
in Fig. 7.
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Figure 7. A high level view of the system architecture of ATHMoS currently being developed at GSOC. Here we can
see the various types of possible data input as well as the individual classification databases and sub-applications which
compute the various parts of the overall algorithm. Operation engineers then access the system to review the latest
detection results where they can for example plot the various statistics computed for the feature vectors or check any
new clustering behaviour any of the Classification Databases.

II1.B.4. Correlated Multi-Parameter Applications

So far, this overview has focused on computing the feature vectors for a given time interval for a single
telemetry parameter. Since we use the OPVID algorithm which bases its outlier score on the ID of a data
point, this opens up the possibility for multi-parameter anomaly detection. Recall that the ID of a data
point which lives in an n-dimensional vector space is approximately the number d if that point belongs to
a d-dimensional cluster. Two extreme situations may occur when increasing the dimension of the initial
vector to include the feature vector elements of another (possibly many) telemetry parameter(s). First, if the
additional dimensions which are added are correlated to the original ones, then the distance between points
will in increase, however the points may form new clusters in new subspace projections which now lie between
the original dimensions and the newly added ones. In this case, the ID score of such points will increase to
reflect the fact that the cluster size that the query point belongs to has increased. In the second scenario, one
can add additional dimensions which arise from summary statistics from an uncorrelated telemetry parameter.
Adding these additional dimensions creates a more sparse distribution of data points thereby separating the
existing clusters in certain subspaces - this leads to a larger increase in ID score than the first case due to the
sparseness of data. Although ID scores of the points are increased in both cases, the overall OPVID scores
which are computed by comparing the Test Data to the Historic and Recent Nominal Databases behave
as one might expect: the score provides a probability that the selected grouping of telemetry parameters
behaved differently as a whole, relative to the nominal databases.
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Currently, we envisage ATHMoS to primarily work in a parameter by parameter basis except for certain
subsystems that engineers are particularly interested in and thus must provide the system with lists of
telemetry parameters they also wish to combine. By checking each parameter individually as well as
combinations of certain select parameters, we will be able to more accurately discern which anomalies occur
as stand-alone events (i.e. are associated to a single telemetry parameter), and those which are the result of
the interplay between related systems. One of our active areas of research is investigating this process, and
namely, how to automate the process of combining telemetry parameters based on correlation coefficients and
changes in ID scores for various parameter combinations. See Fig. 8 for more details.
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Figure 8. Frequency of ID scores for data points from Historic Nominal Databases for varying combinations of combined
feature vectors. The histogram in Fig. 8a) depicts the ID score distribution for a fixed single telemetry parameter -
we take this to be the default ID score distribution. Figure 8b) shows the effect when we augment the original feature
vector with the corresponding nominal elements from another feature vector that describes different correlated telemetry
parameter. There we see that that the average score and distribution stays almost the same, albeit slightly increased.
In Fig. 8c), we augmented the original feature vector with feature vector elements from another uncorrelated telemetry
parameter (again from a respective Historic Nominal Database which has the same time intervals). This time the
distribution as well as the maximum and minimum values of the ID scores are greatly affected. This is due to the fact
that the additional dimensions added to the data cause a higher degree of sparsity within the new vector subspaces
and hence we lose some partial cluster dimension information that we had in the original data set.

II.B.5. Ezxzample: TET-1 Reaction Wheel Anomaly

On February 22nd 2015, the TET-1 satellite experienced an increase in temperature in one of its reaction
wheel sensors. This increase was not enough to trigger the OOL-check to send an automatic notification
to the operations team. The temperature spike can be seen in Fig. 9. One of the first proof of concepts of
ATHMoS was to check if this anomaly could have been detected as well as identifying any possible precursor
behaviour which hay have predicted this temperature spike.

As a starting point, we decided to take all the data for the telemetry parameter from the year 2014 and
construct the Historic Nominal, Recent Nominal and Anomaly Databases in order to compare one week
intervals of Test Data from January 1st to March 7th 2015. Running the DBSCAN algorithm on the 5843
data points for the year (after splitting into 90-minute time intervals) showed that there were six clusters of
behaviour, with one central cluster containing approximately 98% of the total data set. Filtering out the five
small data clusters results in the two data sets shown in Fig. 10. We then separated out the nominal data
from December 2014 and stored it as the Recent Nominal Database.

Once we have obtained these three initial Classification Databases, we now compare new Test Data for
each week from January 1st to March 6th 2015 to these databases using a combination of the OPVID, LoOP
and DBSCAN algorithms (depending on the database). Figure 11b) depicts all test data points that have an
OPVID score of over 90% when compared to only the Historic Nominal Database. The choice of a cutoff
value of 90% for a point to be a potential anomaly was the result of several benchmarking tests completed
with cooperation of GSOC subsystem engineers. We can clearly see that every orbit within the anomaly
period from February 22nd to March 6th is an anomaly, however some of the points have higher anomaly
scores than others. This can be seen as a direct consequence of the high temperature fluctuations that
occur after the initial temperature spike on February 22nd (see the telemetry highlighted in red in Fig. 12).
Most importantly, OPVID correctly identified a new anomaly of the same type (a temperature spike) which
occurred January 23rd 2015, 31 days before the known anomaly. Interestingly, at the time of this anomaly,
the operations team successfully identified several other anomalies which all occurred concurrently onboard.
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Figure 9. An 11-day plot of the temperature of a reaction wheel for the TET-1 satellite. The temperature spike
anomaly which can be seen on DOY 53 in 2015 (red) was not close to the hard (cyan) or soft (pink) upper and lower
limits that are used by the OOL-check.

a) b)

Figure 10. Two 3-dimensional projections of the filtered clusters after running DBSCAN on the 2014 data. Figure
10a) shows the cluster of points that was filtered out from the unlabelled 2014 data which was higher than 5% of the
total number of 5843 data points. This corresponds to the nominal data and hence is split time-wise into the Historic
Nominal and Recent Nominal Databases. Figure 10b) shows the remaining clusters which make up the initial Anomaly
Database.
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Next we compare our method to a setup reminiscent of the Novelty Detection System® which uses a
4-dimensional feature vector and the LoOP algorithm to obtain the probability scores in visible in Figure
11a). There we see that there are many more points which are above the 90% (or even 95%) threshold and
occur the day before the OPVID algorithm had its first data point with a score above 90%. After comparing
to our training data it was concluded that the real anomaly occurs on the 23rd of January as highlighted in
blue in Fig. 12 since the slight increase in temperature that occurred on the 21st of January (highlighted in
green in the same figure) was in fact nominal (these and other false positives are circled in Fig. 11).
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Figure 11. A comparison between LoOP and OPVID scores for two different feature vectors. Figure 11la) shows the
LoOP scores of the test data that are over 90% when the feature vector is 4-dimensional and consists of the minimum,
maximum, average and standard deviation, whereas the Fig. 11b) shows the OPVID scores over 90% where each point
is computed from the generalised feature vectors described in Section ITII.A. After consulting with operations engineers,
the ATHMoS method in Fig. 11b) has significantly less false positives while at the same providing a more accurate
representation of the spread of anomalous behaviour during the temperature spike phase that was persistent for 13
days. Moreover, the anomaly that occurred on January 23rd is visible in both approaches however the LoOP approach
contains several false positives (circled in blue).

IV. Conclusion

In this paper we introduced GSOCs approach to automated telemetry monitoring as the Automated
Telemetry Health Monitoring System (ATHMoS). ATHMoS is novel in the space community for two main
reasons.

First, it uses supervised learning methods to attempt to solve the anomaly detection problem by comparing
new telemetry data with past nominal and anomaly data, where additionally, the past nominal data is divided
into recent nominal and historic nominal data. Using a combination of comparison techniques between test
data and these Classification Databases, ATHMoS assigns a label to each new data point, say for example a
High Priority Anomaly (HPA) or Low Priority Anomaly(LPA). Based on these labels, subsets of the test
data are grouped together and then stored in the various Classification Databases they belong to. Then, the
operations team is notified of certain classes of points along with the time intervals they correspond to. Based
on the engineers feedback, the points may be relabelled and fed back into the system for higher accuracy in
future computations.

And second, in order to determine if there are anomalies in the new test data, we used concepts behind the
Local Outlier Probability (LoOP) and Intrinsic Dimension Outlier Score (IDOS) outlier detection algorithms
to create the Outlier Probability Via Intrinsic Dimension (OPVID) algorithm. This algorithm combines
aspects of these two state-of-the-art outlier detection techniques by assigning an outlier probability that is
computed via the local (continuous) Intrinsic Dimension (ID) of each point. Our investigations have revealed
that for non-discreet time series telemetry, OPVID is more accurate than the LoOP algorithm, especially
for high dimensional data. Using OPVID also allows us to combine feature vectors of multiple correlated

13 of 17

American Institute of Aeronautics and Astronautics



Reaction Wheel Temperature (DOY 15001-15065)

o |

temperature [* C]

P A A P I P I A I el R T R T R R R
001 008 015 022 029 036 043 050 057

064
UTC [DOY]

Figure 12. In the left of the figure (blue colored) we see the newly detected anomaly event that occurred on January 23rd
2015 which ATHMoS identified. A separate anomaly occurred onboard that affected several subsystems. However, it
was not immediately identified that this particular parameter was affected. The small temperature spike (green colored)
just to the left of the anomaly was identified as being an outlier by using the LoOP algorithm as described in the caption
of Fig. 11, however, relative to our training data it is actually a false positive. The right of the figure shows the known
anomaly event (red colored) which occurred from February 22nd to March 6th of 2015. We see that there is an inherent
frequency in the telemetry once the temperature spike has occurred, and these fluctuations are precisely seen in the
OPVID outlier scores in Fig. 11. For these reasons, this example illustrates the accuracy benefits of using the OPVID
algorithm.
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parameters to help detect anomalies which might only be visible when considering the multiple telemetry
parameters simultaneously.

Lastly, we provided a quick high level introduction to the design and architecture of ATHMoS. Namely,
the system is designed to be fault-tolerant, scalable and highly available in terms of its distributed computing
and microservice architecture which makes use of the data processing framework Apache Spark and clustered
database Apache Cassandra.

Glossary

ATHMoS Automated Telemetry Health Monitoring System

GSOC German Space Operation Center

LEO Low Earth Orbit

OOL Out-Of-Limit (telemetry limit check)

DBSCAN Deunsity-Based Spacial Clustering of Applications with Noise (clustering algorithm)
LOF Local Outlier Factor (outlier detection algorithm)

LoOP Local Outlier Probability (outlier detection algorithm)

ID Intrinsic Dimension (a type of statistical quantity assigned to a data point and data set)
IDOS Intrinsic Dimension Outlier Score (outlier detection algorithm)

OPVID Outlier Probability Via Intrinsic Dimension (outlier detection algorithm)

HPA High Priority Anomaly (a label for new telemetry data that is assigned by ATHMoS)
LPA Low Priority Anomaly (a label for new telemetry data that is assigned by ATHMoS)

TET-1 The “Technologieerprobungstriager” is a small German satellite for technical experiments in space,
the abbreviation means Technology Experiment Carrier
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