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ABSTRACT
Background: Sponges are particularly prone to hiding cryptic species as their

paradigmatic plasticity often favors species phenotypic convergence as a result of

adaptation to similar habitat conditions. Hemimycale is a sponge genus (Family

Hymedesmiidae, Order Poecilosclerida) with four formally described species, from

which only Hemimycale columella has been recorded in the Atlanto-Mediterranean

basin, on shallow to 80 m deep bottoms. Contrasting biological features between

shallow and deep individuals of Hemimycale columella suggested larger genetic

differences than those expected between sponge populations. To assess whether

shallow and deep populations indeed belong to different species, we performed a

phylogenetic study of Hemimycale columella across the Mediterranean. We

also included other Hemimycale and Crella species from the Red Sea, with the

additional aim of clarifying the relationships of the genus Hemimycale.

Methods: Hemimycale columella was sampled across the Mediterranean, and

Adriatic Seas. Hemimycale arabica and Crella cyathophora were collected from

the Red Sea and Pacific. From two to three specimens per species and locality

were extracted, amplified for Cytochrome C Oxidase I (COI) (M1–M6 partition),

18S rRNA, and 28S (D3–D5 partition) and sequenced. Sequences were aligned using

Clustal W v.1.81. Phylogenetic trees were constructed under neighbor joining (NJ),

Bayesian inference (BI), and maximum likelihood (ML) criteria as implemented in

Geneious software 9.01. Moreover, spicules of the target species were observed

through a Scanning Electron microscope.

Results: The several phylogenetic reconstructions retrieved both Crella and

Hemimycale polyphyletic. Strong differences in COI sequences indicated that

C. cyathophora from the Red Sea might belong in a different genus, closer to

Hemimycale arabica than to the Atlanto-Mediterranean Crella spp. Molecular and

external morphological differences between Hemimycale arabica and the Atlanto-

Mediterranean Hemimycale also suggest that Hemimycale arabica fit in a separate

genus. On the other hand, the Atlanto-Mediterranean Crellidae appeared in 18S

and 28S phylogenies as a sister group of the Atlanto-Mediterranean Hemimycale.

Moreover, what was known up to now as Hemimycale columella, is formed by
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two cryptic species with contrasting bathymetric distributions. Some small

but consistent morphological differences allow species distinction.

Conclusions: A new family (Hemimycalidae) including the genus Hemimycale and

the two purported new genera receiving C. cyathophora and Hemimycale arabica

might be proposed according to our phylogenetic results. However, the inclusion

of additional Operational Taxonomic Unit (OTUs) appears convenient before taking

definite taxonomical decisions. A new cryptic species (Hemimycale mediterranea

sp. nov.) is described. Morphologically undifferentiated species with contrasting

biological traits, as those here reported, confirm that unidentified cryptic species

may confound ecological studies.
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Zoology
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INTRODUCTION
The discovery of cryptic species is continuously improving our knowledge on real

ecosystem biodiversity and functioning, which are intimately related (Frainer, McKie &

Malmqvist, 2014). Unrecognized cryptic diversity may mask biological features such as

divergent reproduction patterns, growth dynamics, and inter-species interactions, among

others (Knowlton, 1993; Prada et al., 2014; de Meester et al., 2016; Loreau, 2004), which

may confound conservation studies (Forsman et al., 2010) and obscure the introduction

pathway of invasive species (Knapp et al., 2015).

Molecular tools help to confirm suspected hidden species. However, molecular

based identifications alone do not solve the problem of species misidentification, in

particular when the cryptic species have overlapping distributions (e.g., Knowlton &

Jackson, 1994; Tarjuelo et al., 2001; De Caralt et al., 2002; Blanquer & Uriz, 2007, 2008;

Pérez-Portela et al., 2007). In these cases, deep studies on their morphology, biology

(e.g., life-history traits), and ecology (e.g., growth dynamics) become crucial to

understand the mechanisms underlying their coexistence (López-Legentil et al., 2005;

Pérez-Portela et al., 2007; Blanquer, Uriz & Agell, 2008; Payo et al., 2013).

Sponges are sessile, aquatic filter-feeders that are widespread across oceans, depths,

and ecosystems (Van Soest et al., 2012), with so far 8,789 accepted species inventoried in

2016 (Van Soest et al., 2016) and ca. 29,000 predicted to be discovered in the forthcoming

years (Hooper & Lévi, 1994; Appeltans et al., 2012), many of which remain currently

hidden among supposed widespread morpho-species (Uriz & Turon, 2012).

The poor dispersal capacities of sponges prevent in most cases gene flow among

populations even at short geographical distances (Boury-Esnault, Pansini & Uriz, 1993;

Uriz et al., 1998; Nichols & Barnes, 2005; Mariani et al., 2006; Uriz, Turon & Mariani,

2008). Consequently, sponge populations become genetically structured (Boury-Esnault,

Pansini & Uriz, 1993; Duran, Pascual & Turon, 2004; Blanquer, Uriz & Caujapé-Castells,

2009; Guardiola, Frotscher & Uriz, 2012, 2016), which favors speciation, while the
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sponge plasticity fosters phenotypic (morphological) convergence to similar habitats

(Blanquer & Uriz, 2008).

Many new cryptic sponge species have been discovered in the last decades thanks

to the use of molecular markers (see Uriz & Turon, 2012 for a review until 2012, Knapp

et al., 2011; de Paula et al., 2012). However, less often, molecularly discovered new species

have also been described morphologically (but see Blanquer & Uriz, 2008; C�ardenas &

Rapp, 2012; Reveillaud et al., 2011, 2012), which is necessary if phylogeny is aimed to

translate into taxonomy, and the new species are wanted to be considered in ecological

studies.

Sponge species can be both morphologically (e.g., Uriz & Turon, 2012) and, more

rarely, molecularly (with the markers used) cryptic (Carella et al., 2016; Vargas et al., 2016)

but show contrasting biological features. For instance, Scopalina blanensis (Blanquer &

Uriz, 2008), which is sympatric with Scopalina lophyropoda, mainly grows in winter.

Conversely, Scopalina lophyropoda regresses in winter and grows principally in summer–

autumn (Blanquer, Uriz & Agell, 2008), thus indicating temporal niche partition.

The Order Poecilosclerida (Porifera: Demospongiae) harbors the highest number of

species within the Class Demospongiae (Systema Porifera) and it is far from being

resolved from a phylogenetic point of view (Morrow et al., 2012; Thacker et al., 2013).

Within Poecilosclerida, the Family Hymedesmiidae represents a hotchpotch where genera

of dubious adscription have been placed (Van Soest, 2002). As expected, this family

appeared clearly polyphyletic in a molecular phylogeny of the so-called G4 clade based

on 28S rRNA gene (Morrow et al., 2012).

Hymedesmiidae currently contains 10 accepted genera among which, Hemimycale

Burton, 1934 (Van Soest et al., 2016). The position of genus Hemimycale, which shares

with Hymedesmia, and Phorbas (Hymedesmiidae) and with Crella (Crellidae), the

so-called aerolate areas with an inhaling function, has changed from Hymeniacidonidae

in Halichondrida (Lévi, 1973) to Hymedesmiidae in Poecilosclerida (Van Soest, 2002).

More recently, in 18S phylogenies of Poecilosclerida, Hemimycale columella was retrieved

within the Crellidae clade, although with low support (Redmond et al., 2013).

Hemimycale harbors only four formally described species (Van Soest et al., 2016): the

type species Hemimycale columella (Bowerbank, 1874), from Northwestern Atlantic and

Mediterranean, Hemimycale rhodus (Hentchel, 1929) from the North Sea, Hemimycale

arabica Illan et al., 2004 from the Red Sea and Hemimycale insularis Moraes, 2011 from

Brazil. However, the simple spicule complement of the genus, which only consists of

strongyles with some occasional styles, may propitiate the existence of morphologically

(based on the spicules) cryptic species.

Hemimycale columella, the type species of Hemimycale, is widely distributed across

the Atlanto-Mediterranean basin, from shallow (ca. 10 m) to deep (ca. 60 m) waters

(Uriz, Rossell & Martı́n, 1992). Assays performed with eight microsatellite loci developed

from deep specimens of Hemimycale columella (Gonz�alez-Ramos, Agell & Uriz, 2015)

failed to amplify a high percentage of the assayed individuals from a shallow population,

which suggested larger genetic differences than those expected between intra-species

sponge populations.

Uriz et al. (2017), PeerJ, DOI 10.7717/peerj.2958 3/25

http://dx.doi.org/10.7717/peerj.2958
https://peerj.com/


Furthermore, the life cycle of species has been monitored in a shallow Northwestern

Mediterranean population of what was thought to be Hemimycale columella (Pérez-Porro,

Gonz�alez & Uriz, 2012), where all individuals disappeared after larval release in early

November and new individuals arose the forthcoming year but on different rocky

sites, which pointed to annual mortality and subsequent recruitment from sexually

produced propagula (settling larvae). Conversely, during a study of deeper populations

of Hemimycale columella (Gonz�alez-Ramos, Agell & Uriz, 2015), we recorded their

survival for more than three years. Thus, shallow and deep populations of Hemimycale

columella seemed to show contrasting life spans, which were thought to be a result of

contrasting habitat characteristics. However, a 2-year monitoring of two, some km apart,

populations (one deep and one shallow) and the main environmental factors at both

locations, confirmed their contrasting life span and growth traits, as well as proved no

correlation between biological features and environmental factors (M. J. Uriz, L. Garate &

G. Agell, 2013–2014, unpublished data), which rather pointed to population intrinsic

(genetic) differences.

To assess whether these two population types with contrasting biological traits but

without clearly distinct morphological characters belonged or not to different species,

we performed a phylogenetic study of individuals considered as Hemimycale columella

across the Mediterranean, using three molecular (nuclear and mitochondrial) gene

partitions. We incorporated additional species to the analyses to gain knowledge on the

relationships between Hemimycale species and other genera of families Hymedesmiidae

and Crellidae.

MATERIALS AND METHODS
Sampling
Fragments of what a priori was thought to be Hemimycale columella were collected by

SCUBA diving across the Northwestern, central and eastern Mediterranean, and Adriatic

Sea, between 12 and 45 m of depth during several campaigns (Coconet, Benthomics, and

MarSymbiOmics projects) (Table 1). Moreover, fragments of Hemimycale arabica and

Crella cyathophora from the Red Sea (Dedalos and Ephistone) and Pacific (Bempton

Islands) between 5 and 20 m depth were also collected (Table 1). Individuals were

photographed underwater before sampling. Collected fragments were divided into two

pieces, one of them was preserved in 100% ethanol, and after three alcohol changes,

kept at -20 �C until DNA extraction; the other fragment was fixed in 5% formalin in

seawater and preserved in 70% ethanol as a voucher for morphological and spicule

studies. All vouchers have been deposited at the Sponge collection of the Centre d’Estudis

Avançats de Blanes (numbers CEAB.POR.GEN.001 to CEAB.POR.GEN.029).

DNA extraction, amplification, and sequencing
DNA extractions were performed on two to three specimens per species and locality

(totaling 18 individuals). Hemimycale spp. were extracted with QIAmp DNA stool kit

(Qiagen), while Crella spp. were extracted with DNeasy Blood & Tissue kit (Qiagen)

according to the manufacturer’s protocol. Standard primers were used for COI partitions
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Table 1 Geographical origin and ecological distribution of the individuals used in the phylogenetic study, with accession numbers.

Species Sea/Ocean Locality Voucher numbers Accession numbers

Hemimycale arabica ind. 1 Red Sea Dedalos, Brother Islands CEAB.POR.GEN.001 COI: KY002124

18S: KY002171

28S: KY002181

Hemimycale arabica ind. 2 Red Sea Elphinstone, Brother Islands CEAB.POR.GEN.002 COI: KY002125

18S: KY002172

28S: KY002182

Hemimycale columella Northeastern Atlantic Plymouth, Wales, UK 28S: HQ379300.1

18S: KC902127.1

Hemimycale columella ind. 1 Northwestern

Mediterranean

Arenys de Mar, Spain CEAB.POR.GEN.003 28S: KY002183

Hemimycale columella ind. 2 Northwestern

Mediterranean

Arenys de Mar, Spain CEAB.POR.GEN.004 28S: KY002184

Hemimycale columella ind. 3 Northwestern

Mediterranean

Arenys de Mar, Spain CEAB.POR.GEN.005 COI: KY002126

Hemimycale columella ind.1 Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.006 COI: KY002127

18S: KY002160

28S: KY002185

Hemimycale columella ind. 2 Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.007 COI: KY002128

18S: KY002161

28S: KY002186

Hemimycale columella ind. 3 Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.008 COI: KY002129

28S: KY002187

Hemimycale columella ind. 4 Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.009 28S: KY002188

Hemimycale mediterranea sp. nov.

ind. 1

Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.010 COI: KY002130

18S: KY002162

28S: KY002189

Hemimycale mediterranea sp. nov.

ind. 2

Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.011 18S: KY002163

28S: KY002190

Hemimycale mediterranea sp. nov.

ind. 4

Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.012 COI: KY002131

Hemimycale mediterranea sp. nov.

ind. 5

Northwestern

Mediterranean

Tossa de Mar, Spain CEAB.POR.GEN.013 COI: KY002132

H. mediterr�anea sp. nov. ind. 3 Adriatic Sea Koznati, Croatia CEAB.POR.GEN.014 COI: KY002134

H. mediterr�anea sp. nov. ind. 7 Adriatic Sea Koznati, Croatia CEAB.POR.GEN.015 18S: KY002170

28S: KY002193

H. mediterr�anea sp. nov. ind. 8 Adriatic Sea Koznati, Croatia CEAB.POR.GEN.016 28S: KY002194

H. mediterr�anea sp. nov. ind. 2 Adriatic Sea Tremity, Italy CEAB.POR.GEN.017 COI: KY002133

H. mediterr�anea sp. nov. ind. 11 Adriatic Sea Tremity, Italy CEAB.POR.GEN.018 28S: KY002199

H. mediterr�anea sp. nov. ind. 8 Central Mediterranean Porto Cesareo, Italy CEAB.POR.GEN.019 18S: KY002164

H. mediterr�anea sp. nov. ind. 9 Central Mediterranean Porto Cesareo, Italy CEAB.POR.GEN.020 18S: KY002165

28S: KY002197

H. mediterr�anea sp. nov. ind. 10 Central Mediterranean Porto Cesareo, Italy CEAB.POR.GEN.021 28S: KY002198

H. mediterr�anea nov. sp. ind. 5 Adriatic Sea Karaburum, Albania CEAB.POR.GEN.022 18S: KY002166

28S: KY002191

H. mediterr�anea nov. sp. ind. 6 Adriatic Sea Karaburum, Albania CEAB.POR.GEN.023 18S: KY002167

28S: KY002192

(Continued)
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M1–M6 (Folmer et al., 1994) and 18S rRNA (1F and 1795R, fromMedlin et al., 1988), and

Porifera primers for the D3–D5 partition of 28S rRNA (Por28S–830F and Por28S–1520R,

fromMorrow et al., 2012). Different amplification protocols were performed for each gene

(Table 2). COI (M1–M6 partition) amplifications were performed in a 50 mL volume

reaction, containing 37.6 mL H2O, 5 mL buffer KCl (BIORON; F Holzinger Sales &

Support, Germany), 2 mL BSA, 2 mL dNTP (Sigma; Sigma_Aldrich, Germany), 1 mL of

primers, 0.4 mL Taq (BIORON; F Holzinger Sales & Support, Germany), and 1 mL of

genomic DNA. 18S rRNA amplifications were performed in a 50 mL volume reaction,

Table 1 (continued).

Species Sea/Ocean Locality Voucher numbers Accession numbers

H. mediterr�anea sp. nov. ind. 3 Eastern Mediterranean Othonoi, Greece CEAB.POR.GEN.024 18S: KY002168

28S: KY002195

H. mediterr�anea sp. nov. ind. 4 Eastern Mediterranean Othonoi, Greece CEAB.POR.GEN.025 18S: KY002169

28S: KY002196

Crella cyatophora ind.1 Red Sea Dedalos, Brother Islands CEAB.POR.GEN.026 COI: KY002120

18S: KY002173

28S: KY002177

Crella cyatophora ind. 2 Red Sea Elphinstone, Brother Islands CEAB.POR.GEN.027 COI: KY002121

18S: KY002174

28S: KY002178

Crella cyatophora ind. 3 Pacific Bempton Patch Reef

(beween New Caledonian

and Australia)

CEAB.POR.GEN.028 COI: KY002122

18S: KY002175

28S: KY002179

Crella cyatophora ind. 4 Pacific Bempton Patch Reef

(between New Caledonian

and Australia)

CEAB.POR.GEN.029 COI: KY002123

18S: KY002176

28S: KY002180

Crella elegans Mediterranean France 18S: KC902282

Crella elegans Mediterranean France 18S: AY348882

Crella elegans Mediterranean France 28S: HQ393898

Crella plana Northeastern Atlantic Northern Ireland 18S: KC9023009

Crella rosea Northeastern Atlantic Northern Ireland 28S: HQ379299

Crella rosea Northeastern Atlantic Northern Ireland 18S: KC902282

Phorbas bihamiger Northeastern Atlantic English Channel 18S: KC901921.1

28S: KC869431

Phorbas punctatus Northeastern Atlantic Wales 18S: KC869439.1

28S: KC869439.1

Phorbas dives Northeastern Atlantic English Channel 28S: HQ379303

Phorbas fictitioides North Pacific – COI: HE611617.1

Phorbas tenacior Northeastern Atlantic – 18S: AY348881

Phorbas glaberrimus Antarctic Ross Sea COI: LN850216.1

Hymedesmia paupertas Northeastern Atlantic 18S: KC902073.1

28S: KF018118.1

Hymedesmia pansa 18S: KC902027.1

Hymedesmia paupertas Northeastern Atlantic 28S: KF018118.1

Kirkpatrickia variolosa Antarctic Ross Sea COI: LN850202.1

Note:
Individuals sequenced de novo are in bold.
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containing 36.85 mL H2O, 5 mL buffer (Invitrogen, Carlsbad, CA, USA), 0.75 mL MgCl

(Invitrogen, Carlsbad, CA, USA), 1.2 mL DMSO (dimethyl sulfoxide), 1 mL BSA, 1.5 mL

dNTP (Sigma; Sigma_Aldrich, Germany), 1 mL of primers, 0.7 mL Taq (Invitrogen,

Carlsbad, CA, USA), and 1 mL of genomic DNA. Finally, partition D3–D5 of 28S rRNA

amplifications were performed in a 50 mL volume reaction, containing 36.85 mL H2O,

5 mL buffer (Invitrogen, Carlsbad, CA, USA), 0.75 mL MgCl (Invitrogen, Carlsbad, CA,

USA), 2 mL BSA, 2 mL dNTP (Sigma; Sigma_Aldrich, Germany), 1 mL of primers, 0.4 mL

Taq (Invitrogen, Carlsbad, CA, USA), and 1 mL of genomic DNA. Polymerase chain

reaction products were purified and sequenced in both directions using Applied

Biosystems 3730xl DNA analyzers in Macrogen, Korea.

Sequence alignment and phylogenetic reconstructions
Sequences of COI, 28S, and 18S were aligned using Clustal W v.1.81, once their

poriferan origin was verified using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), as

implemented in Genieous 9.01 (Kearse et al., 2012). When sequences were identical,

only one sequence per locality and species was included in the phylogenetic trees.

After alignment, ambiguous regions were determined with Gblocks v.091 b software

(Castresana, 2000), which removes from 1 to 4% of poorly aligned positions and divergent

regions of an alignment of DNA. Representatives of family Hymedesmiidae (i.e., genera

Phorbas and Hymedesmia) and Crambeidae (i.e., genera Crambe and Monanchora)

were selected as outgroups. The inclusion of Crambeidae as an outgroup was decided

because the species Hemimycale arabica had been reported to contain similar secondary

metabolites (polycyclic guanidine alkaloids) to those of Crambe and Monanchora

(Ilan et al. 2004).

JModelTest 0.1.1 (Posada, 2008) was used to determine the best-fitting evolutionary

model for each dataset. The model GTR + I + G was used for both mitochondrial and

nuclear genes. Phylogenetic trees were constructed under neighbor joining (NJ) (default

parameters), Bayesian inference (BI), and maximum likelihood (ML) using Geneious

software 9.01 (Kearse et al., 2012). NJ generates unrooted minimum evolution trees

(Gascuel & Steel, 2006). BI analyses were performed with MrBayes 3.2.1 (Ronquist &

Huelsenbeck, 2003). Four Markov Chains were run with one million generations sampled

every 1,000 generations. The chains converged significantly and the average standard

deviation of split frequencies was less than 0.01 at the end of the run. Early tree

generations were discarded by default (25%) until the probabilities reached a stable

Table 2 PCR conditions for the three partitions used (COI, 28S and 18S).

PCR Stage COI (M1–M6) 28S (D3–D5) 18S

Denaturalization 94 �C 2 min 94 �C 5 min 94 �C 5 min

35 cycles 35–40 cycles 30 cycles

Denaturalization 94 �C 1 min 94 �C 1 min 94 �C 30 s

Annealing 43 �C 1 min 50–55 �C 1 min 53 �C 30 s

Elongation 72 �C 1 min 72 �C 1 min 72 �C 30 s

Final elongation 72 �C 5 min 72 �C 5 min 72 �C 5 min
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plateau (burn-in) and the remaining trees were used to generate a 50% majority-rule

consensus tree. ML analyses were executed with PhyML v3.0 program (Guindon &

Gascuel, 2003; Guindon et al., 2005). The robustness of the tree clades was determined

by a nonparametric bootstrap resampling with 1,000 replicates in PhyML. MrBayes

and PhyML were downloaded by Genieous.

Incongruence length difference (ILD) test (PAUP 4.0b10) was run (Swofford, 2002)

to verify sequence homogeneity or incongruence between the 18S rRNA and COI

markers and the 18S and 28S rRNA markers. The ILD test indicated no significant conflict

(p = 0.93 and p = 0.91, respectively) between the marker pairs to be concatenated. Thus,

concatenated 18S COI and 18S–28S rRNA datasets were constructed for the species with

sequences available for both markers. The phylogeny on the three genes concatenated was

not performed due to the few species/individuals for which the three genes were available.

Phenotypic characters
To assess whether molecular differences among the target populations and species

(Hemimycale columella, Senso latus, Hemimycale arabica, and C. cyathophora) were

supported by morphological and spicule traits, the target species were observed both in

situ and on recently collected samples. Moreover, spicules of all the species were observed

through light and scanning electron microscopes (SEM) after removing the sponge

organic matter from small (3 mm3) pieces of each individual by boiling them in 85%

Nitric acid in a Pyrex tube and then washed three times with distilled water and

dehydrated with ethanol 96% (three changes). A drop of a spicule suspension in ethanol

per individual was placed on 5 mm diameter stuffs, air dry, and gold–palladiummetalized

(Uriz, Turon & Mariani, 2008) in a Sputtering Quorum Q150RS. Observation was

performed through a Hitachi M-3000 Scanning Electron Microscope at the Centre

d’Estudis Avançats de Blanes.

The electronic version of this article in Portable Document Format (PDF) will

represent a published work according to the International Commission on Zoological

Nomenclature (ICZN), and hence the new names contained in the electronic version are

effectively published under that Code from the electronic edition alone. This published

work and the nomenclatural acts it contains have been registered in ZooBank, the online

registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any standard web browser by

appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is:

urn:lsid:zoobank.org:pub:48910653-0343-4A8D-911F-3498A755F305. The online version

of this work is archived and available from the following digital repositories: PeerJ,

PubMed Central and CLOCKSS.

The electronic version of this article in Portable Document Format (PDF) will

represent a published work according to the International Code of Nomenclature for

algae, fungi, and plants, and hence the new names contained in the electronic version

are effectively published under that Code from the electronic edition alone. In addition,

new names contained in this work have been submitted to MycoBank from where

they will be made available to the Global Names Index. The unique MycoBank number
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can be resolved and the associated information viewed through any standard web

browser by appending the MycoBank number contained in this publication to the prefix

“http://www.mycobank.org/mb/283905”. The online version of this work is archived and

available from the following digital repositories: PeerJ, PubMed Central, and CLOCKSS.

RESULTS
18S rRNA phylogeny
The resulting phylogeny using the 18S rRNA partition on 25 sequences (17 new) of 695 nt.

(46 variable positions, from which 38 were parsimony informative) was congruent

under BI, and ML and just differed in the position of Hemimycale arabica which appeared

as a sister group of the remaining Crella spp. and Hemimycale spp. under NJ (Fig. S1).

The representatives of the family Crambeidae (Monanchora) appeared as outgroups

and the genus Phorbas was a sister group of the remaining species. In the BI, NJ, and

ML trees, the genera Hemimycale and Crella appeared polyphyletic, with the Red Sea

speciesHemimycale arabica and C. cyathophora, far away from the Atlanto-Mediterranean

Hemimycale and Crella species. The Atlanto-Mediterranean Crella formed a well-

supported clade (1/81/98, posterior probability/bootstrapping values), which was the

sister group of the Atlanto-Mediterranean Hemimycale (1/97/98). Moreover, the deep

Hemimycale columella clustered with an Atlantic sequence downloaded from the GenBank

(0.89/89/88) forming a separate clade from the also well-supported (1/97/98) group

containing the shallow Mediterranean Hemimycale. No genetic differences for this

partition were found among shallow individuals. In the BI and ML trees, the two

individuals of Hemimycale arabica appeared in unresolved positions while they formed a

poorly supported (75%) clade in the tree under the NJ criterion (not shown).

28S rRNA (D3–D5) phylogeny
The 28S rRNA (D3–D5) dataset comprised 31 sequences (24 new) of 623 nt. (84 variable

positions from which, 60 parsimony informative).

The resulting phylogenies were congruent with the three clustering criteria and

matched in most cases the phylogeny based on the 18S rRNA partition, although the

supporting values of some clades were in some cases slightly lower (Fig. S2).

The three phylogenies retrieved the representatives of Family Crambeidae (Monanchora

and Crambe) as an outgroup. The monophyly of the in-group containing Crella spp. and

Hemimycale spp. was strongly supported under the BI, NJ, and ML criteria (1/100/100).

The genus Phorbas was a sister group of the remaining species considered. Crella was

polyphyletic, with C. cyathophora separated from the well-supported clade (1/100/100)

encompassing the Atlanto-Mediterranean Crella. The latter appeared as a sister clade of

a poorly supported group (0.7/77/70) harboring C. cyathophora and Hemimycale spp.

The Hemimycale spp. group, although monophyletic, was poorly supported under the

NJ and ML criteria (77/70) while the Atlanto-Mediterranean Hemimycale clade was well

supported under the three clustering criteria (1/92/95).

The deep and shallow Mediterranean populations of Hemimycale formed two well-

supported monophyletic groups (0.96/87/83 and 0.96/ 100/98, for deep and shallow
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individuals, respectively), the former containing the Atlantic sequence of Hemimycale

columella. No genetic differences for this partition were retrieved for shallow individuals

despite their spread distribution across the Mediterranean. The individuals of

C. cyathophora from the Red Sea clustered with those from the Pacific collected

between Australia and Nouvelle Caledonie (1/89/76).

COI phylogeny
The COI dataset included 21 sequences (15 new) of 535 nt. (169 variable positions, from

which 149 parsimony informative).

Figure 1 Phylogenetic tree using concatenated (18S rRNA + COI) partitions. BI, NJ and ML gave the

same topologies. Posterior probability, neighbor joining, and maximum likelihood supporting values are

at the base of clades.
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The COI phylogeny, which was congruent under BI, NJ, and ML, also retrieved the

representatives of Crambeidae as outgroups of the group formed by Crella, Phorbas,

and Hemimycale. The genus Phorbas clustered with the Atlanto-Mediterranean Crella

spp. (0.98/100/86) likely because we only included one individual/species of Phorbas

(Fig. S3).

A clade containing Hemimycale spp. and C. cyathophora was well supported

(0.94/94/80). The Hemimycale clade was divided into two subclades corresponding to

deep and shallow individuals. No genetic differences among shallow individuals were

found. A sister, well supported group (1/100/94) contained C. cyathophora and

Hemimycale arabica representatives with almost no genetic differences between them

(Fig. S3).

Figure 2 Phylogenetic tree using concatenated (18S + 28S rRNA) partitions. BI, NJ and ML gave the

same topologies. Posterior probability, neighbor joining, and maximum likelihood supporting values are

at the base of clades.
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Concatenated trees
The concatenated 18S + 28S rRNA (Fig. 1) confirmed the outgroup position for the

Crambeidae representative (Monanchora), the polyphyly of Crella with the Red Sea and

Pacific species forming a separate clade (1/100/100) from the Atlanto-Mediterran Crella,

which appeared in a non-resolved position. Hemimycale also appeared polyphyletic,

but the position of Hemimycale arabica was unresolved. The Atlanto-Mediterranean

Hemimycale clade was confirmed as well as its division into two subclades: one containing

the deep Mediterranean individuals together with two Atlantic sequences of the species

and the other one harboring the shallow Mediterranean individuals, which did not

show any genetic difference across the Mediterranean and Adriatic Sea.

The concatenated 18S rRNA + COI (Fig. 2) tree contained only 13 sequences and

no representative of Crambeidae could be included. The representatives of the Atlanto-

Mediterranean Crella appeared as outgroups of the remaining target species, which

formed two well-supported clades: one containing C. cyathophora and Hemimycale

arabica representatives (1/100/100) and the other with the Atlanto-Mediterranean

Hemimycale (1/100/100) divided into two monophyletic well-supported groups (deep

and shallow individuals).

DISCUSSION
The phylogenetic reconstructions performed with 18S, 28S rRNA and COI, as well as with

concatenated genes (18S rRNA + COI and 18S + 28S rRNA) support the polyphyly of

Crella and Hemimycale, under the three clustering criteria used. As although Hemimycale

was monophyletic with the 28S rRNA (D3–D5) marker, the clade was not statistically

supported.

Crella cyathophora sequences differ from those of the Atlanto-Mediterranean Crella

spp. in 2% (18S rRNA), 2.19% (28S rRNA), and 10.24% (COI). These genetic distances

suggest that, despite some spicule similitude (presence of acanthoxeas and smooth

diactines with Atlanto-Mediterranean Crella spp.), the former species belongs in a

different genus, closer to Hemimycale arabica (0.71% with 18S rRNA, 1.37% with 28S

rRNA, and none with COI) than to the Atlanto-Mediterranean Crella spp.

Hemimycale arabica differs from the Atlanto-Mediterranean Hemimycale spp. in 1.43–

1.86% with 18S rRNA, 1.78–2.19 with 28S rRNA, and in 8.38–8.64% with COI. These

strong COI differences and the contrasting morphological traits (blue external color,

irregular, rim-free, aerolate areas and abundance of true styles in Hemimycale arabica vs.

orange–pinkish color, circular, rimmed aerolate areas, and slightly asymmetrical any

strongyles almost exclusively in Hemimycale spp.) also indicate that Hemimycale arabica

would belong in a different genus, which might also include C. cyathophora, as there are

not COI differences between these two species.

Moreover, the Atlanto-Mediterranean Crellidae appeared in 18S and 28S rRNA

phylogenies as a sister group of the Atlanto-Mediterranean Hemimycale, which suggests

higher affinities of this genus with Crellidae than with Hymedesmiidae (its current family).

However, more complete analyses including additional Crellidae and Hymedesmiidae

OUT’s are needed to move Hemimycale from Hymedesmiidae to Crellidae.
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The phylogenetic trees with any of the three gene partitions either separately

or concatenated confirm the presence of two cryptic Hemimycale species in the

Mediterranean within what was considered until now Hemimycale columella. The new

species that we name Hemimycale mediterranean sp. nov. (see description below) has a

shallower distribution across the whole Mediterranean than Hemimycale columella,

which has Atlantic affinities. Hemimycale columella differs from Hemimycale

mediterranea in 0.85% (18S rRNA), 1.23% (28S rRNA), and in 1–1.2% (COI).

The lack of genetic diversity among the distant populations of Hemimycale

mediterranea analyzed points to its recent presence in the Mediterranean, which is

compatible with a recent introduction. However, the new species has not been recorded

out of the Mediterranean, and thus, its origin cannot be established at the present time.

Many cryptic species that were revealed by molecular markers have never been

formally described owing to the difficulty of finding diagnostic phenotypic characters.

Although after exhaustive observation, only slight, morphological differences have been

found to differentiate Hemimycale mediterranea sp. nov. from Hemimycale columella

(see species description below), these phenotypic differences are consistent across

individuals and thus, add to molecular differences and biological traits (L. Garate et al.,

2013–2014, unpublished data) to consistently differentiate these two species.

Species description

Genus Hemimycale Burton, 1934

Sequence accession Numbers GenBank (Table 1)

Type species Hemimycale columella (Bowerbank, 1874)

Hemimycale is the only genus of Hymedesmiidae that has smooth diactines and

monactines exclusively (Van Soest, 2002). The genus was described by Burton (1934) as

“reduced Mycaleae with skeleton of loose fibers of styli, sometimes modified into

anisostrongyles, running vertically to the surface; fibers tending to branch and

anastomose; no special dermal skeleton, no microscleres.”

The spicule complement described by Burton; however, seems different from that

reported in the several modern redescriptions of Hemimycale columella (Vacelet,

Donadey & Froget, 1987), which report predominant straight anisostrongyles with rare or

absent styles. Indeed, Burton stated that the Bowerbank representation of Hemimycale

columella spicules was wrong because it figured anisostrongyles instead of styles, and

was precisely the dominance of styles what induced Burton to place the species among

the Mycaleae. The termination of the diactines either round or pointed ends may be

the result of different silica concentration in the water masses, as reported for other

siliceous sponge skeletons (Uriz, 2006), but it cannot be totally discarded that the Burton

Hemimycale columella belonged in another Hemimycale species.

Species: Hemimycale columella (Bowerbank, 1874)

Sequence accession numbers GenBank (Table 1)
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Figure 3 In situ pictures of Atlanto-Mediterranean Hemimycale spp. (A, B, C, D) Hemimycale

columella from 35 to 40 m of depth. (E, F, G, H) Hemimycale mediterranea sp. nov. from 12 to 17 m of

depth. Whitish tinge is due to calcibacteria accumulation. Red tinges are due to several species of

epibiotic cyanobacteria. Arrows point to aerolate inhaling areas; arrowheads indicate the epibiont

cyanophycea on Hemimycale mediterranea specimens.
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Description (Figs. 3A–3D): Encrusting to massive sponges. Surface smooth, covered

with circular inhaling, areas up to 6 mm in diameter with an up to 3 mm high rim.

Morbid and fleshy consistence. Translucent to whitish ectosome, difficult to separate from

the choanosome. Thousands of calcareous spherules, 1 mm in diameter formed by

intracellular calcifying bacteria (Uriz et al., 2012) are spread through the sponge mesohyl

and specially accumulated at the sponge periphery of whitish individuals (L. Garate et al.,

2013–2014, unpublished data).

Color from pinkish-orange to whitish outside, dark orange inside.

Table 3 Locality and spicule sizes of the studied individuals, and comparison with descriptions by other authors.

Species Author Locality Depth (m)/

Assemblage

Styles Strongyles

(range/mean)

Acanthoxeas

Hemimycale arabica ind. 1 This study Red Sea

(Egypt)

14/coral reef 160–189 (179.6)

� 7–8 (7.5)

210–290 (273) �
2.8–4.1 (3.6)

–

Hemimycale arabica Illan et al. 2004 Red Sea

(Egypt)

190–250 (218) �
3.5–5 (4.7)

200–290 (266) �
2.5–4 (3.5)

–

H. mediterr�anea ind. 7 This study Adriatic

(Croatia)

10–15/rocky

sub-horizontal

– 233–330 (274.8) �
3–4.6 (4.0)

–

H. mediterr�anea ind. 11 This study Adriatic

(Italy)

10–15/rocky

sub-horizontal

– 251–300 (276.6) �
2.1–4 (3.0)

–

H. mediterr�anea ind. 5 This study Adriatic

(Albania)

10–15/rocky

sub-horizontal

– 274–317 (296.4) �
2.9–4.5 (4.0)–

–

H. mediterr�anea ind. 10 This study Central Med.

(Italy)

10–15/rocky

sub-horizontal

– 229–328 (291.3) �
2.4–5.2 (3.5)

–

H. mediterr�anea ind. 3 This study Eastern Med.

(Greece)

10–15/rocky

sub-horizontal

– 242–340 (272.7) �
2.6–4 (3.2)

–

H. mediterr�anea ind. 1 This study NW Med.

(Spain)

12–16/rocky wall – 261–320 (296.3) �
3.1–3.8 (3.5)

–

Hemimycale columella ind. 1 This study NW Med.

(Spain)

27–29/

coralligenous

– 302–435 (370) �
3–4 (3.7)

–

“Hemimycale columella” Vacelet 1987 NW Med.

(France)

– – 225–310 (285) �
2–4 (3)

–

Hemimycale columella Vacelet 1987 NW Med.

(France)

– – 320–410 (369) �
2.5–3.8 (3.1)

–

“Hemimycale columella” Vacelet 1987 NW Med.

(France)

– – 220–320 (273) �
2–4 (2,7)

–

Hemimycale columella Vacelet 1987 North Atlantic

(France)

– – 290–465 (394) �
4–7 (5.1)

–

Hemimycale columella Topsent 1925 North Atlantic

(France)

– – 400 � 6 –

“Hemimycale columella” Foster 1995 North Atlantic

(UK)

– – 330–420 (373) �
5–6 (5.85)

–

Hemimycale columella Bowerbank 1874 North Atlantic

(UK)

– – 376 � 7 –

Crella cyatophora ind. 3 This study Indo-Pacific

(Bemptom)

18m/coral reef – 205–308 (263.9) �
2.2–4.3 (3.4)

92–115 (105.4)�
2–2.3 (2)

C. cyatophora ind. 1 This study Red Sea

(Egypt)

12/coral reef – 227–293 (267.8) �
2.5–3.9 (3.4)

89–120 (109.4)�
1.8–2.5(2.47)
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Figure 4 Spicules of Hemimycale spp. and Crella cyathophora though SEM. (A, B, C, D, E) Any-

sostrongyles (Hemimycale mediterranea). (F) Anisostrongyles (Hemimycale columella). (G) Anisos-

trongyles and one style (Hemimycale arabica). (H) Anysotrongyles and acantoxeas (Crella cyatophora).

Inserts on each picture correspond to magnifications of the spicule ends.
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Spicules (Table 3; Fig. 4F): Asymmetric strongyles (anysotrongyles), straight, 302–435 �
3–4 mm in size. Styles rare or completely absent from the Mediterranean specimens

(this study) and Canary Islands (Cruz, 2002).

Skeletal arrangement: Plumose branching bundles of anysostrongyles together with

spread spicules. A palisade of vertical anysotrongyles forms the rim around the inhaling

areas.

Distribution: Northeastern Atlantic (United Kingdom and Ireland coasts) Canarias

Islands (Cruz, 2002), western Mediterranean: Tossa de Mar, Arenys de Mar, from 28 to 60

m depth (this study). It is not possible to confirm whether previous Mediterranean

records of the species (see Vacelet & Donadey, 1977) belonged to Hemimycale columella or

to Hemimycale mediterranea.

Biology:Multiannual life span, ca. 60% survival after two monitoring years; maximum

growth in autumn–winter (L.Garate et al., 2013–2014, unpublisheddata). Larval releaseoccurs

at the beginning of November inMediterranean populations (M. J. Uriz, L. Garate & G. Agell,

2013–2014, unpublished data).

Species: Hemimycale mediterranea sp. nov. (Figs. 3E–3H)

Sequence accession numbers GenBank (Table 1)

Description: Thick encrusting sponges with aerolate inhaling areas up to 3 mm in

diameter, surrounded by an up to 1.5–2 mm high rim, which in some cases barely

surpasses the sponge surface. Thousands of calcareous spherules, 1 mm in diameter

formed by intracellular calcifying bacteria are spread through the sponge mesohyl and

specially accumulated at the sponge periphery (Garate et al., in press).

Ectosome: Firmly attached to the choanosome.

Color: Flesh to clear brownish externally, more or less whitish depending on calcibacteria

accumulation at the surface, sometimes partially covered by an epibiotic (reddish or

pinkish) cyanobacteria.

Spicules (Table 3; Figs. 4A–4E): Smooth, uniform in size, straight, anysostrongyles,

200–296 � 3–4 mm in size. Styles completely absent.

Skeletal arrangement: Plumose undulating bundles of anysostrongyles together with spread

spicules. A palisade of vertical anysotrongyles forms the rim around the inhaling areas.

Known distribution: Northwestern Mediterranean, central Mediterranean, Adriatic,

eastern Mediterranean (Spain: Cap De Creus, Tossa, Blanes, Arenys, South Italy: Croatia,

Tremiti, Turkey, Greece) between 3 and 17 m deep.

Biology: Annual life span, maximum growth rates in summer (M. J. Uriz, L. Garate &

G. Agell, 2013–2014, unpublished data). Larval release at the end of September beginning

of October (M. J. Uriz, L. Garate & G. Agell, 2013–2014, unpublished data).

In most cases, it is difficult to ascertain whether individuals of Hemimycale columella

recorded by other authors belong to Hemimycale columella or Hemimycale mediterranea.

The redescription of Hemimycale columella by Van Soest (2002) based on the holotype
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(from the Atlantic) reported large aerolate porefields with elevated rims, which are shared

with the deep Mediterranean specimens of Hemimycale columella (Figs. 3A–3D) in

contrast to the small, short-rimmed porefields showed by Hemimycale mediterranea

sp. nov. Both species have mainly straight slightly asymmetric strongyles but the spicule

sizes are systematically larger in Hemimycale columella (Table 3). However, while styles

were rarely present in Hemimycale columella individuals, they have not been found in

specimens ofHemimycale mediterranea sp. nov. The external color also differs between the

two species, being orange to pinkish in Hemimycale columella and flesh color to brownish

Hemimycale mediterranea sp. nov. (Figs. 3E–3H). Vacelet & Donadey (1977) reported

two different color forms occurring side by side on the littoral of Provence (France), one

pink cream and the other one brownish. Likely the second color morph, which besides

had smaller strongyles, corresponded to the Hemimycale mediterranea sp. nov.

Color has not received much attention as a diagnostic character in sponges because

it has been generally considered to be a response to higher or lower light irradiance at

the sponge habitat, or to the presence of epibiotic or symbiotic cyanobacteria. However,

color has proven to be taxonomically relevant to distinguish other invertebrates such

as shrimp species (Knowlton & Mills, 1992) and also sponge species of the genus

Scopalina (Blanquer & Uriz, 2008), and thus it seems worthy to be taken into account in

sponge taxonomy.

The slight phenotypic differences found between the two species appear; however,

consistent across individuals and localities within the Atlanto-Mediterranean basin.

Moreover, their ecological distribution and bacterial symbionts, strongly differentiate

these two cryptic species. For instance, although calcareous spherules produced by

intracellular bacteria are present in the two species, the producer bacteria belong in

different species (Garate et al., in press), and the respective microbial communities totally

differ (Garate et al., in press). Symbionts, as predators do (e.g., Wulff, 2006), often

distinguish their target sponge preys or hosts while the species remain morphologically

cryptic to taxonomists. Moreover, Hemimycale mediterranea sp. nov. shows an annual

life span, with individuals disappearing after larval release, while Hemimycale columella

has a multiannual life span (M. J. Uriz, L. Garate & G. Agell, 2013–2014, unpublished

data) and growth dynamics also differs between the two species, as Hemimycale

mediterranea sp. nov. grows more in summer, while Hemimycale columella grows

preferentially in autumn–winter (M. J. Uriz, L. Garate & G. Agell, 2013–2014,

unpublished data).

The contrasting ecological distribution of these two cryptic species in the Mediterranean

helps to predict their identity in the field. Hemimycale mediterranean sp. nov. inhabits

shallower zones than Hemimycale columella. However, it is likely that both species may

share occasionally habitats, as the record of the two color morphs side by side (Vacelet &

Donadey, 1977) indicate. Hemimycale mediterranea sp. nov. seems to be more abundant

and widespread in the Mediterranean than Hemimycale columella. Molecular differences

between groups of individuals of Hemimycale columella suggest the possible presence of

additional cryptic species among the deep Mediterranean Hemimycale.
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The presence of two morphologically crypticHemimycale species in the Mediterranean,

which show contrasting biological traits, reinforces the idea that cryptic species represent

something more than wrong taxonomic identifications or biodiversity underestimates.

They may feature contrasting biological cycles and life spans, and puzzle biological

studies, which may invalidate conservation policies based on those studies.
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