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a b s t r a c t

In this paper, we prove the existence of common fixed points in CAT(0) spaces
for three different classes of generalized nonexpansive mappings including a quasi-
nonexpansive single valued mapping, a pointwise asymptotically nonexpansive mapping,
and a multivalued mapping satisfying the conditions (E) and (Cλ) for some λ ∈ (0, 1).
Moreover, we introduce an iterative process for these mappings and prove△-convergence
and strong convergence theorems for such an iterative process in CAT(0) spaces.
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1. Introduction

Let (X, d) be a metric space. A mapping T : X → X is called

(i) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X ,
(ii) quasi-nonexpansive if the set F(T ) of fixed points of T is nonempty and d(Tx, Ty) ≤ d(x, y) for all x ∈ X and y ∈ F(T ),
(iii) pointwise asymptotically nonexpansive if there exists a sequence of functions αn(x) ≥ 1 with limn→∞ αn(x) = 1 such

that

d(T n(x), T n(y)) ≤ αn(x)d(x, y), n ≥ 1, x, y ∈ X .

(iv) In case when each αn is constant, T is called asymptotically nonexpansive.

The class of pointwise asymptotically nonexpansive mappings was introduced by Kirk and Xu [1] as a generalization of
the class of asymptotically nonexpansive mappings which had already been introduced by Goebel and Kirk in [2]. It is
immediately clear that a nonexpansive mapping is pointwise asymptotically nonexpansive.

In [3], Garcia-Falset et al. introduced two types of generalization for nonexpansive mappings.

Definition 1.1. Let (X, d) be a metric space and µ ≥ 1. A mapping T : X → X is said to satisfy condition (Eµ) if

d(x, Ty) ≤ µ d(x, Tx) + d(x, y), x, y ∈ X .

We say that T satisfies condition (E) whenever T satisfies the condition (Eµ) for some µ ≥ 1.
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Definition 1.2. Let (X, d) be a metric space and λ ∈ (0, 1). A mapping T : X → X is said to satisfy condition (Cλ) if

λ d(x, Tx) ≤ d(x, y) H⇒ d(Tx, Ty) ≤ d(x, y), x, y ∈ X .

Very recently, the current authors have modified these conditions to incorporate the multivalued mappings, and proved
some fixed point theorems for multivalued mappings satisfying these conditions in CAT(0) spaces [4]. In this paper, we
consider a CAT(0) space, and intend to prove the existence of common fixed points for three different classes of generalized
nonexpansive mappings including a quasi-nonexpansive single valued mapping, a pointwise asymptotically nonexpansive
mapping, and a multivalued mapping satisfying the condition (E) and (Cλ) for some λ ∈ (0, 1). Moreover, we introduce
an iterative process for these mappings and prove △-convergence and strong convergence theorems for such an iterative
process in CAT(0) spaces. Our result generalizes a number of recent known results; including that of Abkar and Eslamian [4],
Hussain and Khamsi [5], Khan and Abbas [6], and of Dhompongsa and Panyanak [7].

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X and y ∈ X is a map c from a closed interval [0, r] ⊂ R to
X such that c(0) = x, c(r) = y and d(c(t), c(s)) = |t − s| for all s, t ∈ [0, r]. In particular, the mapping c is an isometry
and d(x, y) = r . The image of c is called a geodesic segment joining x and y which when unique is denoted by [x, y]. For
any x, y ∈ X , we denote the point z ∈ [x, y] such that d(x, z) = αd(x, y) by z = (1 − α)x ⊕ αy, where 0 ≤ α ≤ 1. The
space (X, d) is called a geodesic space if any two points of X are joined by a geodesic, and X is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y ∈ X . A subset D of X is called convex if D includes every geodesic
segment joining any two points of itself.

A geodesic triangle △(x1, x2, x3) in a geodesic metric space (X, d) consists of three points in X (the vertices of △) and a
geodesic segment between each pair of points (the edges of △). A comparison triangle for △(x1, x2, x3) in (X, d) is a triangle
△(x1, x2, x3) := △(x1, x2, x3) in the Euclidean plane R2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.

A geodesic metric space X is called a CAT(0) space if all geodesic triangles of appropriate size satisfy the following
comparison axiom.

Let△ be a geodesic triangle in X and let△ be its comparison triangle in R2. Then△ is said to satisfy the CAT(0) inequality
if for all x, y ∈ △ and all comparison points x, y ∈ △, d(x, y) ≤ dR2(x, y).

The following properties of a CAT(0) space are useful (see [8]):

(i) A CAT(0) space X is uniquely geodesic;
(ii) For any x ∈ X and any closed convex subset D ⊂ X , there is a unique closest point to x.

Let {xn} be a bounded sequence in X andD be a nonempty bounded subset of X . We associate this sequencewith the number

r = r(D, {xn}) = inf{r(x, {xn}) : x ∈ D},

where

r(x, {xn}) = lim sup
n→∞

d(xn, x),

and the set

A = A(D, {xn}) = {x ∈ D : r(x, {xn}) = r}.

The number r is known as the asymptotic radius of {xn} relative to D. Similarly, the set A is called the asymptotic center of {xn}
relative to D. In a CAT(0) space, the asymptotic center A = A(D, {xn}) of {xn} consists of exactly one point when D is closed
and convex. A sequence {xn} in a CAT(0) space X is said to be △-convergent to x ∈ X if x is the unique asymptotic center of
every subsequence of {xn}. Notice that given {xn} ⊂ X such that {xn} is △-convergent to x and given y ∈ X with x ≠ y,

lim sup
n→∞

d(x, xn) < lim sup
n→∞

d( y, xn).

Thus every CAT(0) space X satisfies the Opial property.

Lemma 2.1 ([9]). Every bounded sequence in a complete CAT (0) space has a △-convergent subsequence.

Lemma 2.2 ([10]). If D is a closed convex subset of a complete CAT (0) space and if {xn} is a bounded sequence in D, then the
asymptotic center of {xn} is in D.

Lemma 2.3 ([7]). If {xn} is a bounded sequence in a complete CAT (0) space X with A({xn}) = {x}, and {un} is a subsequence of
{xn} with A({un}) = {u}, and the sequence {d(xn, u)} converges, then x = u.

Theorem 2.4 ([5]). Let D be a nonempty closed convex subset of a complete CAT (0) space X. Suppose f : D → D is a pointwise
asymptotic nonexpansive mapping. If {xn} is a sequence in D such that limn→∞ d(fxn, xn) = 0 and △ − limn xn = v. Then
v = f (v).
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Theorem 2.5 ([5]). Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let f : D → D be a
pointwise asymptotic nonexpansive mapping. Then F(f ) is a nonempty closed and convex set.

Lemma 2.6 ([3]). Assume that a mapping T satisfies the condition (E) and has a fixed point. Then T is quasi-nonexpansive, but
the converse is not true.

Theorem 2.7 ([11]). Let D be a nonempty bounded closed convex subset of a complete CAT (0) space X. Suppose T : D → D is a
quasi-nonexpansive mapping. Then F(T ) is closed and convex.

Lemma 2.8 ([7]). Let X be a CAT (0) space. Then for all x, y, z ∈ X and all t ∈ [0, 1] we have

(i) d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z),
(ii) d((1 − t)x ⊕ ty, z)2 ≤ (1 − t)d(x, z)2 + td(y, z)2 − t(1 − t)d(x, y)2.

LetD be a subset of a CAT(0) space X .Wedenote by CB(D), K(D) and KC(D) the collection of all nonempty closed bounded
subsets, nonempty compact subsets, and nonempty convex compact subsets of D, respectively. The Hausdorff metric H on
CB(X) is defined by

H(A, B) := max

sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)


,

for all A, B ∈ CB(X), where dist(x, B) = inf {d(x, z) : z ∈ B}.
A subset D ⊂ X is called proximal if for each x ∈ X , there exists an element y ∈ D such that

d(x, y) = dist(x,D).

It is known that every closed convex subset of a CAT(0) space is proximal. We denote by P(D) the collection of all nonempty
proximal bounded subsets of D.

Let T : X → 2X be a multivalued mapping. An element x ∈ X is said to be a fixed point of T , if x ∈ Tx.

Definition 2.9. A multivalued mapping T : X → CB(X) is called

(i) nonexpansive if

H(Tx, Ty) ≤ d(x, y), x, y ∈ X,

(ii) quasi-nonexpansive if F(T ) ≠ ∅ and H(Tx, Tp) ≤ d(x, p) for all x ∈ X and all p ∈ F(T ).

In the following we state the multivalued analogs of the conditions (E) and (Cλ) (see also [4]):

Definition 2.10. A multivalued mapping T : X → CB(X) is said to satisfy condition (Eµ) provided that

dist(x, Ty) ≤ µ dist(x, Tx) + d(x, y), x, y ∈ X .

We say that T satisfies condition (E) whenever T satisfies (Eµ) for some µ ≥ 1.

Definition 2.11. A multivalued mapping T : X → CB(X) is said to satisfy condition (Cλ) for some λ ∈ (0, 1) provided that

λ dist(x, Tx) ≤ d(x, y) H⇒ H(Tx, Ty) ≤ d(x, y), x, y ∈ X .

Lemma 2.12 ([4]). Let T : X → CB(X) be a multivalued nonexpansive mapping, then T satisfies the condition (E1).

Theorem 2.13 ([12]). Let D be a nonempty closed convex subset of a complete CAT (0) space X. Suppose T : D → K(D) satisfies
the condition (E). If {xn} is a sequence in D such that limn→∞ dist(Txn, xn) = 0 and △ − limn xn = v. Then v ∈ Tv.

The following lemma is a consequence of Proposition 2 proved by Goebel and Kirk in [13].

Lemma 2.14. Let {zn} and {wn} be two bounded sequences in a CAT (0) space X, and let 0 < λ < 1. If for every natural number
n we have zn+1 = λwn ⊕ (1 − λ)zn and d(wn+1, wn) ≤ d(zn+1, zn), then limn→∞ d(wn, zn) = 0.

Lemma 2.15 ([14]). Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn.

If


∞

n=1 δn < ∞ and


∞

n=1 bn < ∞, then limn→∞ an exists. In particular, if {an} has a subsequence converging to 0, then
limn→∞ an = 0.
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3. A common fixed point

Definition 3.1. Let D be a nonempty subset of a CAT(0) space X . Two mappings t : D → D, and T : D → 2D are said to be
commuting, if t(T (x)) ⊂ T (t(x)) for all x ∈ D.

We now state the main result of this section.

Theorem 3.2. Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let f : D → D be a pointwise
asymptotically nonexpansive mapping, and g : D → D be a quasi-nonexpansive single valued mapping, and let T : D → KC(D)
be a multivalued mapping satisfying the conditions (E) and (Cλ) for some λ ∈ (0, 1). If f , g and T are pairwise commuting, then
they have a common fixed point, i.e., there exists a point z ∈ D such that z = f (z) = g(z) ∈ T (z).

Proof. Using Theorem 2.7, it follows that Fix(g) is a nonempty closed convex subset of D. Since f and g commute, we have
f : Fix(g) → Fix(g). Hence by Theorem 2.5, Fix(f ) ∩ Fix(g) ≠ ∅. Also we have for each x ∈ Fix(g), T (x) ∩ Fix(g) ≠ ∅. Indeed
let x ∈ Fix(g) and let y ∈ T (x) be the unique closest point to x from T (x), since g and T commute, we have g(y) ∈ T (x).
Further, quasi-nonexpansiveness of g implies that d(g(y), x) ≤ d(y, x). Now by the uniqueness of y as the closest point to x,
we get g(y) = y. Therefore T (x) ∩ Fix(g) ≠ ∅ for x ∈ Fix(g). Now we show that for each x ∈ Fix(g) ∩ Fix(f ),

T (x) ∩ Fix(g) ∩ Fix(f ) ≠ ∅.

To see this, Let x ∈ Fix(g) ∩ Fix(f ) and y ∈ T (x) ∩ Fix(g), then g(f (y)) = f (g(y)) = f (y), hence f (y) ∈ Fix(g). Also
by commutativity of f and T we have f (y) ∈ T (x). Therefore f : T (x) ∩ Fix(g) → T (x) ∩ Fix(g). Since T (x) ∩ Fix(g)
is a closed convex subset of D and f is a pointwise asymptotically nonexpansive mapping, by Theorem 2.5 we have
T (x) ∩ Fix(g) ∩ Fix(f ) ≠ ∅ for each x ∈ Fix(g) ∩ Fix(f ). Now we find an approximate fixed point sequence in Fix(f ) ∩ Fix(g),
for T . Take x0 ∈ Fix(f ) ∩ Fix(g), since T (x0) ∩ Fix(f ) ∩ Fix(g) ≠ ∅, we can choose y0 ∈ T (x0) ∩ Fix(f ) ∩ Fix(g). Define

x1 = (1 − λ)x0 ⊕ λy0.

Since Fix(g) ∩ Fix(f ) is convex, we have x1 ∈ Fix(g) ∩ Fix(f ). Let y1 ∈ T (x1) be chosen in such a way that

d(y0, y1) = dist(y0, T (x1)).

Next we show that y1 ∈ Fix(f ) ∩ Fix(g). Indeed, by quasi-nonexpansiveness of g we have d(g(y1), y0) ≤ d(y1, y0) and
hence by the uniqueness of y1 as the unique closest point to y0 we get g(y1) = y1. Also we see that y1 ∈ Fix(f ). Indeed, we
consider the sequence {f n(y1)}. Since T and f are commuting, we know that f n(y1) ∈ T (x1) for all n. Since T (x1) is compact,
the sequence {f n(y1)} has a convergent subsequence with limk→∞ f nk(y1) = z ∈ T (x1), then we have

d(z, y0) = lim
k→∞

d(f nk(y1), y0) = lim
k→∞

d(f nk(y1), f nk(y0))

≤ lim
k→∞

αnk(y0)d(y1, y0) ≤ dist(y0, T (x1)) = d(y0, y1).

Nowby the uniqueness of y1 as the closest point to y0 we have z = y1, consequently limk→∞ f nk(y1) = y1 and so f (y1) = y1;
(note that f (y1) ∈ f (T (x1)) ⊂ T (f (x1)) = T (x1)). Similarly, put x2 = (1 − λ)x1 ⊕ λy1, again we choose y2 ∈ T (x2) in such
a way that

d(y1, y2) = dist(y1, T (x2)).

By the same argument, as stated in abovewe get y2 ∈ Fix(f )∩Fix(g). In thiswaywewill find a sequence {xn} in Fix(f )∩Fix(g)
such that xn+1 = (1 − λ)xn ⊕ λyn where yn ∈ T (xn) ∩ Fix(f ) ∩ Fix(g) and

d(yn−1, yn) = dist(yn−1, T (xn)).

Therefore for every natural number n ≥ 1 we have

λ d(xn, yn) = d(xn, xn+1)

from which it follows that

λ dist(xn, T (xn)) ≤ λd(xn, yn) = d(xn, xn+1), n ≥ 1.

Since T satisfies the condition (Cλ) we have

H(T (xn), T (xn+1)) ≤ d(xn, xn+1), n ≥ 1,

hence for each n ≥ 1 we have

d(yn, yn+1) = dist(yn, T (xn+1)) ≤ H(T (xn), T (xn+1)) ≤ d(xn, xn+1).
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We now apply Lemma 2.14 to conclude that limn→∞ d(xn, yn) = 0 where yn ∈ T (xn). By Lemma 2.1, the bounded
sequence {xn} in Fix(f ) ∩ Fix(g) has a △-convergent subsequence, hence by passing to a subsequence we can assume that
△ − limn xn = v. We note that by Lemma 2.2, v ∈ Fix(f ) ∩ Fix(g). For each n ≥ 1, we choose zn ∈ T (v) such that

d(xn, zn) = dist(xn, T (v)).

By the same argument, we obtain that zn ∈ Fix(f ) ∩ Fix(g) for all natural numbers n ≥ 1. Since T (v) is compact, the
sequence {zn} has a convergent subsequence {znk} with limk→∞ znk = w ∈ T (v). Because znk ∈ Fix(f ) ∩ Fix(g) for all n, and
Fix(f ) ∩ Fix(g) is closed, we obtain that w ∈ Fix(f ) ∩ Fix(g). By the condition (E), we have for some µ ≥ 1,

dist(xnk , T (v)) ≤ µ dist(xnk , T (xnk)) + d(xnk , v).

Note also that

d(xnk , w) ≤ d(xnk , znk) + d(znk , w)

≤ µ dist(xnk , T (xnk)) + d(xnk , v) + d(znk , w).

These entail

lim sup
k→∞

d(xnk , w) ≤ lim sup
k→∞

d(xnk , v).

It now follows from the Opial property of CAT(0) space X that v = w ∈ T (v). Consequently, v = f v = gv ∈ T (v). �

As a result we obtain the following theorem which improves and generalizes a result of Hussain and Khamsi [5].

Theorem 3.3. Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let f : D → D be a pointwise
asymptotically nonexpansive mapping, and let T : D → KC(D) be a multivalued mapping satisfying the conditions (E) and
(Cλ) for some λ ∈ (0, 1). If f and T commute, then they have a common fixed point, i.e., there exists a point z ∈ D such that
z = f (z) ∈ T (z).

Theorem 3.4. Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let g : D → D be a quasi-
nonexpansive single valued mapping, and let T : D → KC(D) be a multivalued mapping satisfying the conditions (E) and
(Cλ) for some λ ∈ (0, 1). If g and T commute, then they have a common fixed point, i.e., there exists a point z ∈ D such that
z = g(z) ∈ T (z).

4. A convergence theorem

In this section we introduce the following iteration process.
(A): Let X be a CAT(0) space, D be a nonempty convex subset of X and T : D → CB(D) and f , g : D → D be three given
mappings. Then, for x1 ∈ D define three sequences {xn}, {yn}, and {wn} by

wn = (1 − cn)xn ⊕ cngxn, n ≥ 1,
yn = (1 − bn)xn ⊕ bnzn, n ≥ 1,
xn+1 = (1 − an)xn ⊕ anf nyn, n ≥ 1,

where zn ∈ T (wn), and an, bn, cn ∈ [0, 1]. In the sequel, F = F(T )


F(g)


F(f ) is the set of all common fixed points of
the mappings f , g and T .

Definition 4.1. A mapping T : D → CB(D) is said to satisfy condition (I) if there is a nondecreasing function ϕ : [0, ∞) →

[0, ∞) with ϕ(0) = 0, ϕ(r) > 0 for r ∈ (0, ∞) such that

dist(x, Tx) ≥ ϕ(dist(x, F(T ))).

Let T : D → CB(D) and f , g : D → D be three given mappings. The mappings T , f , g are said to satisfy condition (II) if there
exists a nondecreasing function ϕ : [0, ∞) → [0, ∞) with ϕ(0) = 0, ϕ(r) > 0 for r ∈ (0, ∞), such that

max{dist(x, Tx), d(x, fx), d(x, gx)} ≥ ϕ(dist(x, F )).

Theorem 4.2. Let D be a nonempty closed convex subset of a complete CAT (0) space X. Let T : D → CB(D) be a quasi-
nonexpansive multivalued mapping satisfying the condition (E), g : D → D be a quasi-nonexpansive single valued mapping
and f : D → D be an asymptotically nonexpansive mapping with sequence {kn} ⊂ [1, ∞) such that


∞

n=1(kn − 1) < ∞.
Assume that F ≠ ∅ and T (p) = {p} for each p ∈ F . Let {xn} be the sequence defined by the iterative process (A), and
an, bn, cn ∈ [a, b] ⊂ (0, 1) for all n ≥ 1. If the mappings f , g and T satisfy the condition (II), then {xn} converges strongly
to a common fixed point of f , g and T .
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Proof. Let p ∈ F . Then, using (A) and Lemma 2.8 we have

d(wn, p)2 = d((1 − cn)xn ⊕ cngxn, p)2

≤ (1 − cn)d(xn, p)2 + cnd(gxn, p)2 − cn(1 − cn)d(xn, gxn)2

≤ (1 − cn)d(xn, p)2 + cnd(xn, p)2 − cn(1 − cn)d(xn, gxn)2

= d(xn, p)2 − cn(1 − cn)d(xn, gxn)2

and

d(yn, p)2 = d((1 − bn)xn ⊕ bnzn, p)2

≤ (1 − bn)d(xn, p)2 + bnd(zn, p)2 − bn(1 − bn)d(xn, zn)2

= (1 − bn)d(xn, p)2 + bndist(zn, T (p))2 − bn(1 − bn)d(xn, zn)2

≤ (1 − bn)d(xn, p)2 + bnH(T (wn), T (p))2 − bn(1 − bn)d(xn, zn)2

≤ (1 − bn)d(xn, p)2 + bnd(wn, p)2 − bn(1 − bn)d(xn, zn)
2

≤ d(xn, p)2 − bn(1 − bn)d(xn, zn)2 − bncn(1 − cn)d(xn, gxn)2.

It follows that

d(xn+1, p)2 = d((1 − an)xn ⊕ anf nyn, p)2

≤ (1 − an)d(xn, p)2 + and(f nyn, p)2 − an(1 − an)d(xn, f nyn)2

≤ (1 − an)d(xn, p)2 + ank2nd(yn, p)
2
− an(1 − an)d(xn, f nyn)2

≤ (1 − an)d(xn, p)2 + ank2nd(xn, p)
2
− ank2nbn(1 − bn)d(xn, zn)2

− ank2nbncn(1 − cn)d(xn, gxn)2 − an(1 − an)d(xn, f nyn)2

≤ (1 + (k2n − 1))d(xn, p)2 − an(1 − an)d(xn, f nyn)2

− ank2nbn(1 − bn)d(xn, zn)2 − ank2nbncn(1 − cn)d(xn, gxn)2.

So that we obtain

d(xn+1, p)2 ≤ (1 + (k2n − 1))d(xn, p)2.

Therefore by Lemma 2.15 limn→∞ d(xn, p) exists. Now we set

M = sup{d(xn, p) : n ≥ 1}.

We also have

a3(1 − b)d(xn, gxn)2 ≤ ank2nbncn(1 − cn)d(xn, gxn)2

≤ d(xn, p)2 − d(xn+1, p)2 + M(k2n − 1).

The assumption


∞

n=1(kn − 1) < ∞ implies that


∞

n=1(k
2
n − 1) < ∞ (note that {kn} converges to 1, hence {1 + kn} is

bounded). Therefore we get
∞
n=1

a3(1 − b)d(xn, gxn)
2

≤ d(x1, p)2 + M(k2n − 1) < ∞.

Thus limn→∞ d(xn, gxn)2 = 0, and hence limn→∞ d(xn, gxn) = 0. By a similar argument we obtain

lim
n→∞

d(xn, zn) = lim
n→∞

d(f nyn, xn) = 0.

Hence we obtain dist(xn, Twn) ≤ d(xn, zn) → 0 as n → ∞. Also we have

lim
n→∞

d(xn, wn) = lim
n→∞

cnd(gxn, xn) = 0

and

lim
n→∞

d(xn+1, xn) = lim
n→∞

and(f nyn, xn) = 0.

By the condition (E), we have for some µ ≥ 1,

dist(xn, Txn) ≤ d(xn, wn) + dist(wn, Txn)
≤ d(xn, wn) + µ dist(Twn, wn) + d(xn, wn)

≤ d(xn, wn) + µ dist(xn, Twn) + µ d(xn, wn) + d(xn, wn)

= (µ + 2)d(xn, wn) + µ dist(xn, Twn).
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Hence dist(xn, Txn) → 0 as n → ∞. We also have

d(xn, f nxn) ≤ d(xn, f nyn) + d(f nyn, f nxn)
≤ d(xn, f nyn) + knd(yn, xn)
≤ d(xn, f nyn) + knbnd(xn, zn) → 0, n → ∞.

Hence

d(xn, fxn) ≤ d(xn, xn+1) + d(xn+1, f n+1xn+1) + d(f n+1xn+1, f n+1xn) + d(f n+1xn, fxn)
≤ d(xn+1, xn) + d(xn+1, f n+1xn+1) + kn+1d(xn+1, xn) + k1d(f nxn, xn)

which implies that

lim
n→∞

d(fxn, xn) = 0.

Note that by our assumption limn→∞ dist(xn, F ) = 0. Hence there exists a subsequence {xnk} of {xn} and a sequence {pk} in
F such that d(xnk , pk) < 1

2k
for all k. By using Lemma 2.8 and a similar argument as above we obtain

d(xn+1, p) ≤ d(xn, p) + θn,

where θn = (kn − 1)d(xn, p). (Note that


∞

n=1 θn < ∞.) Therefore for each p ∈ F we get

d(xnk+1 , p) ≤ d(xnk+1−1, p) + θnk+1−1

≤ d(xnk+1−2, p) + θnk+1−2 + θnk+1−1

≤ · · ·

≤ d(xnk , p) +

nk+1−nk−1
i=1

θnk+i.

This implies that

d(xnk+1 , p) ≤ d(xnk , pk) +

nk+1−nk−1
i=1

θnk+i ≤
1
2k

+

nk+1−nk−1
i=1

θnk+i.

Now, we show that {pk} is a Cauchy sequence in D. Note that

d(pk+1, pk) ≤ d(pk+1, xnk+1) + d(xnk+1 , pk)

<
1

2k+1
+

1
2k

+

nk+1−nk−1
i=1

θnk+i <
1

2k−1
+

nk+1−nk−1
i=1

θnk+i.

This implies that {pk} is a Cauchy sequence, hence converges to q ∈ D. Since

dist(pk, T (q)) ≤ H(T (pk), T (q)) ≤ d(pk, q)

and pk → q as n → ∞, it follows that dist(q, T (q)) = 0, so that q ∈ F(T ). We also have

d(pk, g(q)) ≤ d(pk, q),

hence d(q, g(q)) = 0 and thus q ∈ F(g). Also, by the continuity of f we have

d(pk, f (pk)) → d(f (q), q), k → ∞.

Hence d(f (q), q) = 0 which implies that q ∈ fq. Therefore q ∈ F and {xnk} converges strongly to q. Since limn→∞ d(xn, q)
exists, we conclude that {xn} converges strongly to q. This completes the proof. �

Theorem 4.3. Let D be a nonempty closed convex subset of a complete CAT (0) space X. Let T : D → K(D) be a quasi-
nonexpansive multivalued mapping satisfying the condition (E), g : E → E be a single valued mapping satisfying the
condition (E) and f : D → D be an asymptotically nonexpansive mapping with the sequence {kn} ⊂ [1, ∞) such that

∞

n=1(kn − 1) < ∞. Assume that F ≠ ∅ and T (p) = {p} for each p ∈ F . Let {xn} be the sequence defined by the iterative
process (A), and an, bn, cn ∈ [a, b] ⊂ (0, 1) for all n ≥ 1. Then {xn} is △-convergent to a common fixed point of f , g and T .

Proof. As in the proof of Theorem 4.2, we have

lim
n→∞

dist(Txn, xn) = lim
n→∞

d(fxn, xn) = lim
n→∞

d(gxn, xn) = 0.
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Now we let Ww(xn) := ∪A({un}) where the union is taken over all subsequences {un} of {xn}. We claim that Ww(xn) ⊂ F .
Let u ∈ Ww(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}. By Lemmas 2.1 and 2.2 there exists a
subsequence {vn} of {un} such that △ − limn vn = v ∈ D. Since

lim
n→∞

dist(Tvn, vn) = lim
n→∞

d(f vn, vn) = lim
n→∞

d(gvn, vn) = 0,

it follows from Theorems 2.13 and 2.4 that v ∈ F , moreover the limit limn→∞ d(xn, v) exists by Theorem 4.2. Hence
u = v ∈ F by Lemma 2.3. This shows that Ww(xn) ⊂ F . Next we show that Ww(xn) consists of exactly one point. Let
{un} be a subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ Ww(xn) ⊂ F and d(xn, v) converges, by
Lemma 2.3 we have x = u. �

We now intend to remove the restriction that T (p) = {p} for each p ∈ F . We define the following iteration process.
(B): Let T : D → P(D) be a multivalued mapping and

PT (x) = {y ∈ Tx : ∥x − y∥ = dist(x, Tx)}

and f , g : D → D. Then, for x1 ∈ D,we define sequences {xn}, {yn}, and {wn} by

wn = (1 − cn)xn ⊕ cngxn, n ≥ 1,
yn = (1 − bn)xn ⊕ bnzn, n ≥ 1,
xn+1 = (1 − an)xn ⊕ anf nyn, n ≥ 1,

where zn ∈ PT (wn), and an, bn, cn ∈ [0, 1].

Theorem 4.4. Let D be a nonempty closed convex subset of a complete CAT (0) space X. Let T : D → CB(D) be a multivalued
mapping such that PT is a quasi-nonexpansive mapping satisfying the condition (E), g : D → D be a quasi-nonexpansive
single valued mapping and f : D → D be an asymptotically nonexpansive mapping with sequence {kn} ⊂ [1, ∞) such that

∞

n=1(kn − 1) < ∞. Let {xn} be the sequence defined by the iterative process (B), and an, bn, cn ∈ [a, b] ⊂ (0, 1) for all n ≥ 1.
If F ≠ ∅ and the mappings f , g and T satisfy the condition (II), then {xn} converges strongly to a common fixed point of f , g and
T .

Proof. Let p ∈ F . Then PT (p) = {p}. Also we have

d(zn, p)2 ≤ dist(zn, PT (p))2 ≤ H(PT (wn), PT (p))2.

By a similar argument as in the proof of Theorem 4.2 we obtain the desired result. �
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