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1. Introduction

Let (X, d) be a metric space. Amapping T : X — X is called

(i) nonexpansive if d(Tx, Ty) < d(x,y) forallx,y € X,
(ii) quasi-nonexpansive if the set F(T) of fixed points of T is nonempty and d(Tx, Ty) < d(x,y) forallx € X andy € F(T),
(iii) pointwise asymptotically nonexpansive if there exists a sequence of functions o, (x) > 1 with lim,_, o, @,(x) = 1 such
that

dT"(x), T"() < an(®)d(x,y), n>1,xyeX.
(iv) In case when each «;, is constant, T is called asymptotically nonexpansive.

The class of pointwise asymptotically nonexpansive mappings was introduced by Kirk and Xu [1] as a generalization of
the class of asymptotically nonexpansive mappings which had already been introduced by Goebel and Kirk in [2]. It is
immediately clear that a nonexpansive mapping is pointwise asymptotically nonexpansive.
In [3], Garcia-Falset et al. introduced two types of generalization for nonexpansive mappings.
Definition 1.1. Let (X, d) be a metric space and ;. > 1. Amapping T : X — X is said to satisfy condition (E,) if
d(x, Ty) < pd(x, Tx) + d(x,y), x,y€X.

We say that T satisfies condition (E) whenever T satisfies the condition (E,,) for some p > 1.
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Definition 1.2. Let (X, d) be a metric space and A € (0, 1). Amapping T : X — X is said to satisfy condition (C;) if
Ad(x, Tx) <d(x,y) = d(Tx, Ty) < d(x,y), x,y €X.

Very recently, the current authors have modified these conditions to incorporate the multivalued mappings, and proved
some fixed point theorems for multivalued mappings satisfying these conditions in CAT(0) spaces [4]. In this paper, we
consider a CAT(0) space, and intend to prove the existence of common fixed points for three different classes of generalized
nonexpansive mappings including a quasi-nonexpansive single valued mapping, a pointwise asymptotically nonexpansive
mapping, and a multivalued mapping satisfying the condition (E) and (C,) for some A € (0, 1). Moreover, we introduce
an iterative process for these mappings and prove A-convergence and strong convergence theorems for such an iterative
process in CAT(0) spaces. Our result generalizes a number of recent known results; including that of Abkar and Eslamian [4],
Hussain and Khamsi [5], Khan and Abbas [6], and of Dhompongsa and Panyanak [7].

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x € X and y € X is a map c from a closed interval [0, 7] C R to
X such that c(0) = x, c(r) = y and d(c(t), c(s)) = |t — s| forall s, t € [0, r]. In particular, the mapping c is an isometry
and d(x, y) = r. The image of c is called a geodesic segment joining x and y which when unique is denoted by [x, y]. For
any x, y € X, we denote the point z € [x,y] such that d(x,z) = ad(x,y) byz = (1 — «)x & ay, where 0 < o < 1.The
space (X, d) is called a geodesic space if any two points of X are joined by a geodesic, and X is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y € X. A subset D of X is called convex if D includes every geodesic
segment joining any two points of itself.

A geodesic triangle A(xq, X2, x3) in a geodesic metric space (X, d) consists of three points in X (the vertices of A)and a
geodesic segment between each pair of points (the edges of A). A comparison triangle for A(xq, X2, X3) in (X, d) is a triangle
A(x1, X3, X3) = A(Xq, Xz, X3) in the Euclidean plane R? such that dy2 (x;, X)) =d(x;, x) fori,j e {1,2,3}.

A geodesic metric space X is called a CAT(0) space if all geodesic triangles of appropriate size satisfy the following
comparison axiom. -

Let A be a geodesic triangle in X and let A be its comparison triangle in R?. Then A is said to satisfy the CAT(0) inequality
ifforallx, y € A and all comparison pointsx,y € A, d(x,y) < d(x,y).

The following properties of a CAT(0) space are useful (see [8]):

(i) A CAT(0) space X is uniquely geodesic;

(ii) For any x € X and any closed convex subset D C X, there is a unique closest point to x.

Let {x,} be a bounded sequence in X and D be a nonempty bounded subset of X. We associate this sequence with the number
r=r(D, {x,}) = inf{r(x, {x,}) : x € D},

where

r(x, {x,}) = limsup d(x,, x),

n—oo

and the set
A=AD,{x,}) ={xeD: r(x, {x,}) =r}.

The number r is known as the asymptotic radius of {x,} relative to D. Similarly, the set A is called the asymptotic center of {x,}

relative to D. In a CAT(0) space, the asymptotic center A = A(D, {x,}) of {x,} consists of exactly one point when D is closed

and convex. A sequence {x,} in a CAT(0) space X is said to be A-convergent to x € X if x is the unique asymptotic center of

every subsequence of {x,}. Notice that given {x,} C X such that {x,} is A-convergent to x and giveny € X with x # y,
limsupd(x, x,) < limsupd(y, x,).

n—o0o n—-oo

Thus every CAT(0) space X satisfies the Opial property.
Lemma 2.1 ([9]). Every bounded sequence in a complete CAT (0) space has a A-convergent subsequence.

Lemma 2.2 ([10]). If D is a closed convex subset of a complete CAT (0) space and if {x,} is a bounded sequence in D, then the
asymptotic center of {x,}isinD.

Lemma 2.3 ([7]). If {x,} is a bounded sequence in a complete CAT (0) space X with A({x,}) = {x}, and {u,} is a subsequence of
{xn} with A({u,}) = {u}, and the sequence {d(x,, u)} converges, then x = u.

Theorem 2.4 ([5]). Let D be a nonempty closed convex subset of a complete CAT (0) space X. Suppose f : D — D is a pointwise
asymptotic nonexpansive mapping. If {x,} is a sequence in D such that lim,_, o, d(fx,, x,) = 0 and A — lim,x, = v. Then

v=f().
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Theorem 2.5 ([5]). Let D be a nonempty closed convex bounded subset of a complete CAT(0) space X. Let f : D — D bea
pointwise asymptotic nonexpansive mapping. Then F(f) is a nonempty closed and convex set.

Lemma 2.6 ([3]). Assume that a mapping T satisfies the condition (E) and has a fixed point. Then T is quasi-nonexpansive, but
the converse is not true.

Theorem 2.7 ([11]). Let D be a nonempty bounded closed convex subset of a complete CAT (0) space X. Suppose T : D — Disa
quasi-nonexpansive mapping. Then F(T) is closed and convex.

Lemma 2.8 ([7]). Let X be a CAT (0) space. Then for allx,y,z € X and all t € [0, 1] we have

(N d(-txdty,z) < (1-1t)dx,2z) +tdy, z),
(i) d((1 = Ox P ty, 2)? < (1 — t)d(x,2)> + td(y, 2)*> — t(1 — t)d(x, y)?.

Let D be a subset of a CAT(0) space X. We denote by CB(D), K (D) and KC (D) the collection of all nonempty closed bounded
subsets, nonempty compact subsets, and nonempty convex compact subsets of D, respectively. The Hausdorff metric H on
CB(X) is defined by

H(A, B) := max {sup dist(x, B), sup dist(y, A) } ,
XxeA yeB

forall A, B € CB(X), where dist(x, B) = inf{d(x,z) : z € B}.
A subset D C X is called proximal if for each x € X, there exists an element y € D such that

d(x,y) = dist(x, D).

It is known that every closed convex subset of a CAT(0) space is proximal. We denote by P (D) the collection of all nonempty
proximal bounded subsets of D.
Let T : X — 2X be a multivalued mapping. An element x € X is said to be a fixed point of T, if x € Tx.

Definition 2.9. A multivalued mapping T : X — CB(X) is called
(i) nonexpansive if
H(Tx, Ty) <d(x,y), xyeX,
(ii) quasi-nonexpansive if F(T) # ¢ and H(Tx, Tp) < d(x, p) forallx € X and all p € F(T).

In the following we state the multivalued analogs of the conditions (E) and (G, ) (see also [4]):

Definition 2.10. A multivalued mapping T : X — CB(X) is said to satisfy condition (E,,) provided that
dist(x, Ty) < pdist(x, Tx) +d(x,y), x,y € X.

We say that T satisfies condition (E) whenever T satisfies (E,,) for some p > 1.

Definition 2.11. A multivalued mapping T : X — CB(X) is said to satisfy condition (C;) for some A € (0, 1) provided that
rdist(x, Tx) < d(x,y) = H(Tx, Ty) <d(x,y), x,y€X.

Lemma 2.12 ([4]). Let T : X — CB(X) be a multivalued nonexpansive mapping, then T satisfies the condition (E1).

Theorem 2.13 ([12]). Let D be a nonempty closed convex subset of a complete CAT (0) space X. Suppose T : D — K (D) satisfies
the condition (E). If {x,} is a sequence in D such that lim,_,  dist(Tx,, x,) = 0 and A — lim, x, = v. Thenv € Tv.

The following lemma is a consequence of Proposition 2 proved by Goebel and Kirk in [13].

Lemma 2.14. Let {z,} and {w,} be two bounded sequences in a CAT (0) space X, and let 0 < A < 1. If for every natural number
nwe have z,1 = Aw, & (1 — A)z, and d(wpy1, wy) < d(Zn+1, Zn), then limy_, oo d(wy, z,) = 0.
Lemma 2.15 ([14]). Let {a,}, {b,} and {5,} be sequences of nonnegative real numbers satisfying the inequality

Qn41 = (] + Sn)an + bn-

If Zn“;l 8, < oo and Z;’; b, < oo, then lim,_, , a, exists. In particular, if {a,} has a subsequence converging to 0, then
lim,_, o a, = 0.
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3. A common fixed point

Definition 3.1. Let D be a nonempty subset of a CAT(0) space X. Two mappings t : D — D,and T : D — 2P are said to be
commuting, if t(T(x)) C T(t(x)) forallx € D.

We now state the main result of this section.

Theorem 3.2. Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let f : D — D be a pointwise
asymptotically nonexpansive mapping, and g : D — D be a quasi-nonexpansive single valued mapping, and let T : D — KC (D)
be a multivalued mapping satisfying the conditions (E) and (C;,) for some A € (0, 1). If f, g and T are pairwise commuting, then
they have a common fixed point, i.e., there exists a point z € D such that z = f(z) = g(z) € T(2).

Proof. Using Theorem 2.7, it follows that Fix(g) is a nonempty closed convex subset of D. Since f and g commute, we have
f : Fix(g) — Fix(g). Hence by Theorem 2.5, Fix(f) N Fix(g) # @. Also we have for each x € Fix(g), T (x) N Fix(g) # @. Indeed
let x € Fix(g) and let y € T(x) be the unique closest point to x from T(x), since g and T commute, we have g(y) € T(x).
Further, quasi-nonexpansiveness of g implies that d(g(y), x) < d(y, x). Now by the uniqueness of y as the closest point to x,
we get g(y) = y. Therefore T (x) N Fix(g) # @ for x € Fix(g). Now we show that for each x € Fix(g) N Fix(f),

T (x) N Fix(g) N Fix(f) # @.

To see this, Let x € Fix(g) N Fix(f) and y € T(x) N Fix(g), then g(f(y)) = f(g(y)) = f(y), hence f(y) € Fix(g). Also
by commutativity of f and T we have f(y) € T(x). Therefore f : T(x) N Fix(g) — T(x) N Fix(g). Since T(x) N Fix(g)
is a closed convex subset of D and f is a pointwise asymptotically nonexpansive mapping, by Theorem 2.5 we have
T (x) N Fix(g) N Fix(f) # ¥ for each x € Fix(g) N Fix(f). Now we find an approximate fixed point sequence in Fix(f) N Fix(g),
for T. Take xo € Fix(f) N Fix(g), since T (xo) N Fix(f) N Fix(g) # ¥, we can choose yo € T (xo) N Fix(f) N Fix(g). Define

x1 = (1 —A)xo ® Ayo.
Since Fix(g) N Fix(f) is convex, we have x; € Fix(g) N Fix(f). Let y; € T(x;) be chosen in such a way that
d(yo, y1) = dist(yo, T (x1)).

Next we show that y; € Fix(f) N Fix(g). Indeed, by quasi-nonexpansiveness of g we have d(g(y1), ¥o) < d(y1,Yo) and
hence by the uniqueness of y; as the unique closest point to yo we get g(y1) = y1. Also we see that y; € Fix(f). Indeed, we
consider the sequence {f"(y;)}. Since T and f are commuting, we know that f"(y;) € T(x;) for all n. Since T (x;) is compact,
the sequence {f"(y1)} has a convergent subsequence with limy_, o, f"(y1) = z € T(x7), then we have

d(z,y0) = klifrolod(f""(%),}’o) = kli)ngod(f"k(YOJHk(J’o))
< kllngoank()’o)d()’h)’o) < dist(yo, T(x1)) = d(¥o, y1).

Now by the uniqueness of y; as the closest point to y, we have z = y1, consequently limy_, oo f™ (y1) = y;andsof(y1) = y1;
(note that f (y1) € f(T(x1)) C T(f(x1)) = T(x7)). Similarly, put x, = (1 — A)x; @ Ay1, again we choose y, € T(x,) in such
a way that

d(y1,y2) = dist(y1, T(x2)).

By the same argument, as stated in above we gety, € Fix(f) NFix(g). In this way we will find a sequence {x,} in Fix(f ) NFix(g)
such that x,11 = (1 — L)x, ® Ay, where y, € T(x,) N Fix(f) N Fix(g) and

d(Yn—1,yn) = dist(yn—1, T(xn)).
Therefore for every natural number n > 1 we have
Ad(xn, Yn) = d(Xn, Xnt1)
from which it follows that
Adist(Xn, T(Xn)) < Ad(Xp, yn) = d(Xn, Xp1), n =1
Since T satisfies the condition (C;) we have
H(T(xn), T(Xp+1)) < d(Xn, Xni1), n =1,
hence for each n > 1 we have

AdWn, Yng1) = dist(Yn, T(Xp41)) < HT xn), T(Xng1)) < d(Xn, Xpg1)-
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We now apply Lemma 2.14 to conclude that lim,_, o d(x,,y,) = 0 where y, € T(x,). By Lemma 2.1, the bounded
sequence {x,} in Fix(f) N Fix(g) has a A-convergent subsequence, hence by passing to a subsequence we can assume that
A — lim, x, = v. We note that by Lemma 2.2, v € Fix(f) N Fix(g). For each n > 1, we choose z, € T(v) such that

d(xn, ) = dist (xn, T(V)).

By the same argument, we obtain that z, € Fix(f) N Fix(g) for all natural numbers n > 1. Since T(v) is compact, the
sequence {z,} has a convergent subsequence {z;, } with limy_, o z,, = w € T(v). Because z,, € Fix(f) N Fix(g) for all n, and
Fix(f) N Fix(g) is closed, we obtain that w € Fix(f) N Fix(g). By the condition (E), we have for some p > 1,

dist (xn,. T(v)) < dist (X, T(Xn,)) + d(n,. ).
Note also that
d(Xp, w) < d(Xny, Zny) + d(zn,, W)
w diSt(xnkv T(Xﬂk)) + d(xnks U) + d(znk’ U))

IAIA

These entail

lim sup d(x,,, w) < limsup d(x,,, v).

k—o00 k—o0
It now follows from the Opial property of CAT(0) space X that v = w € T(v). Consequently,v = fv =gv e T(v). O

As a result we obtain the following theorem which improves and generalizes a result of Hussain and Khamsi [5].

Theorem 3.3. Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let f : D — D be a pointwise
asymptotically nonexpansive mapping, and let T : D — KC(D) be a multivalued mapping satisfying the conditions (E) and
(G,) for some A € (0, 1). If f and T commute, then they have a common fixed point, i.e., there exists a point z € D such that

z=f(z) € T(2).

Theorem 3.4. Let D be a nonempty closed convex bounded subset of a complete CAT (0) space X. Let g : D — D be a quasi-
nonexpansive single valued mapping, and let T : D — KC(D) be a multivalued mapping satisfying the conditions (E) and
(G,) for some X € (0, 1). If g and T commute, then they have a common fixed point, i.e., there exists a point z € D such that
z=g() eT(2).

4. A convergence theorem

In this section we introduce the following iteration process.
(A): Let X be a CAT(0) space, D be a nonempty convex subset of X and T : D — CB(D) and f,g : D — D be three given
mappings. Then, for x; € D define three sequences {x,}, {y»}, and {w,} by

wp = (1= )Xy @ Cp@Xn, n =1,
Yn = (1 - bn)xn @bnzna n=> 1»
Xnp1 = (1 —an)x, @ anfnym n>1,

where z, € T(wy), and an, by, ¢, € [0, 1]. In the sequel, F = F(T) [\ F(g) () F(f) is the set of all common fixed points of
the mappings f, g and T.

Definition 4.1. A mapping T : D — CB(D) is said to satisfy condition (I) if there is a nondecreasing function ¢ : [0, c0) —
[0, c0) with ¢(0) = 0, ¢(r) > 0 forr € (0, co) such that

dist(x, Tx) > @(dist(x, F(T))).

LetT : D — CB(D) and f, g : D — D be three given mappings. The mappings T, f, g are said to satisfy condition (II) if there
exists a nondecreasing function ¢ : [0, c0) — [0, oo) with ¢(0) = 0, ¢(r) > 0 forr € (0, 00), such that

max{dist (x, Tx), d(x, fx), d(x, gx)} > ¢(dist(x, F)).

Theorem 4.2. Let D be a nonempty closed convex subset of a complete CAT(0) space X. Let T : D — CB(D) be a quasi-
nonexpansive multivalued mapping satisfying the condition (E), g : D — D be a quasi-nonexpansive single valued mapping
and f : D — D be an asymptotically nonexpansive mapping with sequence {k,} C [1, oo) such that Z,ﬁl(kn —1) < oo.
Assume that ¥ # @ and T(p) = {p} for each p € F. Let {x,} be the sequence defined by the iterative process (A), and
an, by, ¢y € [a,b] C (0,1) foralln > 1. If the mappings f, g and T satisfy the condition (Il), then {x,} converges strongly
to a common fixed pointof f,gand T.



648 A. Abkar, M. Eslamian / Computers and Mathematics with Applications 64 (2012) 643-650

Proof. Let p € F.Then, using (A) and Lemma 2.8 we have
d(wn, p)* = d((1 = c)Xn D Cag¥n, P)°
< (1= cp)d(xn, p)* + ad(gxn, P)* — cn(1 — y)d (X, 8Xn)*
< (1= c)d(xn, p)* + Crd(Xn, P)* — cn(1 — Cp)d(Xn, 8Xn)°
= d(xp, p)* — ca(1 — Cp)d(Xn, 8Xn)?
and
d(Yna p)2 = d((l - bn)xn ® bnzn» P)2
= (1 - bn)d(Xm 13)2 + bnd(znv P)z - bn(l - bn)d(xnv Zn)z
= (1 — by)d(xp, p)? + budist (zy, T(p))? — by(1 — bp)d(Xn, 21)?
< (1 = by)d(xy, p)? + byH(T (wy), T(p))? — ba(1 — bp)d(Xn, 2,)?
< (1 = by)d(xy, p)2 + bpd(wp, p)2 — by (1 — bp)d(xy, Zn)2
< d(*n, p)* — ba(1 — bp)d(Xn, 20)* — bypca(1 — Cn)d(xn, 8Xn)°.
It follows that
d(xns1,p)* = d((1 — @)Xy @ anf"yn, p)°
< (1= ap)d(xn, p)* + @nd(f"yn, p)* — an(1 — ap)d(Xn, f"yn)?
< (1= ap)d(¥n, p)* + ank2d(Yn, p)* — an(1 — an)d (X, f"yn)?
< (1= ap)d(xy, p)* + a,k2d(xn, p)* — ank2by(1 — by)d(Xp, 21)*
— ayk2bncn(1 — Cp)d(Xn, 8%)° — an(1 — ap)d(Xy, f"yn)?
<1+ (krzl — 1))d(xn, P)2 —ap(1— an)d(xnsfnyn)z
— ank2by(1 — by)d(Xn, 20)* — ankZbncy (1 — ¢4)d (X, 8¥n)*.

A

So that we obtain
d(Xnt1.)* < (1+ (k2 — 1)d(xq, p)*.
Therefore by Lemma 2.15 lim,,_, o, d(x,,, p) exists. Now we set
M = sup{d(x,,p) : n > 1}.
We also have
@®(1 = b)d(xn, gxn)* < anklbncn(1 — cy)d (X, 8Xn)°
< d(xa, p)* = d(xu11.p)* + M(ky — 1).

The assumption Zﬁil(kn — 1) < oo implies that Z,fil(kﬁ — 1) < oo (note that {k,} converges to 1, hence {1 + k,} is
bounded). Therefore we get

o0
3 (1~ by, gxn)’ < d(xr, p)? + MK — 1) < .
n=1
Thus limy_, oo d(Xn, gxn)? = 0, and hence lim,_, o, d(X,, gx,) = 0. By a similar argument we obtain

lim d(x,, z,) = lim d(f"y,, x,) = 0.
n—oo n—oo
Hence we obtain dist (x,,, Tw;,) < d(x,, z,) — 0asn — o0. Also we have

lim d(x,, w,) = lim c,d(gx,, x;,) =0
n—oo

n—oo

and
Jim d(Xpy1, Xp) = M and(f"yn, %) = 0.
By the condition (E), we have for some u > 1,
dist (x,, Txy) < d(xp, wy) + dist(wy, Tx,)
< d(Xp, wy) + pdist(Twy, wy) + d(xy, wy)
< d(Xn, wy) + pdist (xn, Twy) + pd(Xy, wp) + d(X,, wy)
= (i + 2)d(xy, wy) + pdist (x,, Twy).
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Hence dist (x,,, Tx,) — 0asn — oco. We also have

d(xn, f"%n) < d(Xn, f"yn) + d(F"Yn, f"%n)
< dXn, f"Yn) + knd(Vn, Xn)
=< d(Xnvfn)’n) ~+ knbnd(xp, z;) = 0, n — oo.

Hence

d(Xn, fén) < d@n, Xng1) + d@ag1 %0 g1) + A Xng1, %) + A, fin)
= d(XnJrh xn) + d(xn+17fn+lxn+1) + kn+1d(xn+1v Xn) + k1d(fnxnv Xn)

which implies that
lim d(fx,, x,) = 0.
n—oo

Note that by our assumption lim,_, . dist(x,, ¥) = 0. Hence there exists a subsequence {x,, } of {x,} and a sequence {p;} in
F such that d(x,, , px) < % for all k. By using Lemma 2.8 and a similar argument as above we obtain

d(Xn+1, p) < d(Xn, p) + On,
where 6, = (k, — 1)d(x,, p). (Note that Z;ﬁ] 6, < 00.) Therefore for each p € ¥ we get

d(Xnk_H ) p) = d(xnk_Hfh p) + an_Hfl

= d(xnk+172s P) + an+172 + ‘9nk+171
E PP

M1 —ng—1
<A@, D)+ Y Onei

i=1
This implies that

N1 —Ng—1 N1 —Ng—1

A0y D) A0 PO+ D Onri S p D Ot
i=1

= i=1
Now, we show that {p,} is a Cauchy sequence in D. Note that
d(pk+1’ pk) = d(pk+15 Xnk+1) + d(xn,(+1 ’ pk)

1 1 Njet1 =Nk —1 Njet1 —Nkg—1

< 2k+1 + ? + Z an+i < k-1 + Z gnk+i'
i=1 i=1

This implies that {py} is a Cauchy sequence, hence converges to q € D. Since
dist(px, T(q)) < H(T(pw), T(q)) < d(px, 9)
and py — g asn — o9, it follows that dist (q, T(q)) = 0, so that g € F(T). We also have

d(pr, 8(q)) < d(pk, @),
hence d(q, g(q)) = 0 and thus q € F(g). Also, by the continuity of f we have

d(pr, f(pr)) — d(f (@), @), k — oo.

Hence d(f(q), 9) = 0 which implies that q € fq. Therefore q € ¥ and {x,, } converges strongly to q. Since lim,_, o d(X,, q)
exists, we conclude that {x,} converges strongly to q. This completes the proof. O

Theorem 4.3. Let D be a nonempty closed convex subset of a complete CAT(0) space X. Let T : D — K(D) be a quasi-
nonexpansive multivalued mapping satisfying the condition (E), g : E — E be a single valued mapping satisfying the
condition (E) and f : D — D be an asymptotically nonexpansive mapping with the sequence {k,} C [1, c0) such that
Zﬁil(kn — 1) < oo. Assume that ¥ # () and T(p) = {p} for eachp € F. Let {x,} be the sequence defined by the iterative
process (A), and ay, by, ¢, € [a, b] C (0, 1) foralln > 1. Then {x,} is A-convergent to a common fixed point of f,gand T.

Proof. As in the proof of Theorem 4.2, we have

lim dist(Txp, x,) = lim d(fx,, x,) = lim d(gx,, x,) = 0.
n— 00 n—oo n—o0o
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Now we let Wy, (x,,) := UA({u,}) where the union is taken over all subsequences {u,} of {x,}. We claim that W, (x,) C F.
Let u € W, (x,), then there exists a subsequence {u,} of {x,} such that A({u,}) = {u}. By Lemmas 2.1 and 2.2 there exists a
subsequence {v,} of {u,} such that A — lim, v, = v € D. Since

lim dist(Tv,, vy) = lim d(fv,, v,) = lim d(gv,, v,) =0,
n—oo n— oo n— 00

it follows from Theorems 2.13 and 2.4 that v € %, moreover the limit lim,_, o d(x,, v) exists by Theorem 4.2. Hence
u = v € F by Lemma 2.3. This shows that W,,(x,) C F.Next we show that W, (x,) consists of exactly one point. Let
{u,} be a subsequence of {x,} with A({u,}) = {u} and let A({x,}) = {x}. Since u € W,,(x,) C ¥ and d(x,, v) converges, by
Lemma2.3wehavex =u. 0O

We now intend to remove the restriction that T(p) = {p} for each p € . We define the following iteration process.
(B): Let T : D — P(D) be a multivalued mapping and

Pr(x) ={y e Tx : ||x — y|| = dist(x, Tx)}
andf, g : D — D. Then, for x; € D,we define sequences {x,}, {y.}, and {w,} by
Wy = (1 — o)Xy B CngXn, N> 1,
Yn=0—=by)x, ®bpz,, n>1,
Xnp1 = (1= )X @ uf"yn, n>1,

where z,, € Pr(wy), and a,, by, ¢, € [0, 1].

Theorem 4.4. Let D be a nonempty closed convex subset of a complete CAT (0) space X. Let T : D — CB(D) be a multivalued
mapping such that Pr is a quasi-nonexpansive mapping satisfying the condition (E), g : D — D be a quasi-nonexpansive
single valued mapping and f : D — D be an asymptotically nonexpansive mapping with sequence {k,} C [1, co) such that
Zﬁi](kn — 1) < oo. Let {x,} be the sequence defined by the iterative process (B), and a,, b, ¢, € [a, b] C (0, 1) foralln > 1.
If ¥ # () and the mappings f, g and T satisfy the condition (1I), then {x,} converges strongly to a common fixed point of f, g and
T.

Proof. Let p € #.Then Pr(p) = {p}. Also we have
d(zn, p)* < dist(zn, Pr(p))* < H(Pr(wy), Pr(p))*.

By a similar argument as in the proof of Theorem 4.2 we obtain the desired result. O

References

[1] W.A. Kirk, H.K. Xu, Asymptotic pointwise contractions, Nonlinear Anal. 69 (2008) 4706-4712.
[2] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972) 171-174.
[3] J. Garcia-Falset, E. Llorens-Fuster, T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011)
185-195.
[4] A. Abkar, M. Eslamian, Common fixed point results in CAT(0) spaces, Nonlinear Anal. 74 (2011) 1835-1840.
[5] N.Hussain, M.A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal. 71 (2009) 4423-4429.
[6] S.H.Khan, M. Abbas, Strong and A-convergence of some iterative scheme in CAT(0) space, Comput. Math. Appl. 61 (2011) 109-116.
[7] S. Dhompongsa, B. Panyanak, On A-convergence theorems in CAT(0) space, Comput. Math. Appl. 56 (2008) 2572-2579.
[8] M. Bridson, A. Haefliger, Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin, 1999.
[9] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008) 3689-3696.
[10] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings in metric and Banach spaces, ]. Nonlinear Convex Anal. 8 (2007) 35-45.
[11] P.Chaoha, A. Phon-on, A note on fixed point sets in CAT(0) spaces, ]J. Math. Anal. Appl. 320 (2006) 983-987.
[12] A. Abkar, M. Eslamian, Strong and A-convergence theorems of some iterative process for multivalued mappings in CAT(0) spaces, J. Nonlinear Anal.
Optim. 2 (2011) 67-74.
[13] K. Goebel, W.A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983) 115-123.
[14] KK.Tan, HK. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301-308.



	Fixed point and convergence theorems for different classes of generalized nonexpansive mappings in CAT(0) spaces
	Introduction
	Preliminaries
	A common fixed point
	A convergence theorem
	References


