Central Intertwining Lifting, Suboptimization, and Interpolation in Several Variables

Gelu Popescu ${ }^{1}$
Division of Mathematics and Statistics, The University of Texas at San Antonio, San Antonio, Texas 78249
E-mail: gpopescu@math.utsa.edu
Communicated by Gilles Pisier

Received November 17, 2000; revised June 8, 2001; accepted August 24, 2001

CORE

Provided by Elsevier - Publisher Connector
suooptmmzation type resuits lor the noncommutative (resp. commutative) anaryuc
Toeplitz algebra $F_{n}^{\infty}\left(\right.$ resp. $\left.W_{n}^{\infty}\right)$. The algebra $F_{n}^{\infty}\left(\right.$ resp. $\left.W_{n}^{\infty}\right)$ can be viewed as a multivariable noncommutative (resp. commutative) analogue of the Hardy space H^{∞}. Similar results are provided for $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and $W_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, where $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ is the set of all bounded linear operators acting on Hilbert spaces. New extensions of the Sarason, Carathéodory, and Nevanlinna-Pick type interpolation results are obtained for $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and some consequences to the operator-valued analytic interpolation in the unit ball of \mathbb{C}^{n} are considered. © 2002 Elsevier Science (USA)

In studying subalgebras of C^{*}-algebras, Kaftal et al. [KLW] discovered a joint norm control Nehari type theorem. Stated for H^{∞}, their theorem says that if $\delta>1, f \in H^{\infty}$, and $\varphi \in H^{\infty}$ is an inner function, then there exists $h \in H^{\infty}$ such that

$$
\|f-\varphi h\|_{\infty} \leqslant \delta d_{\infty}\left(f, \varphi H^{\infty}\right)
$$

and

$$
\|f-\varphi h\|_{2} \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}} d_{2}\left(f, \varphi H^{\infty}\right)
$$

${ }^{1}$ Partially supported by an NSF grant.

This gives quantitative estimates on the trade-off between the infinity-norm and the 2 -norm approximation of $f \in H^{\infty}$ with elements in the w^{*}-closed ideal φH^{∞} of H^{∞}. This result was generalized by Foiaş and Frazho in [FFr2]. They obtained simultaneously a suboptimal solution to the operatorial two-sided Nehari optimization problem, with respect to the L^{∞} norm and the L^{2} norm. The $H^{\infty}-H^{2}$ optimization has played an important role in H^{∞} control theory (see [FFrGK] and its references). The goal of this paper is to provide multivariable versions of the above-mentioned results. We mention that noncommutative generalizations of the Kaftal-LarsonWeiss result were considered by Pisier in [Pi1] and [Pi2].

The noncommutative analytic Toeplitz algebra F_{n}^{∞} is the WOT-closed algebra generated by the left creation operators S_{1}, \ldots, S_{n} on the full Fock space $F^{2}\left(H_{n}\right)$ on n generators and the identity (see Section 1). The algebra F_{n}^{∞} and its norm-closed version (the noncommutative disk algebra \mathscr{A}_{n}) were introduced by the author in [Po4] in connection with a noncommutative von Neumann inequality and have been studied in several papers [Po2, Po6, Po7, Po8, Po9, ArPo1] and recently in [DP1, DP2, ArPo2, DP3, Po10, Kr, DKP, PPoS].

We established a strong connection between the algebra F_{n}^{∞} and the function theory on the open unit ball \mathbb{B}_{n} of \mathbb{C}^{n} through the noncommutative von Neumann inequality [Po4] (see also [Po6, Po8, Po9]). In particular, we proved that there is a completely contractive homomorphism

$$
\Phi: F_{n}^{\infty} \rightarrow H^{\infty}\left(\mathbb{B}_{n}\right), \quad[\Phi(f)]\left(\lambda_{1}, \ldots, \lambda_{n}\right)=f\left(\lambda_{1}, \ldots, \lambda_{n}\right),
$$

for any $f:=f\left(S_{1}, \ldots, S_{n}\right) \in F_{n}^{\infty}$ and $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{B}_{n}$. A characterization of the analytic functions in the range of the map Φ was obtained in [ArPo2], and independently in [DP3]. Moreover, it was proved that the quotient $F_{n}^{\infty} / \operatorname{ker} \Phi$ is an operator algebra which can be identified with $W_{n}^{\infty}:=$ $\left.P_{F_{s}^{2}\left(H_{n}\right)} F_{n}^{\infty}\right|_{F_{s}^{2}\left(H_{n}\right)}$, the compression of F_{n}^{∞} to the symmetric Fock space $F_{s}^{2}\left(H_{n}\right) \subset F^{2}\left(H_{n}\right)$. In [Po9, Arv, ArPo2, DP3, PPoS], a good case is made that the appropriate multivariable commutative analogue of H^{∞} is the algebra W_{n}^{∞}, which was also proved to be the w^{*}-closed algebra generated by $B_{i}:=\left.P_{F_{s}^{2}\left(H_{n}\right)} S_{i}\right|_{F_{s}^{2}\left(H_{n}\right)}, i=1, \ldots, n$, and the identity. Moreover, Arveson showed in [Arv] that W_{n}^{∞} can be seen as the algebra of all analytic multipliers on $F_{s}^{2}\left(H_{n}\right)$.

Interpolation problems for the noncommutative analytic Toeplitz algebra F_{n}^{∞} were first considered in [Po7], where we obtained the Carathéodory interpolation theorem in this setting. In [ArPo2], Arias and the author extended Sarason's result [S] and obtained a distance formula to an arbitrary WOT-closed ideal in F_{n}^{∞} as well as a Nevanlinna-Pick type interpolation theorem (see [N]) for the noncommutative analytic Toeplitz algebra F_{n}^{∞}.

Using different methods, Davidson and Pitts proved these results independently in [DP3]. Let us mention that interpolation problems on the ball \mathbb{B}_{n} were recently considered in [Po10, Po11, Po12, AMc1, AMc2, BV].

In Section 1, we consider some preliminary results concerning the structure of multianalytic operators on Fock spaces as well as $W_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, the WOT-closed operator space generated by the spatial tensor product. In Section 2, we extend a result of Foiaş and Frazho [FFr2] and obtain a multivariable central intertwining lifting theorem (see Theorem 2.1), which will play a crucial role in this paper.

The main result of this paper is the Kaftal-Larson-Weiss type theorem [KLW], obtained in Section 3, for the noncommutative analytic Toeplitz algebra F_{n}^{∞}. More precisely, let $f \in F_{n}^{\infty}$ and let J be a WOT-closed right ideal of F_{n}^{∞}. Define

$$
d_{\infty}(f, J):=\inf \left\{\|f-g\|_{\infty}: g \in J\right\}
$$

and

$$
d_{2}(f, J):=\inf \left\{\|f-g\|_{2}: g \in J\right\}
$$

We show that if $\delta>1$, then there exists $\varphi \in J$ satisfying

$$
\|f-\varphi\|_{\infty} \leqslant \delta d_{\infty}(f, J) \quad \text { and } \quad\|f-\varphi\|_{2} \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}} d_{2}(f, J) .
$$

Actually, we obtain a more general result for the tensor product $F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ (see Theorem 3.5). This leads to new extensions of the Sarason, Carathéodory, and Nevanlinna-Pick type interpolation theorems for $F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and some consequences to the operator-valued analytic interpolation in the unit ball of \mathbb{C}^{n}. The multivariable central intertwining lifting theorem is also used to obtain a Foiaş-Frazho suboptimization type result [FFr2] in our setting (see Theorem 3.7). Finally, in Section 4, we provide a multivariable commutative version of the Kaftal-Larson-Weiss theorem.

We expect the $F_{n}^{\infty}-F^{2}\left(H_{n}\right)\left(\right.$ resp. $\left.W_{n}^{\infty}-F_{s}^{2}\left(H_{n}\right)\right)$ optimization to play a similar role in multivariable control theory as the $H^{\infty}-H^{2}$ optimization has played in H^{∞} control theory. The central intertwining lifting for row contractions will be used in a sequel to this paper to establish a maximal principle for the noncommutative commutant lifting theorem. This principle will show that the central intertwining lifting is a maximal entropy solution for the noncommutative commutant lifting theorem. This will lead to a permanence principle (as in the case $n=1,[\mathrm{FFrG}]$) with applications to the Charathéodory and Nevanlinna-Pick interpolation problems in several variables.

1. MULTIANALYTIC OPERATORS ON FOCK SPACES

Let us consider the full Fock space on n generators

$$
F^{2}\left(H_{n}\right):=\mathbb{C} 1 \oplus \bigoplus_{m \geqslant 1} H_{n}^{\otimes m},
$$

where H_{n} is an n-dimensional complex Hilbert space with orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ if n is finite and $\left\{e_{1}, e_{2}, \ldots\right\}$ if $n=\infty$. For each $i=$ $1,2, \ldots$, let S_{i} be the left creation operator with e_{i}, i.e., $S_{i} \xi:=e_{i} \otimes \xi$, $\xi \in F^{2}\left(H_{n}\right)$. We shall denote by \mathscr{P} the set of all $p \in F^{2}\left(H_{n}\right)$ which are sums of a finite number of tensor monomials; i.e., $p=a_{0}+\sum a_{i_{1} \cdots i_{k}} e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}$, where $a_{0}, a_{i_{1} \cdots i_{k}} \in \mathbb{C}$. The set \mathscr{P} may be viewed as the algebra of polynomials in n noncommuting indeterminates, with $p \otimes q, p, q \in \mathscr{P}$, as multiplication. Define F_{n}^{∞} as the set of all $g \in F^{2}\left(H_{n}\right)$ such that

$$
\|g\|_{\infty}:=\sup \left\{\|g \otimes p\|_{2}: p \in \mathscr{P},\|p\|_{2} \leqslant 1\right\}<\infty,
$$

where $\|\cdot\|_{2}:=\|\cdot\|_{F^{2}\left(H_{n}\right)}$. We denote by \mathscr{A}_{n} the closure of \mathscr{P} in $\left(F_{n}^{\infty},\|\cdot\|_{\infty}\right)$. The Banach algebra F_{n}^{∞} (resp. \mathscr{A}_{n}) can be viewed as a noncommutative analogue of the Hardy space H^{∞} (resp. disk algebra); when $n=1$ they coincide. It follows from [Po6] that the noncommutative analytic Toeplitz algebra F_{n}^{∞} can be identified with the WOT-closed algebra generated by the left creation operators S_{1}, \ldots, S_{n} and the identity.

Let \mathbb{F}_{n}^{+}be the unital free semigroup on n generators g_{1}, \ldots, g_{n}, and let e be its neutral element. For any word $\sigma:=g_{i_{1}} \cdots g_{i_{k}} \in \mathbb{F}_{n}^{+}$, we define its length $|\sigma|:=k$, and $|e|=0$. If $T_{i} \in B(\mathscr{H}), i=1, \ldots, n$, we set $T_{\sigma}:=T_{i_{1}} \cdots T_{i_{k}}$ and $T_{e}:=I_{\mathscr{H}}$. Similarly, we denote $e_{\sigma}:=e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}$ and $e_{\sigma}=1$ if $\sigma=e$. Notice that $\left\{e_{\sigma}\right\}_{\sigma \in \mathrm{F}_{n}^{+}}$is the canonical basis of $F^{2}\left(H_{n}\right)$.

Let $\mathscr{K}, \mathscr{K}^{\prime}$ be Hilbert spaces. As in [Po2], we say that a bounded linear operator $A \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{K}, F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right)$ is multianalytic if $A\left(S_{i} \otimes I_{\mathscr{C}}\right)=$ $\left(S_{i} \otimes I_{\mathscr{K}^{\prime}}\right) A$ for any $i=1, \ldots, n$. Notice that A is uniquely determined by the operator $\theta: \mathscr{K} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}, \theta k:=A(1 \otimes k), k \in \mathscr{K}$, which is called the symbol of A, and we denote $A=A_{\theta}$. Moreover, A is uniquely determined by the coefficients of θ, i.e., the operators $A_{(\alpha)} \in B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ given by

$$
\left\langle A_{(\alpha)} k, k^{\prime}\right\rangle:=\left\langle\theta(k), e_{\alpha} \otimes k^{\prime}\right\rangle, \quad k \in \mathscr{K}, k^{\prime} \in \mathscr{K}^{\prime}, \alpha \in \mathbb{F}_{n}^{+} .
$$

Notice that $\sum_{\alpha \in \mathrm{F}_{n}^{+}} A_{(\alpha)}^{*} A_{(\alpha)} \leqslant\|A\| I_{\mathscr{X}}$. We can associate with A a unique formal Fourier expansion

$$
\begin{equation*}
A \sim \sum_{\alpha \in \mathbb{F}_{n}^{+}} U^{*} S_{\alpha} U \otimes A_{(\alpha)}, \tag{1.1}
\end{equation*}
$$

where U is the (flipping) unitary operator on $F^{2}\left(H_{n}\right)$ mapping $e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots$ $\otimes e_{i_{k}}$ into $e_{i_{k}} \otimes \cdots \otimes e_{i_{2}} \otimes e_{i_{1}}$. Since A acts like its Fourier representation on "polynomials," we will identify them for simplicity. As in [Po6], using the noncommutative von Neumann inequality, one can show that if $0<$ $r<1$, then

$$
A=\mathrm{SOT}-\lim _{r \rightarrow 1} \sum_{\alpha \in \mathrm{F}_{n}^{+}} r^{|\alpha|} U^{*} S_{\alpha} U \otimes A_{(\alpha)},
$$

where, for each $r \in(0,1)$, the series converges in the uniform norm. The multianalytic operator A_{θ} (resp. its symbol θ) is called inner if A_{θ} is an isometry. According to [Po10], when $\mathscr{K}=\mathscr{K}^{\prime}$ the algebra of all multianalytic operators acting on $F^{2}\left(H_{n}\right) \otimes \mathscr{K}$ coincides with $R_{n}^{\infty} \bar{\otimes} B(\mathscr{K})$, the WOT-closed algebra generated by the spatial tensor product of $R_{n}^{\infty}:=$ $U^{*} F_{n}^{\infty} U$ and $B(\mathscr{K})$. A similar result holds in our more general setting. Since the proof is similar to that of Theorem 1.3 from [Po12], we shall omit it. In the following, we use the notation $R_{i}:=U^{*} S_{i} U$ for the right creation operator with e_{i}.

Theorem 1.1. The set of multianalytic operators in $B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{K}\right.$, $\left.F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right)$ coincides with $R_{n}^{\infty} \otimes \bar{\otimes}\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and is equal to the WOT-closed operator space generated by $R_{\alpha} \otimes Z, \alpha \in \mathbb{F}_{n}^{+}, Z \in B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$.

Let J be a w^{*}-closed, two-sided ideal of F_{n}^{∞} and define $\mathscr{N}_{J}:=J(1)^{\perp}$, the orthogonal complement of the image of J in $F^{2}\left(H_{n}\right)$. Let $\mathscr{W}\left(B_{1}, \ldots, B_{n}\right)$ be the w^{*}-closure of the algebra generated by $B_{i}:=\left.P_{\mathcal{V}_{J}} S_{i}\right|_{\mathcal{N}_{J}}$ for $i=1, \ldots, n$, and the identity. Since $\mathscr{W}\left(B_{1}, \ldots, B_{n}\right)$ has the \mathbb{A}_{1} property (see [ArPo2]) the w^{*} and WOT topologies agree on this algebra. Similarly to Proposition 4.2 from [ArPo 2], one can prove the following result. The proof is based on the noncommutative commutant lifting theorem (see [Po1]), Theorem 1.1, and the observation that the operator space $P_{\mathcal{N}_{J} \otimes \mathscr{K}^{\prime}}$ $\left.\left[F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)\right]\right|_{\mathscr{N}_{J} \otimes \mathscr{H}}$ coincides with the set of all the operators intertwining $\left.P_{\mathcal{N}_{J}} U^{*} S_{i} U\right|_{\mathcal{N}_{J}} \otimes I_{\mathscr{K}}$ and $\left.P_{\mathcal{N}_{J}} U^{*} S_{i} U\right|_{\mathcal{N}_{J}} \otimes I_{\mathscr{K}^{\prime}}, i=1, \ldots, n$. We shall omit it.

Theorem 1.2. Let J be a WOT-closed, two-sided ideal of F_{n}^{∞}. Then

$$
\mathscr{W}\left(B_{1}, \ldots, B_{n}\right) \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)=\left.P_{\mathcal{N}_{J} \otimes \mathscr{K}^{\prime}}\left[F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)\right]\right|_{\mathcal{K}_{J} \otimes \mathscr{K}} .
$$

Moreover, $\mathscr{W}\left(B_{1}, \ldots, B_{n}\right) \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ is the WOT-closed operator space generated by $B_{\alpha} \otimes W, \alpha \in \mathbb{F}_{n}^{+}, W \in B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$.

Let us mention that multianalytic operators were considered in [Po2] in connection with the characteristic function associated to a row contraction and were studied in [Po2, Po3, Po5, Po7].

2. CENTRAL INTERTWINING LIFTING FOR ROW CONTRACTIONS

Let us recall from [Po1, Po2, Po5] a few results concerning the noncommutative dilation theory for n-tuples of operators (see [SzNF] for the classical case). A sequence of operators $\mathscr{T}:=\left[T_{1}, \ldots, T_{n}\right], T_{i} \in B(\mathscr{H}), i=$ $1, \ldots, n$, is called contractive (or row contractive) if $T_{1} T_{1}^{*}+\cdots+T_{n} T_{n}^{*} \leqslant I_{\mathscr{H}}$. We say that a sequence of isometries $\mathscr{V}:=\left[V_{1}, \ldots, V_{n}\right]$ on a Hilbert space $\mathscr{K} \supseteq \mathscr{H}$ is a minimal isometric dilation (m.i.d.) of \mathscr{T} if the following properties are satisfied:
(i) $V_{1} V_{1}^{*}+\cdots+V_{n} V_{n}^{*} \leqslant I_{\mathscr{X}}$;
(ii) $\left.V_{i}^{*}\right|_{\mathscr{H}}=T_{i}^{*}, i=1, \ldots, n$;
(iii) $\mathscr{K}=\bigvee_{\alpha \in \mathrm{F}_{n}^{+}} V_{\alpha} \mathscr{H}$.

If \mathscr{V} satisfies only the condition (i) and $P_{\mathscr{H}} V_{i}=T_{i} P_{\mathscr{H}}, i=1, \ldots, n$, then \mathscr{V} is called an isometric lifting of \mathscr{T}. The minimal isometric dilation of \mathscr{T} is an isometric lifting and is uniquely determined up to an isomorphism [Po1]. Let us consider a realization of it on Fock spaces. As in [Po1], let us define $D_{\mathscr{F}}: \oplus_{j=1}^{n} \mathscr{H} \rightarrow \oplus_{j=1}^{n} \mathscr{H}$ by $D_{\mathscr{O}}:=\left(I_{\oplus_{j=1}^{n} \mathscr{H}}-\mathscr{T}^{*} \mathscr{T}\right)^{1 / 2}$, and set $\mathscr{D}:=$ $\overline{D_{\mathscr{J}}\left(\oplus_{j=1}^{n} \mathscr{H}\right)}$. Let $D_{i}: \mathscr{H} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathscr{D}$ be defined by

$$
D_{i} h:=1 \otimes D_{\mathscr{T}}(\underbrace{0, \ldots, 0}_{i-1 \text { times }}, h, 0, \ldots, 0) \oplus 0 \oplus 0 \cdots .
$$

Consider the Hilbert space $\mathscr{K}:=\mathscr{H} \oplus\left[F^{2}\left(H_{n}\right) \otimes \mathscr{D}\right]$ and define $V_{i}: \mathscr{K} \rightarrow \mathscr{K}$ by

$$
\begin{equation*}
V_{i}(h \oplus(\xi \otimes d)):=T_{i} h \oplus\left[D_{i} h+\left(S_{i} \otimes I_{\mathscr{O}}\right)(\xi \otimes d)\right] \tag{2.1}
\end{equation*}
$$

for any $h \in \mathscr{H}, \xi \in F^{2}\left(H_{n}\right), d \in \mathscr{D}$. Notice that

$$
V_{i}=\left[\begin{array}{cc}
T_{i} & 0 \\
D_{i} & S_{i} \otimes I_{\mathscr{D}}
\end{array}\right]
$$

with respect to the decomposition $\mathscr{K}=\mathscr{H} \oplus\left[F^{2}\left(H_{n}\right) \otimes \mathscr{D}\right]$. It was proved in [Po1] that $\mathscr{V}:=\left[V_{1}, \ldots, V_{n}\right]$ is the minimal isometric dilation of \mathscr{T}.

Let $T_{i} \in B(\mathscr{H}), T_{i}^{\prime} \in B\left(\mathscr{H}^{\prime}\right), i=1, \ldots, n$, be operators such that $\mathscr{T}:=$ $\left[T_{1}, \ldots, T_{n}\right]$ and $\mathscr{T}^{\prime}=\left[T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right]$ are row contractions. Let $\mathscr{V}:=\left[V_{1}, \ldots, V_{n}\right]$ be the minimal isometric dilation of \mathscr{T} on a Hilbert space $\mathscr{K} \supseteq \mathscr{H}$, and $\mathscr{V}^{\prime}:=\left[V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right]$ be the minimal isometric dilation of \mathscr{T}^{\prime} on a Hilbert space $\mathscr{K}^{\prime} \supseteq \mathscr{H}^{\prime}$. Let $A \in B\left(\mathscr{H}, \mathscr{H}^{\prime}\right)$ be a contraction $(\|A\| \leqslant 1)$ satisfying $A T_{i}=T_{i}^{\prime} A, i=1, \ldots, n$. A contractive intertwining lifting of A is a contraction $B \in B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ satisfying $B V_{i}=V_{i}^{\prime} B, i=1, \ldots, n$, and $P_{\mathscr{H}}{ }^{\prime} B=A P_{\mathscr{H}}$.

The noncommutative commutant lifting theorem [Po1] (see also [Po5]) states that there always exists a contractive intertwining lifting B of A with $\|B\|=\|A\|$ (see [SzNF] for the classical case).

Following the classical result (see [FFr1]), we proved in [Po5] that all the contractive intertwining dilations of A may be canonically parametrized by the closed unit ball of all multianalytic operators R from $F^{2}\left(H_{n}\right) \otimes \mathscr{R}_{1}$ to $F^{2}\left(H_{n}\right) \otimes \mathscr{R}_{2}$ for some suitable Hilbert spaces $\mathscr{R}_{1}, \mathscr{R}_{2}$. The dilation corresponding to the center of the ball $(R=0)$ is called the central dilation and will play an important role in our investigation.

Let us remark that if $\mathscr{W}:=\left[W_{1}, \ldots, W_{n}\right]$ is an isometric lifting of \mathscr{T} on the Hilbert space $\mathscr{G} \supseteq \mathscr{H}$, then \mathscr{W} admits a reducing decomposition $W_{i}=V_{i} \oplus U_{i}, i=1, \ldots, n$, on $\mathscr{G}=\mathscr{K} \oplus \mathscr{K}_{0}$, where $\mathscr{V}:=\left[V_{1}, \ldots, V_{n}\right]$ is the m.i.d. of \mathscr{T} and $\mathscr{K}=\bigvee_{\alpha \in \mathbb{E}_{n}^{+}} W_{\alpha} \mathscr{H}$. To see this, notice that \mathscr{K} is invariant under each W_{i}. Using the lifting property, we infer that $T_{i}^{*}=\left.W_{i}^{*}\right|_{\mathscr{E}}$. Therefore \mathscr{K} is also invariant under $W_{i}^{*}, i=1, \ldots, n$, and $V_{i}=\left.W_{i}\right|_{\mathscr{C}}$. According to [Po1], \mathscr{V} is the m.i.d. of \mathscr{T}. As in the classical case [FFr1], using this decomposition, one can extend the noncommutative commutant lifting theorem [Po5] from minimal isometric dilations to isometric liftings of \mathscr{T} and \mathscr{T}^{\prime}.

For any contraction $X \in B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, let us define the defect operator D_{X} by setting $D_{X}:=\left(I_{\mathscr{K}}-X^{*} X\right)^{1 / 2}$ and its defect space $\mathscr{D}_{X}:=\overline{D_{X} \mathscr{K}}$. In what follows we obtain an explicit central intertwining lifting for row contractions.

Theorem 2.1. Let $A \in B\left(\mathscr{H}, \mathscr{H}^{\prime}\right)$ be a strict contraction $(\|A\|<1)$ satisfying $A T_{i}=T_{i}^{\prime} A, i=1, \ldots, n$, where $T_{i} \in B\left(\mathscr{H}^{\prime}\right), T_{i}^{\prime} \in B\left(\mathscr{H}^{\prime}\right), i=1, \ldots, n$, $\mathscr{T}:=\left[T_{1}, \ldots, T_{n}\right]$ is an isometry, and $\mathscr{T}^{\prime}:=\left[T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right]$ is a row contraction. Let $\mathscr{L}:=\mathscr{H} \ominus\left[T_{1} \mathscr{H} \oplus \cdots \oplus T_{n} \mathscr{H}\right]$ be the wandering subspace determined by \mathscr{T}. Then there is a contractive intertwining lifting B_{c} of A satisfying

$$
\begin{equation*}
\left\|B_{c} \ell\right\| \leqslant \frac{\|A \ell\|}{\sqrt{1-\|A\|^{2}}} \quad \text { for any } \quad \ell \in \mathscr{L} . \tag{2.2}
\end{equation*}
$$

In particular, if \mathscr{L} is finite dimensional, then

$$
\begin{equation*}
\left\|\left.B_{c}\right|_{\mathscr{L}}\right\|_{2} \leqslant \frac{\left\|\left.A\right|_{\mathscr{L}}\right\|_{2}}{\sqrt{1-\|A\|^{2}}}, \tag{2.3}
\end{equation*}
$$

where $\|\cdot\|_{2}$ is the Hilbert-Schmidt norm.
Proof. Since any isometric lifting $\mathscr{W}^{\prime}:=\left[W_{1}^{\prime}, \ldots, W_{n}^{\prime}\right]$ of \mathscr{T}^{\prime} admits a decomposition $W_{i}^{\prime}=V_{i}^{\prime} \oplus U_{i}^{\prime}, i=1, \ldots, n$, where $\mathscr{V}^{\prime}:=\left[V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right]$ is the minimal isometric dilation of \mathscr{T}^{\prime}, we can assume without loss of generality that $\mathscr{W}^{\prime}=\mathscr{V}^{\prime}$. Let $\mathscr{V}^{\prime}:=\left[V_{1}^{\prime}, \ldots, V_{n}^{\prime}\right]$ be the minimal isometric dilation of
$\mathscr{T}^{\prime}:=\left[T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right]$ on the Hilbert space $\mathscr{K}^{\prime}:=\mathscr{H}^{\prime} \oplus\left[F^{2}\left(H_{n}\right) \otimes \mathscr{D}^{\prime}\right]$ where $\mathscr{D}^{\prime}:=\overline{D_{\mathscr{T}}}\left(\oplus_{j=1}^{n} \mathscr{H}^{\prime}\right)$. As in (2.1) we have

$$
\begin{equation*}
V_{i}^{\prime}[h \oplus(\xi \otimes d)]:=T_{i}^{\prime} h \oplus\left[D_{i}^{\prime} h+\left(S_{i} \otimes I_{\mathscr{Q}^{\prime}}\right)(\xi \otimes d)\right] \tag{2.4}
\end{equation*}
$$

for any $h \in \mathscr{H}^{\prime}, \xi \in F^{2}\left(H_{n}\right)$, and $d \in \mathscr{D}^{\prime}$. Define the following subspaces:

$$
\begin{aligned}
\mathscr{M} & :=\bigvee_{i=1}^{n} D_{A} T_{i} \mathscr{H}, \quad \text { and } \\
\mathscr{N} & :=\left\{D_{\mathscr{F}^{\prime}}\left(\bigoplus_{i=1}^{n} A h_{i}\right) \oplus\left(\bigoplus_{i=1}^{n} D_{A} h_{i}\right): h_{i} \in \mathscr{H}\right\}^{-} .
\end{aligned}
$$

Notice that $\mathscr{M} \subseteq \mathscr{D}_{A} \subseteq \mathscr{H}$ and $\mathscr{N} \subseteq \mathscr{D}^{\prime} \oplus\left(\oplus_{i=1}^{n} \mathscr{D}_{A}\right)$. A straightforward computation shows that the operator $W: \mathscr{M} \rightarrow \mathscr{N}$ defined by

$$
\begin{equation*}
W\left(\sum_{i=1}^{n} D_{A} T_{i} h_{i}\right):=D_{\mathscr{F}}\left(\bigoplus_{i=1}^{n} A h_{i}\right) \oplus\left(\bigoplus_{i=1}^{n} D_{A} h_{i}\right) \tag{2.5}
\end{equation*}
$$

for any $h_{i} \in \mathscr{H}, i=1, \ldots, n$, is unitary. Let us consider the orthogonal projections $P_{\mathscr{D}^{\prime}}: \mathscr{D}^{\prime} \oplus\left(\oplus_{j=1}^{n} \mathscr{D}_{A}\right) \rightarrow \mathscr{D}^{\prime}$, and $P_{i}: \mathscr{D}^{\prime} \oplus\left(\oplus_{j=1}^{n} \mathscr{D}_{A}\right) \rightarrow \mathscr{D}_{A}$ defined by $P_{i}\left[d \oplus\left(\oplus_{j=1}^{n} d_{j}\right)\right]:=d_{i}$.

Define $B_{c}: \mathscr{H} \rightarrow \mathscr{H}^{\prime} \oplus\left[F^{2}\left(H_{n}\right) \otimes \mathscr{D}^{\prime}\right]$ by setting

$$
\begin{equation*}
B_{c} h:=A h \oplus \sum_{\sigma \in \mathbb{F}_{n}^{+}} e_{\sigma} \otimes\left(P_{\mathscr{P}^{\prime}} W P_{\mathscr{M}}\right) E_{\sigma} D_{A} h, \quad h \in \mathscr{H}, \tag{2.6}
\end{equation*}
$$

where $P_{\mathcal{M}}$ is the orthogonal projection on $\mathscr{M}, E_{e}:=I_{\mathscr{D}_{\mathcal{A}}}$, and

$$
E_{\sigma}:=\left(P_{i_{k}} W P_{\mathcal{M}}\right)\left(P_{i_{k-1}} W P_{M}\right) \cdots\left(P_{i_{1}} W P_{\mathcal{M}}\right) \quad \text { for } \quad \sigma:=g_{i_{1}} \cdots g_{i_{k}} \in \mathbb{F}_{n}^{+} .
$$

Using the definition of W in (2.5), we infer that

$$
\begin{equation*}
\left(P_{j} W P_{\mathscr{M}}\right) D_{A} T_{i} h=\delta_{i j} D_{A} h \quad \text { for any } \quad i, j \in\{1,2, \ldots, n\} . \tag{2.7}
\end{equation*}
$$

According to (2.6) and (2.7), we deduce that

$$
\begin{aligned}
B_{c} T_{i} h= & A T_{i} h \oplus[1 \otimes D_{\mathscr{T}^{\prime}}(\underbrace{0, \ldots, 0}_{i-1 \text { times }}, A h, 0, \ldots, 0) \\
& \left.+\sum_{\sigma \in \mathbb{F}_{n}^{+}, \sigma \neq e} e_{\sigma} \otimes\left(P_{\mathscr{D}^{\prime}} W P_{\mathscr{M}}\right) E_{\sigma} D_{A} T_{i} h\right] \\
= & A T_{i} h \oplus[1 \otimes D_{\mathscr{T}^{\prime}}(\underbrace{0, \ldots, 0}_{i-1 \text { times }}, A h, 0, \ldots, 0) \\
& \left.+\sum_{\gamma \in \mathbb{F}_{n}^{+}} e_{g_{i} \gamma} \otimes\left(P_{\mathscr{D}^{\prime}} W P_{\mathscr{M}}\right) E_{\gamma} D_{A} h\right] .
\end{aligned}
$$

On the other hand, using (2.4) and (2.6), we have

$$
\begin{aligned}
V_{i}^{\prime} B_{c} h= & T_{i}^{\prime} A h \oplus[1 \otimes D_{\mathscr{T}^{\prime}}(\underbrace{0, \ldots, 0}_{i-1 \text { times }}, A h, 0, \ldots, 0) \\
& \left.+\left(S_{i} \otimes I_{\mathscr{O}^{\prime}}\right)\left(\sum_{\sigma \in \mathbb{F}_{n}^{+}} e_{\sigma} \otimes\left(P_{\mathscr{O}^{\prime}} W P_{\mathscr{M}}\right) E_{\sigma} D_{A} h\right)\right] .
\end{aligned}
$$

Since $A T_{i}=T_{i}^{\prime} A$ for any $i=1,2, \ldots, n$, it is clear that $B_{c} T_{i}=V_{i}^{\prime} B_{c}$ for any $i=1,2, \ldots, n$. Now, we prove that

$$
\begin{equation*}
\left\|B_{c} h\right\|^{2} \leqslant\|A h\|^{2}+\left\|P_{M} D_{A} h\right\|^{2} \quad \text { for any } \quad h \in \mathscr{H} . \tag{2.8}
\end{equation*}
$$

Due to (2.6) and the definition of E_{σ}, we have:

$$
\begin{aligned}
\left\|B_{c} h\right\|^{2} & =\|A h\|^{2}+\sum_{\sigma \in \mathbb{F}_{n}^{+}}\left\|\left(P_{\mathscr{Q}^{\prime}} W P_{M}\right) E_{\sigma} D_{A} h\right\|^{2} \\
& =\|A h\|^{2}+\sum_{\sigma \in \mathbb{F}_{n}^{+}}\left(\left\|W P_{M} E_{\sigma} D_{A} h\right\|^{2}-\sum_{i=1}^{n}\left\|\left(P_{i} W P_{\mathcal{M}}\right) E_{\sigma} D_{A} h\right\|^{2}\right) \\
& \leqslant\|A h\|^{2}+\sum_{\sigma \in \mathbb{F}_{n}^{+}}\left(\left\|E_{\sigma} P_{M} D_{A} h\right\|^{2}-\sum_{i=1}^{n}\left\|E_{\sigma g_{i}} D_{A} h\right\|^{2}\right) \\
& =\|A h\|^{2}+\lim _{m \rightarrow \infty} \sum_{\sigma \in \mathbb{F}_{n}^{+},|\sigma| \leqslant m}\left(\left\|E_{\sigma} P_{M} D_{A} h\right\|^{2}-\sum_{i=1}^{n}\left\|E_{\sigma g_{i}} P_{M M} D_{A} h\right\|^{2}\right) \\
& =\|A h\|^{2}+\left\|P_{M} D_{A} h\right\|^{2}-\lim _{m \rightarrow \infty} \sum_{\sigma \in \mathbb{F}_{n}^{+},|\sigma|=m+1}\left\|E_{\sigma} P_{M} D_{A} h\right\|^{2} \\
& \leqslant\|A h\|^{2}+\left\|P_{M} D_{A} h\right\|^{2} .
\end{aligned}
$$

Therefore (2.8) is proved. Now, it is clear that B_{c} is a contractive intertwining lifting of A, i.e., $\left\|B_{c}\right\| \leqslant 1, B_{c} T_{i}=V_{i}^{\prime} B_{c}, i=1, \ldots, n$, and $P_{\mathscr{H}} B_{c}=A$. Define $X:=D_{A}\left[T_{1}, T_{2}, \ldots, T_{n}\right]$. Since $T_{1}, T_{2}, \ldots, T_{n}$ are isometries with orthogonal ranges, we have

$$
\begin{align*}
X^{*} X & =\left[T_{i}^{*}\left(I-A^{*} A\right) T_{j}\right]_{n \times n}=\left[\delta_{i j} I_{\mathscr{H}}-T_{i}^{*} A^{*} A T_{j}\right]_{n \times n} \tag{2.9}\\
& =D_{\left[A T_{1}, \ldots, A T_{n}\right]}^{2} .
\end{align*}
$$

Since $\left[A T_{1}, \ldots, A T_{n}\right]$ is a strict contraction, $D_{\left[A T_{1}, \ldots, A T_{n}\right]}$ is invertible. Hence $X^{*} X$ is invertible on $\oplus_{i=1}^{n} \mathscr{H}$. On the other hand, for any $h_{i} \in \mathscr{H}$, we have

$$
\left\|D_{A}\left(T_{1} h_{1}+\cdots+T_{n} h_{n}\right)\right\|^{2} \geqslant \frac{1}{\left\|D_{A}^{-1}\right\|^{2}}\left\|T_{1} h_{1}+\cdots+T_{n} h_{n}\right\|^{2}=\frac{1}{\left\|D_{A}^{-1}\right\|^{2}}\left\|\bigoplus_{i=1}^{n} h_{i}\right\|^{2} .
$$

This shows that the range of X is closed and equal to \mathscr{M}. Define $P:=$ $X\left(X^{*} X\right)^{-1} X^{*}$ and notice that $P^{2}=P, P=P^{*}$, and range $P=\mathscr{M}$. Using (2.9), we infer that

$$
P_{\mathcal{M}}=D_{A}\left[T_{1}, \ldots, T_{n}\right] D_{\left[A T_{1}, \ldots, A T_{n}\right]}^{-2}\left[\begin{array}{c}
T_{1}^{*} \tag{2.10}\\
\vdots \\
T_{n}^{*}
\end{array}\right] D_{A} .
$$

Notice that

$$
\begin{aligned}
D_{\left[A T 1, \ldots, A T_{n}\right]}^{2} & =\left[\delta_{i j} I_{\mathscr{H}}-T_{i}^{*} A^{*} A T_{j}\right]_{n \times n}=\left[\delta_{i j} I_{\mathscr{H}}-A^{*} T_{i}^{\prime *} T_{j}^{\prime} A\right]_{n \times n} \\
& =\left[\delta_{i j}\left(I_{\mathscr{H}}-A^{*} A\right)\right]_{n \times n}+\left(\bigoplus_{i=1}^{n} A^{*}\right) D_{\mathscr{T}^{\prime}}^{2}\left(\bigoplus_{i=1}^{n} A\right) \\
& \geqslant \bigoplus_{i=1}^{n} D_{A}^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
D_{\left[A T_{1}, \ldots, A T_{n}\right]}^{-2} \leqslant \bigoplus_{i=1}^{n} D_{A}^{-2} . \tag{2.11}
\end{equation*}
$$

According to [Po1], $\mathscr{L}=\bigcap_{i=1}^{n} \operatorname{ker} T_{i}^{*}$. Using (2.8), (2.10), and (2.11), we deduce that, for any $\ell \in \mathscr{L}$,

$$
\begin{aligned}
\left\|B_{c} \ell\right\|^{2} & \leqslant\|A \ell\|^{2}+\left\langle D_{\left[A T_{1}, \ldots, A T_{n}\right]}^{-2}\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] D_{A}^{2} \ell,\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] D_{A}^{2} \ell\right\rangle \\
& =\|A \ell\|^{2}+\left\langle D_{\left[A T_{1}, \ldots, A T_{n}\right]}^{-2}\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] A^{*} A \ell,\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] A^{*} A \ell\right\rangle \\
& \leqslant\|A \ell\|^{2}+\left\langle\left(\bigoplus_{i=1}^{n} D_{A}^{-2}\right)\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] A^{*} A \ell,\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] A^{*} A \ell\right\rangle .
\end{aligned}
$$

Since $\oplus_{i=1}^{n} D_{A}^{-2} \leqslant\left(1 /\left(1-\|A\|^{2}\right)\right) I_{\oplus_{i=1}^{n} \mathscr{H}}$, we infer that

$$
\begin{aligned}
\left\|B_{c} \ell\right\|^{2} & \leqslant\|A \ell\|^{2}+\frac{1}{1-\|A\|^{2}}\left\|\left[\begin{array}{c}
T_{1}^{*} \\
\vdots \\
T_{n}^{*}
\end{array}\right] A^{*} A \ell\right\|^{2} \\
& \leqslant\|A \ell\|^{2}+\frac{\|A\|^{2}\|A \ell\|^{2}}{1-\|A\|^{2}} \\
& =\frac{\|A \ell\|^{2}}{1-\|A\|^{2}}
\end{aligned}
$$

Therefore, relation (2.2) holds. Assume now that \mathscr{L} is finite dimensional and let $\left\{\ell_{1}, \ldots, \ell_{k}\right\}$ be an orthonormal basis for \mathscr{L}. Using (2.2), we have

$$
\left\|\left.B_{c}\right|_{\mathscr{L}}\right\|_{2}^{2}=\sum_{i=1}^{k}\left\|B_{c} \ell_{i}\right\|^{2} \leqslant \sum_{i=1}^{k} \frac{\left\|A \ell_{i}\right\|^{2}}{1-\|A\|^{2}}=\frac{\left\|\left.A\right|_{\mathscr{L}}\right\|_{2}^{2}}{1-\|A\|^{2}} .
$$

This completes the proof.
Some consequences of this theorem will be presented in the next sections.

3. KAFTAL-LARSON-WEISS THEOREM ON FOCK SPACES AND INTERPOLATION

In this section we use our central intertwining lifting theorem for row contractions to obtain Kaftal-Larson-Weiss and Foiaş-Frazho type results for the noncommutative analytic Toeplitz algebra F_{n}^{∞}, as well as for $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, the WOT-closed operator space generated by the spatial tensor product.

Theorem 3.1. Let $\mathscr{K}, \mathscr{K}^{\prime}$ be Hilbert spaces and let $\mathscr{N}^{\prime} \subseteq F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}$ be a subspace with the property that \mathscr{N}^{\prime} is invariant under each $R_{1}^{*} \otimes I_{\mathscr{K}^{\prime}}, \ldots$, $R_{n}^{*} \otimes I_{\mathscr{K}^{\prime}}$. If $\delta>1$ and $\psi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then there exists $\varphi \in F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with $P_{\mathcal{N}^{\prime}} \varphi=0$ and such that

$$
\begin{equation*}
\|\psi-\varphi\| \leqslant \delta\left\|P_{\mathcal{N}^{\prime}} \psi\right\| \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|(\psi-\varphi)(1 \otimes k)\| \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}}\left\|P_{\mathcal{N}^{\prime}} \psi(1 \otimes k)\right\| \tag{3.2}
\end{equation*}
$$

for any $k \in \mathscr{K}$. If \mathscr{K} is finite dimensional, then

$$
\begin{equation*}
\left\|\left.(\psi-\varphi)\right|_{1 \otimes \mathscr{r}}\right\|_{2} \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}}\left\|\left.P_{\mathcal{N}^{\prime}} \psi\right|_{1 \otimes \mathscr{H}}\right\|_{2}, \tag{3.3}
\end{equation*}
$$

where $\|\cdot\|_{2}$ is the Hilbert-Schmidt norm.
Proof. If $P_{\mathcal{N}^{\prime}} \psi=0$, then we take $\varphi=\psi$, and the inequalities (3.1), (3.2), and (3.3) are satisfied. Now, assume that $P_{\mathcal{N}^{\prime}} \psi \neq 0$. Let us define $A \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{K},\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \mathscr{N}^{\prime}\right)$ by setting

$$
\begin{equation*}
A:=P_{\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \mathcal{S}^{\prime}}\left(U^{*} \otimes I_{\mathscr{K ^ { \prime }}}\right) \psi_{1}\left(U \otimes I_{\mathscr{K}}\right), \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{1}:=\delta^{-1}\left\|P_{\mathcal{L}^{\prime}} \psi\right\|^{-1} \psi \tag{3.5}
\end{equation*}
$$

Since $\left(U^{*} \otimes I_{\mathscr{K}^{\prime}}\right) P_{\mathcal{N}^{\prime}}\left(U \otimes I_{\mathscr{X}^{\prime}}\right)=P_{\left(U \otimes I_{x^{\prime}}\right) \mathcal{K}^{\prime}}$, it is clear that $\|A\|=\delta^{-1}<1$. According to Theorem 1.1, $\left(U^{*} \otimes I_{\mathscr{K}}\right) \psi_{1}\left(U \otimes I_{\mathscr{K}}\right)$ intertwines $S_{i} \otimes I_{\mathscr{K}}$ with $S_{i} \otimes I_{\mathscr{K}^{\prime}}$ for any $i=1, \ldots, n$. Since $\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \mathscr{N}^{\prime}$ is invariant under each $S_{i}^{*} \otimes I_{\mathscr{K}^{\prime}}, \ldots, S_{n}^{*} \otimes I_{\mathscr{K}^{\prime}}$, we infer that

$$
A\left(S_{i} \otimes I_{\mathscr{X}}\right)=T_{i}^{\prime} A,
$$

where $T_{i}^{\prime}:=\left.P_{\left(U \otimes I_{X^{\prime}}\right) \mathcal{K}^{\prime}}\left(S_{i} \otimes I_{\mathscr{K}^{\prime}}\right)\right|_{\left(U \otimes I_{x^{\prime}}\right) \mathcal{K}^{\prime}}$ for any $i=1, \ldots, n$. Notice that $\left[S_{1} \otimes I_{\mathscr{K}^{\prime}}, \ldots, S_{n} \otimes I_{\mathscr{K}^{\prime}}\right]$ is an isometric lifting of $\left[T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right]$. According to Theorem 2.1, there exists $B_{c} \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{K}, F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right)$, a contractive intertwining lifting of A, satisfying the following properties:
(i) $\quad B_{c}\left(S_{i} \otimes I_{\mathscr{K}}\right)=\left(S_{i} \otimes I_{\mathscr{K}^{\prime}}\right) B_{c}$, for any $i=1, \ldots, n$;
(ii) $\left\|B_{c}(1 \otimes k)\right\| \leqslant \frac{1}{\sqrt{1-\|A\|^{2}}}\|A(1 \otimes k)\|$ for any $k \in \mathscr{K}$;
(iii) $P_{\left(U \otimes I_{x^{\prime}}\right) \mathcal{K}^{\prime}} B_{c}=A$.

According to (i) and Theorem 1.1, there exists $\Phi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ such that $B_{c}=\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \Phi\left(U \otimes I_{\mathscr{K}}\right)$. Using (iii) and (3.4), we infer that

$$
\begin{equation*}
P_{\left(U \otimes I_{\left.\mathscr{K}^{\prime}\right) \mathscr{N}^{\prime}}\right.}\left(U^{*} \otimes I_{\mathscr{K}^{\prime}}\right)\left(\Phi-\psi_{1}\right)\left(U \otimes I_{\mathscr{K}}\right)=0 . \tag{3.6}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
P_{\mathcal{R}^{\prime}}\left(\Phi-\psi_{1}\right)=0 . \tag{3.7}
\end{equation*}
$$

Hence $\Phi-\psi_{1}=-g$ for some $g \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with $P_{\mathcal{K}^{\prime}} g=0$. Notice that

$$
\begin{equation*}
\left\|\psi_{1}-g\right\|=\|\Phi\|=\left\|B_{c}\right\| \leqslant 1 . \tag{3.8}
\end{equation*}
$$

Taking into account (3.5), the relation (3.8) becomes

$$
\|\psi-\varphi\| \leqslant \delta\left\|P_{\mathcal{N}^{\prime}} \psi\right\|,
$$

where $\varphi:=\delta\left\|P_{\mathcal{N}^{\prime}} \psi\right\| g$. Hence, we deduce relation (3.1) with $\varphi \in F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ satisfying $P_{\mathcal{N}^{\prime}} \varphi=0$. On the other hand, according to (ii) we have, for any $k \in \mathscr{K}$,

$$
\begin{align*}
\left\|\left[\psi_{1}-g\right](1 \otimes k)\right\| & =\|\Phi(1 \otimes k)\|=\left\|B_{c}(1 \otimes k)\right\| \tag{3.9}\\
& \leqslant \frac{1}{\sqrt{1-\|A\|^{2}}}\|A(1 \otimes k)\| .
\end{align*}
$$

From the definition of A, we deduce that

$$
\begin{aligned}
\|A(1 \otimes k)\| & =\left\|P_{\left(U \otimes I_{\left.\mathscr{C}^{\prime}\right)} \mathfrak{N}^{\prime}\right.}\left(U^{*} \otimes I_{\mathscr{K}^{\prime}}\right) \psi_{1}\left(U \otimes I_{\mathscr{K}}\right)(1 \otimes k)\right\| \\
& =\left\|P_{\mathcal{N}^{\prime}} \psi_{1}(1 \otimes k)\right\| .
\end{aligned}
$$

Using (3.9), we infer that

$$
\left\|\left(\psi_{1}-g\right)(1 \otimes k)\right\| \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}}\left\|P_{\mathcal{R}^{\prime}} \psi_{1}(1 \otimes k)\right\| .
$$

This inequality together with (3.5) implies

$$
\begin{equation*}
\|(\psi-\varphi)(1 \otimes k)\| \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}}\left\|P_{\mathcal{N}^{\prime}} \psi(1 \otimes k)\right\|, \quad k \in \mathscr{K} \tag{3.10}
\end{equation*}
$$

which is equivalent to (3.2). Now it is easy to see that (3.3) is a consequence of (3.10). This completes the proof.

A first consequence of Theorem 3.1 is the following Sarason type result for $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$.

Corollary 3.2. Let $\mathscr{K}, \mathscr{K}^{\prime}$ be Hilbert spaces and let $\mathscr{N}^{\prime} \subseteq F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}$ be a subspace with the property that \mathcal{N}^{\prime} is invariant under each $R_{1}^{*} \otimes I_{\mathscr{K}^{\prime}}, \ldots$, $R_{n}^{*} \otimes I_{\mathscr{K}^{\prime}}$. If $\psi \in F_{n}^{\infty} \otimes B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then

$$
\begin{equation*}
\inf \left\{\|\psi+\varphi\|: \varphi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right), P_{\mathcal{N}^{\prime}} \varphi=0\right\}=\left\|P_{\mathcal{N}^{\prime}} \psi\right\| . \tag{3.11}
\end{equation*}
$$

Moreover, there exists $\varphi_{0} \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with $P_{\mathcal{N}^{\prime}} \varphi_{0}=0$ such that

$$
\left\|\psi+\varphi_{0}\right\|=\left\|P_{\mathcal{L}^{\prime}} \psi\right\| .
$$

If \mathscr{K} is finite dimensional, then

$$
\begin{equation*}
\inf \left\{\left\|\left.(\psi+\varphi)\right|_{1 \otimes \mathscr{C}}\right\|_{2}: \varphi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right), P_{\mathcal{N}^{\prime}} \varphi=0\right\}=\left\|\left.P_{\mathcal{N}^{\prime}} \psi\right|_{1 \otimes \mathscr{C}}\right\|_{2}, \tag{3.12}
\end{equation*}
$$

where $\|\cdot\|_{2}$ is the Hilbert-Schmidt norm.
Proof. Using (3.1) of Theorem 3.1 as $\delta \rightarrow 1$, it is easy to see that

$$
\begin{equation*}
\inf \left\{\|\psi+\varphi\|: \varphi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right), P_{\mathcal{N}^{\prime}} \varphi=0\right\} \leqslant\left\|P_{\mathcal{N}^{\prime}} \psi\right\| . \tag{3.13}
\end{equation*}
$$

On the other hand, for any $\phi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, with $P_{\mathcal{N}^{\prime}} \phi=0$, we have

$$
\begin{equation*}
\|\psi+\phi\| \geqslant\left\|P_{\mathcal{N}^{\prime}}(\psi+\phi)\right\|=\left\|P_{\mathcal{R}^{\prime}} \psi\right\| . \tag{3.14}
\end{equation*}
$$

Combining (3.13) with (3.14), we obtain (3.11). Now let us apply the noncommutative commutant lifting theorem to the operator A given by (3.4) and satisfying $A\left(S_{i} \otimes I_{\mathscr{C}}\right)=T_{i}^{\prime} A, i=1, \ldots, n$. We find a multianalytic operator $B \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{K}, F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right)$ such that $\|A\|=\|B\|$ and $P_{\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \mathscr{R}^{\prime}} B=A$. According to Theorem 1.1, $B=\left(U \otimes I_{\mathscr{K}^{\prime}}\right) f\left(U \otimes I_{\mathscr{K}}\right)$ for some $f \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. It is clear that $P_{\mathcal{K}^{\prime}}(f-\psi)=0$ and $\|f\|=$ $\left\|P_{\mathcal{N}^{\prime}} \psi\right\|$. Setting $\psi_{0}:=f-\psi$, the first part of the theorem follows.

If \mathscr{K} is finite dimensional, then relation (3.12) can be proved similarly if one uses (3.3) of Theorem 3.1 as $\delta \rightarrow \infty$. This completes the proof.

As mentioned in the Introduction, if $\Phi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then $\lambda \mapsto \Phi(\lambda)$ is a $\mathscr{B}\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$-valued bounded analytic function on \mathbb{B}_{n}, the open unit ball of \mathbb{C}^{n}. For each $j=1, \ldots, k$, let $\lambda_{j}:=\left(\lambda_{j 1}, \ldots, \lambda_{j n}\right) \in \mathbb{B}_{n}$ and, for $\alpha:=g_{j_{1}} g_{j_{2}}, \ldots, g_{j_{m}}$ in \mathbb{F}_{n}^{+}, let $\lambda_{j \alpha}:=\lambda_{j j_{1}} \lambda_{j j_{2}}, \ldots, \lambda_{j j_{m}}$ and $\lambda_{e}:=1$. Define $z_{\lambda_{j}} \in F^{2}\left(H_{n}\right), j=1, \ldots, k$, by

$$
z_{\lambda_{i}}:=\sum_{\alpha \in \mathbb{F}_{n}^{+}} \bar{\lambda}_{i \alpha} e_{\alpha},
$$

and notice that $\left\langle z_{\lambda_{i}}, z_{\lambda_{j}}\right\rangle=1 /\left(1-\left\langle\lambda_{j}, \lambda_{i}\right\rangle\right)$. For any element $\phi:=\sum_{\alpha \in \mathbb{E}_{n}^{+}} S_{\alpha} \otimes$ $A_{(\alpha)}$ in $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, we have

$$
\begin{equation*}
\phi^{*}\left(z_{\lambda_{j}} \otimes k^{\prime}\right)=z_{\lambda_{j}} \otimes \phi\left(\lambda_{j}\right)^{*} k^{\prime} \tag{3.15}
\end{equation*}
$$

for any $k^{\prime} \in \mathscr{K}^{\prime}, \beta \in \mathbb{F}_{n}^{+}$, and $j=1, \ldots, k$. Indeed, it is enough to observe that

$$
\left\langle\phi\left(e_{\beta} \otimes k\right), z_{\lambda_{j}} \otimes k^{\prime}\right\rangle=\left\langle e_{\beta} \otimes k, z_{\lambda_{j}} \otimes \phi\left(\lambda_{j}\right)^{*} k^{\prime}\right\rangle,
$$

for any $k \in \mathscr{K}$.
Another consequence of Theorem 3.1 is the following interpolation problem of Nevanlinna-Pick type for $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, the noncommutative analytic Toeplitz algebra, which was obtained in [ArPo2, DP3, Po10], when $\mathscr{K}=\mathscr{K}^{\prime}$. We only sketch the proof.

Corollary 3.3. Let $\lambda_{1}, \ldots, \lambda_{k}$ be k distinct points in \mathbb{B}_{n} and let $B_{j} \in$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right), j=1, \ldots, k$, where $\mathscr{K}, \mathscr{K}^{\prime}$ are Hilbert spaces. Then there exists Φ in $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, such that $\|\Phi\| \leqslant 1$ and $\Phi\left(\lambda_{j}\right)=B_{j}, j=1,2, \ldots$, k, if and only if the operator matrix

$$
\begin{equation*}
\left[\frac{I_{\mathscr{K}^{\prime}}-B_{i} B_{j}^{*}}{1-\left\langle\lambda_{i}, \lambda_{j}\right\rangle}\right]_{i, j=1,2, \ldots, k} \tag{3.16}
\end{equation*}
$$

is positive semidefinite.
Proof. Let $\mathcal{N}^{\prime}:=\operatorname{span}\left\{z_{\lambda_{j}}: j=1, \ldots, k\right\} \otimes \mathscr{K}^{\prime}$ and notice that if $\phi \in F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then $P_{\mathcal{N}^{\prime}} \phi=0$ if and only if $\phi\left(\lambda_{j}\right)=0$ for any $j=1, \ldots, k$. Applying Corollary 3.2 to an element $\psi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with $\psi\left(\lambda_{j}\right)$ $=B_{j}, j=1, \ldots, k$, we find Φ in $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, such that $\|\Phi\| \leqslant 1$ and $\Phi\left(\lambda_{j}\right)=B_{j}, j=1,2, \ldots, k$, if and only if $\left\|P_{\mathcal{N}^{\prime}} \psi\right\| \leqslant 1$. Using (3.15), one can show that the latter inequality is equivalent to (3.16).

Notice that if (3.16) holds then there exists Φ in $H^{\infty}\left(\mathbb{B}_{n}\right) \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ such that $\|\Phi\| \leqslant 1$ and $\Phi\left(\lambda_{j}\right)=B_{j}, j=1,2, \ldots, k$.

Let \mathscr{P}_{m} be the set of all polynomials in \mathscr{P} of degree $\leqslant m$. Using Corollary 3.2 in the particular case when $\mathcal{N}^{\prime}:=\mathscr{P}_{m} \otimes \mathscr{K}^{\prime}$ and $\psi:=p$, we obtain the following extension of the Charathéodory interpolation problem to $F_{n}^{\infty} \bar{\otimes}$ $\mathscr{B}\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$.

Corollary 3.4. Let $p:=\sum_{|\alpha| \leqslant m} S_{\alpha} \otimes B_{(\alpha)} \in F_{n}^{\infty} \bar{\otimes} \mathscr{B}\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. Then there exists $f=\sum_{\alpha \in \mathbb{F}_{n}^{+}} S_{\alpha} \otimes W_{(\alpha)} \in F_{n}^{\infty} \bar{\otimes} \mathscr{B}\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with $\|f\| \leqslant 1$ and $W_{(\alpha)}=B_{(\alpha)}$ if $|\alpha| \leqslant m$ if and only if

$$
\left\|\left.P_{\mathscr{P}_{m} \otimes \mathscr{x}^{\prime}} p\right|_{\mathscr{P}_{m} \otimes \mathscr{F}}\right\| \leqslant 1
$$

In what follows we obtain a multivariable noncommutative analogue of the Kaftal-Larson-Weiss theorem [KLW] on Fock spaces. If $f \in F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then $\|f\|$ denotes the uniform norm of f and, if \mathscr{K} is finite
dimensional, $\|f\|_{2}$ stands for the Hilbert-Schmidt norm of $\left.f\right|_{1 \otimes \mathscr{x}}$. Let d_{∞} and d_{2} be the corresponding metrics on $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. Let us remark that if f has the Fourier representation $\sum_{\alpha \in \mathbb{F}_{n}^{+}} S_{\alpha} \otimes X_{(\alpha)}$, then $\|f\|_{2}=$ $\sum_{\alpha \in \mathbb{F}_{n}^{+}} \operatorname{trace}\left[X_{(\alpha)}^{*} X_{(\alpha)}\right]$.

Theorem 3.5. Let J be a WOT-closed right ideal in F_{n}^{∞}, let $\mathscr{K}, \mathscr{K}^{\prime}$ be Hilbert spaces, and let $\delta>1$. If $\psi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and \mathscr{K} is finite dimensional, then there exists $\varphi \in J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ such that

$$
\begin{equation*}
\|\psi-\varphi\| \leqslant \delta d_{\infty}\left[\psi, J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)\right] \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\psi-\varphi\|_{2} \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}} d_{2}\left(\psi, J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)\right) . \tag{3.18}
\end{equation*}
$$

Proof. Denote $\mathscr{N}_{J}:=\overline{J(1)}{ }^{\perp}$. Since J is a WOT-closed right ideal in F_{n}^{∞}, $U \mathscr{N}_{J}$ is invariant to each $S_{1}^{*}, \ldots, S_{n}^{*}$, so we can apply Theorem 3.1, when $\mathscr{N}^{\prime}:=\mathscr{N}_{J} \otimes \mathscr{K}^{\prime}$. Therefore, there exists $\varphi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with

$$
\begin{equation*}
P_{\mathcal{N}_{J} \otimes \mathscr{K}^{\prime}} \varphi=0, \tag{3.19}
\end{equation*}
$$

such that

$$
\begin{equation*}
\|\psi-\varphi\| \leqslant \delta\left\|P_{\mathcal{V}_{J} \otimes \mathscr{x}^{\prime}} \psi\right\|, \tag{3.20}
\end{equation*}
$$

and (3.3) holds. According to Corollary 3.2, we have

$$
\left\|P_{\mathcal{N}_{J} \otimes \mathscr{K}^{\prime}} \psi\right\|=\inf \left\{\|\psi+\varphi\|: \varphi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right), P_{\mathcal{N}_{J} \otimes \mathscr{K}^{\prime}} \varphi=0\right\} .
$$

To complete the proof of (3.17), it remains to show that if $f \in F_{n}^{\infty} \bar{\otimes}$ $B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then $P_{\mathcal{N}_{J} \otimes \mathscr{K}^{\prime}} f=0$ if and only if $f \in J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. One implication is trivial. Let us assume that

$$
\begin{equation*}
P_{\mathcal{K}_{J} \otimes \mathscr{K}^{\prime}} f=0 . \tag{3.21}
\end{equation*}
$$

Since f can be identified with an operator matrix $\left[f_{i j}\right] \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{K}\right.$, $F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}$) with entries in F_{n}^{∞}, the relation (3.21) is equivalent to $P_{\mathcal{N}_{j} \otimes \mathscr{K}^{\prime}} f_{i j}=0$. Now assume that $f_{i j} \notin J$ and let ${ }^{\perp} J$ be the preannihilator of J in the predual of F_{n}^{∞}. Since $\left({ }^{\perp} J\right)^{*}=F_{n}^{\infty} / J$, there exists $\Phi \in{ }^{\perp} J$ such that

$$
\begin{equation*}
\Phi\left(f_{i j}\right) \neq 0 . \tag{3.22}
\end{equation*}
$$

On the other hand, since F_{n}^{∞} has the \mathbb{A}_{1} property, similarly to Proposition 1.1 of [ArPo2], one can find $\psi_{1}, \psi_{2} \in F^{2}\left(H_{n}\right)$ with $\psi_{2} \in \mathscr{N}_{J}$ such that

$$
\Phi\left(f_{i j}\right)=\left\langle f \psi_{1}, \psi_{2}\right\rangle=\left\langle P_{\mathcal{N}_{J}} f \psi_{1}, \psi_{2}\right\rangle=0,
$$

which contradicts (3.22). Therefore $f_{i j} \in J$ and $f \in J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. Now, using (3.3) and Corollary 3.2, we infer (3.18). The proof is complete.

Notice that $\inf _{\delta>1} \max \left\{\delta, \delta / \sqrt{\delta^{2}-1}\right\}=\sqrt{2}$. If J is a WOT-closed right ideal in F_{n}^{∞} and $f \in F_{n}^{\infty}$, then, according to Theorem 3.5, there exists $\varphi \in J$ such that

$$
\|f-\varphi\| \leqslant \sqrt{2} d_{\infty}(f, J) \quad \text { and } \quad\|f-\varphi\|_{2} \leqslant \sqrt{2} d_{2}(f, J) .
$$

This is a Pisier type result (see [Pi2]). From the proof of Theorem 3.5 we can also deduce the following result.

Corollary 3.6. Let J be a WOT-closed right ideal in F_{n}^{∞} and let $\mathscr{K}, \mathscr{K}^{\prime}$ be Hilbert spaces. Then the map

$$
\Phi: F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right) / J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right) \rightarrow B\left(\mathscr{N}_{J}\right) \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)
$$

defined by

$$
\Phi\left[\varphi+J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)\right]=P_{\mathcal{K}_{J} \otimes \mathscr{K}^{\prime}} \varphi
$$

is an isometry. Moreover, there is $\psi_{0} \in J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ such that

$$
\left\|\varphi+\psi_{0}\right\|=\left\|P_{\mathcal{N}_{J} \otimes \mathscr{x}^{\prime}} \varphi\right\| .
$$

Let J be a w^{*}-closed, two-sided ideal of F_{n}^{∞} and $\mathscr{W}\left(B_{1}, \ldots, B_{n}\right)$ be the w^{*}-closure of of the algebra generated by $B_{i}:=\left.P_{\mathcal{N}_{J}} S_{i}\right|_{\mathcal{N}_{J}}$ for, $i=1, \ldots, n$, and the identity. Using Theorem 1.2 and Corollary 3.6, we infer that $F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right) / J \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ is canonically isomorphic to $\mathscr{W}\left(B_{1}, \ldots, B_{n}\right)$.

In what follows we obtain a noncommutative analogue of the FoiasFrazho suboptimization theorem [FFr2] for $F^{\infty} \bar{\otimes} \mathscr{B}\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. We need to recall a Beurling type characterization of the invariant subspaces under each $S_{i} \otimes I_{\mathscr{E}}, i=1, \ldots, n$, which was obtained in [Po2]. The theorem states that a subspace $\mathscr{M} \subseteq F^{2}\left(H_{n}\right) \otimes \mathscr{K}$ is invariant under each $S_{i} \otimes I_{\mathscr{K}}, i=1, \ldots$, n, if and only if there exists a Hilbert space \mathscr{G} and an inner multianalytic operator $\Phi \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{G}, F^{2}\left(H_{n}\right) \otimes \mathscr{K}\right)$ such that $\mathscr{M}=\Phi\left(F^{2}\left(H_{n}\right) \otimes \mathscr{G}\right)$.

Let $\Psi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and let $\Theta \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{G}, \mathscr{K}^{\prime}\right)$ be inner, i.e., an isometry. Define

$$
d_{\infty}(\Psi):=\inf \left\{\|\Psi+\Theta \Phi\|: \Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathscr{K}, \mathscr{G})\right\}
$$

and, if \mathscr{K} is finite dimensional, then

$$
d_{2}(\Psi):=\inf \left\{\|\Psi+\Theta \Phi\|_{2}: \Phi \in F_{n}^{\infty} \bar{\otimes} B(\mathscr{K}, \mathscr{G})\right\},
$$

where $\|\Psi+\Theta \Phi\|_{2}$ is the Hilbert-Schmidt norm of $\left.(\Psi+\Theta \Phi)\right|_{1 \otimes \mathscr{x}}$.

Theorem 3.7. Let $\Psi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and let $\Theta \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{G}, \mathscr{K}^{\prime}\right)$ be inner. Then

$$
d_{\infty}(\Psi)=\left\|P_{\mu} \Psi\right\| \quad \text { and } \quad d_{2}(\Psi)=\left\|P_{\mu} \Psi\right\|_{2},
$$

where $\mathscr{M}:=\left[F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right] \ominus \Theta\left[F^{2}\left(H_{n}\right) \otimes \mathscr{G}\right]$. Moreover, there exists $\Phi_{0} \in$ $F_{n}^{\infty} \bar{\otimes} B(\mathscr{K}, \mathscr{G})$ such that

$$
d_{\infty}(\Psi)=\left\|\Psi+\Theta \Phi_{0}\right\| .
$$

If in addition \mathscr{K} is finite dimensional and $\delta>1$, then there exists $\Phi \in$ $F_{n}^{\infty} \bar{\otimes} B(\mathscr{K}, \mathscr{G})$ satisfying

$$
\begin{equation*}
\|\Psi+\Theta \Phi\| \leqslant \delta d_{\infty}(\Psi) \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\Psi+\Theta \Phi\|_{2} \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}} d_{2}(\Psi) . \tag{3.24}
\end{equation*}
$$

Proof. According to Theorem 2.2 of [Po2], a subspace $\mathcal{N}^{\prime} \subseteq F^{2}\left(H_{n}\right)$ $\otimes \mathscr{K}^{\prime}$ has the property that $\mathscr{M}^{\prime}:=\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \mathscr{N}^{\prime}$ is invariant under $S_{i}^{*} \otimes$ $I_{\mathscr{K}^{\prime}}, i=1, \ldots, n$, if and only if there exists an inner multianalytic operator $X \in B\left(F^{2}\left(H_{n}\right) \otimes \mathscr{G}, F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right)$ for some Hilbert space \mathscr{G}, such that $\mathscr{M}^{\perp}=X\left[F^{2}\left(H_{n}\right) \otimes \mathscr{G}\right]$. Using Theorem 1.1, we find an inner operator $\Theta \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{G}, \mathscr{K}^{\prime}\right)$ such that

$$
\begin{equation*}
\mathscr{N}^{\prime}=\left[F^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}\right] \ominus \Theta\left[F^{2}\left(H_{n}\right) \otimes \mathscr{G}\right] . \tag{3.25}
\end{equation*}
$$

Now let us prove that if $\Lambda \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$, then

$$
\begin{equation*}
P_{\mathcal{N}^{\prime}} \Lambda=0 \tag{3.26}
\end{equation*}
$$

if and only if there exists $H \in F_{n}^{\infty} \bar{\otimes} B(\mathscr{K}, \mathscr{G})$ such that

$$
\begin{equation*}
\Lambda=\Theta H \tag{3.27}
\end{equation*}
$$

It is clear that (3.27) implies (3.26). Conversely, assume (3.26) holds. This implies

$$
\Lambda\left[F^{2}\left(H_{n}\right) \otimes \mathscr{K}\right] \subseteq \Theta\left[F^{2}\left(H_{n}\right) \otimes \mathscr{G}\right] .
$$

Hence, for each $k \in \mathscr{K}$, there exists a unique $f_{k} \in F^{2}\left(H_{n}\right) \otimes \mathscr{G}$ such that

$$
\begin{equation*}
\Lambda(1 \otimes k)=\Theta f_{k} . \tag{3.28}
\end{equation*}
$$

Define the linear operator $Q: 1 \otimes \mathscr{K} \rightarrow F^{2}\left(H_{n}\right) \otimes \mathscr{G}$ by $Q(1 \otimes k):=f_{k}$. Due to (3.28) and since Θ is an isometry we infer that Q is a bounded operator. Notice that for each $k \in \mathscr{K}, \alpha \in \mathbb{F}_{n}^{+}$we have

$$
\begin{aligned}
\left(U^{*}\right. & \left.\otimes I_{\mathscr{K}^{\prime}}\right) \Lambda\left(U \otimes I_{\mathscr{K}}\right)\left(e_{\alpha} \otimes k\right) \\
& =\left(S_{\alpha} \otimes I_{\mathscr{K}^{\prime}}\right)\left(U^{*} \otimes I_{\mathscr{K ^ { \prime }}}\right) \Theta Q(1 \otimes k) \\
& =\left(U^{*} \otimes I_{\mathscr{K}^{\prime}}\right) \Theta\left(U \otimes I_{\mathscr{G}}\right)\left(S_{\alpha} \otimes I_{\mathscr{G}}\right)\left(U^{*} \otimes I_{\mathscr{G}}\right) Q(1 \otimes k)
\end{aligned}
$$

Hence we infer that

$$
\begin{aligned}
\sum_{\alpha \in \mathbb{F}_{n}^{+}} & \left(S_{\alpha} \otimes I_{\mathscr{G}}\right)\left(U^{*} \otimes I_{\mathscr{G}}\right) Q(1 \otimes k) \\
& =\left(U^{*} \otimes I_{\mathscr{G}}\right) \Theta^{*} \Lambda\left(U \otimes I_{\mathscr{C}}\right)\left(\sum_{\alpha \in \mathbb{F}_{n}^{+}} e_{\alpha} \otimes k_{\alpha}\right)
\end{aligned}
$$

for any $\sum_{\alpha \in \mathrm{F}_{n}^{+}} e_{\alpha} \otimes k_{\alpha} \in F^{2}\left(H_{n}\right) \otimes \mathscr{K}$. Therefore, $M: F^{2}\left(H_{n}\right) \otimes \mathscr{K} \rightarrow F^{2}\left(H_{n}\right)$ $\otimes \mathscr{G}$ defined by

$$
M\left(\sum_{\alpha \in \mathbb{F}_{n}^{+}} e_{\alpha} \otimes k_{\alpha}\right):=\sum_{\alpha \in \mathbb{F}_{n}^{+}}\left(S_{\alpha} \otimes I_{\mathscr{G}}\right)\left(U^{*} \otimes I_{\mathscr{G}}\right) Q\left(U \otimes I_{\mathscr{K}}\right)(1 \otimes k)
$$

is a multianalytic operator. According to Theorem 1.1, we can see that the operator $H:=\left(U^{*} \otimes I_{\mathscr{G}}\right) \Theta^{*} M\left(U \otimes I_{\mathscr{H}}\right)$ is in $F_{n}^{\infty} \otimes B(\mathscr{G}, \mathscr{K})$. On the other hand, it is clear that $\Lambda=\Theta H$. Applying Theorem 3.1 and Corollary 3.2 to the subspace \mathcal{N}^{\prime} given by (3.25), we complete the proof.

4. KAFTAL-LARSON-WEISS THEOREM ON SYMMETRIC FOCK SPACES

Let W_{n}^{∞} be the w^{*}-closed algebra generated by $B_{i}:=\left.P_{F_{s}^{2}\left(H_{n}\right)} S_{i}\right|_{F_{s}^{2}\left(H_{n}\right)}, i=1$, \ldots, n, and the identity, where $F_{s}^{2}\left(H_{n}\right) \subset F^{2}\left(H_{n}\right)$ is the symmetric Fock space. The commutative Toeplitz algebra W_{n}^{∞} was recently studied in [Po9, Arv, ArPo2, DP3, and PPoS]. It can be viewed as a multivariable commutative analogue of the classical H^{∞}.

In what follows we obtain a Kaftal-Larson-Weiss type result for the tensor product $W_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$. Let $\mathscr{K}, \mathscr{K}^{\prime}$ be Hilbert spaces and let \mathscr{E}^{\prime} be a subspace of $F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}$. We associate with \mathscr{E}^{\prime} the operator space

$$
E^{\prime}:=\left\{g \in W_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right): P_{\delta^{\prime}} g=0\right\} .
$$

For every $f \in W_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ define

$$
d_{\infty}\left(f, E^{\prime}\right):=\inf \left\{\|f+g\|: g \in E^{\prime}\right\}
$$

and, if \mathscr{K} is finite dimensional, then

$$
d_{2}\left(f, E^{\prime}\right):=\inf \left\{\|f+g\|_{2}: g \in E^{\prime}\right\},
$$

where $\|f+g\|_{2}$ is the Hilbert-Schmidt norm of $\left.(f+g)\right|_{1 \otimes \mathscr{x}}$.

Theorem 4.1. Let $\mathscr{E}^{\prime} \subseteq F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}$ be an invariant subspace under each $B_{1}^{*} \otimes I_{\mathscr{K}^{\prime}}, \ldots, B_{n}^{*} \otimes I_{\mathscr{K}^{\prime}}$, and let $\delta>1$. If $f \in W_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ and \mathscr{K} is finite dimensional, then there exists $g \in E^{\prime}$ such that

$$
\begin{align*}
\|f-g\| & \leqslant \delta d_{\infty}\left(f, E^{\prime}\right) \quad \text { and } \tag{4.1}\\
\|f-g\|_{2} & \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}} d_{2}\left(f, E^{\prime}\right) . \tag{4.2}
\end{align*}
$$

Proof. Since $F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}$ is an invariant subspace under each $S_{1}^{*} \otimes I_{\mathscr{K}^{\prime}}, \ldots$, $S_{n}^{*} \otimes I_{\mathscr{K}^{\prime}}$, it is easy to see that \mathscr{E}^{\prime} has the same property and $\left(U \otimes I_{\mathscr{K}^{\prime}}\right) \mathscr{E}^{\prime \prime}=\mathscr{E}^{\prime}$. A particular case of Theorem 1.2 shows that there exists $\psi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ such that

$$
\begin{equation*}
f=\left.P_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{x}^{\prime}} \psi\right|_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{x}} . \tag{4.3}
\end{equation*}
$$

Applying Theorem 3.1 to ψ and \mathscr{E}^{\prime}, we find $\varphi \in F_{n}^{\infty} \bar{\otimes} B\left(\mathscr{K}, \mathscr{K}^{\prime}\right)$ with $P_{\delta^{\prime}} \varphi=0$ such that

$$
\begin{equation*}
\|\psi-\varphi\| \leqslant \delta\left\|P_{g^{\prime}} \psi\right\| \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|(\psi-\varphi)(1 \otimes k)\| \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}}\left\|P_{\delta^{\prime}} \psi(1 \otimes k)\right\| \tag{4.5}
\end{equation*}
$$

for any $k \in \mathscr{K}$. Notice that $g:=\left.P_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}} \varphi\right|_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{H}}$ is in E^{\prime}. Using (4.3) and (4.4), we infer that

$$
\begin{aligned}
\|f-g\| & =\left\|\left.P_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}}(\psi \varphi)\right|_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{H}}\right\| \\
& \leqslant\|\psi-\varphi\| \leqslant \delta\left\|P_{g^{\prime}} \psi\right\| \\
& \leqslant \delta\left\|\left.P_{\delta^{\prime}} P_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{\mathscr { K } ^ { \prime }}} \psi\right|_{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{A}}\right\| \\
& =\delta\left\|P_{\delta^{\prime}} f\right\| .
\end{aligned}
$$

Notice also that, using (4.3) and (4.5), we have

$$
\begin{aligned}
\|(f-g)(1 \otimes k)\| & \leqslant\|(\psi-\varphi)(1 \otimes k)\| \leqslant \frac{\delta}{\sqrt{\delta^{2}-1}}\left\|P_{\delta^{\prime}} \psi(1 \otimes k)\right\| \\
& =\frac{\delta}{\sqrt{\delta^{2}-1}}\left\|P_{\varepsilon_{s}^{\prime}}^{F_{s}^{2}\left(H_{n}\right) \otimes \mathscr{K}^{\prime}} f(1 \otimes k)\right\| .
\end{aligned}
$$

Now, as in the proof of Corollary 3.2 we infer that $d_{2}\left(f, E^{\prime}\right)=\left\|\left.P_{\varepsilon^{\prime}} f\right|_{1 \otimes \mathscr{A}}\right\|_{2}$ and $d_{\infty}\left(f, E^{\prime}\right)=\left\|P_{\varepsilon^{\prime}} f\right\|$. Therefore (4.1) and (4.2) hold. The proof is complete.

If we drop the condition that \mathscr{K} is finite dimensional, then we can prove that $d_{\infty}\left(f, E^{\prime}\right)=\left\|P_{\delta^{\prime}} f\right\|$ and find g satisfying (4.1) and (4.5).

REFERENCES

[AMc1] J. Agler and J. E. McCarthy, Nevanlina-Pick kernels and localization, in "Operator Theoretical Methods, Timişoara, 1998," pp. 1-20, Theta Found., Bucharest, 2000.
[AMc2] J. Agler and J. E. McCarthy, Complete Nevanlina-Pick kernels, J. Funct. Anal. 175 (2000), 111-124.
[ArPo1] A. Arias and G. Popescu, Factorization and reflexivity on Fock spaces, Integral Equations Operator Theory 23 (1995), 268-286.
[ArPo2] A. Arias and G. Popescu, Noncommutative interpolation and Poisson transforms, Israel J. Math. 115 (2000), 205-234.
[Arv] W. B. Arveson, Subalgebras of C^{*}-algebras III: Multivariable operator theory, Acta Math. 181 (1998), 159-228.
[BV] J. A. Ball and V. Vinnikov, Realization and interpolation for multipliers on reproducing kernel Hilbert spaces, preprint.
[DKP] K. R. Davidson, E. Katsoulis, and D. Pitts, The structure of free semigroup algebras, J. Reine Angew. Math. 533 (2001), 99-125.
[DP1] K. R. Davidson and D. Pitts, Invariant subspaces and hyper-reflexivity for free semigroup algebras, Proc. London Math. Soc. 78 (1999), 401-430.
[DP2] K. R. Davidson and D. Pitts, Automorphisms and representations of the noncommutative analytic Toeplitz algebras, Math. Ann. 311 (1998), 275-303.
[DP3] K. R. Davidson and D. Pitts, Nevanlinna-Pick interpolation for noncommutative analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998), 321-337.
[FFr1] C. Foias and A. E. Frazho, The commutant lifting approach to interpolation problems, in "Operator Theory: Advances and Applications," Vol. 44, p. 632, Birkhäuser Verlag, Basel.
[FFr2] C. Foias and A. E. Frazho, Commutant lifting and simultaneous H^{∞} and L^{2} suboptimization, SIAM J. Math. Anal. 23 (1992), 984-994.
[FFrG] C. Foias, A. E. Frazho, and I. Gohberg, Central intertwining lifting, maximum entropy and their permanence, Integral Equations Operator Theory 18 (1994), 166-201.
[FFrGK] C. Foias, A. E. Frazho, I. Gohberg, and M. A. Kaashoek, Metrix constrained interpolation, commutant lifting and systems, in "Operator Theory: Advances and Applications," Vol. 100, p. 587, Birkhäuser Verlag, Basel.
[KLW] V. Kaftal, D. Larson, and G. Weiss, Quasitriangular subalgebras of semifinite von Neumann algebras are closed, J. Funct. Anal. 107 (1992), 387-401.
[Kr] D. Kribs, Factoring in non-commutative analytic Toeplitz algebras, J. Operator Theory 45 (2001), 175-193.
[N] R. Nevanlinna, Über beschränkte Funktionen, die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad. Sci. Fenn. Ser. A 13 (1919), 7-23.
[PPoS] V. I. Paulsen, G. Popescu, and D. Singh, On Bohr's inequality, Proc. London Math. Soc., to appear.
[Pi1] G. Pisier, Interpolation between H^{p} spaces and noncommutative generalizations. I., Pacific J. Math. 155 (1992), 341-368.
[Pi2] G. Pisier, Interpolation between H^{p} spaces and noncommutative generalizations. II., Rev. Mat. Iberoamericana 9 (1993), 281-291.
[Po1] G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), 523-536.
[Po2] G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory 22 (1989), 51-71.
[Po3] G. Popescu, Multi-analytic operators and some factorization theorems, Indiana Univ. Math. J. 38 (1989), 693-710.
[Po4] G. Popescu, Von Neumann inequality for $\left(B(H)^{n}\right)_{1}$, Math. Scand. 68 (1991), 292-304.
[Po5] G. Popescu, On intertwining dilations for sequences of noncommuting operators, J. Math. Anal. Appl. 167 (1992), 382-402.
[Po6] G. Popescu, Functional calculus for noncommuting operators, Michigan Math. J. 42 (1995), 345-356.
[Po7] G. Popescu, Multi-analytic operators on Fock spaces, Math. Ann. 303 (1995), 31-46.
[Po8] G. Popescu, Noncommutative disc algebras and their representations, Proc. Amer. Math. Soc. 124 (1996), 2137-2148.
[Po9] G. Popescu, Poisson transforms on some C^{*}-algebras generated by isometries, J. Funct. Anal. 161 (1999), 27-61.
[Po10] G. Popescu, Interpolation problems in several variables, J. Math Anal. Appl. 227 (1998), 227-250.
[Po11] G. Popescu, Spectral liftings in Banach algebras and interpolation in several variables, Trans. Amer. Math. Soc. 353 (2001), 2843-2857.
[Po12] G. Popescu, Commutant lifting, tensor algebras, and functional calculus, Proc. Edinburgh Math. Soc. 44 (2001), 389-406.
[S] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179-203.
[SzNF] B. Sz.-Nagy and C. Foiaş, "Harmonic Analysis on Operators on Hilbert Space," North-Holland, Amsterdam, 1970.

