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In this paper we obtain an explicit central intertwining lifting for row contrac-
tions. This is used to prove Kaftal–Larson–Weiss and Foiaş–Frazho H.−H2

suboptimization type results for the noncommutative (resp. commutative) analytic
Toeplitz algebra F.n (resp. W.

n ). The algebra F.n (resp. W.

n ) can be viewed as a
multivariable noncommutative (resp. commutative) analogue of the Hardy space
H.. Similar results are provided for F.n é̄ B(K,KŒ) and W.

n é̄ B(K,KŒ), where
B(K,KŒ) is the set of all bounded linear operators acting on Hilbert spaces.
New extensions of the Sarason, Carathéodory, and Nevanlinna–Pick type inter-
polation results are obtained for F.n é̄ B(K,KŒ) and some consequences to the
operator-valued analytic interpolation in the unit ball of Cn are considered. © 2002

Elsevier Science (USA)

In studying subalgebras of Cg-algebras, Kaftal et al. [KLW] discovered
a joint norm control Nehari type theorem. Stated for H., their theorem
says that if d > 1, f ¥H., and j ¥H. is an inner function, then there
exists h ¥H. such that

||f−jh||. [ dd.(f, jH.)

and

||f−jh||2 [
d

`d2−1
d2(f, jH.).
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This gives quantitative estimates on the trade-off between the infinity-norm
and the 2-norm approximation of f ¥H. with elements in the wg-closed
ideal jH. of H.. This result was generalized by Foiaş and Frazho in
[FFr2]. They obtained simultaneously a suboptimal solution to the opera-
torial two-sided Nehari optimization problem, with respect to the L. norm
and the L2 norm. The H.−H2 optimization has played an important role
in H. control theory (see [FFrGK] and its references). The goal of this
paper is to provide multivariable versions of the above-mentioned results.
We mention that noncommutative generalizations of the Kaftal–Larson–
Weiss result were considered by Pisier in [Pi1] and [Pi2].

The noncommutative analytic Toeplitz algebra F.n is the WOT-closed
algebra generated by the left creation operators S1, ..., Sn on the full Fock
space F2(Hn) on n generators and the identity (see Section 1). The algebra
F.n and its norm-closed version (the noncommutative disk algebra An)
were introduced by the author in [Po4] in connection with a noncommu-
tative von Neumann inequality and have been studied in several papers
[Po2, Po6, Po7, Po8, Po9, ArPo1] and recently in [DP1, DP2, ArPo2,
DP3, Po10, Kr, DKP, PPoS].

We established a strong connection between the algebra F.n and the
function theory on the open unit ball Bn of Cn through the noncommutative
von Neumann inequality [Po4] (see also [Po6, Po8, Po9]). In particular,
we proved that there is a completely contractive homomorphism

F: F.n QH.(Bn), [F(f)](l1, ..., ln)=f(l1, ..., ln),

for any f :=f(S1, ..., Sn) ¥ F
.

n and (l1, ..., ln) ¥ Bn. A characterization of
the analytic functions in the range of the map F was obtained in [ArPo2],
and independently in [DP3]. Moreover, it was proved that the quotient
F.n /ker F is an operator algebra which can be identified with W.

n :=
PF2s (Hn)F

.

n |F2s (Hn), the compression of F.n to the symmetric Fock space
F2s (Hn) … F

2(Hn). In [Po9, Arv, ArPo2, DP3, PPoS], a good case is made
that the appropriate multivariable commutative analogue of H. is the
algebra W.

n , which was also proved to be the wg-closed algebra generated
by Bi :=PF2s (Hn)Si |F2s (Hn), i=1, ..., n, and the identity. Moreover, Arveson
showed in [Arv] that W.

n can be seen as the algebra of all analytic mul-
tipliers on F2s (Hn).

Interpolation problems for the noncommutative analytic Toeplitz algebra
F.n were first considered in [Po7], where we obtained the Carathéodory
interpolation theorem in this setting. In [ArPo2], Arias and the author
extended Sarason’s result [S] and obtained a distance formula to an arbitrary
WOT-closed ideal in F.n as well as a Nevanlinna–Pick type interpolation
theorem (see [N]) for the noncommutative analytic Toeplitz algebra F.n .
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Using different methods, Davidson and Pitts proved these results indepen-
dently in [DP3]. Let us mention that interpolation problems on the ball Bn
were recently considered in [Po10, Po11, Po12, AMc1, AMc2, BV].

In Section 1, we consider some preliminary results concerning the struc-
ture of multianalytic operators on Fock spaces as well asW.

n é̄ B(K,KŒ),
the WOT-closed operator space generated by the spatial tensor product. In
Section 2, we extend a result of Foiaş and Frazho [FFr2] and obtain a
multivariable central intertwining lifting theorem (see Theorem 2.1), which
will play a crucial role in this paper.

The main result of this paper is the Kaftal–Larson–Weiss type theorem
[KLW], obtained in Section 3, for the noncommutative analytic Toeplitz
algebra F.n . More precisely, let f ¥ F.n and let J be a WOT-closed right
ideal of F.n . Define

d.(f, J) :=inf{||f−g||. : g ¥ J}

and

d2(f, J) :=inf{||f−g||2 : g ¥ J}.

We show that if d > 1, then there exists j ¥ J satisfying

||f−j||. [ dd.(f, J) and ||f−j||2 [
d

`d2−1
d2(f, J).

Actually, we obtain a more general result for the tensor product F.n é̄
B(K,KŒ) (see Theorem 3.5). This leads to new extensions of the Sarason,
Carathéodory, and Nevanlinna–Pick type interpolation theorems for F.n é̄
B(K,KŒ) and some consequences to the operator-valued analytic inter-
polation in the unit ball of Cn. The multivariable central intertwining lifting
theorem is also used to obtain a Foiaş–Frazho suboptimization type result
[FFr2] in our setting (see Theorem 3.7). Finally, in Section 4, we provide a
multivariable commutative version of the Kaftal–Larson–Weiss theorem.

We expect the F.n −F
2(Hn) (resp. W.

n −F
2
s (Hn)) optimization to play a

similar role in multivariable control theory as the H.−H2 optimization
has played in H. control theory. The central intertwining lifting for row
contractions will be used in a sequel to this paper to establish a maximal
principle for the noncommutative commutant lifting theorem. This prin-
ciple will show that the central intertwining lifting is a maximal entropy
solution for the noncommutative commutant lifting theorem. This will lead
to a permanence principle (as in the case n=1, [FFrG]) with applications to
the Charathéodory and Nevanlinna–Pick interpolation problems in several
variables.
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1. MULTIANALYTIC OPERATORS ON FOCK SPACES

Let us consider the full Fock space on n generators

F2(Hn) :=C1 À Â
m \ 1
Hém
n ,

where Hn is an n-dimensional complex Hilbert space with orthonormal
basis {e1, e2, ..., en} if n is finite and {e1, e2, ...} if n=.. For each i=
1, 2, ..., let Si be the left creation operator with ei, i.e., Sit :=ei é t,
t ¥ F2(Hn). We shall denote by P the set of all p ¥ F2(Hn) which are sums
of a finite number of tensor monomials; i.e., p=a0+; ai1 · · · ikei1 é · · · é eik ,
where a0, ai1 · · · ik ¥ C. The set P may be viewed as the algebra of polyno-
mials in n noncommuting indeterminates, with p é q, p, q ¥P, as multipli-
cation. Define F.n as the set of all g ¥ F2(Hn) such that

||g||. :=sup{||g é p||2 : p ¥P, ||p||2 [ 1} <.,

where || · ||2 :=|| · ||F2(Hn). We denote by An the closure of P in (F.n , || · ||.).
The Banach algebra F.n (resp. An) can be viewed as a noncommutative
analogue of the Hardy space H. (resp. disk algebra); when n=1 they
coincide. It follows from [Po6] that the noncommutative analytic Toeplitz
algebra F.n can be identified with the WOT-closed algebra generated by the
left creation operators S1, ..., Sn and the identity.

Let F+n be the unital free semigroup on n generators g1, ..., gn, and let e
be its neutral element. For any word s :=gi1 · · · gik ¥ F+n , we define its
length |s| :=k, and |e|=0. If Ti ¥ B(H), i=1, ..., n, we set Ts :=Ti1 · · ·Tik
and Te :=IH. Similarly, we denote es :=ei1 é · · · é eik and es=1 if s=e.
Notice that {es}s ¥ F

+
n

is the canonical basis of F2(Hn).
Let K,KŒ be Hilbert spaces. As in [Po2], we say that a bounded linear

operator A ¥ B(F2(Hn) éK, F2(Hn) éKŒ) is multianalytic if A(Si é IK)=
(Si é IKŒ) A for any i=1, ..., n. Notice that A is uniquely determined by
the operator h:KQ F2(Hn) éKŒ, hk :=A(1 é k), k ¥K, which is called
the symbol of A, and we denote A=Ah. Moreover, A is uniquely deter-
mined by the coefficients of h, i.e., the operators A(a) ¥ B(K,KŒ) given by

OA(a)k, kŒP :=Oh(k), ea é kŒP, k ¥K, kŒ ¥KŒ, a ¥ F+n .

Notice that ; a ¥ F
+
n
Ag
(a)A(a) [ ||A|| IK. We can associate with A a unique

formal Fourier expansion

A ’ C
a ¥ F

+
n

UgSaU é A(a),(1.1)
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where U is the (flipping) unitary operator on F2(Hn) mapping ei1 é ei2 é · · ·
é eik into eik é · · · é ei2 é ei1 . Since A acts like its Fourier representation
on ‘‘polynomials,’’ we will identify them for simplicity. As in [Po6], using
the noncommutative von Neumann inequality, one can show that if 0 <
r < 1, then

A=SOT− lim
rQ 1

C
a ¥ F

+
n

r |a|UgSaU é A(a),

where, for each r ¥ (0, 1), the series converges in the uniform norm. The
multianalytic operator Ah (resp. its symbol h) is called inner if Ah is an
isometry. According to [Po10], when K=KŒ the algebra of all multi-
analytic operators acting on F2(Hn) éK coincides with R.n é̄ B(K), the
WOT-closed algebra generated by the spatial tensor product of R.n :=
UgF.n U and B(K). A similar result holds in our more general setting.
Since the proof is similar to that of Theorem 1.3 from [Po12], we shall
omit it. In the following, we use the notation Ri :=UgSiU for the right
creation operator with ei.

Theorem 1.1. The set of multianalytic operators in B(F2(Hn) éK,
F2(Hn) éKŒ) coincides withR.n é̄ B(K,KŒ) and is equal to theWOT-closed
operator space generated by Ra é Z, a ¥ F+n , Z ¥ B(K,KŒ).

Let J be a wg-closed, two-sided ideal of F.n and define NJ :=J(1) + , the
orthogonal complement of the image of J in F2(Hn). Let W(B1, ..., Bn) be
the wg-closure of the algebra generated by Bi :=PNJSi |NJ for i=1, ..., n,
and the identity. Since W(B1, ..., Bn) has the A1 property (see [ArPo2])
the wg and WOT topologies agree on this algebra. Similarly to Proposi-
tion 4.2 from [ArPo2], one can prove the following result. The proof is
based on the noncommutative commutant lifting theorem (see [Po1]),
Theorem 1.1, and the observation that the operator space PNJ éKŒ

[F.n é̄ B(K,KŒ)]|NJ éK coincides with the set of all the operators
intertwining PNJU

gSiU|NJ é IK and PNJU
gSiU|NJ é IKŒ, i=1, ..., n. We

shall omit it.

Theorem 1.2. Let J be a WOT-closed, two-sided ideal of F.n . Then

W(B1, ..., Bn) é̄ B(K,KŒ)=PNJ éKŒ[F
.

n é̄ B(K,KŒ)]|NJ éK.

Moreover, W(B1, ..., Bn) é̄ B(K,KŒ) is the WOT-closed operator space
generated by Ba éW, a ¥ F+n , W ¥ B(K,KŒ).

Let us mention that multianalytic operators were considered in [Po2] in
connection with the characteristic function associated to a row contraction
and were studied in [Po2, Po3, Po5, Po7].
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2. CENTRAL INTERTWINING LIFTING FOR
ROW CONTRACTIONS

Let us recall from [Po1, Po2, Po5] a few results concerning the non-
commutative dilation theory for n-tuples of operators (see [SzNF] for the
classical case). A sequence of operators T :=[T1, ..., Tn], Ti ¥ B(H), i=
1, ..., n, is called contractive (or row contractive) if T1T

g
1+·· ·+TnT

g
n [ IH.

We say that a sequence of isometries V :=[V1, ..., Vn] on a Hilbert space
K `H is a minimal isometric dilation (m.i.d.) of T if the following
properties are satisfied:

(i) V1V
g
1+·· ·+VnV

g
n [ IK;

(ii) Vg
i |H=T

g
i , i=1, ..., n;

(iii) K=Ja ¥ F
+
n
VaH.

If V satisfies only the condition (i) and PHVi=TiPH, i=1, ..., n, then V is
called an isometric lifting of T. The minimal isometric dilation of T is an
isometric lifting and is uniquely determined up to an isomorphism [Po1].
Let us consider a realization of it on Fock spaces. As in [Po1], let us
define DT:Án

j=1 HQÁn
j=1 H by DT :=(IÁnj=1 H−T

gT)1/2, and set D :=
DT(Án

j=1 H). Let Di:HQ F2(Hn) éD be defined by

Dih :=1 é DT(0, ..., 0z
i−1 times

, h, 0, ..., 0) À 0 À 0 · · · .

Consider the Hilbert spaceK :=HÀ [F2(Hn)éD]and defineVi:KQKby

Vi(h À (t é d)) :=Tih À [Dih+(Si é ID)(t é d)](2.1)

for any h ¥H, t ¥ F2(Hn), d ¥D. Notice that

Vi=5
Ti 0
Di Si é ID

6

with respect to the decomposition K=H À [F2(Hn) éD]. It was proved
in [Po1] that V :=[V1, ..., Vn] is the minimal isometric dilation of T.

Let Ti ¥ B(H), T
−

i ¥ B(HŒ), i=1, ..., n, be operators such that T :=
[T1, ..., Tn] andTŒ=[T −1, ..., T

−

n] are row contractions. LetV :=[V1, ..., Vn]
be the minimal isometric dilation of T on a Hilbert space K `H, and
VŒ :=[V −1, ..., V

−

n] be the minimal isometric dilation of TŒ on a Hilbert
space KŒ `HŒ. Let A ¥ B(H,HŒ) be a contraction (||A|| [ 1) satisfying
ATi=T

−

iA, i=1, ..., n. A contractive intertwining lifting of A is a contrac-
tion B ¥ B(K,KŒ) satisfying BVi=V

−

iB, i=1, ..., n, and PHŒB=APH.
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The noncommutative commutant lifting theorem [Po1] (see also [Po5])
states that there always exists a contractive intertwining lifting B of A with
||B||=||A|| (see [SzNF] for the classical case).

Following the classical result (see [FFr1]), we proved in [Po5] that all
the contractive intertwining dilations of A may be canonically parametrized
by the closed unit ball of all multianalytic operators R from F2(Hn) éR1
to F2(Hn) éR2 for some suitable Hilbert spaces R1, R2. The dilation
corresponding to the center of the ball (R=0) is called the central dilation
and will play an important role in our investigation.

Let us remark that if W :=[W1, ..., Wn] is an isometric lifting of T on
the Hilbert space G `H, then W admits a reducing decomposition
Wi=Vi À Ui, i=1, ..., n, on G=K ÀK0, where V :=[V1, ..., Vn] is the
m.i.d. of T and K=Ja ¥ F

+
n
WaH. To see this, notice that K is invariant

under each Wi. Using the lifting property, we infer that Tg
i=W

g
i |H. There-

fore K is also invariant underWg
i , i=1, ..., n, and Vi=Wi |H. According to

[Po1], V is the m.i.d. of T. As in the classical case [FFr1], using this
decomposition, one can extend the noncommutative commutant lifting
theorem [Po5] from minimal isometric dilations to isometric liftings of T
and TŒ.

For any contraction X ¥ B(K,KŒ), let us define the defect operator
DX by setting DX :=(IK−XgX)1/2 and its defect space DX :=DXK. In
what follows we obtain an explicit central intertwining lifting for row
contractions.

Theorem 2.1. Let A ¥ B(H,HŒ) be a strict contraction (||A|| < 1)
satisfying ATi=T

−

iA, i=1, ..., n, where Ti ¥ B(H), T
−

i ¥ B(HŒ), i=1, ..., n,
T :=[T1, ..., Tn] is an isometry, andTŒ :=[T

−

1, ..., T
−

n] is a row contraction.
Let L :=Hı [T1H À · · · À TnH] be the wandering subspace determined
byT. Then there is a contractive intertwining lifting Bc of A satisfying

||Bca|| [
||Aa||

`1− ||A||2
for any a ¥L.(2.2)

In particular, ifL is finite dimensional, then

||Bc |L ||2 [
||A|L ||2
`1− ||A||2

,(2.3)

where || · ||2 is the Hilbert–Schmidt norm.

Proof. Since any isometric lifting WŒ :=[W −

1, ..., W
−

n] of TŒ admits a
decomposition W −

i=V
−

i À U −i, i=1, ..., n, where VŒ :=[V −1, ..., V
−

n] is the
minimal isometric dilation of TŒ, we can assume without loss of generality
that WŒ=VŒ. Let VŒ :=[V −1, ..., V

−

n] be the minimal isometric dilation of
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TŒ :=[T −1, ..., T
−

n] on the Hilbert space KŒ :=HŒ À [F2(Hn) éDŒ] where
DŒ :=DTŒ(Án

j=1HŒ). As in (2.1) we have

V −i[h À (t é d)] :=T −ih À [D −ih+(Si é IDŒ)(t é d)](2.4)

for any h ¥HŒ, t ¥ F2(Hn), and d ¥DŒ. Define the following subspaces:

M :=I
n

i=1
DATiH, and

N :=3DTŒ
1Â
n

i=1
Ahi 2 À 1Â

n

i=1
DAhi 2 : hi ¥H4

−

.

Notice that M ıDA ıH and N ıDŒ À (Án
i=1 DA). A straightforward

computation shows that the operatorW:MQN defined by

W 1 C
n

i=1
DATihi 2 :=DTŒ

1Â
n

i=1
Ahi 2 À 1Â

n

i=1
DAhi 2(2.5)

for any hi ¥H, i=1, ..., n, is unitary. Let us consider the orthogonal projec-
tions PD−:DŒÀ (Án

j=1 DA)QDŒ, and Pi:DŒÀ (Án
j=1 DA)QDA defined by

Pi[dÀ (Án
j=1 dj)] :=di.

Define Bc:HQHŒ À [F2(Hn) éDŒ] by setting

Bch :=Ah À C
s ¥ F

+
n

es é (PD −WPM) EsDAh, h ¥H,(2.6)

where PM is the orthogonal projection on M, Ee :=IDA , and

Es :=(PikWPM)(Pik−1WPM) · · · (Pi1WPM) for s :=gi1 · · · gik ¥ F+n .

Using the definition ofW in (2.5), we infer that

(PjWPM) DATih=dijDAh for any i, j ¥ {1, 2, ..., n}.(2.7)

According to (2.6) and (2.7), we deduce that

BcTih=ATih À 51 é DT
−(0, ..., 0z
i−1 times

, Ah, 0, ..., 0)

+ C
s ¥ F

+
n , s ] e

es é (PDŒWPM) EsDATih6

=ATih À 51 é DTŒ(0, ..., 0z
i−1 times

, Ah, 0, ..., 0)

+ C
c ¥ F

+
n

egic é (PD −WPM) EcDAh6 .
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On the other hand, using (2.4) and (2.6), we have

V −iBch=T
−

iAh À 51 é DT
−(0, ..., 0z
i−1 times

, Ah, 0, ..., 0)

+(Si é ID −) 1 C
s ¥ F

+
n

es é (PD −WPM) EsDAh26 .

Since ATi=T
−

iA for any i=1, 2, ..., n, it is clear that BcTi=V
−

iBc for any
i=1, 2, ..., n. Now, we prove that

||Bch||2 [ ||Ah||2+||PMDAh||2 for any h ¥H.(2.8)

Due to (2.6) and the definition of Es, we have:

||Bch||2=||Ah||2+ C
s ¥ F

+
n

||(PD−WPM) EsDAh||2

=||Ah||2+ C
s ¥ F

+
n

1 ||WPMEsDAh||2− C
n

i=1
||(PiWPM) EsDAh||22

[ ||Ah||2+ C
s ¥ F

+
n

1 ||EsPMDAh||2− C
n

i=1
||EsgiDAh||

22

=||Ah||2+ lim
mQ.

C
s ¥ F

+
n , |s| [ m

1 ||EsPMDAh||2− C
n

i=1
||EsgiPMDAh||

22

=||Ah||2+||PMDAh||2− lim
mQ.

C
s ¥ F

+
n , |s|=m+1

||EsPMDAh||2

[ ||Ah||2+||PMDAh||2.

Therefore (2.8) is proved. Now, it is clear that Bc is a contractive intertwining
lifting of A, i.e., ||Bc || [ 1, BcTi=V

−

iBc, i=1, ..., n, and PHBc=A. Define
X :=DA[T1, T2, ..., Tn]. Since T1, T2, ..., Tn are isometries with orthogonal
ranges, we have

XgX=[Tg
i (I−A

gA) Tj]n×n=[dijIH−T
g
i A

gATj]n×n(2.9)

=D2[AT1, ..., ATn].
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Since [AT1, ..., ATn] is a strict contraction, D[AT1, ..., ATn] is invertible. Hence
XgX is invertible on Án

i=1 H. On the other hand, for any hi ¥H, we have

||DA(T1h1+·· ·+Tnhn)||2 \
1

||D−1A ||
2 ||T1h1+·· ·+Tnhn ||

2=
1

||D−1A ||
2
>Â
n

i=1
hi>

2

.

This shows that the range of X is closed and equal to M. Define P :=
X(XgX)−1 Xg and notice thatP2=P, P=Pg, and rangeP=M. Using (2.9),
we infer that

PM=DA[T1, ..., Tn] D
−2
[AT1, ..., ATn]
rT

g
1

x

Tg
n

s DA.(2.10)

Notice that

D2[AT1, ..., ATn]=[dijIH−T
g
i A

gATj]n×n=[dijIH−AgT −gi T
−

jA]n×n

=[dij(IH−AgA)]n×n+1Â
n

i=1
Ag2 D2T − 1Â

n

i=1
A2

\Â
n

i=1
D2A.

Hence

D−2[AT1, ..., ATn] [Â
n

i=1
D−2A .(2.11)

According to [Po1], L=4n
i=1 ker Tg

i . Using (2.8), (2.10), and (2.11), we
deduce that, for any a ¥L,

||Bca||2 [ ||Aa||2+7D−2[AT1, ..., ATn] r
Tg
1

x

Tg
n

s D2Aa, r
Tg
1

x

Tg
n

s D2Aa8

=||Aa||2+7D−2[AT1, ..., ATn] r
Tg
1

x

Tg
n

s AgAa, rT
g
1

x

Tg
n

s AgAa8

[ ||Aa||2+71Ân
i=1
D−2A 2 r

Tg
1

x

Tg
n

s AgAa, rT
g
1

x

Tg
n

s AgAa8 .
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Since Án
i=1 D

−2
A [ (1/(1− ||A||2)) IÁni=1 H, we infer that

||Bca||2 [ ||Aa||2+
1

1−||A||2
>rT

g
1

x

Tg
n

s AgAa>
2

[ ||Aa||2+
||A||2 ||Aa||2

1− ||A||2

=
||Aa||2

1− ||A||2
.

Therefore, relation (2.2) holds. Assume now that L is finite dimensional
and let {a1, ..., ak} be an orthonormal basis for L. Using (2.2), we have

||Bc |L ||
2
2=C

k

i=1
||Bcai ||2 [ C

k

i=1

||Aai ||2

1− ||A||2
=
||A|L ||

2
2

1− ||A||2
.

This completes the proof. L

Some consequences of this theorem will be presented in the next sections.

3. KAFTAL–LARSON–WEISS THEOREM ON FOCK SPACES
AND INTERPOLATION

In this section we use our central intertwining lifting theorem for row
contractions to obtain Kaftal–Larson–Weiss and Foiaş–Frazho type results
for the noncommutative analytic Toeplitz algebra F.n , as well as for
F.n é̄ B(K,KŒ), the WOT-closed operator space generated by the spatial
tensor product.

Theorem 3.1. Let K,KŒ be Hilbert spaces and let NŒ ı F2(Hn) éKŒ
be a subspace with the property thatNŒ is invariant under each Rg

1 é IKŒ, ...,
Rg
n é IKŒ. If d > 1 and k ¥ F.n é̄ B(K,KŒ), then there exists j ¥ F.n é̄
B(K,KŒ) with PNŒj=0 and such that

||k−j|| [ d ||PNŒk||,(3.1)

and

||(k−j)(1 é k)|| [
d

`d2−1
||PNŒk(1 é k)||,(3.2)
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for any k ¥K. IfK is finite dimensional, then

||(k−j)|1 éK ||2 [
d

`d2−1
||PNŒk|1 éK ||2,(3.3)

where || · ||2 is the Hilbert–Schmidt norm.

Proof. If PNŒk=0, then we take j=k, and the inequalities (3.1), (3.2),
and (3.3) are satisfied. Now, assume that PNŒk ] 0. Let us define
A ¥ B(F2(Hn) éK, (U é IKŒ)NŒ) by setting

A :=P(U é IKŒ)NŒ(U
g é IKŒ) k1(U é IK),(3.4)

where

k1 :=d−1 ||PNŒk||−1 k.(3.5)

Since (Ug é IKŒ) PNŒ(U é IKŒ)=P(U é IKŒ)NŒ, it is clear that ||A||=d−1 < 1.
According to Theorem 1.1, (Ug é IKŒ) k1(U é IK) intertwines Si é IK with
Si é IKŒ for any i=1, ..., n. Since (U é IKŒ)NŒ is invariant under each
Sg
i é IKŒ, ..., Sg

n é IKŒ, we infer that

A(Si é IK)=T −iA,

where T −i :=P(U é IKŒ)NŒ(Si é IKŒ)|(U é IKŒ)NŒ for any i=1, ..., n. Notice that
[S1 é IKŒ, ..., Sn é IKŒ] is an isometric lifting of [T −1, ..., T

−

n]. According to
Theorem 2.1, there exists Bc ¥ B(F2(Hn) éK, F2(Hn) éKŒ), a contractive
intertwining lifting of A, satisfying the following properties:

(i) Bc(Si é IK)=(Si é IKŒ) Bc, for any i=1, ..., n;
(ii) ||Bc(1 é k)|| [ 1

`1− ||A||
2 ||A(1 é k)|| for any k ¥K;

(iii) P(U é IKŒ)NŒBc=A.

According to (i) and Theorem 1.1, there exists F ¥ F.n é̄ B(K,KŒ) such
that Bc=(U é IKŒ) F(U é IK). Using (iii) and (3.4), we infer that

P(U é IKŒ)NŒ(U
g é IKŒ)(F−k1)(U é IK)=0.(3.6)

which is equivalent to

PNŒ(F−k1)=0.(3.7)
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Hence F−k1=−g for some g ¥ F.n é̄ B(K,KŒ) with PNŒ g=0. Notice
that

||k1−g||=||F||=||Bc || [ 1.(3.8)

Taking into account (3.5), the relation (3.8) becomes

||k−j|| [ d ||PNŒk||,

where j :=d ||PNŒk|| g. Hence, we deduce relation (3.1) with j ¥ F.n é̄
B(K,KŒ) satisfying PNŒj=0. On the other hand, according to (ii) we
have, for any k ¥K,

||[k1−g](1 é k)||=||F(1 é k)||=||Bc(1 é k)||(3.9)

[
1

`1− ||A||2
||A(1 é k)||.

From the definition of A, we deduce that

||A(1 é k)||=||P(U é IKŒ)NŒ(U
g é IKŒ) k1(U é IK)(1 é k)||

=||PNŒk1(1 é k)||.

Using (3.9), we infer that

||(k1−g)(1 é k)|| [
d

`d2−1
||PNŒk1(1 é k)||.

This inequality together with (3.5) implies

||(k−j)(1 é k)|| [
d

`d2−1
||PNŒk(1 é k)||, k ¥K,(3.10)

which is equivalent to (3.2). Now it is easy to see that (3.3) is a consequence
of (3.10). This completes the proof. L

A first consequence of Theorem 3.1 is the following Sarason type result
for F.n é̄ B(K,KŒ).

Corollary 3.2. LetK,KŒ be Hilbert spaces and letNŒ ı F2(Hn) éKŒ
be a subspace with the property thatNŒ is invariant under each Rg

1 é IKŒ, ...,
Rg
n é IKŒ. If k ¥ F.n é̄ B(K,KŒ), then

inf{||k+j|| : j ¥ F.n é̄ B(K,KŒ), PNŒj=0}=||PNŒk||.(3.11)
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Moreover, there exists j0 ¥ F
.

n é̄ B(K,KŒ) with PNŒj0=0 such that

||k+j0 ||=||PNŒk||.

IfK is finite dimensional, then

inf{||(k+j)|1 éK ||2 : j ¥ F
.

n é̄ B(K,KŒ), PNŒj=0}=||PNŒk|1 éK ||2,
(3.12)

where || · ||2 is the Hilbert–Schmidt norm.

Proof. Using (3.1) of Theorem 3.1 as dQ 1, it is easy to see that

inf{||k+j|| : j ¥ F.n é̄ B(K,KŒ), PNŒj=0} [ ||PNŒk||.(3.13)

On the other hand, for any f ¥ F.n é̄ B(K,KŒ), with PNŒf=0, we have

||k+f|| \ ||PNŒ(k+f)||=||PNŒk||.(3.14)

Combining (3.13) with (3.14), we obtain (3.11). Now let us apply the non-
commutative commutant lifting theorem to the operator A given by (3.4)
and satisfying A(Si é IK)=T −iA, i=1, ..., n. We find a multianalytic
operator B ¥ B(F2(Hn) éK, F2(Hn) éKŒ) such that ||A||=||B|| and
P(U é IKŒ)NŒB=A. According to Theorem 1.1, B=(Ué IKŒ) f(U é IK) for
some f ¥ F.n é̄ B(K,KŒ). It is clear that PNŒ(f−k)=0 and ||f||=
||PNŒk||. Setting k0 :=f−k, the first part of the theorem follows.

If K is finite dimensional, then relation (3.12) can be proved similarly if
one uses (3.3) of Theorem 3.1 as dQ.. This completes the proof. L

As mentioned in the Introduction, if F ¥ F.n é̄ B(K,KŒ), then lW F(l) is
a B(K,KŒ)-valued bounded analytic function on Bn, the open unit ball of Cn.
For each j=1, ..., k, let lj :=(lj1, ..., ljn) ¥ Bn and, for a :=gj1 gj2 , ..., gjm in
F+n , let lja :=ljj1ljj2 , ..., ljjm and le :=1. Define zlj ¥ F

2(Hn), j=1, ..., k, by

zli := C
a ¥ F

+
n

l̄iaea,

and notice that Ozli , zljP=1/(1−Olj, liP).For any element f :=; a ¥ F
+
n
Sa é

A(a) in F.n é̄ B(K,KŒ), we have

fg(zlj é kŒ)=zlj é f(lj)
g kŒ(3.15)
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for any kŒ ¥KŒ, b ¥ F+n , and j=1, ..., k. Indeed, it is enough to observe
that

Of(eb é k), zlj é kŒP=Oeb é k, zlj é f(lj)
g kŒP,

for any k ¥K.
Another consequence of Theorem 3.1 is the following interpolation

problem of Nevanlinna–Pick type for F.n é̄ B(K,KŒ), the noncommuta-
tive analytic Toeplitz algebra, which was obtained in [ArPo2, DP3, Po10],
when K=KŒ. We only sketch the proof.

Corollary 3.3. Let l1, ..., lk be k distinct points in Bn and let Bj ¥
B(K,KŒ), j=1, ..., k, whereK,KŒ are Hilbert spaces. Then there exists F
in F.n é̄ B(K,KŒ), such that ||F|| [ 1 and F(lj)=Bj, j=1, 2, ..., k, if and
only if the operator matrix

5 IKŒ−BiBg
j

1−Oli, ljP
6
i, j=1, 2, ..., k

(3.16)

is positive semidefinite.

Proof. LetNŒ :=span{zlj : j=1, ..., k} éKŒ and notice that if f ¥ F.n é̄
B(K,KŒ), then PNŒf=0 if and only if f(lj)=0 for any j=1, ..., k.
Applying Corollary 3.2 to an element k ¥ F.n é̄ B(K,KŒ) with k(lj)
=Bj, j=1, ..., k, we find F in F.n é̄ B(K,KŒ), such that ||F|| [ 1 and
F(lj)=Bj, j=1, 2, ..., k, if and only if ||PNŒk|| [ 1. Using (3.15), one can
show that the latter inequality is equivalent to (3.16). L

Notice that if (3.16) holds then there exists F in H.(Bn) é̄ B(K,KŒ)
such that ||F|| [ 1 and F(lj)=Bj, j=1, 2, ..., k.

Let Pm be the set of all polynomials in P of degree [ m. Using Corollary
3.2 in the particular case when NŒ :=Pm éKŒ and k :=p, we obtain the
following extension of the Charathéodory interpolation problem to F.n é̄
B(K,KŒ).

Corollary 3.4. Letp :=; |a| [ m Sa é B(a) ¥ F.n é̄B(K,KŒ).Thenthere
exists f=; a ¥ F

+
n
Sa éW(a) ¥ F.n é̄B(K,KŒ) with ||f|| [ 1 and W(a)=B(a) if

|a| [ m if and only if

||PPm éKŒ p|Pm éK || [ 1.

In what follows we obtain a multivariable noncommutative analogue of
the Kaftal–Larson–Weiss theorem [KLW] on Fock spaces. If f ¥ F.n é̄
B(K,KŒ), then ||f|| denotes the uniform norm of f and, if K is finite
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dimensional, ||f||2 stands for the Hilbert–Schmidt norm of f|1 éK. Let d.
and d2 be the corresponding metrics on F.n é̄ B(K,KŒ). Let us remark
that if f has the Fourier representation ; a ¥ F

+
n
Sa éX(a), then ||f||2=

; a ¥ F
+
n

trace[Xg
(a)X(a)].

Theorem 3.5. Let J be a WOT-closed right ideal in F.n , let K,KŒ be
Hilbert spaces, and let d > 1. If k ¥ F.n é̄ B(K,KŒ) and K is finite dimen-
sional, then there exists j ¥ J é̄ B(K,KŒ) such that

||k−j|| [ dd.[k, J é̄ B(K,KŒ)](3.17)

and

||k−j||2 [
d

`d2−1
d2(k, J é̄ B(K,KŒ)).(3.18)

Proof. Denote NJ :=J(1)+ . Since J is a WOT-closed right ideal in F.n ,
UNJ is invariant to each Sg

1 , ..., S
g
n , so we can apply Theorem 3.1, when

NŒ :=NJ éKŒ. Therefore, there exists j ¥ F.n é̄ B(K,KŒ) with

PNJ éKŒj=0,(3.19)

such that

||k−j|| [ d ||PNJ éKŒk||,(3.20)

and (3.3) holds. According to Corollary 3.2, we have

||PNJ éKŒk||=inf{||k+j|| : j ¥ F.n é̄ B(K,KŒ), PNJ éKŒj=0}.

To complete the proof of (3.17), it remains to show that if f ¥ F.n é̄
B(K,KŒ), then PNJ éKŒf=0 if and only if f ¥ J é̄ B(K,KŒ). One
implication is trivial. Let us assume that

PNJ éKŒf=0.(3.21)

Since f can be identified with an operator matrix [fij] ¥ B(F2(Hn) éK,
F2(Hn) éKŒ) with entries in F.n , the relation (3.21) is equivalent to
PNJ éKŒfij=0. Now assume that fij ¨ J and let +J be the preannihilator of
J in the predual of F.n . Since ( +J)g=F.n /J, there exists F ¥ +J such that

F(fij) ] 0.(3.22)
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On the other hand, since F.n has the A1 property, similarly to Proposition
1.1 of [ArPo2], one can find k1, k2 ¥ F2(Hn) with k2 ¥NJ such that

F(fij)=Ofk1, k2P=OPNJ fk1, k2P=0,

which contradicts (3.22). Therefore fij ¥ J and f ¥ J é̄ B(K,KŒ). Now,
using (3.3) and Corollary 3.2, we infer (3.18). The proof is complete. L

Notice that infd > 1 max{d, d/`d2−1}=`2 . If J is a WOT-closed right
ideal in F.n and f ¥ F.n , then, according to Theorem 3.5, there exists j ¥ J
such that

||f−j|| [`2 d.(f, J) and ||f−j||2 [`2 d2(f, J).

This is a Pisier type result (see [Pi2]). From the proof of Theorem 3.5 we
can also deduce the following result.

Corollary 3.6. Let J be a WOT-closed right ideal in F.n and let
K,KŒ be Hilbert spaces. Then the map

F: F.n é̄ B(K,KŒ)/J é̄ B(K,KŒ)Q B(NJ) é̄ B(K,KŒ)

defined by

F[j+J é̄ B(K,KŒ)]=PNJ éKŒj

is an isometry. Moreover, there is k0 ¥ J é̄ B(K,KŒ) such that

||j+k0 ||=||PNJ éKŒj||.

Let J be a wg-closed, two-sided ideal of F.n and W(B1, ..., Bn) be the
wg-closure of of the algebra generated by Bi :=PNJSi |NJ for, i=1, ..., n,
and the identity. Using Theorem 1.2 and Corollary 3.6, we infer that
F.n é̄ B(K,KŒ)/J é̄ B(K,KŒ) is canonically isomorphic to W(B1, ..., Bn).

In what follows we obtain a noncommutative analogue of the Foiaş–
Frazho suboptimization theorem [FFr2] for F. é̄B(K,KŒ). We need to
recall a Beurling type characterization of the invariant subspaces under
each Si é IK, i=1, ..., n, which was obtained in [Po2]. The theorem states
that a subspace M ı F2(Hn) éK is invariant under each Si é IK, i=1, ...,
n, if and only if there exists a Hilbert space G and an inner multianalytic
operator F ¥ B(F2(Hn) é G, F2(Hn) éK) such that M=F(F2(Hn) é G).
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Let Y ¥ F.n é̄ B(K,KŒ) and let G ¥ F.n é̄ B(G,KŒ) be inner, i.e., an
isometry. Define

d.(Y) :=inf{||Y+GF|| : F ¥ F.n é̄ B(K, G)}

and, if K is finite dimensional, then

d2(Y) :=inf{||Y+GF||2 : F ¥ F.n é̄ B(K, G)},

where ||Y+GF||2 is the Hilbert–Schmidt norm of (Y+GF)|1 éK.

Theorem 3.7. Let Y ¥ F.n é̄ B(K,KŒ) and let G ¥ F.n é̄ B(G,KŒ) be
inner. Then

d.(Y)=||PMY|| and d2(Y)=||PMY||2,

whereM :=[F2(Hn) éKŒ]ı G[F2(Hn) é G]. Moreover, there exists F0 ¥
F.n é̄ B(K, G) such that

d.(Y)=||Y+GF0 ||.

If in addition K is finite dimensional and d > 1, then there exists F ¥

F.n é̄ B(K, G) satisfying

||Y+GF|| [ dd.(Y)(3.23)

and

||Y+GF||2 [
d

`d2−1
d2(Y).(3.24)

Proof. According to Theorem 2.2 of [Po2], a subspace NŒ ı F2(Hn)
éKŒ has the property that MŒ :=(U é IKŒ)NŒ is invariant under Sg

i é
IKŒ, i=1, ..., n, if and only if there exists an inner multianalytic operator
X ¥ B(F2(Hn) é G, F2(Hn) éKŒ) for some Hilbert space G, such that
MŒ +=X[F2(Hn) é G]. Using Theorem 1.1, we find an inner operator
G ¥ F.n é̄ B(G,KŒ) such that

NŒ=[F2(Hn) éKŒ]ı G[F2(Hn) é G].(3.25)

Now let us prove that if L ¥ F.n é̄ B(K,KŒ), then

PNŒL=0(3.26)
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if and only if there exists H ¥ F.n é̄ B(K, G) such that

L=GH.(3.27)

It is clear that (3.27) implies (3.26). Conversely, assume (3.26) holds. This
implies

L[F2(Hn) éK] ı G[F2(Hn) é G].

Hence, for each k ¥K, there exists a unique fk ¥ F2(Hn) é G such that

L(1 é k)=Gfk.(3.28)

Define the linear operator Q: 1 éKQ F2(Hn) é G by Q(1 é k) :=fk. Due
to (3.28) and since G is an isometry we infer that Q is a bounded operator.
Notice that for each k ¥K, a ¥ F+n we have

(Ug é IKŒ) L(U é IK)(ea é k)

=(Sa é IKŒ)(Ug é IKŒ) GQ(1 é k)

=(Ug é IKŒ) G(U é IG)(Sa é IG)(Ug é IG) Q(1 é k).

Hence we infer that

C
a ¥ F

+
n

(Sa é IG)(Ug é IG) Q(1 é k)

=(Ug é IG) GgL(U é IK)1 C
a ¥ F

+
n

ea é ka 2

for any ;a ¥ F
+
n
ea é ka ¥ F2(Hn)éK. Therefore, M: F2(Hn)éKQ F2(Hn)

é G defined by

M 1 C
a ¥ F

+
n

ea é ka 2 := C
a ¥ F

+
n

(Sa é IG)(Ug é IG) Q(U é IK)(1 é k)

is a multianalytic operator. According to Theorem 1.1, we can see that the
operator H :=(Ug é IG) GgM(U é IK) is in F.n é̄ B(G,K). On the other
hand, it is clear that L=GH. Applying Theorem 3.1 and Corollary 3.2 to
the subspace NŒ given by (3.25), we complete the proof. L

150 GELU POPESCU



4. KAFTAL–LARSON–WEISS THEOREM ON
SYMMETRIC FOCK SPACES

Let W.

n be the wg-closed algebra generated by Bi :=PF2s (Hn)Si |F2s (Hn), i=1,
..., n, and the identity, where F2s (Hn) … F

2(Hn) is the symmetric Fock
space. The commutative Toeplitz algebraW.

n was recently studied in [Po9,
Arv, ArPo2, DP3, and PPoS]. It can be viewed as a multivariable commu-
tative analogue of the classical H..

In what follows we obtain a Kaftal–Larson–Weiss type result for the
tensor product W.

n é̄ B(K,KŒ). Let K,KŒ be Hilbert spaces and let EŒ
be a subspace of F2s (Hn) éKŒ. We associate with EŒ the operator space

EŒ :={g ¥W.

n é̄ B(K,KŒ) : PEŒ g=0}.

For every f ¥W.

n é̄ B(K,KŒ) define

d.(f, EŒ) :=inf{||f+g|| : g ¥ EŒ}

and, if K is finite dimensional, then

d2(f, EŒ) :=inf{||f+g||2 : g ¥ EŒ},

where ||f+g||2 is the Hilbert–Schmidt norm of (f+g)|1 éK.

Theorem 4.1. Let EŒ ı F2s (Hn) éKŒ be an invariant subspace under
each Bg

1 é IKŒ, ..., Bg
n é IKŒ, and let d > 1. If f ¥W.

n é̄ B(K,KŒ) andK is
finite dimensional, then there exists g ¥ EŒ such that

||f−g|| [ dd.(f, EŒ) and(4.1)

||f−g||2 [
d

`d2−1
d2(f, EŒ).(4.2)

Proof. SinceF2s (Hn)éKŒ is an invariant subspaceunder eachSg
1 é IKŒ, ...,

Sg
n é IKŒ, it is easy to see that EŒ has the same property and (Ué IKŒ) EŒ=EŒ.

A particular case of Theorem 1.2 shows that there exists k ¥ F.n é̄ B(K,KŒ)
such that

f=PF2s (Hn) éKŒk |F2s (Hn) éK.(4.3)

Applying Theorem 3.1 to k and EŒ, we find j ¥ F.n é̄ B(K,KŒ) with
PEŒj=0 such that

||k−j|| [ d ||PEŒk||(4.4)
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and

||(k−j)(1 é k)|| [
d

`d2−1
||PEŒk(1 é k)||(4.5)

for any k ¥K. Notice that g :=PF2s (Hn) éKŒj|F2s (Hn) éK is in EŒ. Using (4.3)
and (4.4), we infer that

||f−g||=||PF2s (Hn) éKŒ(kj)|F2s (Hn) éK ||

[ ||k−j|| [ d ||PEŒk||

[ d ||PEŒPF2s (Hn) éKŒk|F2s (Hn) éK ||

=d ||PEŒf||.

Notice also that, using (4.3) and (4.5), we have

||(f−g)(1 é k)|| [ ||(k−j)(1 é k)|| [
d

`d2−1
||PEŒk(1 é k)||

=
d

`d2−1
||PF

2
s (Hn) éK

−

EŒ
f(1 é k)||.

Now, as in the proof of Corollary 3.2 we infer that d2(f, EŒ)=||PEŒf|1 éK ||2
and d.(f, EŒ)=||PEŒf||. Therefore (4.1) and (4.2) hold. The proof is
complete. L

If we drop the condition that K is finite dimensional, then we can prove
that d.(f, EŒ)=||PEŒf|| and find g satisfying (4.1) and (4.5).
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