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Background: Biocontrol agents are regarded as promising and environmental friendly approaches as
agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma
species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic
fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its
biocontrol potential.
Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the
pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic
mechanisms against test phytopathogens were analyzed using dual culture, scanning electron micro-
scopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series
of concentrations.
Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented
appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%.
T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via
production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as
dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for
antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings’ emergence and protect
P. notoginseng plants from soil-borne disease in the continuous cropping field tests.
Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good
potential as a biological control agent against notoginseng phytodiseases and can provide a clue to
further illuminate the interactions between Trichoderma and phytopathogens.
Copyright � 2015, The Korean Society of Ginseng, Published by Elsevier. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Panax notoginseng (Burk.) F.H. Chen (Araliaceae), an important
member of the genus Panax [1], is a valued traditional Chinese
medicinal herb. Because of its low adaptive capacity, which strictly
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depends on climate and environment, P. notoginseng is found in
middle and high elevation areas around the subtropical zone [2],
mainly in Wenshan, Yunnan, China. With increasing demand in
pharmaceutical industries, P. notoginseng has been domestically
cultured on a large scale [3]. However, severe soil-borne diseases
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have significantly limited the yield and quality of P. notoginseng. The
root-rot disease caused by a plethora of phytopathogens [4,5], such
as Fusarium solani, Fusarium oxysporum, Phoma herbarum, and
Rhizoctonia solani [6,7], is the most destructive among the phyto-
diseases of notoginseng, and is thought to be a main cause for the
continuous cropping obstacles for P. notoginseng. To combat the
disease and increase output, chemical fertilizers and pesticides
have been extensively applied. These agro approaches resulted in
soil salinization [8,9], changes in soil microbial biodiversity, and
environmental pollution. Hence, there is an urgent need for sus-
tainable and ecologically safe ways to control P. notoginseng
diseases.

Biological control, which includes the use of specific organisms
to control phytopathogens, is a nature-friendly ecological approach.
Trichoderma spp. distributed widely in soil have been developed as
a source of biocontrol agents for years. They are remarkable for
their rapid growth, utilization of diverse substrates, resistance to
biotic and abiotic stresses, and promotion of plant growth [10e12].
Some Trichoderma species show effective antagonistic activities
toward plant pathogens, such as Fusarium spp., Phoma (Pleospora)
betae, and Rhizoctonia solani [13,14], with the mechanisms of
mycoparasitism, competition for nutrition and space, and indirect
inhibition through volatile organic compounds (VOCs) [15].

VOCs can permeate and travel in soil pores for long distances
[16]. VOCs emitted by Trichoderma spp. are crucial in controlling
plant pathogens [17,18], activating plant immunity, and enhancing
plant growth [19]. These potential biological values and features
have attracted the attention of researchers in recent years [20e23].
However, Trichoderma species, substrates, and nutrient conditions
can influence their biocontrol viability [24,25]. In screening
antagonistic microbes against notoginseng diseases from the bio-
niches of P. notoginseng, an endophytic fungus with mycoparasitic
activity was obtained from a healthy notoginseng root. In this study,
experiments were carried out to estimate: (1) the pathogenicity of
Trichoderma gamsii YIM PH30019 to its host plant; (2) biocontrol
efficacy to phytodiseases in the continuous field experiments; (3)
tolerance capacity to chemical fertilizers; (4) mycoparasitism and
induced VOCs antagonistic activities against phytopathogens; (5)
VOCs identified with gas chromatography-mass spectrometry (GC-
MS).
2. Materials and methods

2.1. Microorganism culture

T. gamsii YIM PH30019 was isolated from the root of a healthy 2-
y-old P. notoginseng plant collected in July 2012 from Wenshan,
China. The root samples were thoroughly washed with running
water to remove soil particles, treated with Tween 20 for 1 h,
sterilized with 70% ethanol for 1 min, and finally washed with
sterilized distilled water for three times. Roots were crushed in an
autoclavedmortar and pestle. The paste was serially diluted to 10�4

with sterilized distilled water, and a 1-mL dilution was coated on
the plate containing 20 mL potato dextrose agar (PDA) medium.
The discrete colonies were transferred and purified on fresh PDA
plates. Identification was based on morphological and ITS molec-
ular phylogenetic analysis. The ITS sequence of T. gamsii was sub-
mitted to GenBank with the accession no. KP715352. The
pathogenic fungidPhoma herbarum (YIM PH30340), Fusarium
flocciferum (YIM PH30355), Scytalidium lignicola (YIM PH30094),
and Epicocum nigrum (YIM PH30306)dused in this study were
isolated from the rotten root of P. notoginseng. Their pathogenicity
was confirmed using the method described by Miao et al [6]. All
strains were maintained on PDA medium, and the voucher
specimens were preserved at Yunnan Institute of Microbiology,
Kunming, China.

The deactivated cell walls of E. nigrum, S. lignicola, P. herbarum,
and F. flocciferum were prepared according to Yang et al [26] with
modifications. Briefly, a 6-mmmycelial disk was cut from the edges
of actively growing colonies of test pytopathogens and transferred
into a 500-mL conical flask containing 200 mL potato dextrose
broth (PDB) medium. The flasks were incubated on a shaker at
28�C, 180 rpm for 7 d, then mycelia were collected by filtering the
culture broth. Cell walls were lyophilized and powdered. Antago-
nistic activities caused by VOCs were tested on the deactivated cell
wall agar medium (DCWA) (15.0 g deactivated cell walls, 6.9 g
NaH2PO4, 2.0 g KH2PO4, 1.4 g (NH4)2SO4, 1.0 g peptone, 0.3 g
MgSO4$7H2O, 0.3 g urea, and 15.0 g agar in 1 L distilled water, pH
not adjusted), and VOCs were collected by culturing T. gamsii YIM
PH30019 in the deactivated cell wall broth medium (DCWB). Con-
trols were inoculated in the above media without the deactivated
cell walls.

2.2. Pathogenic test of T. gamsii YIM PH30019

The pathogenic abilities of T. gamsii YIM PH30019was estimated
with 1-y-old healthy P. notoginseng in greenhouse tests. Three
P. notoginseng seedlings were planted in pots with the size of 10 L
(0.6 � 0.5 � 0.125 m, L/W/H) containing 6 L sterilized soil. Spores of
T. gamsii YIM PH30019 were collected from the PDA plates. A 0.2-
mL spore solution (1 � 1012) of T. gamsii YIM PH30019 was
applied to the soil around roots. The treatment without inoculation
with YIM PH30019was set as control. Six replications were used for
treatment and control. The pots were incubated at 25�C for 2 mo,
and P. notoginseng plants were collected to check the virulence of
YIM PH30019.

2.3. Biocontrol estimation of root-rot disease

The biocontrol efficacy of T. gamsii YIM PH30019 was estimated
in vitro with detached healthy notoginseng roots. YIM PH30019,
pathogenic fungi, and the mixture of YIM PH30019 and test path-
ogenic fungus were inoculated with a healthy root in a pot con-
taining 400 g soil autoclaved at 121�C for 60 min. Four replicates
were set for each treatment. The pots were kept in a shed similar to
the field-planting condition. Spores of T. gamsii and test pathogenic
fungi were collected from PDA plates. Ten milliliter spores
(1.0 � 1010) of T. gamsii YIM PH30019, pathogenic fungus, and the
mixture of T. gamsii YIM PH30019 and pathogenic fungus were
added into the autoclaved soil and mixed together thoroughly. The
surface-sterilized healthy notoginseng roots were laid into the soil
at a depth of 5 cm. Roots treatedwith pathogenic fungus or T. gamsii
YIM PH30019 were set as controls. The biocontrol efficacy of
PH30019 and virulence of test phytopathogens were checked every
week for 1 mo (Fig. 1 in Support Information).

Disease coverage of type 0, 1, 2, 3, and 4 lesions for each
P. notoginseng root was evaluated following indicators [27] with
modification, where 0¼ no lesions, 1¼ one to several lesions (roots
blacking < 25%), 2 ¼ extensive lesions or several entire roots
necrotic (25e50% roots blacking), 3 ¼ lesions on roots and dark-
ening of crown (50e75% root blacking), 4 ¼ extensive darkening of
crown (75e100% roots blacking).

2.4. Tolerance capacity to chemical fertilizers

To determine the effect of chemical fertilizers on the growth of
T. gamsii YIM PH30019, three chemical fertilizers were selec-
teddammonium chloride, potassium nitrate, and ammonium
dihydrogen phosphatedandmixed at a ratio of 1:1:1 (w/w/w). A 6-
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mm plug of actively growing T. gamsii YIM PH30019 was placed on
the center of a petri dish containing 25 mL PDA medium amended
with chemical fertilizers at the following concentrations (w/v): 0%,
2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, and
30%. Each concentration was repeated thrice. The petri dishes were
incubated at 28�C for 1 wk. The morphology and the growth
diameter were recorded daily.

2.5. Dual cultures and observations of mycoparasitism

The antagonism of T. gamsii YIM PH30019 against pathogens
was investigated with dual culture tests [28]. The mycoparasitism
of T. gamsii YIM PH30019 was observed by collecting the hyphae
from the interaction zone between T. gamsii and test phytopatho-
gens. The hyphal sample was transferred to glass coverslips, fixed
with 2.5% glutaraldehyde, dehydrated in a series of ascending
ethanol concentrations (50e100%) (v/v), dried in desiccator, and
coated with gold in a sputter-coater (SCD 005; BAL-TEC,
Switzerland); then, it was examined with a scanning electron mi-
croscope (Quanta 200FEG; FEI Company, Hillsboro, Oregon, USA).

2.6. Antagonistic assay of VOCs from T. gamsii YIM PH30019 against
pathogens

The antagonistic effect of VOCs to pathogens was evaluated
using the method described by Dennis and Webster [17] with
modifications. A 6-mm plug of T. gamsii YIM PH30019 was cut from
the actively growing cultures, then placed on the center of a 90-mm
petri dish containing 25 mL DCWA. The lid of plates with YIM
PH30019 was replaced by the bottom containing PDA inoculated
with pathogenic fungus. The dishes were taped together with
parafilm. T. gamsii YIM PH30019 grown on the medium without
deactivated cell walls of phytopathogens was used as a control. The
plates were incubated at 28�C, and the radial growth of test path-
ogens was observed and compared daily for 1 wk.

2.7. VOC analysis by GC-MS

For the identification of VOCs from T. gamsii YIM PH30019, spore
suspension was prepared to a final concentration of 5 � 10mL�1 in
sterile water. A 200-mL spore suspension was transferred into a 15-
mL conical flask containing 5 mL DCWB medium. The flasks were
incubated on a shaker at 28�C, 180 rpm for 4 d. Extraction was
Fig. 1. Pathogenicity estimation of Trichoderma gamsii YIM PH30019 to Panax notoginseng pla
carried out at 50�C for 30 min with preconditioned PA fiber (85mM,
polyacrylate) in the headspace. The VOCs were desorbed by placing
the fiber into the GC injection port for 1 min at 250�C. Compounds
were resolved in the following conditions: helium flow,1.0mL/min;
oven temperature, 50�C (2 min), 6�C/min to 180�C (1 min), then
6�C/min to 260�C (5 min); and mass spectrometer monitoring in
full scan mode (m/z 35e550) operated in the electron ionization
mode at 70 eV with a source temperature of 220�C. Compounds
were tentatively identified by the mass spectra using the National
Institute of Standards and Technology database.

2.8. Biocontrol efficacy in continuous cropping field

Field experiments were conducted in a continuous cropping
artificial shed in which crops of P. notoginseng harvested in the
previous year were used. The experimental field is located at
Xiangshuilong Village, a traditional notoginseng cultivation center
in Wenshan, Yunnan. Rice bran was mixed with equal mass water,
and autoclaved at 121�C, for 60 min. T. gamsii YIM PH30019 was
inoculated in the autoclaved rice bran until the final T. gamsii YIM
PH30019 spores concentration was up to 1.0 � 1010 spore/g. The
field soil was treated with chemical fumigants as described by Gao
et al [29] prior to planting notoginseng. Fermented rice branwith T.
gamsii YIM PH30019 was applied to each plot (treated with Tri-
choderma, Tt) (1.3 � 2.0 m) as the basal fertilizer with the use of
0.15 kg/m2, and 112 1-y-old healthy notoginseng seedlings were
planted according to the description of Sun et al [30] in January
2015. Experimental plots applied only with autoclaved rice bran
were set as controls (CK). Treatment (Tt) and control (CK) (Fig. 2 in
Support Information) were conducted in triplicate. After the
emergence of notoginseng, 0.5 mL spore (1 � 105 spores/mL) of T.
gamsii YIM PH30019 was applied to the soil by root irrigation for
further protection. Seedling emergence and dead seedling rate
were recorded from the emergence of notoginseng.

3. Results

3.1. Pathogenicity to P. notoginseng

T. gamsii YIM PH30019 showed no pathogenic activity (Fig. 1).
After coinoculation for 2 mo, either treated with T. gamsii YIM
PH30019 or the control, P. notoginseng plants maintained their
healthy growing status. The roots showed no symptoms on the
nts in 2 mo. (A) The root in control. (B) The root inoculated with T. gamsii YIM PH30019.



Fig. 2. In vitro biocontrol estimation of Trichoderma gamsii YIM PH30019 against
phytopathogens of Panax notoginseng for 1 mo. Negative control is treatment with the
inoculation of four pathogens, and positive control is treatment inoculated with
T. gamsii YIM PH30019. All results were calculated based on four replications. En,
Epicocum nigrum; Ff, Fusarium flocciferum; Ph, Phoma herbarum; Sl, Scytalidium lig-
nicola; Tg, Trichoderma gamsii.
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surface and inner tissues (Fig. 1). These results suggested that the
endophytic T. gamsii YIM PH30019 cannot cause root-rot disease,
and is harmless to its host plant.

3.2. Biocontrol estimation of root-rot disease

T. gamsii YIM PH30019 presented favorable biocontrol efficacy
in vitro as per evaluation in 1 mo (Fig. 1 in Support Information). All
the treatments inoculated with pathogens showed severe rot-root
symptoms and up to lesion type 4 on the roots. Two detached
roots treated with T. gamsii YIM PH30019 and F. flocciferum dis-
played rot symptom at lesion type 1 level. Roots inoculated with T.
gamsii YIM PH30019 and other three pathogenic fungi remained
healthy during the observation period. Disease coverage again
indicated the severe pathogenicity of four pathogens (Fig. 2; Fig. 1
in Support Information), and presented the desirable biocontrol
potential of T. gamsii YIM PH30019 against the root-rot disease of P.
notoginseng.

3.3. Effect of chemical fertilizers

The effect chemical fertilizers on the growth and morphology of
T. gamsii YIM PH30019 was observed in a series concentrations of
Table 1
Chemical fertilizers’ effect on the growth of Trichoderma gamsii YIM PH300191)

Concentration (% w/v) Inoculati

1 2 3

0 24.9 � 0.3 60.2 � 0.3 90.0 � 0.0
2 19.9 � 0.4 51.6 � 0.1 90.0 � 0.0
4 18.6 � 0.1 40.1 � 0.2 68.0 � 0.3
6 14.0 � 0.1 32.4 � 0.2 54.1 � 0.20
8 12.5 � 0.8 19.4 � 0.4 42.2 � 0.1
10 11.5 � 0.1 16.2 � 0.1 37.0 � 0.2
12 9.0 � 0.2 12.0 � 0.2 31.0 � 0.2
14 d3) 9.1 � 0.2 22.9 � 0.2
16 d d 14.1 � 0.2
18 d d 10.0 � 0.2
20 d d d

22 d d d

24 d d d

26 d d d

28 d d d

30 d d d

1) Data were recorded for a 7-d inoculation.
2) Colony diameter was an average value of three replicates.
3) No growth was observed in our tests.
chemical fertilizers (Table 1). T. gamsii YIM PH30019 could grow in
concentration levels of up to 20% chemical fertilizers. The strain
grew well at concentrations ranging from 0% to 12% without dif-
ferences in mycelial morphology. When the composite fertilizer
concentration was above 12%, the growth rate became slower. At
the same time, the mycelial morphology changed from cottony to
flat, and the volatile smell disappeared gradually as the concen-
tration increased. At 20% composite fertilizer, T. gamsii YIM
PH30019 grew in crystalline particles, and not in a radial pattern.
The mycelia in higher chemical fertilizer concentrations (from 14%
to 20%) faded away within several days.

3.4. Dual culture and mycoparasitism

T. gamsii YIM PH30019 grew quickly and covered the test
pathogens in 3 d. The pathogenic fungi were confined in very small
colonies with a curled edge (Fig. 3), and mycelia withered gradually
after 5 d of cocultivation. The pathogens grew well in control
(without T. gamsii YIM PH30019), and the mycelia were flourishing
with pigments. In scanning electron microscopy (SEM), the hypae
of T. gamsii YIM PH30019 grew alongside, circled and coiled around
the pathogenic fungal hyphae (Fig. 4), which are the typical
mycoparasitic characteristics of Trichoderma.

3.5. Inhibitory activity of VOCs produced by T. gamsii YIM PH30019

Compared with the control, the VOCs induced by the deacti-
vated cell walls of pathogenic fungi showed significant suppression
on the growth of test phytopathogens. The pathogenic radical
growth in the experimental group was much smaller than that in
the control (Fig. 5). The highest inhibition rate appeared on the 4th

d (Fig. 6), reaching 45.0%, 37.5%, 38.6%, and 46.3% for E. nigrum, S.
lignicola, P. herbarum, and F. flocciferum, respectively.

3.6. Identification of VOCs

The VOCs were identified using GC-MS after 96 h of cultivation
(Fig. 7), and are listed in Table 2. The profiles of the volatiles were
obviously different among the test phytopathogens, and the
amounts of VOCs were greater than those in the control. A total of
22 volatile compounds were identified (marked with capital letters
AeM in Fig. 7), wherein substances, such as dimethyl disulfide,
on days (mycelium diameter, mm)2)

4 5 6 7

90.0 � 0.0 90.0 � 0.0 90.0 � 0.0 90.0 � 0.0
90.0 � 0.0 90.0 � 0.0 90.0 � 0.0 90.0 � 0.0
90.0 � 0.0 90.0 � 0.0 90.0 � 0.0 90.0 � 0.0
77.1 � 0.1 90.0 � 0.0 90.0 � 0.0 90.0 � 0.0
63.1 � 0.1 81.1 � 0.1 90.0 � 0.0 90.0 � 0.0
55.0 � 0.2 69.0 � 0.1 83.1 � 0.2 90.0 � 0.0
45.0 � 0.2 55.2 � 0.2 67.3 � 0.2 75.2 � 0.1
34.1 � 0.2 42.2 � 0.1 50.1 � 0.2 59.0 � 0.2
23.4 � 0.2 32.1 � 0.2 39.1 � 0.2 45.1 � 0.2
17.1 � 0.1 22.1 � 0.2 24.2 � 0.2 29.6 � 0.2

d 10.1 � 0.3 13.1 � 0.2 15.2 � 0.1
d d d d

d d d d

d d d d

d d d d

d d d d



Fig. 3. Mycoparasitism of Trichoderma gamsii YIM PH30019 to phytopathogenic fungi of Panax notoginseng at 5 d. (A) Epicocum nigrum (B) Scytalidium lignicola (C) Phoma herbarum
(D) Fusarium flocciferum; (a), (b), (c), and (d) are the corresponding control of (A), (B), (C), and (D), respectively.
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dibenzofuran, methanethiol, and ketones, may serve as chemical
inhibitors to the growth of pathogenic fungi.

3.7. Biocontrol efficacy in continuous cropping field

Emergence of seedling in the continuous cropping field is very
important in notoginseng planting. In our experiments, the average
emergence rate in the treatments reached up to 57.8%, much more
than that in the control (average 14.2%) at the end of March 2015
(Fig. 8). In the observation, dead seedlings occurred during the
emergence of notoginseng, which was mainly caused by root-rot
disease, and were removed from the field after they were recor-
ded. Until the end of May 2015, the average percent mortality in the
Fig. 4. Scanning electron micrographs (Quanta 200FEG; FEI Company, USA) of mycoparasiti
(B) Coiling.
treatment plots was 23.9% and 61.3% in the controls (Fig. 9), indi-
cating that T. gamsii YIM PH30019 may have protective effects on
notoginseng seedlings against root-rot disease in the field experi-
ments (Fig. 2 in Support Information). In early May, a small-scale
disease breakout caused the mortalities to increase up to 20% in
both the treatment plots and the controls. After root irrigationwith
T. gamsii YIM PH30019, the seedling death rate in treatment
became significantly lower than that in CK.

4. Discussion

Biocontrol is the most ecofriendly approach to the management
of plant disease. Further understanding of the biocontrol
sm of Trichoderma gamsii YIM PH30019 to Scytalidium lignicola at 7 d. (A) Recognizing.



Fig. 5. Antagonistic activity of volatile organic compounds (VOCs) produced by Trichoderma gamsii YIM PH30019 against tested phytopathogens (at 96 h). (A) Epicocum nigrum (B)
Scytalidium lignicola (C) P. herbarum (D) Fusarium flocciferum; (a), (b), (c), and (d) are the corresponding control of (A), (B), (C), and (D), respectively.
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mechanisms from different aspects is the critical role for agricul-
tural applications in the future [31]. Themost important genus used
as a biocontrol agent is the Trichoderma [32], which has an
outstanding interaction with plant and plant pathogens [33]. The
interactions include antagonism toward fungal pathogens, plant
growth promotion, plant defense responses, and protection of
plants from environmental stresses, such as salinity and drought
[34,35]. Continuous cropping obstacles significantly affect
P. notoginseng seedling emergence and cause severe mortality to
seedlings [36]. In our field experiments with continuous cropping
soil, T. gamsii YIM PH30019 showed desirable biocontrol potential
compared to plots without inoculation of T. gamsii YIM PH30019
(Fig. 2 in Support Information).

Frequent use of chemical fertilizers results in soil salinization
and can also cause loss of protective efficacy for some biocontrol
agents [37,38]. To achieve higher yield, multiple chemical
fertilizers are widely used in notoginseng planting. Potential
Fig. 6. Growth inhibition rate of phytopathogens by volatile organic compounds
(VOCs) produced by Trichoderma gamsii YIM PH30019.
microbial agents should be hyperosmotic in controlling the dis-
eases of P. notoginseng. The hyperosmotic property was evaluated
with a series of composite chemical fertilizers. The results
showed that T. gamsii YIM PH30019 can grow well at 0e12% (w/
v) and bear up to 20% (w/v) of chemical fertilizers that are
usually used in agriculture. This characteristic may ensure that T.
gamsii YIM PH30019 can exert its biocontrol efficacy in hyper-
osmotic soil.

Dual culture and induced VOCs assay presented effective
antagonism of T. gamsii YIM PH30019 on test pathogenic fungi
associated with root-rot diseases of P. notoginseng (Figs. 3e6).
Other T. gamsii isolates also showed antagonistic activity to phy-
topathogens [39,40]. The recognition process was thought as the
precondition necessary to inhibit the pathogens during the
mycoparasitism that happened between Trichoderma and patho-
gens [41,42]. The mycoparasitism process of coiling, which de-
pends on recognition, was also detected in both dual culture and
SEM observations in our study.

Trichoderma spp. can produce VOCs that inhibit the growth of
plant pathogenic fungi via soil air diffusion [43] or induce a defense
response in plants [44,45]. The VOC profiles of Trichoderma species
include alcohols, ketones, alkanes, furanes, pyrones, and terpenes
[24], which have varying degrees of antagonistic activity against
pathogenic fungi. Cocultivation with pathogenic fungus could
significantly enrich the metabolites of T. harzianum in comparison
to the pure culture [46]. The deactivated pathogenic cell walls could
induce T. harzianum to produce greater levels of some proteins [47].
T. gamsii YIM PH30019 produced VOCs induced in the deactivated
cell wall medium. These VOCs also presented antagonistic activity
to the phytopathogens. However, the T. gamsii antagonism of VOCs
induced by pathogenic fungi in the process of biocontrol has been
poorly studied. In this study, deactivated cell walls of pathogenic
fungi could induce T. gamsii YIM PH30019 to produce different VOC
profiles, including dimethyl disulfide, dibenzofuran, methanethiol,
and ketones. It is noteworthy that dimethyl disulfide is reported to



Fig. 7. The induced volatile organic compounds (VOC) profiles produced by Trichoderma gamsii YIM PH30019. VOCs were collected from T. gamsii inoculated in four deactivated cell
wall broth (DCWB) media and control without the deactivated cell walls, respectively. Peaks of compounds were recorded and are identified in Table 2.
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Table 2
The induced VOCs produced by Trichoderma gamsii YIM PH30019

Treatments1) Retention time (min) Peak Volatile compounds

Deactivated cell walls of Epicocum nigrum 0.514 A Methanethiol
2.811 B Dimethyl disulfide
5.114 C 2-Hexanone, 4-methyl
8.445 D Mesitylene

11.505 E 3-Heptanone, 5-ethyl-4-methyl
16.725 F 2-Undecanone
22.967 G Fluorene

Deactivated cell walls of Scytalidium lignicola 0.517 A Methanethiol
2.047 B Methyl thiolacetate
2.799 C Dimethyl disulfide
5.146 D Butanethioic acid, S-methyl ester
8.936 E 3-Octanone

14.241 F Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)
16.220 G N,N,N0-Trimethyl-1,4-phenylenediamine

Deactivated cell walls of Phoma herbarum 6.246 A 2-Heptanone
8.004 B 2-Heptanone,6-methyl-6-methyl-
8.924 C 3-Octanone

10.107 D b-Phellandrene
11.783 E 2-Nonanone
11.996 F 2-Nonanol
13.452 G 2-Decanone
14.331 H 2-Decanone
15.884 I 2-Undecanone
16.731 J 2-Undecanone
18.154 K 2-Dodecanone
21.628 L Dibenzofuran
22.954 M Fluorene

Deactivated cell walls of Fusarium flocciferum 0.508 A Methanethiol
1.931 B Methyl thiolacetate
2.797 C Dimethyl disulfide
8.914 D 3-Octanone

11.780 E 2-Nonanone
14.234 F Benzene, 2-methoxy-4-methyl-1-(1-methylethyl)
20.096 G Bicyclo[5.2.0]nonane
23.633 H 5H-Inden-5-one

Control2) 15.873 A 2-Undecanone
22.954 B Fluorene

1) T. gamsii YIM PH30019 was inoculated in the DCWB medium.
2) T. gamsii YIM PH30019 was inoculated in the above medium without deactivated cell wall.

DCWB, deactivated cell wall broth; VOCs, volatile organic compounds.
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have favorable antagonistic activity against insects and pathogens
associated with many important plants and crops [48,49]. Many
chemical fumigants are used to control plant disease at present
[50], but they could change the biological equilibrium [51], such as
Fig. 8. Average Panax notoginseng seedling emergence rates in continuous cropping
field. Results are expressed as mean � SD (n ¼ 3). *Statistically significant differences
(Duncan’s multiple range test, p < 0.05). CK, control; SD, standard deviation;
Tt, treatment plot with T. gamsii YIM PH30019.
eradicating beneficial organisms [52] and increasing pathogen
populations [53]. Nonchemical methods that effectively control
plant diseases are highly desirable. The results give us insight that
the deactivated cell walls of pathogenic fungi could be an effective
activator for T. gamsii YIM PH30019 to produce more VOCs that
inhibit the growth and metabolism of pathogenic fungi. This
interesting phenomenon warrants further investigation in ongoing
studies.
5. Conclusion

T. gamsii YIM PH30019, isolated as an endophytic fungus,
showed no pathogenicity to the host plant of P. notoginseng, and
presented favorable biocontrol efficacy in vitro and field evaluation
with continuous cropping soil. It could grow well in high concen-
trations of chemical fertilizers, produce a plenty of VOCs to inhibit
the growth of pathogenic fungi, and protect notoginseng against
infection by phytopathogens. These results indicate that T. gamsii
YIM PH30019 can be used as a promising biocontrol agent against
the phytopathogenic fungi of P. notoginseng. In-depth studies
should be carried out in different and complex field conditions to
evaluate its biocontrol efficacy and influence on indigenous mi-
crobial communities, as well as the effect of agro approaches
(chemical fertilizers, pesticides, fungicides, etc.) on T. gamsii YIM
PH30019.



Fig. 9. Seedlings mortality until May 31, 2015. Trichoderma gamsii YIM PH30019 was applied to the treatment plots by root-irrigation in the 5th wk. Results are expressed as
mean � SD (n ¼ 3). *Statistically significant differences (Duncan’s multiple range test, p < 0.05). CK, control; SD, standard deviation; Tt, treatment plot with T. gamsii YIM PH30019.
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