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Certain iterative methods for finding the roots of real functions can be 
profitably studied as dynamical systems on the real line. While many 
features, such as rates of convergence, of a root-finding method are local 
phenomena, other features are inherently nonlocal. This paper is concerned 
with one such feature, namely the structure of the set of initial conditions 
for which the method fails to converge. 

In the case of Newton’s Method. 

X k+ 1= Wbkh where W(x) = x - Cf(xYf’(x~l, 

the structure of the set of nonconvergent points has been studied by several 
authors. B. Barna ( [ 11, see also [ 3,9] ) has shown that if f is a polynomial 
with all roots real, then the nonconvergent set is a Cantor set of measure 
zero. Recently D. Saari and J. Urenko [S, 81 have extended Barna’s results 
to a much larger class of functions. 

The purpose of this note is to show that similar results hold for the Euler 
method 

x &+ I = JWXA where W(x) = x - CfbW(x)lC1 +f(x)f”(x)/2(f’(~))~l. 

This algorithm has cubic convergence to simple roots off; it is one of a 
family of root-finding algorithms whose description can be found in [6]. 

Throughout this paper we will assume that f satisfies the following 
properties. They are adapted from a similar list of properties used in [8] to 
study the structure of the set of nonconvergent points of Newton’s method. 
The set of functions that satisfy all of these properties includes all 
polynomials with only real roots as well as other functions, including those 
described in [S, p. 441. We give a brief discussion of these properties in the 
last section of this paper; the reader should consult [S, 81 for more details. 
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(1 .l ) ,f is C”, and f’ has at least one nonvanishing derivative at each 
point. This ensures that ifh f“ both vanish at p then we can define Nf(p) = 
Ef(p) = p and thereby obtain functions that are smooth on the complement 
of the set C= {.xIf’(x)=O andf(x)#Ol. 

(1.2) The zero set off is finite, contains at least three points, and 
meets every connected component of the complement of C. 

By (1.1) and (1.2), C is finite. 

(1.3) If S, L are, respectively, the smallest and largest roots off, then 
ff”>O on (-w,S)u(L, co). 

By (1.2), f’ is nonzero on the complement of [S, L]. 

(1.4) There is a constant A in (0, 2.5) with A(f”)2 -f’f”’ 3 0. 

Let NC(E’) denote the nonconvergent set for Ef, defined to be the set of 
x satisfying: all iterates (Ef)k ( ) x are defined (k = 0, 1, . ..). but the sequence 
of iterates does not converge to a root off: 

THEOREM. If f satisfies (1.1 )-( 1.4) then NC( Ef) is a Cantor set of 
Lebesgue measure zero, and the restriction of Ef to NC(Ef) is conjugate to a 
one-sided subshift of finite type. 

PRELIMINARIES 

The theorem will be established by reducing questions about the Euler 
algorithm to questions about Newton’s Method. We continue to assume 
that f satisfies ( 1.1 )-( 1.4). 

(2.1) If f(p)=0 then Nf(p)=p and (Nf)‘(p)E[O, 1); Nf has a 
vertical asymptote at each point of C. 

(2.2) (Nf )’ = ff”l(f ‘)2. 
(2.3) If c E C,, then (Nf )’ (x) tends to - co as x approaches c. 

The proofs of (2.1)-(2.3) are straightforward calculations; further details 
can be found in [S]. 

Ef AND ITS RELATION TO &f 

(3.1) Ef(x) =x if and only if either f(x) = 0 or (Nf)’ (x) = -2. 
(3.2) (Ef)‘=f[3(f”)2-f’f”‘][f2/(f’)4]. 
(3.3) Since f satisfies (1.4), (Ef )’ > 0. 
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A calculation based on (1.1) yields 

(3.4) Iff(p)=O, then (Ef)’ (p)< 1, 

so that Ef has an attracting fixed point at each root off. Next we verify 
that the other fixed points off are repelling. 

LEMMA. Zf I(Nf)’ (x)1 2 k, then (Ef )’ (x) > k2(3 - A)/2. 

ProoJ (Ef)’ = f[3(f”)2-f’f”‘][(Nf)‘J2/(f”)2 > &*[3-(f’f”‘)/ 
(f”)‘] a 4k2(3-A) by (1.4). m 

Combining the lemma with (3.1) and (2.3) we see that 

(3.5) If Ef(q)=q andf(q)#O, then (Ef)‘(q)>2(3-A)>l. 
(3.6) If c E C then (Ef )’ (x) tends to cc as x approaches c. 

Using (3.3) and (3.4) we obtain 

(3.7) If Z is an open interval containing a root p off but no other 
fixed points of ES, then for each x in Z, the sequence of iterates (Ef )& (x) 
converges to p. 

(3.8) ff’ has a root between any two repelling fixed points of Ef (use 
(3.5)). 

Claim. If f has d distinct roots, then there is a set X, composed of 
2d- 2 pairwise disjoint compact intervals Zj and satisfying (3.9)(3.12). 

(3.9) NWf) = nn,o(Ef )” (X). 
(3.10) If Ef(Zk) intersects Zj then it contains Z,. 
(3.11) Ef is C* on each Z,. 
(3.12) (Ef)‘>2(3-A)>1 on X. 

Once the claim has been established, the first part of the theorem can be 
proved by following the arguments of [8 J, and the second part (dealing 
with the conjugacy to a subshift) is standard [3-5,9]. We begin by noting 

(3.13) NC(Ef) is contained in the interval [S, LJ, 

which follows from (3.7), (1.3), and (3.1). Let the set C be as in (1.1). We 
will say that a bounded connected component in the complement of C is a 
band for Ef; and we will call the two unbounded components of the com- 
plement of C the extreme bands for Ef: By (1.2) each band or extreme band 
contains exactly one root off, so there are d- 2 bands. 

Suppose .Z= (LX, p) is a band. Let z denote the root off in J. By (2.1) and 
(2.3), Ef has repelling fixed points u, u in .Z with u <z < u. By (3.8), u, v, z 
are all of the fixed points of Ef in J. Let S, L be as in (1.3). Then (3.6) and 
(3.7) imply that there are points a < u, b > v in .Z with Ef(a) = S and 
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Ef(b)= L. It now follows from (3.3), (3.7), and (3.13) that NC(Ej‘)nJ is 
contained in [a, u] u [v, h]. Since (Nf)’ (u) = -2 and (iVf’)‘# -2 on 
(CI, u), (2.3) shows that (Nf)‘d -2 on [a, u], and so by the lemma, 
(E’)‘>2(3 -A) on [a, u]. Similarly on [u, 61. Thus if we let the intervals 
[a, u], [u, h] be two of the components of X, we see that (3.11) and (3.12) 
are satisfied on these intervals. 

Next consider one of the extreme bands, say (y, 00). This interval con- 
tains L, and by (3.4) and (3.6), Ef has a unique repelling fixed point q in 
(y, L) and no fixed points in (L, co). As in the previous case, we can show 
that there is a point t in (y, q) with Ef(t)= S, (Nf)'< -2 on [t, q], and 
NC(Ef) n (y, co) c [t, q]. Consequently, if we let [t, q] be one of the inter- 
vals in X, then (3.11) and (3.12) hold on this interval. The situation in the 
other extreme band is analogous. Thus we have defined X and verified 
(3.11) and (3.12); (3.9) and (3.10) are easily checked, and so the claim is 
established. 

REMARKS ON CONDITIONS (l.l)-(1.4) 

In order to apply Urenko’s argument to show that NC(Ef) has measure 
zero, we need to know that Ef is C2 on each of the intervals in X. This 
requires that f be at least C4. If we allowed the possibility of all the 
derivatives off vanishing at a point, two problems might arise. The first is 
that the set C might contain entire intervals. Second, there may be 
problems with the smoothness of Nf and Ef at multiple roots off; in par- 
ticular, (2.1) and (3.4) might fail. It is possible to overcome these problems 
by slightly altering some of our arguments, so in fact we could weaken 
(1.1) to 

(4.1) f is C4 and C is finite. 

There are various conditions on f that will ensure (1.3). Among these is 
the condition from [8, 51: 

(4.2) (i) the roots off’ lie in [S, L], and 
(ii) if 1 is the smallest interval containing all the roots off’, 

then I contains all the roots off I’. 

Also sufficient is 

(4.3) (i) [S, L] contains all the roots off “, and 
(ii) f”(x) is bounded away from 0 as (xl tends to infinity. 

Either (4.2) or (4.3) implies that (ZVf)’ is positive on the complement of 
[S, L]; the proof of the theorem requires only that (Nf)’ be bigger than 
-2. 
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Finally, (1.4) with A = 1 is a well-known inequality; Laguerre established 
that it is satisfied by polynomials with only real roots (the inequality is 
trivial if f is linear, and if f, g both satisfy the inequality, so does their 
product). Reference [7] contains a discussion of functions that satisfy 
Laguerre’s inequality. Also if f has negative Schwartzian derivative, then f 
satisfies (1.4) with A = 1.5 [2]. 
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