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Ž .We give an embedding of the space BB � of hyperfunctions on the unit circle �
Ž .in a differential algebra HH � whose elements are called generalized hyperfunc-

tions. This allows us to define the product of two hyperfunctions without any
restriction. We also define pointvalues of a hyperfunction: these pointvalues are
elements of an algebra CC whose set of invertible elements is denoted CC*. In
Section 2 we recall and make precise some basic results on classical spaces of
functions on �. Section 3 is devoted to our main results: we characterize the set

Ž . Ž .HH* � of invertible elements of HH � , and, since a generalized hyperfunction may
vanish at all classical points without being zero, we give a vanishing theorem. We
conclude our work with the study of the Cauchy problem: u� � fu � gu2 � 0;
Ž . Ž .u z � �, where f , g � HH � , z � �, and � � CC*, by giving an existence theo-0 0

Ž .rem for a solution u � HH* � . � 2001 Academic Press

Key Words: holomorphic functions; periodic hyperfunctions; Laurent series;
generalized hyperfunctions.

1. INTRODUCTION

The starting point of this paper is an open problem posed by Ober-
� �guggenberger in 6 , on the existence of embeddings of the space of

hyperfunctions in differential algebras of new generalized functions. This
is still an open problem in the non-periodic situation, even in the one
dimensional case. In the one dimensional periodic case, a first answer was
recently given by the author in a talk at the Erwin Schrodinger Institut of¨

� �Viena 10 . The given construction of such an algebra was based on the use
� �of real periodic analytic functions, and, as in the usual constructions 7�9 ,

derivatives of all orders are considered. In the analytic case, this leads to
some complications in the applications, in proving, for example, the
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analiticity of solutions to differential equations. In order to overcome
these difficulties and to give at the same time a simple construction, we
consider here the problem in its natural setting: that of holomorphic
functions of the unit circle, the set of complex numbers of modulus one. At
the same time, bounds of infraexponential type are replaced by ones of
exponential type in order to be able to solve in a natural way simple
differential problems as in the last section of this paper.

� �Our construction follows those given in the n-dimensional case in 7�9
by the author, for the embedding of the space of periodic distributions in
an algebra of new generalized functions. Here we take the algebra of
holomorphic functions on the circle as the basic algebra instead of the one
of smooth functions on the unit circle. This enables one to use Laurent
series representations in this space and in the attached space of hyperfunc-
tions. As it happens in the case of algebras of new generalized functions

� �with an embedding of the space of distributions 7�9 , such an algebra can
permit us to investigate in a good setting linear or nonlinear differential
problems involving periodicity and high singularities. In our case, we may
consider singularities which can be interpreted, for example, as products of
hyperfunctions.

2. BASIC FUNCTIONS ON THE CIRCLE

� � � �In this section we refer to 1, Chap. 1; 4, Chap. 4 and mainly to 5 .

2.1. Smooth Functions on the Circle

� � � 4Let f be a function defined on the circle � � z � � : z � 1 . Then f
˜ ˜ i tŽ . Ž .is smooth if and only if the function f defined on � by f t � f e is

Ž .smooth. We denote by EE � the space of smooth functions on � equipped
with the family of seminorms

Ž̃m.� � � �f � sup f t .Ž .Žm.
0�t�2�

Ž .EE � becomes a Frechet space with the topology defined by this family of´
seminorms.

Ž .If f � EE � and k � �, the Fourier coefficient of index k of f is

1 1 2�	k	1 	i k tˆ ˜f k � f z z dz � f t e dt .Ž . Ž . Ž .H H2 i� 2�� �z �1 0

Ž .A sequence c is the sequence of Fourier coefficients of a smoothk k
function if and only if it is rapidly decreasing; that is, for any positive s we
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s ˆ kŽ � � � �. Ž Ž . .have sup k c � �. Moreover the sequence Ý f k z con-k � � k � k � � n n
Ž .verges to f in the topology of EE � .

2.2. Analytic Functions on the Circle

� � � 4Let r � 1 and C � z � �; 1�r � z � r . We denote by OO the Banachr r
space of bounded holomorphic functions in C endowed with the normr
� � � Ž . � Ž .f � sup f z . The space of analytic functions on � is AA � �r z � Cr

� 4ind lim OO ; r � 1 , the inductive limit of the spaces OO as r � 1. Letr r
Ž .f � AA � . Then f belongs to some OO . Let 1 � � � r ; f has a Laurentr

1� k 	k	1Ž . Ž .expansion f z � Ý c z in C where c � H f z z dz, r �k�	� k r k � z ��r �2 i�

being any number such that 1�� � r � � �. Taking r � � � if k 
 0 and
� � � � 	� k �r � � 1�� otherwise, we obtain c � f � . It follows that for all�k

� � � � 	� k �k � �, c � f r . If one takes r � � 1, it is easily seen that c is therk k
˜corresponding Fourier coefficient of the associated analytic function f

defined on �. So the c ’s are called the Fourier coefficients of f. We havek
Ž .the following characterization: a sequence a is the sequence of Fourierk k

Ž . � �1� � k �coefficients of a f � AA � if and only if lim sup a � 1.� k � �� k

Ž . Ž .THEOREM 2.1. AA � is continuously embedded in EE � as a dense
subspace.

Ž .Proof. Clearly the considered map is one to one. Let f z �
� ˆ kŽ . Ž . Ž .Ý f k z be an element of EE � . The functions g z �k�	� n

ˆ kŽ . Ž . Ž .Ý f k z belong to AA � and converge to f in the topology of EE �� k � � n
Ž . Ž . Ž . � kshowing the density of AA � in EE � . We now consider f z � Ý c zk�	� k

˜ � i k tŽ . � 4in OO . Hence we have f t � Ý c e . It follows that if m � � � 0 ,r k�	� k
Ž̃m . � m i k t Ž̃m .Ž . Ž . � Ž . �then f t � Ý ik c e and consequently f t �k� 	 � k

� � � � � m 	 � k � m 	x Ž .m 	m mf Ý k r . Now, using sup x r � 1�ln r e m , we findr k�	� x � 0
Žm. � � k � m 	m m˜ '� Ž . � � � Ž . Ž .f t � f Ý 1� r 2�ln r e m . Hence, we obtainr k�	�

m
� � � �f � C am f ,Ž .Žm. r

where a and C are constants depending only on r. This shows the
Ž .continuity of the embedding on OO and hence on AA � .r

2.3. Distributions on the Circle

Ž .The space of distributions on the circle is the topological dual EE � � of
Ž . Ž .EE � . This means that a sequence T of distributions converges to am m

Ž . Ž . Ž .distribution T if and only if for each f � EE � , T f converges to T f inm
Ž . k�. Let k � � and T � EE � � . The function z � z defined on � belongs

ˆŽ . Ž .to EE � . The Fourier coefficient of index k of T is the number T k
k � kˆŽ . Ž .� T z � z . We have T � Ý T k z in the topology of EE � � . TheŽ . k�	�

Ž .Fourier coefficients are characterized as follows: A is the sequence ofk k
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Ž .Fourier coefficients of a distribution if and only if A is slowly increas-k k
ing; that is, there are positive constants C and s such that for all k � �,

s � ˆ ˆ� � Ž � � . Ž . Ž . Ž .A � C 1 � k . Moreover, if f � EE � , then T f � Ý T k f k .Ž .k k�	�

2.4. Hyperfunctions on the Circle

Ž .The space BB � of hyperfunctions on the circle is the topological dual
Ž . Ž . Ž .AA� � of AA � . Consequently, H � BB � if and only if H is continuous on

Ž . keach OO . Let k � � and H � BB � . Since the function z � z belongs tor
Ž .AA � , we define the Fourier coefficient of index k of H as being the

k � kˆ ˆŽ . Ž .number H k � H z � z . Moreover H � Ý H k z in the topol-Ž . k�	�

Ž . Ž .ogy of BB � . We have the following characterization: B is the se-k k
Ž .quence of Fourier coefficients of a hyperfunction if and only if B is ofk k

� �1� � k �infraexponential type, that is, lim sup B � 1. Moreover, if g �� k � �� k
� ˆŽ . Ž . Ž .AA � , then H f � Ý H k g k .Ž .ˆk�	�

3. GENERALIZED HYPERFUNCTIONS ON THE CIRCLE

Ž . Ž .3.1. The Algebra XX � and the Ideal NN �e e

Ž . Ž .Let XX � denote the set of sequences of functions f where n � �n n
Ž . Ž . Ž .and f � AA � , and let XX � denote the subset of XX � whose elementsn e

Ž .f are such thatn n

� � n�a � 1, �� � �, � r � 1�	n � � , f � OO , f � a .rn r n

Ž . Ž . Ž .We denote by NN � the subset of XX � whose elements f satisfy thee e n n
condition

� � n� �	b � 0, 1 ,�� � �, � r � 1�	n � � , f � OO , f � b .rn r n

Ž . Ž .Clearly XX � is an algebra for usual termwise operations and NN � is ane e
Ž .ideal of XX � . We now define the following two spaces of sequences ofe

complex numbers.

Ž . Ž . Ž .XX � is the set of sequences c of sequences c � c such thate n n n n, k k

� � n 	 � k ��a � 1, �� � �, � r � 1�	n � � , 	k � �, c � a r .n , k

Ž . Ž . Ž .NN � is the set of sequences c of sequences c � c such thate n n n n, k k

� � n 	 � k �� �	b � 0, 1 ,�� � �, � r � 1�	n � � , 	k � �, c � b r .n , k
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Ž . Ž .It is clear that NN � is a subset of XX � . We have the following proposi-e e
tion:

Ž .PROPOSITION 3.1. Let f be a family of functions f which aren n n
holomorphic in some neighborhood of �. Then we ha�e:

ˆŽ . Ž . Ž . Ž Ž .. Ž .i f � XX � if and only if f k � XX � .n n e n n, k e

ˆŽ . Ž . Ž . Ž Ž .. Ž .ii f � NN � if and only if f k � NN � .n n e n n, k e

Ž . Ž .Proof. Suppose that f � XX � . Let a � 1, r � 1, and � � � suchn n e
n ˆ� � � Ž . �that f � OO and f � a for n � �. The Cauchy inequalities f k �rn r n n

	� k � ˆ� � Ž Ž .. Ž .f r for n � � and k � � show that f k � XX � . Conversely,rn n n, k e
ˆŽ Ž .. Ž .suppose that f k � XX � . Choose a � 1, r � 1� � � such thatn n, k e

ˆ n 	 � k �� Ž . �f k � a r for all n � � and all k � �. Let � be a number such thatn
�� ˆ kŽ . Ž .0 � � � r. We have f z � Ý f k z for z � C and n � �. It followsn 	� n �

� Ž . � n ��Ž . � k � nthat f z � a Ý ��r � Ca for some constant C � 0. From that,n 	�

Ž . Ž . Ž .we derive that f � XX � . Part ii can be proved in the same way.n n e

�� ˆ kŽ . Ž . Ž .Let f � AA � . We have f z � Ý f k z in some C . We define	� r

��
kˆ
 f z � ik . f k z .Ž . Ž . Ž . Ž .Ý�

	�

If we consider the usual differentiation, we have

�� ��
k	1 kˆ ˆf � z � kf k z � k � 1 f k � 1 z .Ž . Ž . Ž . Ž .Ý Ý

	� 	�

It follows that


 f z � izf � zŽ . Ž . Ž .�

ˆ ˆf � k � k � 1 f k � 1Ž . Ž . Ž .
�

ˆ
 f k � ikf k .Ž . Ž . Ž .�

˘� �Now, let s � � and P � � X . Define the operators P and t in the spaces
Ž . Ž .of families of complex sequences of numbers c � c where c � cn n n, k k

˘ Ž Ž . . Ž .with k � � by P.c � P k c and t .c � c . Then we have:n, k n, k s n, k�s n, k

˘� � Ž . Ž . Ž .PROPOSITION 3.2. Let s � � and P � � X . Then P � t .XX � � XX �s e e
˘Ž . Ž . Ž .and P � t . NN � � NN � .s e e

Ž . Ž .Proof. Let c � c � XX � . Let a � 1, r � 1, �� � � such thatn, k n, k e
� � n �2 	2 � k � Ž .c � a r for all k � � and n � ��. Setting d � d withn, k n n, k k

Ž . � � � Ž . � n �2 	2 � k�s �d � P k c , it follows that d � P k a r . According ton, k n, k�s n, k
� � � � � � � � � k �	 � k�s � � s � � �k 	 k � s � s and r � 1, we obtain r � r whence d �n, k
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� Ž . � 	� k�s � � k �	 � k�s � n �2 	 � k � Ž � Ž . � 	� k�s �� � s � 	n �2 . n 	 � k �P k r r a r � P k r a a r . Now, there
� Ž . � 	� k�s �� � s � 	n �2is � � �� such that for all n � � and k � �, P k r a � 1.

� � n 	 � k �Hence for all n � � and k � � we have d � a r showing thatn, k
Ž . Ž .d � XX � . The second part of the proposition can be proved in then n e
same way.

Ž .On a family f , the differential operators are defined componentwise.n n
Hence, the following corollary is a straightforward consequence of the
above proposition:

d Ž Ž .. Ž . Ž Ž .. Ž .COROLLARY 3.3. XX � � XX � and 
 XX � � XX � . The samee e � e edz
Ž .relations hold for NN � .e

3.2. The Algebra of Generalized Hyperfunctions on the Circle

DEFINITION 3.1. The algebra of generalized hyperfunctions on � is the
factor algebra

HH � � XX � �NN � .Ž . Ž . Ž .e e

Ž . Ž . Ž . � �The class of f in HH � will be denoted by cl f or f .n n n n

Ž .According to Corollary 3.3, we endow HH � with two differential struc-
tures defined by

d dfn� � � � � �f � and 
 f � 
 f .n � n � ndz dz

Let f , g � OO . We define the convolution of f and g byr

1
	1 	1f � g z � f w g zw w dw ,Ž . Ž . Ž . Ž .H2 i� � �w ��

Ž � � . Ž � �.where z � C and � verify sup 1�r, z �r � � � inf r, r z . It follows thatr

��
kˆf � g z � f k g k z .Ž . Ž . Ž . Ž .ˆÝ

	�

This above formula allows us to define S�T when S and T are hyperfunc-
tions:

��
kˆ ˆS�T z � S k T k z .Ž . Ž . Ž . Ž .Ý

	�

Ž . Ž . Ž .It follows that S� f � AA � if S � BB � and f � AA � . In the same way
Ž . Ž . Ž .S� f � EE � if S � EE � � and f � EE � .
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Ž . kIf n � � we set � z � Ý z . We have � �� � � andn � k � � n n n n
Ž . Ž .lim � �  in EE � � where  is the Dirac distribution. Let QQ �n�� n

ˆŽ . Ž .denote the subset of AA � which consists of functions f such that f k � 0
˜ � ˜� � Ž . Ž . Ž . Ž . Ž .for k large enough. We set XX � � XX �  QQ � and NN � � NN � e e e e

� ˜ ˜ ˜Ž . Ž . Ž . Ž .QQ � . Clearly XX � is an algebra and NN � is an ideal of XX � . Ife e e
ˆ kŽ . Ž .Ž . Ž .H � BB � , then H�� z � Ý H k z and lim H�� � H inn � k � � n n�� n

Ž . Ž . Ž . Ž . Ž .BB � . Consider the maps i : BB � � XX � and i : AA � � XX � defined0
Ž . Ž . Ž . Ž .by i H � H�� and i f � f , where f � f for all n.n n 0 n n n

PROPOSITION 3.4. i is a linear embedding and i is a one to one0
˜Ž Ž .. Ž . Ž Ž .. Ž .morphism of algebras such that i BB � � XX � and i AA � � XX � .e 0 e

Ž .More precisely, if H � BB � then for any a � 1 there exist r � 1, � � � such
� � n Ž . � �that H �� � a for n � �. If f � AA � , then there exist b � 0, 1 , r � 1,rn

� � nand � � � such that f 	 f �� � b for n � �.rn

Proof. The part of the proposition corresponding to i is obvious. Let0
Ž . 1�3H � BB � and choose a � 1. Take r � a . There is a constant C � 0

ˆ � k � ˆ� Ž . � � � � Ž . �such that H k � Cr for any k � �. For k � n one has H k �
Cr 2 nr	� k �. Further there exists � � � such that C � r n for n � � whence

ˆ 3n 	 � k � n 	 � k �� Ž . �we obtain H k � r r � a r for n � � and k � �. It follows that�
Ž Ž .. Ž . Ž .H�� k � XX � . Hence from Proposition 3.1, one obtains H��n n e n n

Ž . Ž .� XX � . Now let f � AA � and set f � f 	 f �� . We have f �e n n n
ˆ k ˆ 	� k �Ž . � Ž . �Ý f k z . Let r � 1 and C� � 0 such that f k � C�r for all� k � � n

	� k � 	n' � �k � � and set � � r . Since � � � for k � n, it follows that
ˆ 	n 	 � k � 	n �2� Ž . �f k � C�� � . Now there exists �� � � such that C�� � 1 forn

ˆ 	n �2 	 � k �� Ž . � � �all n � ��. Hence f k � � � for any n � � and any k � n.n
From this it is easily shown that the announced inequality holds.

This proposition leads straightforwardly to the following

Ž . Ž . Ž . Ž .COROLLARY 3.5. Let i : BB � � HH � and i : AA � � HH � . Then,0

� � � �H � H , f � fn

i is a linear embedding and i is a one to one morphism of algebras such that0
dH dŽ . Ž . Ž Ž ..i � � i . Moreo�er, for any H � BB � one has i � i H andQQŽ� . 0 dz dz

Ž . Ž Ž ..i 
 H � 
 i H .� �

Ž Ž .In the sequel, an element of i BB � will be referred to as a hyperfunc-
Ž . Ž . Ž .tion of HH � . By construction, the embedding of BB � in HH � shows that

˜Ž . Ž .any hyperfunction in HH � has a representative in XX � . In fact, this ise
valid for all generalized hyperfunctions.

Ž . Ž .PROPOSITION 3.6. Let � : � � �. Then f 	 f �� � NN � forn n � Žn. n e
Ž . Ž . Ž .all f � XX � , if and only if lim � n �n � �. Consequently, anyn n e n��

˜Ž .generalized hyperfunction has infinitely many representati�es in XX � .e
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Ž . Ž . Ž .Proof. Suppose that lim � n �n � �. Let f � XX � . There aren�� n n e
ˆ n 	 � k �� Ž . �a � 1, r � 1, and � � � such that f k � a r for n � � and k � �.n

n 	� Žn. 	 � k �ˆ' � � Ž . � Ž . �Set � � r . If n � � and k � � n , then f k � a � � �n
Ž 	� Žn.� n.n 	 � k � � � Ž .a� � . Let b � 0, 1 . Since lim � n �n � �, then there aren��

	� Žn.� n ˆ� Ž . ��� � �, �� 
 � such that a� � b for all n � ��. Hence f k �n
n 	 � k � � � Ž .b � for n � �� and k � � n , showing by use of Proposition 3.1 that

Ž . Ž . Ž .f 	 f �� � NN � . Conversely, suppose that f 	 f �� �n n � Žn. n e n n � Žn. n
ˆŽ . Ž . Ž . Ž . Ž . Ž .NN � for all f � XX � . Let a � 1 and f � XX � such that f k �e n n e n n n

n	 � k � Ž . Ž . 	s � �a . From Proposition 3.1, f � XX � . Let s � 0 and b � a � 0, 1 .n n e
Ž . Ž . n	 � k �Since f 	 f � f� � NN � , there are r � 1, � � � such that an n � Žn. n e

n 	 � k � Ž . Ž .� b r for n � � and k � � n . Taking k � � n � 1, it follows that
Ž . Ž .	s � 0, �� � �, 	n � �, � n �n � s. That is, lim � n �n � �.n��

˜Ž . Ž .This proposition shows the surjectivity of the map from XX � to HH �e
˜Ž .which associates to each element its class. From the definition of NN � ,e

this map is also injective, so we obtain:

˜ ˜Ž . Ž . Ž .COROLLARY 3.7. We ha�e HH � � XX � �NN � .e e

Ž . Ž . Ž .Remark 3.1. It may be seen that � � XX � if and only if � n �n� Žn. n e
is bounded.

3.3. Generalized Numbers of Exponential Type

Ž .Let SS be the set of complex valued sequences z . Such ann n� �

Ž . Ž .element will be simply denoted z . Let CC be set of z � SS such thatn n e n n

� � n�a � 1, �� � ��	n � � , z � a .n

Ž .We denote by II the set of elements z � CC such thate n n e

� � n� �	b � 0, 1 ,�� � ��	n � � , z � b .n

It may be seen that CC is a subalgebra of SS and that II is an ideal of CC .e e e

DEFINITION 3.2. The algebra of complex generalized constants of expo-
nential type, is the quotient algebra CC � CC �II .e e

We shall refer to an element of CC as a generalized number or a
generalized constant. Every complex number z is identified with a general-
ized number in a natural way. They will be referred to as classical
numbers. We denote by TT the subset of CC formed by the elements having
a representative where each term belongs to �.

Ž . Ž .Let f � HH � with a representative f . Let z � TT with a representa-n n
Ž .tive z such that z � �. There exist a � 1, r � 1, and � � � such thatn n n

� � n � Ž . � nfor all n � �, f � a . It follows that f z � a for n � �, showingrn n n
Ž Ž .. Ž . Ž . Ž . Ž .that f z � CC . For � � XX � and y � CC , we set � y � 0 ifn n n e n n e n n e n n
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Ž . Ž .� is not defined at the point y . Now let � � NN and t � II . Letn n n n e n n e
� � Ž . � � � nb � 0, 1 . Choose a � 1, r 1 � 1, and � � � such that f � a forr Ž1.1 n

2 � � Ž .n � � and set b � b �a � 0, 1 . There exist r 2 � 1 and � � � such1 1 2
� � n � � n Ž .that t � b and � � b for n � � . Let � 
 max � , � such thatr Ž2.n 1 n 1 2 1 2

n Ž Ž . Ž . .2b � 1 for n � � and choose r such that 1 � r � min r 1 , r 2 , b � 1 .1
� � nFrom the condition r � b � 1, it follows that z � t � C when t � b .1 n n r n 1

Ž .Ž . Ž . Ž .Taking n � � and writing f � � z � t 	 f z � f z � t 	n n n n n n n n n
Ž . Ž . � Ž . Ž . � � � � � � � �f z � � z � t , we find f z � t 	 f z � t f � � �r rn n n n n n n n n n n n n
nŽ n . 2 n n �Ž .Ž .�b a � 1 � 2b � b . It follows that the equality f � � z � t �1 n n n n

� Ž .�f z holds in CC. This enables us to give the followingn n

Ž .DEFINITION 3.3. Let f � HH � and z � TT. The value of f at z is the
Ž . � Ž .� Ž . Ž .generalized number f z � f z where f and z are arbitraryn n n n n n

representatives of f and z, respectively.

Ž . Ž . Ž .Let f � HH � . Let f and g denote two representatives of f. Wen n n n
have

1 1
	k	1 	k	1f z z dz 	 g z z dzŽ . Ž .H Hn n2 i� 2 i�� � � �z �1 z �1

� �� sup f z 	 g z .Ž . Ž .n n
z��

Ž . Ž . Ž � Ž . Ž . �.From f 	 g � NN � , it follows that cl sup f z 	 g z � II ,n n n e z � � n n e
1 1	k	1 	k	1Ž Ž . . Ž Ž . .whence cl H f z z dz � cl H g z z dz . This leads� z ��1 n � z ��1 n2 i� 2 i�

to the following

DEFINITION 3.4. The Fourier coefficient of rank k of the generalized
hyperfunction f is the generalized number

1
	k	1f̂ k � cl f z z dz ,Ž . Ž .H nž /2 i� � �z �1

Ž .where f is an arbitrary representative of f.n n

Ž .PROPOSITION 3.8. Let f � HH � .

Ž . Ž .i f admits a primiti�e in HH � with respect to 
 if and only if�

Ž̂ .f 0 � 0.
Ž . Ž .ii f admits a primiti�e in HH � with respect to d�dz if and only if

Ž̂ .f 	1 � 0.

Ž . Ž . Ž .Proof. Since i and ii are equivalent, it is sufficient to prove ii . Let
ˆŽ . Ž . Ž .f � HH � . Suppose that f 	1 � 0. Let f be a representative of f.n n� �ˆŽ . Ž . Ž . Ž . Ž .Define F by F k � f k � k � 1 if k � 	1 and F 	1 � 0. It isn n n n n
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�
�Ž . Ž . � � Ž . Žclear that F � XX � ; set F � F . Moreover, since F k � k �n n e n n�

� ˆ. Ž . Ž .1 F k , the only nonzero Fourier coefficient of f 	 F is f 	1n n n n�
� ˆ ˆŽ . Ž . Ž .	 F 	1 � f 	1 . Hence, from f 	1 � 0 and Proposition 3.1, we findn n

Ž .F� � f. Conversely, suppose that there is F � HH � such that F� � f. Set
� � � � Ž � . Ž . � �F � F and f � f . Since F 	 f � NN � , for all b � 0, 1 there aren n n n n e�

n 	 � k �ˆ�Ž . Ž . Ž . �r � 1, � � � such that k � 1 F k 	 f k � b r for all k � � andn n
ˆ ˆŽ Ž .. Ž .all n � �. Taking k � 	1, we obtain f 	1 � II , that is, f 	1 � 0.n n e

3.4. In�ertible Elements

Let CC* denote the subset of invertible elements of CC. Then we have the
following characterisation of CC*:

THEOREM 3.9. Let x � CC. Then x � CC* if and only if x admits a
Ž .representati�e x such thatn n

� � n� ��b � 0, 1 ,�� � ��	n � � , x � b . �Ž .n

Ž .Proof. First, the condition � doesn’t depend on the chosen represen-
Ž . Ž . Ž .tative x . Let y denote another representative of x. From � , theren n n n

� � n � �are b , � � � such that x � b for n � � . Let b � 0, b . Since1 1 n 1 1 1
Ž . � � nx 	 y � II , there is � � � such that x 	 y � b for n � � . Letn n n e 2 n n 2

Ž . � � � � � �	1� 
 max � , � . If n � �, then x � 0, and 1 	 y �x � x 	 y x1 2 n n n n n n
Ž .n� bb . Since bb � 1, we may suppose that � is large enough for1 1

� � � � � �y �x � 1�2 when n � �. It follows that if n � �, then y � x �2 
n n n n
Ž .n Ž . Ž .b �2 , showing that y fulfills � . Now, let z � 0 if x � 0 and1 n n n n

Ž . � �z � 1�x if x � 0. Clearly z � CC . Set z � z . Since x z � 1 forn n n n n e n n n
n large enough, it follows that xz � 1, proving that x � CC*. Conversely,

	1 � � � �suppose that x � CC*. Let z � x and set x � x , y � y . Sincen n
Ž .x z � 1 as n � � and z � CC , there are a � 1 and � � � such thatn n n n e

� � � � n � � Ž 	1 .nx z � 1�2 and z � a for n � �. It follows that x � a �2 
n n n n
	1 nŽ . Ž . Ž .a �2 . Hence x fulfills � .n n

Ž .We now characterize invertible elements of HH � .

Ž .THEOREM 3.10. An element f � HH � is in�ertible if and only if it admits
Ž .a representati�e f such thatn n

� � n� ��b � 0, 1 , � r � 1, �� � ��	n � � , f � OO , inf f z � b . ��Ž . Ž .n r n
z�Cr

Ž .Proof. First we show that the condition �� is independent on the
Ž . Ž .choice of the representative f . Let h denote another representativen n n n

� � � Ž . � nof f. Let b � 0, 1 , r � 1, � � � such that inf f z � b for1 1 1 z � C n 1r
Ž . Ž .n � � . Set b � b �2. Since f 	 h � NN � , there are r � 1 and1 1 n n n e
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� � n� � � such that r � r , � 
 � , and f 	 h � b for n � �. It followsr1 1 n n
� Ž . Ž . � nthat for any z � C and n � �, we have f z 	 h z � b whencer n n

n � Ž . � � Ž . � n n nb � inf f z � inf h z � b if n � �. Since b � 2b for1 z � C n z � C n 1r r
� Ž . � n Ž .n � �, we have inf h z � b for n � � showing that h fulfillsz � C n n nr

Ž . Ž . Ž .�� . Now suppose that f satisfies �� and let f denote a representa-n n
� � � Ž . � ntive of f. Let b � 0, 1 , r � 1, � � � such that inf f z � b forz � C nr	1 � �n � �. Set g � f if n � � and g � 1 otherwise. We have g �rn n n n

Ž � Ž . �.	1 Ž .n Ž . . Ž .inf f z � 1�b for n � � proving that g � XX � . Hencez � C n n n er

f is invertible with f	1 � g. Conversely, suppose that f is invertible and
� � 	1 � � Ž .set f � f , g � f � g . Let a � 1, r 1 � 1, and � � � such thatn n 1

� � n � �g � O , g � a for n � � . From fg � 1, for any b � 0, 1 therer Ž1.n r Ž1. n 1
Ž . �are r � 1, � � � with r � r 1 , � � � such that f g � OO and f g 	1 n n r n n

� n � Ž . � � Ž . � n1 � b for all n � �. Hence we have f z g z � 1 	 b for z � Cr n n r
� � � Ž . � nand n � � whence g inf f z 
 1 	 b if n � �. It follows thatrn z � C nrn n n� Ž . � Ž .Ž . Ž .inf f z 
 1 	 b 1�a � 1�2 a for n large enough.z � C nr

We obtain straightforwardly the following

Ž . Ž .COROLLARY 3.11. f � HH* � if and only if f admits a representati�e fn n
for which there is r � 1 such that f � OO for n large enough and such thatn r
Ž � Ž . �.cl inf f z � CC*.z � C nr

Ž . Ž .In the sequel we denote by HH* � the set of invertible elements of HH � .

3.5. A Vanishing Theorem

� �Like in many algebras of Colombeau type 2, 3 , there are generalized
functions which vanish at each classical point without being the zero

Ž . ŽŽ 2 . . � � ŽŽ 2function. In our case, let � � 1 and set u z � z 	 1 �2 z exp n zn
2. . � Ž . Ž . '	 1 �2 z . We first show that u � XX � . Let 1 � � � 3�2 andn n e

� � � Ž . � ŽŽ 2 . . � � ŽŽ 2 . .2 �1�� � z � �. We have u z � � � 1 �2 � exp n � z 	 1 �2 zn
4 4 42 2 2 2ŽŽ . . Ž .Ž � � . � � � �and we find that � z 	 1 �2 z � z � z z � 1 	 4 z �8 z . Set

4 4 4 42 2 2Ž .Ž � � . � � Ž � � . � �z � x � iy. Then z � z z � 1 	 4 z � 2 x z � 1 	 4 z � 2 x
� � 4 Ž .2 � � Ž 2 .	 z � 	 x 	 y � 0. It follows that u � � � 1 �2 � showing�n
Ž . Ž . � �that u � XX � . Let u � u . A simple calculation shows that if � � �,n n e n

Ž i� . Ž � 2 .then u e � i sin � exp 	n sin � . Since � � 1, then, if sin � � 0, forn
� � Ž � 2 . nall b � 0, 1 there exists � � � such that exp 	n sin � � b for n � �.

Ž .One deduces that u z � 0 for all z � �. It may also be seen that
� Ž i� . � Ž � .	1�2sup u e � 2 en . Then, for all r � 1 and all n � 0 we have� � � n

� � Ž � .	1�2u � OO and u 
 2 en , proving that u � 0.rn r n
We now give sufficient conditions, based on pointvalues, for a general-

ized hyperfunction to be zero. We start by the following

Ž .DEFINITION 3.5. Let f � HH � . Then f is said to �anish analytically at a
Ž . Ž .point � � �, if f admits a representative f � XX � such that for anyn n e



VINCENT VALMORIN12

� �b � 0, 1 there are � � 0, � � 0, and � � � such that 	m � �, 	n � �,
� Žm.Ž . � m nf � � �� m!b .n

Ž .This definition does not depend on the chosen representative f . If hn n
is a holomorphic function in a neighborhood of some C and m � �,r
� � C , then we have from the Cauchy formular

m! h z dz h z dzŽ . Ž .
Žm.h � � 	 .Ž . H Hm� 1 m�12 i� � � � �z �r z �1�rz 	 � z 	 �Ž . Ž .

It follows that

m
� � � �r � � r �

Žm.� � � �h � � m! h .Ž . rž / ž /� � � �r 	 � r 	 �

Ž . Ž .Consequently if g � f � � with � � NN � , we find for � � OO andn n n n n e n r
m � �,

mr � 1 r
Žm. Žm.� � � � � �g � � f � � m! h .Ž . Ž . rn n ž /ž /r 	 1 r 	 1

� � � �Let b � 0, 1 . There are r � 1, � � � such that � � OO and � �r1 n r n
Ž .nb�2 for n � � . From the definition, there are � � 0, � � 0, � � �1 2

� Žm.Ž . � m Ž .n Ž Žsuch that f � � �� m! b�2 for n � � . Taking � � max �, r �n 2
. Ž .. Ž Ž .. Ž . � Žm.Ž . �1 � r 	 1 , � � max �, r� r 	 1 , � � max � , � , we find g � �1 2 n

�� mm!bn for n � �.
Ž . Ž .Let f � HH � vanish analytically at � � �. We denote by � f , � the

lower bound of the set of constants � � 0 for which there exists a
Ž .representative f of f satisfying the conditions of Definition 3.5.n n

Ž . Ž .THEOREM 3.12. Let f � HH � �anish analytically at � � �. If � f , �
1� , then f � 0.Ž .� e 	 1

1Ž . Ž .Proof. Suppose that � f , � � and let f denote a represen-Ž . n n� e 	 1

tative of f satisfying the conditions of Definition 3.5. Keeping the nota-
tions of Definition 3.5, we may suppose that there exists r � 1 such that

Ž . Ž .f � OO for all n � �. Let � � r 	 1 �r. Since D � , � � C , we haven r 1 1 r
Ž .for z � D � , � and n � �,1

� Žm.f �Ž .n m
f z � z 	 a .Ž . Ž .Ýn m!m�0
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Ž .It follows that if k � �, z � D � , � and n � �, then1

� Žm�k .f �Ž .n mŽk .f z � z 	 � .Ž . Ž .Ýn m!m�0

Ž .Hence, we have for z � D � , � and n � �,1

� m� k� m � k !Ž .
Žk . n m� �f z � �b � ,Ž . Ýn 1m!m�0

� m � k !Ž . mŽk . k n� �f z � �� k!b �� .Ž . Ž .Ýn 1m!k!m�0

For m � 0 and k � 0, we have from Stirling’s formula,
m� k�1�2m � k ! m � kŽ . Ž .

� C. ,m� 1�2 k�1�2m!k! m k

Ž .m�k�1�2 m�1�2 k�1�2for some constant C. Writing m � k �m k �
k m m � km k 1�2Ž . Ž . Ž .1 � 1 � , it follows thatm k mk

m� k�1�2 'm � k 2Ž .
m� k� e .m� 1�2 k�1�2 1�4m k mkŽ .

Consequently there is a constant C� � 0 such that for all k � �, one has
�

mkŽk . n� �f z � C� e� k!b e�� .Ž . Ž . Ž .Ýn 1
m�0

ŽŽ .	1 Ž . .Hence, if we take � � min e� , r 	 1 �r , then there is C � 0 such1 1
that

mŽk . n� �	z � D � , � , 	n � � , 	m � �, f z � C e� m!b .Ž . Ž . Ž .1 n 1

i� i�Ž . � �Let z � �  D � , � and set z � e , � � e with � , � � 0, 2� . Since1
� 	 � iŽ��� .�2Ž . � �z 	 � � 2 i sin e and z 	 � � � , it follows that � 	 � �12

Ž . i� ��2 arcsinŽ �1 �2.� i� �	2 arcsinŽ �1 �2.��2 arcsin � �2 . Let z � e and z � e .1 1 2
From the above inequalities we find that

mŽk . n� �f z � C e� m!b , i � 1, 2; m � �, n � � .Ž . Ž .n i 1

Moreover, any point of a neighborhood of the arc of � delimited by z and1
z verifies the above inequality, and the length of such an arc is2

Ž . ŽŽ 2 .	1 Ž . .4 arcsin � �2 . In the same way, if � � min e � , r 	 1 �r , then1 2
there is C� � 0 such that2

mŽk . 2 n� �	z � D z , � , i � 1, 2; 	m � �, 	n � � , f z � C e � m!b .Ž . Ž . Ž .i 2 n i 2
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It follows that the above inequality holds on a neighborhood of an arc of �
� Ž . Ž .� �of length 4 arcsin � �2 � arcsin � �2 , where the constant C is re-1 2 2

Ž � .placed by C � max C , C . Repeating this process j times, we obtain2 1 2
C � 0 such that for all z in a neighborhood of an arc of � of lengthj

� Ž . Ž .� Ž i .	1l � 4 arcsin � �2 � ��� �arcsin � �2 , 0 � � � e� , we havej 1 j i

mŽk . j n� �	m � �, 	n � � , f z � C e � m!b .Ž . Ž .n j

In order that the above inequality holds for all the points of a neighbor-
hood of �, it suffices that there exists j 
 1 such that l 
 2� . Hence it isj

�Ž .	1 Ž j .	1 �sufficient to have 4 e� � ��� � e � � 2� for some j 
 1; that is,
1	jŽ . Ž . Ž .� � 1 	 e �� e 	 1 . Since � f , � � , we can choose �Ž .� e 	 1

1� . Therefore such an j exists proving the theorem.Ž .� e 	 1

3.6. A Differential Problem

We are concerned with the following Cauchy problem,

I u� � fu � gu2 � 0; u z � � ,Ž . Ž .0

Ž . Ž .where f , g � HH � , z � �, and � � CC*. We seek a solution u � HH* � .0
We start with the following two lemmas:

Ž . Ž . Ž Ž .. Ž .LEMMA 3.13. Let � � XX � . Then exp � � XX � if and only if :n n e n n e

P �� � 0, � r � 1, �� � �, 	n � � , sup �� � � � n.Ž . Ž .Ž .n
��Cr

Ž . Ž . Ž .If � fulfills the condition P , then the same holds for � � � for alln n n n n
Ž . Ž . Ž Ž . Ž .. Ž .� � NN � . Moreo�er exp � � � 	 exp � � NN � . Therefore ifn n e n n n n e

� � � � � Ž .�� � � , one may define e as e � exp � .n n

Ž . Ž .Proof. Let � � XX � . Let r � 1 such that � � OO . Then then n e n r
� Ž .�first part of the lemma follows from the equality exp � �rn

Ž Ž Ž ... Ž Ž Ž . Ž ...exp sup �� � . If � , � � OO , then sup � � � � � � �� � C n n n r � � C n nr r
Ž Ž .. � � Ž� � . Ž . Žsup �� � � � , and since � � NN � , it follows that � �r r� � C n n n n e nr

. Ž . � Ž . � � � Ž � �. Ž Ž .� � XX � . From exp � 	 1 � � exp � , we derive that exp � 	n n e n n n n
. Ž . Ž . Ž . Ž .Ž Ž . .1 � NN � . Writing exp � � � 	 exp � � exp � exp � 	 1 andn e n n n n n

Ž Ž .. Ž . Ž Ž . Ž ..according to exp � � XX � , one obtains exp � � � 	 exp � �n n e n n n n
Ž .NN � .e

Ž .LEMMA 3.14. For any � � HH � , there exists � � CC* such that � � � �
Ž .HH* � .

Ž .Proof. Let � denote a representative of � . Then, there exist a � 1,n n
� � nr � 1, and � � � such that � � a for n � �. Let � � CC* with arn
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Ž . � �representative � such that � � 0 for n � � and set � � � � � .rn n n n n n
Ž . � Ž . � � � � �Clearly � � CC and inf � � � � 
 � 	 � � � for n � �.rn n e � � C n n n n nr

Ž . � �Since � � CC*, it follows that � � � � HH* � , where � � � .n

THEOREM 3.15. Suppose that

Ž .H f admits a primiti�e F with respect to d�dz ha�ing a representati�e1
Ž .F such thatn n

� ��� � 0, � r � 1, �� � ��	n � � , � F C � 	� n , � n ,Ž .n r

Ž . 	FH ge admits a primiti�e G with respect to d�dz,2

Ž . 	1 	F Ž z0 . Ž . Ž .H G � � e 	 G z � HH* � .3 0

Ž . Ž .Then, the problem I admits a solution u � HH* � .

Ž .Proof. According to Lemma 3.13, it follows from H that we can1
define e	F and e F. Then, ge	F is a well defined generalized hyperfunction

F ˆŽ . Ž .and H means that g is of the form g � he where h 	1 � 0. Now, set2
� � � � 	1 	F Ž z0 . Ž .g � g , G � G , and � � � e 	 G z . The differential equa-n n 0

Ž . Ž .	1 	Ftion of the problem I being of Bernoulli type, we set u � G � � e .
Ž .According to Lemma 3.14, the condition H makes sense and u is then3

Ž . Ž .well defined. Moreover u � HH* � . Let us verify that u is a solution to I .
Ž .	2 	2 F Ž .	1 	F 2We have u� � 	g G � � e 	 f G � � e , that is, u� � fu � gu

Ž .� 0. Further, taking in account the definition of �, we find u z � �.0
Ž . Ž .Hence u is a solution to I in HH* � .
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