Castelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings

Max Joachim Nitsche
Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany

A R T I C L E I N F O

Article history:

Received 8 August 2011
Available online 21 June 2012
Communicated by Bernd Ulrich

MSC:

primary 13D45
secondary $13 F 45$

Keywords:

Castelnuovo-Mumford regularity
Eisenbud-Goto conjecture
Reduction number
Affine semigroups
Seminormal rings
Full Veronese rings

A B S TRACT

We show that the Eisenbud-Goto conjecture holds for (homogeneous) seminormal simplicial affine semigroup rings. Moreover, we prove an upper bound for the Castelnuovo-Mumford regularity in terms of the dimension, which is similar as in the normal case. Finally, we compute explicitly the regularity of full Veronese rings.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let K be a field, and let $R=K\left[x_{1}, \ldots, x_{n}\right]$ be a standard graded polynomial ring, that is, all variables x_{i} have degree 1 . Let M be a finitely generated graded R-module. By $H_{R_{+}}^{i}(M)$ we denote the i th local cohomology module of M with respect to the homogeneous maximal ideal R_{+}of R, and we set $a\left(H_{R_{+}}^{i}(M)\right):=\max \left\{r \mid H_{R_{+}}^{i}(M)_{r} \neq 0\right\}$ with the convention that $a(0)=-\infty$. The Castelnuovo-Mumford regularity (or regularity for short) reg M of M is defined by

$$
\operatorname{reg} M:=\max \left\{i+a\left(H_{R_{+}}^{i}(M)\right) \mid i \geqslant 0\right\}
$$

[^0]The regularity reg M is an important invariant, for example, the i th syzygy module of M can be generated by elements of degree smaller or equal to reg $M+i$. Moreover, one can use the regularity of a homogeneous ideal to bound the degrees in certain minimal Gröbner bases. For more information we refer to the paper of Eisenbud and Goto [1], and to Bayer and Stillman [2]. So it is natural to ask for bounds for the regularity of a homogeneous ideal I of R; note that reg $I=\operatorname{reg} R / I+1$. Denote by $\operatorname{codim} R / I:=\operatorname{dim}_{K}[R / I]_{1}-\operatorname{dim} R / I$ the codimension of R / I and by $\operatorname{deg} R / I$ its degree. An open conjecture is

Conjecture 1.1 (Eisenbud-Goto [1]). If K is algebraically closed and I is a homogeneous prime ideal of R, then

$$
\operatorname{reg} R / I \leqslant \operatorname{deg} R / I-\operatorname{codim} R / I
$$

By a result of Gruson, Lazarsfeld, and Peskine [3] Conjecture 1.1 holds if dim $R / I=2$. The CohenMacaulay case was proven by Treger [4], and the Buchsbaum case by Stückrad and Vogel [5,6]. Conjecture 1.1 also holds if $\operatorname{deg} R / I \leqslant \operatorname{codim} R / I+2$ by a result of Hoa, Stückrad, and Vogel [7], and in characteristic zero for smooth surfaces by Lazarsfeld [8] and for certain smooth threefolds by Ran [9]. Moreover, Giaimo [10] showed that the conjecture still holds for connected reduced curves.

Since the Eisenbud-Goto conjecture is widely open, it would be nice to prove it for more cases; in the following we will consider homogeneous simplicial affine semigroup rings. A semigroup is called affine if it is finitely generated and isomorphic to a submonoid of $\left(\mathbb{Z}^{m},+\right)$ for some $m \in \mathbb{N}^{+}$. Let B be an affine semigroup. The affine semigroup ring $K[B]$ associated to B is defined as the K-vector space with basis $\left\{t^{b} \mid b \in B\right\}$ and multiplication given by the K-bilinear extension of $t^{a} \cdot t^{b}=t^{a+b}$. Since B is an affine semigroup we have $G(B) \cong \mathbb{Z}^{m}$ for some $m \in \mathbb{N}$; where $G(B)$ denotes the group generated by B. Hence $G(B) \otimes_{\mathbb{Z}} \mathbb{R}$ is a finite dimensional \mathbb{R}-vector space with canonical embedding $G(B) \subseteq G(B) \otimes \mathbb{Z} \mathbb{R}$ given by $x \mapsto x \otimes 1$. We say that B is simplicial if the corresponding cone $C(B)$ is generated by linearly independent elements, where $C(X):=\left\{\sum_{i=1}^{k} r_{i} x_{i} \mid k \in \mathbb{N}^{+}, r_{i} \in \mathbb{R}_{\geqslant 0}, x_{i} \in X\right\}$ for $X \subseteq G(B) \otimes_{\mathbb{Z}} \mathbb{R}$. An element $x \in B$ is called a unit if $-x \in B$. We say that B is positive if 0 is its only unit. In this case, the Hilbert basis $\operatorname{Hilb}(B)$, that is, the set of irreducible elements of B, is a unique minimal generating set of B; an element $x \in B$ is called irreducible if it is not a unit and if for $x=y+z$ with $y, z \in B$ it follows that y or z is a unit. Moreover, we say that B is homogeneous if B is positive and there is a positive \mathbb{Z}-grading on $K[B]$ in which every t^{b} for $b \in \operatorname{Hilb}(B)$ has degree 1. See [11, Chapter 2]. In the following we will assume that B is homogeneous. We will always consider the above \mathbb{Z}-grading on $K[B]$, moreover, by reg $K[B]$ we mean the regularity of $K[B]$ with respect to the canonical R-module structure which is induced by the homogeneous surjective K-algebra homomorphism

$$
\pi: R=K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K[B],
$$

given by $x_{i} \mapsto t^{a_{i}}$; where $\operatorname{Hilb}(B)=\left\{a_{1}, \ldots, a_{n}\right\}$. Hence $R / \operatorname{ker} \pi \cong K[B]$, where $\operatorname{ker} \pi$ is a homogeneous prime ideal of R. In case that B is simplicial we will also call $K[B]$ a simplicial affine semigroup ring.

By extending the ground field if necessary, (the inequality in) Conjecture 1.1 holds for $K[B]$ in particular if $\operatorname{dim} K[B]=2$, if $K[B]$ is Buchsbaum, and if $\operatorname{deg} K[B] \leqslant \operatorname{codim} K[B]+2$. The conjecture also holds if codim $K[B]=2$ by Peeva and Sturmfels [12] and for simplicial affine semigroup rings with isolated singularity by Herzog and Hibi [13]. In [14, Theorem 3.2], Hoa and Stückrad presented a very good bound for the regularity of simplicial affine semigroup rings, moreover, they provided some cases where Conjecture 1.1 holds. However, the Eisenbud-Goto conjecture is still widely open even for simplicial affine semigroup rings. In the case that B is simplicial and seminormal (see Definition 3.1) we can confirm the Eisenbud-Goto conjecture for $K[B]$, we obtain the following:

Main result (Theorem 3.12, Theorem 3.16). Let K be an arbitrary field and let B be a homogeneous affine semigroup. If B is simplicial and seminormal, then

$$
\operatorname{reg} K[B] \leqslant \min \{\operatorname{dim} K[B]-1, \operatorname{deg} K[B]-\operatorname{codim} K[B]\}
$$

This result is more or less well known if B is normal (see Definition 3.1), since $K[B]$ is CohenMacaulay in this case; see [15, Theorem 1], [11, Theorem 6.10], and Remark 3.9. In fact, $K[B]$ is not necessary Buchsbaum if B is simplicial and seminormal, see Example 3.3. To prove Conjecture 1.1 in the seminormal simplicial case we will use an idea of Hoa and Stückrad, namely, one can decompose $K[B]$ into a direct sum of certain monomial ideals and compute reg $K[B]$ in terms of the regularity of the ideals. This becomes even more powerful in the seminormal case, since seminormality can be characterized in terms of the decomposition by a result of Li [16].

In Section 2 we will recall the decomposition of simplicial affine semigroup rings. Moreover, we will introduce sequences with $*$-property which will be useful to prove the main result in Section 3. Finally, we will compute explicitly the Castelnuovo-Mumford regularity of full Veronese rings in Section 4. We set $M_{d, \alpha}:=\left\{\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{N}^{d} \mid \sum_{i=1}^{d} u_{i}=\alpha\right\}$ where $d, \alpha \in \mathbb{N}^{+}$, moreover, we define $B_{d, \alpha}$ to be the submonoid of $\left(\mathbb{N}^{d},+\right)$ which is generated by $M_{d, \alpha}$. In Theorem 4.2 we will show that $\operatorname{reg} K\left[B_{d, \alpha}\right]=\left\lfloor d-\frac{d}{\alpha}\right\rfloor$. For a general consideration of seminormal rings we refer to [17,18], and for unspecified notation to [11,19].

2. Basics

In the following we will assume that the homogeneous affine semigroup B is simplicial, that is, we assume that there are linearly independent elements $e_{1}, \ldots, e_{d} \in C(B)$ such that $C(B)=$ $C\left(\left\{e_{1}, \ldots, e_{d}\right\}\right)$. Without loss of generality we may assume that $e_{1}, \ldots, e_{d} \in \operatorname{Hilb}(B)$. Consider the \mathbb{R} vector space isomorphism $\varphi: \operatorname{span}\left(\left\{e_{1}, \ldots, e_{d}\right\}\right) \rightarrow \mathbb{R}^{d}$ where e_{i} is mapped to the element in \mathbb{N}^{d} all of whose coordinates are zero except the i th coordinate which is equal to α for some $\alpha \in \mathbb{N}^{+}$, that is, $\varphi\left(e_{i}\right)=(0, \ldots, 0, \alpha, 0, \ldots, 0)$. By construction we have $\varphi(B) \subseteq \mathbb{R}_{\geqslant 0}^{d}$, since $C(B)=C\left(\left\{e_{1}, \ldots, e_{d}\right\}\right)$, hence $\varphi(B) \subseteq \mathbb{Q}_{\geqslant 0}^{d}$ by the Gaussian elimination. Thus, by choosing a suitable α we may assume that $\varphi(\operatorname{Hilb}(B)) \subset \mathbb{N}^{d}$, or equivalently, $\varphi(B) \subseteq \mathbb{N}^{d}$. The affine semigroup $\varphi(B)$ is again homogeneous, it follows that the coordinate sum of all elements of $\varphi(\operatorname{Hilb}(B))$ is equal to α, see [11, Proposition 2.20]. The isomorphism $B \cong \varphi(B)$ of semigroups induces an isomorphism of \mathbb{Z}-graded rings $K[B] \cong K[\varphi(B)]$. This enables us to identify a homogeneous simplicial affine semigroup B with its image $\varphi(B)$ in \mathbb{N}^{d}. Thus, we may assume that B is the submonoid of $\left(\mathbb{N}^{d},+\right)$ which is generated by a set $\left\{e_{1}, \ldots, e_{d}, a_{1}, \ldots, a_{c}\right\} \subseteq M_{d, \alpha}$, where

$$
e_{1}:=(\alpha, 0, \ldots, 0), \quad e_{2}:=(0, \alpha, 0, \ldots, 0), \quad \ldots, \quad e_{d}:=(0, \ldots, 0, \alpha) .
$$

Let $a_{i}=\left(a_{i[1]}, \ldots, a_{i[d]}\right)$; since $\alpha \in \mathbb{N}^{+}$can be chosen to be minimal, we may assume that the integers $a_{i[j]}, i=1, \ldots, c, j=1, \ldots, d$, are relatively prime. Moreover, we assume that $c \geqslant 1$, since the case $c=0$ is not relevant in our context. Note that K is an arbitrary field, $\operatorname{dim} K[B]=d$, and $\operatorname{codim} K[B]=$ c. Our notation tries to follow the notation in [14].

By $x_{[i]}$ we denote the i th component of x and $\operatorname{deg} x:=\left(\sum_{j=1}^{d} x_{[j]}\right) / \alpha$, for $x \in G(B)$. We define $A:=\left\langle e_{1}, \ldots, e_{d}\right\rangle$ to be the submonoid of B generated by e_{1}, \ldots, e_{d}, and we set

$$
B_{A}:=\{x \in B \mid x-a \notin B \forall a \in A \backslash\{0\}\} .
$$

Note that B_{A} is finite. Moreover, if $x \notin B_{A}$ then $x+y \notin B_{A}$ for all $x, y \in B$. We define $x \sim y$ if $x-y \in$ $G(A)=\alpha \mathbb{Z}^{d}$, thus, \sim is an equivalence relation on $G(B)$. Every element of $G(B)$ is equivalent to an element of $G(B) \cap D$, where $D:=\left\{\left(x_{[1]}, \ldots, x_{[d]}\right) \in \mathbb{Q}^{d} \mid 0 \leqslant x_{[i]}<\alpha \forall i\right\}$ and for all $x, y \in G(B) \cap D$ with $x \neq y$ we have $x \nsim y$. Hence the number of equivalence classes $f:=\#(G(B) \cap D)$ on $G(B)$ is finite. Every element of B is by construction equivalent to an element of B_{A}. Moreover, for arbitrary $x, y \in B$ we have $x-y \sim x+(\alpha-1) y \in B$, hence there are also f equivalence classes on B and on B_{A}. By $\Gamma_{1}, \ldots, \Gamma_{f}$ we denote the equivalence classes on B_{A}. For $t=1, \ldots, f$ we define

$$
h_{t}:=\left(\min \left\{m_{[1]} \mid m \in \Gamma_{t}\right\}, \min \left\{m_{[2]} \mid m \in \Gamma_{t}\right\}, \ldots, \min \left\{m_{[d]} \mid m \in \Gamma_{t}\right\}\right) .
$$

Note that $x-h_{t} \in A$ for all $x \in \Gamma_{t}$. This shows that $h_{t} \in G(B) \cap \mathbb{N}^{d}$. Let $T:=K\left[y_{1}, \ldots, y_{d}\right]$ be a standard graded polynomial ring, that is, all variables y_{i} have degree 1 . We define $\tilde{\Gamma}_{t}:=\left\{y^{\left(x-h_{t}\right) / \alpha} \mid x \in \Gamma_{t}\right\}$, where $u / \alpha:=\left(u_{[1]} / \alpha, \ldots, u_{[d]} / \alpha\right)$ and $y^{u}:=y_{1}^{u_{[1]}} \cdot \ldots y_{d}^{u_{[d]}}$ for $u=\left(u_{[1]}, \ldots, u_{[d]}\right) \in \mathbb{N}^{d}$. We obtain $\tilde{\Gamma}_{t} \subset T$, and therefore $I_{t}:=\tilde{\Gamma}_{t} T$ is a monomial ideal in T for all $t=1, \ldots, f$. It follows that ht $I_{t} \geqslant 2$ (height), since gcd $\tilde{\Gamma}_{t}=1$. See [14, Section 2]. By [14, Proposition 2.2(i)] we obtain

$$
\begin{equation*}
K[B] \cong \bigoplus_{t=1}^{f} I_{t}\left(-\operatorname{deg} h_{t}\right) \tag{2.1}
\end{equation*}
$$

as \mathbb{Z}-graded T-modules (the T-module structure on $K[B]$ is induced by $T \cong K[A] \subseteq K[B], y_{i} \mapsto t^{e_{i}}$). Hence $\operatorname{deg} K[B]=f$. Denote by $K[B]_{+}$and T_{+}the homogeneous maximal ideals of $K[B]$ and T. Using [20, Theorem 13.1.6] twice, we get $a\left(H_{R_{+}}^{i}(K[B])\right)=a\left(H_{K[B]_{+}}^{i}(K[B])\right)=a\left(H_{T_{+}}^{i}(K[B])\right)$. Thus,

$$
\begin{equation*}
\operatorname{reg} K[B]=\max \left\{\operatorname{reg} I_{t}+\operatorname{deg} h_{t} \mid t=1, \ldots, f\right\}, \tag{2.2}
\end{equation*}
$$

where reg I_{t} denotes the regularity of I_{t} as a \mathbb{Z}-graded T-module; see also [14, Proposition 2.2(ii)]. This shows that the regularity of $K[B]$ is independent of K for $\operatorname{dim} K[B] \leqslant 5$ by [21, Corollary 1.4].

Remark. This decomposition can be computed by using the Macaulay2 [22] package MonomialAlgebRas [23], which has been developed by Janko Böhm, David Eisenbud, and the author. In this package we consider the case of affine semigroups $Q^{\prime} \subseteq Q \subseteq \mathbb{N}^{d}$ such that $K[Q]$ is finite over $K\left[Q^{\prime}\right]$; the implemented algorithm decomposes the ring $K[Q]$ into a direct sum of monomial ideals in $K\left[Q^{\prime}\right]$. There is also an algorithm implemented computing reg $K[Q]$ in the homogeneous case, moreover, there are functions available testing the Buchsbaum, Cohen-Macaulay, Gorenstein, normal, and the seminormal property in the simplicial case. Note that this decomposition works more general, for more information we refer to [24].

Definition 2.1. For an element $x \in B$ we say that a sequence $\lambda=\left(b_{1}, \ldots, b_{n}\right)$ has $*$-property if $b_{1}, \ldots, b_{n} \in\left\{e_{1}, \ldots, e_{d}, a_{1}, \ldots, a_{c}\right\}$ and $x-b_{1} \in B, x-b_{1}-b_{2} \in B, \ldots, x-\left(\sum_{j=1}^{n} b_{j}\right) \in B$; we say that the length of λ is n. Let $\lambda=\left(b_{1}, \ldots, b_{n}\right)$ be a sequence with $*$-property of x; we define $x(\lambda, i):=x-\left(\sum_{j=1}^{i} b_{j}\right)$ for $i=1, \ldots, n$, and $x(\lambda, 0):=x$. By Λ_{x} we denote the set of all sequences with $*$-property of x with length $\operatorname{deg} x$, with the convention that $\Lambda_{0}:=\emptyset$.

By construction we have $\Lambda_{x} \neq \emptyset$ for all $x \in B \backslash\{0\}$. The definition of a sequence with $*$-property is motivated to control the degree of $K[B]$, the second assertion in Lemma 2.3 illustrates the usefulness of this construction. For elements $x, y \in G(B)$ we define $x \geqslant y$ if $x_{[k]} \geqslant y_{[k]}$ for all $k=1, \ldots, d$.

Remark 2.2. Let $\lambda=\left(b_{1}, \ldots, b_{n}\right)$ be a sequence with $*$-property of x. We get $x(\lambda, i) \geqslant x(\lambda, j)$ for $0 \leqslant i \leqslant j \leqslant n$. Moreover, we have $\operatorname{deg} x(\lambda, i)=\operatorname{deg} x-i$ for $i=0, \ldots, n$. Hence for $\lambda \in \Lambda_{x}$ we get $x(\lambda, \operatorname{deg} x)=0$.

Lemma 2.3. Let $x \in B_{A} \backslash\{0\}$ and $\lambda=\left(b_{1}, \ldots, b_{n}\right)$ be a sequence with $*$-property of x. Then:
(1) $x(\lambda, i) \in B_{A}$ for all $i=0, \ldots, n$.
(2) $x(\lambda, i) \nsim x(\lambda, j)$ for all $i, j \in \mathbb{N}$ with $0 \leqslant i<j \leqslant n$.

Proof. (1) Follows from construction since if $y \notin B_{A}$ then $y+z \notin B_{A}$ for all $y, z \in B$.
(2) Suppose to the contrary that $x(\lambda, i) \sim x(\lambda, j)$ for some $i, j \in \mathbb{N}$ with $0 \leqslant i<j \leqslant n$. We have $x(\lambda, i) \geqslant x(\lambda, j)$, hence

$$
x(\lambda, i)=x(\lambda, j)+\sum_{t=1}^{d} n_{t} e_{t}
$$

for some $n_{t} \in \mathbb{N}$. Since $\operatorname{deg} x(\lambda, i)>\operatorname{deg} x(\lambda, j)$ we get that $n_{t}>0$ for some $t \in\{1, \ldots, d\}$. Thus, $x(\lambda, i)-e_{t} \in B$ and therefore $x(\lambda, i) \notin B_{A}$ which contradicts claim (1).

Remark 2.4. Let $x \in B_{A} \backslash\{0\}$ and $\lambda=\left(b_{1}, \ldots, b_{n}\right)$ be a sequence with $*$-property of x. Suppose that $b_{j} \in\left\{e_{1}, \ldots, e_{d}\right\}$ for some $j \in\{1, \ldots, n\}$. Hence $x-b_{j}=x(\lambda, n)+\sum_{k=1, k \neq j}^{n} b_{k} \in B$ which contradicts $x \in B_{A}$. This shows that $b_{1}, \ldots, b_{n} \in\left\{a_{1}, \ldots, a_{c}\right\}$.

Lemma 2.3 implies that $\operatorname{deg} x \leqslant \operatorname{deg} K[B]-1$ for all $x \in B_{A}$. This bound can be improved by using the following observation:

Remark 2.5. Consider the set $L=\left\{0, a_{1}, \ldots, a_{c}\right\}$, by construction $L \subseteq B_{A}$. Let $x \in L$ and $y \in B_{A}$ with $x \neq y$; suppose that $x \sim y$. Since $0 \leqslant x_{[i]}<\alpha$ for all $i=1, \ldots, d$, we have $y \geqslant x$. By a similar argument as in Lemma 2.3(2) we get $y \notin B_{A}$. This shows that $x \nsim y$.

We define $\mathrm{r}(K[B]):=\max \left\{\operatorname{deg} x \mid x \in B_{A}\right\}$ and we will call $\mathrm{r}(K[B])$ the reduction number of $K[B]$, see $[14$, pp. 129, 135]. By using $\operatorname{deg} K[B]=f$, see Eq. (2.1), the latter remark, and Lemma 2.3 one can show that

$$
\begin{equation*}
\mathrm{r}(K[B]) \leqslant \operatorname{deg} K[B]-\operatorname{codim} K[B] . \tag{2.3}
\end{equation*}
$$

We note that this equation was proved in $[14$, Theorem 1.1$]$. So whenever we have $\operatorname{reg} K[B]=$ $\mathrm{r}(K[B])$ the Eisenbud-Goto conjecture holds for $K[B]$. It should be mentioned that this property does not hold in general. Even for a monomial curve in \mathbb{P}^{3} the equality does not hold. For $B=\langle(40,0),(0,40),(35,5),(11,29)\rangle$ we get $\operatorname{reg} K[B]=13>11=r(K[B])$. Note that we always have $\mathrm{r}(K[B]) \leqslant \operatorname{reg} K[B]$ by Eq. (2.2).

Example 2.6. Consider the monoid $B=\langle(4,0),(0,4),(3,1),(1,3)\rangle$. We have

$$
B_{A}=\{(0,0),(3,1),(1,3),(6,2),(2,6)\},
$$

and therefore $r(K[B])=\max \{0,1,1,2,2\}=2$. We get

$$
\Gamma_{1}=\{(0,0)\}, \quad \Gamma_{2}=\{(3,1)\}, \quad \Gamma_{3}=\{(1,3)\}, \quad \Gamma_{4}=\{(6,2),(2,6)\}
$$

and $h_{1}=(0,0), h_{2}=(3,1), h_{3}=(1,3), h_{4}=(2,2)$. By this we obtain $I_{1}=I_{2}=I_{3}=T$ and $I_{4}=$ $\left(y_{1}, y_{2}\right) T$, hence

$$
\operatorname{reg} K[B]=\max \left\{\operatorname{reg} T+0, \operatorname{reg} T+1, \operatorname{reg} T+1, \operatorname{reg}\left(y_{1}, y_{2}\right) T+1\right\}=2
$$

Lemma 2.7. Let $x \in B_{A}, t \in \mathbb{N}^{+}, q \in\{1, \ldots, d\}$, and $x_{[q]}=t \alpha$. There exists $a \lambda \in \Lambda_{x}$ such that $(t-1) \alpha<$ $x(\lambda, 1)_{[q]}<t \alpha$.

Proof. Fix a $v=\left(b_{1}, \ldots, b_{\operatorname{deg} x}\right) \in \Lambda_{x}$. We have $x(\nu, \operatorname{deg} x)=0$ by Remark 2.2, and therefore there is a $k \in\{1, \ldots, \operatorname{deg} x\}$ with $b_{k[q]}>0$. Since $b_{k} \in\left\{a_{1}, \ldots, a_{c}\right\}$ by Remark 2.4 we get that $b_{k[q]}<\alpha$. The claim follows from the fact that $\left(b_{\sigma(1)}, \ldots, b_{\sigma(\operatorname{deg} x)}\right) \in \Lambda_{x}$ for every permutation σ of $\{1, \ldots, \operatorname{deg} x\}$, since $x=\sum_{j=1}^{\operatorname{deg} x} b_{j}$.

The next combinatorial lemma will be useful to prove the Eisenbud-Goto conjecture in the seminormal case in Theorem 3.16.

Lemma 2.8. Let $J \subseteq\{1, \ldots, d\}$ with $\# J \geqslant 1$, and let $x \in B_{A}$ such that $x_{[q]}=\alpha$ for all $q \in J$. There exists a $\lambda \in \Lambda_{x}$ with the property: for all $p=1, \ldots, \# J$ there is a $q \in J$ such that $0<x(\lambda, p)_{[q]}<\alpha$.

Proof. Using induction on $k \in \mathbb{N}^{+}$with $k \leqslant \# J$ as well as Lemma 2.7 we get a sequence $\lambda=$ $\left(b_{1}, \ldots, b_{\operatorname{deg} x}\right) \in \Lambda_{x}$ with the property: for all $p=1, \ldots, k$ there is a $q \in J$ such that $0<x(\lambda, p)_{[q]}<\alpha$. In case that $x(\lambda, k)_{[q]}=\alpha$ for some $q \in J$ we can use Lemma 2.7 to get a sequence with $*$-property $\left(g_{1}, \ldots, g_{\operatorname{deg} x(\lambda, k)}\right) \in \Lambda_{x(\lambda, k)}$ with $0<\left(x(\lambda, k)-g_{1}\right)_{[q]}<\alpha$, since $x(\lambda, k) \in B_{A}$ by Lemma 2.3. By construction it follows that

$$
\lambda^{\prime}=\left(b_{1}, \ldots, b_{k}, g_{1}, \ldots, g_{\operatorname{deg} x(\lambda, k)}\right) \in \Lambda_{\chi},
$$

with the property: for all $p=1, \ldots, k+1$ there is a $q \in J$ such that $0<x\left(\lambda^{\prime}, p\right)_{[q]}<\alpha$. Assume that $x(\lambda, k)_{[q]}<\alpha$ for all $q \in J$. Moreover, let us assume that $k+1 \leqslant \# J$. We clearly have $x(\lambda, k+$ $1_{[q]}<\alpha$ for all $q \in J$, that is, we need to show that $x(\lambda, k+1)_{[q]}>0$ for some $q \in J$. Suppose to the contrary that $x(\lambda, k+1)_{[q]}=0$ for all $q \in J$. Since $x(\lambda, k+1) \leqslant x$ and $\operatorname{deg} x(\lambda, k+1)=\operatorname{deg} x-(k+1) \geqslant$ $\operatorname{deg} x-\# J$ (see Remark 2.2) we get that $x(\lambda, k+1)=x-\left(\sum_{q \in J} e_{q}\right)$. This contradicts $x \in B_{A}$, since $x(\lambda, k+1) \in B$.

3. The seminormal case

There are two closely related definitions:
Definition 3.1. Let U be an affine semigroup.
(1) We call U normal if $x \in G(U)$ and $t x \in U$ for some $t \in \mathbb{N}^{+}$implies that $x \in U$.
(2) We call U seminormal if $x \in G(U)$ and $2 x, 3 x \in U$ implies that $x \in U$.

A domain S is called seminormal if for every element x in the quotient field $Q(S)$ of S such that $x^{2}, x^{3} \in S$ it follows that $x \in S$. Note that the ring $K[U]$ is seminormal if and only if U is seminormal. This was first observed by Hochster and Roberts in [25, Proposition 5.32], provided that $U \subseteq \mathbb{N}^{d}$. For a proof in the general affine semigroup case we refer to [11, Theorem 4.76]. A similar result holds in the normal case, see [15, Proposition 1] and [11, Theorem 4.40]. To get new bounds for the regularity of $K[B]$, we need another characterization. We define the set $\operatorname{Box}(B)$ by

$$
\operatorname{Box}(B):=\left\{x \in B \mid x_{[i]} \leqslant \alpha \forall i=1, \ldots, d\right\} .
$$

Theorem 3.2. (See [16, Theorem 4.1.1].) The simplicial affine semigroup B is seminormal if and only if B_{A} is contained in $\operatorname{Box}(B)$.

In the following we will prove the Eisenbud-Goto conjecture for $K[B]$ if B is seminormal. As discussed in the introduction the conjecture holds in the Cohen-Macaulay and Buchsbaum case. Recall that $K[B]$ is Cohen-Macaulay if B is normal. Moreover, $K[B]$ is Cohen-Macaulay if B is seminormal and $\operatorname{dim} K[B] \leqslant 3$, see $[26$, Theorem 2.2]. This is not true for $\operatorname{dim} K[B]>3$:

Example 3.3. Consider the monoid

$$
B=\left\langle e_{1}, \ldots, e_{4},(1,1,0,0),(1,0,1,0),(0,0,1,1),(0,1,0,1)\right\rangle \subset \mathbb{N}^{4}
$$

with $\alpha=2$. We have $B_{A} \subseteq \operatorname{Box}(B)$, thus, B is seminormal by Theorem 3.2. One can show that $(0,1,1,0)+e_{1},(0,1,1,0)+e_{4} \in B$, but $(0,1,1,0)+e_{3}=(0,1,3,0) \notin B$. Hence $K[B]$ is not Buchsbaum by [27, Lemma 3]. Let U be a seminormal positive affine semigroup. Note that $K[U]$ is CohenMacaulay if $K[U]$ is Buchsbaum by [28, Proposition 4.15].

In case that Γ_{t} is contained in $\operatorname{Box}(B)$ for some $t \in\{1, \ldots, f\}$ we get $\left(\left(x-h_{t}\right) / \alpha\right)_{[i]} \in\{0,1\}$ for all $x \in \Gamma_{t}$ and for all $i=1, \ldots, d$. Thus, I_{t} is a squarefree monomial ideal in T if $\Gamma_{t} \subseteq \operatorname{Box}(B)$. This shows that all ideals in the decomposition are squarefree in the seminormal case (see Theorem 3.2).

Lemma 3.4. Let $\Gamma_{t} \subseteq \operatorname{Box}(B)$ for some $t \in\{1, \ldots, f\}$ with $\Gamma_{t} \neq\{0\}$. Let $x, y \in \Gamma_{t}$, and let $i \in \mathbb{N}$ with $1 \leqslant i \leqslant d$. We have:
(1) If $x_{[i]} \neq y_{[i]}$, then $x_{[i]}-y_{[i]} \in\{-\alpha, \alpha\}$.
(2) If $0<x_{[i]}<\alpha$, then $x_{[i]}=y_{[i]}$.
(3) If $x_{[i]} \neq y_{[i]}$, then $x_{[i]} \in\{0, \alpha\}$ and $y_{[i]}=\alpha-x_{[i]}$.
(4) We have $0<x_{[j]}<\alpha$ and $0<x_{[k]}<\alpha$ for some $j, k \in\{1, \ldots, d\}$ with $j \neq k$.
(5) If $h_{t[i]}>0$, then $h_{t[i]}=x_{[i]}$.

Proof. (1) We have $x_{[i]}-y_{[i]} \in \alpha \mathbb{Z}$ and $x_{[i]}-y_{[i]} \in[-\alpha, \alpha]$, since $0 \leqslant x_{[i]} \leqslant \alpha$ and $0 \leqslant y_{[i]} \leqslant \alpha$. Hence $x_{[i]}-y_{[i]} \in\{-\alpha, \alpha\}$.
(2) We have $x_{[i]}-y_{[i]} \notin\{-\alpha, \alpha\}$ and therefore $x_{[i]}=y_{[i]}$ by claim (1).
(3) By claims (1) and (2) we have $x_{[i]}-y_{[i]} \in\{-\alpha, \alpha\}$ and $x_{[i]} \in\{0, \alpha\}$. Hence $y_{[i]}=\alpha-x_{[i]}$.
(4) Suppose to the contrary that $0<x_{[j]}<\alpha$ for exactly one $j \in\{1, \ldots, d\}$, that is, $x_{[]]} \in\{0, \alpha\}$ for all $l \in\{1, \ldots, d\} \backslash\{j\}$. Hence $\sum_{l=1}^{d} x_{[l]} \notin \alpha \mathbb{N}$ which contradicts $x \in B$. If $x_{[l]} \in\{0, \alpha\}$ for all $l=1, \ldots, d$ we have $x \sim 0$. Hence $0 \in \Gamma_{t}$, that is, $\Gamma_{t}=\{0\}$ which contradicts our assumption.
(5) We have $0<h_{t[i]} \leqslant x_{[i]} \leqslant \alpha$, hence $h_{t[i]}=x_{[i]}$, since $h_{t[i]}-x_{[i]} \in \alpha \mathbb{Z}$.

Remark 3.5. Consider an element $x \in \operatorname{Box}(B) \cap B_{A}$. Since $x_{[i]} \leqslant \alpha$ for all $i=1, \ldots, d$ we have $\operatorname{deg} x \leqslant d$. On the other hand there is only one element in $\operatorname{Box}(B)$ with degree d, that is, (α, \ldots, α), but $(\alpha, \ldots, \alpha) \notin B_{A}$. This shows that $\operatorname{deg} x \leqslant d-1$. By Theorem 3.2 we get $\mathrm{r}(K[B]) \leqslant d-1$ if B is seminormal. In Theorem 3.12 we obtain a similar bound for the regularity of $K[B]$ in the seminormal case.

Definition 3.6. For a monomial $m=y_{1}^{c_{1}} \cdot \ldots \cdot y_{d}^{c_{d}}$ in T we define $\operatorname{deg} m=\sum_{j=1}^{d} c_{j}$. Let I be a monomial ideal in T with minimal set of monomial generators $\left\{m_{1}, \ldots, m_{s}\right\}$. Let $F=y_{1}^{b_{1}} \cdot \ldots \cdot y_{d}^{b_{d}}$ be the least common multiple of $\left\{m_{1}, \ldots, m_{s}\right\}$. We define $\operatorname{var}(I):=\operatorname{deg} F$, moreover, we define the set $\operatorname{supp}(I) \subseteq$ $\{1, \ldots, d\}$ by $i \in \operatorname{supp}(I)$ if $b_{i} \neq 0$.

Remark 3.7. Let $t \in\{1, \ldots, f\}$; we note that $\tilde{\Gamma}_{t}$ is always a minimal set of monomial generators of I_{t}. Moreover, every monomial ideal in T has a unique minimal set of monomial generators. By construction we get that I_{t} is a proper ideal in T if and only if $\# \Gamma_{t} \geqslant 2$. Since ht $I_{t} \geqslant 2$ we have $\operatorname{var}\left(I_{t}\right) \neq 1$. Hence I_{t} is a proper ideal if and only if $\operatorname{var}\left(I_{t}\right) \geqslant 2$. Moreover, if I_{t} is a proper ideal, then $\operatorname{deg} h_{t} \geqslant 1$, since $h_{t} \in G(B) \cap \mathbb{N}^{d}$ and $h_{t} \neq 0$.

Consider the squarefree monomial ideal $I=\left(y_{1} y_{2}, y_{2} y_{5} y_{6}\right) T$ in $T=K\left[y_{1}, \ldots, y_{6}\right]$. We have $\operatorname{var}(I)=4$ and $\operatorname{supp}(I)=\{1,2,5,6\}$. So $\operatorname{supp}(I)$ is the set of indices of the variables which occur in the minimal generators of a monomial ideal I in T. Note that we always have $\operatorname{var}(I)=\# \operatorname{supp}(I)$ in the case that I is a squarefree monomial ideal. Hence $\operatorname{var}\left(I_{t}\right)=\# \operatorname{supp}\left(I_{t}\right)$ if $\Gamma_{t} \subseteq \operatorname{Box}(B)$ for some $t \in\{1, \ldots, f\}$.

Lemma 3.8. Let $\Gamma_{t} \subseteq \operatorname{Box}(B)$ for some $t \in\{1, \ldots, f\}$. Then

$$
\operatorname{var}\left(I_{t}\right) \leqslant d-1-\operatorname{deg} h_{t} .
$$

Proof. If $\# \Gamma_{t}=1$, then we get $\operatorname{var}\left(I_{t}\right)=0$ and $\operatorname{deg} h_{t} \leqslant d-1$ by Remark 3.5 . So we may assume that $\# \Gamma_{t} \geqslant 2$. Let $x \in \Gamma_{t}$; by Lemma $3.4(4)$ there are some $j, k \in\{1, \ldots, d\}$ with $j \neq k$ such that $0<$ $x_{[j]}, x_{[k]}<\alpha$. Hence $0<h_{t[j]}, h_{t[k]}<\alpha$, since $x-h_{t} \in A$. By Lemma 3.4(5) we get that $h_{t[q]}=0$ for all
$q \in \operatorname{supp}\left(I_{t}\right)$. We have $\# \operatorname{supp}\left(I_{t}\right)=\operatorname{var}\left(I_{t}\right)$, since I_{t} is squarefree. Let $J:=\{1, \ldots, d\} \backslash \operatorname{supp}\left(I_{t}\right)$; we get $j, k \in J$ and $h_{t[q]} \leqslant \alpha$ for all $q \in J$, and it follows that

$$
\operatorname{deg} h_{t}=\frac{1}{\alpha} \sum_{q \in J} h_{t[q]}<d-\# \operatorname{supp}\left(I_{t}\right)=d-\operatorname{var}\left(I_{t}\right)
$$

Remark 3.9. Consider a normal homogeneous affine semigroup U. One can show that reg $K[U] \leqslant$ $\operatorname{dim} K[U]-1$. This can be deduced from the proof of [29, Corollary 4.7] and [29, Corollary 3.8], and the fact that $K[U]$ is Cohen-Macaulay by [15, Theorem 1] or [11, Theorem 6.10]. The next theorem obtains a similar bound for seminormal simplicial affine semigroup rings.

Definition 3.10. We define the set $\Gamma(B) \subseteq\left\{\Gamma_{1}, \ldots, \Gamma_{f}\right\}$ by $\Gamma_{t} \in \Gamma(B)$ for $t \in\{1, \ldots, f\}$ if reg $K[B]=$ $\operatorname{reg} I_{t}+\operatorname{deg} h_{t}$.

By Eq. (2.2) we obtain $\Gamma(B) \neq \emptyset$. Note that the ideals and shifts corresponding to the elements of $\Gamma(B)$ are computed by the function regularityMA in [23].

Proposition 3.11. Let $\Gamma_{t} \in \Gamma(B)$ for some $t \in\{1, \ldots, f\}$. If $\Gamma_{t} \subseteq \operatorname{Box}(B)$, then

$$
\operatorname{reg} K[B] \leqslant \operatorname{dim} K[B]-1 .
$$

Proof. We need to show that reg $I_{t}+\operatorname{deg} h_{t} \leqslant d-1$. In case that $\# \Gamma_{t}=1$ this follows from Remark 3.5. Assume that $\# \Gamma_{t} \geqslant 2$; by Lemma 3.8 we get

$$
\begin{equation*}
\operatorname{var}\left(I_{t}\right)-\text { ht } I_{t}+1 \leqslant d-1-\operatorname{deg} h_{t}-2+1=d-2-\operatorname{deg} h_{t}, \tag{3.1}
\end{equation*}
$$

since ht $I_{t} \geqslant 2$. Hence reg $I_{t}+\operatorname{deg} h_{t} \leqslant d-2$ by [30, Theorem 3.1] and Eq. (3.1).
By Theorem 3.2 and Proposition 3.11 we get the following theorem:
Theorem 3.12. If B is seminormal, then

$$
\operatorname{reg} K[B] \leqslant \operatorname{dim} K[B]-1 .
$$

Note that the bound established in Theorem 3.12 is sharp. Assume $\alpha \geqslant d$ in Theorem 4.2; we get $\operatorname{reg} K\left[B_{d, \alpha}\right]=d-1$ and of course $B_{d, \alpha}$ is seminormal. Consider $B=\langle(3,0,0),(0,3,0),(0,0,3),(2,1,0)$, $(1,0,2),(0,2,1),(1,1,1)\rangle$. One can show that $\Gamma_{t}=\{(2,2,2)\}$ for some t and therefore $\Gamma_{t} \subseteq \operatorname{Box}(B)$. Using Macaulay2 [22] we get $\operatorname{reg} K[B]=2$, hence $\Gamma_{t} \in \Gamma(B)$. Moreover, since $(4,2,0) \in B_{A}$ it follows that $K[B]$ is not seminormal by Theorem 3.2. Thus, the condition in Proposition 3.11 is not equivalent to B being seminormal.

Proposition 3.13. Let $\Gamma_{t} \in \Gamma(B)$ for some $t \in\{1, \ldots, f\}$. If $\Gamma_{t} \subseteq \operatorname{Box}(B)$ and $\operatorname{dim} K[B] \leqslant 5$, then

$$
\operatorname{reg} K[B]=\mathrm{r}(K[B]) .
$$

Proof. We have $\mathrm{r}(K[B]) \leqslant \operatorname{reg} K[B]$ by Eq. (2.2). We show that reg I_{t} is equal to the maximal degree of a generator of I_{t}. By this we get

$$
\operatorname{reg} K[B]=\operatorname{reg} I_{t}+\operatorname{deg} h_{t}=\max \left\{\operatorname{deg} x \mid x \in \Gamma_{t}\right\},
$$

and hence $\mathrm{r}(K[B])=\operatorname{reg} K[B]$. Keep in mind that I_{t} is squarefree. The case $\# \Gamma_{t}=1$ follows from construction. We therefore may assume that $\# \Gamma_{t} \geqslant 2$, or equivalently, $\operatorname{var}\left(I_{t}\right) \geqslant 2$; note that $\operatorname{deg} h_{t} \geqslant 1$, see Remark 3.7. Let $d \leqslant 3$; by Lemma 3.8 we get $\operatorname{var}\left(I_{t}\right) \leqslant 1$ which contradicts $\# \Gamma_{t} \geqslant 2$. Let $d=5$; by Lemma 3.8 we have to consider the cases $\operatorname{var}\left(I_{t}\right) \in\{2,3\}$. Suppose that $\operatorname{var}\left(I_{t}\right)=2$; the ideal I_{t} is of the form $I_{t}=\left(y_{k}, y_{l}\right) T$ for some $k, l \in\{1, \ldots, 5\}$ with $k \neq l$, since ht $I_{t} \geqslant 2$. It follows that reg $I_{t}=1$. By a similar argument we get the assertion for $d=4$ and $\operatorname{var}\left(I_{t}\right)=2$. Let $d=5$ and $\operatorname{var}\left(I_{t}\right)=3$. Since ht $I_{t} \geqslant 2$ the only ideals possible are

$$
I_{t_{1}}=\left(y_{k}, y_{l}, y_{m}\right) T, \quad I_{t_{2}}=\left(y_{k} y_{l}, y_{m}\right) T, \quad I_{t_{3}}=\left(y_{k} y_{l}, y_{k} y_{m}, y_{l} y_{m}\right) T
$$

for some $k, l, m \in\{1, \ldots, 5\}$ which are pairwise not equal. Using [30, Theorem 3.1] we obtain reg $I_{t_{1}}=$ 1 and reg $I_{t_{2}}=\operatorname{reg} I_{t_{3}}=2$ and we are done.

By Theorem 3.2 and Proposition 3.13 it follows that $\operatorname{reg} K[B]=r(K[B])$ if B is seminormal and $\operatorname{dim} K[B] \leqslant 5$. Thus, the Eisenbud-Goto conjecture holds in this case by Eq. (2.3). Theorem 3.16 will confirm the conjecture in any dimension in the seminormal case. Note that Proposition 3.13 could fail for $d \geqslant 6$. Let us consider the squarefree monomial ideal $I=\left(y_{1} y_{2}, y_{3} y_{4}\right) T$ with $\operatorname{var}(I)=4$. So $\operatorname{reg} I=3$ is bigger than the maximal degree of a generator of I which is 2 .

Lemma 3.14. Let $\Gamma_{t} \subseteq \operatorname{Box}(B)$ for some $t \in\{1, \ldots, f\}$. Let $n \in \Gamma_{t}$ and $m \in \tilde{\Gamma}_{t}$ such that $m=y^{\left(n-h_{t}\right) / \alpha}$. Then:
(1) $n_{[q]}=0$ for all $q \in \operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}(m T)$.
(2) $n_{[q]}=\alpha$ for all $q \in \operatorname{supp}(m T)$.

Proof. (1) Suppose that there is a $q \in\left(\operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}(m T)\right) \neq \emptyset$ such that $n_{[q]}>0$. Since $q \in \operatorname{supp}\left(I_{t}\right)$ we have $h_{t[q]}=0$ by Lemma 3.4(5), and therefore $n_{[q]}=\alpha$, because $h_{t[q]}-n_{[q]} \in \alpha \mathbb{Z}$ and $n_{[q]} \leqslant \alpha$. This implies $q \in \operatorname{supp}(m T)$ which is a contradiction.
(2) Let $q \in \operatorname{supp}(m T)$; we have $n_{[q]} \geqslant \alpha$. Moreover, we get $n_{[q]} \leqslant \alpha$, since $\Gamma_{t} \subseteq \operatorname{Box}(B)$.

The above lemma is false in general. For the monoid B in Example 2.6 we have $\Gamma_{4}=\{(6,2),(2,6)\}$, that is, $h_{4}=(2,2)$, and $\tilde{\Gamma}_{4}=\left\{y_{1}, y_{2}\right\}$. For $n \in \Gamma_{4}$ we get that $n_{[i]}>0$ for $i=1,2$. $\operatorname{But} \operatorname{supp}\left(I_{4}\right)=\{1,2\}$ and $\# \operatorname{supp}\left(y_{1} T\right)=\# \operatorname{supp}\left(y_{2} T\right)=1$. As a consequence of the next proposition the Eisenbud-Goto conjecture holds if B is seminormal.

Proposition 3.15. Let $\Gamma_{t} \in \Gamma(B)$ for some $t \in\{1, \ldots, f\}$. If $\Gamma_{t} \subseteq \operatorname{Box}(B)$, then

$$
\operatorname{reg} K[B] \leqslant \operatorname{deg} K[B]-\operatorname{codim} K[B] .
$$

Proof. By construction we need to show that reg $I_{t}+\operatorname{deg} h_{t} \leqslant \operatorname{deg} K[B]-c$. If $\# \Gamma_{t}=1$ the assertion follows from Eq. (2.3). Let $\# \Gamma_{t} \geqslant 2$, equivalently, I_{t} is a proper ideal, see Remark 3.7. We have $\Gamma_{t}=\left\{n_{1}, \ldots, n_{\# \Gamma_{t}}\right\}$ and $\tilde{\Gamma}_{t}=\left\{m_{1}, \ldots, m_{\# \Gamma_{t}}\right\}$; we may assume that $m_{i}=y^{\left(n_{i}-h_{t}\right) / \alpha}$. We set $J_{k}:=\left(m_{1}, \ldots, m_{k}\right) T$ and $g(k):=\operatorname{var}\left(J_{k}\right)-$ ht $J_{k}+1+\operatorname{deg} h_{t}$ for $k \in \mathbb{N}$ with $1 \leqslant k \leqslant \# \Gamma_{t}$. Note that $J_{\# I_{t}}=I_{t}$, moreover, J_{k} is a (proper) squarefree monomial ideal in T, since $\Gamma_{t} \subseteq \operatorname{Box}(B)$, hence $\operatorname{var}\left(J_{k}\right)=\# \operatorname{supp}\left(J_{k}\right)$. We show by induction on $k \in \mathbb{N}$ with $1 \leqslant k \leqslant \# \Gamma_{t}$ that there is a set L_{k} with the following properties:
(i) $L_{k} \subseteq B_{A}$.
(ii) $\# L_{k} \geqslant g(k)-1$.
(iii) $x \nsim y$ for all $x, y \in L_{k}$ with $x \neq y$.
(iv) $\operatorname{deg} x \geqslant 2$ for all $x \in L_{k}$.
(v) $x_{[q]}=0$ for all $x \in L_{k}$ and for all $q \in \operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}\left(J_{k}\right)$.

Let $k=1$. We have ht $J_{1}=1$ and $\operatorname{var}\left(J_{1}\right)+\operatorname{deg} h_{t}=\operatorname{deg} n_{1}$, that is, $g(1)=\operatorname{deg} n_{1}$. Fix a $\lambda \in \Lambda_{n_{1}}$ and set

$$
L_{1}:=\left\{n_{1}(\lambda, 0), \ldots, n_{1}\left(\lambda, \operatorname{deg} n_{1}-2\right)\right\}
$$

clearly $\# L_{1}=\operatorname{deg} n_{1}-1=g(1)-1$, hence (ii) is satisfied and by construction we get property (iv). By Lemma 2.3(1) $L_{1} \subseteq B_{A}$ which shows (i), and by Lemma 2.3(2) property (iii) holds. By Lemma 3.14(1) we get $n_{1}(\lambda, 0)_{[q]}=0$ for all $q \in \operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}\left(J_{1}\right)$, hence (v) holds by construction of L_{1}.

Using induction on $k \leqslant \# \Gamma_{t}-1$ the properties (i)-(v) hold for L_{k}. We define the set $J:=$ $\operatorname{supp}\left(m_{k+1} T\right) \backslash \operatorname{supp}\left(J_{k}\right)$. By Lemma 3.14(2) we get $n_{k+1[q]}=\alpha$ for all $q \in \operatorname{supp}\left(m_{k+1} T\right)$. Since $n_{k+1} \in B_{A}$ it follows that $\operatorname{deg} n_{k+1} \geqslant \# \operatorname{supp}\left(m_{k+1} T\right)+1$. Moreover, since $n_{k+1[q]}=\alpha$ for all $q \in J$ we can fix, by Lemma 2.8, a $\lambda \in \Lambda_{n_{k+1}}$ with the property: for all $p=1, \ldots$, \#J there is a $q \in J$ with $0<n_{k+1}(\lambda, p)_{[q]}<\alpha$. There could be two cases:

Case 1. $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right) \neq \emptyset\left(\right.$ e.g., $J_{2}=\left(y_{1}, y_{2} y_{3}\right) T$ and $\left.m_{3}=y_{3} y_{4}\right)$.
Set

$$
L_{k+1}:=L_{k} \cup\left\{n_{k+1}(\lambda, 1), \ldots, n_{k+1}(\lambda, \# J)\right\} .
$$

In case that $J=\emptyset$ we set $L_{k+1}:=L_{k}$.
(iii) By induction we get $x \nsim y$ for all $x, y \in L_{k}$ with $x \neq y$, moreover, $n_{k+1}(\lambda, i) \nsim n_{k+1}(\lambda, j)$ for all $i, j \in \mathbb{N}$ with $0 \leqslant i<j \leqslant \operatorname{deg} n_{k+1}$ by Lemma 2.3(2). Fix an $x \in L_{k}$ and let $p \in\{1, \ldots, \# J\}$. By (v) $x_{[q]}=0$ for all $q \in J$, moreover, there is a $q \in J$ such that $0<n_{k+1}(\lambda, p)_{[q]}<\alpha$, hence $x \nsim n_{k+1}(\lambda, p)$. Thus, property (iii) is satisfied. This also shows that $\# L_{k+1}=\# L_{k}+\# J$.
(i) By Lemma 2.3(1) $n_{k+1}(\lambda, 1), \ldots, n_{k+1}(\lambda, \# J) \in B_{A}$, since $n_{k+1} \in B_{A}$.
(iv) Since $\# \operatorname{supp}\left(m_{k+1} T\right) \geqslant \# J+1$ we obtain $\operatorname{deg} n_{k+1} \geqslant \# J+2$. Hence (iv) holds by construction.
(v) By induction $x_{[q]}=0$ for all $x \in L_{k}$ and for all $q \in\left(\operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}\left(J_{k}\right)\right) \supseteq\left(\operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}\left(J_{k+1}\right)\right)$. By Lemma 3.14(1) we have $n_{k+1[q]}=0$ for all $q \in\left(\operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}\left(m_{k+1} T\right)\right) \supseteq\left(\operatorname{supp}\left(I_{t}\right) \backslash \operatorname{supp}\left(J_{k+1}\right)\right)$, hence property (v) holds by construction.
(ii) Since $\operatorname{supp}\left(J_{k+1}\right)=\operatorname{supp}\left(J_{k}\right) \cup \operatorname{supp}\left(m_{k+1} T\right)$ we get that $\operatorname{var}\left(J_{k+1}\right)=\operatorname{var}\left(J_{k}\right)+\# J$. We have ht $J_{k+1} \geqslant h t J_{k}$ and therefore

$$
\begin{aligned}
g(k+1)-1 & \leqslant \# J+\operatorname{var}\left(J_{k}\right)-\text { ht } J_{k}+1+\operatorname{deg} h_{t}-1=\# J+g(k)-1 \\
& \leqslant \# J+\# L_{k}=\# L_{k+1} .
\end{aligned}
$$

Case 2. $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right)=\emptyset$ (e.g., $J_{2}=\left(y_{1}, y_{2} y_{3}\right) T$ and $\left.m_{3}=y_{4} y_{5}\right)$.
Note that $J=\operatorname{supp}\left(m_{k+1} T\right)$, in particular, $\# J \geqslant 1$. Set

$$
L_{k+1}:=L_{k} \cup\left\{n_{k+1}(\lambda, 1), \ldots, n_{k+1}(\lambda, \# J-1)\right\} .
$$

In case that $\# J=1$ we set $L_{k+1}:=L_{k}$.
(iii), (i), (iv), (v) Analogously, replace \#J by \#J - 1 in the corresponding proofs in the first case. Moreover, $\# L_{k+1}=\# L_{k}+\# J-1$ by construction.
(ii) We also have $\operatorname{var}\left(J_{k+1}\right)=\operatorname{var}\left(J_{k}\right)+\# J$. Since $\operatorname{supp}\left(J_{k}\right) \cap \operatorname{supp}\left(m_{k+1} T\right)=\emptyset$ we get that $m_{k+1}+$ J_{k} is a non-zero divisor of T / J_{k}. Hence ht $J_{k+1}=$ ht $J_{k}+1$ by Krull's Principal Ideal Theorem (see, for example, [19, Theorem 10.1]), and therefore

$$
\begin{aligned}
g(k+1)-1 & =\# J+\operatorname{var}\left(J_{k}\right)-\text { ht } J_{k}-1+1+\operatorname{deg} h_{t}-1=\# J+g(k)-2 \\
& \leqslant \# J+\# L_{k}-1=\# L_{k+1}
\end{aligned}
$$

By this we obtain a set $L_{\# \Gamma_{t}}$ with the above properties, in particular

$$
\begin{equation*}
\# L_{\# \Gamma_{t}} \stackrel{(i i)}{\geqslant} g\left(\# \Gamma_{t}\right)-1=\operatorname{var}\left(I_{t}\right)-\text { ht } I_{t}+1+\operatorname{deg} h_{t}-1 \tag{3.2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\# L_{\# \Gamma_{t}} \geqslant \operatorname{reg} I_{t}+\operatorname{deg} h_{t}-1, \tag{3.3}
\end{equation*}
$$

by [30, Theorem 3.1] and Eq. (3.2). We get a set

$$
L:=L_{\# \Gamma_{t}} \cup\left\{0, a_{1}, \ldots, a_{c}\right\}
$$

with $L \subseteq B_{A}$ such that $x \nsim y$ for all $x, y \in L$ with $x \neq y$ by (i), (iii), and Remark 2.5. Since $\operatorname{deg} K[B]=f$, see Eq. (2.1), we have

$$
\operatorname{deg} K[B] \geqslant \# L \stackrel{(\mathrm{iv})}{=} \# L_{\# \Gamma_{t}}+c+1 \stackrel{(3.3)}{\geqslant} \operatorname{reg} I_{t}+\operatorname{deg} h_{t}+c=\operatorname{reg} K[B]+c
$$

We obtain from Theorem 3.2 and Proposition 3.15 the following main result:

Theorem 3.16. If B is seminormal, then

$$
\operatorname{reg} K[B] \leqslant \operatorname{deg} K[B]-\operatorname{codim} K[B] .
$$

Note that the bound of Theorem 3.16 is again sharp. For $d=2$ and $\alpha \geqslant 2$ we get that reg $K\left[B_{2, \alpha}\right]=$ $\left\lfloor 2-\frac{2}{\alpha}\right\rfloor=1$ and $\operatorname{deg} K\left[B_{2, \alpha}\right]-\operatorname{codim} K\left[B_{2, \alpha}\right]=\alpha-(\alpha+1)+2=1$, see Section 4.

4. Regularity of full Veronese rings

For $X, Y \subseteq \mathbb{N}^{d}$ we define $X+Y:=\{x+y \mid x \in X, y \in Y\}, n X:=X+\cdots+X$ (n times), and $0 X:=0$. Recall that $\overline{B_{d, \alpha}}$ denotes the submonoid of $\left(\mathbb{N}^{d},+\right)$ which is generated by $M_{d, \alpha}=\left\{\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{N}^{d} \mid\right.$ $\left.\sum_{i=1}^{d} u_{i}=\alpha\right\}$. For example $B_{2,2}=\langle(2,0),(0,2),(1,1)\rangle$. We have

$$
\begin{equation*}
n M_{d, \alpha}=\left\{\left(u_{1}, \ldots, u_{d}\right) \in \mathbb{N}^{d} \mid \sum_{i=1}^{d} u_{i}=n \alpha\right\} \tag{4.1}
\end{equation*}
$$

hence there is an isomorphism of K-vector spaces: $K\left[B_{d, 1}\right]_{n \alpha} \cong K\left[B_{d, \alpha}\right]_{n}$. It is a well-known fact that $h_{K\left[B_{d, 1}\right]}(n)=\binom{n+d-1}{d-1}$, where h_{M} denotes the Hilbert polynomial. This shows that $h_{K\left[B_{d, \alpha}\right]}(n)=$ $h_{K\left[B_{d, 1}\right]}(n \alpha)=\binom{n \alpha+d-1}{d-1}$ and therefore $\operatorname{deg} K\left[B_{d, \alpha}\right]=\alpha^{d-1}$. Moreover, we get $\operatorname{codim} K\left[B_{d, \alpha}\right]=$ $\binom{\alpha+d-1}{d-1}-d$, since $\# M_{d, \alpha}=\binom{\alpha+d-1}{d-1}$. The semigroups $B_{d, \alpha}$ are normal, hence the ring $K\left[B_{d, \alpha}\right]$ is Cohen-Macaulay by [15, Theorem 1] and therefore $\# \Gamma_{t}=1$ for all $t=1, \ldots, f$, see [31, Theorem 6.4]. It follows that

$$
\begin{equation*}
\operatorname{reg} K\left[B_{d, \alpha}\right]=\mathrm{r}\left(K\left[B_{d, \alpha}\right]\right) \tag{4.2}
\end{equation*}
$$

by Eq. (2.2). In the following we will compute the reduction number $\mathrm{r}\left(K_{\left[B_{d, \alpha}\right]}\right)$ which can also be computed by

$$
\mathrm{r}\left(K\left[B_{d, \alpha}\right]\right)=\min \left\{r \in \mathbb{N} \mid r M_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}=(r+1) M_{d, \alpha}\right\},
$$

see [14, pp. 129, 135].

Lemma 4.1. Let $r \in \mathbb{N}$. The following assertions are equivalent:
(1) $r M_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}=(r+1) M_{d, \alpha}$.
(2) $(r+1) \alpha>d(\alpha-1)$.

Proof. (1) \Rightarrow (2) Assume that $0 \leqslant(r+1) \alpha \leqslant d(\alpha-1)$. There is an element $x \in \mathbb{N}^{d}$ with $x_{[j]} \leqslant \alpha-1$ for all $j=1, \ldots, d$ and $\sum_{j=1}^{d} x_{[j]}=(r+1) \alpha$. We have $x \in(r+1) M_{d, \alpha}$ by Eq. (4.1). Suppose that $x \in r M_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$; we get $x=x^{\prime}+e_{j}$ for some $x^{\prime} \in \mathbb{N}^{d}$ and some $j \in\{1, \ldots, d\}$ which contradicts $x_{[j]} \leqslant \alpha-1$. Hence $x \notin r M_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$.
(2) \Rightarrow (1) Let $x \in(r+1) M_{d, \alpha}$. Suppose that $x_{[j]} \leqslant \alpha-1$ for all $j=1, \ldots, d$. We get $(r+1) \alpha=$ $\sum_{j=1}^{d} x_{[j]} \leqslant d(\alpha-1)$. Thus, $x_{[j]} \geqslant \alpha$ for some $j \in\{1, \ldots, d\}$ and therefore $x-e_{j} \in r M_{d, \alpha}$ by Eq. (4.1). Hence $(r+1) M_{d, \alpha} \subseteq r M_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$, that is, $(r+1) M_{d, \alpha}=r M_{d, \alpha}+\left\{e_{1}, \ldots, e_{d}\right\}$ and we are done.

Theorem 4.2. We have

$$
\operatorname{reg} K\left[B_{d, \alpha}\right]=\left\lfloor d-\frac{d}{\alpha}\right\rfloor .
$$

Proof. By Eq. (4.2) we need to show that $\mathrm{r}\left(K\left[B_{d, \alpha}\right]\right)=\left\lfloor d-\frac{d}{\alpha}\right\rfloor$. We get

$$
\left(\left\lfloor d-\frac{d}{\alpha}\right\rfloor+1\right) \alpha>\left(d-\frac{d}{\alpha}\right) \alpha=d(\alpha-1)
$$

and therefore $\mathrm{r}\left(K\left[B_{d, \alpha}\right]\right) \leqslant\left\lfloor d-\frac{d}{\alpha}\right\rfloor$ by Lemma 4.1. We may assume that $\left\lfloor d-\frac{d}{\alpha}\right\rfloor \geqslant 1$. We have

$$
\left(\left\lfloor d-\frac{d}{\alpha}\right\rfloor-1+1\right) \alpha \leqslant\left(d-\frac{d}{\alpha}\right) \alpha=d(\alpha-1)
$$

hence $\mathrm{r}\left(K\left[B_{d, \alpha}\right]\right)>\left\lfloor d-\frac{d}{\alpha}\right\rfloor-1$ by Lemma 4.1 and we are done.
Example 4.3. By Theorem 4.2 we are able to compute the regularity of full Veronese rings. For $B_{20,2}$ we get reg $K\left[B_{20,2}\right]=\left\lfloor 20-\frac{20}{2}\right\rfloor=10$. Moreover, we have $\operatorname{deg} K\left[B_{20,2}\right]-\operatorname{codim} K\left[B_{20,2}\right]=$ $2^{19}-\binom{2+19}{19}+20=524098$.

Acknowledgments

The author would like to thank Jürgen Stückrad and Lê Tuân Hoa for many helpful discussions.

References

[1] D. Eisenbud, S. Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1) (1984) 89-133.
[2] D. Bayer, M.E. Stillman, A criterion for detecting m-regularity, Invent. Math. 87 (1) (1987) 1-11.
[3] L. Gruson, R. Lazarsfeld, C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (3) (1983) 491-506.
[4] R. Treger, On equations defining arithmetically Cohen-Macaulay schemes. I, Math. Ann. 261 (2) (1982) 141-153.
[5] J. Stückrad, W. Vogel, Castelnuovo bounds for certain subvarieties in \mathbb{P}^{n}, Math. Ann. 276 (2) (1987) 341-352.
[6] J. Stückrad, W. Vogel, Castelnuovo bounds for locally Cohen-Macaulay schemes, Math. Nachr. 136 (1988) 307-320.
[7] L.T. Hoa, J. Stückrad, W. Vogel, Towards a structure theory for projective varieties of degree $=$ codimension +2 , J. Pure Appl. Algebra 71 (2-3) (1991) 203-231.
[8] R. Lazarsfeld, A sharp Castelnuovo bound for smooth surfaces, Duke Math. J. 55 (2) (1987) 423-429.
[9] Z. Ran, Local differential geometry and generic projections of threefolds, J. Differential Geom. 32 (1) (1990) 131-137.
[10] D. Giaimo, On the Castelnuovo-Mumford regularity of connected curves, Trans. Amer. Math. Soc. 358 (1) (2006) $267-284$.
[11] W. Bruns, J. Gubeladze, Polytopes, Rings, and K-Theory, Springer Monogr. Math., Springer, New York, 2009.
[12] I. Peeva, B. Sturmfels, Syzygies of codimension 2 lattice ideals, Math. Z. 229 (1) (1998) 163-194.
[13] J. Herzog, T. Hibi, Castelnuovo-Mumford regularity of simplicial semigroup rings with isolated singularity, Proc. Amer. Math. Soc. 131 (9) (2003) 2641-2647.
[14] L.T. Hoa, J. Stückrad, Castelnuovo-Mumford regularity of simplicial toric rings, J. Algebra 259 (1) (2003) 127-146.
[15] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. 96 (2) (1972) 318-337.
[16] P. Li, Seminormality and the Cohen-Macaulay property, PhD thesis, Queen's University, Kingston, Canada, 2004.
[17] R.G. Swan, On seminormality, J. Algebra 67 (1) (1980) 210-229.
[18] C. Traverso, Seminormality and Picard group, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 24 (1970) 585-595.
[19] D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry, Grad. Texts in Math., vol. 150, Springer, New York, 1995.
[20] M.P. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math., vol. 60, Cambridge University Press, Cambridge, 1998.
[21] W. Bruns, J. Herzog, Semigroup rings and simplicial complexes, J. Pure Appl. Algebra 122 (3) (1997) 185-208.
[22] D.R. Grayson, M.E. Stillman, Macaulay2, a software system for research in algebraic geometry, available at: http://www. math.uiuc.edu/Macaulay2/.
[23] J. Böhm, D. Eisenbud, M.J. Nitsche, MonomialAlgebras, a Macaulay2 package to compute the decomposition of positive affine semigroup rings, available at: http://www.math.uni-sb.de/ag/schreyer/jb/Macaulay2/MonomialAlgebras/html/.
[24] J. Böhm, D. Eisenbud, M.J. Nitsche, Decomposition of semigroup algebras, Experiment. Math., in press, preprint available at: http://arxiv.org/abs/1110.3653, 2011.
[25] M. Hochster, J.L. Roberts, The purity of the Frobenius and local cohomology, Adv. Math. 21 (2) (1976) 117-172.
[26] P. Li, L.G. Roberts, Cohen-Macaulay and seminormal affine semigroups in dimension three, submitted for publication, available at: http://www.mast.queensu.ca/~pingli/aboutme.html, 2010.
[27] N.V. Trung, Classification of the double projections of Veronese varieties, J. Math. Kyoto Univ. 22 (4) (1983) 567-581.
[28] W. Bruns, P. Li, T. Römer, On seminormal monoid rings, J. Algebra 302 (1) (2006) 361-386.
[29] L.T. Hoa, N.V. Trung, Affine semigroups and Cohen-Macaulay rings generated by monomials, Trans. Amer. Math. Soc. 298 (1) (1986) 145-167.
[30] L.T. Hoa, N.V. Trung, On the Castelnuovo-Mumford regularity and the arithmetic degree of monomial ideals, Math. Z. 229 (3) (1998) 519-537.
[31] R.P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1) (1978) 57-83.

[^0]: E-mail address: nitsche@mis.mpg.de.
 0021-8693/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jalgebra.2012.05.004

