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Abstract

q-Functions provide a method for constructing topological measures. We give necessary a
ficient conditions for a composition of aq-function and a topological measure to be a topolog
measure. Regular and extreme stepq-functions are characterized by certain regions inR

n. Then
extremeq-functions are used to study extreme topological measures. For example, we prove
some assumptions on the underlying set) that givenn, there are different types of extreme topologi
measures with values 0,1/n, . . . ,1. In contrast, in the case of measures the only extreme point
{0,1}-valued, i.e., point masses.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Topological measures (previously called quasi-measures) are set functions that g
ize regular Borel measures. The corresponding functionals, called quasi-linear funct
respectively generalize linear functionals in that they are only assumed to be line
singly generated subalgebras ofC(X). This paper deals with the extreme points of
space of topological measures and some construction techniques.
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In the next section we give some basic results and examples. The third section dea
q-functions. They provide a way of constructing new topological measures and som
an alternative description of topological measures obtained by other techniques, s
by image transformations. We give necessary and sufficient conditions for a compo
of a q-function and a topological measure to be a topological measure. Uniform an
treme stepq-functions are completely characterized by certain regions inn-dimensional
Euclidean space. In the last section we study extreme points of the space of all topo
measures on a given set. In the case of measures, the only extreme points are{0,1}-valued,
i.e., point masses. In the space of topological measures for each naturaln there are extrem
topological measures that assume values 0,1/n, . . . ,1. More precisely, givenn, one can
find infinitely many finite sets of different cardinalities each of which defines an ext
topological measure with values 0,1/n, . . . ,1. For a certain class of underlying spac
(which includes all of our basic examples) we prove necessary and sufficient cond
for a composition of an extremeq-function and a topological measure to give an extre
topological measure.

2. Preliminaries

Let X be a compact Hausdorff space. LetC(X) (respectivelyO(X)) denote the collec
tion of closed (respectively open) subsets ofX, andA(X) = C(X) ∪O(X). A topological
measureonX is a functionµ :A(X) → R

+ such that:

(i) µ(
⊔n

i=1 Ai) = ∑n
i=1 µ(Ai) (

⊔
indicates disjoint union, and allAi and

⊔n
i=1 Ai are

assumed to be inA(X)).
(ii) µ(U) = sup{µ(C): C ⊆ U,C ∈ C(X)} for all U ∈O(X).

From (i) and (ii) it also follows that topological measures are monotone. Topolo
measures are also countably additive: ifA = ⊔∞

i=1 Ai , whereA,Ai (i = 1,2, . . .) ∈A(X),
then µ(A) = ∑∞

i=1 µ(Ai). (See [8].) While topological measures resemble Borel m
sures, they need not be subadditive. Later we will give examples of topological me
that are not restrictions of Borel measures to the collectionA(X). A positive topological
measure has a (necessarily unique) extension to a regular Borel measure onX if and only if
for any open setsU andV we haveµ(U ∪ V ) � µ(U) + µ(V ) (see [11]). The class of a
normalized topological measures onX (i.e., topological measures satisfying the condit
µ(X) = 1) will be denoted byTM(X).

The definition of a topological measure deals with closed and open sets. Often w
restrict our attention to solid sets. A set issolid if it and its complement are both connecte
For example, letX be a square,D be a disk inside the square, andC be the boundary ofD,
a circle. ThenD is a solid set, whileC is not, since the setX \C is disconnected. We sha
denote closed solid (respectively open solid) subsets ofX by Cs(X) (respectivelyOs(X)),
andAs(X) = Cs(X) ∪Os(X).

We are interested in spaces with genus 0, in which case we writeg(X) = 0. For a precise
definition of genus see [3]. Any simply connected space has genus 0. In fact, it was

in [9] that for any spaceX with the cohomology moduleH 1(X) = 0 we haveg(X) = 0.
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In particular, the unit square inRn, n � 2, and the unit sphere inRn, n � 3, have genus 0
We call a compact, Hausdorff, connected, locally connected space with genus 0 aq-space.
In this paperX is aq-space unless otherwise stated.

Definition 2.1. A solid set function on aq-spaceX is a functionµ :As(X) → [0,1] such
that

(1) if C1 � · · · � Cn ⊆ C, C,C1, . . . ,Cn ∈ Cs(X), then
∑n

i=1 µ(Ci) � µ(C);
(2) µ(U) = sup{µ(C): C ⊆ U, C ∈ Cs(X)} for U ∈ Os(X);
(3) µ(U) + µ(X \ U) = 1 for U ∈ Os(X).

Theorem 2.2. A solid set function on aq-space extends uniquely to a topological meas
onX.

The proof of this theorem is in [3].
Now we are ready to give some examples of topological measures.

Example 2.3. Let X be the unit square andB be the boundary ofX. Fix a pointp in X \B.
Defineµ on solid sets as follows:µ(A) = 1 if (1) B ⊂ A or (2)p ∈ A andA ∩ B 	= ∅. Oth-
erwise, we letµ(A) = 0. Thenµ is a solid set function and hence extends to a topolog
measure onX. To demonstrate thatµ is not a measure, we shall show thatµ is not subad-
ditive. Let A1 be a closed solid set consisting of two adjacent sides ofB, A2 be a closed
solid set that is the other two adjacent sides ofB, andA3 = X \ B, an open solid subse
of X. ThenX = A1 ∪ A2 ∪ A3, µ(X) = 1, butµ(A1) + µ(A2) + µ(A3) = 0.

Example 2.4. Let X be a sphere. Fix three pointsp1,p2,p3 in X. Defineµ on solid sets
as follows:µ(A) = 1 if A contains the majority of the three points, otherwise,µ(A) = 0.
The resulting topological measure is non-subadditive, sinceµ(X) = 1, and it is easy to
representX as a union of three overlapping solid sets each of which contains exactl
of the pointsp1,p2,p3.

The topological measures in the last two examples (first presented in [1] and [3
not subadditive and hence are not Borel measures.

We conclude this section with some topological facts.

Lemma 2.5. Let X be aq-space. LetK ⊆ U , whereK ∈ Cs(X), and U ∈ O(X). Then
there existsV ∈ Os(X) such thatK ⊆ V ⊆ V̄ ⊆ U (here V̄ denotes the closure of th
setV ).

Remark 2.6.

(a) This lemma (given in [3]) immediately implies that wheneverK ⊆ U, K ∈ C(X), U ∈

Os(X), there existsC ∈ Cs(X) such thatK ⊆ C ⊆ U .



468 S. Butler / J. Math. Anal. Appl. 307 (2005) 465–479

vex
-

(b) The closure of a solid set need not be solid. However, givenK ⊆ U , whereK ∈ C(X),
U ∈ Os(X) or K ∈ Cs(X), U ∈ O(X) it is not difficult to show that there existsV ∈
Os(X) andC ∈ Cs(X) such thatK ⊆ V ⊆ C ⊆ U .

We equip the spaceTM(X) with topology given by a subbaseB = {Û (α): U ∈
Os(X), α ∈ [0,1]}, whereÛ (α) = {µ ∈ TM(X): µ(U) > α}. Using results from [5] and
[1], one can show thatTM(X) is a compact Hausdorff convex space.

3. q-Functions

A topological measure on aq-space can be given by a solid set function or by a con
combination of several other topological measures (sinceTM(X) is a convex space). An
other way to get a topological measure is to take the composition of aq-function with a
solid set function.

Definition 3.1. A functionf : [0,1] → [0,1] is called aq-function if

(1) f is continuous from the right;
(2) f (0) = 0, f (1) = 1, f (x−) + f (1− x) = 1 for 0< x � 1;
(3)

∑n
i=1 xi < 1 implies

∑n
i=1 f (xi) � f (

∑n
i=1 xi).

Remark 3.2. From the definition (first given in [4]) we observe the following:

(a) f is nondecreasing on[0,1], and it is enough to definef on [0,1/2).
(b) The points of continuity (hence, discontinuity) off come in pairs(x,1−x). Note that

f is continuous at 0 and 1. Iff is continuous at 1/2, thenf (1/2) = 1/2.
(c) The set of allq-functions is convex.

Remark 3.3. If
∑n

i=1 xi = 1 andf is continuous at somexj 	= 0, then we still have the
inequality

∑n
i=1 f (xi) � 1= f (

∑n
i=1 xi).

Proof. If xj = 1, the case is trivial. So suppose that 0< xj < 1. Without loss of generality
assume thatj = n, i.e., 0< xn < 1 andf is continuous atxn. Then

n∑
i=1

f (xi) =
n−1∑
i=1

f (xi) + f (xn) � f

(
n−1∑
i=1

xi

)
+ f (xn)

= f (1− xn) + f
(
x−
n

) = 1= f (1) = f

(
n∑

i=1

xi

)
. �

We will describe how to construct topological measures byq-functions.

Definition 3.4. The split spectrum of a topological measureν is the set{α ∈ (0,1): there

exist disjoint closed solid setsC, C′ with ν(C) = α, ν(C′) = 1− α}.



S. Butler / J. Math. Anal. Appl. 307 (2005) 465–479 469

s
m

d

it

ion

t

Theorem 3.5. Let X be aq-space,ν a topological measure onX, f a q-function. Define
functionµ on solid subsets ofX by lettingµ(C) = f (ν(C)) for all C ∈ Cs(X) andµ(U) =
1 − µ(X\U) for all U ∈ Os(X). Thenµ is a solid set function onX (hence, extend
uniquely to a topological measure onX) if and only iff is continuous on the split spectru
of ν.

Proof. (⇐) We need to check the first two conditions in Definition 2.1.
(1) Suppose thatC1, . . . ,Cn,C ∈ Cs(X) andC1�· · ·�Cn ⊆ C. If

∑n
i=1 ν(Ci) < 1, then

n∑
i=1

µ(Ci) =
n∑

i=1

f
(
ν(Ci)

)
� f

(
n∑

i=1

ν(Ci)

)
� f

(
ν(C)

) = µ(C).

If
∑n

i=1 ν(Ci) = 1, thenν(C) = 1, hence,µ(C) = 1. Now we show that anyν(Ci) ∈ (0,1)

is in the split spectrum ofν. (Suppose that 0< ν(Cn) < 1. We have:
∑n−1

i=1 ν(Ci) = 1 −
ν(Cn), i.e.,ν(C1 � · · · � Cn−1) = 1− ν(Cn) = ν(X \ Cn). Using Remark 2.6, we can fin
a closed solid setC′

n such thatC1 � · · · � Cn−1 ⊆ C
′
n ⊆ X \ Cn andν(C′

n) = 1 − ν(Cn).

Therefore,ν(Cn) is in the split spectrum ofν.) Thusf is continuous at all pointsν(Ci)

with 0� ν(Ci) � 1 and by Remark 3.3,

n∑
i=1

µ(Ci) =
n∑

i=1

f
(
ν(Ci)

)
� 1= µ(C).

(2) If C ⊆ U , whereC ∈ Cs(X),U ∈ Os(X), thenC � (X \ U) ⊆ X, and by the first
partµ(C) + µ(X \ U) � 1, i.e.,µ(C) � 1− µ(X \ U) = µ(U). For anyU ∈Os(X),

µ(U) = 1− µ(X \ U) = 1− f
(
ν(X \ U)

) = 1− f
(
1− ν(U)

) = f
(
ν(U)−

)
= sup

{
f

(
ν(C)

)
: C ⊆ U, C ∈ Cs(X)

} = sup
{
µ(C): C ⊆ U, C ∈ Cs(X)

}
.

(⇒) Suppose the opposite. Then there exist disjoint closed solid setsC,C′ such that
ν(C) = α > 0, ν(C′) = 1 − α and f is discontinuous atα. Since f is a q-function,
hence, non-decreasing and continuous from the right, we may assume thatf (α−) = a,
andf (α) = b > a. Then we have

µ(X) � µ(C) + µ(C′) = f
(
ν(C)

) + f
(
ν(C′)

) = f (α) + f (1− α)

= f (α) + (
1− f (α−)

) = b + 1− a > 1.

This contradicts the normalization conditionµ(X) = 1. �
In the previous theorem it suffices to have continuity off on the intersection of the spl

spectrum with the interval(0,1/2].

Example 3.6. The topological measureµ defined in Example 2.4 in the previous sect
can be viewed asµ = f ◦ ν, wheref is a stepq-function defined as follows:f (x) = 0 on
[0,1/2) andf (x) = 1 on[1/2,1]; andν = (δ1 + δ2 + δ3)/3, whereδi is the point mass a

the pointpi .
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A weaker form of Theorem 3.5 was first suggested by J.F. Aarnes and A.B. R
in [4], where they also have done some work on continuousq-functions. For example
f (x) = 1/2(1 − cosπx), p(x) = 3x2 − 2x3 are continuousq-functions. A result by
D.J. Grubb [7] states that any polynomialq-function is a linear combination of polyno
mials of the formr(x) = c−1

∫ x

0 tn(1− t)n dt wherec = ∫ 1
0 tn(1− t)n dt .

In this paper we are interested in discontinuousq-functions. Discontinuous and, in pa
ticular, stepq-functions may provide an alternative description of topological meas
which arise from other techniques, such as image transformations. For a simple ex
see [10, p. 28]. The following theorem gives necessary and sufficient conditions for
function to be aq-function.

Theorem 3.7. Let n � 1, 0 = α0 < α1 < · · · < αn < αn+1 = 1, Ii = [αi,αi+1) for i =
0, . . . , n − 1; In = [αn,1]. Define a step functionf with n + 1 values byf (Ii) = βi where
0= β0 < β1 < · · · < βn−1 < βn = 1. Thenf is aq-function if and only if

(a) αi = 1− αn+1−i , i = 1, . . . , n;
(b) f (αi + αj ) � βi + βj wheneveri + j � n; i, j � 1;
(c) βi = 1− βn−i , i = 0, . . . , n.

Proof. (⇐) Supposef is a step function that satisfies (a)–(c). It is easy to see
f (0) = 0, f (1) = 1, f : [0,1] → [0,1] is continuous from the right and non-decreasi
If x ∈ (αi, αi+1] for i = 0, . . . , n, then by (a) 1− x ∈ In−i . Hence,f (x−) + f (1 − x) =
βi + βn−i = 1. To check the last condition of aq-function it is enough to show tha
x1 + x2 < 1 impliesf (x1 + x2) � f (x1) + f (x2). Let x1 + x2 < 1, x1 ∈ Ii , x2 ∈ Ij . Then
i + j � n (for if i + j � n + 1 thenx1 + x2 � αi + αj � 1). Sincef = 0 on I0 andf is
non-decreasing, we may assume thati, j � 1. Then (b) gives:f (x1 + x2) � f (αi + αj ) �
βi + βj = f (x1) + f (x2).

(⇒) Supposef is aq-function.
(a) The points of discontinuity off are α1, . . . , αn. By Remark 3.2, points of dis

continuity of aq-function come in pairs(x,1 − x) so each 1− αi for i = 1, . . . , n is
also a point of discontinuity off , i.e., 1− αi = αi∗ for some i∗ ∈ {1, . . . , n}. Since
0 = α0 < α1 < · · · < αn < αn+1 = 1, it is not difficult to show thatαi = 1 − αn+1−i for
i = 1, . . . , n.

(b) If i+j � n, thenαi +αj < 1 (since inequalityαi +αj � 1 would implyαj � 1−αi ,
i.e., j � n + 1 − i by part (a), while we must havei + j � n). f is aq-function, hence
f (αi + αj ) � f (αi) + f (αj ) = βi + βj .

(c) For all i = 0, . . . , n we have:βi + βn−i = f (α−
i+1) + f (αn−i ) = f (α−

i+1) + f (1 −
αi+1) = 1. �
Remark 3.8. It is enough to have conditions (a) and (c) in the previous theorem
i = 1, . . . , [(n + 1)/2] (where[x] denotes the maximal integer that is less than or e
to x). When n = 2k (k � 1) function f has 2k + 1 values; for 0= α0 < α1 < · · · <

αn < αn+1 = 1 we have:αk < 1/2, αk+1 > 1/2, αi = 1 − αn+1−i for i = 1, . . . , k.
Whenn = 2k + 1(k � 0) function f has 2k + 2 values;αk+1 = 1/2, αi = 1 − αn+1−i
for i = 1, . . . , k + 1.
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We are interested in the case when aq-function has steps of equal height.

Corollary 3.9. Let n � 1, 0 = α0 < α1 < · · · < αn < αn+1 = 1, Ii = [αi,αi+1) for i =
0, . . . , n − 1; In = [αn,1]. Define a step functionf (Ii) = i/n for i = 0, . . . , n. Thenf is
a q-function if and only if

(a) αi = 1− αn+1−i for i = 0, . . . , n;
(b∗) αi + αj � αi+j wheneveri + j � n; i, j � 1.

Proof. Condition (c) in the previous theorem is trivial. We will show that (b) in the theo
and (b∗) in the corollary are equivalent. Assume thati, j � 1, i + j � n. By (b), we have:
f (αi +αj ) � βi +βj = (i +j)/n = βi+j . This means thatαi +αj ∈ Ik for somek � i +j .
Thenαi + αj � αi+j , so (b∗) holds. By (b∗), we have:αi + αj � αi+j . Sincef is non-
decreasing,f (αi + αj ) � f (αi+j ) = βi+j = βi + βj , so (b) holds. �

Notice that in the previous corollary the collectionS = {(α1, . . . , αn): α1, . . . , αn satisfy
(a) and (b∗)} is non-empty. For example, ifαi = i/(n + 1), then(α1 . . . αn) ∈ S.

Example 3.10. In this example we show how to find the region that characterizes a
q-function with the steps of equal height. Consider a step functionf with 5 values and
steps of equal height. Then we have

0= α0 < α1 < α2 < 1/2< α3 = 1− α2 < α4 = 1− α1 < α5 = 1,

βi = i/4 for i = 0, . . . ,4 and the functionf is defined by

f (x) =




0, if x ∈ [0, α1),

1/4, if x ∈ [α1, α2),

1/2, if x ∈ [α2, α3),

3/4, if x ∈ [α3, α4),

1, if x ∈ [α4,1].
By Corollary 3.9,f is a q-function if and only if the following system of inequalities
satisfied:


0< α1 < α2 < 1

2,

2α1 � α2,

α1 + 2α2 � 1.

The last system of inequalities defines a regionS = ABCD in the square[0, 1
2) × [0, 1

2).

See Fig. 1. Any point(α1, α2) from S gives us aq-function and iff is aq-function, then
(α1, α2) ∈ S.

Remark 3.11. The technique demonstrated in the previous example works in the ge
situation as well. Iff is a stepq-function with m + 1 valuesβi = i

m
for i = 0, . . . ,m,

then f is determined byn = [m
2 ] parametersα1, . . . , αn. Conditions (a) and (b∗) of
Corollary 3.9 define a regionS in R
n. The regionS is non-empty, since it contains
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Fig. 1. Regions forq-functions and extremeq-functions.

point
( 1

n+1, 2
n+1, . . . , n

n+1

)
. The coordinates of any point fromS (used asα1, . . . , αn) will

yield a q-function with values i
m

, i = 0, . . . ,m. Conversely, iff is a q-function, then
(α1, . . . , αn) ∈ S.

From Definition 3.1 it is clear that the set of allq-functions is convex, i.e., iff,g are
q-functions, then so isαf + (1 − α)g for anyα ∈ [0,1]. A q-function isextremeif f =
1
2f1 + 1

2f2 wheref1, f2 areq-functions implies thatf = f1 = f2.

Definition 3.12. The stepq-function withαi = i/(n + 1) andβi = i/n for i = 0, . . . , n we
will call the uniform(n + 1)-valued stepq-function.

Proposition 3.13. Supposef is a stepq-function with points of discontinuity atα1, . . . , αn.
Supposef = 1

2f1 + 1
2f2, where f1, f2 are q-functions. Thenf1, f2 are also step

q-functions. The sets of points of discontinuity off1 and f2 are subsets of the se
{α1, . . . , αn} whose union is the whole set{α1, . . . , αn}.

Proof. f is defined by:f = βi on Ii , where 0= β0 < β1 < · · · < βn = 1, 0 = α0 < α1 <

· · · < αn < αn+1 = 1, Ii = [αi,αi + 1) for i = 0, . . . , n − 1, andIn = [αn,1]. It is clear
thatf1 = f2 = 0 onI0 andf1 = f2 = 1 onIn. Sincef1, f2 areq-functions, they are non
decreasing, hence, they must be constant on each intervalIi (i = 0, . . . , n). At each of the
pointsα1, . . . , αn at least one of the functionsf1, f2 must have a jump. The statement
the proposition follows. �

Proposition 3.14. The uniform(n + 1)-valued stepq-function is extreme.
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Proof. Let f be the uniform(n + 1)-valued stepq-function, n � 1. Suppose thatf =
1
2f1 + 1

2f2. Notice first that by Proposition 3.13,f1 andf2 are also step functions define
on the same intervalsIi as f . (Recall:Ii = [

i
n+1, i+1

n+1

)
for i = 0, . . . , n − 1, andIn =[

n
n+1,1

]
). To show thatf1(Ii) = f2(Ii) = f (Ii) for i = 1, . . . , n, it is enough to check tha

f1
(

i
n+1

) = f2
(

i
n+1

) = f
(

i
n+1

) = i
n

for i = 1, . . . , [n
2].

Since n
n+1 < 1, from Definition 3.1 we have

nf1

(
1

n + 1

)
� f1

(
n

n + 1

)
� f (1) = 1,

that is,f1
( 1

n+1

)
� 1

n
. The same thing holds forf2. Sincef = 1

2f1 + 1
2f2, we have

f1

(
1

n + 1

)
= f2

(
1

n + 1

)
= 1

n
= f

(
1

n + 1

)
.

Now, i
n+1 + n−i

n+1 < 1, so for anyi such that 1< i � [n
2] we have

f1

(
i

n + 1

)
+ (n − i)f1

(
1

n + 1

)
� f1

(
i

n + 1
+ n − 1

n + 1

)
� 1.

Then

f1

(
i

n + 1

)
� 1− (n − i)f1

(
1

n + 1

)
= 1− n − i

n
= i

n
.

Since alsof2(
i

n+1) � i
n
, we have

f1

(
i

n + 1

)
= f2

(
i

n + 1

)
= i

n
= f

(
i

n + 1

)
. �

Example 3.15. In this example we will find the region which characterizes extreme
q-functions (with the steps of equal height). Consider again a step functionf with 5 values
and steps of equal height from Example 3.10. There we found the regionS whose points
determinef as aq-function. To find the regionE ⊂ S that corresponds to extremalq-
functions, we shall first find its complement inS.

Suppose thatf = 1
2f1 + 1

2f2 where f,f1, f2 are q-functions. Sincef1, f2 are q-
functions, they must be 1/2 on[α2, α3). We may assume thatf1 > f > f2 on [α1, α2). If,
say,f1 = 1/4+ε, f2 = 1/4−ε on [α1, α2), then on[α3, α4) we have:f1 = 3/4−ε, f2 =
3/4 + ε. Notice that we may assume thatε is as small as we wish using the convexity
the set ofq-functions. Chooseε < 1/12. Letγi = f1(αi), δi = f2(αi) for i = 1,2,3. Then
γ1 = 1/4+ ε, γ2 = 1/2, γ3 = 3/4− ε, δ1 = 1/4− ε, δ2 = 1/2, δ3 = 3/4+ ε.

If f1, f2 areq-functions, according to (b) in Theorem 3.7, we must have:f1(αi +αj ) �
γi + γj and f2(αi + αj ) � δi + δj whenever 1< i + j � 4. Hence,f1(2α1) � 2γ1 =
1/2+2ε. By our choice ofε, 1/2+2ε < 3/4−ε = γ3. Then we must have:f1(2α1) � γ3,
i.e., 2α1 must be inIi for i � 3. Then 2α1 � 1−α2, in other words, 2α1+α2 � 1. Proceed-
ing similarly for other inequalities forf1 andf2 when 1< i + j � 4, we get the following

system of inequalities:
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0< α1 < α2 < 1/2,

α2 � 2α1,

α1 + 2α2 � 1,

2α1 + α2 � 1.

Notice that the first three inequalities define the regionS in Example 3.10. All four in-
equalities define the subregion ofS in which coordinates of its points give such parame
that all three functionsf,f1, f2 areq-functions andf = (1/2)f1 + (1/2)f2. Clearly,f is
not extreme in this case. The complement of this region inS yields a regionE = ∆ABD

that corresponds to extremeq-functionsf (since for points inE f is still aq-function, but
at least one off1, f2 fails to be aq-function). See Fig. 1.

The technique demonstrated in the previous example may be used to find reg
extremeq-functions in the case of an arbitrary number of steps.

For a fixed topological measureν, compositions ofq-functions withν define an affine
map from the collection of allq-functions toTM(X). If µ is in the image of this affine
map and is extreme (i.e.,µ = (1/2)µ1 + (1/2)µ2 whereµ1,µ2 ∈ TM(X) implies that
µ = µ1 = µ2), it can be represented as the composition of an extremeq-function withν.
The converse is not true in general.

Proposition 3.16. Let X be aq-space. Letν = (ν1 + · · · + νn)/n, whereν1, . . . , νn are
different {0,1}-valued topological measures. Letf be the uniform(n + 1)-valued step
q-function(hence, extreme). Thenµ = f ◦ ν is not an extreme topological measure.

Proof. Note first that by Theorem 3.5,µ = f ◦ ν is a topological measure onX. Let
	(A) = |{i: νi(A) = 1}|. It is not difficult to see thatµ(A) = ν(A) whenA is a solid set
with 	(A) = 0,1, . . . , n. Hence,µ = ν, andµ is not an extreme topological measure, wh
f is an extremeq-function. �

As we see, the composition of an extremeq-function with a topological measure
a necessary but not sufficient condition for producing an extreme topological me
However, in the next section we prove that under certain conditions the composit
an extremeq-function with a topological measure will result in an extreme topolog
measure.

4. Finitely defined and extreme topological measures

From the examples above it is clear that some topological measures can be dete
by only a finite set of points, while others can not. Compare, for instance, Example
and 2.3. In this section we are interested in topological measures of the first kind.

Definition 4.1. A topological measureµ on X is finitely defined if there is a finite sub
set F ⊂ X such that

∑n
i=1 µ(Ai) � µ(A) whenever

⊔n
i=1(Ai ∩ F) ⊆ A ∩ F , where
A,A1, . . . ,An ∈As(X).
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Remark 4.2. The setF that defines a topological measureµ on X is not unique. IfF
satisfies the condition in Definition 4.1, then so does any setF ′ ⊇ F .

It is easy to see that the split spectrum of a finitely defined topological measurν is
the set{ν(C): C ∈ Cs(X)} ∩ (0,1). The split spectrum of a finitely defined topologic
measure is finite.

Example 4.3. Let X be aq-space. An example is the unit square. Pick pointsp1, . . . , pm

inside the square (avoiding the boundary). LetF = {p1, . . . , pm}, ν = (δ1 + · · · + δm)/m,
whereδi is a point mass atpi . If f is any uniform(n+ 1)-valued stepq-function such tha{

1

n + 1
,

2

n + 1
, . . . ,

n

n + 1

}
∩

{
1

m
,

2

m
, . . . ,

m − 1

m

}
= ∅,

then by Theorem 3.5,µ = f ◦ ν defines a topological measure onX. It is clear thatµ is
finitely defined by the setF .

Example 4.4. If m = 2n + 1 with n � 1 andq is the uniform 2-valued step function (i.e
q = 0 on [0,1/2) andq = 1 on [1/2,1]), then the above procedure gives a{0,1}-valued
finitely defined topological measureµ. For example, ifm = 5, thenF = {p1, . . . , p5}
and the resulting{0,1}-valued topological measureµ is defined on solid set as follow
µ(A) = 1 if A contains three or more points, otherwiseµ(A) = 0. Thisµ is a composition
of the uniform 2-valued stepq-function with a measure(δ1 + · · · + δ5)/5.

Definition 4.5. A topological measure that can be represented as the composition
uniform (n + 1)-valued step function with a topological measure is called a uniform t
logical measure.

Theorem 4.6. Let µ1, . . . ,µm, wherem � 1, be {0,1}-valued topological measures,µ =
(µ1 + · · · + µm)/m, andq be the uniform(n + 1)-valued stepq-function. Ifm andn + 1
are relatively prime, thenν = q ◦ µ is a uniform topological measure onX. If µ1, . . . ,µm

are finitely defined, then so isν.

Proof. By Theorem 3.5 and Remark 4.2, to show thatν is a topological measure it i
enough to check that the sets{ i

n+1: i = 1, . . . , n} and { j
m

: j = 1, . . . ,m − 1} are dis-
joint. Suppose the opposite. Thenj/m = i/(n+1) for somei ∈ {1, . . . , n} andj ∈ {1, . . . ,

m − 1}. Thenm dividesj (n + 1). Sincem and(n + 1) are relatively prime,m must di-
vide j , which gives a contradiction. Therefore,ν is a topological measure. It is clear thaν
is uniform. If µ1, . . . ,µm are finitely defined by setsF1, . . . ,Fm thenν is finitely defined
by the setF = F1 ∪ · · · ∪ Fm. �
Remark 4.7. Since a topological measure is uniquely determined by its values on
sets (see Theorem 2.2), to check that a measureµ is extreme it is enough show that for a
A ∈ As(X) we haveµ(A) = µ1(A). In fact, it is enough to check this for open solid se

Notice that any topological measure that assumes only values 0 and 1 is extreme.

ticular, topological measures in Examples 2.3 and 4.4 are extreme. In Theorem 4.12 below
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we will present a rich collection of extreme topological measures which is not limite
topological measures with values 0 and 1.

Definition 4.8. A finite setF is freely imbedded inX if for any open connected setU and
any finite setP ⊆ F ∩ U there exists a closed solid setC such thatC ∩ F = P .

Example 4.9. Any finite subset of the unit sphereSk, k � 2, is freely imbedded. Fork � 3
any finite set is freely imbedded in the unit ballBk . A finite setF that does not intersec
the boundary is freely imbedded in the unit ballBk for k = 1,2.

Notice that ifX is the unit square inR2 andF is a finite subset ofX that has points
on the boundary of the square, thenF may not be freely imbedded inX. SupposeF =
{p1,p2,p3,p4} where each segment of the boundary contains exactly one of these p
and pointsp1,p2 are on the opposite segments. ThenF is not freely imbedded inX for
there is no closed solid setC such thatC ∩ F = {p1,p2}.

Definition 4.10. The family of sets{P1, . . . ,Pk} is called ann-disjoint k-chain if the sets
Pi, . . . ,Pi+n−1 are disjoint fori = 1, . . . , k (indices are modk).

Before we prove the main theorem, we will need the following lemma [6].

Lemma 4.11. SupposeF is freely imbedded inX. SupposeP1, . . . ,Pk are disjoint subsets
of F , andCi ∈ Cs(X) are such thatCi ∩ F = Pi for i = 1, . . . ,m, m � k. Then there exis
closed solid setsC1, . . . ,Ck such thatCi ∩ F = Pi for i = 1, . . . , k.

Proof. By induction it is enough to prove the lemma fork = m+1. LetU = X \⋃m
i=1 Ci .

Then U is open, connected andPm+1 ⊆ U . By Definition 4.8, find a closed solid s
Cm+1 ⊆ U such thatCm+1 ∩ F = Pm+1. �
Theorem 4.12. Let µ1, . . . ,µ(n+1)l−1 (wheren, l are natural numbers) be {0,1}-valued
topological measures onX that are finitely defined by disjoint setsF1, . . . ,F(n+1)l−1. Let

F = F1 � · · · � F(n+1)l−1, µ = µ1+···+µ(n+1)l−1
(n+1)l−1 , andq be the uniform(n + 1)-valued step

q-function. IfF is freely imbedded inX, thenν = q ◦µ is a topological measure onX that
is extreme if and only ifn = 1 or l � 2.

Proof. By Theorem 4.6,ν is a uniform finitely defined topological measure. Ifn � 2,
l = 1, thenν is not extreme by Proposition 3.16. For the converse, notice first that
n = 1 the topological measureν is {0,1}-valued, hence, extreme. We may assume now
n, l � 2. For a solid setA in X let 	(A) = |{i: µi(A) = 1}|. Then

ν(A) = (q ◦ µ)(A) =




0, if 	A = 0, . . . , l − 1,

1/n, if 	A = l, . . . ,2l − 1,

m/n, if 	A = ml, . . . , (m + 1)l − 1,

1, if 	A = nl, . . . , (n + 1)l − 1.

Supposeν = (1/2)ν1 + (1/2)ν2, whereν1, ν2 are topological measures onX. To show
thatν = ν1 = ν2 it is enough to check thatν(U) = ν1(U) for open solid setsU . Let k =

(n + 1)l − 1.
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(1) Notice first that for any open or closed setA with ν(A) = 0 (or 1) we also have
ν1(A) = 0 (or 1). Then clearlyν(U) = ν1(U) for open solid setsU with 	U = 0, . . . , l − 1
or 	U = nl, . . . , k.

(2) LetU ∈Os(X) be such that	U = l, soν(U) = 1/n. We may assume thatµi(U) = 1
for i = 1, . . . , l andµi(U) = 0 for i = l + 1, . . . , k. We may also assume thatFi ⊆ U for
1 � i � l andFi ∩ U = ∅ for 1 � l + 1 � k. (If this is not the case, replace the setsFi

by the setsKi defined as follows:Ki = U ∩ Fi for i = 1, . . . , l andKi = Uc ∩ Fi for
i = l + 1, . . . , k. Now let A be any solid set which containsFj for some indexj and
does not intersectFi for all i 	= j . Then clearly	A = 1. The same holds, i.e.,	A = 1 if
A is such thatA containsKj but does not intersectKi for all i 	= j . Indeed, if 1� j � l,
thenU ∩ Fj = Kj ⊆ A ∩ Fj and the fact thatµj (U) = 1 then implies thatµj (A) = 1. If
l + 1 � j � k, thenUc ∩ Fj = Kj ⊆ A ∩ Fj , and sinceµj (U

c) = 1, we haveµj (A) = 1.
Similarly one shows thatµi(A) = 0 for all i 	= j . Therefore,	A = 1.)

Formk finite subsetsP1, . . . ,Pk of F as

Pi = F(i−1)l+1,F(i−1)l+2, . . . ,Fil,

where indices are modk. ThenF = ⋃k
i=1 Pi and{P1, . . . ,Pk} is ann-disjoint k-chain.

Find a closed solid setC1 such thatP1 ⊆ C1 ⊆ U . The existence ofC1 follows from
Remark 2.6. Now apply Lemma 4.11 to find disjoint closed solid setsC1, . . . ,Cn such that
F ∩Ci = Pi for i = 1, . . . , n. Applying Lemma 4.11 again, we findCn+1 such that the set
C2, . . . ,Cn+1 are disjoint andF ∩Ci = Pi for i = 2, . . . , n+1. Continuing in this fashion
we get a family of closed solid sets{C1, . . . ,Ck} which is ann-disjoint k-chain with the
propertyF ∩Ci = Pi for i = 1, . . . , k. SinceCi ∩F = Pi , it is clear that	Ci = l and hence
ν(Ci) = 1

n
for i = 1, . . . , k. Since the setsC1, . . . ,Cn are disjoint, we have

ν(C1 � C2 � · · · � Cn) = ν(C1) + ν(C2) + · · · + ν(Cn)

= 1/n + 1/n + · · · + 1/n = 1.

Then by part (1) we also have

ν1(C1) + ν1(C2) + · · · + ν1(Cn) = ν1(C1 � C2 � · · · � Cn)

= ν(C1 � C2 � · · · � Cn) = 1.

Let xi = ν1(Ci). Then we getx1 + x2 + · · · + xn = 1. SinceC1, . . . ,Ck is ann-disjoint
k-chain, repeating the argument for disjoint setsCi, . . . ,Ci+n−1, we obtainxi + · · · +
xi+n−1 = 1 for all i = 1,2, . . . (mod k). From the equationsxi + · · · + xi+n−1 = 1 and
xi+1 + · · · + xi+n = 1 we getxi = xi+n, and hencexi = xi+pn for p = 0,1,2, . . . .

Since(n, k) = 1, n is a generator for the cyclic groupZk . Hence,x1 = x2 = · · · = xk ,
which implies thatxi = 1

n
for i = 1, . . . , k. In particular,ν1(C1) = x1 = 1

n
. Thenν1(U) �

ν1(C1) = 1
n
. Similarly we get:ν2(U) � 1

n
. Sinceν(U) = 1

2ν1(U)+ 1
2ν2(U), we must have

ν1(U) = ν2(U) = ν(U) = 1
n
.

(3) Let U ∈ Os(X) be such thatl < 	(A) < nl − 1, i.e.,	(U) = ml + t for somem ∈
{1, . . . , n − 1}, t ∈ {0, . . . , l − 1}. All cases are similar, so we will show the proof for t
caset = l − 1, i.e.,	(U) = (m + 1)l − 1. Say,µi(U) = 1 for i = 1, . . . , (m + 1)l − 1 and
µi(A) = 0 for i = (m + 1)l, . . . , k = (n + 1)l − 1. Thenν(U) = m/n. As before, we may

assume thatFi ⊆ U for i = 1, . . . , (m + 1)l − 1 andFi ∩ U = ∅ for i = (m + 1)l, . . . , k.
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LetP0 = F1�· · ·�F(m+1)l−1. By Remark 2.6, there exists a closed solid setC0 such that
P0 ⊆ C0 ⊆ U . Split the remainingn − m setsF(m+1)l , . . . ,F(n+1)l−1 into n − m disjoint
finite setsP1, . . . ,Pn−m of equal size. Thus eachPi consists of exactlyl setsFj , j ∈
{(m+ 1)l, . . . , (n+ 1)l − 1}. Since the setsP0,P1, . . . ,Pn−m are disjoint subsets ofF , we
may use Lemma 4.11 to find closed solid setsC1, . . . ,Cn−m such thatC0,C1, . . . ,Cn−m

are all disjoint andF ∩ Ci = Pi for i = 0,1, . . . , n − m. Note that fori = 1, . . . , n − m

the fact thatF ∩ Ci = Pi means that	Ci = l, and thenν(Ci) = ν1(Ci) = 1/n by part (2).
Considering a closed setC0 � C1 � · · · � Cn−m, we obtain

ν(C0 � C1 � · · · � Cn−m) = ν(C0) + ν(C1) + · · · + ν(Cn−m)

= m/n + 1/n + · · · + 1/n = 1.

Hence, we also have:

ν1(C0 � C1 � · · · � Cn−m) = 1, i.e.,ν1(C0) + ν1(C1) + · · · + ν1(Cn−m) = 1.

Then

ν1(C0) = 1− ν1(C1) − · · · − ν1(Cn−m) = 1− 1

n
− · · · − 1

n
= m

n
.

Thus,ν1(U) � ν1(C0) = m
n

. Similarly, ν2(U) � m
n

. Sinceν(U) = 1
2ν1(U) + 1

2ν2(U), we
have:ν1(U) = ν2(U) = ν(U) = k

n
. The proof is complete now.�

Remark 4.13. Theorem 4.12 was first proved using chained families of sets on so
chainable spaces. These ideas were developed beautifully by J.F. Aarnes into less
cal and at the same time more powerful and elegant concepts ofn-disjoint k-chains and
freely imbedded sets. The author is grateful to J.F. Aarnes for sharing his results [6]
allowed for a shorter, more transparent proof of Theorem 4.12.

Example 4.14. Let X be the unit square. LetF = {p1,p2, . . . , p2n+1} be a subset ofX
that does not intersect the boundary. Letµi be the point mass at the pointpi . Define a
topological measureν on X by its value on solid sets by:ν(A) = (q ◦ µ)(A) = m/n, if
	A = 2m or 2m + 1 for m = 0, . . . , n. As before,	(A) = |{i ∈ {1, . . . ,2n + 1}: µi(A) =
1}| = |{i ∈ {1, . . . ,2n + 1}: pi ∈ A}|. Then we can say thatν = q ◦ µ, whereq is the
uniform (n + 1)-valued stepq-function, andµ = µ1+µ2+···+µ2n+1

2n+1 . By Theorem 4.12,ν is
an extreme topological measure.

With F = {p1,p2,p3,p4,p5} and the uniform 3-valued stepq-function one gets the
extreme topological measure from [2].

Example 4.15. Let X be the unit square. LetF = {p1,p2, . . . , p5} be a subset ofX
that does not intersect the boundary, andµi be the point mass at the pointpi . Define a
topological measureν = f ◦ µ, wheref is the uniform 4-valued stepq-function, and
µ = µ1+···+µ5

5 . In other words,

ν(A) = (f ◦ µ)(A) =




0, if 	A = 0,1,

1/3, if 	A = 2,

2/3, if 	A = 3,

1, if 	A = 4,5.
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Letf1 be the uniform 3-valued stepq-function,f2 be the uniform 2-valued stepq-function,
ν1 = f1 ◦ µ, ν2 = f2 ◦ µ. Then it is not difficult to check thatν = 2

3ν1 + 1
3ν2, hence,ν is

not extreme.
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