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Abstract We have explored the existence of fusion- and secre-
tion-competent sites on the plasma membrane of peptide secret-
ing rat pituitary melanotrophs at rest, and following stimulation
with glutamate. We monitored changes in fluorescence of FM1–
43, a styryl dye which labels plasma membrane. The results show
spontaneous local increases in FM1–43 reporting changes in
membrane surface area due to cumulative exocytosis. Addition
of glutamate, further increased the occurrence of these events.
Statistical analysis of local FM1–43 fluorescence changes sug-
gests that this is due to the recruitment of inactive exocytotic do-
mains and due to the stimulation of already active exocytotic
domains.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The melanotrophs, neuroendocrine cells from the pituitary

pars intermedia exhibit substantial spontaneous secretion in

cell culture [1]. The spontaneous secretion is reduced by the

neurotransmitters dopamine and c-aminobutyric acid, present

in the hypothalamic neurons innervating the intermediate lobe

[2]. In addition, an excitatory glutamatergic innervation has

been suggested to affect the secretion of peptide hormones

from these cells. Glutamate and glutamate specific receptor

agonists have been shown to cause a rise in intracellular

[Ca2+] in the rat melanotrophs suggesting the presence of iono-

tropic NMDA and non-NMDA AMPA/K receptors, but not

the metabotropic glutamate receptors [3]. The final stage of

secretion in these cells is mediated by fusion of the secretory

vesicle with the plasma membrane. This has been examined

earlier by monitoring rapid changes in membrane surface area

as jumps in membrane capacitance [4,5], and by amperometry

[6,7].

The number of secretory vesicles in a single neuroendocrine

cell is about 40–80000. However, only �1% of them, repre-

senting a ready releasable pool, can be exocytosed upon stim-

ulation [4,8–10]. Electron microscopy examinations [10,11]
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provided conflicting evidence of specialized accumulations of

apparently docked vesicles on the plasma membrane in endo-

crine cells.

It is possible that the number of vesicles that actually fuse

with the plasma membrane is tightly regulated by the num-

ber of sites on the plasma membrane where fusion of vesi-

cles can occur at any given moment in time. Such special

structures have been identified for exocytotic fusion of single

synaptic vesicles in the presynaptic nerve terminal of retinal

bipolar neurons by total internal reflection fluorescence

microscopy [12]. However, other experimental evidence ob-

tained on chromaffin neuroendocrine cells is somehow con-

troversial. On one hand there are results that are not in

favour of specialized release sites. Cuchillo-Ibanez et al.

[13] showed that isolated chromaffin cells only exhibit a

polarised catecholamine release, occurring in the bottom of

the cells, compared to equatorial or apex planes. Each indi-

vidual granule associates with its own random release site

[14] or secretion is preferential in the terminals of neurite-

emitting chromaffin cells [15]. On the other hand, some stud-

ies point to the existence of specialized release sites in

neuroendocrine cells. Amperometrical spatial mapping of

the catecholamine release [16] in conjunction with Ca2+

imaging showed colocalization in distinct release sites of

chromaffin cells [17,18]. These studies employed an indirect

mapping of release at a fair distance from the plasma mem-

brane and it would have been ideal if one was able to mon-

itor exocytosis at locales where release of substances was

occurring directly. An ideal strategy is to use FM1–43, a vi-

tal membrane styryl dye which reports cumulative exocytosis

[19,20]. Styryl dyes are amphiphilic and fluoresce when in-

serted into hydrophobic environment, such as the plasma

membrane, but can not cross the membrane bilayer. There-

fore, an increase in the cell membrane area can readily be

reported by these dyes.

In the present work, we studied the existence of specific fu-

sion- and secretion-competent sites in the plasma membrane

of peptide secreting neuroendocrine cells. We asked whether

cell stimulation results in enhanced fusion of vesicles at special-

ized membrane locales termed exocytotic domains, as observed

in nerve terminals [12], or does the release phenomenon be-

come more diffuse where the cell uses the plasma membrane

for exocytosis unspecifically.

Neuroendocrine melanotrophs from the intermediate lobe

of the rat pituitary gland secrete the peptide hormones a-
melanocyte stimulating hormone (a-MSH) and b-endorphin
[21]. The number of secretory vesicles in a single melano-

troph is about 60000, and only a few thousand of them
blished by Elsevier B.V. All rights reserved.
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are close to the plasma membrane [9]. The expected fre-

quency of exocytotic events was estimated to be about

4000 per second [4], meaning thereby that only a fraction

of the secretory vesicles actually undergo fusion at any given

time.

The results of the present study show that the plasma mem-

brane, stained by FM1–43, exhibits spontaneous and gluta-

mate-stimulated increases in fluorescent intensity, which is

localized to distinct membrane areas. The experimental evi-

dence is consistent with the view that the peptide secretory

activity in rat melanotrophs is mediated via specific exocytotic

domains, specialized fusion- and secretion-competent sites in

the plasma membrane.
Fig. 1. Localized increase in FM1–43 fluorescence intensity is accom-
panied by an increase in membrane area. (A) Confocal xy fluorescence
image of a single melanotroph stained by FM1–43 (5 lM), at three
different time periods (indicated on upper set of panels). The frame
indicates the magnified region of the cell membrane (insets below) to
highlight the local increase in fluorescence intensity and the accom-
panying increase in membrane surface area. Arrowheads mark the
bright spots on the membrane surface, representing hormone deposi-
tion on the cell surface, which were discarded from the analysis. (B)
Time-dependent changes in the plasma membrane fluorescence inten-
sity. The plots are from the regions marked by the circles on the
membrane of the cell (panel A). The horizontal scale bar represents
time of 40 s and the vertical scale bar represents the 40% change of
fluorescence relative to the basal fluorescence of the region of interest.
(C) The change in membrane surface area is plotted against time, at the
membrane region (frame in panel A, bottom panels) where membrane
curvature occurred within the detecting kernel number 2. The
membrane surface area was measured as a curvature length multiplied
by the thickness of the confocal optical section (2 lm). The increase in
local membrane area accompanied the increase in focal fluorescence
intensity until 130 s beyond which it saturated, similar to the change in
fluorescence intensity (middle trace in panel B). That the increase in
membrane area was not due to phototoxic damage was suggested by
the observation that the formation of membrane blebs, seen after long
periods of laser scanning were not associated with local increase in
fluorescence intensity.
2. Materials and methods

2.1. Cell culture, immunofluorescence and FM1–43 imaging
Rat pituitary melanotrophs were prepared as described previously

[22]. The external bath solution contained (in mM): NaCl 131.8, Ca-
Cl2 Æ 2H2O 5, KCl 5, MgCl2 Æ 6H2O 2, HEPES/NaOH 10, DD-glucose
10, NaH2PO4 Æ 2H2O 0.5, NaHCO3 5; pH 7.2. For dynamic fluores-
cence imaging, melanotrophs plated onto glass coverslips were washed
in external solution, mounted onto the recording chamber, and trans-
ferred onto the stage of the confocal microscope, and a DIC image of
the cells to be scanned for FM1–43 fluorescence was acquired. The
external solution was exchanged for an equal volume of 5 lM FM1–
43 containing external solution. The time between the exchange of
external solution with FM1–43 and the commencement of scanning
was kept the same in all the experiments. Further, in all the experi-
ments FM1–43 was left present in the bath. Dopamine at 200 nM con-
centration was included in the recording solutions to increase the
percentage of cells that respond to glutamate [3] and to reduce basal
secretion [2]. Optical sections were taken approximately closer to the
equatorial region of the cell.

2.2. Confocal imaging
The cells were imaged on an inverted microscope (Zeiss 510 with

·63, 1.4 NA oil objective) coupled to a Zeiss 510 laser scanning confo-
cal system (excitation, 488 nm), emission (505 nm and above). The
confocal system was used in the xy scan mode (512 pixels in x and
y, pixel resolution, 0.07 lm; acquisition time, 1.5 s, continuous). The
confocal aperture was set to 2 times the airy disc, which corresponded
to 25% of maximal opening. The resolution was estimated to be 2 lm
in the z dimension, and about 440 nm in the x and y dimensions. Mel-
anotrophs were randomly selected and 2–3 cells were positioned in the
field. Glutamate was prepared in the external bath solution and added
as a concentrated bolus to achieve a bath concentration of 400 lM.
Control experiments consisted of similar applications of bath solution.
All distributions resulting from experimental manipulations are com-
pared to a baseline distribution.
Circular patches of cell surface membrane of 2 lm diameter (30 pix-

els in diameter, pixel resolution 0.07 lm) were analyzed for fluores-
cence excluding bright spots on the membrane surface (Figs. 1A, 2A,
arrowheads) due to debris or deposited secretory granule content
[20]. Regions of cell surface membranes, which showed any movements
of the focal plane, were discarded from analysis. The scanning dura-
tion in an experimental run lasted for not more than 3 min. In all
the analysis reported in Fig. 3, spots that showed continued exponen-
tial decrease beyond 40 s were excluded from analysis, since these rep-
resented events related to photobleaching of primed endocytosed
vesicles or incomplete equilibration of the cell membrane with FM1–
43 [20].

2.3. Experimental animals
Adult wistar rats were used for the study, and were euthanized with

carbon-di-oxide. The authors� institutional committee on animal care
approved the studies.



Fig. 2. Mapping the perimeter of a melanotroph membrane for
increase in fluorescence intensity. (A) Differential interference contrast
image of the melanotroph (top) and the corresponding confocal
detection of FM1–43 fluorescence (bottom). The panel shows the
positions of the different detection kernels consisting of circular image
fields of 2 lm diameter. Arrowheads mark the bright spots on the
membrane surface, representing hormone deposition on the cell
surface, which were discarded from the analysis. Panel B shows the
time course of the fluorescence intensity in the marked areas (panel A),
following addition of glutamate (arrow) to the recording chamber
(400 lM). The centre of the circular image field was positioned at the
outer edge of the rim of the cell, and bright fluorescent regions with
hormone adherent to the cell surface were excluded from the analysis.
Images were analysed after 30 s of commencing fast xy scan, during
which the decrease in fluorescence due to photobleaching was found to
reach a steady state exponentially (time-constant of 8.3 s) in control
experiments (N = 12, not shown). Note that constant fluorescence
intensity levels in traces c, d, and e increased after stimulation with
glutamate (arrows) by approximately 15% of the basal intensity level,
which indicates stimulation of exocytosis in corresponding, previously
silent, areas. The horizontal scale bar represents time of 10 s and the
vertical scale bar represents the 20% change of fluorescence relative to
the basal fluorescence of the region of interest.

Fig. 3. Cell stimulation by glutamate recruits new exocytotic domains
and enhances the activity of the spontaneously active exocytotic
domains. Comparison of local FM1–43 fluorescence intensity increase
by glutamate. Top row: Histogram distribution of localized fluores-
cence intensity increase after glutamate application (thick line) in
different ionic conditions and in control (thin line). The histogram
plots are combined distributions from multiple independent experi-
ments (for number of cells (N) and spots (n) analysed, see below) of the
kind shown in Fig. 2. The data are expressed as percentage increase in
fluorescence as follows: relative changes in exocytosis were estimated
as percentage change in fluorescence intensity estimated at five time
points immediately before addition of glutamate and the peak intensity
between 10 and 60 s after addition of glutamate. The control
distribution was obtained from no stimulus runs, and applications of
equal volumes of external bath solution used for glutamate stimula-
tion, containing Mg2+-free solution with Ca2+ and dopamine
(200 nM). The other three distributions relate to glutamate stimulation
in the presence of Ca2+ and absence of Mg2+ in the bath (+Ca2+,
�Mg2+), in the presence of both Ca2+ and Mg2+ (+Ca2+, +Mg2+), and
in the absence of both Ca2+ and Mg2+ with added presence of EGTA
(�Ca2+, �Mg2+, +EGTA). In control, N = 15, n = 93; glutamate in
bath solution with +Ca2+, �Mg+2, N = 39, n = 313; +Ca2+, +Mg2+,
N = 6, n = 58 and in �Ca2+, �Mg2+, + EGTA, N = 19, n = 130.
Descriptive analysis of the frequency histograms did not show normal
distribution of frequency of observations over percentage increase in
fluorescence, for the four different data sets, viz. control (Mean = 9.41,
S.D. = 10.27, kurtosis = 0.06, skewness = 0.99), and following appli-
cation of glutamate in the presence (Mean = 10.72, S.D. = 9.33,
kurtosis = 2.64, skewness = 1.15) or absence of Mg2+ (Mean = 11.17,
S.D. = 10.12, kurtosis = 1.46, skewness = 1.25) in Ca2+ containing
solution, and in Ca2+- and Mg2+-free external soln. (Mean = 9.98,
S.D. = 9.02, kurtosis = 0.63, skewness = 1.21). To further confirm that
the four different data sets were indeed not drawn from a normal
distribution, the Shapiro–Wilk test was done for normality, and the
test confirmed significant departures from a normal distribution.
Bottom row: Cumulative frequency plot of percentage fluorescence
change in control and following glutamate application under different
ionic conditions. The cumulative frequency plot was constructed from
the histogram data shown in the top row. A Kolmogrov–Smirnov test
was performed on the cumulative distributions to understand whether
the responses to glutamate are sensitive to Mg2+ and require the
presence of Ca2+ in the extracellular solution. For each of these tests,
the results were compared to the control data set in the absence of
glutamate. The parameter D (standing for difference) in the Kolmo-
grov–Smirnov test, gives the difference between the cumulative
distributions of the data points, and p is the level of significance. For
the glutamate induced response in the presence and absence of Mg2+ in
the external medium containing Ca2+, D = 0.242, p = 0.028 and
D = 0.224, p = 0.002; respectively; while in the absence of Mg2+ in a
Ca2+-free solution, D = 0.09 and p = 0.83.
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3. Results

3.1. Spontaneous time-dependent changes in FM1–43

fluorescence intensity reveal distinct exocytotic membrane

domains

Time-dependent fluorescence intensity changes were mapped

by using a detection kernel of fixed dimension (see Fig. 1A).

These measurements revealed highly localized, spontaneous

time-dependent FM1–43 fluorescence changes (Fig. 1B). In

some experiments relatively intense localized fluorescent

changes were recorded accompanied by a local increase in

the membrane curvature (Fig. 1A and C). This appears to be

an outcome of massive local exocytosis, since the increase in

membrane surface area (Fig. 1C) appears to be correlated with

the increase in fluorescence intensity (Fig. 1B, middle trace). In

addition, the time-dependent increase in FM1–43 fluorescence

intensity may be contributed by the deposition of the vesicle

cargo on the cell surface. On the site 3 (Fig. 1A and B, bottom

trace), there was no significant change in fluorescence intensity.

The local regions showing spontaneous time-dependent change

in FM1–43 fluorescence intensity represent sites of preferential

fusion of vesicles with the plasma membrane that leads to the

secretion of vesicle cargo. These specialized areas are termed

exocytotic domains.
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3.2. Frequency distributions of local time-dependent changes in

fluorescence intensity and distinct fusion-competent sites in

the plasma membrane

We mapped the membrane along the cell perimeter using a

detection kernel of fixed dimension (see Fig. 1A). Bright spots

on the membrane surface, representing hormone deposition on

the cell surface, did not show time-dependent changes in the

fluorescence intensity, and were not included in the analysis

(Figs. 1A and 2A, arrowheads). Firstly, the time-dependent

change in fluorescence intensity was evaluated for a large num-

ber of such sites in different cells under basal conditions. The

distribution of spontaneous fluorescence intensity increases

of localized membrane domains revealed significant heteroge-

neity with an average amplitude of around 15% (Fig. 3, thin

lines), reflecting important local variations in the state of secre-

tory activity and/or structural components associated with ves-

icle fusion. Secondly, to test whether discrete regions in the cell

perimeter can respond to a physiological stimulus by a change

in FM1–43 fluorescence, we stimulated the cells with gluta-

mate, which causes elevation of intracellular [Ca2+] [3]. The

fluorescence intensity following glutamate application in-

creased to a new steady state (Fig. 2). In all experiments irre-

spective of the age of the cells in culture, and conditions

used for stimulation, an increase in FM1–43 fluorescence

intensity could be elicited only from a subset of distinct mem-

brane areas. Histograms of the local responses from a large

number of membrane regions, i.e., putative exocytotic do-

mains, are shown in Fig. 3. Note that all the frequency histo-

grams cannot be described by a normal distribution. A normal

distribution would indicate that the activity of exocytotic do-

mains is homogeneously distributed on the plasma membrane.

Further, in a substantial number of membrane areas encircled

by detecting kernels, no change in fluorescence was detected,

which indicates inactive regions in the membrane, sites devoid

of hormone release. A pertinent argument against this observa-

tion could be that the responses have been picked from cells

which show different levels of basal exocytotic activity, i.e.,

cells showing low basal activity would have a higher number

of inactive membrane sites studied by the detection kernels.

However, analysis of percentage fluorescence change per cell

by pooling the fluorescence change in all detection kernels

per cell, showed that the detection kernels did not show a fluo-

rescence change in less than 3% of cells. Moreover, the modal

value of fluorescence intensity change was 8%. This suggests

that there are distinct fusion-competent sites in the plasma

membrane of rat neuroendocrine melanotrophs.
Fig. 4. (A) Relative localized starting fluorescence intensity in detec-
tion kernels showing secretory activity. Histogram showing the initial
fluorescence intensity (initial F) in the kernels showing a 5–50%
increase in fluorescence normalized with the average of initial
fluorescence intensity (initial F average) in all the kernels. Measure-
ments of changes in fluorescence intensity in kernels in cells under
basal conditions (Control) are compared with cells stimulated by the
glutamate in the absence of Mg2+ (+Ca2+, �Mg2+) or in the presence
of Mg2+ (+Ca2+, +Mg2+). Asterisk, P < 0.01, Student�s t test. The
histogram is obtained from the analysis of the data shown in Fig. 3. (B)
Model summarizing the effect of stimulation on the activity of
exocytotic membrane domains (thick line) of endocrine cell. Stimula-
tion depicts the activation of the already spontaneously active
exocytotic domain. Recruitment depicts the recruitment of an inactive
exocytotic domain.
3.3. Recruitment and activation of putative exocytotic membrane

domains by glutamate stimulation

The stimulation of cells by glutamate significantly altered the

shape of the distribution of localized membrane fluorescence

intensity increases (Fig. 3). The analysis of cumulative distribu-

tions suggests that glutamate stimulation of exocytotic do-

mains is sensitive to Mg2+ and requires the presence of Ca2+

in the external medium (compare distributions in Fig. 3, lower

panels), which suggests the involvement of ionotropic gluta-

mate receptor [3]. The middle distribution histogram (Fig. 3,

upper middle; +Ca2+, +Mg2+) shows an increase in the mid-

range of the histogram, in glutamate stimulated cells (thick

line) compared to control experiments (thin line). This mid-

range of the histogram corresponds to the membrane domains
with about 15% increase in the fluorescence intensity. On the

other hand, this histogram also shows a reduction in the region

at about 7% increase in the fluorescence intensity. We suggest

that glutamate elevates secretory activity from spontaneously

active exocytotic domains. These conditions with the Mg2+

present would activate the ionotropic non-NMDA receptors.

It is important to note that substantial number of sites was ob-

served where fusion did not occur. This is represented as the

peak at the farthest left in all upper histograms. There was

however a decrease in the number of sites showing failures,

in the presence of glutamate and Ca2+ and the absence of

Mg2+ (Fig. 3, thick line, upper left panel). These conditions

would also activate the ionotropic NMDA glutamate

receptors.

In order to understand whether the stimulation of exocytotic

domains is dependent on the initial level of exocytotic activity,

the relative starting fluorescence for kernels showing a 5–50%

increase in fluorescence intensity was normalized with the aver-

aged initial fluorescence intensity of all cells. The relative start-

ing fluorescence intensity was significantly higher in cases of

putative exocytotic domains where the glutamate response

was present (Fig. 4A), which indicates that glutamate stimu-

lates previously spontaneously active exocytotic domains as

depicted in the model (Fig. 4B). The model in addition shows

that glutamate may also recruit inactive exocytotic domains, as

suggested by the data presented in Fig. 3.
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4. Discussion

The styryl dye FM1–43 was used to stain membranes of rat

pituitary melanotrophs to monitor exocytosis. The very bright

FM1–43 stained patches in the cell perimeter appeared to be

qualitatively different from the fluorescence observed in the

plasma membrane, typically with fluorescence intensities

several fold higher than the rest of the membrane. These

membrane areas were devoid of time-dependent changes in

FM1–43 fluorescence and represent staining of vesicle content

(not shown), as observed in pituitary lactotrophs [23].

The frequency histograms in Fig. 3 do not show a normal

distribution, and suggests that stimulation of melanotrophs

with glutamate does not induce uniform fusion of vesicles

along the cell perimeter. A patchy distribution of a-MSH anti-

body around the cell perimeter was observed (data not shown)

that may be due to a patchy distribution of glutamate- and

KCl-stimulated calcium sources in the plasma membrane [24]

that trigger the release of uniformly distributed secretory

machinery in the plasma membrane. However, this is unlikely,

since the application of glutamate and KCl did not result in

distinct ‘‘hot-spots’’ of local increases in [Ca2+]i using fura-2

imaging of melanotrophs (not shown), consistent with previ-

ous reports [25]. Moreover, dialysis of different calcium buffers

into melanotrophs revealed a relatively large distance between

calcium sources and calcium receptors of the secretory appara-

tus [26,27].

Heterogeneity in the response amplitudes was observed

without stimulation (basal secretion) and following stimula-

tion with glutamate in FM1–43 stained plasma membrane. A

substantial number of sites were observed where fusion did

not occur. The fraction of sites showing failures decreased

upon activation of glutamate receptors (Fig. 3). Sites can show

failures if the recycled vesicles mix with the total vesicle pool

without maintaining a hierarchy of releasibility [28]. Stimula-

tion with glutamate increased the number of active exocytotic

sites by the recruitment of inactive sites and increased activity

of exocytotic domains that are already present at basal condi-

tions (Figs. 3 and 4B). The distribution histogram in Fig. 3

where cells were stimulated with glutamate in the presence of

+Ca2+ and +Mg2+ shows an increase in the midrange of the

histogram, which corresponds to the membrane domains with

about 15% increase in the fluorescence intensity. These condi-

tions with the Mg2+ present would activate the ionotropic non-

NMDA receptors. On the other hand, the peak at the farthest

left in the presence of glutamate and Ca2+ and the absence of

Mg2+ is decreased, which shows that new fusion sites are re-

cruited due to the activation of the ionotropic NMDA gluta-

mate receptors.

Previous work has shown that stimulation of the ionotropic

glutamate receptors by both AMPA and NMDA increased

intracellular calcium, compared to the activation of metabo-

tropic glutamate channels [3]. In the melanotrophs, glutamate

application in the absence of external calcium, failed to elicit

responses significantly different from the control (Fig. 3),

which suggests the critical role of calcium in biasing a cell to-

wards stimulus-dependent secretion, despite having robust cel-

lular machinery for basal secretion.

Studies on the dynamics of vesicle fusion with the plasma

membrane using total internal reflection fluorescence

microscopy have suggested the existence of �active zones�
for secretion, where a high percentage of vesicle fusion oc-
curs spatially close to another fusion [12]. Our experimental

results suggest that several such preferred sites exist spa-

tially closer to each other in the melanotrophs, to form

exocytotic domains, whose activity results in the export

and deposit of the vesicle content on the surface of the

plasma membrane.

The molecular nature of FM1–43 stained exocytotic do-

mains observed in our experiments is not clear, but may con-

stitute of among other candidates the SNARE molecules

[29]. For fusion to take place vesicle and plasma membrane

should be close enough for v- and t-SNARES to touch and ini-

tiate formation of the coiled complex. Small patches of

SNAREs in the plasma membrane lawns of PC12 cells sepa-

rated by distances greater than 2 lm have been reported by

Lang et al. [30]. Although a clear correspondence between this

observation and the exocytotic domains cannot be drawn, the

patchy distribution of SNAREs can nevertheless contribute to

the activity of the exocytotic domains. The role of the SNARE

complex in regulated exocytosis in melanotrophs was shown

previously [31], although the subcellular distribution of t-

SNARE (Syntaxin I) in rat melanotrophs is rather uniform

[32]. A subset of dense core vesicles in melanotrophs specifi-

cally stains for CAPS (Ca-dependent activator protein for

secretion) that mediate the high Ca2+-sensitivity exocytosis in

melanotrophs [31]. A similar role was found for synaptotagmin

I [33]. Immunostaining for CAPS suggests a non-uniform dis-

tribution of CAPS stained vesicles in the subplasmalemmal

membrane, appearing as punctate stains. This property may

contribute to the establishment of functional exocytotic

domains.

In summary, the optical approach to monitor the secretory

activity of a single peptide secreting neuroendocrine cell re-

vealed that basal and stimulated hormone secretion takes place

at distinct membrane domains. These specialized membrane

locales, reminiscent of active zones in nerve terminals, maybe

involved in limiting the secretory capacity of neuroendocrine

cells.
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