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Abstract

In this paper it is shown that the general solution of an inhomogeneous boundary value problem may only
consist of the general solution and that it is not necessary to superpose a partial solution. The eigenfrequencies
of a membrane subject to inhomogeneous boundary conditions are calculated using the program Mathematica.
c© 2003 Published by Elsevier B.V.
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1. Introduction

According to the usual de3nition, an eigenvalue problem is to determine values of a parameter
k (eigenvalue) for which a homogeneous linear di5erential equation has nontrivial solutions (eigen-
functions) under the prescribed boundary conditions [2]. In [4], this de3nition demands that the
boundary conditions should be homogeneous. For membrane oscillations described by the Helmholtz
equation

;u+ k2u= 0 (1)

homogeneous boundary conditions imply that the membrane is clamped along the whole boundary.
But how may the eigenfrequency of a membrane be calculated, if the membrane were not clamped all
around? In this case, the boundary conditions are called inhomogeneous. A boundary value problem
is called inhomogeneous if either the boundary conditions or the di5erential equation (or both) are
inhomogeneous. A partial di5erential equation with inhomogeneous boundary conditions may be
transformed into an inhomogeneous equation subject to homogeneous boundary conditions [2]. To
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show this, we consider an inhomogeneous linear equation

Du(x; y) = f(x; y); (2)

and use the setup

u= w + v; (3)

so that

Du= Dw + Dv= f(x; y); (4)

de3ning

Dv= f(x; y); Dw = 0: (5)

Demanding now a homogeneous boundary condition

u(boundary) = 0 = v(boundary) + w(boundary);

one obtains

v(boundary) =−w(boundary) (6)

(homogenization of an inhomogeneous boundary condition). Now the function v(x; y) should satisfy
the inhomogeneous conditions for w(x; y) and must be such that (5) is satis3ed.
It is quite diFcult to construct such a function v [1]. However, it is well known that the general

solution of an inhomogeneous equation of type (2) consists of the superposition of the general
solution of the pertinent homogeneous equation and a partial solution of (2), see [3]. But in this
paper, it will be shown that there exist general solutions of an inhomogeneous eigenvalue problem
without the superposition of a partial solution of the inhomogeneous equation.

2. Eigenvalues of an inhomogeneous boundary value problem

Let us consider the Helmholtz equation (1) together with homogeneous and inhomogeneous bound-
ary conditions on a rectangle of the dimensions 2a× 2b. We assume

u(x =±a; y) = 0 (7)

and

u(x; y =±b) = cos
( 
2a
x
)

[or g(x); g(±a) = 0]: (8)

This guarantees u(±a;±b) = 0 and a continuous boundary value. Inserting the setup
u(x; y) = cos

( 
2a
x
)
f(y) (9)
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into (1) one obtains

f′′(y) +
(
k2 −

( 
2a

)2)
f(y) = 0: (10)

Solution (9) satis3es the homogeneous boundary condition (7). To be able to satisfy the inhomoge-
neous condition (8), we have to solve (10). Using the abbreviation

� =
√
k2 − 2=4a2; (11)

the solution of (10) is given by f(y) = cos �y and the solution of (1) reads

u(x; y) = cos
( 
2a
x
)
cos

(√
k2 − 2=4a2y

)
: (12)

In order to satisfy the inhomogeneous condition (8), one must have

cos
(√

k2 − 2=4a2b
)
= 1

or √
k2 − 2=4a2b= n; n= 1; 2 : : : : (13)

This is the equation determining the eigenvalue k and (12) is a solution of the inhomogeneous
problem given by (1), (7) and (8).

3. The general solution

We are now searching for a general solution of (1) making the setup

u(x; y) =
∞∑
m=0

Am cos
[ 
2a
(2m+ 1)x

]
fn(y); m= 0; 1; 2 : : : : (14)

This solution again satis3es the homogeneous boundary condition (7). For f(y) one has

fn(y)
[
k2 −

( 
2a
(2m+ 1)

)2
x
]
+ f′′

n (y) = 0: (15)

In the derivation of (15) we have used the fact that a sum vanishes if all terms vanish. The solution
of (15) is given by

fn(y) = Bn cos

[√
k2nm −

( 
2a
(2m+ 1)

)2
y

]
: (16)

Since k now depends on n and m, we used the designation knm. The inhomogeneous boundary
condition contains the function g(x); g(±a) = 0 and the general solution of (1) takes the form

u(x; y) =
∞∑
m=0

∞∑
n=0

Am cos
[ 
2a
(2m+ 1)x

]
Bn cos

[√
k2nm −

( 
2a
(2m+ 1)

)2
y

]
: (17)

Now we have to satisfy the inhomogeneous boundary condition (8) and to 3nd the eigenvalue k.
Condition (8) yields

u(x;±b) = g(x) =
∞∑
m;n

AmBn cos
[ 
2a
(2m+ 1)x

]
cos

[√
k2nm −

( 
2a
(2m+ 1)

)2
b

]
: (18)
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With respect to (8) the second cos-term should be equal to 1. Thus

√
k2nm −

( 
2a
(2m+ 1)

)2
b= 2n; n= 1; 2; : : : (19)

must be valid. This determines the eigenvalue k and

u(x;±b) = g(x) =
∑
m

Am cos
[ 
2a
(2m+ 1)x

]
(20)

is a cos-Fourier series expansion of the given (even) function g, if all Bn = 1. Expansion (20) also
satis3es g(±a) = 0.
Solution (17) is a general solution and no partial solution of the pertinent inhomogeneous equation

or a homogenization of the inhomogeneous boundary condition is necessary. Questions of conver-
gence of the solution have not been investigated. This problem will depend on the boundary condition
g(x).

4. A numerical example with Mathematica

Using the program package Mathematica [1] we can give a numerical example.

In[1] := (* code 57 :
Inhomogeneous eigenvalue problem. Solve the
Helmholtz equation for a membrane,
define a rectangle 2a× 2b as the domain,
assume a homogeneous condition u(a,y) = 0
and an inhomogeneous u(x,b) = g(x) * )

Clear[g, a, b];
g[x ] = Sqrt[a∧2 + b∧2 - x∧2] - b;
a = 0.5;
(∗ Find a value of b

so that the calculations converge.
The simple eigenvalue  * Sqrt[b∧2− 4/a∧2]
must be real * )

Plot[  * Sqrt[b∧2− 4/a∧2],
{b,a,10.* a}]

Plot :: plnr :  Sqrt[b - -- ] is not a machine-size real number
at b = 0:5000001875‘:

Plot :: plnr :  Sqrt[b - -- ] is not a machine-size real number
at b = 0:682551462078121‘:

Plot :: plnr :  Sqrt[b - -- ] is not a machine-size real number
at b = 0:8816395993671815‘:
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General :: stop : Further output of Plot :: plnr will be
suppressed during this calculation.

4.2 4.4 4.6 4.8 5

2

4

6

8

Out[1]= -Graphics-
In[2]:= b = 4.1;

(* Check the satisfaction of the boundary conditions * )
Plot[g[x],{x,− a,a}]
g[a]
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Out[2]= -Graphics-
Out[2]= 0.
In[3]:= (* Is the simple eigenvalue k real ? * )

k =  * Sqrt[b∧2− 4/a∧2]
Out[3]= 2.82743
In[4]:= (* Expand g(x) into a Fourier series * )

¡¡ Calculus‘FourierTransform’
FourierTrigSeries[g[x], x, 2]

Out[4]= 0.0202651 + 2 Cos[2x]∫ 1
2

− 1
2

(
−4.1+

√
17.06− x2

)
Cos[2x]dx+
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2 Cos [4x]∫ 1
2

− 1
2

(
−4.1+

√
17.06− x2

)
Cos[4x]dx

In[5]:= (∗ Investigate the integrand and
make a choice of how many terms ∗)

p = 150;
G[x ] = Sum[g[x]* Cos[2* n* x],{n,1,p}];

Plot[G[x],{x,− a,a}]
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Out[5]= -Graphics-
In[6]:= (∗ This is an oscillatory integrand.

You may use option Method Oscillatory ∗)
Clear[J];
(* Calculate the expansion coefficients J[n] *)
Off[NIntegrate :: ncvb];
Off[NIntegrate :: slwcon];
Table[J[n] = NIntegrate[g[x] * Cos[2 * n *  x],
{x, − a,a}
(* , Method → Oscillatory * )],
Clear[GR];
GR[x ] = 0.0202651 + Sum[Cos[2 * n * * x] * 2 * J[n], {n, 1, p}];

In[7]:= Plot[GR[x],{x,− a,a}]
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Out[7]= -Graphics-
In[8]:= (* Calculate the error *)

g[0] - GR[0]

Out[8] = 3.0249× 10−7
In[9]:= g[a] − GR[a]
Out[9]= −0.0000820712
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