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Abstract

We give a new class of algorithms for computing sparsest shifts of a given polynomial. Our
algorithms are based on the early termination version of sparse interpolation algorithms: for a
symbolic set of interpolation points, a sparsest shift must be a root of the first possible zero
discrepancy that can be used as the early termination test. Through reformulating as multivariate
shifts in a designated set, our algorithms can compute the sparsest shifts that simultaneously
minimize the terms of a given set of polynomials. Our algorithms can also be applied to the
Pochhammer and Chebyshev bases for the polynomials, and potentially to other bases as well. For
a given univariate polynomial, we give a lower bound for the optimal sparsity. The efficiency of our
algorithms can be further improved by imposing such a bound and pruning the highest degree terms.
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1. Introduction

Let f (x1, . . . , xn) = ∑r
i=1 ui x

di,1
1 · · · x

di,n
n ∈ D[x1, . . . , xn] be a multivariate polyno-

mial whose coefficients are in an integral domainD. A sparsest shift withinS is a vector
(θ1, . . . , θn) ∈ S such that the number of (shifted) terms is minimized asτ in

f (x1, . . . , xn) =
τ∑

i=1

γi (x1 + θ1)
δi,1 · · · (xn + θn)

δi,n and γi �= 0.
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The sparsest shifts might not be unique: forf = x2 + x + 1 ∈ D[x] andK the algebraic
closure ofD, there are three sparsest shifts inK with τ = 2, namelyθ = −1/2, θ = ρ1
and ρ2 where f = (x − ρ1)(x − ρ2). However, in theunivariate caseLakshman and
Saunders(1996) give asufficient condition for the uniqueness of the sparsest shift. While
Grigoriev and Lakshman(2000) give some generalizations of the uniqueness properties in
the multivariate case, we provide a stronger result in the univariate case.

Sparse shifts can dramatically reduce thesize of a symbolic expression. A classical
example, by JoelMoses, is

∫
1+(x+1)ndx = x+(x+1)n+1/(n+1). Sparse shiftscan be

useful when interpolating the black-box polynomial outputs of the algorithms inKaltofen
and Trager(1990), say the black box for the irreducible factors of a matrix determinant
with symbolic entries. It is possible that a sparse shift can make a factor manageable,
while the standard representation, inKnuth’s (1997) words, “would fill the universe”.
Algorithms for computing a sparse shift could therefore be considered simplification
tools.

We give a new class of algorithms for efficiently computing the sparsest shifts. Our
algorithms are based on the early termination version of sparse interpolation algorithms
(Kaltofen et al., 2000; Kaltofen and Lee, 2003), which capture the sparsity of the target
polynomial in a designated basis when the early termination occurs. The main idea is
that for asymbolicset of interpolation points, a shift must be a root of a discrepancy
that is used as the early termination test; a sparsest shift is the first such zero to occur.
We note that our approach is similar to that ofGrigoriev and Karpinski(1993), who use
Wronskians (Grigoriev et al., 1994) in place of discrepancies. Here we can assume that
the input polynomial f is being interpolated and we aregiven a black-box procedure
for its evaluation. For coefficient fields of small cardinality we require that the black box
allows evaluations on points from an extension field (Grigoriev et al., 1990), which can be
realized in a computer program as the so-called extended domain black-box object (Dı́az
and Kaltofen, 1998). We note that for efficiency it is sometimes useful to compute the
coefficients off via interpolation before employing our methods.

Through randomization we can dramatically improve the efficiency of our algorithms.
Our randomization is of the Las Vegas kind—always correct and probably fast—because
one may always check a candidate sparsest shift via a sparse interpolation algorithm.
First, we may choose random values as interpolation points rather than symbolic ones,
and employ the probabilistic analysis ofDeMillo and Lipton(1978), Zippel (1979) and
Schwartz(1980). In the univariate case, and in the multivariate case where a very sparse
shif t exists, we may replace the polynomial root finder by a GCD procedure. This is
possible since the sparsest shifts are the roots of a sequence of discrepancies. For the
sparsest shifts in the power bases, we can provide a complete probabilistic analysis when
the algorithm is run on two independent trials or when all discrepancies up to 2degf are
considered. For univariate shifts withinQ, wecan further eliminate the indeterminate shift
variable in our algorithm by evaluating at random integers such that the shift is determined
through a large prime factor. We can provide proof for a method that uses ten independent
trials with the provision that the sparsest shift is unique.

The running times of our methods compare favorably with the previously best
algorithms (Grigoriev and Karpinski, 1993; Grigoriev and Lakshman, 1995; Lakshman
and Saunders, 1996; Grigoriev and Lakshman, 2000). Not accounting for the length of



M. Giesbrecht et al. / Journal of Symbolic Computation 36 (2003) 401–424 403

the intermediately computed scalars, our method at its best, in the univariate rational case
when no symbolic value for the shift is carried along, requiresO(τ2) operations andO(τ )

evaluations of f . When the bit-lengths of the rational numbers involved are considered,
our algorithm requiresO(τ2M(τ2deg( f )log‖ f ‖)) bit operations, whereO(M(�)) bit
operations are sufficient to multiply two integers with� bits (andM(�) = �2 using the
standard algorithm, andM(�) = �log�log log� using asymptotically fast arithmetic). The
algorithm ofLakshman and Saunders(1996) usesO(τ2deg f + τ5) arithmetic operations
and 4τ + 2 values of f and its derivatives. We note thatGrigoriev and Karpinski(1993)
have established the problem to be in polynomial-time. Over a general field (supporting
root finding), our “one projection” algorithm ofSection 3.2requiresO(τ2M(τdeg f ))
operations inK. O(τ ) evaluations of f at symbolic points, orO(τdeg f ) evaluations at
points inK are also required.

Wecan also find the sparsest shifts of a set of polynomials by reformulating the problem
as finding the multivariate sparsest shift within a designated set. The efficiency of our
algorithms can be further improved by constraining the computations within the bounds,
whenever available, for the optimal sparsity, andby pruning the highest degree terms which
remain unchanged in all shifts.

2. Sparse interpolations and sparsity in shifted bases

2.1. Sparse interpolations in any given power basis

Given a black-box polynomial f (x1, . . . , xn) ∈ D[x1, . . . , xn] in the power basis
generated byx1, . . . , xn.

f (x1, . . . , xn) =
r∑

i=1

ui x
di,1
1 · · · x

di,n
n , ui ∈ D\{0}, (1)

under another power basis ofw j = aj ,0 + aj ,1x1 + · · · + aj ,nxn(1 ≤ j ≤ n) with aj ,i ∈ D
for 1 ≤ j ≤ n, f is represented as:

g(w1, . . . , wn) =
t∑

i=1

ci w
ei,1
1 · · · wei,n

n , ci ∈ K\{0}, (2)

whereK is the quotient field ofD. Here,t , ei, j , andci are all dependent on the definition of
w j ; the enumeration ini depends on the term order being used. The representation in (1)
is a special case of (2).

The sparsity of a polynomial depends on the choice of basis in the representation; we
consider the sparse interpolations in the power basis ofw j for 1 ≤ j ≤ n.

The black box f takes values for eachx j as input. In order to interpolatef in w j ,
namelyg(w1, . . . , wn) in (2), we need to form a black box forg that takes inputs as values
for w j suchthat f (x1, . . . , xn) = g(w1, . . . , wn). By definition,
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w1

w2
...

wn




︸ ︷︷ ︸
W

=




a1,0

a2,0
...

an,0




︸ ︷︷ ︸
A0

+




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...

an,1 an,2 . . . an,n




︸ ︷︷ ︸
A




x1

x2
...

xn




︸ ︷︷ ︸
X

(3)

and we haveX = A−1(W − A0). We mayassume the matrixA is non-singular because
both x j andw j are bases ofK[x1, . . . , xn]. Let g(WTr) denoteg(w1, . . . , wn). A black
box for g can be constructed by evaluatingf at (A−1(W − A0))

Tr:

g(WTr) = f ((A−1(W − A0))
Tr), (4)

with both A−1 and A0 obtained from the givenw j . By applying the Ben-Or/Tiwari
algorithm (Ben-Or and Tiwari, 1988) and its early termination (Kaltofen et al., 2000;
Kaltofen and Lee, 2003) to the black box g(w1, . . . , wn) in (4), we establish the
corresponding sparse interpolations off in w j .

2.2. The sparsity of polynomials in shifted bases

Consider a univariate polynomialf (x) ∈ D[x] in two different power bases:x and
(x + s) with s �= 0. Letd = deg f (x), ui �= 0 for 1 ≤ i ≤ r , andcj �= 0 for 1 ≤ j ≤ t ,
then f can be represented as:

f (x) = u1xd1 + u2xd2 + · · · + ur xdr (5)

= c1(x + s)e1 + c2(x + s)e2 + · · · + ct (x + s)et , (6)

with d1 < d2 < · · · < dr = d ande1 < e2 < · · · < et = d. Thenumber of terms off in
the basis ofx is r , and inthe basis of(x + s) is t .

As a special case of multivariate sparsifying transformations,Grigoriev and Lakshman
(2000) gave an inequality between the sparsities in different shifted bases. Using a different
method, we give a stronger result in the univariate case.

Theorem 1. For a univariate polynomial f withdeg f = d, represented in any two

different bases with number of term r and t respectively, r+ t > d + 1, provided
(d

j

) �= 0
for all 0 < j < d when computed as an element inD.

Proof. Since the indeterminatex in (5) can be used to represent a shifted basis itself, by
using the representations in (5) and (6) in ourproof, we will not lose generality.

If r = d + 1 in (5), sincet ≥ 1 in (6), we haver + t > d + 1.
Whenr < d + 1, there areκ = d + 1 − r many terms off in (5) with a coefficient

of zero. Let their degrees be ordered asδ1 > δ2 > · · · > δκ . We expand (6) and collect
the coefficient for eachxδi , whichare contributed from all terms of degree no less thanδi .
In other words, collect allcj (x + s)ej with ej ≥ δi and(

et

δi

)
set −δi ct +

(
et−1

δi

)
set−1−δi ct−1 + · · · +

(
ej

δi

)
sej −δi cj = 0.
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As a result, we have the following system for 1≤ i ≤ κ :


(et
δ1

)
set −δ1 · · · 0 · · · 0
...

. . .
...(et

δi

)
set−δi · · · (ej

δi

)
sej −δi · · · 0( et

δi+1

)
set −δi+1 · · · ( ej

δi+1

)
sej −δi+1 · · ·

...
. . .

...
. . .(et

δκ

)
set −δκ · · · (ej

δκ

)
sej −δκ · · · (e1

δκ

)
se1−δκ




︸ ︷︷ ︸
V




ct
...

cj +1

cj

...

c1




=




0
...

0
0
...

0




.

In the matrixV , we considerthe i th row Vi and its number of non-zero entriesvi . Note
that the firstvi entries inVi are non-zero andvi ≤ vi+1. We want to claim Vi is not a linear
combination ofV1, . . . , Vi−1 andvi ≥ i + 1 for 1 < i < t .

We havev1 ≥ 2, otherwise
(et
δ1

)
set−δ1ct = 0 implies ct = 0. If v1 = v2 = 2, the

non-zero part ofV1 andV2 form a 2× 2 transpose Vandermonde-like system (cf.Evans
and Isaacs, 1976) of rank 2 with solutionct = ct−1 = 0, which is a contradiction. When
v1 ≥ 3, v2 ≥ v1 ≥ 3. Therefore,v2 ≥ 3, andvi ≥ i + 1 for i = 1, 2.

If v1 < v2, then obviously v2 is not linearly dependent onv1; if v1 = v2, then
v1 = v2 ≥ 3, andV1 andV2 form a system with rank 2. In either case,V1, V2 are linearly
independent.

Suppose the claim is true fori = n and consideri = n + 1. Then we have either
vn ≥ n + 2 or vn = n + 1. If vn ≥ n + 2, thenvn+1 ≥ n + 2, V1, . . . , Vn, Vn+1 form
a step-wise transpose Vandermonde-like system with rankn + 1, andVn+1 is not a linear
combination ofV1, . . . , Vn. If vn = n + 1 andvn+1 > n + 1, Vn+1 is independent of
V1, . . . , Vn.

If vn = vn+1 = n + 1, V1, . . . , Vn+1 form an(n + 1) × (n + 1) step-wise transpose
Vandermonde-like system of rankn + 1, which implies a solutionct = ct−1 = · · · =
ct−n = 0, a contradiction.

Now consider when the matrixV is t by t , Vt is independent fromV1, . . . , Vt−1 andV is
non-singular with solutionct = ct−1 = · · · = c1 = 0, which is a contradiction. Therefore,
t > κ = d + 1 − r . �

Consider a univariate polynomialf of degreed that is given in any power basis in which
there are exactlyr non-zero terms. Ifr > (d + 1)/2, Theorem 1provides a lower bound
for the optimalsparsity of f asd + 1 − r < τ ≤ r . In thecase whenr ≤ (d + 1)/2,
this is the sufficient condition for the unique sparsest shift (Lakshman and Saunders, 1996,
Theorem 1), of which ourTheorem 1gives a simple proof:

Lemma 2. For a univariate polynomial f(x) with deg f (x) = d, if there are exactlyτ
non-zero terms in the power basis of(x+θ) andτ ≤ (d+1)/2, thenθ is theunique sparsest
shift of f(x), which isan element in the quotient field ofD (Lakshman and Saunders, 1996,
Theorem1). Again we assume that

(d
j

) �= 0 in D for all 0 < j < d.

Proof. Supposes �= θ , and there aret non-zero terms off in the s-shifted basis, by
Theorem 1, t > d + 1 − τ ≥ (d + 1)/2. Now suppose thatθ is an algebraic element over
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the quotient field ofD. Then for a conjugateθ∗ of θ we havef (x) = ∑
i ci (θ)(x + θ)ei =∑

i ci (θ
∗)(x + θ∗)ei , becausef (x) ∈ D[x]. �

Consider a multivariate polynomialf (x1, . . . , xn) and a multivariate sparsest shift
θ = (θ1, . . . , θn). If there arem componentsθ j of θ = (θ1, . . . , θn) so that eachθ j

happens to be the sparsest shift off in variablex j , then each of thosem components
θ j can be computed as a univariate shift off in x j , and theoveralln-variate problem be
brought down to an(n − m)-variate problem.

In the case the multivariate sparsest shift off is very sparse, consideringLemma 2on
each variable in turn provides a sufficient condition for the uniqueness of the multivariate
sparsest shift (seeLemma 3). Based on the fast algorithm for finding the unique sparsest
rational shift in the univariate case (seeSection 3.3), with high probability we can quickly
determine whether such a shift exists, and obtain the shift if it does.

Lemma 3. Let δ = min1≤ j ≤n{degx j
f }. If f has exactlyτ non-zero terms in theθ -shifted

basis and thatτ ≤ (δ + 1)/2, then θ = (θ1, . . . , θn) is the unique sparsest shift of
f (x1, . . . , xn), and θ j is the unique sparsest shift of f in xj for 1 ≤ j ≤ n (Grigoriev
and Lakshman, 2000, cf. Lemma2). Furthermore,θ ∈ Kn, whereK is the field generated
by the coefficients of f (Lakshman and Saunders, 1996, cf. Corollary 1).

3. Finding sparsest shifts

Based on the early termination sparse interpolation algorithms (Kaltofen et al., 2000;
Kaltofen and Lee, 2003), we present a class of algorithms for finding sparsest shifts: the
interpolation steps are sensitive to the sparsity of the target polynomial in a given basis.
We leave the shifts as variables in the procedure and solve the shift variables that minimize
the interpolation steps. We will first concentrate on the case of power bases. Later in
Section 3.4we consider the Pochhammer and Chebyshev bases.

Section 2.1showed how to form g(w1, . . . , wn) = f (x1, . . . , xn) for a given
polynomial f . All our algorithms can be employed for any given basisw j . We shall focus
on the standard power basis without losing generality.

Consider a polynomialf ∈ D[x1, . . . , xn] represented in thes-shifted basis with
s = (s1, . . . , sn) andK the algebraic closure ofD:

f (x1, . . . , xn) =
t∑

i=1

ci (x1 + s1)
ei,1 · · · (xn + sn)ei,n , ci ∈ K.

Note thatt , ci , andei, j are all dependent ons. Theproblem of computing a sparsest shift
within S is to find s ∈ S suchthat t is minimized. Another notion is that of aT-sparse
shift (within S), which is a points = (s1, . . . , sn) ∈ S such that for the number of shifted
terms we havet ≤ T . Algorithms for computing all T-sparse shifts takeT as an additional
input.

We introducen indeterminatesz1, . . . , zn to serve as shift variables, and manipulate
f (x1, . . . , xn) in the symbolic(z1, . . . , zn)-shifted basisyj = x j +zj for 1 ≤ j ≤ n. Then

by applying (4), with W = [y1, . . . , yn]Tr, A0 = [z1, . . . , zn]Tr, and A = In, we obtain
f (y1−z1, . . . , yn−zn). Now, consider the interpolation off in the basis ofyj symbolically
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by the early termination Ben-Or/Tiwari algorithm (Kaltofen et al., 2000; Kaltofen and Lee,
2003): with αi = f (yi

1 − z1, . . . , yi
n − zn) the Berlekamp/Massey algorithm is carried out

on a sequence of polynomials{αi }i≥1, and the discrepancies become rational functions.
To avoid the GCD operations on the arising numerators and denominators of such

rational functions, we can implement the fraction-free Berlekamp/Massey algorithm
(Giesbrecht et al., 2002, Section 2) for computing the discrepancies∆i . Therefore,
{αi }i≥1 is a sequence of polynomials inK[z1,. . . ,zn][y1,. . . ,yn], and the discrepancies
∆i are polynomials iny1, . . . , yn overK[z1,. . . ,zn]. The following lemma is based on the
early termination (Kaltofen et al., 2000; Kaltofen and Lee, 2003) of the Ben-Or/Tiwari
algorithm.

Lemma 4. When a shift s= (s1, . . . , sn) ∈ K
n

is given, the discrepancies∆i evaluated
at (z1, . . . , zn) = (s1, . . . , sn) are non-zero polynomials in yi for 1 ≤ i ≤ 2t , and zero
polynomialsfor all i ≥ 2t + 1, where t is the number of terms of the target polynomial f
in the s-shifted basis.

All our algorithms manipulate the discrepancies∆i , and wepresent our algorithms
in three categories. Thesymbolicalgorithmsof Section 3.1treat∆i as polynomials in
K[z1, . . . , zn][y1, . . . , yn] and work in deterministic polynomial time for constantn over
any field over which algebraic systems can be solved. Thesingle projection algorithmsin
Section 3.2evaluate eachyj at a valuepj to increase efficiency. Finally, inSection 3.3,
we present thedouble projection algorithmfor polynomials f ∈ Q[x], wherein the ∆i

are evaluated at randomy = p ∈ Z as well as random shiftsz = s ∈ Z. This yields a
particularly efficient algorithm for rational polynomials.

3.1. Symbolic algorithms

Our symbolic algorithms are all deterministic, they treat both the shifted basisyi and
the shift variables zi as indeterminates. Consider the fraction-free Berlekamp/Massey
algorithm processing the sequence{αi }i≥1 with αi = f (yi

1 − z1, . . . , yi
n − zn): the

discrepancies∆i are polynomials iny1, . . . , yn overK[z1, . . . , zn]. Based onLemma 4,
we seek sparsest shifts forf within S by solving for z ∈ S that minimize i suchthat
∆i=2t+1 is a zero polynomial inK[y1, . . . , yn].
Algorithm. MultiSparsestShifts <symbolic>

Input: � f (x1, . . . , xn) ∈ D[x1, . . . , xn]: the input polynomial;
� S ⊂ K

n
: S �= ∅, the shifts are constrained withinS.

Output: � θ ∈ S: the sparsest shifts forf in S.
(1) [Compute	i ].

Perform the fraction-free Berlekamp/Massey algorithm on{αi }i≥1;

(2) [Solve for the first∆i=2t+1 = 0, the zero polynomial inK[y1, . . . , yn]].
If i = 2t + 1, an odd integer, then

if there is (θ1, . . . , θn) ∈ S such that ∆i (θ1, . . . , θn, y1, . . . , yn) is a zero
polynomial inK[y1, . . . , yn], then

Break out of the loop;
Return all the solutionsθ ∈ S for ∆i = 0 ∈ K[y1, . . . , yn].
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The algorithm always terminates: for anys ∈ S �= ∅, ∆2t+1 = 0 whent is thenumber
of terms of f in thes-shifted basis. In step (2), a discrepancy∆i = ∑κ

j =1 gi, j ·yσ j ,1
1 · · · y

σ j ,n
n

becomes a zero polynomial inK[y1, . . . , yn] if the system of polynomial equations

gi,1(z1, . . . , zn) = 0
...

gi,κ (z1, . . . , zn) = 0

has a solution in S, and the problem is thus reduced to solving an algebraic system.
We add that for multivariate polynomials, transcendental shifts are possible, for instance
x1+x2−1 = (x1+ϑ)+(x2−ϑ −1). In thiscase the variety of shift points is of dimension
higher than 0.

For theproblem of computingT-sparse shifts, we note that inLemma 4, a zero of∆k

stays azero of∆i for all i ≥ k, and the shifts that make∆2T+1 a zero polynomial (inyj )
are alls that maket ≤ T . We findT-sparse shifts withinS by solving all s ∈ S suchthat
∆2T+1(s1, . . . , sn, y1, . . . , yn) = 0.

When the polynomialf (x) is univariate, anumber of special “tricks” can be employed.
Under thez-shifted basisy = x + z, the discrepancies∆i are polynomials iny with
coefficients inK[z], and every∆i is a product of its primitive partϕi (y) ∈ K[z][y] and
contentgi ∈ K[z]:

∆i = gi · ϕi (y). (7)

A sparsest shift θ ∈ Soccurs at the firsti suchthat∆i becomes a zero polynomial iny, that
is, whengi = 0. If S = K, at the first timegi is a non-trivial polynomial inK[z], there is a
solution togi = 0 and the solutions are the sparsest shifts forf . Sinceall zeros ofgi stay
zeros ofgi+1, wecan just look for the first non-trivial GCD ofgi andgi+1 in K[z].
Algorithm. UniSparsestShifts <symbolic>

Input: � f (x) ∈ D[x]: a univariate polynomial;
Output: � θ ∈ K: the sparsest shifts forf in K.
(1) [Compute∆i ].

Perform the fraction-free Berlekamp/Massey algorithm on{αi = f (yi − z)}i≥1;
(2) [Compute gcd(gi−1, gi ), the content of gcd(∆i−1,∆i )].

If i = 2t + 2, an even integer, then
if gcd(gi−1, gi ) is non-trivial in K[z], then

Break out of the loop;
Return all thesolutions ofgi−1(z) = 0 in K.

This algorithm requires a root finder inK[z]. Likewise, to find allT-sparse shifts for a
univariate polynomial, we solve gcd(g2T+1, g2T+2) = 0.

We can easily determine the complexity of this algorithm in terms of operations inK
(not including the cost of the root finding). We first observe that the cost of running the
Berlekamp/Massey algorithm in step (1) dominates other costs. Also, the degrees of the
polynomials involved in the computation do not get larger thanO(τ2d) in y and O(τd)

in z (assuming the inputf has degreed). Thus, the total cost isO(τ2M(τ3d2)) operations



M. Giesbrecht et al. / Journal of Symbolic Computation 36 (2003) 401–424 409

in K, whereM(m) is the cost of multiplying two univariate polynomials of degreem.
M(m) = O(m2) using standard polynomial arithmetic andM(m) = O(mlogmlog logm)

using asymptotically fast polynomial arithmetic. Theoretically there is an asymptotically
faster alternative by replacing the Berlekamp/Massey algorithm with the algorithm of
Brent et al.(1980).

3.2. Single projection algorithms

The efficiency of symbolic algorithms can be improved substantially by projecting
variablesyj to valuespj . For simplicity, we describe projection algorithms as finding
sparsest shifts within certain algebraic extensions. However, they can all be modified as
being restricted to a non-empty subsetS.

Now consider the discrepancyfrom the previous subsection,∆2T+1(z1, . . . , zn,

y1, . . . , yn), evaluated at(y1, . . . , yn) = (p1, . . . , pn), wherepj are distinct values.

Algorithm. MultiSparseShiftsEquation <one proj>

Input: � f (x1, . . . , xn) ∈ D[x1, . . . , xn]: the input polynomial;
� T : apositiveinteger;T-sparse shifts forf are being considered.

Output: � ∆2T+1: apolynomial;T-sparse shifts off have tosatisfy∆2T+1 = 0.
(1) [Choose the projection values].

Pick distinct random valuesp1, . . . , pn;
(2) [Compute∆2T+1].

Carry out the fraction-free Berlekamp/Massey algorithm on{αi }1≤i≤2T+1 with αi =
f (pi

1 − z1, . . . , pi
n − zn).

The output polynomial equation might contain roots that are notT-sparse shifts off ,
but if we restrict the shifts within a setS, the single constraint∆2T+1 = 0 may be sufficient
to locate allT-sparse shifts withinS. Additional equations can be generated by running
the algorithm for different randompj ’s. Eventually all false solutions, the zeros that do
not yield aT-sparse shift, will be eliminated from a system of polynomial equations with
enough distinctpj ’s.

Theorem 5. Consider a system of polynomial equations such that each equation
∆i,2T+1 = 0 is an output of algorithmMultiSparseShiftsEquation that projects
(y1, . . . , yn) to qi = (qi,1, . . . , qi,n). If there are enough equations∆i,2T+1 = 0 with
distinct qi , then all the solutions are T -sparse shifts of f .

Proof. Consider the symbolic discrepancy:∆2T+1 = ∑κ
j =1 gj ·yσ j ,1

1 · · · y
σ j ,n
n = ∑κ

j =1 gj ·
yσ j , with yσ j = y

σ j ,1
1 · · · y

σ j ,n
n and gj ∈ K[z1, . . . , zn]. The solutions to g1 = · · · =

gκ = 0 areT-sparse shifts off . Now let q
σ j
i = q

σ j ,1
i,1 · · · q

σ j ,n
i,n , the projection ofyσ j at

qi = (qi,1, . . . , qi,n), and considerthe following system:


qσ1
1 qσ2

1 · · · qσκ

1
qσ1

2 qσ2
2 · · · qσκ

2
...

...
. . .

...

qσ1
κ qσ2

κ · · · qσκ
κ







g1

g2
...

gκ


 =




0
0
...

0


 . (8)
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Given enough distinctqi , we eventually obtain a non-singular system in (8), which provides
solutions tog1 = · · · = gκ = 0. These are only solutions to the initial system of
equations. �

In the univariate case, with high probability all the false solutions can be eliminated
by projectingy to two different random values. Consider∆i (y) = gi · ϕi (y) in (7)
and distinct random valuesp, q. By the Schwartz–Zippel lemma (Schwartz, 1980),
gcd(∆i (p),∆i (q)) = gcd(gi · ϕi (p), gi · ϕi (q)) = gi with high probability and our next
algorithm follows.

Algorithm. UniSparsestShifts <one proj, two seq>

Input: � f (x) ∈ D[x]: a univariate polynomial.
Output: � θ : the sparsest shifts forf with high probability.
(1) [Choose the projection valuesp andq].

Pick distinct random valuesp, q;
(2) [Compute∆i (p) and∆i (q)].

Perform the fraction-free Berlekamp/Massey algorithm on{αi = f (pi − z)}i≥1 and
{βi = f (qi − z)}i≥1;

(3) [Compute gcd(∆i (p),∆i (q))].
If i = 2t + 1, an odd integer, then

if gcd(∆i (p),∆i (q)) = g(z) is non-trivial inK[z], then
Break out of the loop;
Return all thesolutions ofg(z) = 0 in K.

To further increase the probability of correctness, we can projecty to more distinct
random valuesq1, . . . , qk and form a projection sequence for each of them. Then we look
for the firsti = 2t + 1 such that gcd(∆i (q1), . . . ,∆i (qk)) = g is non-trivial inK[z].

Much as in the case of theUniSparsestShifts <symbolic> algorithm above, we
can determine the complexity of this algorithm in terms of operations inK. Again, the
cost of running the Berlekamp/Massey algorithm in step (2) dominates. The degrees of the
polynomials involved in the computation do not get larger thanO(td), whered = deg f ,
and all polynomials are univariate inz after the projections in step (1). Thus, the total cost
is O(τ2M(τd)) operations inK.

We can even reduce the projection to a single sequence by taking GCD’s of subsequent
elements in the sequence. Recall the primitive part of∆i in (7), we need to make sure there
is no non-trivial GCD ofϕi (p), ϕi+1(p), . . . in K[z] for all p.

Theorem 6. Suppose that the sparsest shift of f(x) in K hasτ < deg( f ) + 1 terms and
assume that

(deg( f )
j

) �= 0 for all 0 < j < deg( f ) whencomputed as an element inD.
Then forΓ = GCD2τ+1≤i≤2deg( f )+1(∆i (z, y)) (over the quotient field ofD) we have
Γ = g(z)γ (y) where g(z) ∈ D[z] andγ (y) ∈ D[y].
Proof. As stated above, ifΓ (θ, y) = 0 for someθ in the algebraic closure of the quotient
field of D, denoted byK, then f (y − θ) is τ -sparse iny. By assumption, there exists such
a shift, and thereforez − θ dividesΓ . As in (7) we factorΓ (z, y) = g(z)γ (z, y), where
g ∈ D[z] andγ (z, y) ∈ D[z, y] whose content inD[z] is 1. We claim thatγ (z, y) ∈ D[y].
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Let us suppose the contrary. Then there exists an elementσ in the algebraic closure of
D(z) and transcendental overK suchthatγ (z, σ ) = 0. We thus have that∆i (z, σ ) = 0 for
all 2τ + 1 ≤ i ≤ 2deg( f ) + 1. Since the termsσ i are all distinct, we then get from the
Ben-Or/Tiwari algorithm, usingp = σ and re-interpreting the coefficient field off to be
the algebraic closure ofD(z), that f (y − z) is τ -sparse. Letd = deg( f ) andcd �= 0 be the
leading coefficient off . However, the termcd

(d
j

)
zd− j is unique in the coefficient ofy j of

f (y − z), so f (y − z) has actuallyd + 1 non-zero terms overD[z]. �

The algorithm using a single projected sequence is as follows:

Algorithm. UniSparsestShifts <one proj, one seq>

Input: � f (x) ∈ D[x]: a univariate polynomial;
� δ: an upper bound on degf .

Output: � θ : the sparsest shifts forf in K with high probability.
(1) [Choose a projection value].

Pick a random valuep;
(2) [Compute∆1, . . . ,∆2δ+1].

Compute ∆1, . . . ,∆2δ+1 by the fraction-free Berlekamp/Massey algorithm on
{αi }1≤i≤2δ+1 with αi = f (pi − z);

(3) [Minimize t so that gcd(∆2t+1, . . . ,∆2δ+1) is non-trivial].
For t = δ, δ − 1, δ − 2, . . . do

if gcd(∆2δ+1, . . . ,∆2t ) becomes trivial inK[z], then
Break out of the loop;

Return all solutions of gcd(∆2t+1, . . . ,∆2δ) = 0 in K.

We conjecture that instead of taking the GCD of all discrepancies up to 2degf + 1, we
can only look for the GCD of a much smaller number of discrepancies after the sparsest
case∆2τ+1 is reached.

3.3. Two projections: finding the sparsest shifts of a rational polynomial

When f ∈ Q[x], wecan project the sequence{ f (yi − z)}i≥1 both on a randomy and
randomz fromZ, anduse themultiplicative structure of the integers to recover the sparsest
shif t. Thus, finding the sparsest shift will be reduced to running the Berlekamp/Massey
algorithm on a small number of integer sequences. The existence of a large prime factor in
the GCD’s of two discrepancies will reveal the sparsest shift. This improves the efficiency.
It also allowsus to work completely with a black-box representation forf , requiring only
the value of f at points inZ.

Finding factors of a black-box polynomial
We begin by demonstrating a general algorithm for finding a linear factor in one variable

of a black-box bivariate polynomial. This will be applied to the discrepancy polynomials.
LetΦ ∈ Q[z, y] be a black-box polynomial of degreeC in y and degreed in z. Suppose

that

Φ(z, y) = (az− b)eΨ (z, y),
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wherea, b ∈ Z are relatively prime,e ≥ 1, andΨ (z, y) ∈ Q[x, z] has no non-trivial
factor inZ[z]. In this section we give a Monte Carlo algorithm to finda andb with a small
constant number of evaluations ofΦ.

A numberm ∈ Q is said to beµ-smooth, for someµ > 1, if all prime factors of
both the numerator and denominator ofm are less thanµ. A polynomialΨ ∈ Z[z, y]
is primitive if the GCD of all its coefficients is one. A polynomialΦ ∈ Q[z, y] is
µ-primitive if it is a µ-smooth number times a primitive, integer polynomial. For any
Ψ = ∑

i j Ψi j yi zj ∈ Z[z, y], let ‖Ψ‖ = max|Ψi j |. The height of a rational number
α/β ∈ Q (where gcd(α, β) = 1) is H(α/β) = max{|α|, |β|}. Define thedenominator
denom(Φ) of Φ ∈ Q[z, y] as the LCM of the denominators of its coefficients. Thecontent
of Φ is then defined as the usual content of the integer polynomial denom(Φ) · Φ. The
height ofΦ ∈ Q[z, y] is H(Φ) = max{|denom(Φ)|, ‖denom(Φ) · Φ‖}. Note that this is
the height ofΦ in the standard, unshifted, power basis.

To begin with we will insist thatΦ is µ-primitive, and treat the general case separately
below.

Algorithm. FindLinFac
Input: � Black box forΦ ∈ Q[z, y];

� BoundsC ≥ degy Φ, D ≥ degz Φ, H > H(Φ);
� S > height of the sought linear factor;
� a smoothness boundµ;

Φ is assumed to beµ-primitive, and
µ ≥ max

{
17, S2, 11C

√
D(H + 2C + 2),

540C D2 log H log(C + D + log H )
}
;

Output: � A candidate factoraz− b of Φ, wherea, b ∈ Z are relatively prime;
or a report “No linear factor inz exists”;

(1) L = {0, . . . , µ2 − 1};
(2) Choose randomγ1, γ2, σ ∈ L;
(3) Letq = gcd(numer(Φ(σ, γ1)), numer(Φ(σ, γ2));
(4) Letq = q/m, with m the largestµ-smooth factor ofq;
(5) If q = 1
(6) Then Return “No linear factor inz exists”;
(7) Else
(8) Findw and largeste ≥ 1 such thatq = we

(9) If w < 2S2

(10) Then Return “Failure”;
(11) Else Returna, b ∈ Z suchthat

gcd(a, b) = 1, |a|, |b| ≤ S, and−b/a ≡ σ modw;

Theorem 7. For any black boxΦ ∈ Z[z, y] meeting the input criteria,FindLinFacworks
correctly as stated with probability at least1/5 on any invocation.
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Comments

• While the algorithm is defined forµ-primitive polynomials inZ[z, y], the reader
is encouraged to think of these as simply primitive polynomials inZ[z, y]. The
µ-smooth content is the only rational (that is, non-integer) part of the computation.

• The input S, the height of the desired linear factor, can be replaced with‖Φ‖.
However, if we have a priori knowledge of a smaller factor (as we do later in this
section), this input may be useful.

• The algorithm can be run repeatedly until a factor is found, or the user is satisfied
that with sufficiently high probability no linear factor exists.

• The probability of success isundoubtedly much higher than is proven here.
• If w is too small and the algorithm reports “failure” in step (10), we get a useful

modular relation betweena andb. Collecting these may allow us to constructa, b
without ever getting a really largew.

To proveTheorem 7, we require a number of lemmas. The first says that if we project a
primitive bivariate polynomial randomly along one coordinate twice, then we expect to get
two relatively prime univariate polynomials whose contents do not share any large prime
factors.

Lemma 8. Let Ψ ∈ Z[z, y] be primitive with degyΨ ≤ C and degzΨ ≤ D. Let

µ ≥ 11C D1/2(log‖Ψ‖ + 2C + 2). For γ1, γ2 chosen randomly from{0, . . . , µ2 − 1}, the
probability that gcd(Ψ (z, γ1),Ψ (z, γ2)) = 1, and that no prime≥µ divides the contents
of bothΨ (z, γ1) andΨ (z, γ2), is at least9/10.

Proof. We first show that for randomly chosenγ1, γ2 ∈ {0, . . . , µ2 − 1}, the resultant
r of Ψ (z, γ1), andΨ (z, γ2) is non-zero with high probability. This will implyΨ (z, γ1)

andΨ (z, γ2) are relatively prime. Lety1, y2 be two new indeterminates and consider the
resultant R(y1, y2) ∈ Z[y1, y2] of Ψ (z, y1) andΨ (z, y2) as polynomials inQ(y1, y2)[z].
R has degree at most 2C D. For randomly chosenγ1, γ2 ∈ {0, . . . , µ2 − 1}, R(γ1, γ2) �= 0
with probability at least 1− 2C D/µ2 by the Schwartz–Zippel lemma.

Now write Ψ (z, y) = ∑
0≤i≤D Ψi (y)zi . For anyγ ∈ {0, . . . , µ2 − 1}, for all terms

Ψ j , we have|Ψ j (γ )| ≤ ‖Ψ‖ · µ2C+2. Assume that gcd(Ψ (z, γ1),Ψ (z, γ2)) = 1, so in
particular,Ψ (z, γ1) �= 0. The content ofΨ (z, γ1) is at most‖Ψ‖ · µ2C+2, and this has at
most logµ(‖Ψ‖ · µ2C+2) ≤ log‖Ψ‖ + 2C + 2 prime factors≥µ. SinceΨ is primitive,
for each primep dividing the content ofΨ (z, γ1) there exists ani suchthat Ψi (y) �≡
(0) mod p. There are at mostC integersγ2 ∈ {0, . . . , p− 1} suchthatΨi (γ2) ≡ 0 mod p.
For any primep ≥ µ, there are at mostCµ integersγ2 ∈ {0, . . . , µ2 − 1} suchthat
Ψi (γ2) ≡ 0 mod p. The total number ofγ ∈ {0, . . . , µ2 − 1} such that there exists a
p ≥ µ dividing the contents of bothΨ (z, γ1) andΨ (z, γ2) is then at mostC(log‖Ψ‖+
2C + 2)µ.

The probability that either gcd(Ψ (z, γ1),Ψ (z, γ2)) �= 1 or thereis a primep ≥ µ

which divides both theircontents, is at most 2C D/µ2 + C(log‖Ψ‖ + 2C + 2)/µ < 1/10,
by our choice ofµ. �

The next lemma simply says that the GCD of an evaluation of two relatively prime
integer polynomials is generally smooth.
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Lemma 9. Let h1, h2 ∈ Z[y] berelatively prime, primitive polynomials of degree d≤ D
and resultant r∈ Z, whereµ ≥ 10Dlogr . For a randomly chosenσ ∈ {0, . . . , µ2 − 1},
gcd(h1(σ ), h2(σ )) is µ-smooth with probability at least9/10.

Proof. Sinceh1, h2 are relatively prime, there existu1, u2 ∈ Z[y] suchthatu1(y)h1(y) +
u2(y)h2(y) = r . Thus, if any prime dividesh1(σ ) andh2(σ ), that primedividesr as well.
Suppose then thatp is a primedividing r . Then there existsu(p)

1 , u(p)

2 , w(p) ∈ Z[y] such
thatw(p) is the GCD ofh1, h2 modulop, and 0< degw(p) < d, and

u(p)

1 (y)h1(y) + u(p)

2 (y)h2(y) = w(p)(y) + pQ(p)(y)

for someQ(p) ∈ Z[y]. If p dividesh1(σ ) andh2(σ ), we havew(p)(σ ) ≡ 0 mod p. For
any primep, thenumber ofσ ∈ {0, . . . , p − 1} suchthatw(p)(σ ) ≡ 0 mod p is less than
D. Forprimesp ≥ µ thenumber ofσ ∈ {0, . . . , µ2 − 1} suchthatw(p) ≡ 0 mod p is less
thanDµ.

We know r has at most logr prime factors, so the probability thatw(p)(σ ) ≡ 0 mod p
for anyprime p > µ is at mostDlog(r )/µ < 1/10 by our choice ofµ. �

We look now at the probability that a number in an arithmetic progression isrough, i.e.
has a large prime factor. This theorem is an extension of an exercise ofKnuth(1983). Let
a, b ∈ Z be relatively prime. We say that an integerx ∈ {0, . . . , µ2 − 1} is (µ; a, b)-rough
if the largestprime factor ofax + b is greater thanµ.

Lemma 10. Let a, b ∈ Z be relatively prime andµ ≥ max{a2, b, 17}. Thenumber of
(µ; a, b)-rough integers x with0 ≤ x < µ2 is at leastµ2/4.

Proof. We assumea > 0. For a primep > µ
√

a, there isa unique x0 such that
0 ≤ x0 < p andax0 + b ≡ 0 mod p. Thus, the sequence of allx (0 ≤ x < µ2) such that
ax+b ≡ 0 mod p is x0, x0+ p, . . . , x0+kp, wherex0+kp < µ2 andx0+(k+1)p ≥ µ2.
For anyp there are at leastµ2/p − 1 suchnumbers.

Any number can appear in the sequence for at most one prime. To see this, assume
that x appears in the sequences for distinct primesp andq, with µ

√
a < p < q < µ2.

Then pq | ax + b. Sinceq > µ
√

a + 2, pq > µ2a + 2µ
√

a. But ax + b is at most
aµ2 + b < aµ2 + µ < aµ2 + 2µ

√
a < pq.

Summing all primesp suchthatµ
√

a < p < µ2 (and using the fact that
√

α ≤ µ1/4),
we count

∑
µ

√
a<p<µ2

µ2

p
− 1 = µ2

∑
µ

√
a<p<µ2

1

p
−

∑
µ

√
a<p<µ2

1

≥ µ2
(

log logµ2 − log logµ
√

a − 1

2log2(µ2)
− 1

2log2(µ
√

a)

)
− π(µ2)

≥ µ2
(

log logµ2 − log logµ5/4 − 1/8

log2µ
− 8/25

log2µ

)
− π(µ2)

≥ µ2
(

log
8

5
− 89/200

log2µ

)
− µ2

−1.5 + logµ2
,



M. Giesbrecht et al. / Journal of Symbolic Computation 36 (2003) 401–424 415

which is≥ µ2/4 for µ ≥ 33. Hereπ(m) is the number of primes less than or equal tom,
and Theorem 2 ofRosser and Schoenfeld(1962) showsπ(m) < m/(−1.5 + log(m)) for
m > 5. We also use Theorems 5 and 6 fromRosser and Schoenfeld(1962) which show
that

log logm + B − 1

2log2 m
<

∑
p≤m

1

p
< log logm + B + 1

2log2 m

for m ≥ 286. We verify the theorem for allµ ≥ 17. �
Proof of Theorem 7. Start by considering a primitive polynomialΨ ∈ Z[z, y] of degree
c ≤ C in y andd ≤ D in z, that has no non-trivial factor inz alone.

By Lemma 8, for randomly chosenγ1, γ2 ∈ L, with probability at least 9/10, P1 :=
Ψ (z, γ1) and P2 := Ψ (z, γ2) are relatively prime, and their contents do not share any
prime factor≥µ. Assume this is indeed the case for our choice ofγ1, γ2.

It is easily derived that‖Ψ (z, γi )‖ ≤ (102C2D(log‖Ψ‖ + 2C + 2))C+1 · ‖Ψ‖. Thus,
the resultantr of Ψ (z, γ1) andΨ (z, γ2) is at most(2D)2D · (102C2D · (log‖Ψ‖+2C +
2)2)2D(C+1) · ‖Ψ‖2D. Simplifying this, we find that logr ≤ 54C Dlog‖Ψ‖ · log(C + D +
log H ). By Lemma 9, for a randomly chosenσ ∈ L, gcd(Ψ (σ, γ1), Ψ (σ, γ2)) is µ-smooth
with probability at least 9/10.

Write P1(z) = c1 · h1(z) and P2(z) = c2 · h2(z), wherec1, c2 ∈ Z are the contents
of P1, P2 respectively, andh1, h2 ∈ Z[z] are primitive. For a randomσ ∈ L, we
computeG = gcd(Ψ (σ, γ1),Ψ (σ, γ2)) = gcd(c1, c2) · gcd(h1(σ ), h2(σ )). By Lemma 8,
gcd(c1, c2) is µ-smooth. ByLemma 9, gcd(h1(σ ), h2(σ )) is µ-smooth with probability at
least 9/10. ThusG is µ-smooth with probability at least 81/100.

Now consider the full case whenΦ(z, y) = m · (az + b)e · Ψ (z, y), wherem ∈ Q

is µ-smooth,a, b ∈ Z are relatively prime, andΨ is primitive and has no factor
purely in Z[z]. Thenq = m · (aσ − b)e · gcd(Ψ (σ, γ1),Ψ (σ, γ2). From above we see
gcd(Ψ (σ, γ1),Ψ (σ, γ2)) is µ-smooth with probability at least 81/100. Thusw is equal to
the factor of aσ −b which isnotµ-smooth. Both|a| and|b| are less thanS. By Lemma 10,
(aσ + b) has a prime factor of size greater thanµ with probability at least 1/4, and in this
case we recovera, b as described in step (11). To conclude, for any input, on any invocation
the algorithm succeeds with probability at least(81/100) · (1/4) ≥ 1/5. �

Approximating the denominator and content
To complete the general algorithm, we must identify theµ-primitive part of a black-box

polynomial. The following algorithm does this with two evaluations of the black box.

Algorithm. DenomAndCont
Input: � Black box for f ∈ Q[y];

� D ≥ deg f , H ≥ height( f );
� a desired smoothness boundµ ≥ 4D(log H + 2D + 2);

Output: � a candidateω ∈ Q such that content ofω f is µ-smooth;

(1) LetL = {0, . . . , µ2 − 1};
(2) Choose a randomα0 ∈ L and computeν0 = f (α0) ∈ Q;

If ν0 = 0 thegoto (2);
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(3) Choose randomα1 ∈ L; computeν1 = f (α1);
(4) Let δ̃ = (denom(ν0), denom(ν1));
(5) Let κ̃ = gcd(δ̃ν0, δ̃ν1);
(6) Returnω = δ̃/κ̃

Theorem 11. With probability at least1/2 theoutputω of DenomAndCont ( f, µ) is such
that the content ofω f is µ-smooth.

Proof. In step (2) we simply find a small non-zero evaluation point forf . We expect that
at most two evaluations off are required.

In step (3) we approximate the denominatorδ of f . Supposef = δ f . For any prime
p | δ we know that f �≡ (0) mod p (sinceδ is relatively prime to the contentκ of f ). For
any primep, thenumber ofα1 ∈ {0, . . . , p−1} for which f (α1) ≡ 0 mod p is at mostD.
For p ≥ µ, thenumber ofα1 ∈ {0, . . . , µ2 − 1} suchthat f (α1) ≡ 0 mod p is at most
Dµ. Thenumber of prime divisors ofδ is less than logH . Thus, with probability at most
Dlog H/µ wechoose anα1 suchthat f (α1) ≡ 0 mod p for somep ≥ µ which dividesδ.
By our choice ofµ this probability is less than 1/4.

In step (5) we approximate the contentκ of δ f . Suppose that̃δ f has content̃κ. Weknow
κ̃ is κ times someµ-smooth number, and̃δ f = δ̃κ̃ f0, where f0 is primitive. Clearlyκ | ν1.
For any primep, thenumber ofα1 ∈ L for which f0(α1) ≡ 0 mod p is at mostD. For any
prime p ≥ µ, thenumber ofα1 ∈ {0, . . . , µ2 − 1} suchthat f0(α1) ≡ 0 mod p is at most
Dµ. Now numer(ν0) < µ2D+2H , andhas at most logµ(µ2D+2H ) < log H + 2D + 2
prime factorsp ≥ µ. Thus, the probability that we choose anα1 such that there is any
prime p ≥ µ dividing f0(α1) ≡ 0 mod p is at mostD(log H + 2D + 2)/µ. By our choice
of µ this probability is less than 1/4.

Thus, the overall probability of success is at least 1/2 on any iteration. �

Once we have theω = DenomAndCont( f ), it is easy to construct a black box for the
µ-primitive part by multiplying the result of an evaluation off by ω.

Findingsparsest shifts of integer polynomials
Suppose we have a black box for a rational polynomialf ∈ Q[x], and a bound

D ≥ d = deg f . We now describe the complete algorithm for finding a sparsest shift
of f .

We first approximate the content to within aµ-smooth multiple usingDenomAndCont
(µ will be specified later). We then build a new black box for theµ-primitive part of
f (by dividing out the content and denominator) and so assume from now on thatf is
µ-primitive.

As discussed earlier, when we run the Berlekamp/Massey algorithm on the sequence
of polynomials { f (yi − z)}i≥1, we are really just constructing the discrepancy
polynomials∆i (z, y) for i = 1, 2, . . . , t . When we choose a randomp ands and run
Berlekamp/Massey on{ f (pi − s)}i≥1 we are evaluating the discrepancy polynomials at
(s, p). That is, the Berlekamp/Massey algorithm gives usa black box for the discrepancy
polynomials.FindLinFac will be just what we need to find the smallestt such that
∆2t−1(z, y) has a factor inz alone (at least in the case whent ≤ (d + 1)/2).
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We now examine the discrepancy polynomials more closely, and for 1≤ i ≤ t let
αi (z, y) = f (yi − z) and

Ai =




α1 α2 · · · αi

α2 α3 ..
.

αi+1
... . .

.
. .

. ...

αi · · · · · · α2i−1


 ∈ Q[z, y]i×i , ∇i = detAi .

The(2i − 1)st discrepancy of the sequence{αi }i≥1 is ∆2i−1 = ∇i /∇i−1 for i ≥ 1 (taking
∇0 = 1). The sparsest shift of f occurs when there exists ans ∈ Q (or perhaps an algebraic
extension of Q) such that∆2t−1(y, s) = 0, i.e. when∆2t−1 has a factor inz alone.

When t ≤ (d + 1)/2, the sparsest shift is rational and unique, so we can apply the
algorithmFindLinFac to the numerators in the Berlekamp/Massey algorithm to find the
sparsest shift.

Theorem 12. Given a black box for aµ-primitive polynomial f ∈ Q[x] of degree d,
which we assume has a t-sparse shift s∈ Q, where t≤ (d + 1)/2, we canfind s∈ Q with
an expected10t evaluations of the black box.

Proof. It is straightforward to show the bounds

‖∇i ‖ ≤ i i · 2id (1 + d)i (1 + di)i · ‖ f ‖d,

|b| ≤ 2t · t2t · ‖ f ‖t ,

|a| ≤ 2t · t2t · ‖ f ‖t · (2d)dt.

Now use the algorithmFindLinFac on each discrepancy in turn. ByTheorem 7, at the
(2t + 1)st discrepancy we will finda, b suchthataz− b divides∆t (z, y) with probability
1/5 on any invocation. The sparsest shift is thena/ − b. By running the algorithm
repeatedly, we expect to findt ands with 5t invocations ofFindLinFac, i.e. using 10t
sequences. �

The cost of the algorithm is again dominated by the Berlekamp/Massey algorithm on
the sequencesf (γ i

1 − σ) and f (γ i
2 − σ) for i = 0, . . .. The rational numbers involved

do not have more thanO(dτ2log‖ f ‖) bits, whered = deg f . Thus, the total cost is
bounded byO(τ2M(dτ2log‖ f ‖)) bit operations, where nowO(M(�)) bit operations are
sufficient to multiply two integers with� bits. Again, as in the polynomial case,M(�) =
�2 using the standard algorithm, andM(�) = �log�log log� using asymptotically fast
arithmetic.

All the notes followingTheorem 7apply here. In fact we heuristically expect that only
one invocation of the algorithm will be needed to achieve success.

Once we find a sparsest shift, the polynomial can be recovered by completing the
Ben-Or/Tiwari algorithm steps with the evaluations and generator already computed.
Therefore, we regard this algorithm as an improved sparse interpolation algorithm: it
discovers and interpolateswith respect to a possible sparsest basis during the interpolation
procedure.
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The “one projection, one sequence” algorithm for univariate polynomials ofSection 3.2
holds even more promise when a second “shift” projection is used. That is, we proceed
as inFindLinFac, but instead of taking the GCD of the discrepancies of two different
sequences, we take the GCD’s of the(i −1)st andi th discrepancies. As noted inSection 3.2,
we conjecture this reveals the linear factor symbolically, and if this is indeed the case, we
might hope that onlyonerandomly shifted integer sequence is needed.

Multivariate rational polynomials with very sparse shifts
In the case when a polynomialf ∈ Q[x1, . . . , xn] has a unique “very sparse” shift,

we can in fact reduce theproblem of computing this sparse shift to the univariate case.
In particular, by a “very sparse” shift, we mean one such that meets the criteria ofLemma 3:
the minimal sparsityτ after this shift is at most(δ + 1)/2, whereδ = min1≤i≤n di and
di = degxi

f for 1 ≤ i ≤ n.
In fact, we can make a stronger statement. Consideringf as a polynomial in

Q(x1, . . . , xi−1, xi+1, . . . , xn)[xi ], we define the sparsest shift of f in xi as theθi ∈ Q

such that when written in the power basis of(xi − θi ), f has the smallest number of non-
zero coefficients (inQ[x1, . . . , xi−1, xi+1, . . . , xn]). Defineτi to be this minimal number
of non-zero coefficients. Clearlyτi ≤ τ for all i (1 ≤ i ≤ n).

Theorem 13. Let f ∈ Q[x1, . . . , xn] have sparsest shift(θ1, . . . , θn) ∈ Qn. As well,
assume that for1 ≤ i ≤ n, the sparsest shift of f in xi has sparsityτi ≤ (di +
1)/2. For any i , 1 ≤ i ≤ n, let Li = {0, . . . , 2di − 1} and randomly choose
a1, . . . , ai−1, ai+1, . . . , an ∈ Li . The sparsest shift of f(a1, . . . , ai−1, xi , ai+1, . . . , an)

in xi equalsθi ∈ Q with probability greater than1/2. It is not the sparsest shift only if
degxi

f (a1, . . . , ai−1, xi , ai+1, . . . , an) < di .

Proof. Write f as

f =
∑

0≤ j ≤di

f (i )
j (x1, . . . , xi−1, xi+1, . . . , xn)x j

i .

The leading coefficient off (a1, . . . , ai−1, xi , ai+1, . . . , an) is f (i )
di

(a1, . . . , ai−1, ai+1,

. . . , an). This is non-zero with probability at least 1/2 by the Schwartz–Zippel lemma.
If this is indeed the case,f (a1, . . . , ai−1, xi , ai+1, . . . , an) has a unique shift of sparsity
less than(di + 1)/2. Thisshift must beθi . �

We can use this theorem to solve for the sparsest shift of a multivariatef ∈
Q[x1, . . . , xn] whenever the conditions are met. Simply find the sparsest shift in each
variablein turn, using, for example, the two-projection algorithm described in the previous
section.

3.4. Finding sparsest shifts in non-standard bases

The algorithms for finding sparsest shifts in non-standard bases are derived analogously
to the early termination properties of sparse interpolation algorithms (Kaltofen and Lee,
2003).
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Sparsest shifts in the Pochhammer basis

A univariate polynomialf (x) can be represented in the Pochhammer basis as

f (x) =
t∑

j =1

u j x
d j and u j �= 0,

with xn = x(x + 1) · · · (x + n − 1) for any integern ≥ 0. A sparsest shiftθ ∈ S in the
Pochhammer basis is an element inSsuchthat t is minimized asτ in

f (x) =
τ∑

j =1

cj (x + θ)ej and cj �= 0,

and aT-sparse shifts is such thatt ≤ T .

Let f (k)(x) = ∑t
j =1 dk

j u j xd j and∆( f (x)) = f (x + 1) − f (x). By the recurrence

f (k+1)(x) = x·∆( f (k)(x)), f (k)(x) can be obtained directly fromf (x), . . . , f (x+2k−1).
The early termination sparse interpolation in the Pochhammer basis ofx (Kaltofen and
Lee, 2003) is based on the following fact: the fraction-free Berlekamp/Massey algorithm
first encounters a zero discrepancy after processing exactly 2t + 1 elements from the
sequence{ f (k)(x)}k≥0 (note thatk starts from 0 here). The Pochhammer exponents of

f (x) = ∑t
j =1 u j xd j are the roots of the minimal generating polynomialΛ(ζ ), namely,

Λ(ζ ) = ∏t
j =1(ζ − dj ) = λtζ

t + λt−1ζ
t−1 + · · · + λ0.

To find the sparsest shifts, we introduce the shift variablez and considery = x + z.
The recurrence forf (k)(x) in the Pochhammer basis ofy becomesf (k+1)(y − z) =
y ·∆( f (k)(y−z)) with ∆( f (y−z)) = f (y+1−z)− f (y−z). We carry out the fraction-
free Berlekamp/Massey algorithm on the sequence{ f (k)(y − z)}k≥0: thediscrepancies∆k

are polynomials iny whose coefficients are polynomials inz. The solutions forz suchthat
∆k firstbecomes the zero polynomial iny are the sparsest shiftsθ . Theseoccur atk = 2τ ,
whereτ is the number of terms inf in a sparsest shifted Pochhammer basis. Similarly, the
T-sparse shifts are solutions forz in ∆2T = 0.

The special “tricks” discussed earlier for theunivariate power bases can be implemented
correspondingly. Yet, when applying the projection algorithms (seeSections 3.2and3.3),
we need to assurey = x + z is projected to a positive value. Moreover, consider a
Pochhammer term projected to two different valuesp andq: cj · p · (p+1) · · · (p+ej −1)

andcj · q · (q + 1) · · · (q + ej − 1). Due tothe factorial nature, if|p − q| < deg f , our
projection algorithms might falsely include some of 1, . . . , ej − 1 as shifts.

Sparsest shifts in the Chebyshev basis

Let Ti (x) denote thei th Chebyshev polynomial of the first kind:T0(x) = 1, T1(x) = x,
andTi (x) = 2xTi−1(x) − Ti−2(x) for i ≥ 2. A polynomial f (x) can be represented in the
Chebyshev basis:

f (x) =
t∑

j =1

u j Tdj (x) and u j �= 0.
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A sparsest shift θ ∈ S is an element inS suchthatt is minimized toτ in

f (x) =
τ∑

j =1

cj Tej (x + θ) and cj �= 0.

The early termination sparse interpolation in the Chebyshev basis ofx (Kaltofen and
Lee, 2003) introduces a symbolicpc and interpolatesf̃ = f + pc which has exactlỹt
non-zero terms (f is recovered by removingpc from f̃ at the end). Ifα̃k(x) = f̃ (Tk(x)),
the matrix

Ãk(x) =




2α̃0 2α̃1 . . . 2α̃k−1

2α̃1 α̃2 + α̃0 . . . α̃k + α̃k−2
...

...
. . .

...

2α̃k−1 α̃k + α̃k−2 . . . α̃2k−2 + α̃0


 (9)

is non-singular for 1≤ k ≤ t̃ , and singular fork ≥ t̃ + 1.
To find the sparsest shifts, we introduce the shift variablez and y = x + z. Unlike

interpolation, we considerf (y − z) = f (y − z) + pcTdt (y) with pc �= −ut suchthat f
and f have exactly the same Chebyshev terms iny. Note thatdt = eτ = deg f = deg f ,
ut = cτ , and thatf can be recovered by removing the added term whenever it is necessary.
When αi = f (Ti (y) − z) and the(i , j )th entry ofAk(y, z) is αi+ j −2 + α|i− j |, the
introduction ofpcTdt (y) providesAk(y, z) being non-singular beforek reaches the sparsity
of f in the Chebyshev basis ofy. That is, 1 ≤ k ≤ t̃ (Kaltofen and Lee, 2003, cf.
Theorem 11).

The sparsest shifts are the solutions forz such that theAk(y, z) first becomes singular,
that is, the firstk such that detAk(y, z) is the zero polynomial iny. The singularities
can also be detected at a zero discrepancy in the modified Gohberg/Koltracht algorithm
(Kaltofen and Lee, 2003), so we can also choose to solvez such that the discrepancy first
becomes the zero polynomial iny.

Finding theT-sparse shifts can be formulated similarly. However, one needs to take into
consideration that the non-singularities of allprincipal leading submatrices are assumed in
the modified Gohberg/Koltracht algorithm.

Treating pc as a value, our additional “tricks” for the univariate power bases can be
applied accordingly. Also,y = x + z has to be projected to a value larger than one when
applying the projection algorithms.

4. Extensions and improvements

4.1. Prune the highest degree terms

In addition to imposing a lower bound or an upper bound, when available, to the
sparsities (seeSection 2.2), we can also reduce the computations by pruning the highest
degree terms.

Consider a univariate polynomialf (x) in any two power bases:

f (x) = u1xd1 + u2xd2 + · · · + ut x
dt

= c1(x + s)e1 + c2(x + s)e2 + · · · + cτ (x + s)eτ ,
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with ui �= 0 for 1 ≤ i ≤ t , cj �= 0 for 1 ≤ j ≤ τ , andd1 < d2 < · · · < dt = deg f ,
e1 < e2 < · · · < eτ = deg f . Thehighest degree term remains unchanged, that is, its
degree and coefficient are fixed in all shifted bases:ut = cτ , dt = eτ = deg f .

In fact, for a multivariate polynomialf (x1, . . . , xn) = ∑t
i=1 ui x

di,1
1 · · · x

di,n
n , its highest

degree terms in every direction will stay fixed in all shifted power bases; they are the terms
with exponents(di,1, . . . , di,n) such that for every j �= i there is aνk > 0, 1 ≤ k ≤ n, in
(ν1, . . . , νn) = (di,1 − dj ,1, . . . , di,n − dj ,n).

For a given polynomial, if some or all highest degree terms are known, e.g. if the
polynomial is known to be monic, let

∑κ
i=1 ci (y1 − z1)

ei,1 · · · (yn − zn)
ei,n sum up those

terms. Now instead off (y1 − z1, . . . , yn − zn), we proceed in our algorithms with

f = f (y1 − z1, . . . , yn − zn) −
κ∑

i=1

ci (y1 − z1)
ei,1 · · · (yn − zn)

ei,n , (10)

which hasκ fewer terms thanf in every shifted basis. Our algorithms for finding the
sparsest shifts are all sensitive to the optimal sparsity. That is, instead of using the
(2τ +1)st discrepancy∆2τ+1, the sparsest shifts can be recovered from the(2τ −2κ +1)st
discrepancy∆2(τ−κ)+1.

The “non-trivial GCD” trick in the univariate case can be further exploited: suppose
the highest degree term in f , cτ xeτ , is known. We can proceed with our algorithm with
f (y − z) and f = f (y − z) − cτ (y − z)eτ to update their discrepancies∆i and∆ j

accordingly. Sincef has one termless thanf , the sparsest shifts forf are the solutions to
∆2τ+1 = ∆2τ−1 = 0, which can be computed through finding the first gcd(∆2i+1,∆2i−1)

that is non-trivial inz. Note that in the multivariate case, we have a system of polynomial
equations and each equation is a zero discrepancy corresponding to the polynomial pruned
with a subset of its highest degree terms.

For theproblem of findingT-sparse shifts, we can proceed withf in (10) and consider
∆2(T−κ)+1 = 0 similarly. We note that the highest term pruning techniques can be applied
to the Pochhammer and Chebyshev bases as well.

4.2. Findingsparsest shifts for a set of polynomials

Multivariate shifts within a designated set enable us to compute sparsest shifts that
simultaneously minimize the terms of a given set of polynomials.

Consider a set ofm polynomials fk(x1, . . . , xn) ∈ D[x1, . . . , xn] for 1 ≤ k ≤ m. An
s = (s1, . . . , sn)-shifted power basis representsfk, 1 ≤ k ≤ m, as

fk(x1, . . . , xn) =
tk∑

j =1

ck, j (x1 + s1)
ek,1, j · · · (xn + sn)ek,n, j =

tk∑
j =1

ck, j β
ek, j
k, j (11)

with ck,i �= 0.

There are a number of different ways to measure the sparsity of a set of polynomials.
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Minimize the sum of the number of shifted terms

We look for all shiftss ∈ Ssuchthatt1 + · · ·+ tk in (11) is minimized. Introducem− 1
indeterminates and construct a polynomialF :

F(x1, . . . , xn, µ1, . . . , µm−1) = µ1 f1 + µ2 f2 + · · · + µm−1 fm−1 + fm. (12)

Consider the shifts for F within S = (s1, . . . , sn, 0, . . . , 0) with (s1, . . . , sn) ∈ S. The
shiftsθ = (θ1, . . . , θn) that minimizet1 + · · · + tn can be obtained by finding the sparsest
shiftsθ = (θ1, . . . , θn, 0, . . . , 0) for F within S.

Although there arem−1 variables introduced, the shifts in those variables are fixed as 0.
As a result, when using random projections for removal of variables in the discrepancies,
all µk can be evaluated to scalars. An alternative is to use a single indeterminate µ0

and find the sparsest shifts withinS0 = (s1, . . . , sn, 0), where(s1, . . . , sn) ∈ S, for the
polynomialG:

G(x1, . . . , xn, µ0) = µ0 f1 + µ2
0 f2 + · · · + µm−1

0 fm−1 + fm. (13)

We note that randomly projectingµ0 may lead to larger scalars than before.

Minimize the number of distinct shifted terms

Here we want to minimizethe number of distinctβk,i in (11) to represent every fk,
1 ≤ k ≤ m.

The polynomialF in (12) is now a polynomial inx1, . . . , xn over a coefficient domain
D[µ1, . . . , µm−1]. Supposingk �= l , we assumek < l ≤ m and considerck,i β

ek,i
k,i from

fk andcl , j β
el, j
l , j from fl . If β

ek,i
k,i = β

el, j
l , j , then their corresponding terms inF(x1, . . . , xn)

collide into one term with coefficient eitherµkck,i + µl cl , j (whenl < m) or µkck,i + cl ,i

(when l = m), which cannot be a zero polynomial inµk. The sparsest shifts for
F ∈ D[µ1, . . . , µm−1][x1, . . . , xm] in the power basis ofx1, . . . , xn thus minimize the
number of distinctβk,i in representingf1, . . . , fm. Similarly, we can work with a single
indeterminate andcompute the sparsest shifts forG in (13) in thepower basis ofx1, . . . , xn

overD[µ0].
This method can be extended to a set of polynomials in the Pochhammer and Chebyshev

bases.

Minimize the maximum of the number of shifted terms

Here we look for all shiftss in (11) such that max(t1, . . . , tm) is minimized.

When performing the fraction-free Berlekamp/Massey algorithm on{ fk(xi
1 −

s1, . . . , xi
n − sn)}i≥0 for a polynomial fk, the discrepancies∆k,i become zero for all

i ≥ 2tk + 1. Now update∆k,i for eachi in parallel until a solutionθ = (θ1, . . . , θn)

to the system∆1,i (θ) = · · · = ∆m,i (θ) = 0 is found.

This method simply performs the shift-finding algorithm for each polynomial in
parallel, and can be applied to a set of polynomials in the Pochhammer and Chebyshev
bases.
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