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As the only endemic member in New Zealand of the ancient conifer family, Araucariaceae,

Agathis australis is an ideal species to study putatively long-evolved mycorrhizal symbioses.

However, little is known about A. australis root and nodular arbuscular mycorrhizal fungi

(AMF), and how mycorrhizal colonisation occurs. We used light, scanning and transmis-

sion electron microscopy to characterise colonisation, and 454-sequencing to identify the

AMF associated with A. australis roots and nodules. We interpreted the results in terms

of the edaphic characteristics of the A. australis-influenced ecosystem. Representatives of

five families of Glomeromycota were identified via high-throughput pyrosequencing. Imag-

ing studies showed that there is abundant, but not ubiquitous, colonisation of nodules,

which suggests that nodules are mostly colonised by horizontal transmission. Roots

were also found to harbour AMF. This study is the first to demonstrate the multiple Glom-

eromycota lineages associated with A. australis including some that may not have been

previously detected.

ª 2016 The Authors. Published by Elsevier Ltd on behalf of The British Mycological Society.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
Introduction and New Zealand (Farjon & Filer 2013). Agathis australis
Araucariaceae is an ancient, southern conifer plant family

that was widespread globally in the Jurassic Period

(Setoguchi et al. 1998; Hill & Brodribb 1999; Escapa &

Catalano 2013) and remains part of the modern floras of Aus-

tralia, South America, Melanesia, Malesia, Norfolk Island,
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Agathis species endemic to New Zealand and is basal to and

distantly related to the other extant Agathis species from

Malesia, Melanesia, and Australia (St€ockler et al. 2002; Biffin

et al. 2010; Escapa & Catalano 2013). Agathis australis is recog-

nised as one of the largest and longest-living conifers
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anywhere in the world; trunk diameters can commonly ex-

ceed 3 m in large specimens, tree heights average 30e50 m,

and maximum achievable age is estimated at

1500e1700 y (Steward & Beveridge 2010). Agathis australis of-

ten form an emergent layer above the forest canopy. These

trees have cultural significance for New Zealand M�aori, and

the largest living tree, Tane Mahuta, is a national icon and

close to 5 m in diameter.

The genus Agathis has been present in New Zealand since

the late Oligocene to early Miocene (Lee et al. 2007). The only

extant species (A. australis) is now naturally confined to for-

ests of the northern North Island, New Zealand (Ogden et al.

1992). Estimated to once have covered 1.0 to 1.5 million hect-

ares in this area prior to exploitation by logging after European

colonisation in the 19th century (Halkett & Sale 1986; Steward

& Beveridge 2010), only approximately 7500 ha of old-growth

A. australis forest remains (Steward & Beveridge 2010). While

earlier reductions were due to logging and fire, the extent of

A. australis is declining inmodern times due to ‘kauri dieback’,

a disease caused by Phytophthora agathidicida B.S.Weir, Beever,

Pennycook & Bellgard (Weir et al. 2015). Phytophthora agathidi-

cida infects roots; the disease causes yellowing leaves, thin-

ning canopy, dead branches, and lesions, and can lead to

tree death (Than et al. 2013). Efforts to control the disease

and its spread have failed so far, and the future of this tree,

a species that exerts enormous influence on surrounding for-

est composition and structure (Wyse et al. 2014), is uncertain.

Agathis australis can grow on low nutrient to infertile soils

and will reduce the soil nutrient composition even further

(Steward & Beveridge 2010). The protracted decomposition

rate of leaf litter leads to accumulations of up to 3m and a cor-

responding decrease in soil pH (Steward & Beveridge 2010). As

A. australis mature, their above-ground appearance changes

from narrow, columnar, and strongly monopodial crowns

(termed ‘rickers’ and lasting to 150e200 y in natural settings)

to wide, spreading crowns based on several large branches

once the trunks have reached 50 cm diameter (mature, over

200 y). Additionally, their root architecture shifts from

a well-developed tap root system with lateral roots and fine,

feeding roots spread throughout the litter layer to widely

spreading, lateral roots with deep peg roots as well as fine

roots within the litter and humus layers of the forest (Ecroyd

1982; Steward & Beveridge 2010).

Members of Araucariaceae and another southern hemi-

sphere conifer family, Podocarpaceae, are heterorhizic with

indeterminate long roots and spherical determinate short

roots (nodules); these nodules contain arbuscularmycorrhizal

(AM) fungi (Khan & Valder 1972; Cairney 2000; Russell et al.

2002; Dickie & Holdaway 2010; Schwendemann et al. 2011).

Baylis et al. (1963) concluded that the nodules could be consid-

ered as an adaptation tomycorrhizal fungi, similar in function

to the short roots of pines. AM fungi are very widely distrib-

uted in nature, colonising the roots of over 80 % of plant fam-

ilies, including many trees (Bainard et al. 2011). Consequences

of colonisation vary and include enhanced phosphorus nutri-

tion (Morrison & English 1967), heavy metal tolerance (Leyval

et al. 1997) and protection from plant pathogens (Vigo et al.

2000). AM fungi could thus have important functions inA. aus-

tralis in relation to nutrition acquisition and protection against

root-rot pathogens.
To date there have been few studies of A. australis root sys-

tems (Baylis et al. 1963; English 1965; Baylis 1969) and the iden-

tity of the AM fungus has never been confirmed. Currently, A.

australis has been purported to host only one AMF species.

McNabb (1958) and English (1965) both regarded this species

as Rhizophagus. However, subsequently Morrison & English

(1967) while investigating the function of A. australis root nod-

ules colonised by arbuscular mycorrhizae, characterised the

fungus as Endogone using the system described by Mosse

(1963). Endogone has subsequently been amended and all the

soil-borne fungi that form arbuscules in mutualistic associa-

tions with plants have been transferred to Glomales (Morton

& Benny 1990). An investigation of Araucaria araucana (Arau-

cariaceae) reported colonisation by 27 AMF species identified

by spore morphology (Moreira et al. 2007), which are distrib-

uted in five families (Kr€uger et al. 2012). A molecular study of

Podocarpus falcatus (Podocarpaceae) found 20 AMF species in

three families (Wubet et al. 2006).Work on themycorrhizae as-

sociated with the root nodules of New Zealand Podocarpaceae

(Russell et al. 2002) showed that the nodules from Prumnopitys

ferruginea, Prumnopitys taxifolia, and Dacrycarpus dacrydioides

contained five AM fungi belonging to the families Archaeo-

sporaceae and Glomeraceae. Based on these previous studies,

we hypothesized that A. australis was also likely to have more

than the one AMF species associated with it; however, there

has been no similar molecular or in-depth imaging studies

of the fungi colonising A. australis roots to substantiate this

conjecture.

The aim of our research was therefore to determine the

AMF species associated with A. australis and to examine

what, if any, influence they may have in enabling the

survival of A. australis in nutrient poor soils. We conducted

thorough soil analyses to characterise the environment in

which A. australis grows. We used light, scanning and

transmission electron microscopy, and high-throughput 454

sequencing technologies in conjunction with bioinformatics

and phylogenetic analyses to characterise colonisation and

the diversity of AMF in the roots and root nodules of A.

australis.
Materials and methods

Study sites and sampling

An initial survey in February 2011 from the Cascades Track,

Waitakere Ranges, New Zealand (WGS-84 174.523808E

-36.891137S) was undertaken to gather material to test

methods of clearing and staining roots. This site was revis-

ited in February 2012 to obtain additional roots for micros-

copy for this study. Thirty seven root samples were taken

in total from two rickers (w150 y old) and one mature tree

(w300 y old); numbers of fine roots were variable per sample

as these roots are indeterminate, but each sample contained

approximately 3 g of fine roots. No tap roots were surveyed in

this study. Fine roots (henceforth to be referred to as roots)

were collected at 10e15 cm intervals up to depths of 70 cm,

but one tree was sampled to 206 cm. These root samples

were stored at 10 �C prior to light microscopy. Roots were

also collected from the Waitakere Ranges, from near the
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Huia Dam (WGS-84 174.572821E -36.992550S) and in Destruc-

tion Gully (wWGS-84 174.534205E -37.028533S). Roots were

collected over two days in May 2012 from 12 trees and on

one day in July 2012 from nine trees (all rickers). All 21 root

samples were obtained from within 1 m of the trunk of the

tree and from the top 30 cm of soil, and each sample con-

sisted of approximately 2 g of root material. These roots

were frozen after collection as they were used primarily for

DNA extraction, but they were also processed for light mi-

croscopy. Due to the initial failure in adequate staining and

resin-infiltration for electron microscopy, five additional

root samples consisting of approximately 5 g of roots were

collected from near the Huia Dam in November 2012 from

five ricker trees and kept on ice until fixation with glutaralde-

hyde. Before further processing for DNA extraction or mi-

croscopy, the roots were cleaned of coarse debris via

brushing and sonication.

Soil analyses

Soil samples were also collected from the locations mentioned

above. Pits were dug using hand tools and samples recovered

at 10e15 cm intervals (see Suppl. Tables 1 and 2 for exact inter-

vals) to match pedogenic horizons, but where such horizons

were substantial (i.e., over 15 cm), samples were taken at pre-

scribed intervals. Usually one kilogram of soil was taken at

each sample point. The soil samples were placed in thin-

walled polyethylene closed bags and stored at 10 �C. Soils

were analysed for pH and electrical conductivity (Gavlak et al.

1994), assessed for texture by hand (Thien 1979), and examined

for colour using Munsell Charts. Further analyses (e.g., to as-

sess extractable phosphorus, carbon-nitrogen ratios, etc.)

were carried out at the Landcare Research Environmental

Chemistry Laboratory at Palmerston North, New Zealand; de-

tails of the analytical procedures can be found at: http://

www.landcareresearch.co.nz/services/laboratories/eclab/

eclabtest_list.asp (also see (Blakemore et al. 1987).

Light microscopy

Cleaned roots and nodules were cleared to remove dark pig-

ments and stained for examination of AM fungi. Roots were

cleared by covering them with 30 % hydrogen peroxide and

5e7 drops of 10 % potassium hydroxide (KOH) for 1 h. Roots

were then washed with water, covered with 10 % KOH and

heated to a simmer (<90 �C) for 1 h. After this roots were

washed with water again and soaked in 0.1 N hydrogen chlo-

ride (HCl) for up to 15 min. After a further wash, roots were

stained with aniline blue (in lactic acid glycerol) and

destained with lactic acid glycerol. Roots were then mounted

in clear lactic acid glycerol. Some roots were also cleared us-

ing 10 % KOH and heat, followed by immersion in 5 % HCl, be-

fore staining with trypan blue (in lactic acid and glycerol)

with destaining performed using lactic acid and glycerol. At

least one slide from each sample (48 total) was examined

and consisted of five to seven fine roots that were three to

five cm long with multiple nodules. Observations were

made with a Nikon Eclipse 80i microscope (Nikon Instru-

ments Inc., Melville, NY) and images were obtained with

a Nikon DS-Fi1 camera. Additionally, roots fixed for
transmission electron microscopy were also imaged using

light microscopy. Approximately 200 nm sections were cut

and stainedwith 1 %methylene blue, 1 % Azure II, and 1 % bo-

rax (all w/v) before imaging.

Scanning electron microscopy

Cleaned roots were fixed in 2.5 % glutaraldehyde in

0.1 M S€orensens buffer pH 7 overnight at 4 �C. Roots were

then rinsed three times for 20 min in the same buffer at

room temperature and then incubated for 90 min in 1 % (w/

v) osmium tetroxide in a 0.05 M buffer. This was followed by

dehydration in a graded ethanol series. Selected nodules

were bisected with a razor blade under ethanol in a glass petri

dish and transferred into a porous capsule for critical point

drying. After release from the chamber, the nodules were

arranged cut face uppermost on adhesive tabs that were at-

tached to SEM stubs. The stubs were stored in a desiccator,

then coated with platinum in a sputter coater, and viewed

with an FEI XL30 SEM (FEI, Hillsboro, Oregon).

Transmission electron microscopy

Noduleswere keptwet anddissected from rootswith a scalpel.

In most cases the nodule was partially sliced through to facil-

itate access for dehydration and resin infiltration. Nodules

and roots were fixed in 4 % fresh paraformaldehyde and

2.5 % glutaraldehyde in 0.1 M S€orensens phosphate buffer

pH 7 (24 h at 4 �C). Samples were post-fixed in 1 % osmium te-

troxide in 0.1 M S€orensen’s phosphate buffer. This was fol-

lowed by dehydration in a graded ethanol series after which

the samples were placed in 100 % acetone. Samples were ini-

tially infiltrated with 1:1 812 epoxy resin:acetone and then

with 100 % epoxy resin (two changes over four days, with

slow agitation on a rotating platform). Samples were embed-

ded in fresh resin in flatmoulds and cured at 60 �C for 48 h. Ul-

trathin sections (80 nm) were cut and placed on copper

200 mesh grids. Sections were stained with uranyl acetate

and lead citrate. Sections were viewed with a Philips CM12

(Philips Electron Optics, Eindhoven, Netherlands) and images

were obtained with a Gatan Bioscan (Gatan Inc., Pleasanton,

California).

DNA extraction and pyrosequencing

At least 1 g of cleaned roots and nodules per sample were fro-

zen in liquid nitrogen and crushed using a mortar and pestle.

The roots were further crushed using a Ball Mill MM301

(Retsch, D€usseldorf, Germany). Approximately 0.25 g of pow-

dered root material per sample was extracted using the

PowerSoil DNA Isolation kit (MoBio Laboratories Inc., Carls-

bad, California). The small subunit (SSU) region of rDNA was

amplified and tagged. DNA was amplified, using primers

NS31 (Simon et al. 1992) and AML2 (Lee et al. 2008), with an

emulsion PCR adaptor and one of 12 different MID tags. PCR

reactions were conducted in 25 mL reactions and contained

1.25 units of FastStart High Fidelity or FastStart Taq polymer-

ase (Roche, Basel, Switzerland), 0.4 mM of each primer, 0.2 mM

of dNTP, 2.5 mL of 10� buffer and 1 mL of extracted genomic

DNA as a template. PCR conditions were as follows: initial

http://www.landcareresearch.co.nz/services/laboratories/eclab/eclabtest_list.asp
http://www.landcareresearch.co.nz/services/laboratories/eclab/eclabtest_list.asp
http://www.landcareresearch.co.nz/services/laboratories/eclab/eclabtest_list.asp
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heating to 94 �C (3 min), 35 cycles of denaturation at 94 �C
(30 s), annealing at 58 �C (1 min) and extension at 72 �C
(1 min), followed by a 10-min extension at 72 �C. Amplicons

were cleaned and purified using the Agencourt AMPure XP-

PCR purification system (Beckman Coulter, Brea, California).

Amplicons were quantified using the Quant-iT PicoGreen

dsDNA Assay kit (Life Technologies Corp., Carlsbad, Califor-

nia). Amplicon length was measured and trace amounts of

primer-dimers were detected using the Agilent 2100 Bioana-

lyzer (Agilent Technologies, Santa Clara, California). Equimo-

lar concentrations of amplicons were pooled and sequenced

using the Roche GS Junior Titanium Series sequencing plat-

form at EcoGene (Landcare Research, Auckland, New Zea-

land). One run was conducted on the samples collected in

May and another run was conducted on the samples collected

in July.

Bioinformatics

The sequences from the two runs were combined. These se-

quences were split into forward and reverse directions using

QIIME v 1.7.0 (Caporaso et al. 2010) and those which did not

meet the following quality control criteria were removed:

any barcode errors, an average quality score of less than 25,

more than six ambiguous bases, homopolymer runs longer

than eight base pairs. Quality histograms were generated in

QIIME. Following examination of these, mothur v 1.26.0

(Schloss et al. 2009) was used to trim all reads to 323 base pairs.

Sequences from each direction were then processed through

the UPARSE pipeline developed by Edgar (2013) including de-

replication, singleton removal, andmolecular operational tax-

onomic unit (OTU) clustering at 97% sequence similarity with

chimera filtering, with the final step being the mapping of

OTUs back on to the complete quality-controlled dataset.

BLAST searches against the NCBI database were used to iden-

tify non-AMF OTUs, which were removed from the dataset. A

maximum likelihood (ML) tree was constructed in GARLI v 2.0

(Zwickl 2006) with reference sequences frommajor lineages of

Glomeromycota (Kr€uger et al. 2012) to evaluate whether OTUs

not conclusively identified as AMF via BLAST should be in-

cluded in the final dataset; two OTUs thus identified were re-

moved from further analyses.

A de novo assembly was performed in Geneious v 7.0.6

(http://www.geneious.com (Drummond et al. 2012; Kearse

et al. 2012), to determine whether any of the uni-directional

OTUs paired up. A minimum overlap identity of 100 % was se-

lected, otherwise default settings were used. The consensus

sequences from the resulting contigs, along with the un-

matched OTUs, were used to generate phylogenetic trees. All

of the contigs and OTUs that were included in the phyloge-

netic tree were queried via BLAST against the NCBI database

to assess if they matched any AMF sequences (including and

excluding ones from uncultured fungi).

Phylogenetic analyses

The contigs and OTUswere alignedwith a subset of SSU refer-

ence sequences from Kr€uger et al. (2012). Mortierella verticillata

(GenBank# AF157145) and Umbelopsis ramanniana (as Umbelop-

sis rammanianus GenBank# X89435) were used as outgroups
(Tisserant et al. 2013; Lin et al. 2014). A further alignment was

performed using MUSCLE v 3.8.31 (Edgar 2004) in Mesquite v

2.75 (Maddison & Maddison 2013) and ambiguous regions

were manually edited. To select taxa from the Kr€uger et al.

(2012) study to use in the final trees, a maximum likelihood

tree was built in GARLI using the default settings, including

two search replications. The sister sequence with the shortest

distance to each contig/OTU was retained and approximately

one third of the remaining sequences were randomly ex-

cluded from the dataset to simplify the final tree, ensuring

that all the clades from the Kr€uger et al. (2012) study were

retained (Suppl. Table 3). The final dataset, consisting of 125

sequences, was aligned again in MUSCLE as described above

and ambiguous regions manually edited (Suppl. File 1).

A Bayesian inference (BI) phylogeny was built using

MrBayes v 3.2.2 (Huelsenbeck & Ronquist 2001; Ronquist &

Huelsenbeck 2003) in the CIPRES portal (Miller et al. 2010)

with 10 million generations, otherwise default settings were

used. Tracer v 1.6 (Rambaut et al. 2013) was used to assess

that the likelihoods of the trees in each chain had converged.

CIPRES was also used to build a ML phylogeny with RA�ML

HPC-2 (Stamatakis 2014), with 1000 bootstrap repetitions and

otherwise using the default settings. The GTR þ I þ G model

of evolution was used for the Bayesian and ML analyses as

assessed by ModelTest v 3.7 (Posada & Crandall 1998). Boot-

strap values were then visualised by building a consensus

tree in PAUP v 4.1 (Swofford 2003). Bootstrap values of 70 %

or higher and posterior probability values of 90 % or higher

are reported. The trees were compared for congruency.
Results

Soil analyses

The soils at the three locations were similar in that they were

highly leached, with similar parent materials, and with pod-

zolization, which is the translocation of sesquioxides in soils

(Buol et al. 2003), being an overall soil process. The soils all

had accumulations, and mostly substantial accumulations,

of organic materials on the surfaces (Suppl. Tables 1 and 2).

The mineral soil at the surface had much organic material in-

corporated such that the gradation from the surface O-hori-

zon materials or ‘duff’ to the mineral soil was gradual.

Ultimately, the subsoil was dominated by clays derived from

volcanic ash, which comprised a half metre to a metre of the

solum. Under this were concretions of iron having red and

green colours, many of which hardened irreversibly on drying.

The pH of soil sampleswere acidic, some readingswere as low

as 3.2, and nutrients were limiting in most horizons (Suppl.

Tables 1 and 2). The carbon to nitrogen ratio was 20 to 1 or

higher, which indicates carbon in the system is not easily de-

composable. Extractable P was also very low (<five mg kg�1).

The very low pH strongly suggested that nutrient cations (cal-

cium, magnesium, potassium) were low. Data collected from

the Cascades Track in 2012 (Suppl. Table 2) show that these

bases were low and base saturation of clays was less than

50 %.

Using information from the soil extractions and analysis

made in 2011 from the Cascades Track, which was repeated

http://www.geneious.com
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in 2012 (Suppl. Table 2), carbon to nitrogen to phosphorus

(C:N:P) ratios were constructed based on total analysis. For

these three analyses, data were taken from mostly materials

near the surface (decomposed litter, e.g., Oe-horizonmaterial)

to a depth of 19 cm into the mineral soil. Total organic carbon

averaged 41.8 % (�15.8 %), total nitrogen 1.4 % (�0.4 %), and to-

tal phosphorus 0.052 % (�11.3 %). Therefore, C:N:P ratios aver-

aged approximately 25000:60:1 on a molar basis

(5000:60:1e32000:60:1) demonstrating that the soils under

Agathis australis are severely limited by nitrogen and phospho-

rus. Available N and Pwere also very low in these soils. Nitrate

N ranged from 1.2 to 7.1 mg kg�1 and ammonium N from 7 to

66 mg kg�1. Available phosphate P ranged from less than 1 to

6 mg kg�1.

Nodules and roots

The fine feeding nodulated roots are loosely scattered

throughout the litter and humus layers of the forest and are

easy to sample. Due to the growth pattern of the fine roots

no attempt was made to gauge their lengths. The nodules

(Fig 1) are not larger than 1mm in diameter and are irregularly

spaced along the root. Several root sections had strings of nod-

ules attached together (Fig 1) representing consecutive years

of growth as young nodules form at the apex of old ones.

Younger nodules are less pigmented than the older ones

(Fig 1). Nodules also appear to be loosely connected to the

fine roots as it was easy to dislodge them during the cleaning

process. Before cleaning, roots were coveredwith external hy-

phae and extremely sticky clay, and a concerted effort was

needed to brush or wash this debris off the roots. Nodulated

roots lacking pigmentation were found at depths up to 2 m.

Microscopy

It was challenging to clear and stain the surface roots due to

the recalcitrant tannins present in the roots. No attempt was

made to measure the percentage of total mycorrhizal coloni-

sation of the roots as clearing was inconsistent; however, of

the roots and nodules that were cleared satisfactorily, over

95 % of the cortical cells were colonised. Light microscopy

demonstrated that the nodules can be extensively colonised

by structures associated with AM fungi (Fig 2e6). Arbuscules

(Figs 2 and 6), vesicles (Fig 4), and loosely-coiled, thin-walled

pelotons (Fig 5) were observed illustrating that Agathis aus-

tralis are colonised by arbuscular mycorrhizae. Staining of

fungal cells demonstrated that the nodules are extensively

colonised by arbuscules in the central cortex but that the first

two rows of cells adjacent to the epidermis (outer cortex)

have only scattered fungal hyphae (Fig 2). The central cortical

cells contain little cytoplasm and can have new or degenerat-

ing arbuscules. Tannins along the epidermis do not appear to

prevent nodule colonisation by external hyphae (Fig 2). Al-

though most of the nodules were colonised by AM fungi,

there were some that were uninfected, especially the young

nodules. The fungal infection was present in the A. australis

roots (Fig 6) but appears to be not as pervasive when com-

pared with the nodules (Figs 2, 3 and 4). Evidence of nodule

infection (arbuscules and pelotons) was seen at all depths,

even up to 2 m deep. Spores were rarely observed either in
the A. australis litter or soil; however, they were occasionally

seen in association with nodules (not shown). The fungal hy-

phae ranged in diameter and were thick- or thin-walled. Hy-

phae were primarily aseptate, but occasional septa were

observed.

Similarly, it was challenging to fix, resin-infiltrate, and

embed the A. australis nodules and roots for electron micros-

copy. Only nodules that were cut in half prior to fixation had

cell contents that were well-preserved. Infiltration times

were doubled to ensure adequate penetration by the resin

prior to curing. The scanning electron microscope (SEM)

clearly showed structures associated with arbuscular mycor-

rhizae such as trunk hyphae (Figs 7 and 8) and arbuscules

(Fig 8). The dynamic nature of arbuscules was apparent as

generating and degenerating structures were observed in ad-

jacent cells (Fig 8). Transmission electron microscopy (TEM)

demonstrated the presence of fungal cells within the root

cells (Fig 9). Colonised plant cells aremostly packedwith fun-

gal hyphae with little room for plant cytoplasm. The fungal

hyphae could be thick- or thin-walled with numerous vacu-

oles or just one large vacuole (Figs 9e11). The hyphae were

multinucleate (Figs 9 and 12). The hyphae were able to pene-

trate the tannins in the roots and nodules (Figs 10 and 11).

Pelotons were also observed via TEM with multiple vacuoles

and nuclei (Fig 12). Mitochondria were observed in TEMs

(Fig 12). Septa were not apparent, except in one instance

(Suppl. Fig 1), which is most likely from a species of

Ascomycota.

Pyrosequencing and bioinformatics

PCR products were obtained for eight of the 12 samples for

the first 454 run and six of the nine samples for the second

454 run. Using the amplicon pipeline, 62 539 reads were ob-

tained for the first run and 47 810 reads were obtained for

the second run. One of the samples yielded no usable reads

and was removed from further analyses. Following quality

control in QIIME on the total dataset from both runs com-

bined, 37 964 reads were retained from the NS31 primer and

41 138 reads were retained from the AML2 primer. Each root

sample averaged a total of 6120 sequences. Forward and re-

verse sequences were analysed separately as the results

showed that certain OTUs sequenced only from one direc-

tion (Suppl. Table 4). The NS31 primer yielded 32 AMF

OTUs, accounting for 46 % of the retained sequences. The

AML2 primer yielded 14 AMF OTUs, and one chimeric OTU

(present in one sample and removed from further analyses),

accounting for 76 % of the retained sequences. Sample 3 con-

tained 26 OTUs (including those used to construct contigs),

which is the largest number present in a sample; Sample 12

contained only nine OTUs, which was the least recovered

from a sample. Three AML2 OTUs, 11, 16, and 123, were pres-

ent in all the samples. When assembled together, eight OTUs

from each direction paired into contigs (labelled 1e8) (Fig 13)

containing regions of overlap of between 124 and 152 base

pairs. Distribution of the contigs was as follows: Contig 3

and Contig 6 in all samples, Contig 7 in 11 samples, Contig

2 in eight samples, Contig 1 in four samples, Contig 5 in

two samples, and Contig 4 and Contig 8 each in only one

sample (Suppl. Table 4).
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Phylogenetic analyses

The phylogenetic tree comprised of 85 SSU reference se-

quences (Kr€uger et al. 2012), two outgroup taxa, 30 AMF

OTUs, and eight contigs (Fig 13). Since the forward and reverse

sequences were analysed separately, the same species could

be represented by different OTUs. The 30 AMF OTUs were dis-

tributed as follows: 26 in Glomeraceae, two in Acaulospora-

ceae, one in Gigasporaceae, and one in Archaeosporaceae.

The eight contigs were distributed as follows: three in Glomer-

aceae (3, 6, 7), two in Acaulosporaceae (2, 8), one in Gigaspor-

aceae (4), one in Archaeosporaceae (5), and one in

Diversisporaceae (1). None of the AMF reads were close to

taxa within the Claroideoglomeraceae or Pacisporaceae.

Within Archaeosporaceae, one contig and one NS31 OTU

are in a clade (99 % MLBS (Maximum Likelihood bootstrap)/

1.0 BPP (Bayesian Posterior Probability)) that is sister (100 %
Fig 1 e Light microscopic images of A. australis mycorrhizal roo

mented (Un), new nodules developing on pigmented, older nod

A. australis. Two hundred nanometer section of a root and two

completely surrounded by the epidermis (Ep). The nodules have

the outer cortex, as compared to the fine root (R) section that has

only in the outer cortical cells. Scale bar: 0.5 mm. Image courtes

hyphae clustered towards one end of nodule. Scale bar: 0.25 m

staining of mycorrhizal hyphae (H). Scale bar: 20 mm. 5. Loosely

50 mm. 6. Root squash showing arbuscule (A) (10003). Scale bar
MLBS/1.0 BPP) to two Archaeospora taxa. The placement of

Contig 1 within Diversisporaceae is well-supported (100 %

MLBS/1.0 BPP) but its position within the clade is not resolved.

Within Gigasporaceae NS31 OTU 156, in an unsupported clade

(e/.93 BPP) of four Scutellospora species, and Contig 4 are sup-

ported as part of this family (100 % MLBS/1.0 BPP). Contigs 2

and 8, NS31 OTU 185, and AML2 OTU 152 are distributed

within the highly supported Acaulosporaceae (97 % MLBS/.99

BPP). The three contigs within Glomeraceae are recovered in

a well-supported (83 % MLBS/1.0 BPP) clade consisting of Glo-

mus macrocarpum and an undescribed Glomus; this clade also

contains two AML2 OTUs and nine NS31 OTUs. The other 12

NS31 OTUs and three AML2 OTUs are distributed throughout

Glomeraceae. Four OTUs and one contig had 95 % or less se-

quence identity (with uncultured fungi included) to any AMF

sequence in the NCBI database (Fig 13). When uncultured

fungi were excluded from the BLAST searches, five OTUs
ts and nodules. 1. Agathis australis fine roots with unpig-

ules. Scale bar: 2 mm. 2. Structure of mycorrhizal nodules in

nodules stained with methylene blue. The nodules (N) are

extensive arbuscules (A) in the central cortex, and a few in

no obvious arbuscules. The tannins (T) appear to be present

y of Adrian Turner. 3. A. australis nodule (split in half) with

m. 4. AMF vesicle (V) associated with nodule. Note uneven

coiled peloton (arrow) in cortical cell of nodule. Scale bar:

: 25 mm.
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and two contigs had 95 % or less sequence identity to any AMF

sequence in the NCBI database (Fig 13).
Discussion

Podzolization is amajor pedogenic process inAgathis australis-

associated soils. This is a function of the high rainfall and

leaching of soluble, organic-acid, decomposition products

from the litter and organic layers produced by A. australis.

The resulting acidic throughflow of water in these soils
Fig 7 e Electron micrographs of A. australis nodules. 7. Scannin

cortical cell. Scale bar: 10 mm. Image courtesy of Adrian Turner

bouring cell (arrow). Image courtesy of Adrian Turner. Scale bar:

hyphae (FH) within the plant cell (PC) within a nodule (32003). P

scant cytoplasm. Scale bar: 2 mm. 10. TEM of fungal hypha (FH)

served. Image courtesy of Adrian Turner. Scale bar: 0.5 mm. 11. T

of fungal hyphae within root cell. Scale bar: 0.5 mm. 12. TEM of

(65003). Fungal vacuoles (FV), fungal nuclei (FN), and mitochon
contribute to leaching of nitrogen and other nutrients out of

the root zones (Jongkind et al. 2007). Although ectomycorrhizal

fungi have been shown to have a role in weathering and pod-

zolization, AMF associated with A. australis have not contrib-

uted to the formation of podzols (van Breemen et al. 2000)

that were found up to 2m below the surface. Due to the higher

soil weight and smaller volume of pore space at these depths

the co-occurring nodules were somewhat distorted in shape.

The nodules were unpigmented; however, these nodules, un-

like the unpigmented nodules closer to the surface, were all

colonised. The colonised nodules probably function in water
g electron micrograph (SEM) of trunk hyphae (arrows) in

. 8. SEM of arbuscule. Note collapsing arbuscule in neigh-

10 mm. 9. Transmission electron micrograph (TEM) of fungal

lant cell consists of mostly fungal hyphae and tannins with

within tannins (T) of root cell. Fungal vacuoles (FV) are ob-

EM of fungal hypha (FH). Tannins (T) do not prevent presence

putative peloton cross section within plant cell vacuole (PV)

dria (M) are observed. Scale bar: 0.5 mm.



Fig 13 e Maximum likelihood phylogeny of Glomeromycota constructed in GARLI. Glomeromycota families are delineated.

Sequences referenced were obtained from Kr€uger et al. 2012 (also see Suppl. Table 3). OTUs are labelled with numbers and

the primer name, and contigs are labelled 1e8. Contigs and OTUs that had £95 % sequence identity to all AMF sequences

from the NCBI database are marked with * and with D if they had £95 % sequence identity to known AMF sequences from

the NCBI database. Bootstrap values higher than 70 % are reported and are followed by posterior probabilities higher than

90 % (.90).
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uptake as the soils between one and a half to 2 m below the

surface consist of up to 30 % water and there doesn’t appear

to be any nutrients at those depths (Suppl. Table 2).

Despite soils containing large reserves of nitrogen e often

up to four times the amount found under other forest types

e the growth of A. australis is often nitrogen limited

(Silvester 2000). Although nitrogen use efficiency by A. aus-

tralis is approximately twice that of other trees (Silvester

2000), there is low biologically-available nitrogen. Much of

the nitrogen present in this system is due to asymbiotic nitro-

gen fixation in the leaf litter (Silvester 1978, Silvester 2000). But

large amounts of soil nitrogen under A. australis are also

immobilised as heterocyclic nitrogen in the organic matrix

(Verkaik et al. 2006). AMF have been shown to uptake complex

nitrogenous compounds (Whiteside et al. 2012) and in turn

transfer the nitrogen to the trees. This could explain why

the low level of biologically-available nitrogen has been linked

to a proliferation of nodules and to an increased level of AMF

infection (English 1965).

There is also low biologically-available phosphorus in the

A. australis soil system, which is to be expected from these

highly leached, acidic soils. Morrison & English (1967) reported

an elevated level of phosphorus uptake by mycorrhizal nod-

ules as compared with uncolonised nodules. Such a condition

can benefit the host plant. A prevalence of root modifications/

symbiotic relationships is strongly associated with ecosys-

tems characterised by nutrient depauperate edaphic sub-

strates especially nitrogen and phosphorus e.g., as in

Australia (Bowen 1981).

Agathis australis has numerous determinate short roots

(¼nodules) on a fine root network. Seedlings of A. australis

planted in sterile potting soil formed nodules but showed no

signs of fungal colonisation after two (pers. obsv.) or three

years (Baylis 1969). These observations confirm that although

nodules can accommodate AM fungi they form as part of the

root system ontogeny; however, the growth of the seedlings

stalls after three years without AMF or fertilisation. Dickie &

Holdaway (2010) hypothesise that the form of the nodules al-

lows for the maximisation of AMF colonisation with mini-

mum cost to the plant. Regardless of whether the sole

purpose of nodules is to house AMF, the association of AMF

with root nodules of ancient conifers is long-evolved and sta-

ble in form (Schwendemann et al. 2011).

In natural settings, AM fungal colonisation occurs approx-

imately five months after the emergence of the new season’s

nodules (English 1965). Since nodule colonisation by AMF

does not occur in conjunction with nodule formation, coloni-

sation probably occurs through horizontal transmission via

the soil. One root sample showed hyphal penetration from

soil (data not shown). Hyphae were not observed connecting

roots and nodules or immature and mature nodules. Vertical

transmission within the root system may be possible due to

the absence of suberin and the presence of hyphae within

the root cortex. New nodules form at the tip of the older nod-

ules and are covered with the outer cell layers of the older

nodule. Since all older nodules are colonised, it seems plau-

sible that hyphae from the cortex of older nodules could mi-

grate into immature ones although this was not observed in

our study. Podocarp nodules are solely colonised by fungal

re-invasion from the soil, but here the endodermis forms
a barrier to hyphal entry into the nodule from the root cortex

(Russell et al. 2002). However, Russell et al. (2002) also re-

ported fungal hyphae extending from the cortex of old nod-

ules to the epidermis of developing nodules. Clear images

of hyphae from older nodules or roots into newly developing

nodules are needed to definitively answer whether vertical

transmission of AMF is also responsible for fungal

colonisation.

The paucity of spores in the surrounding soil together with

the hyphae observed on the nodule/root surfaces suggest that

the AM fungi have to be in close associationwithA. australis in

order to colonise new nodules as well as new plants. The lack

of spores may also be a result of weather conditions or sea-

sonal variation as sampling did not occur in spring. The obser-

vation of occasional septate hyphae demonstrates that other

fungal species, e.g., Ascomycota, also colonise A. australis

root systems. Other species of Araucariaceae (e.g., Araucaria

araucana) are known to be colonised by both AMF as well as

dark septate endophytes known to be Ascomycota (Diehl &

Fontenla 2010). Further research is needed to characterise

the non-AMF root endophytes of A. australis.

Our study has demonstrated that there are multiple line-

ages of Glomeromycota associated with A. australis roots

and nodules. It is still uncertain whether each nodule har-

bours several different species of AM fungi or just one species

per nodule. The data suggest that AMF communities are

patchily distributed in the root samples. For example, AML2

OTU 123 was recovered from each sample whereas AML2

OTU 152 was only recovered from one sample. Additionally

the highest number (24) of OTUs plus contigs was recovered

from only one sample as compared with the lowest number

(8), which suggests that the treesmay not have the same num-

ber of AMF species or the same species composition. Repeated

sampling as well as the characterisation of AMF associated

with A. australis at distant sites will confirm if each tree has

the same species composition.

Conservatively, there are five AMF ‘species’ within our

samples that are not close to previously obtained sequences

of Glomeromycota (including environmental sequences) or

seven AMF ‘species’ when compared to sequences from de-

scribed species of Glomeromycota. These results suggest

that there may be species that are uniquely associated with

A. australis; however, this may be an artefact, reflecting the

poor characterisation of AMF diversity in New Zealand similar

to the Russell et al. (2002) study as analysed in Dickie &

Holdaway (2010).

In contrast, the majority of AMF sequences that were re-

covered in this study are close (greater or equal to 95 % se-

quence similarity) to known species from diverse habitats

and localities (eg., Trifolium fromU.S.A. orMelilotus from Italy).

The species are in general typical of AMF communities, i.e.,

composed mostly of Glomus with some representation from

other Glomeromycota families. Dickie &Holdaway (2010) state

that there was no specificity of AMF to podocarps and that any

apparent specificity may be the result of abiotic and biotic

properties of the environment. A comparison of AMF associ-

ated with other plants in the vicinity as well as A. australis at

distant sites will confirm if there is any true host specificity.

The trees sampled for this study were all symptom-free in

a site where Phytophthora agathidicida has been observed.
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Additionally, the roots of P. agathidicida-symptomatic trees

have not been sampled for AMF and it is yet unclear whether

P. agathidicida displaces the resident AMF in the nodules once

it invades A. australis. Colonisation by AMF has been shown to

reduce necrosis in tomato plants (Vigo et al. 2000) and may

function in a similar fashion in A. australis. Further research

is essential to evaluate whether the presence of certain AMF

species such as the ones recovered from these healthy trees

afford protection against Phytophthora.
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