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Abstract

In digital topology, Euclidean n-space Rn is usually modeled either by the set of
points of a discrete grid, or by the set of n-cells in a convex cell complex whose
union is Rn. For commonly used grids and complexes in the cases n = 2 and 3,
certain pairs of adjacency relations (κ, λ) on the grid points or n-cells (such as (4,8)
and (8,4) on Z2) are known to be “good pairs”. For these pairs of relations (κ, λ),
many results of digital topology concerning a set of grid points or n-cells and its
complement (such as Rosenfeld’s digital Jordan curve theorem) have versions in
which κ-adjacency is used to define connectedness on the set and λ-adjacency is
used to define connectedness on its complement. At present, results of 2D and 3D
digital topology are usually proved for one good pair of adjacency relations at a time
— so for each result there are different (but analogous) theorems for different good
pairs of adjacency relations. In this paper we take the first steps in developing an
alternative approach to digital topology based on very general axiomatic definitions
of “well-behaved digital spaces”. This approach gives the possibility of stating and
proving results of digital topology as single theorems which apply to all spaces
of the appropriate dimensionality that satisfy our axioms. Specifically, this paper
introduces the notion of a generic axiomatized digital surface-structure (gads) —
a general, axiomatically defined, type of discrete structure that models subsets of
the Euclidean plane and of other surfaces. Instances of this notion include gads
corresponding to all of the good pairs of adjacency relations that have previously
been used (by ourselves or others) in digital topology on planar grids and boundary
surfaces. We define basic concepts for a gads (such as homotopy of paths and the
intersection number of two paths), give a discrete definition of planar gads (which
are gads that model subsets of the Euclidean plane) and present some fundamental
results including a Jordan curve theorem for planar gads.
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1 Introduction

In digital topology, Euclidean n-space Rn is usually modeled either by the set
of points of a discrete grid, or by the set of n-cells in a convex cell complex
whose union is Rn. Connectedness in Euclidean n-space is usually modeled
by graph-theoretic notions of connectedness derived from adjacency relations
defined on the grid points or n-cells.

For commonly used grids and complexes in the cases n = 2 and 3, certain
pairs of adjacency relations (κ, λ) on the grid points or n-cells are known to
be “good pairs”. For these pairs of relations (κ, λ), many results of digital
topology concerning a set of grid points or n-cells and its complement have
versions in which κ-adjacency is used to define connectedness on the set and
λ-adjacency is used to define connectedness on its complement.

For example, (4, 8) and (8, 4) are good pairs of adjacency relations on Z2.
Thus Rosenfeld’s digital Jordan curve theorem [10] is valid when one of 4- and
8-adjacency is used to define the sense in which a digital simple closed curve
is connected and the other of the two adjacency relations is used to define
connected components of the digital curve’s complement. The theorem is not
valid if the same one of 4- or 8-adjacency is used for both purposes: (4, 4) and
(8, 8) are not good pairs on Z2.

Some adjacency relations form good pairs with themselves. An example of
such a good pair is the pair (6, 6) on the grid points of a 2D hexagonal grid.
(The grid points are the centers of the hexagons in a tiling of the Euclidean
plane by regular hexagons, and two points are 6-adjacent if they are the centers
of hexagons that share an edge.) Another example is the good pair (κ2, κ2)
on Z2, where κ2 is Khalimsky’s adjacency relation [6] on Z2, which is defined
as follows: Say that a point of Z2 is pure if its coordinates are both even or
both odd, and mixed otherwise. Then two points of Z2 are κ2-adjacent if they
are 4-adjacent, or if they are pure points and are 8-adjacent.

In three dimensions, (6, 26), (26, 6), (6, 18), (18, 6) are good pairs of adja-
cency relations on Z3. A different example of a good pair on Z3 is (κ3, κ3),
where κ3 is the 3D analog of κ2: Two points of Z3 are κ3-adjacent if they are 6-
adjacent, or if they are 26-adjacent and at least one of the two is a pure point,
where a pure point is a point whose coordinates are all odd or all even. (12, 12),
(12, 18) and (18, 12) are good pairs of adjacency relations 6 on the points of a
3D face-centered cubic grid (e.g., on {(x, y, z) ∈ Z3 | x + y + z ≡ 0(mod 2)})
and (14, 14) is a good pair on the points of a 3D body-centered cubic grid
(e.g., on {(x, y, z) ∈ Z3 | x ≡ y ≡ z(mod 2)}).

At present, results of 2D and 3D digital topology are usually proved for
one good pair of adjacency relations at a time, and the details of the proof

6 If α is an irreflexive symmetric binary relation on the set G of all points of a Cartesian or
non-Cartesian grid, then α is referred to as the k-adjacency relation on G, and is denoted
by the positive integer k, if for all p ∈ G the set {q ∈ G | p α q} contains just k points and
they are all strictly closer to p (in Euclidean distance) than is any other point of G \ {p}.
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may be significantly different for different good pairs. In the case of 3D grids,
even if we consider only the nine good pairs of adjacency relations mentioned
above, a result such as a digital Jordan surface theorem would be expected to
have nine different versions with nine separate proofs!

This state of affairs seems to us to be unsatisfactory. We have begun to
consider an alternative approach to digital topology, in which “well-behaved”
digital spaces are defined axiomatically, using axioms that are general enough
to admit digital spaces which correspond to the good pairs of adjacency re-
lations mentioned above. This approach allows a result of 2D or 3D digital
topology to be proved as a single theorem for all well-behaved spaces that sat-
isfy appropriate hypotheses. (Our Jordan curve theorem, Theorem 4.7 below,
illustrates this.)

In this paper we confine our attention to digital spaces that model subsets
of the Euclidean plane and other surfaces, and give an axiomatic definition of
a very general class of such spaces, which includes spaces corresponding to all
of the good pairs of adjacency relations that have been used in the literature
on 2D digital topology (both in the plane and on boundary surfaces). A space
that satisfies our axiomatic definition is called a gads. As will be seen in
Section 2.5, a substantial part of the mathematical framework used in our
definition of a gads has previously been used by the third author [4,5].

As first steps in the development of digital topology for these spaces, we
define the intersection number of two paths on a gads, and outline a proof
that the number is invariant under homotopic deformation of the two paths.
This is mostly a generalization, to arbitrary gads, of definitions and theorems
given by the first author and Malgouyres in [1,2,3]. We also give a (discrete)
definition of planar gads, which model subsets of the Euclidean plane, and
present a Jordan curve theorem for such gads. In contrast to some earlier
work by the second author (e.g., [7,8,9]), this paper does not use any arguments
that are based on polyhedral continuous analogs of digital spaces, but uses only
discrete arguments.

2 GADS and pGADS

2.1 Basic Concepts and Notations

For any set P we denote by P {2} the set of all unordered pairs of distinct
elements of P (equivalently, the set of all subsets of P with exactly two el-
ements). Let P be any set and let ρ ⊆ P {2}. 7 Two elements a and b of P
[respectively, two subsets A and B of P ] are said to be ρ-adjacent if {a, b} ∈ ρ
[respectively, if there exist a ∈ A and b ∈ B with {a, b} ∈ ρ]. If x ∈ P we
denote by Nρ(x) the set of elements of P which are ρ-adjacent to x; these
elements are also called the ρ-neighbors of x. We call Nρ(x) the punctured

7 ρ can be viewed as a binary, symmetric and irreflexive relation on P , and (P, ρ) as an
undirected simple graph.
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ρ-neighborhood of x.

A ρ-path from a ∈ P to b ∈ P is a finite sequence (x0, . . . , xl) of one or
more elements of P such that x0 = a, xl = b and, for all i ∈ {0, . . . , l − 1},
{xi, xi+1} ∈ ρ. The nonnegative integer l is the length of the path. A ρ-path
of length 0 is called a one-point path. For all integers m,n, 0 ≤ m ≤ n ≤ l,
the subsequence (xm, . . . , xn) of (x0, . . . , xl) is called an interval or segment
of the path. For all i ∈ {1, . . . , l} we say that the elements xi−1 and xi are
consecutive on the path, and also that xi−1 precedes xi and xi follows xi−1 on
the path. Note that consecutive elements of a ρ-path can never be equal.

A ρ-path (x0, . . . , xl) is said to be simple if xi �= xj for all distinct i and j
in {0, . . . , l}. It is said to be closed if x0 = xl, so that x0 follows xl−1. It is
called a ρ-cycle if it is closed and xi �= xj for all distinct i and j in {1, . . . , l}.
One-point paths are the simplest ρ-cycles. Two ρ-cycles c1 = (x0, . . . , xl)
and c2 = (y0, . . . , yl) are said to be equivalent if there exists an integer k,
0 ≤ k ≤ l − 1, such that xi = y(i+k)mod l for all i ∈ {0, . . . , l}.

If S ⊆ P , two elements a and b of S are said to be ρ-connected in S if there
exists a ρ-path from a to b that consists only of points in S. ρ-connectedness
in S is an equivalence relation on S; its equivalence classes are called the
ρ-components of S. The set S is said to be ρ-connected if there is just one
ρ-component of S.

Given two sequences c1 = (x0, . . . , xm) and c2 = (y0, . . . , yn) such that
xm = y0, we denote by c1.c2 the sequence (x0, . . . , xm, y1, . . . , yn), which we
call the catenation of c1 and c2. Whenever we use the notation c1.c2, we are
also implicitly saying that the last element of c1 is the same as the first element
of c2. It is clear that if c1 and c2 are ρ-paths of lengths l1 and l2, then c1.c2 is
a ρ-path of length l1 + l2.

For any sequence c = (x0, . . . , xm), the reverse of c, denoted by c−1, is the
sequence (y0, . . . , ym) such that yk = xm−k for all k ∈ {0, . . . ,m}. It is clear
that if c is a ρ-path of length l then so is c−1.

A simple closed ρ-curve is a nonempty finite ρ-connected set C such that
each element of C has exactly two ρ-neighbors in C. (Note that a simple closed
ρ-curve must have at least three elements.) A ρ-cycle c of length |C| that con-
tains every element of a simple closed ρ-curve C is called a ρ-parameterization
of C. Note that if c and c′ are ρ-parameterizations of a simple closed ρ-curve
C, then c′ is equivalent to c or to c−1.

If x and y are ρ-adjacent elements of a simple closed ρ-curve C, then we
may say that x and y are ρ-consecutive on C. If x and y are distinct elements
of a simple closed ρ-curve C that are not ρ-consecutive on C, then each of
the two ρ-components of C \ {x, y} is called a ρ-cut-interval (of C) associated
with x and y.
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2.2 Definition of a gads

Definition 2.1 (2D digital complex) A 2D digital complex is an ordered
triple (V, π,L), where

• V is a set whose elements are called vertices or spels,

• π ⊆ V {2}, and the pairs of vertices in π are called proto-edges,

• L is a set of simple closed π-curves whose members are called loops,

and the following four conditions hold:

(i) V is π-connected and contains more than one vertex.

(ii) For any two distinct loops L1 and L2, L1∩L2 is either empty, or consists
of a single vertex, or is a proto-edge.

(iii) No proto-edge is included in more than two loops.

(iv) Each vertex belongs to only a finite number of proto-edges.

When specifying a 2D digital complex whose vertex set is the set of points
of a grid in Rn, a positive integer k (such as 4, 8 or 6) may be used to denote
the set of all unordered pairs of k-adjacent vertices. We write L2×2 to denote
the set of all unit lattice squares in Z2. The triple (Z2, 4,L2×2) is a simple
example of a 2D digital complex.

Definition 2.2 (GADS) A generic axiomatized digital surface-structure, or
gads, is a pair G = ((V, π,L), (κ, λ)) where (V, π,L) is a 2D digital complex
(whose vertices, proto-edges and loops are also referred to as vertices, proto-
edges and loops of G) and where κ and λ are subsets of V {2} that satisfy
Axioms 1, 2 and 3 below. The pairs of vertices in κ and λ are called κ-edges
and λ-edges, respectively. (V, π,L) is called the underlying complex of G.

Axiom 1 Every proto-edge is both a κ-edge and a λ-edge: π ⊆ κ ∩ λ.

Axiom 2 For all e ∈ (κ ∪ λ) \ π, some loop contains both vertices of e.

Axiom 3 If x, y ∈ L ∈ L, but x and y are not π-consecutive on L, then

(a) {x, y} is a λ-edge if and only if L \ {x, y} is not κ-connected.

(b) {x, y} is a κ-edge if and only if L \ {x, y} is not λ-connected.

Regarding Axiom 2, note that if e ∈ (κ ∪ λ) \ π (i.e., e is a κ- or λ-edge
that is not a proto-edge) then there can only be one loop that contains both
vertices of e, by condition (ii) in the definition of a 2D digital complex.

As illustrations of Axiom 3, observe that both ((Z2, 4,L2×2), (4, 8)) and
((Z2, 4,L2×2), (8, 4)) satisfy Axiom 3, but ((Z2, 4,L2×2), (4, 4)) violates the “if”
parts of the axiom, while ((Z2, 4,L2×2), (8, 8)) violates the “only if” parts of
the axiom.

A gads is said to be finite if it has finitely many vertices; otherwise it is
said to be infinite. The set of all gads can be ordered as follows:

Definition 2.3 (⊆ order, subGADS) Let G = ((V, π,L), (κ, λ)) and G′ =
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((V ′, π′,L′), (κ′, λ′)) be gads such that

• V ⊆ V ′, π ⊆ π′ and L ⊆ L′.
• For all L ∈ L, κ ∩ L{2} = κ′ ∩ L{2} and λ ∩ L{2} = λ′ ∩ L{2}.

Then we write G ⊆ G′ and say that G is a subGADS of G′. We also refer to G

as the subGADS of G′ induced by (V, π,L). We write G � G′ to mean G ⊆ G′

and G �= G′. We write G < G′ to mean G � G′ and L �= L′.

The following simple but important property of gads is an immediate
consequence of the symmetry of Axioms 1, 2 and 3 with respect to κ and λ:

Property 2.4 If ((V, π,L), (κ, λ)) is a gads then ((V, π,L), (λ, κ)) is also
a gads. So any statement which is true of every gads ((V, π,L), (κ, λ))
remains true when κ is replaced by λ and λ by κ.

2.3 Interior Vertices and pgads

We are particularly interested in those gads that model a surface without
boundary. The next definition gives a name for any such gads.

Definition 2.5 (pGADS) A pgads is a gads in which every proto-edge is
included in two loops. (The p in pgads stands for pseudomanifold.)

A finite pgads models a closed surface. A pgads that models the Eu-
clidean plane must be infinite.

A vertex v of a gads G is called an interior vertex of G if every proto-edge
of G that contains v is included in two loops of G. It follows that a gads G is
a pgads if and only if every vertex of G is an interior vertex.

Below are pictures of some pgads.

Example 2.6 Z2 with the 4- and 8-adjacency relations

G = ((Z2, 4,L2×2), (4, 8))

Example 2.7 Z2 with Khalimsky’s adjacency relation

G = ((Z2, 4,L2×2), (κ2, κ2)), where κ2 consists of all un-
ordered pairs of 4-adjacent points and all unordered pairs
of 8-adjacent pure points.

Example 2.8 The hexagonal grid with the 6-adjacency relation

G = ((H, 6,L), (6, 6))

H = {(i + j
2
, j

√
3
2

) ∈ R2 | i, j ∈ Z }
L = {{p, q, r} ⊂ H | dst(p, q) = dst(q, r) = dst(p, r) = 1}
dst(x, y) denotes the Euclidean distance between x and y.
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Example 2.9 A torus-like pgads

gf

h i

cb

d

e

a

a a

e

d

a

b c
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e

i

g

d
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h
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G = ((V, κ,L), (κ, λ))
V = {a, b, c, d, e, f, g, h, i}
κ = {{a, b}, {b, c}, {c, a}, {d, f}, {f, g}, {g, d},

{e, h}, {h, i}, {i, e}, {b, f}, {c, g}, {a, d},
{f, h}, {g, i}, {d, e}, {h, b}, {i, c}, {e, a}}

λ = {{x, y} | ∃L ∈ L, x, y ∈ L} (not shown)
L = {{a, b, f, d}, {d, f, h, e}, {e, h, b, a},

{b, c, g, f}, {f, g, i, h}, {h, i, c, b},
{c, a, d, g}, {g, d, e, i}, {i, e, a, c}}

2.4 Strong Connectedness and Singularities

Let G = ((V, π,L), (κ, λ)) be a gads. Two loops L and L′ of G are said to be
adjacent if L ∩ L′ is a proto-edge of G. A subset L′ of L is said to be strongly
connected if for any two loops L and L′ in L′, there exists a sequence L0, . . . , Ln

of loops in L′ such that L0 = L, Ln = L′ and, for all i ∈ {0, . . . , n−1}, Li and
Li+1 are adjacent. G is said to be strongly connected if L is strongly connected.
(So whether or not G is strongly connected depends only on the underlying
complex of G.)

A vertex x of G is said to be a singularity of G if the set of all loops of G

that contain x is not strongly connected. Vertices that are not singularities are
said to be nonsingular. Again, whether or not x is a singularity of G depends
only on the underlying complex of G.

Even a strongly connected pgads may have a singularity. For example, the
pgads obtained from the torus-like pgads of Example 2.9 above by identifying
the vertices a, b and c has a singularity at a = b = c but is strongly connected.

2.5 Relationship to the Mathematical Framework of [4,5]

Here we briefly discuss the relationship between our concept of a gads and
digital structures previously studied by the third author in [4,5].

If ((V, π,L), (κ, λ)) is a gads, then, in the terminology of [5], (V, π) is a
digital space, π is the proto-adjacency of that space, and each of κ and λ is a
spel-adjacency of the space. The principal new ingredients in our concept of a
gads are the set of loops L and Axioms 2 and 3. In a gads ((V, π,L), (κ, λ))
with the property that every simple closed π-path of length 4 is a loop of the
gads, the “if” parts of Axiom 3 make {κ, λ} a normal pair of spel-adjacencies.

An important difference between our theory and that of [4,5] is that our
theory is restricted to spaces that model subsets of surfaces (though only
because of condition (iii) in the definition of a 2D digital complex).
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3 Homotopic Paths and Simple Connectedness

In this section G = ((V, π,L), (κ, λ)) is a gads, ρ satisfies π ⊆ ρ ⊆ κ ∪ λ, and
X is a ρ-connected subset of V . (We are mainly interested in the cases where
ρ = κ, λ or π.)

Loosely speaking, two ρ-paths in X with the same initial and the same
final vertices are said to be ρ-homotopic within X in G if one of the paths can
be transformed into the other by a sequence of small local deformations within
X. The initial and final vertices of the path must remain fixed throughout
the deformation process. The next two definitions make this notion precise.

Definition 3.1 (elementary G-deformation) Two finite vertex sequences
c and c′ of G with the same initial and the same final vertices are said to be
the same up to an elementary G-deformation if there exist vertex sequences c1,
c2, γ and γ′ such that c = c1.γ.c2, c

′ = c1.γ
′.c2, and either there is a proto-edge

{x, y} for which one of γ and γ′ is (x) and the other is (x, y, x), or there is a
loop of G that contains all of the vertices in γ and γ′.

Definition 3.2 (homotopic ρ-paths) Two ρ-paths c and c′ in X with the
same initial and the same final vertices are ρ-homotopic within X in G if there
exists a sequence of ρ-paths c0, . . . , cn in X such that c0 = c, cn = c′ and, for
0 ≤ i ≤ n − 1, ci and ci+1 are the same up to an elementary G-deformation.
Two ρ-paths with the same initial and the same final vertices are said to be
ρ-homotopic in G if they are ρ-homotopic within V in G.

The next proposition states a useful characterization of ρ-homotopy that
is based on a more restrictive kind of local deformation than was considered
above, which allows only the insertion or removal of either a “ρ-back-and-
forth” or a cycle that parameterizes a simple closed ρ-curve in a loop of G.

Definition 3.3 (minimal ρ-deformation) Two ρ-paths c and c′ with the
same initial and the same final vertices are said to be the same up to a minimal
ρ-deformation in G if there exist ρ-paths c1, c2 and γ such that one of c and
c′ is c1.γ.c2, the other of c and c′ is c1.c2, and either γ = (x, y, x) for some
ρ-edge {x, y} or γ is a ρ-parameterization of a simple closed ρ-curve whose
vertices are contained in a single loop of G.

This concept of deformation is particularly simple when ρ = π, because a
simple closed π-curve whose vertices are contained in a single loop of G must
in fact be a loop of G, since a loop of G is a simple closed π-curve.

Proposition 3.4 Two ρ-paths c and c′ in X with the same initial and the
same final vertices are ρ-homotopic within X in G if and only if there is
a sequence of ρ-paths c0, . . . , cn in X such that c0 = c, cn = c′ and, for
0 ≤ i ≤ n− 1, ci and ci+1 are the same up to a minimal ρ-deformation in G.

The proof of this proposition is not particularly difficult, and we leave it
to the interested reader.

Definition 3.5 (reducible closed path) Let c = (x0, . . . , xn) be a closed
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ρ-path in X (so xn = x0). Then c is said to be ρ-reducible within X in G if
c and the one-point path (x0) are ρ-homotopic within X in G. We say c is
ρ-reducible in G if c is ρ-reducible within V in G.

Definition 3.6 (simple connectedness) The set X is said to be ρ-simply
connected in G if every closed ρ-path in X is ρ-reducible within X in G. The
gads G is said to be simply connected if V is π-simply connected in G.

Whether or not a gads is simply connected depends only on its underlying
complex. If G is simply connected then V is ρ-simply connected in G for any
ρ such that π ⊆ ρ ⊆ κ ∪ λ. This is because π ⊆ ρ ⊆ κ ∪ λ implies that for
any ρ-path c there is a π-path c′ such that c and c′ are ρ-homotopic in G, and
π ⊆ ρ implies that a π-reducible π-path is also a ρ-reducible ρ-path.

The final result in this section gives a useful sufficient condition for a gads
to have no singularities:

Proposition 3.7 Let G be a gads that is both simply connected and strongly
connected. Then G has no singularities.

Proof: Let G = ((V, π,L), (κ, λ)) and suppose x is a singularity of G. Then
there exist two nonempty sets of loops of G, α1 = {L1, . . . , Li} and α2 =
{Li+1, . . . , Ll}, such that {L1, . . . , Ll} is the set of all loops of G that contain
x, and such that L ∩ L′ = {x} for all L in α1 and L′ in α2.

For any π-path c = (c0, c1, . . . , cn), let ν(c, x) be the number of pairs
(ci, ci+1) for which ci belongs to a loop in α1 and ci+1 = x, minus the number
of pairs (ci, ci+1) for which ci = x and ci+1 belongs to a loop in α1. It is easy
to verify that if c′ and c′′ are two π-paths which are the same up to a minimal
π-deformation in G then ν(c′, x) = ν(c′′, x). So, since G is simply connected,
ν(c, x) = 0 for every closed π-path c (by Proposition 3.4).

Now let y be a π-neighbor of x that belongs to a loop in α1, and let z be
a π-neighbor of x that belongs to a loop in α2. Since G is strongly connected,
there must be a π-path c′ from z to y that does not contain x. But the closed
π-path c = (x, z).c′.(y, x) would satisfy ν(c, x) = 1, a contradiction. ✷

4 Planar GADS and a Jordan Curve Theorem

In this section we define a class of gads that are discrete models of subsets of
the Euclidean plane. The definition depends on two concepts which we now
present:

Definition 4.1 (Euler number of a GADS) Let G = ((V, π,L), (κ, λ)) be
a finite gads. Then the integer |V | − |π| + |L| is called the Euler number of
G, and is denoted by χ(G).

Note that the Euler number of a gads depends only on the underlying
complex, and that it is not defined for an infinite gads.

Definition 4.2 (limit of an increasing GADS sequence) For all i ∈ N
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let Gi = ((Vi, πi,Li), (κi, λi)) be a gads and let G0 ⊆ G1 ⊆ G2 ⊆ . . ..
Then

⋃
i∈N Gi denotes ((

⋃
i∈N Vi,

⋃
i∈N πi,

⋃
i∈NLi), (

⋃
i∈N κi,

⋃
i∈N λi)), which is

a gads if each element of
⋃

i∈N Vi is contained in only finitely many distinct
members of

⋃
i∈N πi.

We are now in a position to define a planar gads. Whether or not a gads
is planar depends only on its underlying complex, as can be deduced quite
easily from the following definition.

Definition 4.3 (planar GADS) A pgads PG is said to be planar if PG =⋃
i∈N Gi for some infinite sequence of finite gads G0 < G1 < G2 < . . . such

that Gi is strongly connected and χ(Gi) = 1 for all i ∈ N. A gads G is said to
be planar if there exists a planar pgads PG such that G ⊆ PG.

It is evident that all planar pgads are infinite and strongly connected. A
somewhat less obvious property of planar pgads is that they are all simply
connected. This follows quite easily from:

Proposition 4.4 Let G be a strongly connected gads and let G′ be a finite
gads such that G′ < G and χ(G′) = 1. Then G′ is simply connected.

Sketch of proof: Let G′ = ((V ′, π′,L′), (κ′, λ′)). In the case where L′ = ∅,
|V ′| − |π′| = χ(G′) = 1 and so (V ′, π′) is a tree. In this case the result is easily
proved by induction on the number of proto-edges. To prove the result in the
case where G′ has at least one loop, we use induction on the number of loops.
[The induction step is based on the easily established fact that, since G′ < G

and G is strongly connected, there must exist a proto-edge e of G′ that belongs
to just one loop of G′, L say. Readily, G′ is simply connected if the subGADS
of G induced by (V ′, π′ \ {e},L′ \ {L}) is simply connected.] ✷

Corollary 4.5 A planar pgads is simply connected.

Proof: Let PG = ((V ∗, π∗,L∗), (κ∗, λ∗)) be a planar pgads, and suppose c∗ is
a π∗-path that is not π∗-reducible in PG. By the definition of a planar pgads,
there exists a gads G′ = ((V ′, π′,L′), (κ′, λ′)) which satisfies the hypotheses
of the above proposition when G = PG, such that c∗ is a π′-path of G′. Since
c∗ is not π∗-reducible in PG, c∗ is not π′-reducible in G′, which contradicts the
proposition. ✷

As a consequence of this corollary and Proposition 3.7, we deduce:

Proposition 4.6 A planar pgads has no singularities.

The next theorem is our main result concerning planar gads. It general-
izes Rosenfeld’s digital Jordan curve theorem [10] (for Z2 with (4,8) or (8,4)
adjacencies) to every planar gads. We will outline a proof of this theorem in
Section 8.

Theorem 4.7 (Jordan curve theorem) Let PG = ((V, π,L), (κ, λ)) be a
planar gads. Let C be a simple closed κ-curve that is not included in any
loop of PG, and which consists entirely of interior points of PG. Then V \ C
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has exactly two λ-components, and, for each vertex x ∈ C, Nλ(x) intersects
both λ-components of V \ C.

5 Local Orientations and Orientability

5.1 Definitions

Let L1 and L2 be adjacent loops of a gads G = ((V, π,L), (κ, λ)) and let
{x, y} = L1 ∩ L2. Then π-parameterizations c1 of L1 and c2 of L2 are said to
be coherent if x precedes y in one of c1 and c2 but x follows y in the other of
c1 and c2. A coherent π-orientation of a set of loops L′ ⊆ L is a function Ω
with domain L′ such that:

(i) For each loop L in L′, Ω(L) is a π-parameterization of L.

(ii) For all pairs of adjacent loops L and L′ in L′, the π-parameterizations
Ω(L) and Ω(L′) of L and L′ are coherent.

Two coherent π-orientations Ω1 and Ω2 of L′ are said to be equivalent if, for
every L in L′, Ω1(L) and Ω2(L) are equivalent π-parameterizations of L.

A coherent orientation of G is a coherent π-orientation of the set L of all
loops of G. The gads G is said to be orientable if it has a coherent orientation.
Evidently, if G′ and G are gads such that G′ ⊆ G and G is orientable, then G′

is also orientable. Note that whether or not a gads is orientable depends only
on its underlying complex. It is easy to verify that the four pgads shown in
the diagrams of Section 2.3 are all examples of orientable gads.

5.2 The Cycle NΩ,y(x) Around a Nonsingular Interior Vertex x of a gads

Let G = ((V, π,L), (κ, λ)) be a (not necessarily orientable) gads, and let x be
a nonsingular interior vertex of G.

A loop-circuit of G is a sequence (L0, . . . , Ll−1) of loops of G such that, for
all i ∈ {0, . . . , l− 1}, Li is adjacent to L(i+1)mod l. A loop-circuit of G at x is a
loop-circuit of G that is an enumeration of the set of loops of G that contain
x (with each of those loops occurring just once). Thus if (L0, . . . , Ll−1) is a
loop-circuit of G at x then, for each i ∈ {0, . . . l − 1}, Li ∩ L(i+1)mod l is a
proto-edge of G that contains x (by condition (ii) in the definition of a 2D
digital complex).

The set of loops of G that contain x is strongly connected (since x is
nonsingular in G), and it is easy to show that each loop in the set is adjacent
to exactly two others (since x is an interior vertex of G). Therefore a loop-
circuit of G at x exists.

A coherent local orientation of G at x is a coherent π-orientation of the
loops of G that contain x. Let Λ = (L0, . . . , Ll−1) be a loop-circuit of G at x.
Then the coherent local orientation of G at x induced by Λ, denoted by ΩΛx ,
is defined as follows. For 0 ≤ i ≤ l − 1 let ci be a π-parameterization of Li

that begins and ends at x, in which the second vertex is the vertex of Li ∩
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L(i−1)mod l\{x}, and the second-last vertex is the vertex of Li∩L(i+1)mod l\{x}.
Then ΩΛx is defined by ΩΛx (Li) = ci for 0 ≤ i ≤ l − 1.

Now let Ω′
x be any coherent local orientation of G at x. Then Ω′

x(L0) is
equivalent either to ΩΛx (L0) or to (ΩΛx (L0))

−1. It is readily confirmed that Ω′
x

must be equivalent to ΩΛx in the former case and to ΩΛ
−1

x in the latter case.

For any vertex v of G, the punctured loop neighborhood of v in G, denoted
by NL(v), is defined to be the union of all the loops of G which contain v,
minus the vertex v itself.

Let Ωx be a coherent local orientation of G at x. For each vertex y of
NL(x), we now define a π-cycle NΩx,y(x) with the following properties:

(i) The vertices of NΩx,y(x) are exactly the vertices of NL(x).

(ii) NΩx,y(x) begins and ends at y.

Let Λ = (L0, . . . , Ll−1) be a loop-circuit of G at x such that ΩΛx is equivalent
to Ωx. For i ∈ {0, . . . , l − 1} let pi be the π-path obtained from ΩΛx (Li) by
removing its first and last vertices (both of which are the vertex x). Then we
define NΩx,y(x) to be the π-cycle that is equivalent to the π-cycle p0.p1. . . . .pl−1
and which begins and ends at y. It is readily confirmed that this π-cycle is
independent of our choice of the loop-circuit Λ (provided that ΩΛx is equivalent
to Ωx). If G is orientable, and Ω is a coherent orientation of G, then we write
NΩ,y(x) for NΩx,y(x), where Ωx is the coherent local orientation of G at x that
is given by the restriction of Ω to the loops of G that contain x. The definition
of NΩ,y(x) is illustrated by Figure 1.

(a) (b)

x

y y

• NL(x) ∪ {x}
π

Ωx

Fig. 1. (a) The set of loops which contain a vertex x, and a coherent local orientation
Ωx of G at x. (b) The corresponding π-cycle NΩx,y(x).

5.3 Simply Connected gads are Orientable

In this section we outline a proof of the following result:

Proposition 5.1 Let G be a gads that is a subGADS of a simply connected
gads. Then G is orientable.

Sketch of proof: Let G = ((V, π,L), (κ, λ)) be a subGADS of the simply
connected gads G′ = ((V ′, π′,L′), (κ′, λ′)). Suppose G is not orientable. It is
not hard to show that this implies G has a loop-circuit (L0, . . . , Ll−1) whose
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set of loops is not π-orientable, such that no two L’s are equal and, for all
i, j ∈ {0, . . . , l − 1}, Li is not adjacent to Lj unless j = (i± 1) mod l.

The idea now is to construct a π′-path in
⋃
0≤i≤l−1 Li that cannot be π′-

reducible in G′, and so contradict the simple connectedness of G′. For i ∈
{0, . . . , l − 1}, let ai, bi ∈ V be vertices such that {ai, bi} is the π-edge that is
shared by Li and L(i+1)mod l, and such that, for i ∈ {1, . . . , l − 1}, ai−1 and ai

belong to the same π-component of Li\{bi−1, bi}. (It is possible that ai−1 = ai

or bi−1 = bi.) Then it is straightforward to verify that, since {L0, . . . , Ll−1}
is not π-orientable, al−1 and b0 must belong to the same π-component of
L0\{bl−1, a0}. For i ∈ {1, . . . , l−1}, let ci be the simple π-path in Li\{bi−1, bi}
from ai−1 to ai. Also, let cl be the simple π-path in L0 \ {bl−1, a0} from al−1
to b0. Let γ be the π-path c1.c2. . . . .cl.(b0, a0).

Define the parity of a π′-path (x0, . . . , xn) to be 0 or 1 according to whether
an even or an odd number of terms in its sequence of π′-edges ({xi, xi+1} |
0 ≤ i ≤ n− 1) lie in the set {{ai, bi} | 0 ≤ i ≤ l − 1}. It is readily confirmed
that π′-paths which are the same up to a minimal π′-deformation in G′ have
the same parity. But γ has parity 1 whereas a one-point path has parity 0.
Hence γ is not π′-reducible in G′, a contradiction. ✷

Since every planar pgads is simply connected (Corollary 4.5), a special
case of the above proposition is:

Corollary 5.2 Every planar gads is orientable.

6 The Structure of Loops in a GADS

Let G = ((V, π,L), (κ, λ)) be a gads and let L be an arbitrary loop of G. In
this section we present some properties that κ∩L{2} and λ∩L{2} must have.
These properties will be used in the next section.

Theorem 6.1 Let C be a simple closed (κ ∩ λ)-curve in the loop L. Then C
has one of the following properties:

(i) For all distinct x, y ∈ C, {x, y} ∈ κ.

(ii) For all distinct x, y ∈ C, {x, y} ∈ λ.

One way to prove this is to use the following lemma, whose proof we leave
to the reader. Assertion (ii) of this lemma is illustrated by Figure 2.

Lemma 6.2 Let C be a simple closed (κ ∩ λ)-curve in the loop L. Then:

(i) Assertions (a) and (b) of Axiom 3 hold with C in place of L whenever
x, y ∈ C but x and y are not (κ ∩ λ)-consecutive on C.

(ii) Let ρ = κ or λ and let a, b ∈ C be two vertices which are ρ-adjacent but
not (κ∩λ)-consecutive on C. Let I1 and I2 be the two (κ∩λ)-cut-intervals
of C associated with a and b. Then if x ∈ I1 and y ∈ I2 are ρ-adjacent,
we have {x, a} ∈ ρ, {x, b} ∈ ρ, {y, a} ∈ ρ and {y, b} ∈ ρ.
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a

b

x

y

⇒

a

b

x

y

ρ = κ or λ
κ ∩ λ

Fig. 2. Illustration of Lemma 6.2(ii).

Sketch of proof of Theorem 6.1: Let x be a vertex on C that belongs
to a (λ \ κ)- or (κ \ λ)-edge of C{2}. (If no such x exists then |C| = 3 by
Lemma 6.2(i), and the theorem holds.) We first show that if a and b are
vertices of C then it is impossible for {x, a} ∈ κ \ λ and {x, b} ∈ λ \ κ to both
be true. This can be established by induction on the size of the (κ ∩ λ)-cut-
interval of C associated with a and b that does not contain x, using Lemma 6.2.
(We begin by verifying that {x, a} ∈ κ \ λ and {x, b} ∈ λ \ κ cannot both
be true if a and b are (κ ∩ λ)-consecutive on C; otherwise we could deduce a
contradiction of Lemma 6.2.) Next, we deduce from Lemma 6.2 that, if y is
a (κ ∩ λ)-neighbor of x on C and {x, a} ∈ κ \ λ for some a ∈ C, then either
y is also a vertex of a (κ \ λ)-edge in C{2}, or else there is a vertex a′, in the
(κ ∩ λ)-cut-interval of C associated with x and a that contains y, such that
{x, a′} ∈ κ\λ. It follows from this (by induction on the size of the (κ∩λ)-cut-
interval of C associated with x and a that contains y) that if {x, a} ∈ κ \ λ
for some a ∈ C, then each (κ ∩ λ)-neighbor y of x on C is also a vertex of a
(κ \ λ)-edge in C{2} — whence (by induction) every vertex of C is a vertex
of a (κ \ λ)-edge in C{2}. This would imply that no vertex of C is a vertex
of a (λ \ κ)-edge in C{2}, so that there are no (λ \ κ)-edges in C{2}, whence
(by Lemma 6.2(i)) every pair of vertices of C are κ-adjacent. Symmetrically,
if x is a vertex of a (λ \ κ)-edge in C{2} then all pairs of vertices of C are
λ-adjacent. ✷

Any loop of G can be “subdivided” into simple closed (κ ∩ λ)-curves, and
by Axiom 3 two vertices of the loop cannot be κ- or λ-adjacent unless one
of the simple closed (κ ∩ λ)-curves contains both vertices. (Figure 3 shows a
loop that can be subdivided into three simple closed (κ ∩ λ)-curves.) So the
following lemma is a straightforward consequence of Theorem 6.1:

Lemma 6.3 Let (ρ, ρ̃) = (κ, λ) or (λ, κ), and let C be any simple closed ρ-
curve included in the loop L such that |C| �= 3. Then C is a simple closed
(κ ∩ λ)-curve. Moreover, {x, y} ∈ ρ̃ for all x, y ∈ C.

The reader can verify that Theorem 6.1 and Lemma 6.3 hold in Figure 3.

The final result of this section implies that for any ρ satisfying π ⊆ ρ ⊆
κ ∪ λ, a ρ-parameterization of a simple closed ρ-curve whose vertices are
contained in a loop L must be a subsequence of a π-parameterization of L —
loosely speaking, it must proceed in a single direction around L, and cannot
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• L
ρ
ρ̃
(κ∩λ) = ρ∩ ρ̃

Fig. 3. Illustration of Theorem 6.1 and Lemma 6.3. This is a possible loop in a
gads, if the eight (κ ∩ λ)-edges that belong to just one of the three simple closed
(κ ∩ λ)-curves are proto-edges and the other two (κ ∩ λ)-edges are not.

reverse direction at some vertex.

Lemma 6.4 Let ρ satisfy π ⊆ ρ ⊆ κ ∪ λ. Let C be a simple closed ρ-
curve whose vertices are contained in the loop L. Let x and y be two vertices
of C which are ρ-consecutive in C but not π-consecutive in L. Then either
C \ {x, y} ⊆ I1 or C \ {x, y} ⊆ I2 where I1 and I2 are the two π-cut-intervals
of L associated with the vertices x and y.

Proof: If |C| = 3 the result is immediate. If |C| > 3 then, by Lemma 6.3,
C is a simple closed (κ ∩ λ)-curve and therefore {x, y} ∈ κ ∩ λ, so the result
follows from Axiom 3. ✷

7 The Intersection Number

Let G = ((V, π,L), (κ, λ)) be an orientable gads and let Ω be a coherent
orientation of G. In this section we define an intersection number of a (κ∪λ)-
path p with a closed (κ∪λ)-path c, which we denote by IΩc,p. The intersection
number is defined only if every common vertex of the two paths is a nonsingular
interior vertex of G. Loosely speaking, it is the number of times the path p
crosses from the right of the closed path c to its left, minus the number of
times p crosses c from left to right.

Our intersection number is a generalization to gads of the intersection
number between paths of surfels in digital boundaries that was defined and
used in [1,2], except that we only define the intersection number when one
of the two paths is closed. 8 Our main result about the intersection number
(Theorem 7.7) is that in an orientable gads the intersection number of a λ-
path with a closed κ-path is invariant under λ-homotopic deformations of the
λ-path, assuming that all vertices of the closed κ-path are nonsingular interior
vertices of G. As we shall see in the next section, this fact can be used to prove
our Jordan curve theorem for planar gads (Theorem 4.7 above).

The definition of the intersection number is based on the idea that, for each
three-vertex segment (x0, x1, x2) of a (κ∪λ)-path in which x1 is a nonsingular
interior vertex of G, we can partition the set NL(x1)\{x0, x2} into a “left” side
and a “right” side with respect to the segment (x0, x1, x2), using the π-cycle

8 It is quite easy to extend our definition to two paths that are not closed.
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NΩ,x0(x1) defined in Section 5.2. The details of this are given in the next
definition. Note that since {x0, x1}, {x1, x2} ∈ κ ∪ λ, Axiom 2 implies that
x0, x2 ∈ NL(x1), so that x2 lies on the π-cycle NΩ,x0(x1).

Definition 7.1 Let (x0, x1, x2) be a segment of a (κ ∪ λ)-path, where x1 is
a nonsingular interior vertex of G, and let NΩ,x0(x1) = (v0, . . . , vn), so that
v0 = vn = x0. Let h ∈ {0, . . . , n} be the integer such that vh = x2. Then we
define RΩ(x0, x1, x2) = {vi | 0 < i < h} and LΩ(x0, x1, x2) = {vi | h < i < n}.

Let c = (x0, . . . , xl) be a closed (κ∪λ)-path. If xi is a nonsingular interior
vertex of G, we write Rightc

Ω(i) and Leftc
Ω(i) for RΩ(x(i−1)mod l, xi, x(i+1)mod l)

and LΩ(x(i−1)mod l, xi, x(i+1)mod l), respectively. Now let {y, z} be a (κ ∪ λ)-
edge. If one of y and z is not an interior vertex of G or is a singularity of G,
and that vertex is also a vertex of c, then W c

(y,z) is undefined. Otherwise, we

define W c
(y,z) =

∑l−1
i=0W

c
(y,z)(i), where:

(i) W c
(y,z)(i) = −0.5 if y = xi and z ∈ Rightc

Ω(i), or if z = xi and y ∈ Leftc
Ω(i).

(ii) W c
(y,z)(i) = +0.5 if y = xi and z ∈ Leftc

Ω(i), or if z = xi and y ∈ Rightc
Ω(i).

(iii) W c
(y,z)(i) = 0 otherwise.

Definition 7.2 (intersection number) Let p = (y0, . . . , yh) be a (κ ∪ λ)-
path, and c a closed (κ ∪ λ)-path, such that every common vertex of c and p
is a nonsingular interior vertex of G. Then the intersection number of p with
c, denoted by IΩc,p, is defined to be

∑h−1
i=0 W c

(yi,yi+1)
.

The next two lemmas state fundamental properties of the intersection num-
ber that follow without much difficulty from this definition.

Lemma 7.3 Let c be a closed (κ ∪ λ)-path, and let p′, p1 and p2 be (κ ∪ λ)-
paths such that p′ = p1.p2. Suppose further that every common vertex of c and
p′ is a nonsingular interior vertex of G. Then IΩc,p′ = IΩc,p1

+ IΩc,p2
.

Lemma 7.4 If c1 and c2 are closed (κ ∪ λ)-paths and every common vertex
of c1 and c2 is a nonsingular interior vertex of G, then IΩc1,c2

= −IΩc2,c1
.

The next Lemma can be proved using Lemma 6.4: It is a consequence of
Axiom 3 and the fact that a λ-parameterization of a simple closed λ-curve
that lies in a loop of G must proceed in a single direction around that loop.

Lemma 7.5 Let C be a simple closed λ-curve whose vertices all lie in a single
loop of G. Let c = (x0, . . . , xl) be a λ-parameterization of C. Then C has one
of the following two properties:

(i) For each i such that xi is a nonsingular interior vertex of G,
(a) Nκ(xi) \ C ⊆ Rightc

Ω(i), and
(b) Nκ(xi) ∩ C \ {x(i−1)mod l, x(i+1)mod l} ⊆ Leftc

Ω(i).

(ii) For each i such that xi is a nonsingular interior vertex of G,
(a) Nκ(xi) \ C ⊆ Leftc

Ω(i), and
(b) Nκ(xi) ∩ C \ {x(i−1)mod l, x(i+1)mod l} ⊆ Rightc

Ω(i).
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This lemma can be used to prove the following important result:

Proposition 7.6 Let c be a λ-parameterization of a simple closed λ-curve
whose vertices all lie in a single loop of G, and let c′ be a closed κ-path such
that every common vertex of c and c′ is a nonsingular interior vertex of G.
Then IΩc,c′ = 0.

Sketch of proof: Let c = (x0, . . . , xl), let C be the simple closed λ-curve
parameterized by c, and let c′ = (y0, . . . , yh). (Thus xl = x0 and yh = y0.) For
all j such that yj and yj+1 both lie on C, W c

(yj ,yj+1)
= 0. (Indeed, W c

(yj ,yj+1)
(i) =

0 except possibly at the two values of i in 0, . . . , l−1 for which xi ∈ {yj, yj+1}.
W c
(yj ,yj+1)

(i) = 0 for both of those values of i if yj and yj+1 are λ-consecutive

on C, and by Lemma 7.5 W c
(yj ,yj+1)

(i) is +0.5 for one value of i and −0.5 for

the other if yj and yj+1 are not λ-consecutive on C.) Lemma 7.5 also implies
that W c

(yj ,yj+1)
has one nonzero value (±0.5) for all j such that yj ∈ C and

yj+1 /∈ C, and has the opposite nonzero value for all j such that yj /∈ C and
yj+1 ∈ C. Since c′ is a closed λ-curve, there are exactly as many values of j in
0, . . . , h− 1 for which yj ∈ C and yj+1 /∈ C as there are values of j for which

yj /∈ C and yj+1 ∈ C. Hence IΩc,c′ =
∑h−1

j=0 W
c
(yj ,yj+1)

= 0. ✷

Using this proposition and Proposition 3.4, we now prove:

Theorem 7.7 Let G = ((V, π,L), (κ, λ)) be an orientable gads, and let Ω be
a coherent orientation of G. Let c be a closed κ-path all of whose vertices are
nonsingular interior vertices of G, and let p and q be two λ-paths which are
λ-homotopic in G. Then IΩc,p = IΩc,q.

Corollary 7.8 Under the hypotheses of Theorem 7.7, IΩc,c′ = 0 for any closed
λ-path c′ that is λ-reducible in G.

Proof of Theorem 7.7: By Proposition 3.4, it is sufficient to prove Theo-
rem 7.7 when p and q are the same up to a minimal λ-deformation in G. There
are two cases. First suppose p = p1.(x, y, x).p2 and q = p1.p2, where {x, y} ∈ λ.
Then (by Lemma 7.3) IΩc,p = IΩc,p1

+ IΩc,(x,y) + IΩc,(y,x) + IΩc,p2
. But it is immediate

from Definition 7.2 that IΩc,(x,y)+IΩc,(y,x) = 0, so IΩc,p = IΩc,p1
+IΩc,p2

= IΩc,p1.p2
= IΩc,q.

Next, suppose p = p1.γ.p2 and q = p1.p2, where γ is a simple closed λ-
curve included in a loop of G. Now IΩc,p1.γ.p2

= IΩc,p1
+ IΩc,γ + IΩp2

. But Propo-
sition 7.6 implies that IΩγ,c = 0 and so, by Lemma 7.4, IΩc,γ = 0. Hence
IΩc,p = IΩc,p1.γ.p2

= IΩc,p1
+ IΩc,p2

= IΩc,p1.p2
= IΩc,q. ✷

Note that, by Property 2.4, this theorem, Lemma 7.5 and Proposition 7.6
all remain true when κ is replaced by λ and λ by κ.

8 A Proof of the Jordan Curve Theorem

As an application of the intersection number, we now outline a proof of the
Jordan curve theorem for planar gads (Theorem 4.7 above). Since a planar
pgads is orientable (Corollary 5.2), has no singularities (Proposition 4.6), and
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is simply connected (Corollary 4.5), this theorem follows from the following
more general result:

Theorem 8.1 Let G = ((V, π,L), (κ, λ)) be a gads that is a subGADS of an
orientable pgads G′ = ((V ′, π′,L′), (κ′, λ′)) which has no singularities. Let c
be a κ-parameterization of a simple closed κ-curve C of G such that

(i) C is not included in any loop of G.

(ii) Every vertex in C is an interior vertex of G.

(iii) c is κ′-reducible in G′.

Then V \C has exactly two λ-components, and, for each vertex x ∈ C, Nλ(x)
intersects both λ-components of V \ C.

It is perhaps worth mentioning that in this theorem the hypothesis that G′

is orientable is not really necessary, but is included because we wish to give a
proof of the theorem that uses the intersection number (which is only defined
in orientable gads).

Regarding condition (ii), note that an interior vertex v of G cannot be a
vertex of a (π′ \ π)-edge, and cannot be a singularity of G, for in both cases
v would be a singularity of G′, contrary to the hypothesis that G′ has no
singularities.

A first step in proving Theorem 8.1 is to prove:

Lemma 8.2 Under the hypotheses of Theorem 8.1, let Ω be a coherent ori-
entation of G′, and let c = (x0, . . . , xl), so that xl = x0. Then, for all
i ∈ {0, . . . , l}, each of the sets Leftc

Ω(i) \ C and Rightc
Ω(i) \ C is nonempty

and λ-connected, and contains at least one vertex in Nλ(x).

Note that Leftc
Ω(i) and Rightc

Ω(i) are sets of vertices of G, since the vertices
of c are interior vertices of G. This lemma can be proved using Theorem 6.1.
(Subdivide the loops of G into simple closed (κ ∩ λ)-curves.) We omit the
details here. Using this lemma, it is not hard to prove the following result:

Proposition 8.3 Under the hypotheses of Theorem 8.1, V \ C has at least
two λ-components.

Proof: Suppose V \C is λ-connected. Since V ′ is π′-connected (by condition
(i) in the definition of a 2D digital complex), for each vertex of V ′\C there is a
shortest π′-path from that vertex to a vertex in C, and the second-last vertex
on such a path must be in V \C because all vertices of C are interior vertices
of G. So the fact that V \ C is λ-connected implies V ′ \ C is λ′-connected.

Let Ω be a coherent orientation of G′, let c = (x0, . . . , xl) (so that xl = x0),
and pick i ∈ {0, . . . , l}. By Lemma 8.2 there exist vertices y ∈ Leftc

Ω(i) ∩
Nλ(xi) \C and z ∈ Rightc

Ω(i)∩Nλ(xi) \C. As V ′ \C is λ′-connected, there is
a λ′-path α in V ′ \C from y to z. The closed λ′-path α′ = α.(z, xi, y) satisfies
IΩc,α′ = 1. But c is κ′-reducible in G′, so IΩα′,c = 0 by Theorem 7.7 (with κ

replaced by λ′ and λ by κ′) and, by Lemma 7.4, IΩc,α′ = 0, a contradiction. ✷
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The next proposition will be used to prove that the set V \C in Theorem 8.1
cannot have more than two λ-components. For any set ρ of unordered pairs
of vertices of a gads, we say that a set A of vertices of the gads is a ρ-arc
if A is a singleton set, or if A is a finite ρ-connected set with the following
property: There are two (and only two) elements of A that each have just one
ρ-neighbor in A, and all other elements of A have exactly two ρ-neighbors in
A. Note that if C is any simple closed ρ-curve and p ∈ C then C − {p} is a
ρ-arc. Each element of a ρ-arc A that does not have two ρ-neighbors in A is
called an extremity of A.

Proposition 8.4 Let G = ((V, π,L), (κ, λ)) be a gads. Let A be a κ-arc
such that every vertex in A is an interior vertex of G and no vertex in A is a
singularity of G. Then V \ A is λ-connected.

Sketch of proof: Our first step is to prove that NL(x) \A is nonempty and
λ-connected if x is an extremity of A. This assertion, like Lemma 8.2, can be
proved using Theorem 6.1. Again, we omit the details.

Having established this assertion, we prove the proposition by induction
on |A|. When |A| = 1, the result follows from the assertion, since V is π-
connected. Assume the result holds when |A| = k, and suppose |A| = k + 1.
Let x be an extremity of A, and let A′ = A\{x}. Let v be any vertex in V \A.
By the induction hypothesis v is λ-connected in V \A′ to x, and hence to some
vertex of Nλ(x) \ A′. A shortest λ-path in V \ A′ from v to Nλ(x) \ A′ does
not pass through x. Hence v is λ-connected even in V \ A to some vertex of
Nλ(x) \A′ ⊆ NL(x) \A. Since v is an arbitrary vertex in V \A and NL(x) \A
is λ-connected (by the above assertion), V \ A is λ-connected. ✷

Proof of Theorem 8.1: From Proposition 8.3 we know that V \ C has at
least two λ-components. Now let x be a vertex of C, and let A be the κ-arc
C \ {x}. Let v be any vertex in V \ C. By Proposition 8.4, v is λ-connected
in V \ A to x, and hence to some vertex in Nλ(x) \ A. A shortest λ-path in
V \A from v to Nλ(x) \A does not pass through x, so v is λ-connected even
in V \ C to some vertex in Nλ(x) \ A. Since this applies to any vertex v in
V \ C, every λ-component of V \ C intersects Nλ(x) \ A.

Moreover, since Nλ(x) \A ⊆ NL(x) \C, we can deduce that V \C has no
more λ-components than NL(x) \ C. But if c = (x0, . . . , xl), so that xl = x0,
and i is the integer in {0, . . . , l − 1} such that x = xi, then NL(x) \ C =
(Leftc

Ω(i) ∪ Rightc
Ω(i)) \ C does not have more than two λ-components, by

Lemma 8.2. Hence V \ C cannot have more than two λ-components. ✷

9 Concluding Remarks

A new approach to 2D digital topology (including the digital topology of
boundary surfaces), based on an axiomatization of the spaces being studied,
has been presented. A space that satisfies our axioms is called a gads. In-
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stances of this very general concept include gads corresponding to all of the
good pairs of adjacency relations that have previously been used (by ourselves
or others) in digital topology on planar grids and boundary surfaces.

Some results that have been established in the literature for certain specific
digital spaces have been generalized to gads (e.g., a homotopy invariance
theorem for intersection numbers of digital paths, and a digital Jordan curve
theorem). There are many other results of digital topology for which this
could be done, such as results about simple points and boundary tracking.
The problem of developing a 3D version of this theory seems more challenging.
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