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Giant clams (Hippopus and Tridacna species) are thought to play various ecological roles in coral reef
ecosystems, but most of these have not previously been quantified. Using data from the literature and
our own studies we elucidate the ecological functions of giant clams. We show how their tissues are food
for a wide array of predators and scavengers, while their discharges of live zooxanthellae, faeces, and
gametes are eaten by opportunistic feeders. The shells of giant clams provide substrate for colonization
by epibionts, while commensal and ectoparasitic organisms live within their mantle cavities. Giant clams
increase the topographic heterogeneity of the reef, act as reservoirs of zooxanthellae (Symbiodinium spp.),
and also potentially counteract eutrophication via water filtering. Finally, dense populations of giant
clams produce large quantities of calcium carbonate shell material that are eventually incorporated into
the reef framework. Unfortunately, giant clams are under great pressure from overfishing and extirpa-
tions are likely to be detrimental to coral reefs. A greater understanding of the numerous contributions
giant clams provide will reinforce the case for their conservation.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

As recently summarized by Bridge et al. (2013, p.528) coral
reefs globally are ‘‘suffering death by a thousand cuts’’. Some of
these, including global warming and ocean acidification, are
notorious and possibly fatal. Others, such as the loss of particular
species or genera, are generally less pernicious and do not garner
the same attention. Of course, all reef organisms have a role to play
but giant clams (Cardiidae: Tridacninae), by virtue of their sheer
size (Yonge, 1975), well developed symbiosis with zooxanthellae
(Yonge, 1980), and highly threatened status throughout much of
their geographic range (Lucas, 1994), perhaps deserve special con-
sideration. Based on fossil tridacnine taxa, these iconic inverte-
brates have been associated with corals since the late Eocene
(Harzhauser et al., 2008) and facies of more recent Tridacna species
are common in the upper strata of fossilized reefs (Accordi et al.,
2010; Ono and Clark, 2012). Modern giant clams are only found
in the Indo-West Pacific (Harzhauser et al., 2008) in the area
bounded by southern Africa, the Red Sea, Japan, Polynesia (exclud-
ing New Zealand and Hawaii), and Australia (bin Othman et al.,
2010). There are currently 13 extant species of giant clams (see
Table 1), including two recently rediscovered: Tridacna noae (Su
et al., 2014; Borsa et al., 2014) and Tridacna squamosina (previously
known as T. costata) (Richter et al., 2008), one new species:
Tridacna ningaloo (Penny and Willan, 2014), and an undescribed
cryptic Tridacna sp. (Huelsken et al., 2013). Tridacna maxima is
the most widespread, while Hippopus porcellanus, Tridacna mba-
lavuana (previously known as T. tevoroa), T. ningaloo, T. noae, Trid-
acna rosewateri, and T. squamosina have much more restricted
distributions (Rosewater, 1965; bin Othman et al., 2010; Penny
and Willan, 2014; Su et al., 2014). Tridacna gigas is by far the largest
species, reaching shell lengths of over 120 cm and weights in
excess of 200 kg (Rosewater, 1965). Since pre-history, giant clams’
high biomass and heavy calcified shells have made them useful to
humans as a source of food and material (Miller, 1979; Hviding,
1993). However, as a result of habitat degradation, technological
advances in exploitation, expanding trade networks, and demand
by aquarists, giant clam numbers are declining throughout their
range (Mingoa-Licuanan and Gomez, 2002; Kinch and
Teitelbaum, 2010; bin Othman et al., 2010).

Giant clams are especially vulnerable to stock depletion
because of their late sexual maturity, sessile adult phase, and
broadcast spawning strategy (Munro, 1989; Lucas, 1994). Fertiliza-
tion success requires sufficient numbers of spawning individuals,
and low densities result in reduced (or zero) recruitment and even-
tual population collapse (Braley, 1984, 1987; Neo et al., 2013).
Presently, all giant clam species, other than the new species, T.
ningaloo, the recently rediscovered T. noae and T. squamosina, and
the cryptic Tridacna sp., are protected under Appendix II of the
Convention on International Trade in Endangered Species of Wild
Fauna and Flora (CITES) and listed in the IUCN Red List of Threa-
tened Species (Table 1). Conservation efforts are ongoing
(Heslinga, 2013) including essential basic research (e.g. restocking
of clams in heavily impacted coral reefs, Guest et al., 2008; effects
of shade on survival and growth of juvenile clams, Adams et al.,
2013; early chemotaxis contributing to active habitat selection,
Dumas et al., 2014) and the development of new restocking
techniques (Waters et al., 2013). There are also several giant clam
sanctuaries under legal protection, for example, in Australia (Rees
et al., 2003) and French Polynesia (Andréfouët et al., 2005, 2013);
however, stocks are declining rapidly in many countries (bin
Othman et al., 2010; Andréfouët et al., 2013) and extirpations are
occurring (Kinch and Teitelbaum, 2010; Neo and Todd, 2012,
2013).

There exists a substantial body of work on the biology and
mariculture of giant clams, but their significance in the coral reef
ecosystem is not well understood. Some previous researchers have
provided anecdotal insights into their likely roles, i.e. as food, as
shelter, and as reef-builders and shapers. For example, Mercier
and Hamel (1996, p.113) remarked: ‘‘Tridacna face many dangers.
They are most vulnerable early in their life cycle, when they are prey
to crabs, lobsters, wrasses, pufferfish, and eagle rays.’’ In a popular
science article, Mingoa-Licuanan and Gomez (2002, p.24) com-
mented: ‘‘clam populations add topographic detail to the seabed
and serve as nurseries to various organisms. . . Their calcified shells
are excellent substrata for sedentary organisms.’’ Finally, Hutchings
(1986, p.245) stated: ‘‘giant clams are recognisable in early Holocene
reefs and if similar densities occurred to those on recent reefs, giant
clams have had a considerable ongoing impact on reef morphology.’’
Even though there is evidence that giant clams contribute to the
functioning of coral reefs, this has very rarely been quantified.
Cabaitan et al. (2008) represents the only study to experimentally
demonstrate the benefits that giant clams can have on coral reefs.
They showed that, compared to control plots, the presence of clams
had significantly positive effects on the richness and abundance of
fish species and various invertebrates. Here, based on existing lit-
erature and our own observations, we examine giant clams as con-
tributors to reef productivity, as providers of biomass to predators
and scavengers, and as nurseries and hosts for other organisms. We
also examine their reef-scale roles as calcium carbonate producers,
zooxanthellae reservoirs, and counteractors of eutrophication. Our
findings lead to the conclusion that healthy populations of giant
clams benefit coral reefs in ways previously underappreciated,
and that this knowledge should help prioritize their conservation.

2. Methods

2.1. Literature survey

In this review, we first drew upon our own archives of publica-
tions, proceedings, dissertations, books, manuals, technical reports,
popular science magazines, and grey literature that have been col-
lected during more than 10 years of giant clam research. These
archives (n = 481 publications) were supplemented with key-word
searches in five major literature databases, i.e. Google Scholar,
JSTOR, PubMed, ScienceDirect, and Web-of-Science. We also used
‘‘snowball’’ sampling (see Lescureux and Linnell, 2014), that is,
we manually searched through the reference lists of the most rel-
evant giant clam papers to identify (and subsequently retrieve)
some of the more obscure literature.

2.2. Population estimates of ecologically relevant parameters

For all the estimates described below, we first identified surveys
of natural giant clams that included both population density and
size distribution (i.e. Pearson and Munro, 1991; Chantrapornsyl
et al., 1996; Black et al., 2011; Gilbert et al., 2006; Todd et al.,
2009). All densities were converted to per hectare values prior to
the calculations. The reported size distributions did not provide
individual measurements for each clam; rather they stated the



Table 1
Giant clam species list (Rosewater, 1965; Richter et al., 2008; bin Othman et al., 2010; Borsa et al., 2014; Huelsken et al., 2013; Penny and Willan, 2014; Su et al., 2014) and their conservation status categories listed by the International
Union for Conservation of Nature (IUCN) Red List of Threatened Species (Molluscs Specialist Group, 1996; Wells, 1996).

Species name Description Global conservation status

Hippopus hippopus (Linnaeus, 1758) Species has strong radial ribbing and reddish blotches in irregular bands on shells, growing to about 40 cm. Unlike
Tridacna species, Hippopus mantle does not extend over shell margins and has a narrow byssal orifice

Lower risk/conservation dependent

Hippopus porcellanus Rosewater, 1982 Species is distinguished from H. hippopus by its smoother and thinner shells, and presence of fringing tentacles at
incurrent siphon, growing to approximately 40 cm

Lower risk/conservation dependent

Tridacna crocea Lamarck, 1819 Smallest of all clam species, reaching lengths of about 15 cm. Burrows and completely embeds into reef substrates Lower risk/least concern
Tridacna derasa (Röding, 1798) Second largest species, growing up to 60 cm. Has heavy and plain shells, with no strong ribbing Vulnerable A2cd
Tridacna gigas (Linnaeus, 1758) Largest of all clam species, growing to over 1 m long. Easily identified by their size and elongate, triangular projections

of upper shell margins
Vulnerable A2cd

Tridacna maxima (Röding, 1798) Species is identified by its close-set scutes. Grows up to 35 cm. Tends to bore partially into reef substrates Lower Risk/conservation dependent
Tridacna mbalavuana Ladd, 1934

(formerly T. tevoroa Lucas, Ledua,
Braley, 1990)

Species is most like T. derasa in appearance, but distinguished by its rugose mantle, prominent guard tentacles present
on the incurrent siphon, thinner valves, and coloured patches on shell ribbing. Can grow over 50 cm long. Restricted to
Fiji and Tonga

Vulnerable B1 + 2c

Tridacna rosewateri Sirenko and
Scarlato, 1991

Species is most like T. squamosa in appearance, but distinguished by its thinner shell, large byssal orifice and dense
scutes on primary radial folds. Only found in Mauritius, with largest specimen measured at 19.1 cm

Vulnerable A2cd

Tridacna squamosa Lamarck, 1819 Species is identified by its large, well-spaced scutes, with shell lengths up to 40 cm Lower risk/conservation dependent
Tridacna ningaloo Penny and Willan,

2014 n. sp.
Species is most like T. maxima in appearance; weakly differentiated morphologically but strongly defined genetically.
Holotype specimen measures 17.9 cm. Current known distribution in Western Australia, but possibly extends to
Solomon Islands

Not assessed

Tridacna noae (Röding, 1798) Species is most like T. maxima in appearance, but distinguished by its sparsely distributed hyaline organs and oval
patches with different colors bounded by white margins along mantle edge. Shell lengths between 6 and 20 cm.
Overlapping distributions with T. maxima but generally in lower abundances

Not assessed

Tridacna squamosina Sturany, 1899
(formerly T. costata Roa-Quiaoit,
Kochzius, Jantzen, Zibdah, Richter,
2008)

Species is most like T. squamosa in appearance, but distinguished by its crowded, well-spaced scutes, asymmetrical
shell, and grows up to 32 cm. Only found in the Red Sea

Not assessed

Cryptic Tridacna sp. (undescribed in
Huelsken et al., 2013)

Recently determined as a widely distributed cryptic species; forms an evolutionarily distinct monophyletic group Not assessed
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number of clams in a series of size brackets or ‘bins’. For the
purpose of our analysis, we assumed the size of each clam in a
bin was equal to (minimum bin size + maximum bin size)/2. For
the following equations, mass and weight are in grams, and shell
length is abbreviated to SL.

Standing tissue biomass calculations: for each size T. maxima,
wet biomass was first determined using the formulae biomass =
10^[(3.0434 � LOG(SLcm))�1.6026] (Gilbert et al., 2006) for clams
at Tatakoto atoll and biomass = 10^[(2.9367 � LOG(SLcm))�1.5318]
for clams at Fangatau atoll and Ningaloo reefs (Gilbert et al., 2006)
and then assumed that 5.8% of wet biomass would convert to dry
biomass (Ricciardi and Bourget, 1998). For each size T. crocea, dry
biomass was determined using the formula biomass =
(3.23 � 10�6) � (SLmm

3.24) (Klumpp and Griffiths, 1994), while for T.
gigas, the formula biomass = (0.34 � 10�6) � (SLmm

3.36) was used
(Klumpp and Griffiths, 1994). The biomass for each size class of
clams was then multiplied by the number of clams of that size,
and the multiplied values were totalled.

Standing shell weight calculations: for each size T. maxima, total
clam weight was determined using the formulae weight =
10^[(3.1335 � LOG(SLcm)) � 0.9173] for clams at Tatakoto atoll
(Gilbert et al., 2006) and weight = 10^[(3.1634 � LOG(SLcm)] �
0.9495) for clams at Fangatau atoll and Ningaloo reefs (Gilbert
et al., 2006) and then subtracting wet tissue weight (calculated
above) to give the weight of the shell alone. For each size T. crocea,
shell weight was determined using the formula weight =
(2.05 � 10�5) � (SLmm

3.51) (Klumpp and Griffiths, 1994), while for
T. gigas, the formula weight = (4.76 � 10�5) � (SLmm

3.11) was used
(Klumpp and Griffiths, 1994). The shell weight for each size class
of clams was then multiplied by the number of clams of that size,
and the multiplied values were totalled.

Annual biomass and shell production calculations: to determine
annual biomass and shell production, von Bertalanffy equations
(available for T. gigas and T. maxima, but not T. crocea) were used
to estimate the age of each size clam from four locations
(Pearson and Munro, 1991; Black et al., 2011; Gilbert et al.,
2006). For T. gigas, growth parameter estimates: asymptotic length
(L1) of 80, growth (K) of 0.105, and its theoretical date of ‘birth’ (t0)
Fig. 1. Maximum net primary productivity (NPP) of different reef flora and fauna, measur
from the highest to lowest producers. Standard deviation provided when available. Info
(1984), Chisholm (2003), Jantzen et al. (2008), Naumann et al. (2013).
of 0.145 were used (Pearson and Munro, 1991). For T. maxima, L1
of 27.8, K of 0.068, and t0 of 0 were used (Black et al., 2011). Once
the ages of the clams were estimated, one year was added, and the
von Bertalanffy equation was used to predict a new shell length.
The previous calculations were then used to predict biomass and
shell weight of the clams at these increased sizes, and annual bio-
mass and shell production were assumed to be the differences
between the estimated values on the survey date and the predicted
values one year in the future.

Clearance rate (CR) calculations: for T. gigas, clearance rate for a
single clam (l h�1) was calculated using the formula CR = 3.68 �
(dry weight0.397), while for T. crocea the formula used was
CR = 0.585 � (dry weight0.905) (Klumpp and Griffiths, 1994). No
formula was available for T. maxima. The clearance rate for each
size class of clams was then multiplied by the number of clams
of that size, and the multiplied values were totalled.
3. Giant clams as food

3.1. Productivity and biomass

Giant clams are mixotrophic (Jantzen et al., 2008), being capa-
ble of generating biomass through both primary and secondary
production. Primary production is controlled by the photosynthetic
efficiency of their symbiotic photoautotrophic zooxanthellae
(Jantzen et al., 2008; Yau and Fan, 2012). Secondary production,
on the other hand, is strongly influenced by the uptake rate of
ambient dissolved inorganic carbon (DIC) via filter feeding (Jones
et al., 1986; Watanabe et al., 2004). The acquisition of DIC is related
to clearance rates (i.e. the volume of water each clam pumps per
unit time), and therefore clam body size (Klumpp et al., 1992). To
facilitate between-taxa comparisons, the net primary productivity
(NPP) from an array of reef organisms, including giant clams, is
presented in Fig. 1. We acknowledge that different productivity
measures were used across studies; however, our aim is to provide
estimate figures for relative rates among reef organisms. The NPP
of the giant clams, T. maxima (28.16 g O2 m�2 d�1) and T. squamosa
ed in terms of net oxygen production (units = g O2 m�2 d�1). NPP values are arranged
rmation extracted from: Wanders (1976), Rogers and Salesky (1981), Porter et al.



Table 2
Estimates of ecologically relevant parameters of giant clam populations found per hectare of reef area (based on data extracted from the references cited in the table). DD = data
deficient.

Location Population
density
(individuals)

Standing
biomass
(kg dry
weight)

Annual biomass
production
(kg dry weight)

Shell
weight (kg)

Annual shell
production (kg)

Water
filtration (Lh�1)

Source of
population data

Tridacna crocea
Lee-Pae Island, Andaman Sea, Thailand 2,441 17 DD 391 DD 8,144 Chantrapornsyl et al. (1996)
Tioman Island, Malaysia 955 4 DD 98 DD 2,115 Todd et al. (2009)

Tridacna maxima
Fangatau atoll, French Polynesia 381,919 878 217 89,023 23,372 DD Gilbert et al. (2006)
Tatakoto atoll, French Polynesia 909,466 1,041 238 102,833 37,040 DD Gilbert et al. (2006)
Ningaloo Marine Park, Western Australia 8,600 36 7 3,898 562 DD Black et al. (2011)

Tridacna gigas
Great Barrier Reef, Australia 432 718 14 18,839 356 28,121 Pearson and Munro (1991)
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(18.14 g O2 m�2 d�1) is greater than most of the other coral reef
primary producers. From the examples in Fig. 1, the NPP of T. max-
ima and T. squamosa are respectively �74.1 � and �47.7 � higher
than the lowest NPP presented—that of the hard coral (Manicina
sp.) (0.38 g O2 m�2 d�1)—and approximately double that of the
relatively fast growing branching coral Acropora palmata. The
contribution of giant clams to overall reef productivity is hence
potentially very substantial, especially when populations are dense
(Rees et al., 2003; Andréfouët et al., 2005; Gilbert et al., 2006).

It is known that cultured stocks can produce substantial bio-
mass, e.g. 29 t ha�1 yr�1 of wet tissue biomass for T. gigas (Barker
et al., 1988) (estimated 1,682 kg dry weight ha�1 yr�1) and
16 t ha�1 yr�1 of wet tissue biomass for T. derasa (Heslinga et al.,
1984) (estimated 928 kg dry weight ha�1 yr�1). Here, we provide
estimates of tissue biomass for natural populations of three giant
clam species (Table 2). We also estimated annual biomass produc-
tion which, if the giant clam populations were in equilibrium,
would equal the amount of food provided to predators and scav-
engers per year. Giant clams will contribute more to productivity
on reefs where there is recruitment of juvenile clams, as these
are faster-growing. In French Polynesia, the Tatakoto atoll popula-
tion of T. maxima, a medium-sized species, has a high standing crop
(1,041 kg dry weight ha�1) and high productivity, being capable of
producing 238 kg dry weight ha�1 yr�1 of biomass. This population
is maintained by especially rapid recruitment, probably due to
thermal variations caused by the geography of the atoll (Gilbert
et al., 2006). The example T. gigas population from the Great Barrier
Reef (Table 2) has a standing crop of 718 kg dry weight ha�1, but is
essentially a relict population, consisting primarily of large adult
clams. The lack of younger, faster-growing T. gigas clams explains
why the annual production of new biomass is so low (14 kg dry
weight ha�1 yr�1). Tridacna crocea appears to contribute minimally
on a per hectare basis (due to its smaller size and low population
density) in the examples provided in Table 2, but in patches of
favourable habitat, T. crocea can have densities exceeding
100 clams m�2 (Hamner and Jones, 1976) and hence may be
important at very local scales. While we have only presented data
for single species, it is possible for up to six to co-exist on the same
reef (e.g. Hardy and Hardy, 1969; Rees et al., 2003), occupying dif-
ferent niches based on depth and substrate type.
3.2. Food for predators and scavengers

Predation on juvenile giant clams has been studied extensively
(e.g. Alcazar, 1986; Perio and Belda, 1989; Govan et al., 1993),
particularly during the ocean nursery phase of mariculture
(Govan, 1992a). Heslinga and Fitt (1987) noted that adult tridac-
nines appeared to be, more-or-less, immune to predation, but there
have been reported attacks on mature adults (Alcazar, 1986). It is
apparent that giant clams are widely utilized food sources on coral
reefs, with 75 known predators (Table 3). Fishes—wrasse, trigger-
fish, and pufferfish—prey on both juvenile and adult giant clams
(Alcazar, 1986; Richardson, 1991; Govan, 1992b), and bite marks
on the mantle edges of wild clams are common (Fig. 2). In maricul-
ture, ectoparasitic pyramidellids and ranellids are often abundant
and their attacks can devastate juvenile cohorts (Perron et al.,
1985; Boglio and Lucas, 1997), but they have less impact on clams
on reefs, where natural predators of these ectoparasites are present
(Cumming and Alford, 1994; Govan, 1995).

The wide array of morphological and behavioural defences
exhibited by giant clams (Soo and Todd, 2014) is also indicative
of their importance as a food source. Giant clams and their
predators are likely to have been in an evolutionary arms race
for millions of years. To resist attack, tridacnines have evolved
large body sizes (Carter, 1968), reduced byssal orifices, and heavy
strong shells (Perron et al., 1985; Alcazar, 1986; Govan et al.,
1993). Neo and Todd (2011a) found that shell strength is a pheno-
typically plastic trait in juvenile T. squamosa, with specimens
exposed to predator effluents being harder to crush. The shell
projections (called scutes) in some Tridacna species probably offer
protection from crushing predators such as crabs and jawed fishes
(Ling et al., 2008). Other defence mechanisms include aggregation
of conspecifics (Huang et al., 2007), camouflage (Todd et al., 2009),
rapid mantle withdrawal (McMichael, 1974), and squirting of
water from siphons (Neo and Todd, 2011b).

The scavenging guild is critical to nutrient recycling on coral
reefs (Keable, 1995; Rassweiler and Rassweiler, 2011) and dead
or dying giant clams will attract a variety of small invertebrate
scavengers including isopods, ostracods, amphipods, leptostracans,
mysids, polychaetes, and small decapods and snails (Keable, 1995).
Many of these have not been reported to prey on healthy clams; for
example, the muricid gastropod (Drupella rugosa) only acts as a
scavenger on giant clam juveniles (Perron et al., 1985).
3.3. Expelled materials

Opportunistic feeders may consume the materials (gametes,
faeces, and pseudofaeces) expelled by giant clams (Ricard and
Salvat, 1977; Lucas, 1994). For example, at the Silaqui ocean nurs-
ery, Bolinao, Philippines, a large school of blue sprat (Spratelloides
delicatulus) fed for at least three hours on the gametes released
by T. gigas (Maboloc and Mingoa-Licuanan, 2011). Routine releases
of undigested, photosynthetically functional zooxanthellae in the
faeces (Ricard and Salvat, 1977; Trench et al., 1981) can be impor-
tant sources of organic matter in closed or semi-closed systems,
such as the atoll lagoons in French Polynesia (Ricard and Salvat,
1977; Richard, 1977). Finally, giant clams faeces contain substan-
tial amounts of nutritious mucus and protein (Ricard and Salvat,



Table 3
Predators of giant clams, including those listed by Govan (1992a,b), plus new observations and additional findings from grey literature.

Predator species Method of predation Literature source(s)

PORIFERA: Family Clionaidae (Boring sponges)
Unknown Bore into shells, weakening shells Govan (1992b)

FLATWORM: Family Turbellaria
Stylochus (Imogene) matatasi Enter the clam through either the byssal orifice or inhalant siphon Newman et al. (1991,1993)
Stylochus (Imogene) sp. Govan (1992a,b)
Polyclad sp. 1 Govan (1992a)

MOLLUSCS: Family Buccinidae (Whelks)
Cantharus fumosus – Perio and Belda (1989)

Family Costellariidae (Mitres)
Vexillum cruentatum – Govan (1992b)
V. plicarium – Richardson (1991)

Family Fasciolariidae (Tulip snails)
Pleuroploca trapezium Immobilize clam by clasping mantle with foot preventing valve

closure, insert proboscis into soft tissues
Govan (1992b)

Pleuroploca sp. Alcazar (1986)

Family Muricidae (Murexes)
Chicoreus brunneus Drill holes into shells of juvenile clams Abdon-Naguit and Alcazar (1989), Govan (1992a,b)
C. microphyllum Drill holes into shells Govan (1992a,b)
C. palmarosae Often drill through valves; may attack via valve gape or byssal orifice Govan et al. (1993)
C. ramosus Insert proboscis into byssal gape to reach soft tissues, inject paralytic

substance
Heslinga et al. (1984), Alcazar (1986), Govan (1992b)

Cronia fiscella Drill holes into shells of juvenile clams Govan (1992b)
C. margariticola Through valve gape Govan (1992a,b)
C. ochrostoma Drill holes into shells Govan (1992b)
Morula granulata Drill holes into shells Govan (1992a,b)
Muricodrupa fiscella Drill holes into shells Govan (1992a)
Thais aculeata Attack through valve gape Govan (1992a,b)

Family Octopodidae (Octopus)
Octopus sp. Chip shells; pry valves apart to feed Heslinga et al. (1984), Barker et al. (1988), Govan

(1992b), Mercier and Hamel (1996)

Family Pyramidellidae
Turbonilla sp. Use their long, flexible proboscis to suck clams’ body fluids, either

from mantle edge or through byssal orifice
Govan (1992a,b)

Tathrella iredalei Heslinga et al. (1990), Govan (1992b)

Family Ranellidae (Tritons)
Bursa granularis Insert proboscis between valves of prey Govan et al. (1993)
Cymatium aquatile Injection of an immobilizing fluid through mantle or byssal orifice,

then feed on soft tissues
Abdon-Naguit and Alcazar (1989), Govan
(1992a,b,1995)

C. muricinum Perron et al. (1985), Govan (1992a,b,1995)
C. nicobaricum Govan (1992a,b,1995)
C. pileare Govan (1992a,b,1995)
C. vespaceum Perio and Belda (1989), Govan (1992b)

Family Volutidae (Volutes)
Melo amphora – Loch (1991)
Melo sp. – Govan (1992b)

ECHINODERM
Seastar Exert powerful suction and tire adductor muscles (pry open clam) Weingarten (1991)

CRUSTACEANS: Family Diogenidae (Hermit crabs)
Dardanus deformis Crushed 26 juvenile T. gigas in 3 days Heslinga et al. (1984)
D. lagopodes Chip valve ends Govan (1992a)
D. pedunculatus Crush or chip valves of prey Govan (1992a), Govan et al. (1993)

Family Gonodactylidae (Mantis shrimps)
Gonodactylus chiragra Smash shells Govan (1992a)
Gonodactylus sp. – Govan (1992b)

Family Portunidae (Swimming crabs)
Thalamita admete Chip shells; attack via byssal orifice Govan (1992a)
T. coerulipes Govan (1992a)
T. crenata Crush shells; may pry clam open via ventral margin Ling (2007)
T. danae Crush or chip valves; attack via byssal orifice of clams Govan et al. (1993)
T. spinimana – Richardson (1991)
T. stephensoni Chip shells; attack via byssal orifice Govan (1992a)
T. cf. tenuipes Govan (1992a)
Thalamita sp. Penetrate soft tissues of adults through either byssal orifice or the

inhalant siphon
Alcazar (1986), Govan (1992b)

Family Xanthidae (Stone crabs)
Atergatis floridus Crush or chip valves Richardson (1991), Govan et al. (1993)
A. integerrimus Richardson (1991)
Atergatis spp. Govan (1992b)
Carpilius convexus Crush or chip valves of juvenile clams Alcazar (1986), Govan (1992a,b), Govan et al. (1993)
C. maculatus Crush shells Govan (1992a,b)
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Table 3 (continued)

Predator species Method of predation Literature source(s)

Demania cultripes Crush shells of juvenile clams Alcazar (1986), Govan (1992b)
Leptodius sanguineus Crush shells Govan (1992a,b)
Lophozozymus pictor Crush or chip shells Richardson (1991), Govan (1992b)
Myomenippe hardwickii Crush shells; may attack via byssal orifice Ling (2007)
Zosimus aeneus Crush shells Govan (1992a,b)

FISH: Family Balistidae (Triggerfish)
Balistapus undulatus Feed on mantle and the exposed byssus and foot of adult clams Alcazar (1986), Perio and Belda (1989)
Balistoides viridescens Crush or chip shells Heslinga et al. (1990)
Balistoides sp. Govan (1992b)
Pseudobalistes flavimarginatus Heslinga et al. (1990), Chambers (2007)
Pseudobalistes sp. Govan (1992b)
Rhinecanthus sp. Govan (1992b)

Family Lethrinidae (Emperors)
Monotaxis grandoculis Directly consumed 50 juvenile T. squamosa in <2 h Heslinga et al. (1984), Govan (1992b)

Family Labridae (Wrasses)
Cheilinus fasciatus – Richardson (1991)
Cheilinus sp. Crush or chip shells Govan (1992b)
Choerodon anchorago – Richardson (1991)
C. schoenleinii – Richardson (1991)
Choerodon sp. Crush or chip shells Govan (1992b)
Halichoeres sp. Feed only on the byssus and foot of unanchored clams Alcazar (1986), Govan (1992b)
Thalassoma hardwicke – Richardson (1991)
T. lunare – Richardson (1991)

Family Myliobatidae (Eagle rays)
Aetobatis narinari Crush shells Heslinga et al. (1990), Govan (1992b), Chambers

(2007)

Family Tetraodontidae (Pufferfish)
Canthigaster solandri – Richardson (1991)
C. valentini Crush or chip shells Perio and Belda (1989), Govan (1992b)
Tetraodon stellatus Heslinga et al. (1990), Govan (1992b), Chambers

(2007)

TURTLES: Family Cheloniidae
Caretta caretta – Bustard (1972)
Chelonia mydas Break off shell flukes and ingest as calcium carbonate dietary

supplement
Weingarten (1991)
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1977) that can make a significant dietary contribution to reef fish;
the adult black damselfish (Neoglyphidodon melas), for instance
(Chan, 2007).

4. Giant clams as shelter

4.1. Shelters for coral reef fish

Coral reef fish diversity is related to coral cover (Bell and Galzin,
1984; Ault and Johnson, 1998) and substrate complexity
(Gratwicke and Speight, 2005; Lingo and Szedlmayer, 2006). Dense
aggregations of giant clams can increase topographic heterogene-
ity of the seabed and serve as nurseries and shelters for fishes. A
restoration study in the Philippines demonstrated that T. gigas
introduced onto degraded reefs significantly improved fish diver-
sity and abundance compared to control plots (Cabaitan et al.,
2008). An increase in habitat relief usually facilitates recruitment
and settlement of juvenile fish and helps reduce predation by pro-
viding refuges (Beukers and Jones, 1997; Lecchini et al., 2007)
while the shell ridges of giant clams represent suitable obscure
surfaces for the deposition of fishes’ egg masses (Weingarten,
1991). The large mantle cavities of tridacnines also afford shelter
to smaller fishes, such as the pearlfish (Encheliophis homei) (Trott
and Chan, 1972) and anemone fishes in the absence of host
anemones (Arvedlund and Takemura, 2005).

4.2. Shell surfaces for epibionts

On coral reefs, where settlement surfaces are limiting, epibiosis
is an alternative colonization strategy for sessile organisms (Wahl
and Mark, 1999; Harder, 2008). Nevertheless, while epibiosis may
be common in marine ecosystems (Harder, 2008), only a handful of
studies have discussed its ecological importance (e.g. Abellö et al.,
1990; Creed, 2000; Botton, 2009). Giant clam shells have been
reported to harbour a variety of burrowing (Yonge, 1955; Turner
and Boss, 1962) and encrusting (Roscoe, 1962; Rosewater, 1965)
reef inhabitants, although the authors of these studies did not list
specific taxa. Our own observations of clam-associated epibionts
include macroalgae, sponges, ascidians, nudibranchs, bryozoans,
tubeworms, hard and soft corals, as well as small mobile inverte-
brates (Fig. 3). Some, such as macroalgae (Fatherree, 2006), boring
sponges (Norton et al., 1993), the boring worm (Oenone fulgida)
(Delbeek and Sprung, 1994), and pest anemones (Aiptasia spp.)
(Fatherree, 2006) can harm their tridacnine hosts. In addition, foul-
ing algae on juvenile clams can reduce growth and lead to death by
interfering with valve movement (unpublished data). Conversely,
other epibionts may protect their hosts by contributing anti-pred-
ator defenses (Feiferak, 1987) and/or camouflage (Harder, 2008).

Vicentuan-Cabaitan et al. (2014) identified the community liv-
ing on the valves of T. squamosa in Singapore. They found at least
49 species belonging to a minimum of 36 families living on the
shells of eight T. squamosa individuals (shell lengths 236–
400 mm). Vicentuan-Cabaitan et al. (2014) also highlighted that
giant clam shells provide much more surface area for colonization
compared to the patch of substrate they occupy (a 26:1 ratio based
on three adult T. squamosa specimens). A complete taxa checklist
was not provided in their short paper, but it is now included here
(Table A1). As this list is for just one tridacnine species at a single
locality, we expect that it represents only a small percentage of the
taxa that live on the shells of all giant clam species (that vary in
size, shell morphology, habitat preference, and global distribution)
(see Fig. 3).



Fig. 2. Fish bite marks on the mantle edge of (a) Tridacna crocea (shell length
�14 cm) from Tioman Island, Malaysia and (b) Tridacna gigas (shell length �80 cm)
from Magnetic Island, Australia.
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4.3. Hosts for ectoparasites

Various cyclopoid copepods live within giant clams (Table A2).
Even though they are capable of influencing the growth, fecundity,
and survival of their hosts (Finley and Forrester, 2003; Johnson
et al., 2004), the biology of these cyclopoids is poorly understood.
Anthessius and Lichomolgus are usually found inside the mantle
cavity (Humes, 1972, 1976), while Paclabius inhabits the pericar-
dium, i.e. the membrane enclosing the heart (Kossmann, 1877).
Multiple cyclopoid species have been found within the same clam
host (Humes, 1972, 1976). Ectoparasitic gastropods are also known
to plague giant clams (also see Section 3.2.), and are especially
severe in cultured juveniles (Cumming and Alford, 1994).
4.4. Hosts for commensals

Bivalves host a wide diversity of commensal fauna (Blanco and
Ablan, 1939; De Grave, 1999), providing refuge (Rosewater, 1965)
and/or food (Fankboner, 1972). The recorded commensals for
tridacnines include pinnotherid pea crabs (Fig. 4; Table A3) and
pontoniinid shrimps (Fig. 5; Table A4). Pea crabs are common
within the mantle cavities of bivalves (Stauber, 1945; Schmitt
et al., 1973), positioning themselves on the ctenidial surface (gills)
with their strong grip and gaining access to food aggregated by the
host (Stauber, 1945). Xanthasia murigera (Fig. 3) is probably the
most widespread, being found in five clam species (Table A3). Pon-
toniinid shrimps can also inhabit the mantle cavities of giant
clams. With hooked walking-leg dactyls (Fujino, 1975), they
anchor themselves against the currents generated by the gills,
avoiding expulsion (Fankboner, 1972). While some species are
commensal to multiple tridacnine species (Table A4), Anchistus
gravieri appears to be obligate to Hippopus hippopus (McNeill,
1953; Bruce, 1977, 1983) whilst Paranchistus armatus is restricted
to T. gigas (Bruce, 1983, 2000). Due to their long lifespans, giant
clams can host many generations of commensals and the absence
of any trauma to collected examples suggests that life within
tridacnines is secure (Bruce, 2000).
5. Reef-scale contributions of giant clams

5.1. Contributors of carbonate

The calcium carbonate framework of coral reefs is maintained
by opposing processes of carbonate production and removal (Le
Campion-Alsumard et al., 1993; Mallela and Perry, 2007). Sclerac-
tinian corals are the primary carbonate producers on most tropical
reefs (Hubbard et al., 1990; Vecsei, 2004), followed by calcareous
algae, gastropods, bivalves, and foraminiferans (Mallela and
Perry, 2007; Perry et al., 2012). Giant clams are rarely mentioned
as carbonate contributors to reef frameworks, even though they
have large shells, mostly made up of aragonite—a calcium carbon-
ate polymorph (Moir, 1990). Shell carbonates are generally derived
from ambient dissolved inorganic carbon (Romanek and Grossman,
1989), but also include carbon from metabolic respiration and zoo-
xanthellae photosynthesis within the mantle tissues (Jones et al.,
1986; Watanabe et al., 2004). The relict population of T. gigas from
the Great Barrier Reef (Table 2) may only produce 356 kg ha�1 yr�1

of new shell material but Barker et al. (1988) estimated that a high-
density cultured population of T. gigas could produce shell material
in excess of 80 t ha�1 yr�1. The natural T. maxima atoll populations
in French Polynesia are capable of producing 23–37 t ha�1 yr�1

(Table 2) and are so dense that they create small islands called
mapiko (Gilbert et al., 2006).

5.2. Bioeroders

Bioeroders such as grazers, etchers, and borers can increase the
removal rate of the reef’s carbonate framework (Clapp and Kenk,
1963; Hutchings, 1986). The boring giant clam species, T. crocea
(Hamner and Jones, 1976) and, to a lesser extent, T. maxima
(Yonge, 1980; Hutchings, 1986), are usually found embedded in
either dead coral heads or dead patches of live colonies (Morton,
1990). Burrowing by T. crocea has been described as both a
mechanical process and chemical etching. Mechanically, T. crocea
enlarge their burrows by grinding back and forth within them,
and fine shell corrugations on their valves wear away at the bur-
row walls (Yonge, 1953; Hamner and Jones, 1976). Chemical etch-
ing (Hedley, 1921; Yonge, 1980) is performed by extending the
pedal mantle tissue out of the byssal opening and dissolving the
substrate under and around the clam via excreted solvents
(Yonge, 1980; Fatherree, 2006). Given sufficient time and numbers
of settling and growing/burrowing individuals, T. crocea will even-
tually erode away a dead coral head (Hamner and Jones, 1976;
Glynn, 1997), but this erosive effect is limited to these habitats that
are particular to T. crocea, and does not lead to wide scale attrition
of the reef (Paulay and Kerr, 2001; Aline, 2008). Even though little
is known about the effects of T. maxima’s burrowing, McMichael
(1974) and Hutchings (1986) both remarked that, due to their
higher densities, they could contribute significantly to biological
erosion on coral reefs.

5.3. Topographic enhancement

Mollusc shells are known to influence their environments,
either by creating or modifying habitats for other organisms
(Gutiérrez et al., 2003). Giant clams can modulate water flow and
fluid transport as they add topographical relief to the seabed
(Weingarten, 1991; Cabaitan et al., 2008). Depending on their



Fig. 3. Epibiota diversity amongst giant clam species. (a) Tridacna gigas with a burrowing giant clam (Tridacna crocea) in its shell; Mecherchar Island, Republic of Palau, March
2011. (b) Tridacna derasa with hard coral (Favites sp.) growing on it; Ouvea island of the Loyalty Islands, New Caledonia, August 2010. (c) Hippopus sp. with encrusting crustose
coralline algae; Bali, Indonesia, May 2011. (d) Tridacna maxima hosting a range of encrusting epibionts; Kumejima, Okinawa, Japan; November 2009.

Fig. 4. Commensal pinnotherids (Xanthasia murigera; ZRC2013.0790) found within the mantle cavity of a fluted giant clam (Tridacna squamosa; shell length = 150 mm). (a and
b) Carapace length (CL) = 5 mm. (c and d) CL = 11.5 mm.
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density, their influence on water flow can be significant. Giant clam
shells are expected to agitate flow boundary layers much more
than the shells of smaller bivalves (Grant et al., 1992; Pilditch
et al., 1998), since flow perturbation is correlated to the heights
and diameters of protruding objects (Eckman and Nowell, 1984).
Aggregations of giant clams are likely to further increase flow
perturbation and cause turbulence eddies (Lenihan, 1999). These
hydrodynamic disturbances in turn affect the rates at which trans-
port of particles and solutes can occur (Gutiérrez et al., 2003). For
instance, aggregations of bivalves have been shown to alter sedi-
ment transport patterns and rates (Grant et al., 1992; Lenihan,
1999) and enhance phytoplankton down-flux (Pilditch et al.,
1998). Even after a clam’s death, their heavy valves remain and
continue to affect water flow.

5.4. Source of zooxanthellae (Symbiodinium spp.)

Nutrient cycling between zooxanthellae and their coral hosts is
the key to both organisms’ success in oligotrophic coral reef envi-
ronments (Muscatine and Porter, 1977) and similar cycling occurs
between zooxanthellae and other organisms, such as zooxanthel-
late jellyfish (Pitt et al., 2009). Zooxanthellae within giant clams
utilize the hosts’ nitrogenous waste with virtually no loss from
the system (Hawkins and Klumpp, 1995), meaning that they have



Fig. 5. A commensal pontoniinid (Anchistus sp.; body length = 34 mm) found
resting on the mantle of a fluted giant clam (Tridacna squamosa; shell
length = 243 mm).
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far greater access to nitrogen than they would if living in the
surrounding seawater. Giant clams also protect their symbiotic
zooxanthellae from predation (Fankboner, 1971) and excessive
ultraviolet irradiation (Ishikura et al., 1997).

Giant clams release large numbers of zooxanthellae in their fae-
cal pellets. To regulate symbiont density a T. derasa can discharge
4.9 � 105 cells clam�1 d�1 of intact zooxanthellae (Maruyama
and Heslinga, 1997) and T. gigas can discharge 4.7 � 105 -
cells clam�1 d�1 (Buck et al., 2002). These are both several orders
of magnitude higher than the release rates of corals (Yamashita
et al., 2011). As noted by Maruyama and Heslinga (1997, p.475),
‘‘most of the discharged zooxanthellae were indistinguishable from
intact algal cells freshly isolated from the mantle.’’ Trench et al.
(1981) also found that zooxanthellae in faecal pellets were intact,
photosynthetically active, and culturable. The branched tubular
system extending from a giant clam’s stomach into its mantle
(Fankboner and Reid, 1990; Norton et al., 1992) provides numerous
microhabitats for zooxanthellae (Norton et al., 1992) allowing mul-
tiple clades or multiple types from a single clade of symbionts to
co-exist in a single host (Baillie et al., 2000; DeBoer et al., 2012).
The substantial quantities and (possibly) types of zooxanthellae
released from giant clams become available for other zooxanthel-
late-dependent species to ‘take up’, hence contributing to the
wider coral reef ecosystem.
5.5. Counteractors of eutrophication

In coastal marine waters, corals may be competitively excluded
by macroalgae or heterotrophic filter feeders as the water becomes
more eutrophic (Fabricius, 2005). Shallow water benthic bivalves
are known to be natural controllers of eutrophication (Officer
et al., 1982) and giant clams can perform this function in two ways:
by filtering water and by sequestering nutrients (Klumpp and
Griffiths, 1994). Giant clams filter large quantities of seawater;
even a sparse population of mature T. gigas (0.04 clams m�2) on
the Great Barrier Reef is capable of filtering over 28,000 l ha�1 h�1

(Table 2). Giant clams also clear water of algal cells efficiently, e.g.
Tridacna species ingest 51–58% while H. hippopus ingests 81%
(Klumpp and Griffiths, 1994). Whether algal biomass is assimilated
by the clams or excreted as faeces, it is removed from the water
column in the short term and will therefore not contribute to tur-
bidity. By locking assimilated nutrients away in their biomass
(Table 2), giant clams sequester them from the water where they
could otherwise encourage macroalgae to flourish.
6. Conclusion

This review details how giant clams are effective ecosystem
engineers that play multiple roles in coral reefs. Their high biomass
production, coupled with their wide range of known predators,
suggest that giant clams are an important food item. In addition,
their gametes and faeces are food to opportunistic feeders. Due
to their large shell size, giant clams can shelter reef fish as well
as support a diverse and abundant array of epibionts, ectoparasites,
and commensals. Furthermore, some species, such as the pontonii-
nid shrimp (Paranchistus armatus), are only found in tridacnine
hosts. At the reef-scale, dense populations of giant clams can annu-
ally contribute 100s to 1,000s kg ha�1 of shell material to a coral
reef, far outweighing localized erosion by T. crocea and T. maxima.
Giant clams provide their symbiotic Symbiodinium with nutrients
and protection, resulting in tridacnines acting as algal ‘reservoirs’.
They also filter large volumes of water—which can potentially
counteract eutrophication. While we have only evaluated the eco-
logical roles of the more common giant clam species: H. hippopus,
T. crocea, T. derasa, T. gigas, T. maxima, and T. squamosa, we expect
that the rarer species perform functions similar to those of their
close relatives.

Even though there have been numerous giant clam population
collapses (e.g. Munro, 1989; Kinch and Teitelbaum, 2010; Neo
and Todd, 2012), it is difficult to measure the ecosystem-level
effects of these events due to the concomitant impacts of multiple
stressors that typify contemporary reefs (Hughes and Connell,
1999). Nevertheless, some negative consequences are predictable,
for example, biomass and carbonate production, surface area for
epibionts, and water filtering, are all expected to decrease with
reduced giant clam abundance. Other effects might require thresh-
olds to be breached, for example, a minimum density of giant
clams may be needed before they act as effective fish nurseries.
It is unlikely, however, that researchers would experimentally
remove clams from a healthy reef to measure the outcome. On
the other hand, restocking programmes present an excellent
opportunity to monitor the response of the reef to enhanced clam
numbers; unfortunately this is rarely done. As mentioned in the
Introduction, the one exception is Cabaitan et al. (2008), who
specifically set out to test the localized effects of transplanting
maricultured giant clams (T. gigas, >40 cm shell length) into repli-
cate 5 � 5 m2 plots of degraded patch reef in the Philippines (25
clams per plot). Within three months, their ‘‘other biota’’ category
(i.e. ascidians, anemones, gorgonians, soft corals, sponges, and
zoanthids) had increased significantly from 2.0% to 14.8% cover;
with no change observed in the control plots. Within the same
time period fish species richness and abundance also increased sig-
nificantly. Similar research at different locations, and with other
giant clam species and densities, is needed.

Any significant ecological benefits will likely only accrue where
giant clams are present in healthy, i.e. self-sustaining, populations
and hence their conservation is paramount. As highlighted by Neo
and Todd (2013), the CITES and IUCN data for giant clams are out-
dated and potentially misleading. Importantly, there are now three
species recently rediscovered or undescribed, plus one entirely
new species, that have no official conservation status (Table 1).
Giant clams should feature more prominently when planning mar-
ine protected areas and integrated coastal management schemes
(van Wynsberge et al., 2013) and national/local assessments must
be part of this process. Notably, not only are giant clams useful for
the functioning of coral reefs, they can help protect them by acting
as surrogate species. Giant clams are already considered an indica-
tor species by Reef Check (Hodgson, 2001) and, being well-known
charismatic invertebrate megafauna (for instance, fourteen cul-
tured T. gigas are used in snorkel trails at Magnetic Island; Braley,
pers. comm., 2014), they have the potential to play a flagship role
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(sensu Walpole and Leader-Williams, 2002, but see Favreau et al.,
2006) in reef conservation.

We are not proposing that giant clams are essential to the
survival of coral reefs; however, there can be no doubt that they
make a positive contribution to these critically important tropical
ecosystems. Based on the wide range of ecological functions they
perform, giant clams are unique among reef organisms and there-
fore deserve attention. In combination with their status as the
world’s largest bivalves and their popularity with SCUBA divers, a
greater understanding of giant clams’ contributions will provide
managers with ‘ammunition’ to justify their protection. Crucially,
both their international and local conservation statuses need to
be updated and monitored (Brito et al., 2010; Neo and Todd,
2013) if appropriate management strategies are to be developed.
Whatever safeguards can be established will not only boost giant
clam populations but, by extension, also benefit coral reefs.
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