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Using Krasnoselskii’s fixed point theorem in a cone, we present a new fixed point
theory for multivalued self maps between Frechet spaces. Our analysis relies on a´
diagonal process and a result on hemicompact maps due to K. K. Tan and X. Z.

Ž .Yuan 1994, J. Math. Anal. Appl. 185, 378�390 . An application is given to
illustrate the theory. � 2001 Academic Press

1. INTRODUCTION

The Schauder�Tychonoff theorem states that if K is a closed, convex
subset of a Frechet space and F: K � K is continuous and completely´
continuous then F has a fixed point in K. This fixed point theorem has
been widely used to establish the existence of solutions to various differen-

Ž � � .tial and integral inclusions see 4, 6, 7 and the references there . One
particular problem which arises ‘‘if one is not careful’’ when one applies
the Schauder�Tychonoff theorem can be explained easily if one considers
the nonlinear boundary value problem

y� � y � � y � on 0, 1Ž .
y 0 � y 1 � y� 1 � 0, 1.1Ž . Ž . Ž . Ž .
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Ž .with 0 � � � 1 � �. Note that y � 0 is a solution to 1.1 and it would
Ž .take a lot more work to show via Schauder’s fixed point theorem that 1.1

� � Ž .has a nontrivial solution. Of course, it is well known 3, 5 that 1.1 has a
� � Ž . � �nontrivial solution y � C 0, 1 with y t � 0 for t � 0, 1 and that there

� � Ž � � � Ž . �.exists a r � 0 with r 	 y 	 1 here y � sup y t . As a result it0 0 t ��0, 1�
would be of interest to present a fixed point theorem for a nonlinear self
map F even if F0 is 0. Our starting point will be Krasnoselskii’s fixed

� �point theorem in a cone 6 , which of course provides a fixed point
theorem for a self map F: K � K where K 
 E; here E is a Banach space
and K is an annulus.

Our paper has two main sections. In Section 2 this fixed point is
extended to the Frechet space setting for compact single valued maps. The´
existence of a nontrivial fixed point will be established by means of a
diagonal process. Indeed, the ideas presented automatically provide a
generalization of the Schauder�Tychonoff theorem. To illustrate the appli-
cability of our theory we present a result which guarantees the existence of

� .a nontrivial C 0, � solution to the nonlinear operator equation

�

�y t � K t , s F s, y s ds for t � 0, � .Ž . Ž . Ž .Ž . .H
0

Section 3 extends the results in Section 2 to upper semicontinuous, k-set
Ž .contractive 0 	 k � 1 maps. Our theory again relies on a diagonal

� �process together with a result on hemicompact maps 8 . For the conve-
� �nience of the reader we state the result from 8 which we will use in

Section 3.

� � Ž .THEOREM 1.1 8 . Let X, d be a metric space, D a nonempty, complete
X Ž .subset of X, and G: D � 2 a condensing map with G D bounded. Then

Ž Ž .G is hemicompact i.e., each sequence x in D has a con�ergent subse-n
Ž . .quence whene�er d x , Gx � 0 as n � � .n n

2. SINGLE VALUED MAPS

First, for the convenience of the reader we recall Krasnoselskii’s fixed
Ž � �.point theorem in a cone C of a Banach space E � E, � . For notational

purposes, for � � 0 let

� � � �� 4 � 4U � y � E : y � � , 	U � y � E : y � � ,� �

and

� �� 4U � y � E : y 	 � .�
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� � Ž � �.THEOREM 2.1 6, p. 94 . Let E � E, � be a Banach space, C 
 E a
� 4 � 4cone in E, r � 0, r � 0, r � r with R � max r , r and r � min r , r .1 2 1 2 1 2 1 2

Ž .Let F: C � U � U � C be a continuous, compact map withR r

� � � �Fx � x for all x � 	U � C 2.1Ž .r2

and

� � � �Fx 	 x for all x � 	U � C 2.2Ž .r1

� �holding. Then F has at least one fixed point y � C with r 	 y 	 R.

Note that Theorem 2.1 immediately guarantees a fixed point theorem
for self maps between Banach spaces.

Ž � �.THEOREM 2.2. Let E � E, � be a Banach space, C 
 E a cone in E,
Ž . Ž .r � 0, and R � r. Let F: C � U � U � C � U � U be a continuous,R r R r

� �compact map. Then F has at least one fixed point y � C with r 	 y 	 R.

Proof. We will use Theorem 2.1 with r � R and r � r. Let x � 	U1 2 R
Ž � � . Ž . Ž .� C so x � R , and since F: C � U � U � C � U � U we haveR r R r

that

� � � �Fx 	 R � x ,

Ž .i.e., 2.2 holds with r � R.1
Ž � � .On the other hand, if x � 	U � C so x � r then once again sincer

Ž . Ž .F: C � U � U � C � U � U we haveR r R r

� � � �Fx � r � x ,

Ž .i.e., 2.1 holds with r � r.2
The result follows from Theorem 2.1.

We now extend Theorem 2.2 to an ‘‘applicable’’ fixed point theorem in
� 4the Frechet space setting. Let N � 1, 2, . . . . E is a Frechet space´ ´0

� � � 4endowed with a family of seminorms � : n � N withn 0

� � � �x 	 x 	 ��� for all x � E.1 2

Ž � � .Also assume that for each n � N that E , � is a Banach space, andn0 n
suppose that

E 
 E 
 ���1 2

� � � � � Ž .with E � � E and x 	 x for all x � E here n � N . Forn n�1n�1 n n�1 0
each n � N , let C be a cone in E and assume that0 n n

C 
 C 
 ��� .1 2
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For 
 � 0 and n � N , let0

� �U � x � E : x � 
 and � � U � C .� 4nn , 
 n n , 
 n , 
 n

Note that

	 � � 	 U � C and � � U � CC n , 
 E n , 
 n n , 
 n , 
 nn n

Žthe first closure is with respect to C , whereas the second is with respectn
. � � � �to E . In addition, note that since x 	 x for all x � E thatn n�1n n�1

� 
 � 
 ���1, 
 2, 


and

� 
 � 
 ��� .1, 
 2, 


We first establish a result which guarantees that the inclusion

y � Fy 2.3Ž .

has a solution in E.
Ž .The main points needed to establish the existence of solutions to 2.3

are the following:

Ž . Ž .i the existence of continuous maps F : C � U � U � C ;n n n , R n, r n

Ž . � 4ii the sequence of maps F has the property that a convergentn
� 4 � 4sequence of fixed points y of F converges to a fixed point of F; andn n

Ž .iii the assumptions on F are such that Theorem 2.2 can ben
applied.

ŽWe note here that F need not be the restriction of F to E seen n
.Theorem 2.4 .

DEFINITION 2.1. Fix k � N . If x, y � E then we say that x � y in E0 k k
� � Ž .if x � y � 0 i.e., if x � y � 0; here 0 is the zero in E .k k

DEFINITION 2.2. If x, y � E then we say that x � y in E if x � y in Ek
for each k � N .0

THEOREM 2.3. Let r � 0, R � 0, � � 0 be constants with � � r � R.
Suppose that the following conditions are satisfied:

For each n � N , F : C � U � UŽ .0 n n n , R n , r

� C � U � U is continuous. 2.4Ž .Ž .n n , R n , r
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For each n � N , the map KK : U � U � CŽ .0 n n , R n , � n

� 2Cn nonempty subsets of C , gi�en byŽ .n

�

KK y � F y see Remark 2.2 , is compact. 2.5Ž . Ž .�n m
m�n

� 4For e�ery k � N and any subsequence A 
 k , k � 1, . . . , ,0

� � � �if x � C , n � A , is such that R � x � r , then x � � . 2.6Ž .n kn

� 4If there exists a w � E and a sequence y withn�Nn 0

y � U � U � C and y � F y in E such that for e�eryŽ .n n , R n , r n n n n n 2.7Ž .� 4k � N there exists a subsequence S 
 k � 1, k � 2, . . . of N0 0
with y � w in E as n � � in S, then w � Fw in E.n k

�Ž . ŽŽ . .Then 2.3 has a solution y � E with y � � U � U � C .1 1 n�1 n , R n, � n

Remark 2.1. In Theorem 2.3 it is automatically assumed for each
Ž .n � N that F : U � U � C � C .0 n n , R n, � n n

Ž . ŽRemark 2.2. The definition of KK in 2.5 is as follows. If y � U �n n , R
. Ž .U � C and y � U � U � C then KK y � F y, whereasn, � n n�1, R n�1, � n�1 n n

Ž . Ž .if y � U � U � C and y � U � U � C thenn�1, R n�1, � n�1 n�2, R n�2, � n�2
KK y � F y � F y, and so on.n n n�1

Ž . Ž .Remark 2.3. We note that although 2.5 � 2.7 seem technical, they are
Ž .in fact easily checked in practice see Theorem 2.4 .

Proof. Fix n � N . Theorem 2.2 guarantees that y � F y has a solu-0 n
Ž . � 4 Žtion y � U � U � C . Let’s look at y . Note that y � Un n , R n, r n n n� N n 1, R0

. � �� U � C for each n � N . To see this note that y 	 R andn1, � 1 0 n
� � � � � �x 	 x for all x � E imply that y 	 R. Thus y � U for each1 n 1n n n 1, R
n � N .0 0

� � Ž .On the other hand, y � r, y � C , together with 2.6 implies thatnn n n
� � Ž . Ž .y � � , so y � U � U for each n � N . Now 2.5 guarantees1n n 1, R 1, � 0

� Ž .that there exist a subsequence N of N and a z � U � U � C1 0 1 1, R 1, � 1
� � �with y � z in E as n � � in N . Note in particular that � 	 z 	 R.1n 1 1 1 1

� � 4 � 4 Ž .Let N � N � 1 . Look at y . Note that y � U � U � C1 1 n n� N n 2, R 2, � 21
Ž .for each n � N . Again 2.5 guarantees that there exists a subsequence1

� Ž .N of N and a z � U � U � C with y � z in E as n � � in2 1 2 2, R 2, � 2 n 2 2
� � � �N . Note in particular that � 	 z 	 R and z � z in E . Let N � N22 2 2 1 1 2 2
� 4� 2 . Proceed inductively to obtain subsequences of integers

� � � � 4N 
 N 
 ��� , N 
 k , k � 1, . . . ,1 2 k

�Ž .and z � U � U � C with y � z in E as n � � in N . Notek k , R k , � k n k k k
� � 4that z � z in E for k � 1, 2, . . . . Also, let N � N � k . Fix k � N .k�1 k k k k 0
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Let y � z in E . Note that y is well defined and y � E for eachk k k
k � 1, 2 . . . . Also, y � F y in E for n � N and y � y in E asn n n n k n k

Ž . Ž .n � � in N since y � z in E . This together with 2.7 implies thatk k k
� ŽŽ . .y � Fy in E. Note also that y � � U � U � C .n�1 n , R n, � n

Ž .Remark 2.4. If 2.6 is removed in Theorem 2.3 then the above analysis
guarantees the existence of a y � E with y � Fy in E and y �

� Ž .� U � C ; we are of course assuming here that KK : U � C �n�1 n , R n n n , R n
Cn Ž . Ž2 is compact for each n � N in 2.5 so we are automatically assuming0

. Žthat F : U � C � C for each n � N . The definition of KK is asn n , R n n 0 n
follows: If y � U � C and y � U � C then KK y � F y,n , R n n�1, R n�1 n n
whereas if y � U � C and y � U � C then KK y � F yn�1, R n�1 n�2, R n�2 n n

. Ž . Ž .� F y, and so on. If in addition all mentions of R, r in 2.4 , 2.5 , andn�1
Ž .2.7 are removed and we use Schauder’s fixed point theorem instead of
Theorem 2.2 in the proof of Theorem 2.3, we get a generalization of the
Schauder�Tychonoff theorem. For completeness we state the result.

� � �Let E be a Frechet space endowed with a family of seminorms � :´ n
4 Ž � � .n � N . Also, assume for each n � N that E , � is a Banach spacen0 0 n

and suppose that

E 
 E 
 ���1 2

with E � �� E . For each n � N , let C be a closed, convex set in En�1 n 0 n n
and assume that

C 
 C 
 ��� .1 2

Suppose the following conditions are satisfied:

For each n � N , F : C � C is continuous.0 n n n

For each n � N , the map KK : C � 2Cn, given by KK y � �� F y,0 n n n m�n m
is compact.

� 4If there exist a w � E and a sequence y , with y � C andn n� N n n0

y � F y in E such that for every k � N there exists a subsequencen n n n 0
� 4S 
 k � 1, k � 2, . . . of N with y � w in E as n � � in S, then0 n k

w � Fw in E.

Ž . � ŽThen 2.3 has a solution y � E with y � � C . The definition of1 1 n�1 n
KK is as follows: If y � C and y � C , then KK y � F y, whereas ifn n n�1 n n

.y � C and y � C then KK y � F y � F y, and so on.n�1 n�2 n n n�1

To illustrate the ideas involved in Theorem 2.3 we discuss the nonlinear
integral equation

�

�y t � K t , s F s, y s ds for t � 0, � . 2.8Ž . Ž . Ž . Ž .Ž . .H
0
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THEOREM 2.4. Let 1 	 p 	 � be a constant and 1 	 q 	 � the conju-
gate to p. Suppose the following conditions are satisfied:

�For each t � 0, � , the map s � K t , s is measurable. 2.9Ž . Ž ..
1�q

� q
sup K t , s ds � �. 2.10Ž . Ž .Hž /0� .t� 0, �

� q �K t�, s � K t , s ds � 0 as t � t�, for each t� � 0, � .Ž . Ž . .H
0

2.11Ž .

� . pF: 0, � � R � R is a L -Caratheodory function: By this we mean that´
Ž . Ž .a the map x � F x, u is measurable for all u � R;
Ž . � . Ž .b for a.e. x � 0, � , the map u � F x, u is continuous;
Ž . p� . � Ž . � Ž .c for each r � 0 there exists h � L 0, � with F x, y 	 h xr r

� . � � Ž .for a.e. x � 0, � and all y � R with y 	 r. 2.12

� �For each t � 0, � , k t , s � 0 for a.e. s � 0, � . 2.13Ž . Ž .. .
� � �F : 0, � � 0, � � 0, � . 2.14Ž .. . .

p� � � �
0 � M � 1, � � L 0, � , and an inter�al a, b 
 0, � , a � b. .
� � �with K t , s � M� s for t � a, b and a.e. s � 0, � . 2.15Ž . Ž . Ž ..

� �K t , s 	 � s for t � 0, � and a.e. s � 0, � . 2.16Ž . Ž . Ž .. .
� �There exist a function � : 0, � � 0, � , continuous and. .

p � ��nondecreasing , and a � � L 0, � with F s, y 	 � s � yŽ . Ž . Ž . 2.17. Ž .
� �for all y � 0, � and a.e. s � 0, � .. .

p� �There exists a � � L a, b with F s, y � � s � yŽ . Ž . Ž .
� � �for all y � 0, � and a.e. s � a, b . 2.18Ž ..

b

 r � 0, with r 	 K � Mr where K � sup K t , s � s ds. 2.19Ž . Ž . Ž . Ž .H1 1

a� �t� 0, b

�


R � r , with R � K � R where K � sup K t , s � s ds.Ž . Ž . Ž .H2 2
0� .t� 0, �

2.20Ž .

� 4 Ž .Choose n � N with n � b and let N � n , n � 1, . . . . Then 2.8 has a1 0 1 1 1 1
� . � . � �solution y � C 0, � with y � 0 on 0, � and with Mr 	 y 	 R for eachn

Ž � � � Ž . �.n � N here y � sup y t .n1 t ��0, n�
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Proof. Let n � N with1

n
� �F y t � K t , s F s, y s ds for t � 0, n ,Ž . Ž . Ž .Ž .Hn

0

� � Ž � � � � .where y � C 0, n . Let E � C 0, n , � andnn

� �� � � �C � y � C 0, n : y t � 0 for t � 0, n and min y t � M y .Ž . Ž . n½ 5n
� �t� a , b

For 
 � r or R let

� �� �U � x � C 0, n : x � 
 .� 4nn , 


� �We seek to apply Theorem 2.3. Note that 7 guarantees that F : C �n n
Ž .U � U � E is continuous for each n � N . We claim thatn , R n, r n 1

F : C � U � U � C � U � U for each n � N .Ž . Ž .n n n , R n , r n n , R n , r 1

2.21Ž .

Ž . Ž . Ž .If 2.21 holds then of course 2.4 is true for n � N . To see 2.21 fix1
Ž . Ž . � �n � N and take y � C � U � U . Then y t � M y � Mr forn1 n n , R n, r

� � Ž .t � a, b . Also, from 2.16 we have

n
� �F y 	 � s F s, y s ds. 2.22Ž . Ž . Ž .Ž .n Hn

0

Ž . Ž .Next note that 2.15 together with 2.22 yields

n
min F y t � min K t , s F s, y s dsŽ . Ž . Ž .Ž .Hn

� � � �t� a , b t� a , b 0

n
� �� M � s F s, y s ds � M F y ,Ž . Ž .Ž .H nn

0

� � � �so F y � C . Also, since r 	 y 	 R we have for t � 0, n thatnn n

n
F y t 	 K t , s � s � y s dsŽ . Ž . Ž . Ž .Ž .Hn

0

�
� �	 � y K t , s � s ds 	 K � R .Ž . Ž . Ž .Ž .n H 2

0

Ž .This together with 2.20 gives

� �F y 	 K � R 	 R ,Ž .nn 2
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Ž . Ž .so F y � U . In addition, 2.18 and 2.19 imply thatn n , R

b
� �F y � sup K t , s F s, y s dsŽ . Ž .Ž .n Hn

a� �t� 0, n

b
� sup K t , s � s � y s dsŽ . Ž . Ž .Ž .H

a� �t� 0, n

b
� � Mr sup K t , s � s dsŽ . Ž . Ž .H

a� �t� 0, n

b
� � Mr sup K t , s � s ds � � Mr K � r ,Ž . Ž . Ž . Ž .H 1

a� �t� 0, b

Ž . Ž .so F y � U . Thus 2.21 holds and so 2.4 is true for n � N . To shown n, r 1
Ž . Ž .2.5 for n � N , fix n � N . Let y � U � U � C . Without loss of1 1 n , R n, � n

� 4 Žgenerality assume that there exists l � 0, 1, 2, . . . with y � U �n� l , R
. Ž .U � C and y � U � U � C . Then, by defini-n� l, � n�l n�l�1, R n�l�1, � n�l�1

n� lŽ . Ž .tion see Remark 2.2 , KK y � � F y. Since y � U , 2.12 guaran-n m�n m n�l , R
p� . � Ž Ž .. � Ž .tees that there exists a h � L 0, � with F s, y s 	 h s for a.e.R R

� � � 4 � �s � 0, n � l . Now for j � 0, 1, . . . , l we have for t � 0, n that

n�j
F y t 	 h s K t , s dsŽ . Ž . Ž .Hn� j R

0

1�p 1�q
n�j n�j qp	 h s ds K t , s dsŽ . Ž .H HRž / ž /0 0

1�p 1�q
� � qp	 h s ds sup K t , s ds .Ž . Ž .H HRž / ž /0 0� .t� 0, �

� 4Thus for j � 0, 1, . . . , l we have

1�p 1�q
� � qp

� �F y 	 h s ds sup K t , s dsŽ . Ž .n H Hn� j Rž / ž /0 0� .t� 0, �

and so

1�p 1�q
� � qp

� �KK y 	 h s ds sup K t , s ds . 2.23Ž . Ž . Ž .n H Hn Rž / ž /0 0� .t� 0, �
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� � � 4In addition, for t , t � 0, n and j � 0, 1, . . . , l we have1 2

F y t � F y tŽ . Ž .n� j 1 n�j 2

n�j
	 h s K t , s � K t , s dsŽ . Ž . Ž .H R 1 2

0

1�p 1�q
� � qp	 h s ds K t , s � K t , s ds ,Ž . Ž . Ž .H HR 1 2ž / ž /0 0

and so

F y t � F y tŽ . Ž .n� j 1 n�j 2

1�p 1�q
� � qp	 h s ds K t , s � K t , s ds . 2.24Ž . Ž . Ž . Ž .H HR 1 2ž / ž /0 0

Ž . Ž . Ž . � Ž . 4Now 2.11 , 2.23 , and 2.24 guarantee that KK y: y � U � U � Cn n , R n, � n
� �is uniformly bounded and equicontinuous on 0, n . The Arzela�Ascoli

CnŽ . Ž .theorem implies that KK : U � U � C � 2 is compact, so 2.5n n , R n, � n
Ž .holds for n � N . Next we show that 2.6 is true for n � N with � � Mr.1 1

� 4To see this fix k � N and take any subsequence A 
 k, k � 1, . . . . Now1
� � Ž . � �if x � C , n � A, is such that R � x � r, then x t � M x � Mr � �n nn

� � Ž . � � � Ž . �for t � a, b and so min x t � � . Thus x � sup x t � � ,kt �� a, b � t ��0, k �
Ž . Ž .so 2.6 holds for n � N . It remains to show that 2.7 is satisfied for1

� . � 4n � N . Suppose there exist w � C 0, � and a sequence y with1 n n� N1
Ž . Ž . Ž . � �y � U � U � C and y t � F y t , t � 0, n , such that for everyn n , R n, r n n n n

� 4k � N there exists a subsequence S 
 k � 1, k � 2, . . . of N with1 1
� �y � w in C 0, k as n � � in S. If we show thatn

�

�w t � K t , s F s, w s ds for t � 0, � ,Ž . Ž . Ž .Ž . .H
0

Ž . � . Žthen 2.7 is true for n � N . Fix t � 0, � . Consider k � t and n � S as1
. Ž . Ž . � �described above . Then y s � F y s , t � 0, n , for n � S and son n n

nk
y t � K t , s F s, y s ds � K t , s F s, y s ds.Ž . Ž . Ž . Ž . Ž .Ž . Ž .H Hn n n

0 k

Ž . p� . � Ž Ž .. �Now 2.12 guarantees that there exists a h � L 0, � with F s, y sR n
Ž . � �	 h s for a.e. s � 0, n and soR

nk
y t � K t , s s, y s ds 	 K t , s h s dsŽ . Ž . Ž . Ž . Ž .Ž .H Hn n R

0 k

�

	 K t , s h s ds. 2.25Ž . Ž . Ž .H R
k
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Ž .Let n � � through S in 2.25 and use the Lebesgue dominated conver-
gence theorem to obtain

�k
w t � K t , s F s, w s ds 	 h s K t , s dsŽ . Ž . Ž . Ž . Ž .Ž .H H R

0 k

� �since y � w in C 0, k . Finally, we let k � � to conclude thatn

�

w t � K t , s F s, w s ds � 0.Ž . Ž . Ž .Ž .H
0

Ž . Ž .Thus 2.7 holds with N replaced by N . To deduce the result we apply0 1
Ž .Theorem 2.3 with N replaced by N .0 1

Ž .Remark 2.5. Note from the above proof that 2.19 could be replaced
in Theorem 2.4 with the following: 
 r � 0 with r 	
Ž . b Ž . Ž .� Mr sup H K t, s � s ds.t ��0, n � a1

Ž . � Ž .Remark 2.6. Note that if � x � x , 0 	 � � 1, then clearly 2.19 and
Ž .2.20 hold since

x x
�� 1�� 1��lim � M lim x � 0 and lim � lim x � �.

� Mx � xx�� x��x�0 x�0Ž . Ž .

3. MULTIVALUED MAPS

� �First we recall 1 the Petryshyn�Krasnoselskii Fixed Point Theorem for
Ž � �.multivalued maps between Banach spaces. Let E � E, � be a Banach

space, and for notational purposes for � � 0 let

� � � �� 4 � 4U � y � E : y � � , 	U � y � E : y � � ,� �

and

� �� 4U � y � E : y 	 � .�

� � Ž � �.THEOREM 3.1 1 . Let E � E, � be a Banach space, C 
 E a cone in
� 4 � 4E, r � 0, r � 0, and r � r with R � max r , r and r � min r , r .1 2 1 2 1 2 1 2

� � Ž .Assume that � is increasing with respect to C and F: C � U � CK CR
Ž Ž . .here CK C denotes the family of nonempty compact, con�ex subsets of C

Ž .is an upper semicontinuous, k-set contracti�e here 0 	 k � 1 map with

� � � �y � x for all y � Fx and x � 	U � C 3.1Ž .r2
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and

� � � �y 	 x for all y � Fx and x � 	U � C 3.2Ž .r1

� �holding. Then F has at least one fixed point y � C with r 	 y 	 R.

ŽReasoning which is essentially the same as that in Theorem 2.2 except
.here we use Theorem 3.1 establishes the following fixed point theorem for

self maps between Banach spaces.

Ž � �.THEOREM 3.2. Let E � E, � be a Banach space, C 
 E a cone in E,
� � Ž .r � 0, R � r, and � increasing with respect to C. Let F: C � U � CK CR

Ž .be an upper semicontinuous, k-set contracti�e 0 	 k � 1 map with F: C �
Ž . Ž Ž ..U � U � CK C � U � U . Then F has at least one fixed point y � CR r R r

� �with r 	 y 	 R.

We now extend Theorem 3.2 to the Frechet space setting. Let N �´ 0
� 4 � � �1, 2, . . . . E is a Frechet space endowed with a family of seminorms � :´ n

4n � N with0

� � � �x 	 x 	 ��� for all x � E.1 2

Ž � � .Also assume for each n � N that E , � is a Banach space andn0 n
suppose that

E 
 E 
 ���1 2

� � � � � Ž .with E � � E and x 	 x for all x � E here n � N . Forn n�1n�1 n n�1 0
� �each n � N , let C be a cone in E and assume that � is increasingn0 n n

with respect to C . Also, assume thatn

C 
 C 
 ��� .1 2

For 
 � 0 and n � N , let0

� �U � x � E : x � 
 and � � U � C .� 4nn , 
 n n , 
 n , 
 n

Note that

	 � � 	 U � C and � � U � CC n , 
 E n , 
 n n , 
 n , 
 nn n

Žthe first closure is with respect to C , whereass the second is with respectn
. � � � �to E . In addition, note that since x 	 x for all x � E thatn n�1n n�1

� 
 � 
 ���1, 
 2, 


and

� 
 � 
 ��� .1, 
 2, 
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We first establish a result which guarantees that the inclusion

y � Fy 3.3Ž .
has a solution in E.

DEFINITION 3.1. Fix k � N . We say that x � Fy in E if there exists0 k
w � Fy with x � w in E .k

THEOREM 3.3. Let r � 0, R � 0, � � 0 be constants with � � r � R.
Suppose that the following conditions are satisfied:

For each n � N , F : C � U � CK CŽ .0 n n n , R n

is an upper semicontinuous map. 3.4Ž .
For each n � N , F : C � U � U � CK C � U � U .Ž . Ž .Ž .0 n n n , R n , r n n , R n , r

3.5Ž .
CnFor each n � N , the map KK : U � C � 2 , gi�en by0 n n , R n

�KK y � � F y see Remark 3.1 , is k-set contracti�e 0 	 k � 1 .Ž . Ž .n m�n m

3.6Ž .

� 4For e�ery k � N and any subsequence A 
 k , k � 1, . . . , if0 3.7Ž .� � � �x � C , n � A , is such that R � x � r then x � � .n kn

� 4If there exist a w � E and a sequence y withn�Nn 0

y � U � U � C and y � F y in E such that forŽ .n n , R n , r n n n n n 3.8Ž .� 4e�ery k � N there exists a subsequence S 
 k � 1, k � 2, . . .0
of N with y � w in E as n � � in S, then w � Fw in E.0 n k

�Ž . ŽŽ . .Then 3.3 has a solution y � E with y � � U � U � C .1 1 n�1 n , R n, � n

Ž .Remark 3.1. The definition of KK in 3.6 is as follows. If y � U � Cn n , R n
and y � U � C then KK y � F y, whereas if y � U � Cn�1, R n�1 n n n�1, R n�1
and y � U � C then KK y � F y � F y, and so on.n�2, R n�2 n n n�1

Proof. Fix n � N . Theorem 3.2 guarantees that y � F y has a solu-0 n
Ž . � 4tion y � U � U � C . Let’s look at y . As in Theorem 2.3 itn n , R n, r n n n� N0

Ž .is easy to see that y � U � U � C for each n � N . Now Theo-n 1, R 1, � 1 0
Ž Ž .rem 1.1 with X � E , G � KK , and D � U � U � C , and noting1 1 1, R 1, � 1

Ž . � � � �that d u , KK u � 0 for each n � N since x 	 x for all x � E and1 n1 n 1 n 0 n
Ž . � �y � F y in E ; here d x, S � inf x � y if S is a nonempty subset1n n n n 1 y � S

. �of X guarantees that there exist a subsequence N of N and a z �1 0 1
�Ž .U � U � C with y � z in E as n � � in N . Note in particular1, R 1, � 1 n 1 1 1

� � � � 4 � 4that � 	 z 	 R. Let N � N � 1 . Look at y . Note that y �11 1 1 n n� N n1
Ž . ŽU � U � C for each n � N . Now Theorem 1.1 with X � E ,2, R 2, � 2 1 2
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Ž . Ž .G � KK , D � U � U � C , and noting that d u , KK u � 0 for2 2, R 2, � 2 2 n 2 n
Ž . � �each n � N ; here d x, S � inf x � y if S is a nonempty subset of21 2 y � S

�. ŽX guarantees that there exist a subsequence N of N and a z � U2 1 2 2, R
. �� U � C with y � z in E as n � � in N . Note in particular that2, � 2 n 2 2 2

� � � � 4� 	 z 	 R and z � z in E . Let N � N � 2 . Proceed inductively22 2 1 1 2 2
to obtain subsequences of integers

� � � � 4N 
 N 
 ��� , N 
 k , k � 1, . . . ,1 2 k

�Ž .and z � U � U � C with y � z in E as n � � in N . Notek k , R k , � k n k k k
� � 4that z � z in E for k � 1, 2, . . . . Also, let N � N � k . Fix k � N .k�1 k k k k 0

Let y � z in E . Note that y is well defined and y � E for eachk k k
k � 1, 2 . . . . Also, y � F y in E for n � N and y � y in E asn n n n k n k

Ž . Ž .n � � in N since y � z in E . This together with 3.8 implies thatk k k
� ŽŽ . .y � Fy in E. Note also that y � � U � U � C .n�1 n , R n, � n

Remark 3.2. The idea in Theorem 3.3 together with the observation in
Remark 2.4 immediately guarantees a generalization of Fan’s fixed point
theorem. For completeness we state the result: Let E be a Frechet space´

� � � 4endowed with a family of seminorms � : n � N . Also, assume that forn 0
Ž � � .each n � N that E , � is a Banach space and suppose thatn0 n

E 
 E 
 . . .1 2

with E � �� E . For each n � N , let C be a closed, convex set in En�1 n 0 n n
and assume that

C 
 C 
 ��� .1 2

Suppose the following conditions are satisfied:

Ž .For each n � N , F : C � CK C is upper semicontinuous.0 n n n

For each n � N , the map KK : C � 2Cn, given by KK y � �� F y,0 n n n m�n m
Ž .is k-set contractive 0 	 k � 1 .

� 4If there exist a w � E and a sequence y with y � C andn n� N n n0

y � F y in E such that for every k � N there exists a subsequencen n n n 0
� 4S 
 k � 1, k � 2, . . . of N with y � w in E as n � � in S, then0 n k

w � Fw in E.

Ž . � ŽThen 3.3 has a solution y � E with y � � C . The definition of1 1 n�1 n
KK is as follows: If y � C and y � C then KK y � F y, whereas ifn n n�1 n n

.y � C and y � C then KK y � F y � F y, and so on.n�1 n�2 n n n�1
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