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SUMMARY

Leaf erectness is key in determining plant architec-
ture and yield, particularly in cereal crops. Brassinos-
teroids (BRs) play a unique role in controlling this trait
in monocots, but the underlying cellular and molecu-
lar mechanisms remain bigmysteries. Here we report
that the abaxial sclerenchyma cell number of rice
lamina joints (LJs) is closely related to leaf erectness,
and BR signaling tightly regulates their proliferation.
We identified a rice U-type cyclin CYC U4;1 enriched
in rice LJs, with its expression accompanying LJ
development. Genetic and biochemical studies
demonstrated that CYC U4;1 plays a positive role in
promoting leaf erectness by controlling the abaxial
sclerenchyma cell proliferation. Furthermore, BR
signaling inhibits the abaxial sclerenchyma cell divi-
sion by coordinately regulating CYC U4;1 expression
through BES1 and CYC U4;1 protein activity through
GSK3 kinases. These results support a key role of the
cyclin CYC U4;1 in mediating BR-regulated cell divi-
sion to control leaf erectness.

INTRODUCTION

Brassinosteroids (BRs) are essential plant steroid hormones in

regulatingmany aspects of plant development, such as cell elon-

gation, vascular differentiation, stomata development, and male

fertility (Yang et al., 2011). In monocots, BRs play a unique and

crucial role in determining leaf erectness (Chono et al., 2003;

Sakamoto et al., 2006; Hartwig et al., 2011), an important trait

closely related to crop yields, as erect leaves allow great pene-

tration of light to lower canopy and enable plantings with high

density to increase leaf area index (Sinclair and Sheehy, 1999;

Sakamoto, 2006). The elevated BR content or enhanced BR

signaling promotes lamina joint (LJ) inclination (LJI) in rice, while

the BR-deficient or insensitive rice mutants exhibit erect leaves

(Hong et al., 2004; Tong and Chu, 2012). A previous study

showed that the applied BRs can enhance LJI via inducing
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greater expansion of adaxial cells than dorsal cells in LJs (Cao

and Chen, 1995). Besides BRs, the leaf inclination is also regu-

lated by other signals (Zhao et al., 2010; Ning et al., 2011). How-

ever, the underlying cellular and molecular mechanisms of BR

regulating rice leaf erectness are long-sought mysteries. We

found that groups of sclerenchyma cells at the abaxial side in

the rice LJ regions are closely related to leaf erectness, and

BR signaling tightly inhibits their proliferation. We identified a

U-type cyclin CYC U4;1 highly expressed in LJs and its overex-

pression in rice led to erect leaves by promoting these scleren-

chyma cell division. In addition, further genetic and biochemical

experiments demonstrated that the BR-activated transcription

factor BES1 (bri1-EMS-suppressor 1) (Yin et al., 2002) directly

binds to the CYC U4;1 promoter to inhibit its expression. More-

over, a GSK3-like kinase, BIN2 (Brassinosteriod-Insensitive 2), a

critical negative regulator in the BR signaling pathway (Li and

Nam, 2002), interacts with and phosphorylates CYCU4;1 to acti-

vate the CYC U4;1/CDKA complex to promote DNA replication.

Thus, our findings support a fascinating model in which BR

signaling regulates abaxial sclerenchyma cell proliferation in

rice LJs to control leaf erectness via coordinately regulating

both expression and activation of CYC U4;1.

RESULTS AND DISCUSSION

BRSignaling Regulates Leaf Erectness by Inhibiting LJ’s
Abaxial Sclerenchyma Cell Proliferation
To systematically examine the effect of BRs on the morphology

and anatomy of the LJ regions, the excised LJs from the dark-

grown rice seedlings (T65) were treated with 1 mM 24-epibrassi-

nolide (eBL). We found that the leaf angle (the angle between

leaf blade and the upward stem, as shown in Figure S1A) was

opened to 130� under eBL treatment as compared with 30� un-
der mock treatment (Figure S1B), and two edges (defined as L1),

and both adaxial and abaxial middle regions (defined as L2 and

L3, respectively) of LJs were dramatically expanded after eBL

treatment (Figures S1C and S1D). Longitudinal sections of LJs

showed that eBL treatment did not significantly alter cell length

of the BR-perceptional mutant d61-1 (Figure S1E) but greatly

enhanced adaxial cell expansion of the WT T65 and a BR-

deficient mutant d2-2 (Figures S1E–S1H), which is similar to a
c.
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previous report (Cao and Chen, 1995). In addition, eBL treatment

did not significantly influence the cell number measured with the

longitudinal sections (represented by adaxial epidermal cells be-

tween the dashed lines shown in Figure S1E) and the cell layer

number measured with the transverse sections of the WT (m1

regions, shown in Figures 1A, S1I, and S1J), indicating that the

exogenous eBL greatly promoted LJ’s parenchyma cell expan-

sion but did not affect adaxial cell number. We then compared

the transverse sections of the second LJs from d61-1 and d2-2

with that from T65 and interestingly observed that the BR-atten-

uated mutants with more erect leaves had increased scleren-

chyma cell layers in m2 regions (abaxial sclerenchyma cells

between epidermis and the middle vascular bundles [vbs] of

LJs) than T65 (Figures 1A–1C). To further determine the role of

other BR signaling components in LJ development, we created

transgenic rice expressing a negative regulator Atbin2-1, a

gain-of-function mutation of AtBIN2 in Arabidopsis (Li and

Nam, 2002), and a positive regulator bes1-D, a gain-of-function

mutation of AtBES1 (Yin et al., 2002), driven by a rice LJ-specific

promoter OsDWARF4/DWF4 (Sakamoto et al., 2006) (Fig-

ure S2A). The pDWF4::bin2-1 rice displayed an enhanced leaf

erectness, whereas the pDWF4::bes1-D rice showed greatly

enlarged leaf angles (Figures 1D and S3C). Similar to d61-1,

the pDWF4::bin2-1 plants were also insensitive to eBL in LJI

assay, whereas the pDWF4::bes1-D plants were hypersensitive

to BRs (Figure S2B). The LJ transverse sections indicated that

the pDWF4::bes1-D rice had more expanded cells, but with

similar m1 cell layers as compared with its WT Nipponbare (Ni)

(Figures 1E–1G), but their m2 sclerenchyma cell layer number

was slightly reduced (Figure 1H). In contrast, the pDWF4::bin2-1

plants had similar cell size and cell layer number in m1 regions

compared with Ni, but had more m2 sclerenchyma cell layers

than Ni and the pDWF4::bes1-D plants (Figures 1E–1H). Addi-

tionally, sclerenchyma cells with heavy lignin deposition in the

m2 region of the d61-1 mutant, as shown by phloroglucinol-

HCl staining, apparently provide strong physical support to

ensure leaf erectness (Figure 1I).

CYC U4;1 Regulates Leaf Joint Development by
Controlling Abaxial Sclerenchyma Cell Proliferation
To understand how BRs regulate the sclerenchyma cell pro-

liferation in the LJ regions, we conducted microarray analysis

(see the detail in Supplemental Information) to identify the

LJ-enriched genes potentially involved in cell division. We

initially found four cyclin-like genes Os04g46660, Os12g39830,

Os10g41430, and Os09g29100, which were 104-, 12-, 8.5-, and

7.9-fold upregulated in LJs compared with leaf blades, respec-

tively. qRT-PCR analysis further confirmed their enhanced

expression in LJs (Figure S2C). Sequence analysis indicated

that the Os04g46660 and Os10g41430 encode U-type cyclins

and the Os12g39830 and Os09g29100 encode the D-type cy-

clins. However, the two D-type cyclins were downregulated in

the LJs of d61-1 and d2-2 (Figure S2D), which was not consistent

with the LJs phenotype of the d61-1 and d2-2with more scleren-

chyma cell layers. Therefore, we focused on the Os10g41430,

belonging to the CycU4 subgroup, and Os04g46660, belonging

to the CycU2 subgroup (Wang et al., 2004). However, overex-

pression of Os04g46660 (pCYCU2::CYCU2) did not lead to

enhanced leaf erectness (Figure S2E); we focused our study
Deve
on Os10g41430 (renamed as CYC U4;1). Because the U-type

cyclin is a cyclin with unknown function in cell cycle, we analyzed

the expression level of the U-type cyclin in the cell cycle by syn-

chronizing the induced rice calli with hydroxyurea, a reversible in-

hibitor of the G1/S-phase for 24 hr and then releasing. We could

not detect the expression of CYC U4;1 in the calli based on the

b-glucuronidase (GUS) reporter line, and we also found the

CYC U2 (Os04g46660) has strong expression in the calli (Fig-

ure 2A). Therefore, we analyzed the expression levels of the

CYC U2, CYC D3 (a G1/S stage-specific marker), and CYC B2

(a G2/M stage-specific marker) (Li et al., 2011) in the released

calli. The results revealed that theCYCU2 had highest expression

at 3 hr after release, earlier than the CYC D3 induced at 6 hr after

release, indicating that CYC U2 may function in the early G1/S

phase responsible for G1-to-S transition; the transcription of

CYC B2 was induced at 15 hr after release, and the expression

of CYC D3was also slightly induced at this stage, indicating their

role in G2/M phase (Inzé and De Veylder, 2006; Schnittger et al.,

2002) (Figure 2B). To detect whether the G1/S phase gene CYC

U4;1 is involved in DNA replication, we synchronized the trans-

genic BY-2 cells using aphidicolin, an inhibitor of DNA polymera-

sea usually used to arrest the cells at the G1/S boundary. We

found that the 35S::CYC U4;1 transgenic BY-2 cells showed

the 4C peak (8 hr after release from the aphidicolin) earlier than

the control BY-2 cells (10 hr after release from the aphidicolin).

Furthermore, the 35S::CYC U4;1 transgenic BY-2 cells complete

DNA replication (10 hr after release from the aphidicolin) earlier

than the empty-vector control (14 hr after release from the aphi-

dicolin) (Figure 2C). These results suggested that the CYC U4;1

participates in the cell cycle at the early G1/S stage. The expres-

sion of theGUS reporter driven by the CYC U4;1 promoter in rice

indicated that CYC U4;1 was highly expressed in the LJs (Fig-

ure S2F), and its expression was accompanied with the LJs

developmental process (Figure 2D). Because the first true leaf

of rice is incomplete leaf with unexpanded blade and the leaves

from the second true leaf to the flag leaf are complete leaves con-

sisting of sheath and blade (Hoshikawa, 1989), we analyzed the

CYC U4;1 expression pattern in the LJ of the second true leaf.

We defined the developmental process of the second true leaf

joint into four stages. Stage 1 occurs 2 days after germination.

The first true leaf is packaged in the coleoptile, and the border

is between the blade and the sheath of the second true leaf is

visible. Stage 2 occurs 3 days after germination. The first true

leaf emerges from the coleoptile. In stage 3, the tip of the second

true leaf emerges from the sheath of the first true leaf. In stage 4,

the leaf joint of the second true leaf grows out from the first true

leaf sheath. We did not detect the GUS signal in the joint border

between the blade and the sheath at stage 1, andwedetected the

initiation of the CYC U4;1 expression in the abaxial side of the

second true leaf joint at stage 2, and theGUSsignal was detected

in the outer side of the veins, which is similar to that of stage 3.

Interestingly, at stage 4, the GUS signal was detected in an

enlarged area of the LJ regions, and it was weaker in the outer

side of the main vein than stages 2 and 3. The LJ sections of

the pCYC U4::GUS and the in situ hybridization assay all indi-

cated that CYC U4;1 was highly expressed in the sclerenchyma

cells between the vb and the outer epidermis in abaxial collar (Fig-

ures 2E and S2G). The RNAi-CYC U4;1 knockdown lines ex-

hibited greatly enlarged leaf angles compared with Ni (Figures
lopmental Cell 34, 220–228, July 27, 2015 ª2015 Elsevier Inc. 221



Figure 1. BR Signaling Inhibits LJ’s Abaxial Sclerenchyma Cell Proliferation

(A) Anatomy of the LJs from the etiolated seedlings. m1, the region between the adaxial epidermis and sclerenchyma in the middle area of the cross section; m2,

the region between the abaxial epidermis and the abaxial central vb of the cross-section; ae, aerenchyma; ie, inner epidermis; lg, ligule; me, mesophyll cells; nl,

newly emerged leaf; oe, outer epidermis; sc, sclerenchyma cell. Scale bars represent 0.25 mm.

(B) The morphology and the cross-sections of the second LJs of T65, d2-2, and d61-1. Scale bars represent 0.25 mm. Arrows point to the m2 regions.

(C) The number of sclerenchyma cell layers in the m2 regions of the second LJs (shown in Figure 1B). Error bars are SD (n = 15). p values were determined by

Student’s t test. The significant levels are as follows: **p < 0.01; ***p < 0.001.

(D) The LJ morphology of Ni, the pDWF4::bin2-1, and the pDWF4::bes1-D lines.

(E) Cross-sections of the second LJs of Ni, the pDWF4::bin2-1, and the pDWF4::bes1-D lines. Scale bars represent 0.25 mm.

(F) The length of m1 (shown in Figure 1E). Error bars are SD (n = 15). Student’s t test: ***p < 0.001.

(G) The number of cell layers in the m1 region (shown in Figure 1E). Error bars are SD (SD = 0; n = 15).

(H) The number of sclerenchyma cell layers in the m2 region (shown in Figure 1E). Error bars are SD (n = 15). Student’s t test: **p < 0.01; ***p < 0.001.

(I) Cross-sections of the third LJs stained with phloroglucinol-HCl (red color) (Zhou et al., 2009). Scale bars represent 0.1 mm.

See also Figures S1 and S2.
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Figure 2. CYC U4;1 Regulates Leaf Erectness by Controlling Abaxial Sclerenchyma Cell Proliferation

(A) The expression pattern of GUS reporters driven by the promoters of CYC U4 and CYC U2, respectively, in the 7-day-old dark-grown callus.

(B) The expression level of CYC U2, CYC D3, and CYC B2 in Ni calli after released from hydroxyurea. The expression levels are normalized to expression level at

0 hr after release (n = 3). The CYC U2 refers to the black vertical ordinate, and CYC D3 and CYC B2 refer to the blue vertical ordinate.

(C) Flow cytometric analysis of the synchronized transgenic BY-2 cell culture; 0–14 hr indicated the hours after release from the aphidicolin.

(legend continued on next page)
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Figure 3. BR Signaling Regulates Leaf

Erectness through the BES1-Mediated

CYC U4;1 Expression

(A) Relative expression levels of CYC U4;1 in the

LJs of T65, d61-1, and d2-2.

(B) Relative expression levels of CYC U4;1 in the

LJs of Ni, the pDWF4::bin2-1 line, and the

pDWF4::bes1-D line.

(C) The expression ofCYCU4;1 is inhibited by eBL

treatment. OsD2, an ortholog of AtDWARF1, is

used as a BR-responsive gene (Hong et al., 2003).

(D and E) The ChIP assay detected by semi-

quantitative PCR (D) and real-time qRT-PCR (E)

indicates that AtBES1 directly binds to the pro-

moter region of CYC U4;1. The CYC U4;1-1 and

CYC U4;1-2 are the different regions in the CYC

U4;1 promoter. The control of the ChIP is no-

antibody.

(F) The pDWF4::bin2-1/RNAi-CYC U4;1 has large

leaf angles similar to the RNAi-CYC U4;1 line. The

red arrowheads indicate leaf angle.

(G) The relative expression level of AtBIN2 and

CYC U4;1 in the lines shown in (F).
2F and S2H), as the RNAi-CYC U4;1 line had more expanded m1

parenchyma cells (Figure 2G) and had one to two layers of m2

sclerenchyma cells (Figures 2G and 2H), which is similar to

pDWF4::bes1-D. In contrast, the transgenic rice overexpressing

pCYC U4;1::CYC U4;1 exhibited more erect leaves with more

m2 sclerenchyma cell layers than the RNAi-CYC U4;1 line and

Ni (Figures 2F–2H and S2I). Taken together, it is suggested that

CYCU4;1 promotes LJ sclerenchyma precursor cell proliferation,

resulting in leaf erectness.

BR Signaling Regulates the CYC U4;1 Expression
through BES1
To investigate whetherCYCU4;1mediates the BR-regulated leaf

erectness, we first measured its expression in the LJs of the

BR-related mutants and found that CYC U4;1 was greatly upre-

gulated in d61-1 and d2-2 compared with T65 (Figure 3A).
(D) Expression pattern of the GUS reporter driven by the CYC U4;1 promoter at different developmental stage

stage was defined in the text. The red arrowhead indicates the leaf joint of the second true leaf. The red arr

between the red lines indicate the leaf joint regions.

(E) Expression pattern of CYC U4;1 in the LJs. In situ hybridization with an anti-sense probe (left) and a sens

indicates heavy signal in the sclerenchyma cells. Scale bars represent 0.05 mm.

(F) The LJmorphology of Ni, theRNAi-CYC U4;1 line, and the pCYCU4;1::CYCU4;1 line. Numbers in the pare

corresponding genes in the transgenic lines compared with the WT Ni.

(G) Cross-sections of the second LJs of Ni, the RNAi-CYC U4;1 line, and the pCYC U4;1::CYC U4;1 line. T

represent 0.02mm.

(H) The number of sclerenchyma cell layers in the m2 regions (shown in Figure 2G).

Error bars are SD (n > 7). Student’s t test: **p < 0.01; ***p < 0.001. See also Figure S2.
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Furthermore, its expression was also

enhanced in the pDWF4::bin2-1, but

was reduced in the pDWF4::bes1-D lines

(Figure 3B). Consistently, its expression

in the LJs was suppressed by eBL (Fig-

ure 3C). It is well known that BES1 acts

as a transcription factor in the down-

stream of the BR signaling pathway to
directly regulate gene expression involved in plant growth and

development (Sun et al., 2010; Yu et al., 2011). Therefore, we

conducted chromatin immunoprecipitation (ChIP) experiment

using BES1 antibody and found that BES1 can directly bind to

the specific promoter region of CYC U4;1 (Figures 3D and 3E),

suggesting that BRs may activate BES1 to inhibit CYC U4;1

expression to control abaxial sclerenchyma cell proliferation.

Furthermore, the transgenic lines of pDWF4::bin2-1/RNAi-

CYC U4;1 exhibited similar leaf angle with that of the RNAi-

CYC U4;1 line (Figures 3F and 3G), supporting that CYC U4;1

acts as a downstream target of BR signaling to regulate leaf

erectness.

BIN2 Promotes CYC U4;1 Activity
In addition to its expression, cyclin can also be regulated at pro-

tein levels in a cell cycle-dependent manner, which is crucial for
s of the second true leaf joint. Each developmental

ows indicate the GUS signal position. The regions

e probe (right) of CYC U4;1. The black arrow head

nthesis indicate the relative expression levels of the

he black box indicated the m2 region. Scale bars



(legend on next page)
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cell-cycle progresses in mammals (Takahashi-Yanaga and

Sasaguri, 2008) and plants (Criqui et al., 2000). The cell cycle-

dependent cyclin regulation, such as activity, subcellular locali-

zation, or stability, is closely related to its phosphorylation by

CDK, GSK3, MAPK, and/or Ser/Thr phosphatase (Welcker

et al., 2003; Minella et al., 2008; Qi et al., 2012). However, such

regulation is still largely unknown in plants (Inzé and De Veylder,

2006). BIN2 is a GSK3-like kinase and plays a critical role in BR

signaling. Interestingly, when we tested whether BIN2 could

interact with CYC U4;1, we found that CYC U4;1 can strongly

interact with AtBIN2 in vitro and in vivo (Figures 4A–4C). CYC

U4;1 can also be phosphorylated by AtBIN2 kinase (Figure 4D).

In mammals, the cyclin phosphorylated by GSK3 kinases is usu-

ally related to their degradation or nuclear export (Welcker et al.,

2003; Alt et al., 2000). However, we found that the protein level of

CYC U4;1-FLAG in the bin2-1, a gain of function mutation of a

GSK3-like kinase in Arabidopsis, was similar to that in WT (Fig-

ure S3A), and its subcellular localization was not regulated by

BIN2 kinase (Figure S3B), suggesting that the phosphorylated

modification of CYC U4;1 by BIN2 may be related to cyclin acti-

vation, which may be different from the mechanism in mammals.

We predicted the putative BIN2 kinase phosphorylation motifs

in the CYC U4;1 and found one typical phosphorylation motif

(T105S106T109) by GSK3. We then mutated each site to Ala

and constructed the mutant proteins designated as T105A,

S106A, T109A, T105AS106A, S106AT109A, T105AT109A, and

T105AS106AT109A, respectively, for BIN2 kinase assay. We

also mutated S18 and S19, which are not located in a typical

GSK3 recognition motif, as controls. We found that all of the

mutant proteins related to the motif T105S106T109 cannot be

phosphorylated by BIN2, indicating that the relevant sites might

interfere with the structure of CYC U4;1 related to the phosphor-

ylation activity by BIN2 kinase, and themutant proteins related to

S18 and S19 can still be phosphorylated by BIN2 (Figure 4E).

These phosphorylation sites T105S106T109 are in the cyclin box

domain, which may be related to its activity during cell cycle.

To test this hypothesis, we created transgenic Arabidopsis

plants overexpressing FLAG-tagged CYC U4;1 driven by the

cauliflower mosaic virus (CaMV) 35S promoter. The immunopre-

cipitated proteins from the crude extracts of theCYCU4;1-FLAG
Figure 4. BIN2 Interacts with, Phosphorylates, and Stimulates CYC U4

(A) Interaction between CYC U4;1 and BIN2 in yeast two-hybrid assays.

(B) Interaction between CYC U4;1-GST and AtBIN2-HIS in vitro.

(C) Interactions of AtBIN2 with CYC U4;1 in BiFC assays. Scale bars represent 0

(D) AtBIN2 phosphorylates CYC U4;1 in vitro. The upper shows autoradiography

(E) The phosphorylation of the various mutant proteins of CYC U4;1 by BIN2 in v

(F) Kinase assays of the immunoprecipitated CYC U4;1/CDKA;1 complexes on h

(G) The cell percentage of 4C ploidy distribution of the indicated transgenic toba

(H) The phenotypes of the transgenic lines with CYC U4;1T105AS106AT109A. The L1

(I) The protein levels of CYC U4;1-FLAG in the transgenic rice (shown in Figure 4

(J) Cross-sections of the second LJs of Ni and the CYC U4;1T105AS106AT109A line.

(K) The number of sclerenchyma cell layers in the m2 regions (shown in Figure 4

Error bars are SD (n = 10). Student’s t test: ***p < 0.001.

(L and M) The model to illustrate how BR signaling regulates rice leaf erectness

to release the transcriptional inhibition of CYC U4;1 by BES1. In the mean time,

U4;1/CDKA complex. Both together enhance abaxial sclerenchyma cell division

phosphorylation of CYC U4;1 are inhibited, which leads to the reduced abaxia

together increased lamina inclination. The gray color indicates inactive states an

See also Figure S3.
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plants with anti-FLAG gel were quantified with the CDKA, a cy-

clin-dependent kinase in the G1-to-S and G2-to-M transitions

(Nowack et al., 2012) (Figure 4F). The immunoprecipitated CYC

U4;1/CDKA complex from the CYC U4;1 transgenic plants

without bikinin (a specific inhibitor of GSK3-like kinases) treat-

ment had higher kinase activity (assayed using histone H1 as a

substrate) than that from plants treated with 30 mM bikinin (De

Rybel et al., 2009) (Figure 4F).

To explore the effect of the CYCU4;1 phosphorylation by BIN2

on cell-cycle regulation, we generated BY-2 suspension cell

lines transformed with 35S::CYC U4;1, pAtBIN2::AtBIN2, and

35S::CYC U4;1-GFP/pAtBIN2::AtBIN2-FLAG respectively. DNA

content analysis indicated that the 35S::CYC U4;1 BY-2 cells

contained more 4C DNA than the WT. Interestingly, the

35S::CYC U4;1/pAtBIN2::AtBIN2 cell lines had higher 4C DNA

content than the corresponding single transgenic lines (Fig-

ure 4G), which suggests that CYC U4;1 phosphorylated by

BIN2 kinase can enhance its activity to promote 4CDNA content.

Furthermore, we generated the transgenic rice with the mutant

gene CYC U4;1T105AS106AT109A to determine the function of

phosphorylation in vivo. The results indicated that the enlarged

leaf angle of transgenic rice is positively related with the CYC

U4;1T105AS106AT109A protein level (Figures 4H and 4I). The pCYC

U4::CYC 4;1T105AS106AT109A rice had more expanded m1 paren-

chyma cells and had one to two layers of m2 sclerenchyma cells

(Figures 4J and 4K), which is similar to the RNAi-CYC U4;1 lines.

These results suggest that the function of the mutant CYC

U4;1T105AS106AT109A protein is weaker than the WT CYC U4;1

protein.

These data support the regulation mechanism of leaf erect-

ness by BRs. When BR signaling is attenuated in LJs, the active

BIN2 can inhibit BES1 activity to release the inhibitory effect on

CYC U4;1 transcription, and the active BIN2 can also phosphor-

ylate CYC U4;1 to enhance the activity of CYC U4;1/CDKA com-

plex, which accelerate abaxial sclerenchyma cell proliferation,

resulting in erect leaves (Figure 4L). In contrast, the enhanced

BR signaling is accompanied by the adaxial cell expansion and

the decreased abaxial sclerenchyma cell number to enhance

lamina inclination (Figure 4M). Although it is reported that cyclin

gene expression can bemodulated by plant growth factors, such
;1 Activity

.1 mm.

, and the bottom shows Coommassi Blue staining.

itro.

istone H1.

cco BY-2 suspension cell lines.

–L6 indicated the independent T1 transgenic lines.

H).

The black arrowheads indicate sclerenchyma cells in m2 region.

J).

through CYC U4;1. (L) Without BR, the active BIN2 can phosphorylate BES1

the active BIN2 kinase can also phosphorylate CYC U4;1 to activate the CYC

and leaf erectness. (M) With the enhanced BR signaling, the transcription and

l sclerenchyma cell proliferation and the enlarged adaxial cells in m1. These

d the black color indicates active states.
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as cytokinins, auxins, BRs, sucrose, or gibberellins, the regula-

tion of cyclin activation is barely reported (Inzé and De Veylder,

2006). Thus, this study provides significant insight into the direct

regulation of cyclin activation by BR signaling. In addition, the

cellular and molecular mechanisms of BR controlling leaf erect-

ness through CYC U4;1 provide a way to improve the yield of the

major cereal crop.

The BR-regulated plant developmental processes are medi-

ated through cell division, cell expansion, and cell differentiation,

but most of these studies suggested that BR signaling mainly

promotes cell division and tissue-specific cell differentiation dur-

ing the root and leaf development (Hacham et al., 2011; Gonzá-

lez-Garcı́a et al., 2011; Miyazawa et al., 2003; Zhiponova et al.,

2013). Our study provided strong evidence to support that BR

signaling inhibits abaxial sclerenchyma cell division in LJs by

regulating expression and activity of a tissue-specific cyclin

CYC U4;1. A large number of cyclin genes are present in plants,

and their tissue-specific regulation by various signaling may play

important role in regulating diverse developmental processes

(Wang et al., 2004).

SomeBRsignaling components in rice hadbeencharacterized

from the orthologs of the knownBR signaling components inAra-

bidopsis (Zhang et al., 2014), and the function ofAtBIN2/OsGSK2

and AtBES1/OsBZR1 was demonstrated to be conserved in

the rice and Arabidopsis (Koh et al., 2007; Bai et al., 2007; Tong

et al., 2012). In this study, the LJ phenotypes of the pDWF4::

Atbin2-1 and the pDWF4::Atbes1-D transgenic rice are very

similar to that of pOsGSK2::OsGSK2-1 (rice ortholog of AtBIN2)

and pOsBZR1::Osbzr1-D (rice ortholog of AtBES1) transgenic

rice, respectively (Figure S3C). In addition, we found that the

OsGSK2 can interact with CYC U4 in yeast (Figure S3D), and

the phenotype of the CYC U4;1T105AS106AT109A transgenic rice

supports that the phosphorylation sites by AtBIN2 are conserved

in rice. Therefore, it is very likely that the regulation ofAtBIN2 and

AtBES1 on CYC U4;1 should be conserved in rice.

In this study, we found that the CYC U4;1-RNAi rice exhibited

the large leaf angle with the increased adaxial cell size in LJs,

which is similar to BR treatment, and also that the phenotype

ofCYCU4;1 transgenic rice is similar to the BR-insensitive trans-

genic line pDWF4::bin2-1. We speculated that CYC U4;1 might

also regulate the BR signaling, which is similar to the mechanism

of the Wnt signaling regulated by cyclin Y (Davidson and Niehrs,

2010). Therefore, it is still needed to explore the mechanisms

how CYC U4;1 regulates other aspects of rice development,

such as the dwarfism caused by the CYC U4;1 overexpression.

EXPERIMENTAL PROCEDURES

Plant Materials and Growth Conditions

The rice materials include the BR-deficient mutant d2-2 (Hong et al., 2003), the

BR-insensitive rice mutant d61-1 (Yamamuro et al., 2000), and their WT back-

ground T65 (Oryza sativa L. cv. Taichung 65). The BR-insensitive mutant bin2-1

is a gain-of-function mutation (E263K) of BIN2 (Li et al., 2001). Ni was used as

the host for all the rice transformation. The Arabidopsis ecotype Col-0 was

used for transformation. Generation of transgenic lines was described in the

Supplemental Experimental Procedures.

Microarray Experiments

Total RNA was extracted from the leaf blades and the LJs of 3-week-old Ni

seedlings for microarray analysis. The detailed procedure was described in

the Supplemental Experimental Procedures.
Deve
Paraffin Sections

Rice LJs were fixed in FAA solution (50% ethanol, 5% acetic acid, and 10%

formaldehyde in water), dehydrated in a graded butanol/ethanol series, and

embedded in paraffin (Leica) (Ye et al., 2010). Microtome sections (7 mm)

were applied onto poly-L-lysine-coated slides. The sections were de-paraffi-

nized in xylene, dehydrated through a graded ethanol series, and stained

with Safranin O/Fast Green staining. The sections were observed under a light

microscope (Olympus, Japan).

In Vitro Kinase Assay

The ORFs of AtBIN2, CYC U4;1 were cloned into pGEX4T-1 vector, respec-

tively, and the recombinant fusion proteins were expressed in E. coli (BL21)

and purified with Glutathione Resin. The detailed procedure was described

in the Supplemental Experimental Procedures.

Synchronization of Cell Culture and Flow Cytometric Analysis

Synchronization of rice calli and BY-2 suspension cells were performed as

described previously (Qi et al., 2012; Kumagai-Sano et al., 2006). The detailed

procedure was described in the Supplemental Experimental Procedures.

Kinase Assays for H1

Total protein was extracted from the CYC U4;1-OE seedlings (Arabidopsis)

grown on the 1/2MSmediumwith or without 30 mMBikinin, and the protein ex-

tracts were immunoprecipitated with the FLAG affinity gel; the immunoprecip-

itates (IPs) were examined by immunoblotting with the anti-CDKA;1 antibody.

The IPs were subjected to kinase assays using histone H1 as the substrate

(Cockcroft et al., 2000). Because BIN2 can phosphorylate the H1, we added

the 50 mM Bikinin in the both kinase assay incubation of the IPs and H1 to

inhibit the activity of the co-immunoprecipitated BIN2.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at http://dx.doi.

org/10.1016/j.devcel.2015.05.019.
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Inzé, D., and De Veylder, L. (2006). Cell cycle regulation in plant development.

Annu. Rev. Genet. 40, 77–105.

Koh, S., Lee, S.C., Kim, M.K., Koh, J.H., Lee, S., An, G., Choe, S., and Kim,

S.R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue

of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses.

Plant Mol. Biol. 65, 453–466.

Kumagai-Sano, F., Hayashi, T., Sano, T., and Hasezawa, S. (2006). Cell cycle

synchronization of tobacco BY-2 cells. Nat. Protoc. 1, 2621–2627.

Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a

GSK3/SHAGGY-like kinase. Science 295, 1299–1301.

Li, J., Nam, K.H., Vafeados, D., and Chory, J. (2001). BIN2, a new brassinos-

teroid-insensitive locus in Arabidopsis. Plant Physiol. 127, 14–22.

Li, Y., Fan, C., Xing, Y., Jiang, Y., Luo, L., Sun, L., Shao, D., Xu, C., Li, X., Xiao,

J., et al. (2011). Natural variation in GS5 plays an important role in regulating

grain size and yield in rice. Nat. Genet. 43, 1266–1269.

Minella, A.C., Loeb, K.R., Knecht, A., Welcker, M., Varnum-Finney, B.J.,

Bernstein, I.D., Roberts, J.M., and Clurman, B.E. (2008). Cyclin E phosphory-

lation regulates cell proliferation in hematopoietic and epithelial lineages

in vivo. Genes Dev. 22, 1677–1689.

Miyazawa, Y., Nakajima, N., Abe, T., Sakai, A., Fujioka, S., Kawano, S.,

Kuroiwa, T., and Yoshida, S. (2003). Activation of cell proliferation by brassino-

lide application in tobacco BY-2 cells: effects of brassinolide on cell multiplica-

tion, cell-cycle-related gene expression, and organellar DNA contents. J. Exp.

Bot. 54, 2669–2678.

Ning, J., Zhang, B., Wang, N., Zhou, Y., and Xiong, L. (2011). Increased leaf

angle1, a Raf-like MAPKKK that interacts with a nuclear protein family, regu-

lates mechanical tissue formation in the Lamina joint of rice. Plant Cell 23,

4334–4347.

Nowack, M.K., Harashima, H., Dissmeyer, N., Zhao, X., Bouyer, D., Weimer,

A.K., De Winter, F., Yang, F., and Schnittger, A. (2012). Genetic framework

of cyclin-dependent kinase function in Arabidopsis. Dev. Cell 22, 1030–1040.

Qi, P., Lin, Y.S., Song, X.J., Shen, J.B., Huang, W., Shan, J.X., Zhu, M.Z.,

Jiang, L., Gao, J.P., and Lin, H.X. (2012). The novel quantitative trait locus
228 Developmental Cell 34, 220–228, July 27, 2015 ª2015 Elsevier In
GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res.

22, 1666–1680.

Sakamoto, T. (2006). Phytohormones and rice crop yield: strategies and op-

portunities for genetic improvement. Transgenic Res. 15, 399–404.

Sakamoto, T., Morinaka, Y., Ohnishi, T., Sunohara, H., Fujioka, S., Ueguchi-

Tanaka, M., Mizutani, M., Sakata, K., Takatsuto, S., Yoshida, S., et al.

(2006). Erect leaves caused by brassinosteroid deficiency increase biomass

production and grain yield in rice. Nat. Biotechnol. 24, 105–109.
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