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ABSTRACT

Invasive species are one of the foremost damaging environmental problems for
biodiversity and conservation, and can affect human health and man-made structures.
They pose a great challenge for pest management, with little known about their control
and few available success stories. Many crustacean species are invasive and can affect
both biodiversity and aquaculture. Controlling invasive Crustacea is a complex and
arduous process, but success could lead to increased environmental protection and
conservation. Invasive Crustacea also comprise a significant pathway for the introduction
of invasive pathogens. If these invaders carry pathogens, parasites or commensals to a
new site they may threaten native species. Alternatively, pathogens can control their
invasive host and could be utilised in a targeted biological control effort as a biocontrol

agent.

Looking specifically at one species of invasive brachyuran crab (Carcinus maenas)
collected from the UK, Faroes Islands and Atlantic Canada, and several species of
invasive amphipod from the UK and Poland, | explore which groups of microorganisms
are carried alongside invasions, and if any could be used as biocontrol agents or whether
they pose a threat to native wildlife.

This thesis involves wide-scale screening of Carcinus maenas and several amphipod
species, identifying a range of metazoans, fungi, protozoa, bacteria and viruses; many
new to science. Taxonomic descriptions are provided for previously unknown taxa:
Parahepatospora carcini; Cucumispora ornata; Cucumispora roeselii; and
Aquarickettsiella crustaci. The application of metagenomics to pathogen invasion
ecology is also explored, determining that it can be used as an early screening system
to detect rare and/or asymptomatic microbial associations. Finally, | used experimental
systems to assess the impact of pathogens carried by Dikerogammarus haemobaphes
upon both itself and alternate host species (Dikerogammarus villosus and Gammarus
pulex), identifying that C. ornata can infect native species and decrease their chance of

survival.

Overall this thesis describes a research process following through three main steps: i)
invasive pathogen detection, ii) taxonomic identification, and iii) host range and
pathological risk assessment and impact. Screening invasive and non-native hosts for
pathogens is recommended for invasive species entering the UK, to provide a fast and

informed risk assessment process for hazardous hitchhiking microbes.
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CHAPTER 1

Introduction: Invasive crustaceans and their pathogens
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1.1. Outline

Biological invasions can lead to changes in host-parasite relationships (Dunn and
Hatcher, 2015). Carrying, losing, or gaining pathogenic and parasitic hitchhikers can alter
the invasive potential of non-native species (Torchin et al. 2003; Vilcinskas, 2015) and
can drive changes in the invaded community (Dunn and Hatcher, 2015). The pathogens
carried by invasive species have the potential to infect and cause harm to native wildlife
(Roy et al. 2016), but alternatively can have the potential to control the invasive

population through biological control (Messing and Wright, 2006).

In this chapter | review the literature on invasive crustaceans to identify invasive
pathogens (pathogens carried by invasive species) that could cause wildlife disease,
and/or biological agents that could be utilised in integrated pest management to control
their host. Herein | use the terms: pathogen (infective viral, bacterial or unicellular agent
that reduces survival and host health); parasite (infective eukaryotic agent that reduces
host health and may induce mortality); commensal (epibiont or ectobiont that does not
increase or decrease host health); and mutualist (a symbiont that increases host health
via a given mechanism), which all come under the primary term ‘symbiont’. Firstly |
explore our current knowledge of the hitchhikers carried by invasive and non-native
crustaceans and the legislation surrounding the discovery, control and risk assessment
of these symbionts. Secondly, | explore the range of control options currently tried and
tested for crustaceans, focussing primarily on the potential for biological control. | then
introduce the study systems used throughout this thesis and explore the available
pathogen-discovery techniques. Finally | lay out the study areas covered in each chapter.

Broadly, this thesis follows a three part process, exploring firstly the broad-scale
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screening of invasive Crustacea, secondly the taxonomic description of those
pathogens, parasites and commensals identified, and ending with the experimental
assessment of whether those pathogens act as biological control agents for the invasive

host, or whether they pose a greater threat as invasive pathogens.

1.2. Invasive Crustacea and their hidden entourage of parasites,

pathogens and commensal hitchhikers

1.2.1. Invasive aquatic invertebrates and their parasites

Invasive species success has increased due to human activity (Hulme, 2009). In recent
decades, biologists surveying invasions have come to realise the importance of
combating invasive alien species (IAS) and their pathogens, which constitute a major
threat to natural biodiversity (Dunn and Hatcher, 2015; Hulme et al. 2015). IAS can affect
both the environmental integrity and ecosystem services (PySek and Richardson, 2010),
and the associated cost of repair can be significant, with high costs (>$1bn USD)
associated with maintaining and re-constructing invaded areas (e.g. economic impact of

invasive species in the USA: Pimental et al. 2005).

The success of an invader can depend on an array of “invasive” characteristics, for
example, increased competitive capability (Human and Gordon, 1996); beneficial
morphological features (e.g. size) (Roy et al. 2002); and behaviour (competitive,
predatory, etc.) (Sol et al. 2002). Other factors can also be involved with an invasion

dynamic; one being the presence or absence of parasites and pathogens.

In some cases, invaders lose their parasites and pathogens along their invasion pathway
(via ‘enemy release’), increasing their fithess and competitive capability (Colautti et al.
2004). Alternatively, parasites and pathogens can infect susceptible native species and
persist in novel locations and invasive and native populations (spill-over and spill-back)
(Kelly et al. 2009). Transporting pathogens along an invasion route can result in the
infection of susceptible native species and thus remove competition (e.g. parasite
mediated competition: Prenter et al. 2004) or the parasite could provide the invader with
a benefit, increasing its invasive success (e.g. Fibrillanosema crangonictidae and the
invasion success of Crangonyx sp.: Hatcher et al. 1999; Slothouber-Galbreath et al.
2004). In some cases, when an invasive propagule (sub-set of invasive individuals)
maintains an infection that is detrimental to the invasive host, it may result in the control
of that invasive population and lower the impact of the invader via biological control
(Hajek and Delalibera, 2010).



The invasive aquatic invertebrates (IAls) comprise a group of invaders that include all
freshwater, marine and semi-aquatic invertebrate species that have been termed
invasive across the globe by online databases. These databases provide data on
invaders, including: their country of origin; invasion site(s); invasion pathway(s); and their
relative impact rating (Luque et al. 2014), avoiding the need to trawl scientific literature
(Ricciardi et al. 2000). Compiling data in an accessible fashion can help predict future
invasions (Roy et al. 2014b), aid control and eradication programmes, support policy
development, aid citizen science, and identify species that deserve greater research
attention based on their environmental and health-based impacts (Will et al. 2015). The
future of invasive species databases will benefit from the creation of INVASIVESNET;
an online, and all-encompassing, database that will coalesce pre-existing databases and
information into one accessible place (Lucy et al. 2016).

Using three of the available invasive species databases [Global Invasive Species
Database (GISD), the European Alien Species Information Network (EASIN) and the
Aquatic Alien Species Database (AquaNIS)] a list of 1Als has been compiled and includes
1054 species (Appendix Table 1.1). GISD comprises the main global database for
invasive species; detailing their distribution across the globe (Appendix Table 1.2;
Fig.1.1a-b). EASIN and AquaNIS are European focussed and catalogue invaders
located in, and threatening, the countries of the EU. The IAls highlighted using this
method is dominated by crustaceans, molluscs and annelids (Fig. 1.2). Interestingly, few
IAls were universally highlighted on all three databases (n=22/1054) and each database
provided differing numbers of IAls (GISD=63, EASIN=896, AquaNIS=282). This
suggests there is a lack of communication between databases and the development of
one main database, as discussed previously, will greatly benefit the field of invasion
biology (Ricciardi et al. 2000; Faulkner et al. 2014; Luque et al. 2014; Roy et al. 2014a,;
Will et al. 2015; Lucy et al. 2016).



Figure 1.1: European and global numbers of IAls listed on the Global Invasive Species Database.

Countries without a number do not have IAls as a listed priority.

Echinoderms
Poriferans
Insects
Sipunculans
Eumetazoans
Nematodes
Pantopods
Other

Figure 1.2: A breakdown of the
taxonomic position of the 1054 IAls
obtained from three invasive species
databases (GISD; EASIN; AquaNIS),
focussing primarily on the Crustacea.
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Of the 1054 |Als catalogued by the various databases, 324 are crustaceans. Invasive
Crustacea form the most numerous group within the IAls and have been shown to impact
upon biodiversity (MacNeil et al. 2013), ecosystem services and species diversity
(MacNeil et al. 2013) and the environment (Dittel and Epifanio, 2009). By far, the damage
to biodiversity is the most well understood consequence of crustacean invasion, with
some key examples including the global European shore crab (Carcinus maenas)
invasion (Darling et al. 2008), and the killer shrimp (Dikerogammarus villosus) invasion
of the UK (MacNeil et al. 2013). Preservation of biodiversity is crucial to maintain the
health of ecosystems and their services, whereby invasions are considered one of the

most devastating processes to hinder conservation (McGeoch et al. 2016).

Based on their relative risk and impact, some crustacean species have been the focus
of intense research activity for various reasons, where others are little researched.
Carcinus maenas, for example, is utilised as a model organism for
genetic/developmental studies (e.g. Verbruggen et al. 2015), ecotoxicology studies (e.qg.
Rodrigues and Pardal, 2014), parasitology studies (e.g. Stentiford and Feist, 2005),
behavioural studies (Sneddon et al. 2000), and much more. Other invasive crustacean
species such as the marine Brachyuran, Actumnus globulus, have received little
attention aside from detection at invasion sites (Galil et al. 2008). This difference in
research effort is reflected in the disease profiling of many invasive crustaceans.
Diseases of invasive organisms (invasive pathogens/wildlife pathogens) are becoming
recognised as an area of investigation for invasion biologists as we begin to recognise

the threat posed to human and animal welfare (Roy et al. 2016).

1.2.2. Invasive crustaceans and their invasive pathogens

It has been highlighted that parasites in invasive species are heavily understudied (Roy
et al. 2016). A clear understanding of the parasites and pathogens carried by IAls is
imperative to effectively assess the risk of invasive pathogens to native biodiversity,
humans and livestock. Additionally, further knowledge of these pathogens allows for a
true assessment of potential biological control agents. Here, invasive Crustacea are
utilised as an example study-group to explore what is currently known about the
pathogen profiles of an invasive group of organisms. This data are based on a review of
the literature, and provides an insight into where the knowledge gaps are in invasive

crustacean pathobiology.

The 324 invasive Crustacea highlighted from the 1054 1Als (Appendix Table 1.1) split

into seven broad groups: Copepods; Crabs; Shrimp; Amphipods; Isopods; Barnacles;
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and Others (Fig. 1.2). Of these crustacean species 31.5% (102/324) have one or more
documented associations with pathogenic, parasitic, commensal, or symbiotic
organisms (Appendix Table 1.3). Adversely this indicates that 68.5% (222/324) of
invasive Crustacea have no known parasitic or pathogenic associations — possibly

reflecting a lack of research effort in some species.

Molluscs (<1%)

Arachnids (<1%)

Unknown (2%)

Fungi (5%)

Algae (<1%) —

Crustaceq (9%)

Figure 1.3: The relative number of different taxonomic groups found to associate with invasive

crustaceans (n=324) from their native and invasive territories. Each broad grouping (microsporidia, viruses,
etc.) are equipped with a percentage relative to the other taxa observed across the invasive crustaceans. In
this case the ‘Helminth’ group refers to worm or worm-like parasites, such as nematodes, acanthocephala

and trematodes.

Cumulatively, the invasive crustaceans have been associated with at least 391

symbionts that are taxonomically identified to genus level or higher (Appendix Table 1.3).
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Ignoring the need for full taxonomic description, this number increases to at least 529
individual hitchhikers that infect, or are carried by, the invasive crustaceans (Appendix
Table 1.3) (Fig. 1.3). In total, 670 associations have been made between the invasive

crustacean hosts and a pathogen, parasite, commensal or mutualist.

Some invaders are difficult to attribute a clear total number of hitchhikers because they
have been involved with large scale metagenomics and eDNA (environmental DNA)
studies that detect a large diversity of microbial presence, such as the biofilm analysis of
the American lobster, Homarus americanus (Meres et al. 2012). A certain level of
scepticism must be taken in cases such as these due the possibility of environmental
contamination or improper categorisation of gene sequence data (Chistoserdova, 2014).
Despite this, metagenomics studies are at the forefront of rapidly assessing the
microbiome of organisms, and applications of this technique would greatly increase our
knowledge of the hidden organisms hitchhiking upon or within invasive Crustacea.

The most common invasive crustaceans are copepods (23.5% of invasive crustaceans),
however this group plays host to only 39 known symbionts (Appendix Table 1.3). The
group with the largest number of symbionts is the crabs (18.8% of invasive crustaceans),
which are host to 240 symbionts. Shrimp and amphipods are also relatively well
researched with 132 and 93 associations documented respectively. The isopods and
barnacles have fewer associations, with only 32 and 5 symbionts documented
respectively. Lobsters, despite only 6 being recognised as invasive species, have been
well researched and have been found with 35 associations, which increases to 205
associations when large scale DNA studies are taken into account. Certain species have
been the focus of many parasitological studies, such as the European shore crab, C.
maenas, which has ~72 documented parasites, pathogens and commensals, many with

full taxonomic descriptions (Appendix Table 1.3).

Some of the most devastating pathogens for wildlife and aquaculture are associated with
Crustacea and several of these are linked to invasive counterparts, which have the
potential to transmit them to novel locations where they could find susceptible hosts.
Aphanomyces astaci is one of the greatest risks for endangered crayfish conservation
and can be transmitted by several invasive crayfish species, within which the pathogen
is asymptomatic (Alderman, 1990; Kozubikova and Petrusek, 2009). White Spot
Syndrome Virus (WSSV) constitutes the worst disease to hit crustacean aquaculture;
holding both a high host range and low host survival rate, and is known to infect 7.4% of
invasive crustaceans (Stentiford et al. 2012; Stentiford et al. 2017; Appendix Table 1.3).

Other pathogens, such as Vibrio cholerae, constitute a human health risk and is carried



by several invasive crustaceans, particularly invasive copepods (Daszak et al. 2000;
Appendix Table 1.3).

Invasive groups such as the barnacles, isopods and copepods are little researched in
comparison to some of the larger invaders such as crabs, shrimp and lobsters, however
they still hold the ability of carrying invasive pathogens. Carcinus maenas is host to a
conservative 72 organisms that could act as hitchhikers and travel to novel locations.
Homarus americanus has 29 potential hitchhikers, however this increases to 199 if you
include the large number of bacterial species identified through DNA sequence studies
(Meres et al. 2012). If we assume that each invasive crustacean has the potential to carry
a similar number of hitchhikers as those currently known for C. maenas to novel invasion
sites, the 324 invasive crustaceans listed by invasive species databases may have the
potential to carry 23,328 taxonomically different symbionts. This estimation touches upon
how little we know about invasive pathogen diversity, and how much of a drawback this
is to current research efforts to understand the risk associated with invasive pathogens
(Roy et al. 2016). Based on available literature, we know of 670 observations of 529
supposedly different parasites, pathogens, commensals or symbionts (this could be the
same species or different) across the invasive Crustacea, which accounts for only 2.9%
of the above estimate. All of these hitchhikers would not necessarily have a negative
impact at an invasion site, however an understanding of this diversity requires further
research to recognise these species taxonomically and to assess their risk to native
wildlife, aquaculture and human health, or their possible benefit for biologically controlling

an invasive host.

1.3. Policy and the invasive pathogen

Human and livestock disease control, biosecurity and prevention is monitored by a range
of different regulatory bodies like the World Health Organisation (WHO) and the World
Organisation for Animal Health (OIE), which provide lists of diseases that must be
reported if diagnosed (Stentiford et al. 2014). For invaders that are strongly associated
with human disease, WHO often provide detailed responses such as the global vector
control response (www.who.int/malaria/areas/vector_control/Draft-WHO-GVCR-2017-
2030.pdf?ua=1) and develop control strategies for the eradication of disease vectors;

some are invasive species (Mendis et al. 2009).

The OIE provides a similar function but for animal diseases of aquatic and terrestrial

livestock involved in trade, and has the main aim to increase food security (Stentiford et

al. 2014). One example includes the Aquatic animal health regulations (EU directive:
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200688) for England and Wales, which outlines basic responses to wildlife disease
outbreaks (such as Chitrid fungus, crayfish plague, or white spot syndrome virus)
(associated with high wildlife mortality), which can be associated with invasive species.
In conservation, few regulatory bodies are involved with the prevention and control of
diseases that impact upon wildlife, and no regulatory body currently exists to solely serve
this purpose (Dunn and Hatcher, 2015; Roy et al. 2016). Some invasive pathogens have
begun to be listed alongside invasive hosts on invasive species databases (e.g. GISD
lists the oomycete pathogen A. astaci (crayfish plague) in addition to the host, P.
leniusculus); constituting a step forward for recognition of invasive pathogens as discrete

IAS candidates, irrespective of the host that carries them.

The policy involved with invasive species is gaining a foothold, however it remains
fragmented in places, particularly where invasive pathogens are concerned (Dunn and
Hatcher, 2015; Roy et al. 2016). Agencies in the UK like the Department for Environment,
Food and Rural Affairs (Defra) have priorities in the field of invasion biology, but often
this is from the perspective of an invasive host, not the invasive pathogen. Research
institutes such as the Centre for environment, fisheries and aquaculture sciences (Cefas)
have taken to identifying the pathogens of aquatic invasive species (Stentiford et al.
2011; Bojko et al. 2013; Chapter 5). Early screening for newly identified invasive
populations would be a crucial step forward to better understand the risk posed by

invasive and non-native species and their pathogens (Chapter 6).

1.4. Control and management of aquatic crustaceans

Across the globe, food production and conservation efforts are hindered by pest species
and disease causing agents. In agriculture and aquaculture, many species damage
crops and livestock through consumption (Oliveira et al. 2014), competition (Gallandt
and Weiner, 2007), or by vectoring disease (Lambin et al. 2010). This in turn affects the
local and global economy through reduction in yield (Savary et al. 2012), health costs

and loss of biodiversity (Roy et al. 2014).

Many industrial and domestic activities can be impacted by crustacean pests. Crop
production and horticulture in terrestrial environments are hindered by terrestrial
crustacean consumers (Gratwick, 1992; Martinez et al. 2014); some aquaculture
industries produce lower yields because of pest crustaceans (Nicotri, 1977; Dumbauld
et al. 2006); households can be invaded and compromised by pest and parasite
infestations; and water purification and irrigation services can suffer from their
colonisation (Bichai et al. 2008). In aquatic environments specifically, several pests thrive
9



by taking advantage of aquatic crops, livestock and harvestable food items. Examples
include the parasitic salmon louse (Lepeophtheirus salmonis) that elicits disease in
farmed and wild species of fish (Tully and Nolan, 2002); and the burrowing shrimp
(Neotrypaea californiensis and Upogebia pugettensis) that impact heavily on oyster
aquaculture (Dumbauld et al. 2006). Controlling these industrial and disease-causing

pests is imperative to protect aguaculture industries world-wide.

Crustacea are additionally hazardous to wild environments as invasive species (Lovell
et al. 2006). Invasive Crustacea can cause damage when their populations become
established, grow and compete with native species: impacting upon the environment,
ecosystems, and biodiversity (Hanfling et al. 2011). This in turn can have social and
economic impacts as ecosystem services are compromised (Stebbing et al. 2015).
Species that become invasive tend to possess certain ‘characteristics’ that increase their
capability to become a substantial issue in novel environments (Kolar and Lodge, 2001).
Each successful invader poses different threats to native ecology and imposes unique
circumstances that must be considered before applying control (Allendorf and Lundquist,
2003). Such unique circumstances include: habitat choice; niche occupation; genetics;
and behaviour — each of which can be exploited to increase the chance of successful
control (Hanfling et al. 2011). Invasions can have varied impacts upon the economy and
may require costly mitigation measures for their control and to maintain affected
environments (Lovell et al. 2006). The invasive European shore crab (Carcinus maenas)
constitutes a high-profile global invader, and aquaculture pest, that has been found to
heavily impact invaded sites through decreasing biodiversity and predating on
aguaculture species (Smith et al. 1955; Walton et al. 2002). Several invasive crustaceans
have been observed to cause indirect damage to biodiversity by transporting pathogens
that subsequently infect native species (Roy et al. 2016); one example is the non-native
demon shrimp (Dikerogammarus haemobaphes) transporting microsporidian pathogens
to the UK (Chapter 5).
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Impact:

The primary impact of invasive Crustacea is a decrease in biodiversity, This
is either directly, through competition or indirectly through the introduction of
invasive pathogens such as crayfish plague, Aphanomyces astaci.

Current control:

Physical/mechanical control is often the first resort to limit crustacean
population growth within the vulnerable environment. Some key examples of
chemical control and biological control (using predators) are available for
crayfish. In one instance integrated pest management has been implemented

to control crayfish populations.

Future control:

The future of invasive crustacean control relies on the specificity of the
control agent. Biological control and chemical control can both provide a
specific means of controlling Crustacea, with a better understanding of their
biology and available pathogens.

Crustacean h N
Control :

Parasitic Crustacea

Impact:

Crustacean pests limit the prod'ﬁqtion ImpaCt:
capability of aquaculture farms'by Parasitic Crustacea have the greatest

either consuming or damaging impact on fish and bivalve aquaculture
livestock and introducing disease. and their presence can predispose the

host to opportunistic infections that can
Current control:

result in mortality and yield loss.
The control of aquaculture pests relies
heavily on the use of general chemical

agents that often harm the surrounding
biodiversity.

Future control:

The development of specific agents
would benefit this field of control,
allowing the user to target the pest
without damaging co-habiting fauna.
Utilising generalised chemicals in
combination with physical control
efforts in an integrate approach should
be further developed.

Current control:

This field relies heavily on mechanical
removal of lice and generalised
chemical use. Predator-based
biocontrol is now a proven control
option.

Future control:

This field has begun the development of
specific technologies (such as RNAI)
and laser guided mechanical systems to
control sea lice. Better understanding of
control systems that can be given
through the host would benefit this field.

Figure 1.4: The impact, current control efforts and future potential for control outlined for the three

crustacean pest groups.
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Preventing the introduction of non-native crustaceans, and controlling established
invaders, provides a difficult task. The applications of management measures, either to
control invasive species already established or to prevent their introduction and spread,
is a complex and difficult process; with management required to deal with a variety of
invasive organisms, and their pathogens, travelling via multiple pathways and invading
a wide array of environments (Dunn and Hatcher, 2015). Invasive species management
requires input from ecologists, social scientists, resource managers, and economists
(Simberloff et al. 2013), to develop and implement the control and eradication of invasive

species, which is often complicated and open to scrutiny from many perspectives.

The concept of control in these scenarios provides an interesting and highly policy-
relevant research effort (Fig. 1.4). As novel technologies, discoveries, and further
understanding of biological mechanisms come about, the potential for crustacean control
becomes more feasible and will begin to overtake the current dependence on chemical
and physical control methods (Burridge et al. 2010). This next section looks at where
current science has advanced in the field of controlling and managing aquatic Crustacea,
specifically: industrial crustacean pests; disease-causing crustacean pests; and invasive
crustacean pests. Current methods of control are discussed in addition to how new
technologies and recent findings might benefit this field in the future.

1.4.1. Controlling aquatic crustacean pests

Aquaculture and wild fisheries provide a range of species, including: plants and algae;
amphibians; fish; cnidarians; echinoderms; crustaceans; molluscs; and rotifers. The
organisms harvested from these methods serve several purposes, usually as a food
source (for human or animal consumption) but some provide an alternate purpose, such
as farming coral(s) for conservation efforts (Delbeek, 2001), growing algae for gas (Ho,
O2) production (Melis and Happe, 2001), or breeding species for sale as ornamental

animals (Andrews, 1990). Each can suffer from various crustacean pests.

In aquaculture, a wide range of crustacean pests are known to lower yield through
consumption/predation of farmed species or wild harvest produce; many affecting
aquatic crops (such as the herbivorous isopod: Paridotea reticulata) or sessile molluscs
(such as burrowing shrimp) (Nicotri, 1977; Dumbauld et al. 2006). Many aquaculture
efforts must pay a large amount to preserve their industry from pests by buying control

agents and implementing biosecurity (Pillay and Kutty, 2005).

Copepods are common pests that impact upon rotifer aquaculture (Lubzens, 1987) and

have recently been recorded to impact Chinese mitten crab (Eirocheir sinensis)
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aquaculture (Zhao et al. 2012). The control of these pests is often approached from a
biosecurity perspective, via the use of copepod-free water to prevent the problem arising,
however some generalised chemical biocides have been tested for the removal of
copepods in-situ (Zhao et al. 2012). “Pests-cleaner”, (active constituent: avermectin) and
beta-cypermethrin are reported by Zhao et al (2012) to have crustacicidal properties, but
“pests-cleaner” was identified as the better treatment of the two for crab aquaculture
despite both avermectin and beta-cypermethrin affecting crab zoea growth (Zhao et al.
2012).

The seaweed and algal growth industry suffers from crustacean pests such as the
isopod, Idotea baltica and the amphipod, Ampithoe valida (Nicotri, 1977; Smit et al.
2003). At high densities, these pests lowered algal growth by grazing (Nicotri, 1977).
Another isopod pest, Paridotea reticulata, acts as a macro-algal grazer at high density
and affects the growth of cultured Gracilaria gracilis. It is noted that this species can be
beneficial in low numbers but high density populations result in P. reticulata becoming a
significant pest (Smit et al. 2003). Attempts to control this pest have been made in-situ
(Smit et al. 2003). Treatment was a simple process of submersion in freshwater for a 3
hour period, resulting in the P. reticulata being removed and the algal stock unharmed
(Smit et al. 2003).

Burrowing shrimp (Neotrypaea californiensis and Upogebia pugettensis) have been
shown to affect cultured and wild populations of sea grass as well as farmed oysters,
resulting in a bid to develop a control regimen (Dumbauld et al. 2006). Carbaryl, a biocide
used for over 40 years in the American oyster aquaculture industry, has been shown to
be affective at high concentration (96% pest mortality) at reducing the numbers of
burrowing shrimp but due to non-target effects on the native fauna, new methods are
required to reduce environmental impact (Dumbauld et al. 2006). This resulting system
consisted of a “decision tree” based on a variety of factors (bed type, ecology, etc.) that
aided in the development and implementation of an integrated control process, including

the use of carbaryl alongside particular physical control methods (Dumbauld et al. 2006).

1.4.2. Controlling disease-causing, parasitic Crustacea

The majority of biosecurity and control effort appears to be focussed on parasitic
Crustacea, such as fish lice (Copepoda), which heavily impact piscine aquaculture
(Costello, 2009). Control of fish lice is highly diverse and reaches into new technologies

to forward the field of pest control.
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Several crustacean species have specialised to become parasites. The most well-known
examples include: ectoparasitic fish lice (Copepoda) (Johnson et al. 2004; Costello,
2006); copepods that dwell within the gut of farmed molluscs (Rayyan et al. 2004);
parasitic isopods, such as Cymothoa sp., which infest wild and aguaculture fish species
(Costa et al. 2010); and parasitic crabs ( Pinnotheres sp.) that live inside mussels and
oysters (Trottier et al. 2012).

The highest impacting parasitic crustaceans are, by far, the fish lice. Fish lice are
ectoparasitic copepods that puncture the flesh of fish, opening wounds that predispose
fish to secondary infections and indirectly cause mortality (Johnson et al. 2004). This
group of parasites also provide the widest range of examples for control; where research
has not only focussed on chemical and physical control methods but has utilised
genomic, transcriptomic and proteomic technologies to further understand weaknesses
to exploit (Yasuike et al. 2012; Christie, 2014; Sutherland et al. 2014).

No fewer than 11 different chemicals have been adapted for the control/eradication of
fish lice [Teflubenzuron, Ivermectin, Emamectin benzoate (SLICE®), Azamethiphos
(Salmosan®), Cypermethrin (Excis®), Dichlorvos (Calicide®), Hydrogen Peroxide,
Pyrethroids (Neguvon®)], which can be provided within feed or as a bath solution
(Jensen et al. 2015; Jansen et al. 2016). The application of chemicals has positive results
but can affect the environment and the flesh of the fish, making them less marketable
(Haya et al. 2005). In many cases the use of these biocides has resulted in resistance to
treatment, meaning one form of treatment usually becomes redundant after a given

period, requiring constant development of new products (Aaen et al. 2015).

Physical control of sea lice involves monitoring to catch early infections, considering
parasite transmission dynamics, and manual labour to remove and control infection
levels. Farms benefit by reducing their chances of infection by understanding where best
to place the farm in the catchment. When farms are located outside the eddy currents,
where lice pool, the risk of infection is lowered (Amundrud and Murray, 2009). Lice can
be manually removed from fish without subjecting them to harmful chemicals or risking
biocontrol, but this is a costly method due to human labour and is often insufficient
(Costello, 1993). Temperature and freshwater has also been applied to control the lice

without harming the fish or environment, with varied success (Costello, 1993).

Biological control of salmon lice (Lepeophtheirus salmonis) uses two main fish species
(wrasse: Labridae, and lump-fish: Cyclopterus sp.) that act as lice-predators and readily
remove lice from infected stock (Groner et al. 2013). It is now becoming apparent that
some of the fish used as biocontrol agents may have heritable behaviours that can be

bred into the fish to increase the quality of the control (Imsland et al. 2014; Imsland et al.
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2016). The application of hyper-parasites may have a role in the future of controlling sea
lice; examples such as mortality-inducing microsporidians (Paranucleospora theridion)
may provide useful alternatives to chemical treatments (Jkland, 2012). Sea lice are one
of the only crustaceans that have reached environmental trialling of biocontrol agents

[e.g. wrasse act as cleaner fish in the Scottish salmon industry (Murray, 2015)].

Some control techniques bring salmon lice control to the cutting edge of the field. RNA
interference is a method of silencing genes in vivo through the use of dsRNA tailored to
the mRNA of an expressed gene (Katoch et al. 2013). This method is often used in
cellular and developmental biology as a research tool, however, it can be repurposed to
silence genes crucial for survival on a cellular or organismal level to control pests (Katoch
et al. 2013). For salmon lice, the ecdysone receptor gene has been characterised as a
potential target for RNA. trials in the future (Sandlund et al. 2015).

Some control methods for sea lice have become almost futuristic, such as the adaptation
of laser technology with re-purposed facial recognition software, which detects lice on
the skin of the fish and zaps lice with a laser as fish pass through specialised structures,
limiting the need for human intervention and the associated costs
(http://optics.org/news/5/5/52: “Laser technique combats sea parasites”).

1.4.3. Controlling invasive crustaceans

Invasive crustaceans are one of the most abundant groups of aquatic invaders and
examples of their harmful effects to native species, ecosystems and habitats are
numerous (Karatayev et al. 2009). Their impact on the economy is also a major concern
as they diminish key ecosystem services (Hanfling et al. 2011). In recent years the Killer
shrimp (Dikerogammarus villosus) has been observed to rapidly replace native species
across Europe (Dick and Platvoet, 2000). Chinese mitten crabs (Eriocheir sinensis) have
been identified as highly damaging organisms to the structural integrity of the banks of
the River Thames in London (Clark et al. 1998). Invasive burrowing isopods have
polluted waters with microplastics due to their boring activity in polystyrene floats under
ship docks (Davidson, 2012). European shore crabs (Carcinus maenas) have been
identified as global invaders that affect biodiversity and aguaculture on a planet-wide
scale (Walton et al. 2002). Finally, signal crayfish (Pacifastacus leniusculus) (as well as
many other invasive crayfish species) have been identified as a vector and introductory
pathway for one of the worst aquatic wildlife diseases, crayfish plague (Aphamomyces
astaci), which has caused white clawed crayfish (Austropotamobius pallipes) to become

endangered across Europe (Svoboda et al. 2017). In addition, signal crayfish, as with
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other invasive crayfish species, are ecosystem engineers and can significantly alter the

ecosystem they invade.

Attempts to control invasive Crustacea or implement successful eradications remain a
rarity (Lafferty et al. 1996; Hanfling et al. 2011). Of the few examples available, the
control methods that have been explored for invasive Crustacea include: autocidal,
physical/mechanical; chemical; and biological control (Goddard et al. 2005; Hanfling et
al. 2011; Gherardi et al. 2011; Stebbing et al. 2014).

The introduction and spread of invaders can be difficult to predict, making the targeted
application of control and management methods difficult. The application of
computational modelling to predict invasion routes can be a considerable aid in the most
effective deployment of resources. For example, modelling the movement of Chinese
mitten crabs (E. sinensis) is aiding in the development of control programmes (Herborg
et al. 2007). Likewise, computational modelling can be used to forecast where
organisms, such as the killer and demon shrimp are able to invade (Gallardo et al. 2012),
or in the identification of hotspots of introduction and spread, allowing for the
development of targeted monitoring (Tidbury et al. 2016). Population modelling can also
allow for the testing of the effects of long term management programmes without the
need for resource intensive field trials (Stebbing et al. 2012), in addition to aiding in the

development of control programmes.

1.4.3.1. Autocidal control of invasive Crustacea

Autocidal control is a generic term, including intra-species competition between fertile
and infertile males, often referred to as the Sterile Male Technique (SMT), to lower the
breeding success of a pest population, in addition to the use of pheromones as control
agents (Gherardi et al. 2011; Stebbing et al. 2014). In its original form SMT was applied
to terrestrial insect pests and involves irradiation of males to promote infertility/sterility,
these are then released en masse into wild populations of the target species, where the
infertile/sterile males compete with normal males for females. Sterilisation can also be
achieved through removal of sex organs or genetic engineering (Alphey, 2014; Stebbing
et al. 2014; Blum et al. 2015). The technique is species specific and inversely density
dependent. As the fertile male population decreases, the rate of control increases as an
increasing portion of the female population is mated by released sterile males. SMT has
been used successfully used to control and in some cases eliminate several insect pest
populations (Alphey, 2014), for example the screw worm (Cochliomyia hominivorax) was
successfully eliminated from North America starting in the 1950s (Knipling, 1960). The

technique has been used successfully against a number of other pest species such as
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Mediterranean fruit fly (Ceratitis capitate), melon fly (Bactrocera cucurbitae), pink
bollworm (Pectinophora gossypiella), codling moth (Cydia pomonella) and tsetse fly
(Glossina austenii) (Wyss 2000; Hendrichs et al. 2005; Klassen and Curtis 2005).

The application of SMT to invasive crayfish populations has been examined via both
laboratory and field testing. Methods developed and partially tested include X-ray
treatment and removal of gonopods, each providing promising results (Aquiloni et al.
2009a; Gherardi et al. 2011; Stebbing et al. 2014). Successes in this field provide a
foundation for the application of this technique for other crustacean invaders and, due to
the limited environmental threat, it provides a seemingly risk-free approach for control
and eradication. However, the mass rearing of invasive Crustacea may be difficult to
justify financially and may be viewed as unacceptable. In addition, the technology to
breed only male animals would need to be developed. It is therefore likely that the
application of SMT to invasive Crustacea will be limited by the ability to physically remove

animals from a water system, treat the males and then return them to the water.

Semio-chemicals in the form of pheromones have been used in the control and
management of insect pest populations (specifically lepidopteran and coleopteran) for
some time (Kirsch, 1988). Pheromone based control is normally applied either as: i)
mating disruptor, whereby pheromone plumes are released to confuse males in their
search for a mate, limiting reproduction, ii) ‘attract and kill’ traps where the pheromone
is used to lure males or females into the trap, removing them from the population or, iii)
mass trapping large numbers of animals for removal from the population (El-Sayed et al.
2006).

Despite being extensively used in terrestrial environments, there has been little progress
in the application of semio-chemicals in the control of aquatic invasive crustacean
species. Some work using putative sex pheromones of invasive crayfish has been
conducted (Stebbing et al. 2003; Aquiloni et al. 2009b) with promising results, revealing
that males only need olfaction to identify a mate, where females require olfaction and
visual ques to identify a mate, but no finalised control method has yet been developed.
A sex pheromone, specifically a nucleotide pheromone, of the invasive European shore
crab (Carcinus maenas) has also been identified (Hardege et al. 2011), and again no

application to control has yet been developed.

Semio-chemicals present a species specific and environmentally friendly means of
controlling invasive species. Despite some obstacles that need over-coming, such as
reliable means of controlled release of the pheromone into the environment, there are a

number of promising examples of where this technique could be applied successfully.
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1.4.3.2. Physical/Mechanical control of invasive Crustacea

A more common form of invasive crustacean control is the application of physical or
mechanical control. Mechanical control is based on the removal of animals from a
population, usually in the form of trapping the target species, followed by euthanasia.
These methods tend to be labour intensive and time consuming, needing to be applied
over multiple years, which can sometimes limit their implementation as effective control
measures (Gherardi et al. 2011; Hanfling et al. 2011; Stebbing et al. 2014).

Trapping invasive crustaceans has rarely been proven to be effective, but is commonly
used for many species (Hanfling et al. 2011). There is evidence to suggest that limited
success may be a result of insufficient effort being applied and for too short a period
(Stebbing et al. 2014), further highlighting trapping as a method that is too resource
dependant for extensive management programmes. In some cases, advanced trapping
has been designed to increase its efficacy by including the use of specific baits
(pheromones, prey) or lures (social lures, light, shelter) and designing the trap with the
invader in mind to avoid trapping native species and further specifying the technique
(Stebbing et al. 2003; Stebbing et al. 2014).

In some cases, physical removal can be easily achieved, especially where the target
species has specific habitat preferences, for example, the aquatic isopod Sphaeroma
guoianum that is invasive in the USA; where control in this instance has been achieved
by placing artificial rotting wood habitats into water systems, allowing colonisation, then

removing to lower the population (Davidson et al. 2008).

Many invaders, such as the American signal crayfish, have become invasive through
escape from aquaculture farms (Goddard and Hogger, 1986) and are still prized as a
food source, and are now trapped extensively within their invaded range for human
consumption. Other invaders share a similar story, such as the Chinese mitten crab,
where suggestions have been made to sell this species back to China from trapped
populations in its invasion range, as a delicacy (Clark et al. 2009). Invaders that provide
this added benefit can end up being distributed further due to their associated price tag,
however licencing, such as that seen in the UK (Environment Agency), acts as an
important restriction used to avoid future invasive propagules and track where novel
invasions could be occurring through sale or husbandry of the invader (Hanfling et al.
2011). Although public movement can often increase the distribution of invaders
(Anderson et al. 2014) their involvement in “citizen science” through engagement and
education is becoming a benefit for invader control: identification of invasion sites for
new and existing invaders is an example (Crall et al. 2010; Hanfling et al. 2011; Tidbury

et al. 2016). In some cases, invaders can be inedible, such as metal-contaminated
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Procambarus clarkii, which can accumulate heavy metals toxic to humans: in cases such
as this, control can be more difficult as people may be less keen to become involved
(Gherardi et al. 2011).

Approaches such as electro-fishing to control crayfish (Gherardi et al. 2011; Stebbing et
al. 2014) and “electro-screens” to prevent the migration of E. sinensis (Gollasch, 2006)

may provide an easier, more efficient and cheaper method of control.

Mechanical removal of organisms from fomites (materials likely to carry
infection/organisms) is often one of the first defences to invasion (i.e. biosecurity), initially
through the decontamination of vessels that may be transporting invaders. The bay
barnacle, Amphibalanus improvisus, provides a good example where temperature, anti-
fouling paints, oxygen deficient hulls, chlorine treatment and mechanical removal are
combined to help prevent invasion (Hanfling et al. 2011). Chelicorophium curvispinum,
an invasive amphipod from the Ponto-Caspian, provides a second example where
heating (40.8°C) and filtration of ballast and sludge cause 90% mortality and heavily
reduces the likelihood of invasion (Rigby and Taylor, 2001; Horan and Lupi, 2005;
Hanfling et al. 2011). Heat treatments have also been examined for a number of other
aguatic invasive species, including plants (Anderson et al. 2015), and are now being

recommended as a biosecurity measure by the Environment Agency in the UK.

Where invasions have reached unmanageable levels, large scale efforts such as entire
drainage of ponds and lakes, or the construction of barriers, have been attempted to
remove or prevent the movement of invaders, such as crayfish (Johnsen et al. 2008). In
the laboratory, such processes followed by substratum drying have been trialled with
some success, such as the control of Ponto-Caspian invaders (Poznanska et al. 2013).
The efficiency of methods like this is questionable and has been shown in the past to be

ineffective (Johnsen et al. 2008).

1.4.3.3. Chemical control of invasive Crustacea

Chemical biocides are commonplace in aquaculture and agriculture, and in all cases an
assessment of their impact toward non-target species is considered before their
application as a pesticide or herbicide (Ruegg et al. 2007). However, despite rigorous
testing it is difficult to be certain that biocides will not negatively affect the environment
and surrounding wildlife. Chemical run-off into rivers and streams, and the effect of
chemicals on non-target species within agricultural/aquacultural land, remain a
concerning problem for their continued, and in some cases excessive, use (Bunzel et al.

2015). Recent studies have highlighted the risk of non-target neonicotinoids which are
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meant to control invasive and pest insect species (insecticidal), but also effect bee
populations, identifying their wide ranging impacts upon invertebrates and, to a greater
extent, ecosystem health (Robinson et al. 2017). This study highlights the importance of
understanding non-target chemical effects on surrounding wildlife. The application of
general biocides to areas of high biodiversity to control invasive species may be a
particular problem due to greater risk of non-target species interacting with the biocide
(Green et al. 2005).. . In wild habitats biodiversity can be higher, relative to farmed
environments, meaning that non-specific chemical biocides have a greater chance of
impacting a greater variety of species as well as the target, and are more likely to impact

upon the ecology (Green et al. 2005).

Chemicals have been used in the past to control invasive crustacean populations that
also effect wild, aquatic, environments. Saline treatment is commonly used as a
preventative for invasion, evacuating invasive freshwater crustaceans in ship ballast
water (Ellis and Maclssac, 2009). The process of increasing lake or river salinity would
cause large amounts of ecological damage as many species are highly sensitive to saline
conditions, limiting applications of this technique (Haddaway et al. 2015).

A variety of biocides have been applied to control invasive Crustacea in the past:
Organophosphates, Organochlorines, Pyrethroids, Rotenone, and Surfactants are all
examples however most lack the specificity required to avoid harm to native/co-habiting
species (Hanfling et al. 2011). Most appear to result in bioaccumulation and
biomagnification in the food chain, which have ripple effects across an ecosystem
(Hanfling et al. 2011). The trialling of natural pyrethrum (i.e. Pyblast) has been applied
to the North Esk catchment in Scotland to control the signal crayfish population (Peay et
al. 2006), showing some success, with no crayfish being found in the following summer
but some found at the pre-treated site. It is